
Introduction To
MATLAB Interactive

Graphics

Eric Peasley, Department of Engineering Science, University of Oxford
version 4.3, 2018

An Introduction to MATLAB
Interactive Graphics

Table of Contents
Data Types...2

Characters and Strings..2
Structures...5

Flow Control...6
Switch...6
Try Catch..7
Global Variables...7

Predefined Dialogue Boxes...8
Graphics Objects..9

Types of Object..9
Object Creation..11
Changing Object Properties...13
Other Object Graphics Functions..14

App Designer...15
App Designed Code...16
Events and Callback Functions...17

Version 4.3

1

Data Types
Characters and Strings
There are two ways of storing text into a MATLAB variable. For many applications you can
use either type. The main difference between the two is how they behave when you put
then into an array.

Character Arrays

A character variable holds a single text character. To create a character variable, put the
character between single quotation marks.

A character array is an array of character variables.

This is not a very convenient way to create the array. Normally you use the following :-

However, it is still an array, so you can do the same types of things that you do to a
numerical array.

2

 c2 = 'World'
 ca = [c1 ' ' c2] % Join 3 char arrays together
 ca(4) % The 4th char in the array
 ca([4 7]) % The 4th and 7th char in the array
 ca(4:7) % The 4th to 7th char in the array
 ca == 'o' % logic array, 1 when letter 'o'
 az = 'a':'z' % All letters from a to z
 length(az) % The number of letters in alphabet

 c = 'a'

 c1 = ['H' 'e' 'l' 'l' 'o']

 c1 = 'Hello'

String Arrays

String Arrays are arrays of text rather than arrays of single characters.

A single string such as "Hello World" is not an array, it is a single entity. You cannot
use indexing on a string to extract single characters. Instead you use indexing to extract a
the whole string of text.

Other than that, strings and character arrays are almost interchangeable. Many of the
functions that work with strings will also work with character arrays.

Cell Arrays

A cell array can be used to store text, numbers and and other types.

Notice that cell arrays use curly brackets instead of square and round brackets.

Text Comparison

The function strcmp compares two strings

The result is either true or false. The case above will be false because of the capital
letters in the original string. There is a case insensitive version that will give true.

The function can be used as the conditional part of a while loop or if statement.

There are several other functions that can be used to compare two strings. To find out
more, enter

in the MATLAB command window.

3

strcmp(ca,'hello world') %Compare two strings

strcmpi(ca,'hello world') %Case insensitive version

doc compare text

 sa = ["one" "two" ; "three" "four"]

 sa(1,2) % Is the string "two"

C = { 1 2 'Text' [1 2 3 4 5]}
C{1} % Extract the first number
C{3} % Extract the text
C{4} % Extract the vector
C{4}(3) % Extract the 3rd element from vector

Converting Numbers into Strings

There are several functions to convert numbers into strings. The most basic one is
num2str.

Anybody that has used the C programming language will recognize the format strings as
being the same as used by the fprinf and sprintf functions. These functions are also
available within MATLAB.

%x A hexadecimal number should be inserted here.

\n Start a new line of text.

%0.1f Insert a fixed point number with just one decimal place.

The two end arguments contain the numbers to be inserted. So this produces the following
character array.

S =

 'hexadecimal b

 and fixed point 3.1 '

If you use double quotation marks in sprintf, it produces a string. You will find much more
information about formatting with sprintf in the MATLAB documentation.

Converting Strings into Numbers

There is also a function for converting a string into a number.

Evaluate a string as MATLAB code

You can also use a string as a command to MATLAB

4

S = num2str(pi) % converts pi into a string
S = num2str(pi,'%0.1f') % fixed point to one decimal place
S = num2str(pi,'%0.2e') % exponential notation, 2 decimal place
S = num2str(11,'%x') % present as a hexadecimal number

S = sprintf('hexadecimal %x \nand fixed point %0.1f ',11,pi)

N = str2double('3.142') %Convert a char array into a number

c1 = 'sqrt(9)' % Char array containing the MATLAB statement
A = eval(c1) % execute the MATLAB statement in s1

doc sprintf

Structures
A structure is a way of grouping different types of information into a single variable.
For example, the following creates a structure called Chem.

The variable Chem can be used on its own, to assign the structure to a new variable or to
pass the entire structure to a function.

This makes it easier to pass vast amounts of data to a function.

Each item in a structure is called a field. To access an individual field you use the name of
the structure and the name of the field separated by a full stop. You can add a new field to
a structure whenever you like. The following adds a new field called Weight the the
structure Chem.

The same notation is used to extract the value of a field.

A field can contain a number, a string, or an array.

 or another structure.

A field can also be a structure.

This can go on for many levels. You can also have arrays of structures. This gives you an
infinite variety of ways of organising your data.

5

Chem.Name = 'Sodium';
Chem.Symbol = 'Na';
Chem.Atomic = 11 ;

Chem.Weight = 22.99 ;

W = Chem.Weight;

Chem.Shells = [2 2 6 1];
shells = Chem.Shells ;
shell3 = Chem.Shells(3);

NewStructure = Chem ;
myfunction(Chem);

Person.Name = 'Sir Humphry Davy';
Person.Nationality = 'British' ;
Person.Birth = 1778;
Person.Death = 1829;
Chem.Discoverer = Person ;
Where = Chem.Discoverer.Nationality

Flow Control
Switch
A switch statement uses the value of a variable to select which code to execute.
For example

If DayNumber is 1, Day is set to Monday, if DayNumber is 2, Day is set to Tuesday etc.
If Daynumber is not in the range 1 to 7, then the statements after otherwise are executed.
You can put several lines of code for each case if required. You can also execute the
same code for several different numbers. For example

6

switch(DayNumber)
 case 1
 Day = 'Monday';
 case 2
 Day = 'Tuesday';
 case 3
 Day = 'Wednesday';
 case 4
 Day = 'Thursday';
 case 5
 Day = 'Friday';
 case 6
 Day = 'Saturday';
 case 7
 Day = 'Sunday';
 otherwise
 Day = [];
 errordlg('Invalid day number')
end

switch(DayNumber)
 case{1,2,3,4,5}
 DayType = 'Week Day';
 case{6,7}
 DayType = 'Weekend';
end

Try Catch
Try and catch are used for error recovery. Interactive programs can generate errors
because the user makes a mistake. The aim is to catch those errors and do something
sensible, rather than crash the program. You place the vulnerable code in the try part and
then the catch part will only execute if an error occurs in the try part. For example

In the try part the program tries to plot an expression entered by the user. It is quite
possible that the user will enter an invalid expression and cause an error. If an error does
occur, the the program will immediately jump to the catch part. The variable called err, is
a structure containing information about the error that has occurred. A field called
message in this structure contains the error message. This is displayed in an error
dialogue box.

Global Variables
When you write a MATLAB function, any variables within the function are local to that
function. This means that they can only be used within the function itself and cannot be
accessed in any other function or the command window. Global variables can be
accessed in several functions and the command window. To make a variable global, you
declare that it is global at the top of your function.

You must declare a variable as global in every function where you want to use it. This also
applies to the command window. You will not be able to see any global variables within
the command window until you declare the variable as global within the command window.
Any declaration of global variables within a function must be at the beginning of the
function.

7

x = linspace(-1,1,100); % Generate x at 100 points
try
 A = inputdlg('Enter an expression: '); %Ask for an expression
 y = eval(A{1}); %Evaluate expression
 plot(x,y)
catch err
 errordlg(err.message) %Error dialogue box
end

global a b c

Predefined Dialogue Boxes
Often when you are developing a Graphical User Interface, you want to bring up a small
window to display a message, ask for some input or the name of a file. You could write
your own app to do this. However, MATLAB includes many different types of dialogue
boxes ready for you to use. To see how these work, try the following.

There are many other types of predefine dialogue boxes. To see the full list, look in the
MATLAB documentation.

You will use several different predefine dialogue boxes in the exercises.

8

doc Dialog Boxes

msgbox('Hello World')
msgbox('Hello World','My Title')

a = questdlg('Are you happy')

Graphics Objects
Sometimes you need to produce graphics that are different or more complex than the
graphs obtained by the standard plot functions. When you use the plot function in
MATLAB, the graphics produced are composed of simpler graphic objects. You can
compose your own graphics using these objects in what ever way you wish.

Every graphical entity has a extensive selection of properties that can be configured to
your own requirements. To access these properties you use an “object”. You change an
object like you change a structure, it has a field for each property. When you change a
field, you change the appearance or behaviour of the graphical object.

Types of Object.
There is a hierarchy of graphical objects within MATLAB.

Root
At the top is the root, which is not really a graphics object at all. It is just a starting point for
everything else. The root also has properties that are inherited by its children below.
The function groot returns the root object.

Figures
Figures are the windows that contain the graphics.

Axes
An axes is like the paper that a graph is plotted onto. There can be several axes in a
figure. Each axes in a figure is a child of the figure and the figure is a parent of the axes.

9

Root

Figures

Axes Ui Objects

Chart Objects Primitive Objects

UI Objects
The other type of object that you can put directly into a figure are the User Interface (UI)
objects such as push buttons, sliders and check boxes.

Chart Objects
Chart objects are the 2D graphs produced by plot, bar, semilog and the 3D graphs
produced by surf, mesh and plot3 etc.

Primitive Objects
Then there are the low level graphical objects such as lines, text, rectangles and patches.
A patch is a n sided shape, defined by the coordinates of the corners. These are all
children of an axes.

Example of a MATLAB figure

10

Object Creation
There is a function for each type of object that will create that particular object.
For example

Will create a figure and the object hf can be use later to access the properties of the
figure. At the same time as you create a figure, you can set object properties.

Which will create a 500 by 500 pixel figure, 100 pixels from the bottom and left of the
screen. Although there are many different object creation functions, they are all similar in
the way that you use them. In the general form of the function, you specify the name of
the property and then the value you want to assign to the property, this is known as
name-value pairs. You can put in as many name-value pairs as you like.

MATLAB is an American program, so you need to use “Color”, the American spelling. If
you change more than two properties, the statements lines can get very long. Above I
have split the statement over several lines using ellipses(...), so that there is one property
per line.

You use the object hf to access the properties of the object like you access the fields of a
structure. An alternative to the above

Object Properties

A figure has over sixty different properties. Other objects have a similar amount. So it is
fairly unlikely that you will remember the names of all the properties and how to use them.
The properties of each type of object are listed in the MATLAB online documentation.
When you display a graphical object in the command window, there is a link to the
documentation. Enter the name of the object and click on the blue, underlined link.

11

 hf = figure

 hf = figure('Position',[100,100,500,500], ...
 'Color',[.2,.8,.8], ...
 'Resize','off')

 hf = figure('Position',[100,100,500,500])

hf = figure;
hf.Position = [100,100,500,500];
hf.Color = [.2,.8,.8];
hf.Resize ='off';

>> hf

hf =

 Figure (1) with properties:

 Number: 1
 Name: ''

Current Figure

When you create an axes, it is put into the current figure. MATLAB keeps the record of
which figure is the current figure. If you create a new figure, that becomes the current
figure. You can change the current figure using the figure function.

You can also find the “object” of the current figure with the the function gcf.

If no figure exists when you create an axes, a figure will automatically be created and
become the current figure. If you click on a figure, then that becomes the current figure.

Current Axes

The current axes is similar to the current figure. If you create an object that needs to be
within an axes, it is put into the current axes. The current axes is the last axes created or
you can switch the current axes using the axes function.

You can also select a different current axes by clicking on an axes.

Specified Destination

You can also specify which figure or axes the object will be in when you create the object.

12

figure(hf) % Change current figure to hf
ha = axes; % Create a new axes in hf called ha.

hcf = gcf; % Get current figure

axes(ha) % Change current axes to ha
gca % Get the current axes

hf = figure; % Create a figure
ha= axes(hf); % Create and axes in the figure hf
x = 0:0.1:1;
y = x.^2;

hp = plot(ha,x,y); % Plot the graph hp in the axes ha

Simplified Calling Syntax

To make things easier to use, some functions have a simplified form. For example, to
write the text “Hello world” on an axes at positions (0.5, 0.5), I could use

However, in practice you will always want to specify the string and the position. So there is
a simper way of doing this.

Other functions have to be entered in a simpler form. For example, you would not want to
enter a plot function in this form.

However, the plot functions does create a graphical object and you can interact with its
properties just like any other graphical object.

Changing Object Properties
There are a number of ways to change the properties after it has been created. The
original method used the function get to find a properties value and the function set to
change the value.

Since MATLAB release R2014b, you no longer need to use the set and get functions to
change object properties. The modern equivalent to the above is

13

text('Position',[0.5 0.5],'String','Hello')

text(0.5,0.5,'Hello There')

plot('XData',x,'YData',y,'Color','r') % does not work

hp = plot(x,y,'r','LineWidth',2)
hp.LineStyle = '-.'
xd = hp.XData;

lw = get(hp,'LineWidth') %Read line width of plot hp
set(hp,'LineWidth',3) %Set line width of plot hp

lw = hp.LineWidth
hp.LineWidth = 3

Here are more examples

Unfortunately, gcf is a function and not an object. You can use gcf in get and set but you
cannot use gcf with the dot notation.

Other Object Graphics Functions

Returns true if h is the handle of a graphical object. Can be used in the condition part of if
and while.

14

figcolour = hf.Color %Read the colour of figure hf
hf.Color = 'w' %Set the colour of figure hf to white

get(gcf,'Color') %Display colour of the current figure
get(gcf) %Display all proprieties of the figure
set(gcf,'Color','g') %Set the colour of the current figure

isgraphics(h) %Test if h is a graphics object

cla %clear current axes
cla(ha) %clear axes with object ha
clf %clear current figure
clf(hf) %clear figure hf

delete(h) %Delete object h

App Designer
The App Designer is a Computer Aided Design tool for MATLAB apps. It allows you to
select different types of graphic objects and drag them into position on to a figure. The
example below show an App Designer window containing the design for a temperature
conversion app.

This shows the Design View. This app uses two types of object. The white boxes are Edit
Field objects. Users can type into an Edit Field box. Text at the top of the App is a Label.
Each of the Edit Fields automatically has a built in Label. You can select an object, either
in the Component Browser or by clicking on the object. Then you can change its
properties.

15

App Designed Code

The App Designer automatically generates the code to create the app. It prevents you for
editing the code that it adds. You can produce your own apps without understanding what
is in this code, so feel free to skip the rest of this page.

The general form of the code generated is the same for every app.

Properties
At the top of the code is the properties. This is a list of things that are accessible inside the
app. To start with, the list consists of all the graphical objects that make up the app. At the
top of the list will be the figure itself. This is what it looks like in the temperature converter
app.

This defines the name of the property and what kind object it is. In this case it is a
matlab.ui.Figure object. This is part of the app object. To use this property in the rest
of code you use:

The Create Components Function
The function CreateComponents contains all the code to produce all the graphical objects
specified in the Design View of the App Designer. At the top, the figure is created. This is
what it looks like in the temperate converter app.

Below this will be all the code to create the rest of the objects.

The Main App Function
Below CreateComponents is the main app function. This is what executes when you run
the app. It does two things: Calls CreateComponents and registers the app.

The Delete Function
The last function is the delete function which tidies things up when the app is deleted.

16

% Create TemperatureConverterUIFigure
app.TemperatureConverterUIFigure = uifigure;
app.TemperatureConverterUIFigure.Position = [100 100 251 239];
app.TemperatureConverterUIFigure.Name = 'Temperature Converter';

 TemperatureConverterUIFigure matlab.ui.Figure

 app.TemperatureConverterUIFigure

Events and Callback Functions
To make it possible to interact with the graphics, many of the graphical objects look for
particular events to occur. You can configure an object to run a Callback Function when
an event happens.

When first created, the temperature converter app does nothing but create the graphical
objects. To make it work, callback functions needed to be added. The App Designer will
do most of the work for you. You can tell it that you want a Callback Function for a
particular event on a particular object . Then all you have to do is add the code into the
Callback Function to do what ever it is you want to do.

Take for example the Celsius Edit Field on the temperature converter. When somebody
enters a temperature into the Edit Field, we want the app to display the temperature in
Fahrenheit in the other Edit Field. So we get the App Designer to create a Value
Changed Callback Function and we add the following code into the function:

Then we add a Value Changed Callback Function for the Fahrenheit Edit Field.

That is all you need to do to get the app working.

17

C = app.CelsiusEditField.Value; % Get the number from Edit Field
F = C*9/5+32; % Convert to Fahrenheit
app.FahrenheitEditField.Value = F; % Write F to Edit Field

F = app.FahrenheitEditField.Value; % Get number from Edit Field
C = (F-32)*5/9; % Convert to Celsius
app.CelsiusEditField.Value = C; % Write C to Edit Field

18

	Data Types
	Characters and Strings
	Character Arrays
	String Arrays
	Cell Arrays
	Text Comparison
	Converting Numbers into Strings
	Converting Strings into Numbers
	Evaluate a string as MATLAB code

	Structures

	Flow Control
	Switch
	Try Catch
	Global Variables

	Predefined Dialogue Boxes
	Graphics Objects
	Types of Object.
	Object Creation
	Object Properties
	Current Figure
	Current Axes
	Specified Destination
	Simplified Calling Syntax

	Changing Object Properties
	Other Object Graphics Functions

	App Designer
	App Designed Code
	Events and Callback Functions

