

INTRODUCTION TO SIMULINK

Teaching Design Support Group

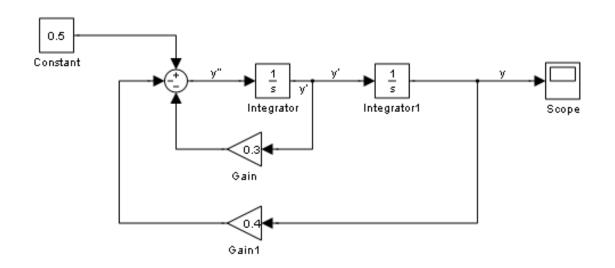
SESSION OUTLINE

Short Talk: Simulink Background & Basics

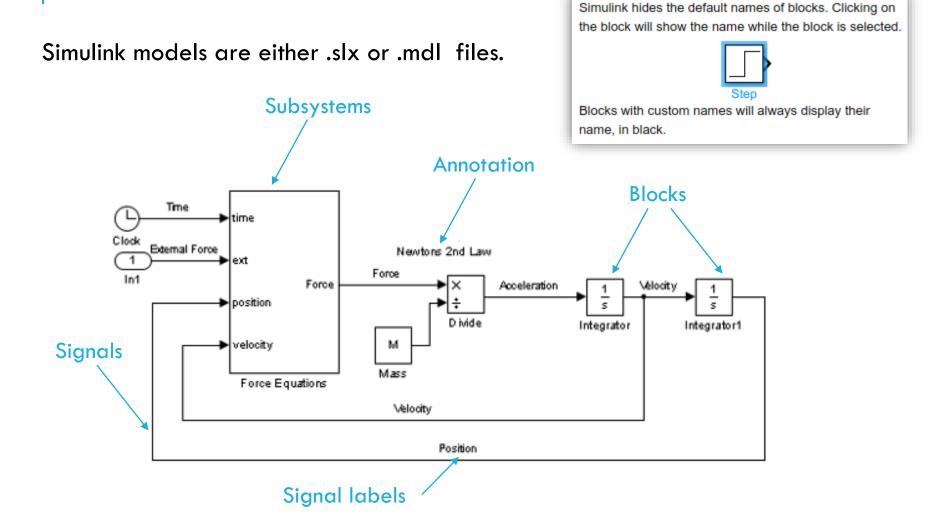
Exercise 1: Firing a cannon

Short Talk: Linking MATLAB & Simulink, Good Coding Practice Other Features

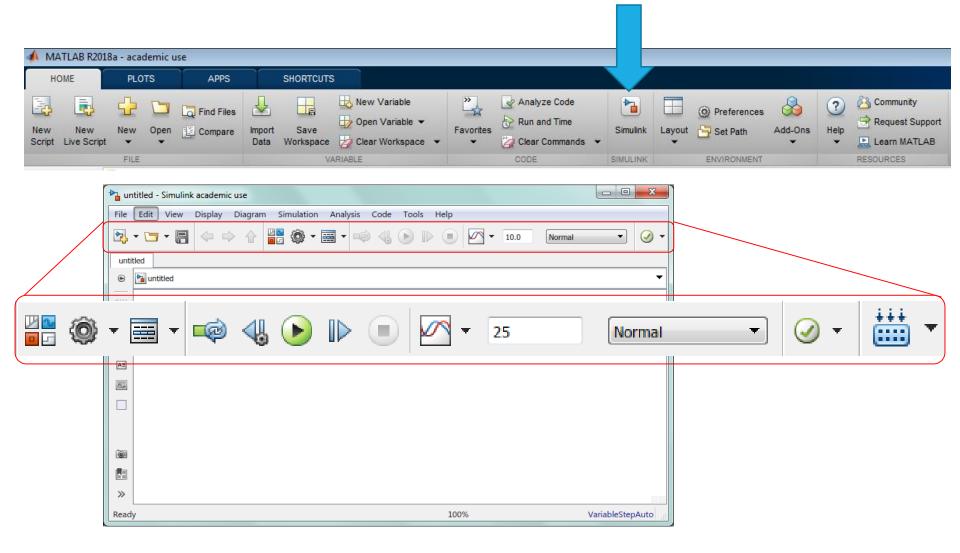
> Exercise 2: Systems of ODEs


Exercise 3: Model of Bouncing Ball

WHAT IS SIMULINK?

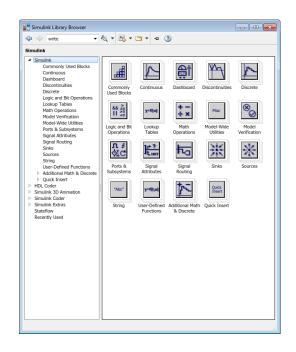

- Simulink is a visual programming interface built into MATLAB
- A way to solve equations numerically using a graphical user interface

A simple example:


$$\frac{d^2 y}{dt^2} = 0.5 - 0.3 \frac{dy}{dt} - 0.4 y$$

WHAT DOES A SIMULINK MODEL LOOK LIKE?

LAUNCHING SIMULINK

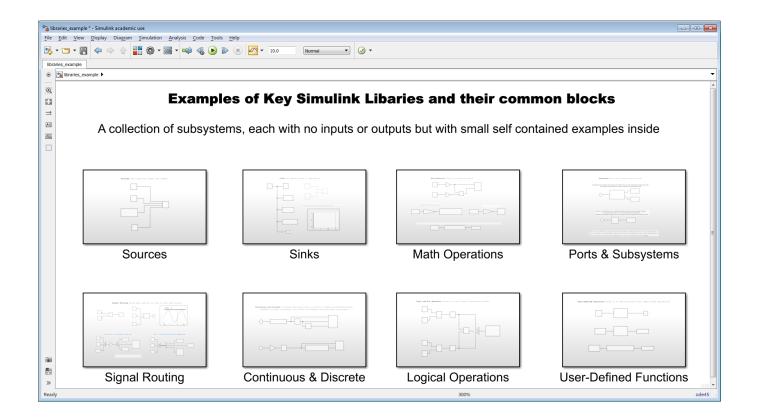


WORKING WITH BLOCKS

There are two ways to add blocks to a model:

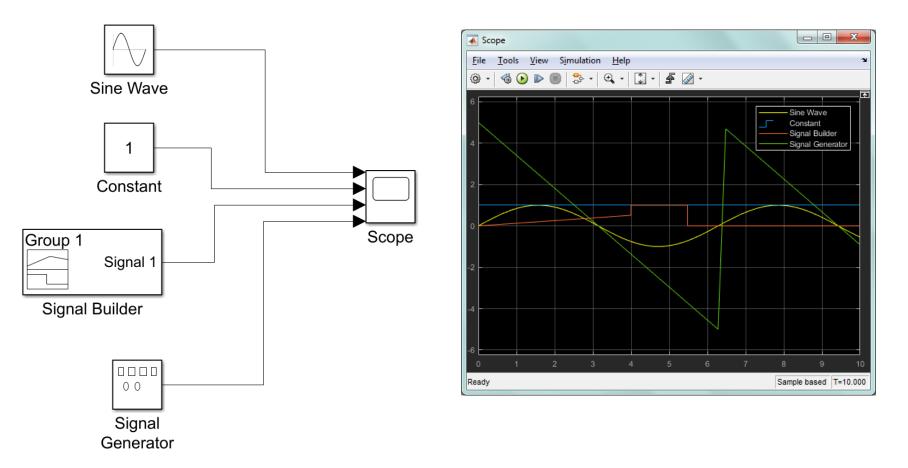
- Library Browser
- Quick Search

Q scope	
Scope Simulink/Sinks	^
Scope HDL Coder/Sinks	
Scope Simulink Real-Time/Displays and Logging	=
Floating Scope Simulink/Sinks	
Dashboard Scope Simulink/Dashboard	
Time Scope DSP System Toolbox/Sinks	+

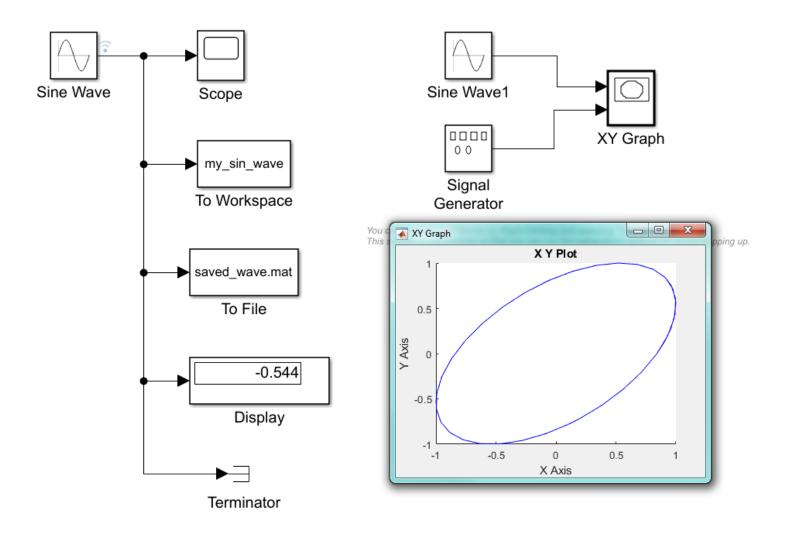

Each block has its own settings:

- Block Parameters values when using the block [Double Click]
- **Block Properties** how the block looks

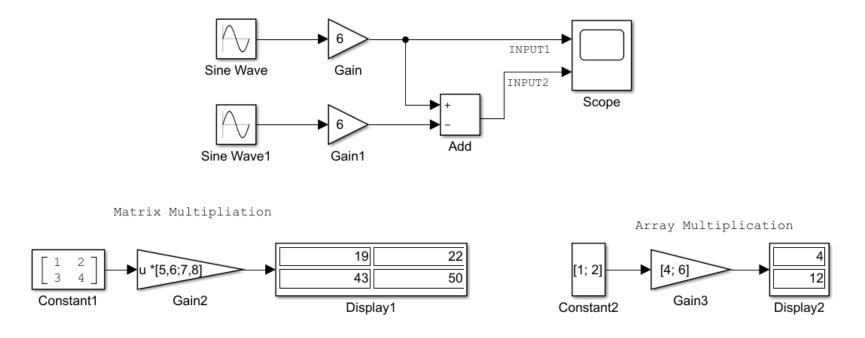
[Right Click]


IMPORTANT LIBRARIES

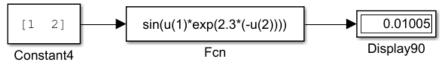
Simulink blocks are sorted into Libraries. Often with Simulink if you want to do something new, you need to search through the documentation to find the name of the block you need.


SOURCES

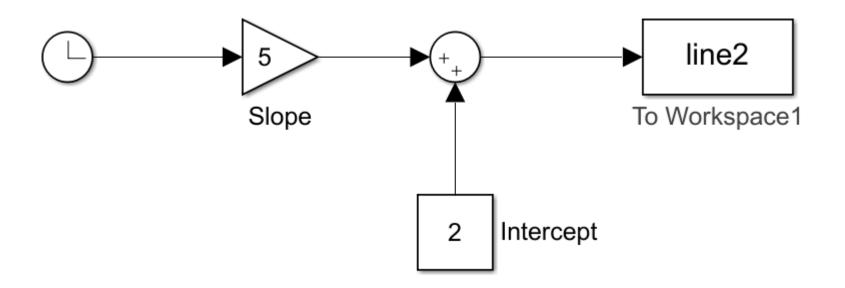
Sources are typically inputs for models

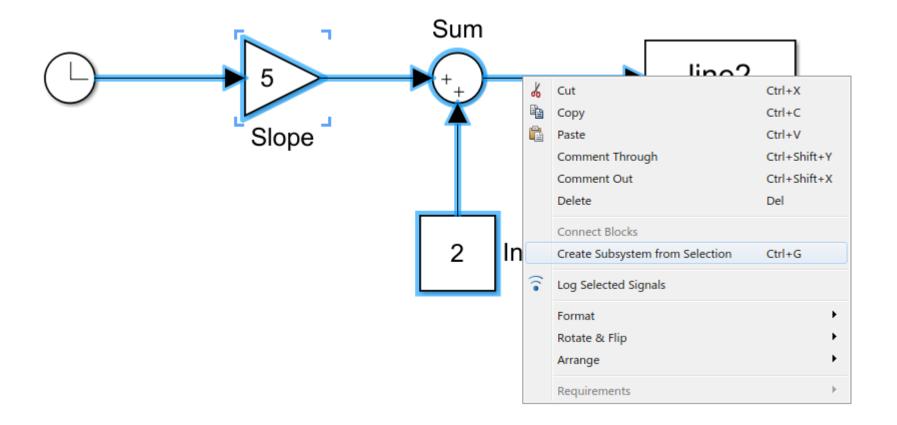

SINKS

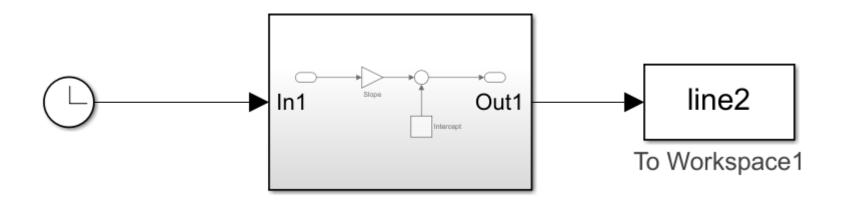
Sinks are typically ways to view results



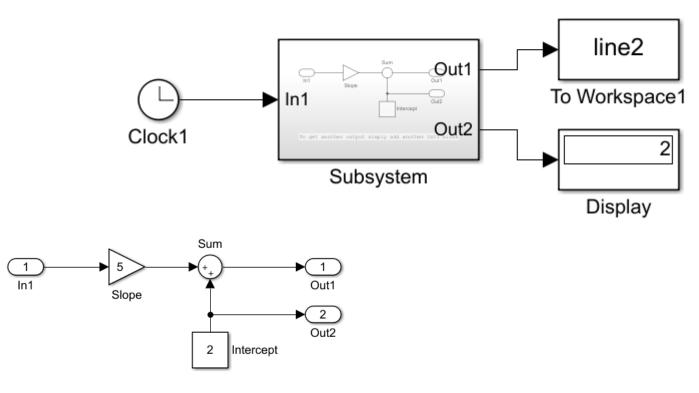
MATH OPERATIONS


Math Operations allow us to manipulate signals


Technically a User-Defined Function, but "Fcn" is useful when thinking about math operations


Subsystems are a way to group areas of code.

Subsystems are a way to group areas of code.



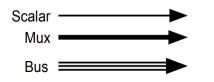
Subsystems are a way to group areas of code.

Subsystems are a way to group areas of code.

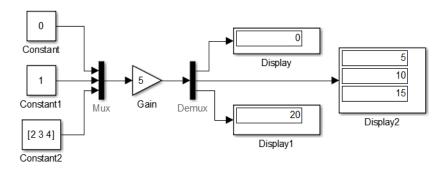
Subsystems can contain many inputs and outputs. You can nest subsystems inside each other. By default the inputs are In1, In2 etc but they can be renamed inside.

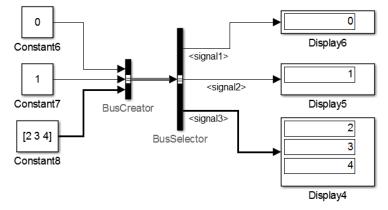
SIGNAL ROUTING

Mux & Demux : Group signals of <u>same</u> type

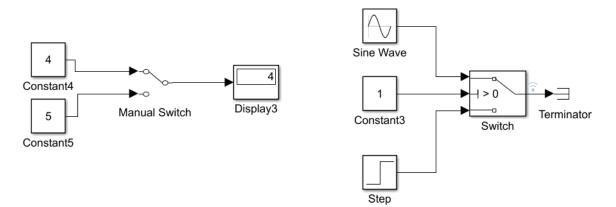

Mux block groups multiple signals Demux block separates out individual signals

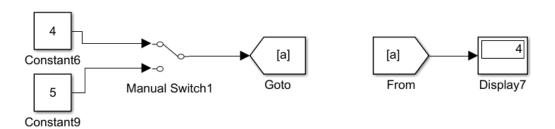
Can generally be used in mathematical operation blocks


Buses : Grouping signals of <u>same</u> or <u>different</u> data types

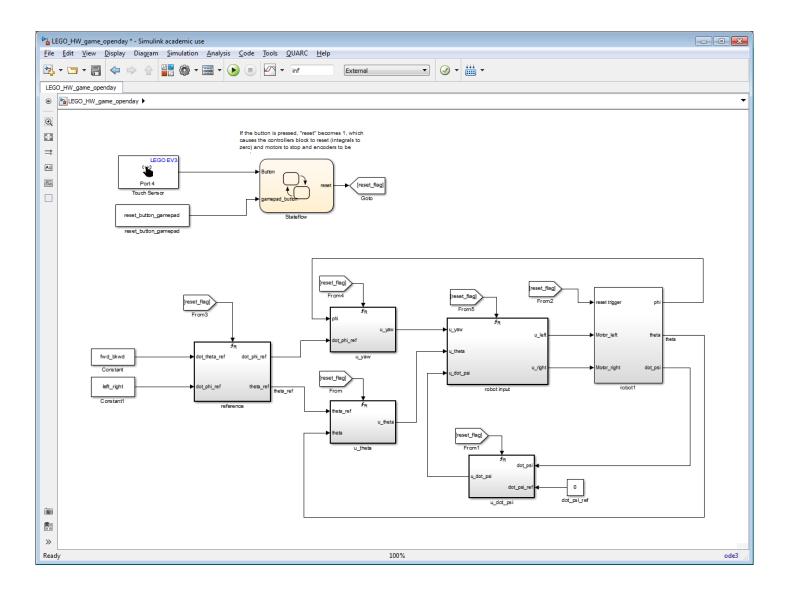

A **bus** is like cable tidy. Not always possible to feed a bus into a mathematical block.

Use BusCreator and BusSelector.

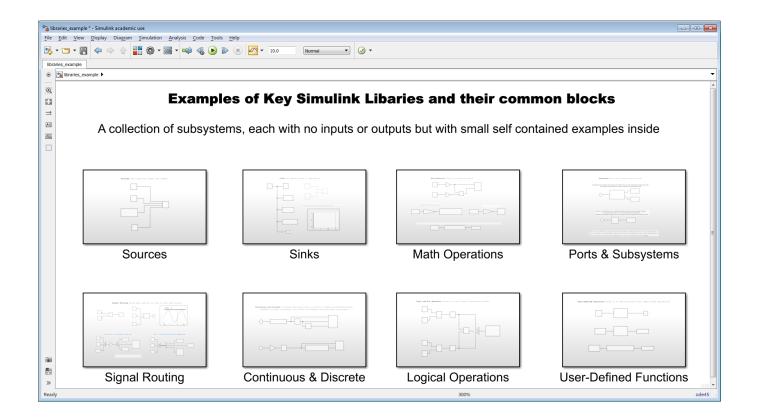

Display > Signals & Ports > Wide Nonscalar Lines



SIGNAL ROUTING

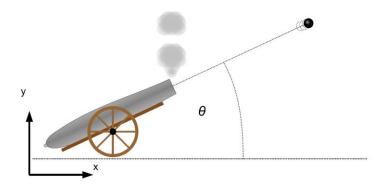

Switches

Goto / From



EXAMPLE OF GOTO/FROM

IMPORTANT LIBRARIES


Simulink blocks are sorted into Libraries. Often with Simulink if you want to do something new, you need to search through the documentation to find the name of the block you need.

EXERCISES

Exercise 1: Firing a cannon

- a) Creating a Simple Simulink Cannon Model
- b) Introduction to Subsystems by Modelling Air Resistance
- c) Adjusting Model Parameters
- d) Further Plotting
- e) Using MATLAB Expressions
- f) Combining MATLAB and Simulink

Ask for help! Talk to us about where you need to use Simulink in your work/research!

SESSION OUTLINE

✓ Short Talk: Simulink Background & Basics

✓ Exercise 1: Firing a cannon

Short Talk: Linking MATLAB & Simulink, Good Coding Practice Other Features

Exercise 2: Systems of ODEs

Exercise 3: Model of Bouncing Ball

There are many ways in which MATLAB and Simulink interact:

Run Simulink models programmatically in MATLAB (exercise 1. f)

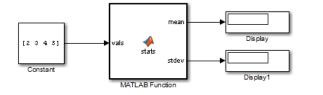
s = sim('cannon5','StopTime','25','MaxStep','0.01');

There are many ways in which MATLAB and Simulink interact:

Run Simulink models programmatically in MATLAB (exercise 1. f)

s = sim('cannon5','StopTime','25','MaxStep','0.01');

MATLAB Function Block in Simulink



There are many ways in which MATLAB and Simulink interact:

Run Simulink models programmatically in MATLAB (exercise 1. f)

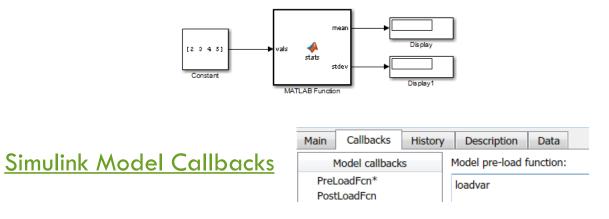
s = sim('cannon5','StopTime','25','MaxStep','0.01');

MATLAB Function Block in Simulink

Simulink Model Callbacks

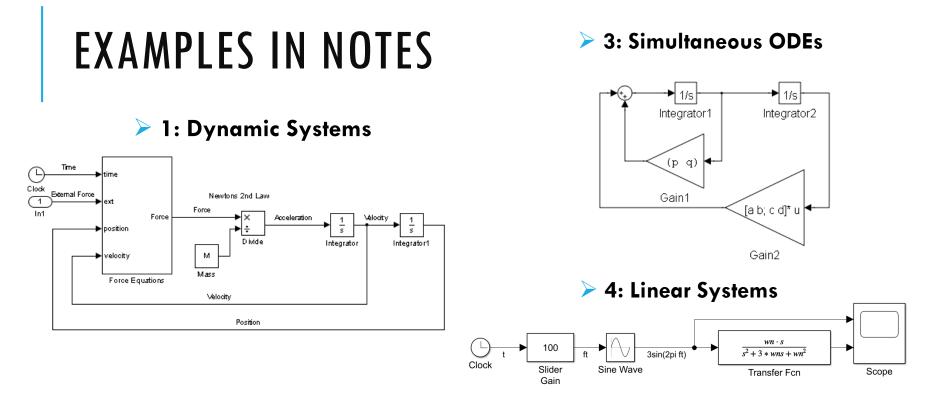
Main	Callbacks	History		Description	Data
Model callbacks			Model pre-load function:		
PreLoadFcn*			6	loadvar	
PostLoadFcn			1		

MODEL CALLBACKS

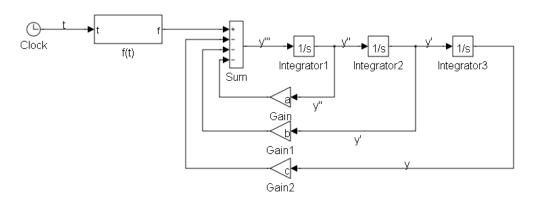

	Model Properties: example_matlab_fn	×
🎦 example_matlab_fn * - Simulink academic use	Main Callbacks History Description Data	
File Edit View Display Diagram Simulation	Model callbacks Model pre-load function:	
New Image: Second s	PreLoadFcn* PostLoadFcn InitFcn StartFcn PauseFcn ContinueFcn StopFcn PreSaveFcn PostSaveFcn CloseFcn	
	<u>OK</u> <u>Cancel</u> <u>H</u> elp <u>A</u> pp	ply

There are many ways in which MATLAB and Simulink interact:

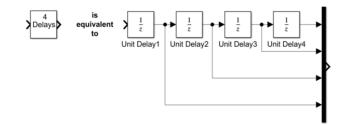
Run Simulink models programmatically in MATLAB, exercise 1. f)


s = sim('cannon5','StopTime','25','MaxStep','0.01');

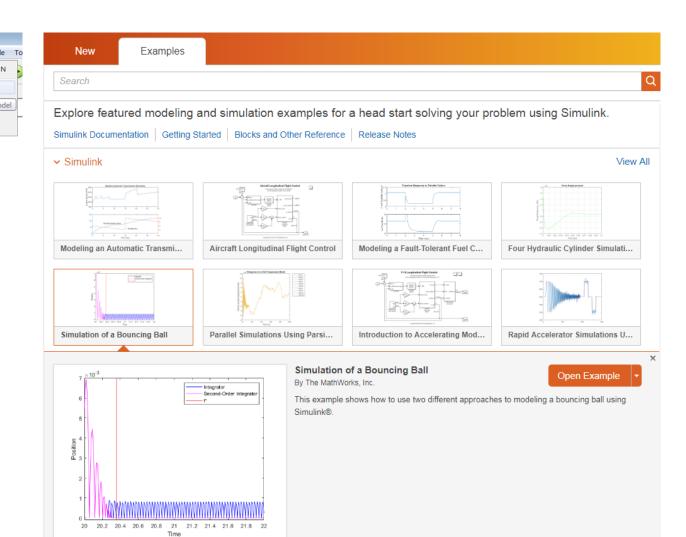
MATLAB Function Block in Simulink



Create Simulink models programmatically


set_param('cannon5','PreLoadFcn','loadvar')

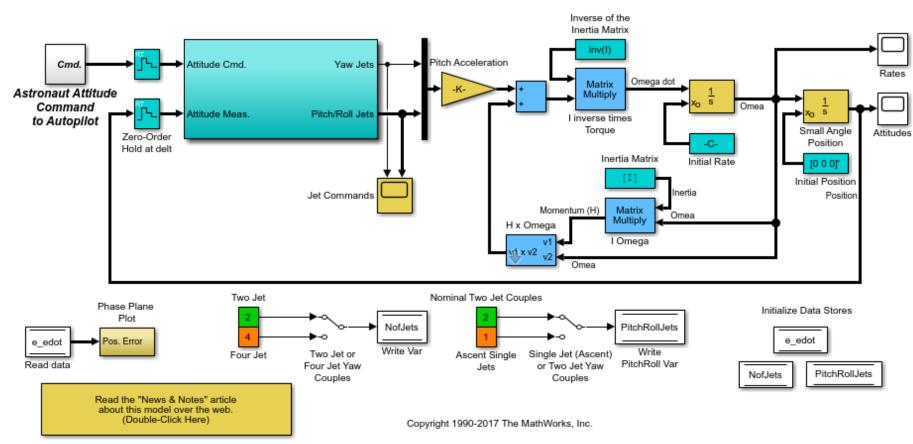
2: Ordinary Differential Equations (ODEs)



5: Discrete Systems

EXAMPLES

🍡 s	ldemo_bounce -	Simulink	academic	use			
File	Edit View	Display	Diagram	Sir	nulation	Analysi	s Cod
	New		•		Blank Mo	odel	Ctrl+
	Open		Ctrl+O	2	Model		
	Open Recent		•		Chart	-	
	Close		•		Library		New Mo
R	Save		Ctrl+S		Project		
	Save As				Troject		
			•				
	Simulink Project		•				
	Export Model to)	•				
	Model Propertie	es	•				
	Print		+				
	Simulink Prefere	ences					
	Stateflow Prefer	ences	Þ				
	Exit MATLAB		Ctrl+Q				

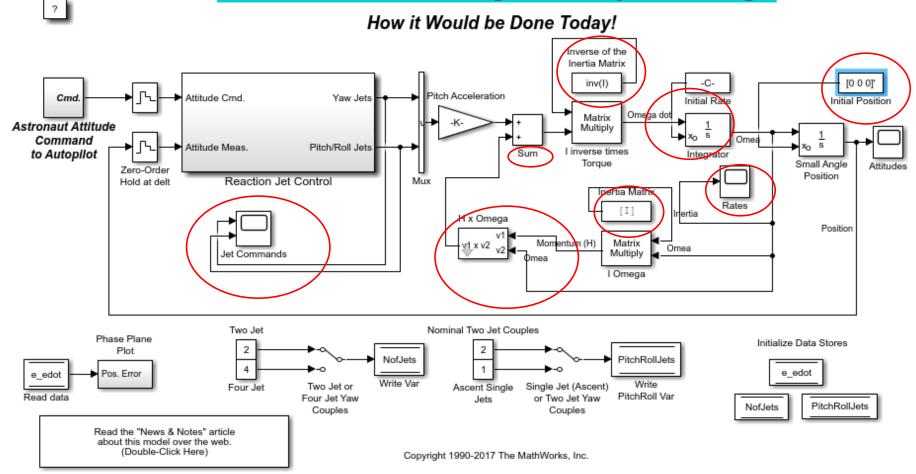

GOOD CODING PRACTICE IN SIMULINK

✓ Keep your model **readable**

Make use of annotations, but keep them brief

Make use of the colours for different blocks

As your model evolves, don't be afraid to reorganise



The Lunar Module Digital Autopilot Design

How it Would be Done Today!

?

aero_dap3dof

The Lunar Module Digital Autopilot Design

aero_dap3dof

GOOD CODING PRACTICE IN SIMULINK

Keep your model readable

Make use of annotations, but keep them brief

Make use of the **colours** for different blocks

As your model evolves, don't be afraid to reorganise

Try not to 'bury' key values in blocks (they are easily forgotten!)

Combat this by adding automatic annotation to plots or blocks

Set up key parameters in a MATLAB script

GOOD CODING PRACTICE IN SIMULINK

✓ Keep your model **readable**

Make use of annotations, but keep them brief

Make use of the **colours** for different blocks

As your model evolves, don't be afraid to reorganise

Try not to 'bury' key values in blocks (they are easily forgotten!)

Combat this by adding automatic annotation to plots or blocks

Set up key parameters in a MATLAB script

Use tools when debugging

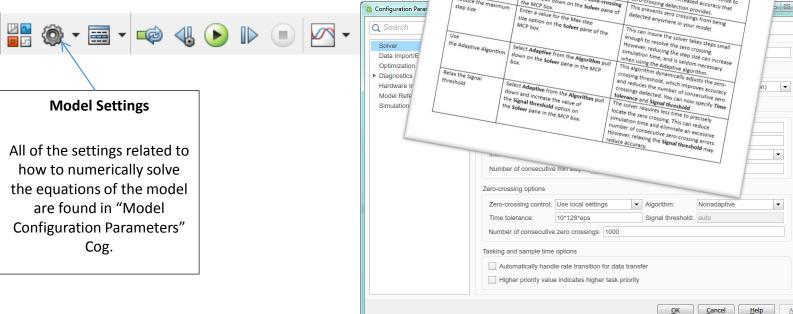
Make use of the **Display** options to find dimension mismatch problems

Use temporary scopes or displays to investigate errors

You can't know everything Simulink does – use documentation & google!

THE SOLVER

So, we've been modelling systems, that is solving equations. Yet we haven't had to code up any numerical analysis techniques.


The useful thing is that Simulink takes care of that for us. But we still need to know what it is doing behind the scenes!

	Configuration Parameters: untitled	d/Configuration (Active)
Model Settings	Q Search Solver Data Import/Export Optimization Diagnostics Hardware Implementation Model Referencing Simulation Target	Start time: 0.0 Stop time: 10.0 Solver options
All of the settings related to how to numerically solve the equations of the model are found in "Model Configuration Parameters" Cog.		Min step size: auto Absolute tolerance: auto Initial step size: auto Shape preservation: Disable All V Number of consecutive min steps: 1 Zero-crossing options Zero-crossing control: Use local settings Algorithm: Nonadaptive V Time tolerance: 10*128*eps Signal threshold: auto Number of consecutive zero crossings: 1000 Tasking and sample time options Automatically handle rate transition for data transfer Higher priority value indicates higher task priority

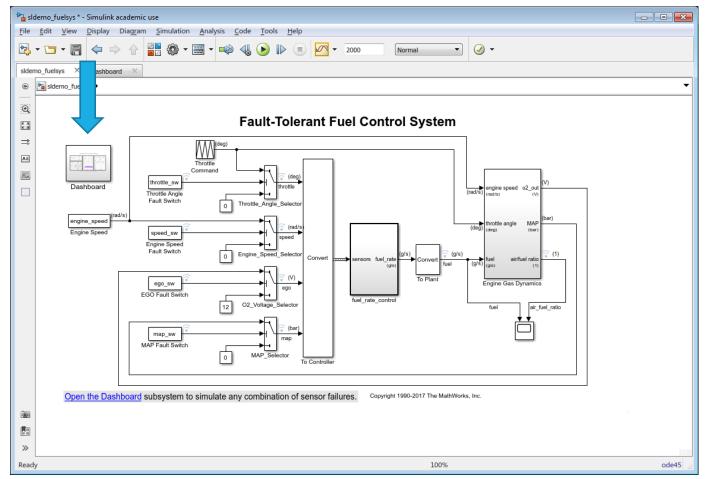
THE SOLVER

So, we've been modelling systems, that is s Yet we haven't had to code up any numeri

The useful thing is that Simulink takes car But we still need to know what it is doind

The Solver: Zero-Crossing Options A variable-step solver dynamically adjusts the time step size, causing it to increase when a variable is changing Slowly and to decrease when the variable changes rapidly. Stowny and to decrease when the variable changes rapidly. This behaviour causes the solver to take many small steps in near a discontinuity because the variable is rapidly in near a orscontinuity vectorie the variable is replicing changing in this region. This improves accuracy but can lead to excessive simulation times. Simulink uses a technique known as zero-crossing Simulink uses a technique known as technologian detection to accurately locate a discontinuity without resorting to tiny time steps. Usually this technique improves simulation run time, but it can cause some improves simulation run time, but it can cause some simulations to halt before the intended completion time. Understanding how Simulink's zero-reaction datasetion almostheme adjustice and non-adjustice survey is beyond the screek of the cosimulations to hait before the intended completion time. Understanding now simulink's zero-crossing detection algorithms, adaptive and non-adaptive, work is beyond the scope of the course. The table below should help you overcome some errors associated with zero-crossing, particularly Ine table below should help you overcome some errors associated with a halting model. Implementing most of the changes, involves using the a natting moder, implementing most or the changes, involves using the Model Configuration Parameters dialog (MCP) box, accessed via the Cog symbol. Increase the Number of consecutive Crossings Disable zero-crossing zero crossings on the Solver pane in the Rationale for making this change. detection for a specific First, clear the Enable zero-crossing This may give your mor resolve the zero crossing. detection check box on the block's nough time parameter dialog box. Locally disabling zero-crossing detectio Then, select Use local settings from prevents a specific block from stopping the the Zero-crossing control pull down on Disable zero-crossing simulation because of excessive consecutive the Solver pane of the MCP box. zero crossings. All other blocks continue to detection for the Select Disable all from the Zero-crossing benefit from the increased accuracy that entire model control pull down on the Solver pane of Reduce the maxim ro-crossing detection provid-Apply

OTHER FEATURES - DASHBOARD

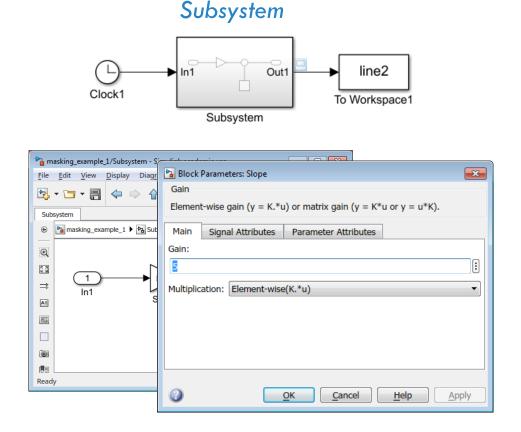

Simulink Library	Browser					
🗢 💠 selector	-	AQ -	🔁 🕶 (- 1	+ ?)
Simulink/Dashboar	rd					
 Simulink Commonly U: Continuous Dashboard Discontinuitie Discrete Logic and Bit Lookup Table Math Operati Model Verific Model Verific Model-Wide U Ports & Subs Signal Attribu Signal Routin Sinks Sources String User-Defined Additional Ma Quick Insert HDL Coder Simulink 3D Anim Simulink Extras Stateflow Recently Used 	S Operations S ons ation Jtilities ystems ites g Functions ath & Discrete		Co Co C C C C C C C C C C C C C C C C C	Callback Button ack Button mbo Box 42 Display Cauge Company Knob car Gauge Button car Gauge	2	Check Box Check Box Dashboard Scope 42 Edit Edit Edit Edit MultiStateImage Quarter Gauge Quarter Gauge Rocker Switch 1 2 3 Slider

Control and visualize your Simulink models during simulation and while paused.

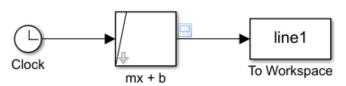
A →	ain y → my_results
	20 a
Block Param	ieters: Edit
Edit Field	
Set value to t	une parameters or variables.
CONNECT	PARAMETERS AND VARIABLES
۲	<u>a</u>
Align: Cente	er 🔹
Label: Hide	•
	OK Cancel Apply

OTHER FEATURES - DASHBOARD EXAMPLE

sldemo fuelsys



open_system([matlabroot '\toolbox\simulink\simdemos\automotive\fuelsys\sldemo_fuelsys'])


OTHER FEATURES - MASKS

A mask is created from a subsystem. A masked subsystem:

- Offers a custom interface for that subsystem
- Hides the content
- Makes system appear as a "built in" block (custom icon & parameter dialog box.)

Block Parameters: mx + b	×
Slope and Intercept (mask)	
Models the equation for a line: y=mx+b.	
Parameters	
Slope	
5	:
Intercept	
2	:
OK <u>Cancel</u> <u>H</u> elp <u>Ap</u>	ply

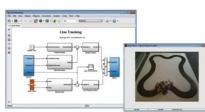

OTHER FEATURES — MASKS WITH DASHBOARD

Controls	Dialog box	ation Documentation		Property editor		
Parameter	Туре	Prompt	Name	Properties		
311 Edit	e.	% <masktype></masktype>	DescGroupVar	Name	Param	ameter3
Check box	-A	% <maskdescription></maskdescription>	DescTextVar	Value	0	
Popup	ė-im	Parameters	ParameterGroupVar	Prompt	Temp	
Radio button	ė-**	Manufacturer's Information	Container3	Туре	dial	
[🚻 DataTypeStr	-A	This AC is manufactured by X	Control2	Minimum	0	Subsystem (mask)
< Min	2	User's manual	Control3	Maximum	100	
> Max		XYZ AC Control Panel	Container4	Attributes		Parameters XYZ AC Control Panel
"I" Slider		Power On	Control4	Evaluate		
👾 Dial		(N/A)	Container5	Tunable		Manufacturer's Information Power On
Spinbox	ė-C	Main Controls	Container6	Read only		
Promote	举 #1	Humidity	Parameter1	Hidden		Main Controls
	<i>"</i>]" #2	Auto Shut Down Time	Parameter2	Never save		Auto Shut Down Time Temperature
Display	@ #3	Temperature	Parameter3	Dialog		- 100.0 VIII
Group box				Enable		
🗀 Tab				Visible	_	
CollapsiblePanel				Callback		
Panel				Layout	_	
A Text				Item location	Curre	rre 0.0 100.0 - 0.0 0.0 100.0
🔏 Image				Horizontal Stre	t	
Action						10.0 27.0 16.0
Hyperlink						
Button	Drag or Click items in left palette to add to dialog. Use Delete key to remove items from dialog.					
-le patron	Use	Delete key to remove items from	n dialog.			OK Cancel Help Appl

For intro to masks, see this video. For how to create a mask using the Mask Editor, see this video.

OTHER FEATURES — HARDWARE SUPPORT

Simulink can be used to interface with lots of different hardware. It is used to develop algorithms to run standalone on devices.


OTHER FEATURES — HARDWARE SUPPORT

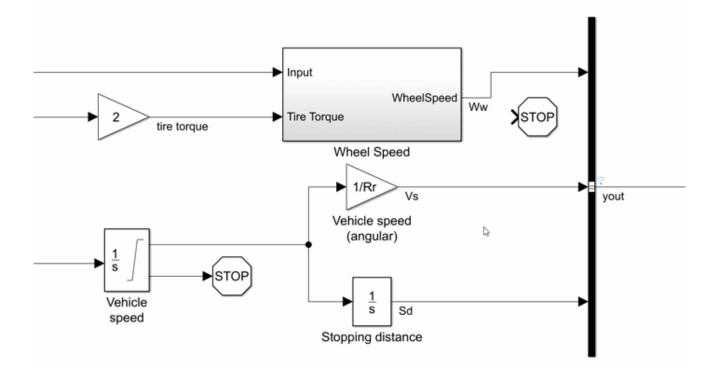
Example Arduino blocks:

Example EV3 blocks:

Rubik's Cube Solver

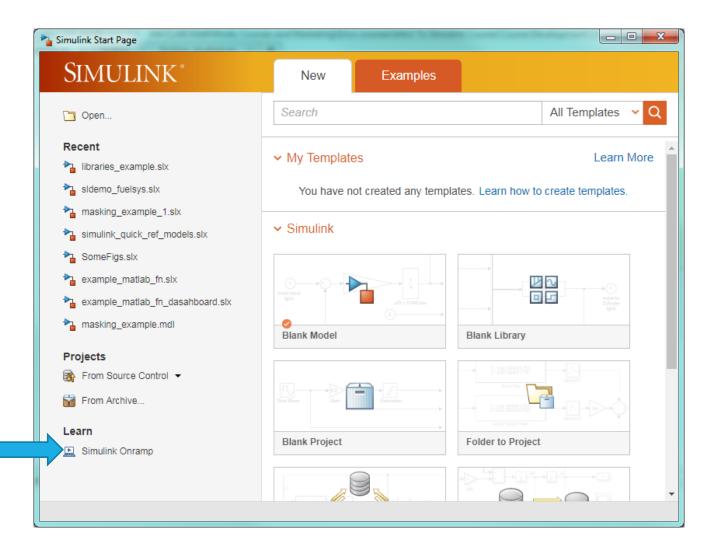
Line Following Robot

Example Raspberry Pi blocks:



Tweeting Security System

SIMULINK VERSIONS


Simulink models created in newer versions must be exported before use in older versions.

From 2018b major improvements: <u>Automatic Port Creation</u>, <u>Edit on Block Icon</u> & Simulink On Ramp

SIMULINK ONRAMP

- <u>Download</u> for 2018b
- Free
- Great Content
- ~3 hours

Pasimulink_Onramp - Simulink academic use			
<u>File Edit View Display Diagram Simulation Analysis</u>	ode <u>T</u> ools <u>H</u> elp		
	€ ► ■ <	Normal V V	
Training - Tasks 🕴 🗶	Simulink_Onramp		Training - Assessment
4.2 Basic Logic	Simulink_Onramp	•	Task 2 Signal
Task 1	Assessment1.	resolve the issues with the following assessment blocks: Signal	2
Task 2	<u>בא</u>		1.5
The Compare to Constant block (Simulink > Logic and Bit Operations) determines how a signal compares to a specified constant. The constant value is specified as a block parameter.			
 Copy and paste the existing Sine Wave block, and change its Frequency to 2 rad/sec. Add a Compare to Constant block to the model and connect it to the 2 rad/sec Sine Wave and the Signal Assessment block. Set the parameters such that the block outputs when the signal is greater than or equal to (≥) 			0 2 4 6 8 10 Time Signal requirement — My signal • Incorrect Inspect signal in figure window
0.1. Hint See Solution Reset Submit	Sine Wave Freq, 1 rad/sec	Signal Assessment	Requirements Connected signal meet the requirement?
Task 3 Further Practice	Sine Wave1 Compa Freq. 2 rad/sec To Cons	ire tant Signal Assessment1	
	Pied, 2 rausec		
Ready		109%	auto(VariableStepDiscrete)

WHERE NEXT?

- Try Exercise 2 or 3
- Use the Examples on launch
- Explore the features mentioned in this talk
- Ask for support installing MATLAB
- Visit the <u>Simulink Getting Started webpage</u> for videos
- If you have your own laptop, try Simulink Onramp

ON RAMP COURSE CONTENT

1. Course Overview

See what Simulink Onramp has in store

- ✓ Course Overview
- Running Simulations
- 2. Simulink Graphical Environment Learn about Simulink blocks and signals
- ✓ Blocks and Parameters
- ✓ Identifying Blocks and Signals

3. Inspecting Signals Visualize signal values during simulation

- ✓ Inspecting Signals
 ✓ Simulink Scopes Overview
- 4. Basic Algorithms Use math and logic operators to write algorithms
- ✓ Mathematical Operators
- ✓ Basic Logic
- Conditional Statements

- 5. Obtaining Help Access documentation from Simulink
- ✓ Obtaining Help
- 6. Project Automotive Performance Modes Practice working with math and logic operators
- ✓ Project Automotive Performance Modes

7. Simulink and MATLAB Use MATLAB variables and functions in Simulink

MATLAB Workspace Variables
 MATLAB Function Block

8. Dynamic systems in Simulink Review dynamic systems and learn how they relate to Simulink

✓ Dynamic Systems

- 9. Discrete systems Model discrete-time systems
- ✓ Discrete Systems

10. Continuous systems Model continuous-time systems

✓ Continuous Systems

11. Simulation Time Choose the simulation duration

✓ Simulation Time

12. Project - Modeling a Thermostat Practice your understanding of discrete dynamic systems

Project - Thermostat

13. Project - Peregrine Falcon Dive Practice your understanding of continuous dynamic systems

✓ Project - Peregrine Falcon Dive

ONRAMP TEXT & QUIZZES

	A Simulink Onramp	
Simulink Onramp	Simulink Onramp (13% complete)	Isobel Mear 🕜
Simulink Onramp (8% complete)	2.2 Identifying Blocks and Signals : (2/2) Quiz	← PREVIOUS NEXT →
2.1 Blocks and Parameters: (1/2) Introduction		
Simulink Basics	Quiz (Select all that apply) Which of the following is true about Simulink signals?	
As you've just seen, Simulink uses graphical elements to represent the inputs, outputs, and calcu connections between blocks are made at ports. Input port 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Signals contain data that can be constant or time-varying. Signal flow is bidirectional. Signals are represented by lines with arrowheads. Submit	

2018B — LINKING VARIABLE NAMES

Block Parameters: Sine Wav	e	X		
Sine Wave				
Output a sine wave:				
O(t) = Amp*Sin(Freq*t+Phase) + Bias				
Sine type determines the computational technique used. The parameters in the two types are related through:				
Samples per period = $2*pi$	(Frequency * Sample	time)		
Number of offset samples =	Phase * Samples per p	period / (2*pi)		
Use the sample-based sine type if numerical problems due to running for large times (e.g. overflow in absolute time) occur.				
Parameters				
Sine type: Time based		•		
Time (t): Use simulation time				
Amplitude:				
myG :				
Name	Value	Source		
myGain	3	Base Workspace		
Frequency (rad/sec):				
1				
Phase (rad):				
0				
Sample time:				
0				
✓ Interpret vector parameters as 1-D				
0	OK Cancel	Help Apply		

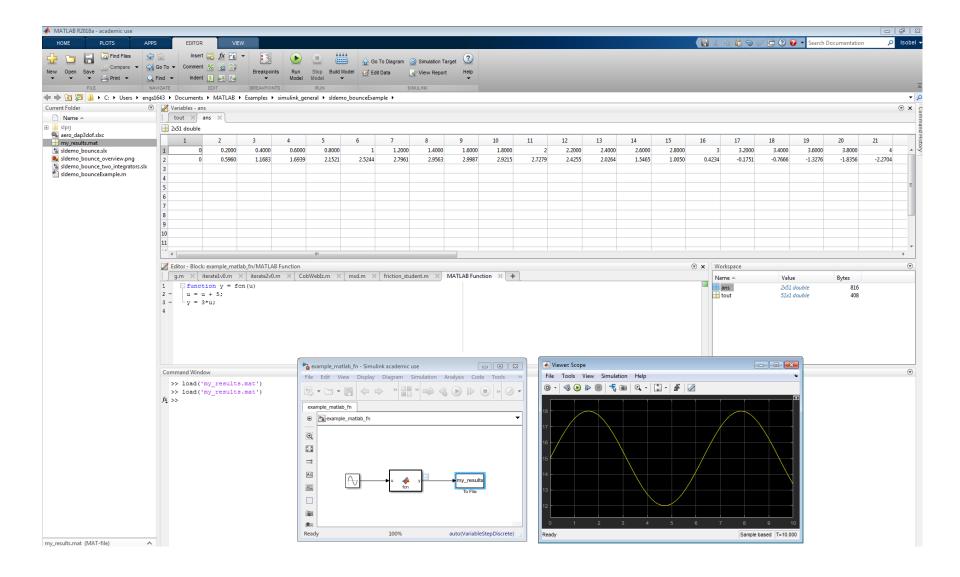
WHERE IS MATLAB/SIMULINK USED?

OTHER FEATURES - MASKS

Clock

Create a mask by selecting a subsystem. Right-clicking & select: Mask>Create Mask

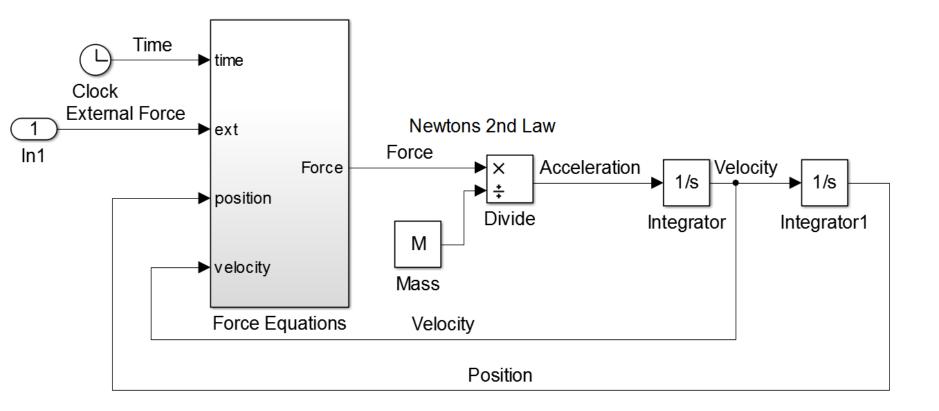
1				
		⊨ line1		
ŀ		Explore		
mx ·		Open In New Tab		
		Open In New Window		V
	*	Cut	Ctrl+X	Υου ςς
	Đ	Сору	Ctrl+C	Right-o
	Ē	Paste	Ctrl+V	-
		Comment Through	Ctrl+Shift+Y	Mask2
		Comment Out	Ctrl+Shift+X	
		Delete	Del	
		Find Referenced Variables		
		Subsystem & Model Reference		
		Format	•	
		Rotate & Flip	•	
		Arrange	•	
		Mask	•	Edit Mask
		Library Link	►	Add Icon Image
		Signals & Ports	Mask Parameters Look Under Mask	
		Requirements		
		Model Advisor	Create Model Mas	
		Fixed-Point Tool		
		Identify Modeling Clones	•	
		Block Parameters (Subsystem) Properties		
		Help		


can inspect by nt-clicking & select: sk>Look Under Mask

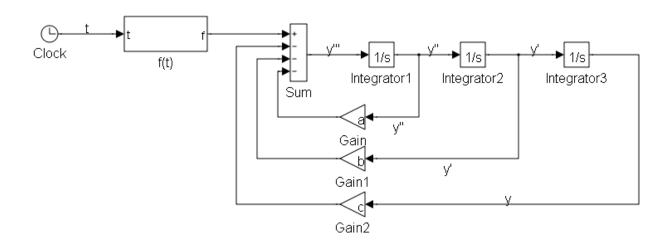
Ctrl+M

Ctrl+U

Ctrl+Shift+M


Mask.

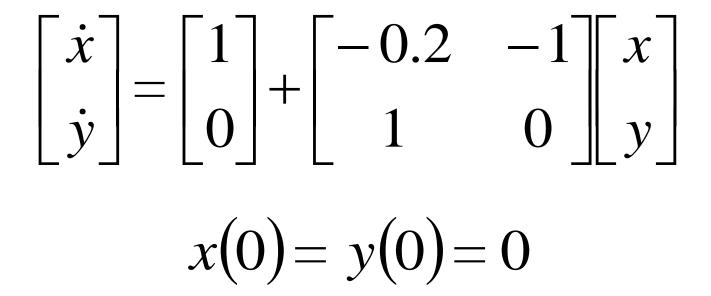
An Introduction to Using Simulink



Dynamic System

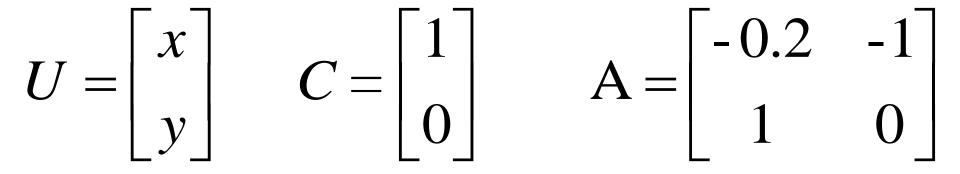
Ordinary Differential Equations

$$\ddot{y} + a\ddot{y} + b\dot{y} + cy = f(t)$$
$$\ddot{y} = f(t) - a\ddot{y} - b\dot{y} - cy$$

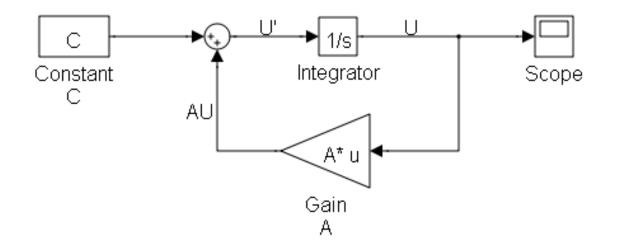

Simultaneous ODE

$$\dot{x} = 1 - 0.2x - y$$

$$\dot{y} = x$$


$$x(0) = y(0) = 0$$

Simultaneous ODE



Simultaneous ODE

$$\dot{U} = C + AU$$

 $\dot{U} = C + AU$

