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In recent years, the increasing impacts of landslide hazards on human lives and life-

line facilities worldwide has advanced the necessity to find out both economically

acceptable and useful techniques to predict the occurrence and destructive power of

landslides. Though many projects exist to attain this goal, the current investigation set out

to establish an understanding of the initiation and propagation mechanisms of landslides

via numerical simulations, so that mitigation strategies to reduce the long-term losses from

landslide hazards can be made.

In this research, the Discrete Element Method (DEM) and Computational Fluid

Dynamics (CFD) have been used to investigate the mechanical and hydraulic behaviour of

granular materials involved in landslides. The main challenge is to provide rational

analyses of large scale landslides via small scale numerical simulations. To solve this

problem, dimensional analyses have been performed on a simple granular column collapse

model. The influence of governing dimensionless groups on the debris runout distance and

deposit height has been studied for the terrestrial and submerged granular flows.

3D DEM investigations of granular flows in plane strain conditions have been

performed in this research. The input parameters of the DEM model have been calibrated

by the numerical triaxial tests, based on which, the relationships between the microscopic

variables and the macroscopic soil strength properties are analysed. Using the simple

granular column collapse model, the influences of column aspect ratio, characteristic strain,

model size ratio and material internal friction angle on the runout distance and deposit

height of granular materials have been examined. Additionally, the deformation and energy

evolution of dry granular materials are also discussed. The DEM-CFD coupling model has

been employed to study the mechanical and hydraulic behaviour of highly mobilized

terrestrial / submarine landslides. This model has been validated via numerical simulations

of fluid flow through a porous soil sample and grain batch sedimentations. The simulations

of granular flows in the submerged environment have led to some meaningful insights into

the flow mechanisms, such as the mobilization of sediments, the generation and dissipation

of excess pore water pressures and the evolution of effective stresses.

Overall, this study shows that the proposed numerical tools are capable of modelling

the mechanical and hydraulic behaviour of terrestrial and submarine landslides.
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Nomenclature

Variables of the DEM Model

β, η coefficients of rolling stiffness and plastic moment

ε1, ε2, ε3 components of the principal strains of a soil sample

εv volumetric strain of a soil sample

θ inter-particle friction angle

φ material internal friction angle

φpeak, φcv peak and constant volume material internal friction angle

ρs density of solid particle

ωi angular velocity of particle i

σij stress tensor of a granular assembly

σ1, σ2, σ3 components of the principal stress of a soil sample

Ci coordination number of particle i

C bulk coordination number of a granular assembly

D particle diameter

fnc, ftc normal, shear contact force

g gravitational acceleration

Ii moment of inertia about the grain centroid for particle i

Kn normal contact stiffness

Kr rolling stiffness

Ks shear contact stiffness

mi mass of particle i

Mr rolling resistant moment

n porosity of a soil sample

p, q mean and deviatoric stresses of soil sample

rc vector from the particle mass centre to the contact point

r radius of the particle

Δt DEM time step

Un normal overlap distance between two spheres

dUs incremental tangential displacement between two particles

vpi volume of particle i

V particle velocity

xi position of the centroid of particle i

Variables of the DEM-CFD coupling model

β fluid-solid momentum transfer coefficient

Cd drag force coefficient

χ coefficient of porosity correction term in drag force

Fd fluid viscous drag force
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ffluid interaction forces between fluid and particles

fhs hydrostatic force

Ur relative velocity between fluid and a solid particle

Variables of CFD Model

τ fluid viscous stress tensor

τT Reynolds stress tensor

k, ε turbulent kinetic energy and its dissipation rate in the k-ε model

κ von Karman constant

C1, C2, Cμ, σk, σε constants of the k-ε model

δ identity tensor

ρf density of fluid

C Courant number of fluid flow

Fb body force acting on a fluid mesh element

fg gravity force of a fluid mesh element

I intensity of fluid turbulence

l turbulent length scale
R e p Reynolds number defined at particle scale

U, U' mean and fluctuating fluid velocity in turbulent flow

p, p' mean and fluctuating fluid pressure in turbulent flow

u, v, w components of fluid velocity in a 3D Cartesian coordinate system

x, y, z 3D Cartesian coordinate system

μ dynamic viscosity of fluid

ν kinematic viscosity of fluid

u* friction velocity in the wall function of turbulent modelling

y+, u+ normalized distance and fluid velocity in the wall function

Δx minimum size of the fluid mesh cell

Variables of granular flow simulations

α scaling factor of fluid viscous drag force

θf inclination angle of the slope failure plane

a column aspect ratio

cv coefficient of consolidation

M total mass of the granular assembly

E0 total energy of the initial granular column

Ediss dissipative energy of the granular assembly

Ek kinetic energy of the granular assembly

Ep potential energy of the granular assembly

p momentum of the granular material

Fx,y,z components of the flux of granular momentum

Fc particle contact force

h height of the granular assembly during the debris flow

Hi, Hf initial, final granular deposit height

Li, Lf initial, final granular deposit length

Lmax, Hmax maximum granular runout distance and deposit height

mv coefficient of volume compressibility

t duration time of granular flow

[F] normalized particle contact force
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[L] normalized particle runout distance

[H] normalized deposit height

[S] model size ratio

[T] normalized duration time of the granular flow

[Ts], [Tv] characteristic settling and consolidation time of a soil sample

[V] normalized debris sliding velocity

[ε] characteristic strain of the initial granular column

[σ] normalized stress of the granular assembly

Variables of fluid flow through porous soil sample

a, b coefficients of linear and nonlinear pressure head loss

ΔL length of the flow passage

Δh fluid pressure head loss

i fluid hydraulic gradient

k coefficient of soil permeability

v0 constant settling velocity of a single spherical particle

u excess pore water pressure

ρb bulk density of a fluid-solid suspension
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Chapter 1 Introduction

1.1 Background

In recent years, the growing world population and the expansion of settlements and

developments over landslide-prone areas are increasing the impacts of landslide disasters

on human lives and life-line facilities worldwide (Glade, 1998). In addition, human

activities offshore, especially in the Exclusive Economic Zones, also increase the potential

risk of submarine landslide hazards. The term “landslide” describes a variety of events that

lead to the downward and outward movement of slope-forming materials such as rock, soil

and some artificial fills en mass under gravity (Highland and Bobrowsky, 2008), in either

terrestrial (USGS, 2004) or submarine (Lee et al., 1991) environments.

Long runout landslides normally present very high mobility with “fluid-like” motions

(Andrade et al., 2012), such that they can run very long distances along flat or almost flat

ground surfaces (Dade and Huppert, 1998; Crosta et al., 2009), threatening to sweep away

populated areas even if located far away from the mountainsides (Crosta et al., 2005). The

related research, such as the field investigation, laboratory experiments, and numerical

simulations, has focused on exploring the initiation and propagation mechanisms of

landslides (Cannon and Michael, 2011).

In field investigations, researchers always have to study landslides after the event has

taken place, because direct measurements during the time of occurrence are difficult or

even impossible as the work is too dangerous (Zenit, 2005). In addition, the stochastic

nature of their occurrence and magnitude hampers the collection of detailed data on

landslides. Furthermore, the topography plays an important role in controlling the post-

failure motion of granular materials, which is believed to be essential to understanding the

dynamic motion and destructive power of landslides (Lube et al., 2005; Zenit, 2005;
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Thompson and Huppert, 2007). The problem has been a topic of intensive research by

experimental and numerical investigations, with special focus on the mechanical behaviour

of dense flowing granular materials (e.g. landslides, rock and debris avalanches).

The loss of human lives due to landslides are larger in developing countries, whereas

economic losses are more severe in developed countries (Schuster and Fleming, 1986).

However, few effective measures used to predict and control landslides have been

implemented. Developing countries usually have difficulties in meeting the high costs of

related engineering works and land-use planning, while developed countries are

increasingly reluctant to invest money in landslide mitigation due to the economic

recession (Guzzetti et al., 1999). Economic and social considerations suggest that we need

to develop both economically acceptable and useful techniques to predict the initiation and

propagation of landslides (USGS, 1982; Mitchell, 1988). Consequently, landslide warning

systems and land utilization regulations can be implemented, so that the loss of lives and

properties can be minimized without investing in long-term, costly projects of ground

stabilization (Schuster and Fleming, 1986; Guzzetti et al., 1999).

Based on these considerations, the current study presents a suitable numerical

investigation of landslides using the Discrete Element Method (DEM) (Cundall and Strack,

1979) and Computational Fluid Dynamics (CFD) (Anderson, 1995), with special focus on

revealing the mechanical and hydraulic behaviour of solid and fluid materials involved in

landslides. The numerical technique allows the modelling of solid materials (e.g. soil and

rock) as a collection of individual spherical grains which interact with each other through

well-defined microscopic contact laws (Mindlin and Deresiewicz, 1953; Itasca, 2003),

while the influence of fluid (e.g. water and air) on debris motion is simulated using

empirical solid-fluid interaction models (Ergun, 1952; Wen and Yu, 1966; Di Felice, 1994).

The behaviour of fluid flow is resolved by solving the modified Navier-Stokes equations in

the CFD. Furthermore, the implementation of the DEM and CFD in open source codes

makes this technique accessible and affordable by the majority of researchers worldwide.
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1.2 Purpose of this Research

The laboratory and numerical experiments on landslides have provided useful insights into

hazard assessments (Cleary and Sawley, 2002; Zenit, 2005), when a potential source of

landslide can be identified (McDougall and Hungr, 2004). Whilst it is well known that both

solid and fluid phases can affect the behaviour of landslides significantly, the governing

equations of the motion for each phase, and the interactions between materials involved are

still not well established. The real soil mass consists of a mixture of solid particles, water

and air, which produces the complex mechanical behaviour of landslides. Thus, a rational

model describing the behaviour of landslides should consider both grain collisions, friction

and the interactions between solid and fluid. (Tsuji et al., 1993; Zeghal and El Shamy,

2004; Shafipour and Soroush, 2008; Shimizu, 2011).

The main purpose of this research is to investigate the initiation and propagation

mechanisms of landslides using numerical tools. The DEM is used to investigate the

mechanical behaviour of dry granular flows, while a coupled DEM-CFD model is used to

study debris motions in the submerged environment. A well-developed discrete-continuum

coupling algorithm (Anderson and Jackson, 1967; Brennen, 2005) has been implemented

in the DEM and CFD programs to simulate the fluid-solid interactions. The main challenge

is to provide complete analyses of large scale landslides based on small scale numerical

models. This problem has been addressed in studying slope failures using small scale

models (Sharma and Bolton, 1996; Gui, 1999), from which the behaviour of real slopes

can be obtained via well-defined scaling laws. This method has been employed in the

current research, in which the model size is constrained by the total number of grains

generated in the DEM. Based on the DEM model, a set of scaling relationships of the

governing dimensionless groups have been derived from detailed dimensional analyses. By

studying the mechanical behaviour of the solid and fluid materials using the scaling

relationships, it is hoped that a preliminary understanding of the mechanical and hydraulic

behaviour of landslides can be obtained.
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1.3 Present Contributions

This research presents numerical investigations of the behaviour of landslide-induced

debris flows via 3D DEM and CFD simulations. The DEM platform employed is ESyS-

Particle (Abe et al., 2004) and the CFD platform is OpenFOAM (Weller et al., 1998). This

study provides the following novel contributions to the field of landslide research:

 The rolling resistance model (Jiang et al., 2005) has been implemented in ESyS-

Particle, so that the particle shape effect can be considered in the simulations. In

order to extend the applicability of the DEM code, a Python user interface has been

developed for this model.

 In an attempt to increase the computational efficiency, a new parallel data transfer

program based on the Message Passing Interface (MPI) has been implemented in

the original DEM-CFD coupling code (Chen et al., 2011). The efficiency of the

calculation of the fluid–solid interaction force is improved using a fluid mesh

indexing algorithm to determine the particle position in the CFD model.

 A detailed dimensional analysis of granular flow based on a simple granular

column collapse model is provided, based on which, the governing dimensionless

groups and scaling laws have been identified. Using appropriate scaling laws, the

analyses of large scale landslides can be made via small scale numerical models.

 A methodology is presented to calculate the flux of kinetic energy over time carried

by granular flows through any vertical section of interest. This can be related to the

energy released by landslide induced granular flows impacting against engineering

structures under the simplifying assumption of neglecting all structure-flow

interactions. This represents the first step towards achieving a computational tool

quantitatively predicting the destructive power of a given flow at any location of

interest along its path. This could be useful for the design of engineering works for

natural hazard mitigation.
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 The progressive failure of slope and the corresponding deformation of soil structure

have been presented. The mechanical and hydraulic response of granular flows is

illustrated by graphs of the distribution of grain velocity field, distribution of excess

pore water pressure, force chain, effective stress and energy.

 Different deformation and sliding behaviour of loose and dense granular columns

in the submerged environment have been investigated via a novel scaling law of

fluid viscous drag force in the DEM-CFD model. Based on this model, the general

features of fast moving submerged debris flows and slowly moved submerged

slumps can be reproduced. The numerical simulations have provided useful insights

into the mechanical and hydraulic behaviour of large scale debris flows.

1.4 Thesis Outline

Chapter 2 presents a review of the related research on both terrestrial and submerged

landslides. In particular, the mechanisms of slope failure and the influence of excess pore

water pressure on the deformation and dynamic motion of a solid mass are discussed in

detail. A short review of granular column collapse model, the related numerical techniques

involved in landslide research are presented, with special focus on the numerical research

using the DEM and DEM-CFD coupling method.

In Chapter 3, the theoretical background of the DEM and CFD are summarised,

together with a discussion of the implementation of parallel computer modelling technique.

The microscopic particle contact model and data analysing methods used in the DEM are

described. The derivation of the governing equations for the fluid mass and momentum

conservation laws in a solid-fluid mixture and the simplifications for an incompressible,

viscous and Newtonian fluid are discussed. A short review of turbulence modelling using

the Reynolds-Averaged Navier-Stokes (RANS) model is also presented.

Chapter 4 discusses the calibration of soil strength properties and the related numerical

model configurations. The numerical triaxial tests and granular column collapse model are
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used to study the strength properties (i.e. material internal friction angle) of granular

material. From these tests, the relationship between the microscopic DEM input parameters

and the macroscopic response of soil strength properties are obtained.

Chapter 5 investigates the initiation, propagation and deposition of dry granular flows

using the granular column collapse model. Based on the dimensional analysis, a parametric

study examining the influence of dimensionless groups on the depositional morphology of

granular material is performed. The numerical results of this study are compared with the

experimental and numerical observations, in terms of the final runout distance and deposit

height of the granular assembly. New insights have been obtained regarding the energy

distribution and the evolution of granular profiles.

Chapter 6 presents two validation case studies of the DEM-CFD coupling method: (a)

fluid flow through a porous soil sample, and (b) modelling of granular batch sedimentation.

The configurations of the DEM and CFD models for both simulations are described. The

validity of the DEM-CFD coupling model is illustrated by comparing the numerical results

with the empirical and theoretical ones. These validations also provide some new insights

into the mechanisms of solid-fluid interactions.

In Chapter 7, the DEM-CFD coupling method is employed to study the submerged

debris flows. A set of dimensionless groups have been derived for this problem through

dimensional analyses, based on which, a detailed parametric study of dimensionless groups

is performed. In addition, a modified scaling law of the fluid viscous drag force is

proposed to investigate large scaled submerged landslides, from which, different behaviour

of submerged debris flows and slumps are identified. This study has clarified the

generation and dissipation of excess pore water pressure during the granular motion and its

influence on the final depositional morphology of debris materials.

Chapter 8 summarises the results and main concluding points reached in this research.

Suggestion for future research is also provided.



7

Chapter 2 Literature Review

2.1 Terrestrial Landslides

Terrestrial landslides commonly occur in connection with other natural hazards such as

earthquakes, volcanoes and floods, displacing solid materials in a process that can be in

abrupt soil or rock collapsing, creeping, falling, toppling, sliding, spreading and flowing

(Hungr et al., 2001). As illustrated in Figure 2-1, the fundamental features of landslides are

a series of rupture surfaces and a large amount of displaced solid mass. During sliding, the

solid materials such as soil and rock can fail along one or several rupture surfaces, as the

shear strength of soil is unable to maintain equilibrium with the downslope driving stresses.

The displaced solid mass might remain intact, be slightly or highly deformed or

disintegrate into distinct solid blocks, generating pore water pressure and producing debris

flows (Wang and Sassa, 2001).

Figure 2-1. Typical terminology of landslides (cited from USGS (2004), page 1)
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Some notable landslides with significant socioeconomic impacts, occurring in the last

century are summarized in Table 2-1.

Table 2-1. Catastrophic landslides in the last century (after Highland (2010))

Date Place Name Trigger Casualties

19/05/1919 Indonesia Kelut lahars Volcano 5,110

16/12/1920 China Haiyuan landslide Earthquake > 100,000

25/08/1933 China 1933 Diexi landslide Earthquake 3,100

13/12/1941 Peru Huaraz debris flow Earth-dam break 4,000 – 6,000

1953 Japan Arida river landslide Typhoon 1,046

1958 Japan Kanogawa landslides Rainfall 1,094

10/01/1962 Peru
1962 Nevado Huascaran

debris avalanche
Collapse of glacier 4,000 – 5,000

31/05/1970 Peru
1970 Nevado Huascarán

debris avalanche
Earthquake >22,000

13/11/1985 Colombia Armero tragedy Volcano 23,000

14/12/1999 Venezuela Vargas tragedy Heavy storm 30,000

09/08/2009 China Taiwan, Xiaolin Typhoon 600

08/08/2010 China Zhouqu county mudslide Rainfall 1,287

2.1.1 Classification and characteristics

The classification of landslides is complex due to different types of triggering mechanisms,

movement and depositional morphology. As a consequence, landslide classifications are

generally based on different discriminating factors, sometimes very subjective (Hutchinson,

1988; Cruden and Varnes, 1996; Hungr et al., 2001; Locat and Lee, 2002). Based on the

kinematic motion and material properties, a classification of terrestrial landslides made by

Hungr et al. (2001) is given in Table 2-2.

The major triggering mechanisms of terrestrial landslides come from three categories:

geological processes, morphological events, and human activities. Among these categories,

the influence of water, seismic events, and volcanic activities predominate.

 Rapid water infiltration due to intense rainfall, snowmelt, changes of ground-water

level along earth dams, the banks of lakes or reservoirs lead to increase of slope

saturation, and the pore water pressure, and thus trigger slope failure.
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 The influence of seismic activity on slope failure can be very significant because

the ground shaking can loosen the soil and rock mass triggering landslides.

 The landslides triggered by volcanoes are normally very devastating events, as the

volcanic lava can melt soil or rock at a rapid rate, accelerating the motion of solid

materials and destroying anything along its path.

Table 2-2. Classification of terrestrial landslides (after Hungr et al. (2001))

Material Water Content Special Condition Velocity Name

Silt, Sand,

Gravel, Debris

dry, moist or

saturated

-no excess pore-pressure

-limited volume
Various

Non-liquefied

landslides

Silt, Sand,

Weak rock

saturated at rupture

surface content

-liquefiable material

-constant water

Extremely

(Ex.) Rapid

Sand (silt, rock)

flow slide

Sensitive clay
at or above

liquid limit

-liquefaction in situ

-constant water content
Ex. Rapid Clay flow slide

Peat
saturated at rupture

surface content
-excess pore-pressure

Slow to

very rapid
Peat flow

Clay or Earth near plastic limit
-slow movements

-plug flow (sliding)
< Rapid Earth flow

Debris free water present -flood Ex. Rapid Debris flood

Debris partly or fully

-no established channel

-relatively shallow

-steep slope

Ex. Rapid
Debris

avalanche

Fragmented

rock
various, mainly dry

-intact rock at source

-large volume
Ex. Rapid Rock avalanche

Once failed, the debris materials tend to be disintegrative, which means that the slope

mass would break into small blocks during the downslope motion. Because of this feature,

the solid mass can develop large strains, lose its internal structure, and consequently, break

up into debris or rubble, forming fast moving debris flows. As defined by USGS (2004), a

debris flow is an event of rapid mass movement, which consists of loose soil, rock, air and

water. It is commonly triggered by intense surface flow resulting from heavy rainfall or

rapid ocean current, such that the loose soil or rock on steep slopes can be mobilized.

Field investigations have revealed that rainfall induced debris flows have very high

occurrence frequency and can be mobilized from various types of terrains, travelling very
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long distances. Small debris flows generally occur on hillsides or embankments where

slopes with nearly the angle of repose become saturated with water (Rodine, 1974). Some

large debris flows may result from the coalescence of numerous, small slope failures

(Fairchild, 1987), or from flow enlargement due to the incorporation of bed and bank

debris materials (Bovis and Dagg, 1992), or from large, individual landslides that mobilize

partially or completely (Vallance and Scott, 1997). They can occur with little warning

information as a consequence of slope failure in mountainsides and continental margins,

exerting significant impulsive loads on any objects encountered along the sliding paths.

Two conditions may contribute to the mobilization of debris flows: (a) sufficient water

to saturate the slope, and (b) induced excess pore water pressure to initiate slope failure.

This process could cause significant slope deformation and increase of pore water pressure.

Although the increase of bulk soil weight due to rainfall infiltration can possibly trigger

slope failure (Brand, 1981), the mainstream assumption is that the induced positive excess

pore water pressure in a saturated soil mobilizes debris flows. This condition is satisfied

when the infiltrating water encounters soil with low permeability (Reid et al., 1988).

2.1.2 Major research on terrestrial landslides

It has long been researchers’ interests to explore the terrestrial landslides, especially debris

flows, due to their significant destructive power and unexplained mechanisms of long

travelling distances (Iverson, 1997). Once the debris flow is initiated, the solid and fluid

materials would play vital roles, influencing the dynamic motion and depositional

morphology of solid materials, which distinguishes the debris flow from other related

natural hazardous events, such as rock avalanches, turbidity currents and water laden flood

(Cruden and Varnes, 1996). Many hypotheses have been advanced to explain the apparent

high mobility of debris flows, including the air cushion trapped at the failure plane (Shreve,

1968), basal rock melting (De Blasio and Elverhøi, 2008), sand fluidization (Hungr and

Evans, 2004), destabilization of loose granular materials at the failure plane (Iverson et al.,
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2011), acoustic fluidization (Collins and Melosh, 2003) or grain segregation-induced

friction decrease (Phillips et al., 2006). These models have provided some scientific

insights into the initiation and propagation mechanisms of landslides based on the

geological and physical properties of slopes (Iverson, 1997). Though some of these

mechanisms invoked may be important in some specific landslide events, none of them has

been widely recognized as a universal explanation of landslide mobility, and the debate

continues (Legros, 2002). In general, the related research can be categorized as field

investigations, laboratory experiments and numerical simulations.

Field investigations of terrestrial landslides mainly focus on the occurrence of

landslides within a specific region and a given time period, including landslide frequency,

locations and triggering mechanisms. These information can be summarized as landslide

inventories or landslide maps, which are used by engineers or policy makers to plan land

resources and mitigate landslide hazards (Guzzetti et al., 1999). However, these maps are

empirical and site-dependent, so that they may not be applicable to different regions. To

have a model of general applicability, the mechanisms of landslides have to be considered.

According to the field investigations, landslides are frequently triggered by rainfall, and

this is especially true for the majority of landslides occurred in mountainous regions. The

rainfall-induced landslides can be triggered by either the increase of pore water pressure

due to soil shear contraction or the infiltration of water after intensive rainfall (Casagrande,

1936; Harp et al., 1990; Li, 1997). Some well documented examples include the landslides

occurred at Huascarán (Plafker and Ericksen, 1978), Mount St. Helens (Voight et al.,

1983), Mount Rainier (Vallance and Scott, 1997) and Cotopaxi (Mothes et al., 1998).

Prediction of rainfall-induced landslides has traditionally been based on the recognition of

landslide-prone terrain (Soeters and van Westen, 1996) and record of rainfall duration and

intensity that cause slope failures (Wieczorek, 1987).

Based on the field observations, laboratory experiments have been conducted to

investigate slope stability with various fluid and solid materials. Iverson et al. (2000)

demonstrated that the shearing of a loose loamy sand can trigger rapid increase of pore
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water pressure because, as the soil begins to collapse, the weight of solid materials is

shifted onto the pore fluid. As a result, positive excess pore water pressure would occur

within the mixture. The pore water pressure generated in the fluid can reduce the effective

normal stress of soil acting on the sliding surface to essentially zero, such that the solid

materials are liquefied. At the liquefaction state, the whole weight of solid materials is

supported by the fluid, and hence increasing the flow mobility (Bagnold, 1954; Iverson et

al., 1997). However, the transient excess pore pressure cannot be maintained during the

deceleration stage, and as a consequence, the solid grains would gradually deposit along

the landslide flowing path (Spence and Guymer, 1997). In this process, the liquefaction of

solid materials has been observed subsequent to the failure and the excess pore water

pressure is mainly generated within the shearing layers (Eckersley, 1990). Iverson et al.

(1997) has concluded that two processes may contribute to the mobilization of landslides:

(1) widespread failure within soil, rock or sediment mass, and (2) partial or complete

liquefaction of solid materials with consequent generation of pore water pressures.

Poorly sorted, water saturated debris flows can move as one or more unsteady surges

along the sliding path. The relationship between the flow thickness, basal normal stress and

pore fluid pressure varies remarkably as the surge passes (Iverson et al., 1997). Iverson et

al. (1997) has stated that coarse gravels or sands accumulate at the front of the surge, while

the fine grains suspend or deposit at the tail region. Therefore, grains locating at the front

region of the flow may generate high resistant forces due to friction and collision, which

would hinder the motion of grains behind. The measurement of pore water pressure at the

base shows that the front surge has little or no excess pore water pressure, while regions

behind has high excess pore water pressures. This high excess pore water pressure can

persist due to the compressibility and low permeability of debris mass. Wang and Sassa

(2001) have noticed that the initial dry density and thickness of debris materials can affect

the generation of pore water pressure and debris motion after failure. Additionally, the

portion of fine grains in the slope mass can affect the dissipation of pore water pressure in

the shear zone and consequently influence the debris motion.
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To develop robust theories for describing the mobilization and deposition of debris

flows, analytical and numerical models are needed (Iverson, 1997). Yano and Daido (1965)

and Johnson (1965) first independently recognized that debris flows have physical

properties similar to both viscous fluids and plastic solids. These properties have been the

basis of the development of Bingham, or visco-plastic model (Johnson, 1984) for the

equivalent continuum representation of the debris flows. In the Bingham model, the

mechanical behaviour of solid materials is characterized by an elastic–perfectly plastic

stress and strain relationship. Under small shear loading, the debris materials can flow as a

rigid mass and deform elastically until the yield strength is reached, while in the plastic

deformation, the fluid-solid mixture flows like a viscous fluid. The yield strength is

equivalent to the material shear strength, which also denotes the transition limit between

the ‘solid-like’ and ‘liquid-like’ behaviour of granular materials (Doraiswamy et al., 1991).

The viscosity of the flow is determined by running elementary tests for various shear strain

rates (Johnson, 1984; Coussot and Piau, 1994).

Although the Bingham model can describe the failure and motion of debris flows, it

has significant limitations (Iverson, 1985; Iverson and Major, 1986). In this model, it is

assumed that the momentum transport and energy dissipation during debris flows are

caused only by viscous shearing. However, the rate-dependent energy dissipation can also

happen within debris materials, where solid grains can interact with each other through

inter-particle friction, inelastic collision and basal friction (Adams and Briscoe, 1994).

Consequently, the Bingham model turns out to be inappropriate since it oversimplifies the

behaviour of real granular materials (Gabet and Mudd, 2006).

To overcome the limitation of the Bingham model, an alternative method is to adopt

hydraulic approximations (e.g. depth-averaged theory) to study debris flows. An analytical

model describing the motion of granular materials released from rest on a rough inclined

plane has been developed by Savage and Hutter (1989). The granular mass is treated as an

incompressible frictional continuum with a Coulomb-like basal friction law. The evolution

equations of the deposit profiles are derived from the mass and momentum conservation
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laws using the depth-averaged method. Based on this one-phase grain flow model, a three-

dimensional solid-fluid mixture model (i.e. two phase model) has been developed by

Denlinger and Iverson (2001) to study the behaviour of debris mass in the initiation,

propagation and deposition processes. The average parameters (e.g. velocity, pressure) and

the solid and fluid volume fractions are used in the governing equations, from which the

forces acting on solid and fluid phases and the solid-fluid interactions are derived explicitly.

Although the continuous hydraulic models have provided some useful insights into the

mechanical and hydraulic behaviour of debris flows, they have significant limitations on

the models’ predictive capability, resulting from the assumption that the granular flows can

maintain constant masses throughout the simulation (Denlinger and Iverson, 2001). As a

consequence, these models would predict relatively longer runout distances of debris flows

than the real cases. However, field investigations reveal that the hydrology of some natural

slopes is strongly influenced by discontinuities, such as fractures and joints (Pierson, 1983;

Mcdonnell, 1990). In addition, the basal erosion during debris flow can change the slope

mass, when the original moving debris mass interacts with the entrained basal topsoil, by

shearing along their non-slip contact surface (Voight and Sousa, 1994; Chen et al., 2006;

Crosta et al., 2009). Thus, numerical investigations considering these features of landslides

are needed, as will be discussed in Section 2.4.

2.2 Submerged Landslides

Approximately 71% of the earth’s surface, or 362×106 km2 is covered by oceans, of which,

28.7×106 km2 comprise the continental slope (Burk and Drake, 1974). This huge area

forms the geographic settings of potential submerged landslides. In general, submerged

landslides differ from their terrestrial counterparts for their far greater sizes. For instance,

the solid volume displaced in terrestrial landslides can range from 105 to 1011 m3, while it

can be up to 1013 m3 in the submerged topography (Legros, 2002). The largest submerged

landslide recorded in history is the Storegga slide which involves approximate 3000 km3 of
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sediments, affecting 95000 km2 of the Norwegian basin (Haflidason et al., 2004). The

submerged landslides frequently happen on very gentle slopes which are generally

believed to be stable according to the conventional slope stability analyses (Andresen and

Bjerrum, 1967). The displaced sediments can travel very long distances, representing

significant hazards to the offshore and seabed infrastructures, such as telecommunication

cables, pipelines, wind and tidal turbines. Thus, it is important to understand the

mechanisms of debris motion and the potential destructive power of submerged landslides.

However, our awareness of the importance and extent of submerged landslide hazards

has evolved. Before the late 1970s, the major observations of submerged landslides were

mainly qualitative, because a complete slope stability analysis requires knowledge of slope

topographic profile, geometry of failure planes, and the physical properties of sediments–

information that was seldom available at that time. In recent years, the development of

remote-sensing instruments, such as acoustic-reflection profilers, swath-bathymetry

systems, or side scanner sonar imagers (e.g. GLORIA1) (Lee et al., 1991) has increased our

understanding of submarine landslides (Hampton et al., 1996). Sometimes, direct field

investigation by submersibles or seabed photography can also be used as a complement of

remote-sensing investigations (Greene et al., 1991). It has long been thought that the

submerged landslides are rare in ocean basins, except on steep continental slopes with soft

sediments, or in seismically active areas. However, recent investigations reveal that

landslides are common in coastal areas, such as fjords, river deltas, continental margins,

submarine canyons and oceanic volcanic islands, where weak geologic materials are

subject to very strong environmental loads, such as earthquake shaking, large storm waves

and high excess pore water pressures (Hampton et al., 1996). In these events, large

volumes of solid materials are involved in the submarine slope failures, and they occur on

slopes of various steepness (Moore et al., 1970; Carlson and Molnia, 1977).

1 GLORIA: Geologic Long-Range Inclined Asdic
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2.2.1 Classification and characteristics

It has been observed from site investigations that submerged landslides have distinct

mechanisms of slope failure and dynamic motion from their terrestrial counterparts, that

they can be initiated from very gentle slopes and involve a huge amount of solids (Edgers

and Karlsrud, 1982; Hampton et al., 1996; Legros, 2002). In the analyses, the evaluation of

landslide sizes and depositional geometries are the first priority, as they can be measured

directly and provide unique information of a specific landslide event. In the current

research, the estimation of solid volume involved in landslides has been made as the best

as could be summarized from the cited reference (see Appendix A). However, the author

found it is still almost impossible, for most of these recorded slides, to distinguish clearly

between the slide pit (source area), path, and materials transported by the slide. A brief

summary of these events, reinterpreted as the relationship between the landslide volume

and mobility coefficient (i.e. the ratio of the final runout distance (Lmax) to the deposit

height (Hmax)), for the terrestrial and submarine landslides is illustrated in Figure 2-2.
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Figure 2-2. Relationship between the landslide volume and mobility coefficient

(the source data is listed in Appendix A)

According to Figure 2-2, several observations can be made:
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(i) In general, the coefficient of landslide mobility increases with the volume of

sliding mass. The solid mass involved in the terrestrial landslides are far less

than that of the majority of submarine landslides. In the submerged environment,

landslides normally involve solid materials with volumes larger than 1 km3 and

it can be up to 104 km3, while for the terrestrial landslides, the volume of solid

materials displaced can hardly exceeds 10 km3.

(ii) The results of terrestrial and submerged landslides are very scattered due to the

approximation of site investigation. The upper envelopes of these scattered data

are represented by red and black lines, respectively. It is very interesting to

observe that the terrestrial quick clay landslides have relatively larger mobility

coefficient than the submerged landslides.

(iii) Apart from the extreme conditions of terrestrial quick clay slides, the results of

terrestrial volcanic and non-volcanic landslides are distributed in a very narrow

range and can be fitted by a straight line.

According to Edgers and Karlsrud (1982), for the same solid volume, the runout

distance of a terrestrial quick clay landslide can be potentially larger than that of a

submarine slide. This conclusion is logical in view of the following two considerations:

(i) The downslope gravitational force acting on solid materials on land is nearly

twice as large as those in the submerged environment due to the fluid buoyancy;

(ii) During the submerged landsliding, the velocity of solid mass is partly controlled

by the fluid viscous drag force which is proportional to the square of the relative

velocity between fluid and solid materials. Thus, any high kinetic energy

initially acquired from the potential energy in submerged environment would be

quickly dissipated, and thus shorten the runout distance.

Figure 2-3 summarizes the frequency of submarine landslides occurred on slopes of

various inclination angles from 207 individually mapped cases, based on the data from

Booth et al. (1991) and Hampton et al. (1996). According to Figure 2-3, it can be
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concluded that the majority of submarine landslides occur on slopes of 4° or less. There is

a dramatic drop in landslide frequency at slope angles greater than 8°, and landslides on

slope angles of 11° and 12° are rare. In addition, although the submarine landslides can

occur on slopes of angles greater than 16°, it is apparent that steep angle is not a necessary

condition for the initiation of numerous submarine slope failures.
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Figure 2-3. Occurrence frequency of submerged landslide at various slope angles (from 207 cases)
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A detailed study of the morphologic settings and occurrence frequency of submarine

slope failures occurred on the U.S. Atlantic Continental Margins has been carried out by

Booth et al. (1988). They have categorized these settings and occurrence percentage as the

open slope (47%), canyons (37%), ridges (14%) and other settings (2%). This information

indicates that submarine landslides have occurred with significant frequency on either very

steep continental margin (canyon) or smooth, gentle slopes (open slope). Figure 2-4 shows

that the average-sized open slope landslides (≈ 100 km2) generally occur at very low slope

angles, while the canyon landslides (≈ 6 km2) tend to occur at slopes with angles range

from 3° to 15°. Large-scale landslides (> 100 km2) tend to be associated with gentle slopes

(≈ 3° to 4°), while small-scale landslides (< 6 km2) generally occur on steep slopes (≥ 10°). 

This feature indicates that the area of submarine landslides decreases with the slope angle,

which can be explained by the fact that the sediment deposits can be easily accumulated on

gentle slopes. However, no unique theory has been established to validate this explanation.

Table 2-3. Factors contributing to the failure of submarine landslides (after Masson et al. (2006)).

Triggering mechanism Examples References

Earthquakes Grand Banks Fine et al. (2005)

Hurricanes or cyclic loading Mississippi delta Prior and Coleman (1982)

Loading or over-steepening of slopes Nice, Canary islands Assier-Rzadkieaicz et al. (2000)

Underconsolidation (overpressure) Mississippi delta Prior and Coleman (1982)

Rainfall (where landslides have a

subaerial extension)
Norway, Hawaii Longva et al. (2003)

Slope parallel weak layers in

bedded sequences

East coast US, Storegga,

west Africa

O'Leary (1991); Haflidason et

al. (2003); Bryn et al. (2005)

(suggested but less well documented)

Gas hydrate dissociation
East coast US, Storegga Sultan et al. (2003)

Sea-level change Madeira Abyssal Plain Weaver and Kuijpers (1983)

Volcanic activity Hawaii, Canaries Masson et al. (2002)
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The majority of submarine slopes have been reported to be inherently stable (Masson

et al., 2006), while some factors can undermine the slope stability. According to Figure 2-3

and Figure 2-4, large submarine landslides generally occur on very gentle slopes (e.g. less

than 10°) which is well below those normally required to initiate landslides (Booth et al.,

1991). Legros (2002) stated that the submerged landslide must be initially saturated and

there must be some mechanisms to initiate the sliding. Table 2-3 lists some significant

submarine landslides and their triggering mechanisms. The major triggering mechanisms

can vary from sudden impacts (e.g. earthquakes, volcanoes) operating on time scale of

minutes to long geological processes lasting tens to hundreds thousands of years (e.g.

climate change (Weaver and Kuijpers, 1983)). Generally, they can be classified into two

types: those related to geological characteristics of solid materials (e.g. overpressure of

slope, high sediment rate (Coleman and Garrison, 1977)) and those driven by transient

events (e.g. hurricanes and earthquakes).

2.2.2 Major research on submerged landslides

Laboratory research on submerged landslides mainly covers small scale modelling at 1 g

(Mohrig et al., 1998; Vendeville and Gaullier, 2003; Ilstad et al., 2004) and centrifuge

modelling (Phillips and Byrne, 1994; Zhou et al., 2002). Mohrig et al. (1998) investigated

the flowing patterns of debris materials composed of silt and sand at 1g. They observed a

thin layer of fluid entrapped between the moving solid mass and the underlying slope

surface, which could increase the mobility of debris flows. The sudden increase of excess

pore water pressure at the flow front would lead the fluid beneath the debris to penetrate

into the slope mass and trigger hydroplaning. It has been recognized that fluid flow with

low viscosity can be sheared easily, leading to a dramatic reduction of basal friction and

thus increase the flow mobility (Mohrig et al., 1999; Ilstad et al., 2004). For a clay-sand

mixture, it has been observed that the velocity of clay rich flows decreases gradually due to
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the hydroplaning phenomenon, while for a sand rich flow, a constant propagating velocity

can be maintained, resulting in a turbulent flow front (Ilstad et al., 2004).

Centrifuge experiments can reproduce the correct stress and strain states of submarine

landslides due to the high acceleration fields used. In a high acceleration field, the slope

mass can be liquefied due to static loading (Phillips and Byrne, 1994), which would trigger

slope instability. The investigation of the physical properties of sliding materials using the

centrifuge modelling could provide useful information related to the previous history of

seabed mass motion (Boylan and Gaudin, 2010). In the presence of other external transient

loadings, such as earthquake shaking, the excess pore pressure and subsequent liquefaction

can occur more readily. The value of excess pore pressure increases with the magnitude of

earthquake loading (Coulter, 2005).

As noted by Gue (2012), the 1g laboratory experiments of submarine landslides are

generally easier and cheaper to conduct than the centrifuge modelling. However, it is still

questionable to justify the mechanical and hydraulic behaviour of debris materials based on

the experimental results, because the stresses in small scale models are normally very small

when compared with those of real submarine landslides. As for the centrifuge modelling, it

has many limitations in terms of model configurations and proper scaling laws used for the

input and output parameters. The major restriction of the centrifuge modelling is the

variation of acceleration in the radial direction of the model. As the centrifugal acceleration

is scaled by rω2, with r being the radius of the centrifugal rig and ω being the angular

velocity, the centrifugal forces acting on individual grains would increase with the distance.

In addition, the acceleration field always orients towards the rotational centroid on the

centrifugal rig, such that the centrifugal acceleration field cannot match the distribution

pattern of earth’s gravity field. This problem becomes very much worse for centrifuge rigs

with short radii. Therefore, the soil stresses reproduced by the centrifuge modelling can

hardly match those of real slopes. For the time being, a precise prediction of submerged

landslides is far beyond our ability. Though areas at risk are relatively easy to identify, we

are still unable to forecast the occurrence and magnitude of each individual event.
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To overcome these problems and get repeatable testing methods, numerical simulation

seems to be the most obvious way forward, for the understanding and predicting the

mechanisms of submerged landslides. The related model tests and numerical methods will

be discussed in the following sections.

2.3 Model Testing – Granular Column Collapse

In small scale laboratory experiments, direct investigation of water-laden debris flows

remains a major challenge, because the appropriate water content and deformation of

reconstructed soil samples are not well defined (Phillips and Davies, 1991; Major and

Pierson, 1992). It has been recognized that the solid materials in debris flows and dry

granular flows may behave similarly: for instance, they can sustain shear stresses in a static

state with very slow deformation due to the enduring, frictional grain contacts, and they

can flow rapidly as characterized by inelastic grain collisions (Iverson, 1997). Thus,

researchers in this field mainly focus on the mechanical behaviour of dry, granular flows

under simple and well controlled model configurations. From these research, it is hoped

that the initiation and propagation mechanisms of real debris flows can be highlighted

(Lajeunesse et al., 2005; Lube et al., 2005; Lacaze et al., 2008). Although these studies

make simplifications of the problem, they are still useful in elucidating the mechanical

behaviour of granular flows under simple, well controlled conditions (Crosta et al., 2009).

A simple model of granular column collapse in plane strain condition (see Figure 2-5)

has been widely used in experimental and numerical research because of its simplicity, the

richness of observed dynamics and obviously geophysical applications (Lajeunesse et al.,

2006; Phillips et al., 2006; Lucas and Mangeney, 2007). In this model, an assembly of

dense granular materials are initially generated within a rectangular prism. After quickly

removing the confining wall, all the solid grains would fall downwards and spread

horizontally along a channel (N.B. the width of the channel is the same as the granular

column). Finally, a static granular deposit is formed on the horizontal floor. During this
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process, dense granular assemblies would dilate, while loose samples would contract to

reach the mobilization state (Hungr, 1995; Walton et al., 2007; Mangeney et al., 2010).

This granular column collapse model is very similar to the classical dam-break

problem studied in the fluid mechanics, in which the confined materials are released

immediately and flow under gravity (Hogg, 2007; Ancey et al., 2008). However, the

current model involves various granular materials, such as grit, glass beads, salt, sand, rice

and sugar. Using this model, a series of well documented experiments have been reported

in the literature (Balmforth and Kerswell, 2005; Lajeunesse et al., 2005; Lube et al., 2005;

Siavoshi and Kudrolli, 2005; Lacaze et al., 2008; Crosta et al., 2009). According to Figure

2-5, a two-dimensional model with an initial height of Hini and half-length of Lini, is used to

simulate the symmetric and unidirectional spreading of solid grains. The final deposit

height and length are Hfin and Lfin, respectively.

Figure 2-5. Setup of granular column collapse model (cited and modified from Lube et al. (2005),

page 2) (a) Left: initial state; (b) Right: final deposit state.

Staron and Hinch (2007) indicated that this model is useful to achieve insights into the

complicated landslide phenomena, with special emphasis on the influence of slope

topography, geometric and physical properties of granular materials. Lube et al. (2004) and

Lajeunesse et al. (2004) concurrently observed that the duration time and velocity, the final

deposit morphology and the cumulative energy dissipation of granular flows can be scaled

quantitatively and with no dependence on particle properties (e.g. size, shape, and

roundness), substrate properties and released solid mass. The scaling laws are formulated

to quantify the relationship between the initial model geometry (i.e. initial column aspect
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ratio, defined as the ratio of the initial height (Hini) to the initial length (Lini)) and final

debris runout distance and deposit height (Lube et al., 2005; Mangeney et al., 2005; Staron

and Hinch, 2007; Lacaze et al., 2008). Empirical equations has been proposed by Lube et

al. (2005) as:
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and by Lajeunesse et al. (2005) as:
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Balmforth and Kerswell (2005) proposed the scaling laws for plane strain channelled

tests with different size of gaps (i.e. narrow: 1 cm, and large: 20 cm) between lateral

confining walls, as:

0.65 0.05
ini

0.9 0.1
ini

narrow gap

large gap

finL L a

L a









 
 


(2.5)

0.4

0.5
ini

narrow gap

large gap

finH a

L a


 


(2.6)

where the coefficient λ is a function of material properties (e.g. basal and internal friction).

These empirical relationships suggest that the depositional morphology of granular

materials depends only on the column aspect ratio. Nevertheless, as stated by Staron and

Hinch (2005), the physics of the exponent of these equations is still under discussion and

no model offers a comprehensive explanation of the debris collapse dynamics.
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2.4 Numerical Investigations

As discussed before, numerical investigation is a promising way to study the mechanical

and hydraulic behaviour of landslides (Hungr, 1995; Denlinger and Iverson, 2001; Crosta

et al., 2005; Mangeney et al., 2005; Chen et al., 2006; Ancey, 2007; Bui et al., 2008). The

most commonly adopted numerical methods include the Finite Element Method (FEM)

(Chen et al., 2006), Smoothed Particle Hydrodynamics (SPH) (Bui et al., 2008; Vacondio

et al., 2013) and the Discrete Element Method (DEM) (Cundall and Strack, 1979). This

study uses the DEM and its coupling with the Computational Fluid Dynamics (CFD) to

investigate the initiation, propagation and deposition of landslides in the terrestrial and

submerged environments. A brief introduction to the DEM and DEM-CFD coupling

methods is given in this section, while more detailed theoretical background will be

provided in Chapter 3.

2.4.1 The Finite Element Method

The Finite Element Method (FEM) has long been employed in investigating the slope

stability (Rahman, 1997; Potts and Zdravkovic, 2001; Chen et al., 2007; Xu et al., 2011).

However, the traditional Lagrangian FEM is not appropriate for studying landslides with

large displacements, because the finite element mesh would rapidly become highly

distorted, leading to inaccurate results (Crosta et al., 2009). To overcome this problem, a

combined Eulerian–Lagrangian (CEL) method has been developed (Crosta et al., 2003;

Crosta et al., 2004; Chen et al., 2006), which does not distort the FE mesh and guarantees

accurate calculation results.

The CEL has been employed by Crosta et al. (2009) in investigating the collapse of a

granular column on erodible and nonerodible ground surface, in which the slope failure is

triggered by instantaneously deleting a retaining wall. The numerical results can match the

well-documented experimental data, in terms of flow development, duration, slope profile,
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velocity distribution, erosion and deposition. They stated that the numerical results fit the

experimental observations better than those obtained by the Discrete Element Method and

depth averaged model, because the latter two methods always predict a much longer runout

distance. The mechanism of solid mass changes due to basal erosion or surficial material

entrainment during debris transportation is also elucidated by numerical simulations using

the CEL (Chen et al., 2006).

The advantage of the CEL is that only the well-known material parameters from

laboratory tests, such as the modulus of elasticity, material internal friction angle and

cohesion, are used in the numerical simulations. In addition, it has shown the capability of

investigating slope failure with large displacement (Chen et al., 2006; Crosta et al., 2009).

However, the CEL cannot fully simulate the extreme tapering of the flow front during the

propagation of granular flows, as observed in experimental tests with cohesionless

materials. This can be explained by the fact that the continuum model is unable to

reproduce the same discontinuous properties as the real granular materials (Crosta et al.,

2009). Furthermore, as the FEM is a grid-based technique, it suffers from grid distortion at

large deformation, which could lead to inaccuracies in the solution or even to failure of the

computation (Bui et al., 2008). This problem becomes more evident in studying the

complex free-surface behaviour of geophysical flows, such as wave motion, fragmentation

and splashing (Cleary and Prakash, 2004). Though the CEL can handle the moving

boundary problems, it comes with very high computational costs (Crosta et al., 2009).

2.4.2 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is one type of Lagrangian meshless methods,

commonly used to simulate the large deformation of continuum or dispersed materials (Bui

et al., 2008). In the SPH, the fluid (or solid) domain is discretized as a series of elements

and the material properties are attributed to the element centres, which are then interpreted

as material particles. These material particles carry field variables such as mass, density
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and stress tensor, and move with the material velocity. The governing differential

equations for the continuum are converted into equations of motion of these particles and

then solved by a Lagrangian numerical scheme.

SPH can be used in studying geophysical flows (Gutfraind and Savage, 1998; Cleary

and Prakash, 2004). When compared with other grid-based numerical methods, SPH has

several advantages, as:

(i) As SPH is a fully transient method, it is suitable to simulate environmental flows

that are not in steady state, in which the large deformation and post-failure

response of granular flows are handled very well, due to its Lagrangian and

adaptive nature. The free surfaces of flow are modelled easily and naturally. As

the SPH particles move to new locations, the shape of the free surface is simply

the surface particles wherever they happen to be.

(ii) SPH can easily include complex geometries and complicated physics (e.g.

solidification and freezing). This ability arises partially from the flexibility of the

continuum modelling; partially from the fact that SPH material particles can

evolve over space and time; and also from the ability to impose specific rule

bases on the particles, such that the governing equations can be adapted easily.

As the SPH particles are used to mimic the behaviour of granular solids, they would

repel each other when the soil mass is compressed, while they can attract each other if the

soil mass expands. However, when the solid material is stretched, the attraction would

result in the formation of SPH particle clumps (Swegle et al., 1995). This is commonly

called the “tensile instability” problem for SPH in modelling the mechanical behaviour of

solids. This problem is negligible for non-cohesive soil with small friction angle, but

become troublesome for high friction angles. For cohesive soil, the tensile instability is

very serious, so that special treatments are needed during the simulations (Dyka and Ingel,

1995; Johnson and Beissel, 1996). Bui et al. (2008) pointed out that this problem would

result in unrealistic fracture at the soil surface at large deformation. To resolve this
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problem, different approaches have been proposed (Dyka and Ingel, 1995; Johnson and

Beissel, 1996). Monaghan (2000) and Gray et al. (2001) have proposed an effective

method by introducing a small repulsive force between neighbouring particles, which

prevents SPH particles from getting closer at tensile state in the original SPH formulation.

Furthermore, the SPH simulations may encounter the problem of “particle deficiency”

near or on the boundary (Bui et al., 2008). For particles near or on the boundary, only the

neighbouring particles inside the boundary contribute to the calculation of gradients, and

no contribution comes from the outside since there are no particles beyond the boundary.

This one-sided contribution leads to inaccurate solutions. To overcome this problem, the

virtual particle method can be employed in SPH (Takeda et al., 1994; Morris et al., 1997).

2.4.3 The Discrete Element Method

The application of DEM in the simulation of granular flows, as firstly proposed by Cleary

and Campbell (1993), appears to be useful for understanding the behaviour of dry granular

flows and is likely to yield many insights into this problem, if it can closely mimic an

experimental setup (Lacaze et al., 2008). Within the last two decades, it has become an

complementary research method to the laboratory experiments, revealing the fundamental

mechanical characteristics of landslides (Staron and Hinch, 2007; Tang et al., 2009). As

Zenit (2005) pointed out, the use of DEM in landslide simulations is very powerful,

because all the numerical data are accessible at any stage of the test, including quantities

which are very difficult, or even impossible, to obtain directly from laboratory experiments,

such as the individual particle trajectories and transient interaction forces. These

information is essential for understanding the underlying physics of dry granular flows.

The flexibility of the DEM can also be extended to the loading configurations, particle size

distribution and physical properties of solid particles.

Recent numerical research has revealed that the initial model dimension, especially the

model aspect ratio, controls the mechanisms of granular flows and determines the
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geometry of final deposits (Staron and Hinch, 2005; Zenit, 2005). This conclusion is

validated by experimental observations in the model tests in Section 2.3. Zenit (2005) used

a two dimensional (2D) discrete element code to simulate the mechanical behaviour of

granular column collapse with different initial aspect ratios. The numerical model has the

same configuration as that shown in Figure 2-5. In this 2D model, the debris mass is

simulated as a collection of circular disks which interact with each other at discrete contact

points. Based on this simplified model, qualitatively good results were obtained when

compared to the experimental observations in axisymmetric conditions. A critical granular

column aspect ratio, that determines whether or not the final granular deposit has a flat top

profile, has been systematically discussed.

Although Zenit (2005) has observed different depositional morphology of granular

materials in numerical simulations, he did not analyse this phenomenon further to explore

the mechanisms governing the long runout distance of debris materials. It seems that a

positive correlation between the column height and the maximum deposit runout distance

exists, which indicates that landslide deposits can have a common shape, such that the

maximum debris runout distance can be determined solely by the initial model geometry.

Based on this idea, Staron and Hinch (2005) used a 2D discrete element model to study the

collapse of a granular assembly onto a horizontal floor. They found that the collapse is

mainly driven by the free fall of granular materials at large aspect ratios, while there is no

free fall process when the aspect ratio is small. This result suggests that the initial column

aspect ratio determines the final depositional morphology of granular materials.

While the 2D DEM simulations have revealed the fundamental influence of initial

model geometry on the mechanisms of granular flow, the numerical results obtained

cannot quantitatively match the experimental ones very well, because the 2D model cannot

take the particle shape effect into consideration. Cleary and Frank (2006) used 3D DEM

analyses to investigate the axisymmetric collapse of an assembly of spherical particles. In

their work, a set of governing parameters of granular column collapse model were

identified, based on which, a series of numerical simulations were performed in order to
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analyse the influence of grain properties on the depositional morphology of granular

materials. They pointed out that the particle shape has a significant influence on the

dynamic motion and deposition of granular flows. To analyse the particle shape effect,

they have employed the microscopic particle rolling resistant moment in the DEM model.

The results obtained can qualitatively match those observed in the laboratory model tests.

Although Cleary and Frank (2006) have discussed the influence of several factors on

granular flows, relatively little knowledge has been provided to explain the mechanisms

governing the long runout distances of debris materials. Staron and Lajeunesse (2009) used

a 3D DEM model to study the intertwined role of volume and topography in landslides.

The runout distance of granular materials under gravity can be decomposed into two

contributions: sliding along the topography and spreading of the unconsolidated materials.

The sliding property is independent of the granular volume and closely related to the

mobility of landslide avalanche (i.e. the ratio of the deposit runout distance to the height).

On the other hand, the spreading of solid mass is strongly dependent on the granular

volume. Based on these relationships, a clear understanding of the mechanical behaviour of

dry granular flows can be obtained via 3D DEM simulations.

The modelling of granular column collapse using the classical DEM is a possible way

to study the complicated behaviour of landslides. However, the model discussed above is

not satisfactory, since it fails to consider the presence of water in granular flows. As a

consequence, the spreading of a fluid-absent, dry granular flow is not able to explain the

high mobility of natural landslides (Legros, 2002). To analyse the influence of fluid on the

motion of granular flows, the DEM-CFD coupling method will be employed.

2.4.4 The DEM-CFD Coupling Method

Research on rapid failures of large scale landslides using the DEM is challenging because a

huge number of particles need to be employed to model the realistic mechanical behaviour

of granular flows, which would lead to unrealistically long computational time (Siavoshi



31

and Kudrolli, 2005). In addition, a typical landslide involves the motion of solid particles

and fluid, which presents complicated interactions in a solid-fluid mixture. Figure 2-6

illustrates the constituents of real soil and its numerical representations. The soil mass in

nature is a three-phase mixture consisting of solid particles, water and air. The solid

particles of various sizes interconnect with each other and have void space among them,

which in turn, serve as the flow passage for both water and air (N.B. the influence of air on

landslide is negligible, and is not discussed in this thesis.). The void space within the soil

mass is generally continuous, which allows water to flow from one point to another point

under hydraulic gradients (Craig, 1997).

Figure 2-6. Numerical representation of soil (cited from Shafipour and Soroush (2008), page 675)

Table 2-4. Flow regimes of fluid flow through porous media (Note: Rep is the Reynolds number

defined at the particle size scale; h is the pressure head loss; L is length of the flow passage; V is

the superficial fluid velocity.).

Rep ≈ 1 Rep ≈ 100 Rep  ≈ 800

Darcy Regime Forchheimer Regime Transition Regime Turbulent Regime

Creeping Flow (No

Inertial Influence)

Laminar Flow (Increasing

Inertial Influence)
Inertial flow with

Increasing Random,

Irregular Flow

Flow Entirely Random

& Irregular

h L k   V 2
F Fh L     V + V 2

T Th L     V + V

According to Figure 2-6, it can be observed that a rational numerical model of a fluid-

solid mixture need to describe a discrete skeleton structure of solid particles, continuous

pore fluid flow and coupled discrete-continuum interactions between the two phases (Tsuji

et al., 1993; Zeghal and El Shamy, 2004; Shafipour and Soroush, 2008; Chen, 2009;

Shimizu, 2011). The mechanical behaviour of the solid and fluid can be studied by the
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DEM and the CFD, respectively, while their interactions are analysed using the well-

developed discrete-continuum theories (Anderson and Jackson, 1967; Ding and Gidaspow,

1990; Brennen, 2005). Based on the flow properties, the fluid motion can be categorized

into four distinct regimes, as shown in Table 2-4 (Trussell and Chang, 1999).

According to Table 2-4, it can be observed that the Darcy Regime is limited to a fluid

condition that the Reynolds number is smaller than 1.0. Fluid flow in this regime is not

only laminar but also “creeping”, which means that there is no significant inertial

contribution to the fluid motion. The second regime is named the Forchheimer Regime.

Fluid flow in this regime is also steady laminar flow, but as the Reynolds number increases,

inertial effects become increasingly important. At the lower end of this regime, the fluid

head loss is proportional to V with a small V2 dependence, while at the upper end, the head

loss is V2 related, with a small dependence on V. Furthermore, stationary vortices are

formed in fluid cells between solid grains at the upper end of this flow regime. The

transition regime represents the transition of fluid motion from more or less full inertial to

fully developed turbulence. The equation used to describe the relationship between fluid

pressure head loss and flow velocity in this regime makes a transition from the

Forchheimer form with one set of constants, αF and βF, to another set of constants, αT and

βT, used in the turbulent regime. At the lower end of this regime, turbulence is just

beginning to appear in some part of fluid domain, while at the upper end, turbulence

appears in the whole fluid domain. When the Reynolds number is larger than 800, the

turbulent regime occurs, in which, all parts of the flow are turbulent and the fluid velocity

is randomly fluctuating about the mean value.

Based on the category of fluid regimes, extensive research using the fluid-solid

coupling methods have been carried out to investigate the intricate behaviour of a fluid-

solid mixture system. Tsuji et al. (1993) firstly proposed a DEM-CFD coupling approach

to study the mechanical behaviour of a fluidized bed and thereafter, this method has been

widely applied to study multiphase flows (e.g. fluidized bed (Duursma et al., 2009),

material transport). In these numerical studies, the behaviour of individual solid particles is
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modelled by the DEM, while the fluid motion is simulated by solving equations of the fluid

mass and momentum conservations using the locally averaged quantities, such as fluid

velocity and pressure, in a standard CFD solver (Anderson and Jackson, 1967). In addition,

the space and time variation of porosity is identified as a major factor affecting the

coupling response of fluid-solid mixture (Di Felice, 1994; Zeghal and El Shamy, 2004).

Whilst the existing coupling work has shown its potential to simulate the liquefaction

and transportation of saturated granular materials, a detailed study of the mechanical and

hydraulic behaviour of large scale landslides is still rare in the literature. The fact that a

multiphase landslide always starts from a very small Reynolds number and develops into a

very large Reynolds number, corresponding to the transition from the Darcy to Turbulent

flow regimes, is still a problem that remains to be addressed. The current research will

contribute to knowledge in this field using the DEM-CFD coupling method.
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Chapter 3 Theory and Methodology

This chapter provides a review of the theories and methodologies of the Discrete Element

Method (DEM), the Computational Fluid Dynamics (CFD) and the coupling algorithm of

the DEM-CFD. The choice of numerical time step, the implementation of coupling code

parallelization based on the Message Passing Interface (MPI) are discussed in detail.

3.1 The Discrete Element Method

The Discrete Element Method (DEM) is a numerical method for modelling the dynamics

of solid particles which interact with each other at discrete contact points. Since it was

firstly proposed by Cundall and Strack (1979) to study the mechanical behaviour of rock at

the microscopic level, the DEM has been developed rapidly, with applications in rock/soil

mechanics, chemical engineering and pharmacy (Thornton, 2000; Cleary and Sawley, 2002;

Cui and O'Sullivan, 2006; Wu and Cocks, 2006; Jing and Stephansson, 2007; Lu and

McDowell, 2007; Ng, 2009; Plassiard et al., 2009; Yu et al., 2013).

In DEM simulations, the properties of a stressed assembly of rigid spherical particles

(e.g. position, velocity and contact forces) are updated at every numerical iteration time

step. The translational and rotational displacements of each particle are obtained by

explicitly integrating the governing differential equations based on the Newton’s second

law of motion, while the contact forces between particles are calculated using well defined

force–displacement contact models (Hertz, 1882; Mindlin and Deresiewicz, 1953; Cundall

and Strack, 1979; Itasca, 2003). In this process, the interactions between particles are

monitored at all contacts and the movement of each individual particle is traced. It is

assumed that the velocity of each particle is constant within each iteration step. Since the
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explicit integration technique is used in the DEM calculation, the time step is required to

be very small so that stable numerical solutions can be achieved.

Figure 3-1. Calculation cycle in the DEM

Figure 3-1 illustrates the mechanical loop of the DEM calculation. The simulation

starts by detecting the contact points between particles. The contact point and the particle

overlap distance are then used to calculate the interaction forces via the force-displacement

relationships. The resulting contact forces are applied at the centre of each particle, causing

particles to move. According to the Newton’s second law of motion, the particle

acceleration, velocity and displacement are updated at the end of each numerical iteration

step. This mechanical loop continues until the prescribed total iteration step is reached.

3.1.1 Particle motion

According to the Newton’s second law of motion, the equation governing the translational

motion of a single particle is expressed as:

( )
2

2i i i fluic t dc
c

n

d
m x m g f f f

dt
   

    
(3.1)

where mi is the mass of a particle i; ix


is the position of its centroid; g


is the gravitational

acceleration; ncf


and tcf


are the normal and tangential inter–particle contact forces
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exerted by the neighbouring particles; the summation of the contact forces are over all the

contacts; fluidf


is the interaction forces between fluid and particles.

The equation for the rotational motion of a single particle is given as below:

tci i c r
c

d
I r f M

dt
   
   

(3.2)

where Ii is the moment of inertia about the grain centroid; i


is the angular velocity; cr


is

the vector from the particle mass centre to the contact point; rM


is the rolling resistant

moment, which inhibits particle rotation over other particles.

3.1.2 The particle – particle contact model

The accuracy of the DEM modelling depends highly on the contact models used to

calculate the particle–particle interactions. This topic has long been discussed by

geotechnical researchers, such as Iwashita (1998), Jiang et al. (2005) and Belheine et al.

(2009). The fundamental problem is how to reproduce the correct interactions between two

solid grains in the DEM. The classical DEM treats all solid grains as either disks (i.e. two-

dimensional (2D) model) or spheres (i.e. three-dimensional (3D) model), as this would

greatly simplify the calculation of the overlap distance between particles. Though this

model has shed some light on the mechanical behaviour of granular materials, it is

inaccurate due to the oversimplified assumptions that all solid particles are spherical and

free to rotate. However, real particles and their contacts are much more complicated, for

example, the particle is normally not spherical and have a rough surface texture, possibly

can be covered by a thin film of weathered materials. For non-spherical particles, the line

of action of the normal contact force no longer passes through the centre of mass of the

particles and hence generating rotational moments (Belheine et al. (2009)).

To account for the particle shape effects, three ways of DEM modelling can be used.

The first of the three is to use a clump of spherical particles based on the bonded-particle
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method (Potyondy and Cundall, 2004). In this method, the real shape of soil / rock mass is

approximated by a clump of bonded spherical grains, which behaves as a rigid body. The

second approach is to model the soil / rock blocks as polygons (Cundall, 1988; Boon et al.,

2012). The third method is to include the rolling resistant moment at the particle contacts

(Jiang et al., 2005). This thesis uses the last method in simulating the mechanical

behaviour of granular materials.

Figure 3-2. The approximation of real grain contact using the DEM model

As shown in Figure 3-2, the real solid grains have irregular shapes, while the DEM

model approximates the irregular shape with circles (or spheres). Because of this

simplification, the contact point detected in the numerical model can be dramatically

different from the real one. The distance between the real and numerical contact points is

defined as ηr, with r being the average radius between the two particles in contact; η being

a coefficient quantifying the offset of the contact point. In addition, the position of the

contact point might change during the simulation as individual grains can rotate due to the

unbalanced moment acting on the geometrical centre. Assuming particle B rotates in the

anticlockwise direction, the resultant rolling resistant moment from the normal contact

force would act in the clockwise direction, resisting the particle rotation. For simplicity, the

rolling resistant moment is defined to act in a direction opposite to the relative rotation.
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Figure 3-3. The contact model between two spheres (cited from Jiang et al. (2005), page 348)

The open source DEM code ESyS-Particle (Weatherley et al., 2011) was employed in

the simulations here presented. Using this code, a series of preliminary runs of granular

column collapse tests (see Chapter 5) employing the non-linear, elastic Hertz-Mindlin

contact model (Hertz, 1882; Mindlin and Deresiewicz, 1953) and linear elastic contact

model (Zhang and Whiten, 1996) have been conducted. No significant difference was

found. Hence, since the linear elastic contact requires less computational time, it is used in

the current research. The detailed description of the model can be found in Jiang et al.

(2005) and Belheine et al. (2009). As shown in Figure 3-3, the classical DEM model may

be modified by introducing an additional rolling moment component at each contact point

whereby rolling resistance can be accounted for. Thus, three distinct particle contact

models can be identified, namely, (a) the normal contact model; (b) the tangential contact

model; and (c) the rolling contact model. The mechanical responses of these three different

contact models are closely related to the relative displacement between the two particles, as

shown in Figure 3-4. The interaction forces between two spheres include the normal (Fn)

and tangential (Ft) forces, and rolling moment (Mr), respectively.
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Figure 3-4. Particle contact model (cited from Belheine et al. (2009), page 324)

In Figure 3-4 (a), the normal contact force (Fn) acting on a single particle is linearly

proportional to the overlap distance between two particles, which is expressed as:

n n nF K U  (3.3)

in which Kn is the normal contact stiffness, Un is the normal overlap distance.

Figure 3-4 (b) shows that a maximum tangential force ( )( )tannF  exists, before

which, the tangential force (Ft) can be calculated incrementally, as:

1
t
n n

t s sF F K dU   (3.4)

where n
tF and 1n

tF  are tangential forces calculated at current and previous iteration steps;

Ks is the shear stiffness, and dUs is the incremental tangential sliding displacement.

Figure 3-4(c) shows that the rolling resistant moment increases gradually from zero to

the maximum value when two particles come into contact and rotate over each other. The

magnitude of elastic rolling moment (Mr) is proportional to the relative rotational angle, as

calculated incrementally by Eq.(3.5).

1n n
r r r rM M K    (3.5)

where n
rM and 1n

rM  are the rolling moment calculated at the current and previous

iteration steps; 2
r sK K r is the rolling stiffness, with β being the coefficient of rolling

stiffness, r being the average particle radius at contact (i.e. r=(R1+R2)/2); r is the

relative rotational angle between the two particles within one iteration time step. The

magnitude of the maximum rolling moment is defined as:
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p nM r F   (3.6)

in which, η is the coefficient of plastic moment.

3.1.3 The calculation of stress in the DEM

As the DEM is applicable only for modelling the mechanical behaviour of discrete

materials (e.g. sand and rock), it is not straightforward to obtain the stress distribution

within the granular assembly based on the definition of stress in continuum mechanics.

Instead, in the DEM, the homogenization or micro-macro averaging technique is used to

calculate the stress tensor (Thornton and Antony, 2000). For an assembly of granular

materials within a measurement volume (V), the stress tensor ( )ij is defined as,

( ),( ) ( ) ( )

( )

1

p c

p

c pc p c
ij i i i jp

N N

N

n
x x n F

V


 
 
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 




(3.7)

where the summation is taken over Np particles with their centroids locating within the

measurement volume; n is the porosity of the measurement volume; ( )pV is the volume of

a single particle; Nc is the number of contacts around a single particle; ( )p
ix is the location

of the particle centroid, and
( ),c p

in is the unit normal directed from the particle centre to the

contact location ( )( )c
ix ;

( )c
jF is the force acting at the contact.

3.1.4 Coordination number

The concept of coordination number comes from chemistry and crystallography, where it

is defined as the number of atoms around a central atom in a molecule or crystal (De, 2007;

Hermann et al., 2007). In the DEM, this variable is used to quantify the packing state of

granular materials. The coordination number of a particle is the number of neighbouring

http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Crystallography
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particles it contacts with. As studied in the numerical biaxial tests (Thornton, 2000; Jiang

et al., 2010), the coordination number has been identified as an important variable to study

soil failure. According to Jiang et al. (2010), the coordination number is small in the shear

band of soil sample. By tracking the distribution of coordination number, it is possible to

identify the potential weal zone of soil sample. During the simulation, the bulk

coordination number of a granular assembly in a volume (V) is calculated via the

coordination number of individual particles (Ci), as:

1

1 pN

i
ip

C C
N 

  (3.8)

where Np is the total number of particles within the volume.

3.2 Fluid – Solid Interaction

The interaction force between fluid and particles ( fluidf


) consists of two parts: hydrostatic

and hydrodynamic forces (Shafipour and Soroush, 2008). The hydrostatic force accounts

for the fluid pressure gradient around an individual particle (i.e. buoyancy) (Zeghal and El

Shamy, 2004; Chen et al., 2011; Kafui et al., 2011) expressed as:

i
b pif v p  


(3.9)

where i
bf


is the hydrostatic buoyant force acting on particle i, piv is the volume of particle

i; p is the fluid pressure.

The hydrodynamic forces acting on a particle are the drag, lift and virtual mass forces.

The drag force is caused by the shearing effect of fluid onto the particle, in the direction of

the relative velocity between fluid and particle; the lift force is caused by the high fluid

velocity gradient-induced pressure difference on the surface of the particle and the virtual

mass force is caused by relative acceleration between particle and fluid (Drew and Lahey,

1990; Kafui et al., 2002; DEMSolutions, 2010). The latter two forces are normally very
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small when compared to the drag force in simulating fluid flow at relatively low Reynolds

numbers (Kafui et al., 2002). Thus, the lift and virtual mass forces are neglected in the

current CFD-DEM coupling model. In this process, the drag force is assumed to act at the

particle centre in a direction opposite to the relative velocity between particle and fluid

(Guo, 2010). In order to quantify the drag force, experimental correlations (Stokes, 1901;

Ergun, 1952; Wen and Yu, 1966) and numerical simulations (Zhang et al., 1999; Choi and

Joseph, 2001; Beetstra et al., 2007) have been reported in the literature. The drag force is

calculated as:

( ) dF U V (3.10)

where β is the fluid-solid momentum transfer coefficient, U and V are the velocities of

fluid and solid particle, respectively.

The momentum transfer coefficient is derived from the experimental correlations by

Ergun (1952) and Wen and Yu (1966), as:

(1 )3

4

d fC n n

D





 U V (3.11)

where Cd is the drag force coefficient; n is the porosity of soil sample; D is the particle

diameter and ρf is the fluid density.

The drag force coefficient is defined in Eq.(3.12), in which the Ergun’s correlation is

used if the sample porosity is smaller than 0.8, while the Wen & Yu’s correlation is used

for larger sample porosities.
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

 









(3.12)

where Re fp d  U V is the Reynolds number defined at the particle size level, with

μ being the fluid viscosity.
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As Ergun’s equation is obtained by experiments of fluidization on dense granular beds,

it is not applicable to dilute granular sample (Jackson, 2000). For loose granular samples

with porosities larger than 0.8, the Wen & Yu’s correlation should be used. As a result, the

definition of drag force coefficient in Eq.(3.12) would cause discontinuity in calculating

drag forces if the sample porosity varies from the intermediate to large values during the

simulation (Syamlal, 1987; Kafui et al., 2002). To get rid of this problem, the drag force

model proposed by Di Felice (1994) is used in this research. The drag force is defined as:

( )
2

11

2 4
di d f

D
F C n 

    U V U V (3.13)

The porosity correction function ( )1n  
in Eq.(3.13) represents the influence of the

concentration of granular materials on the drag force. The term χ is defined as: 

( )
2

101.5 log Re
3.7 0.65 exp

2

p


 
   
 
 

(3.14)

There are several definitions of drag force coefficient in the literature (DallaValle,

1948; Brown and Lawler, 2003; Beetstra et al., 2007). A comparison between these

correlations and the experimental data is given in Table 3-1 and Figure 3-5. According to

Figure 3-5, it can be observed that the Stokes’ and Newton’s correlations can predict

accurate drag force coefficients for fluid flows at very small and large Reynolds numbers,

respectively. The correlations by Schiller & Nauman (1935), DallaVall (1948) and Brown

and Lawler (2003) can give out reasonable drag force coefficients for the Reynolds number

in the range of [10-2, 100] and [104, 105]. However, in the range of [100, 104], only the

correlation of Brown and Lawler (2003) can match the experimental data well. Thus, the

drag force coefficient has been implemented in the current DEM-CFD coupling method as:

( )0.68124 0.407
1 0.150 Re

8710Re
1

Re

d p

p

p

C   


(3.15)
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Table 3-1. Some well-defined correlations of drag force coefficient

Stokes (1880)
24

Re p

Newton (Inertial) 0.44

Schiller & Nauman (1935)
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Figure 3-5. Drag coefficients from various correlations and experimental results

Therefore, the force exerted by fluid on a single solid particle is expressed as:

( )
2

11

2 4
fluid pi d f

d
f v p C n 

      


U V U V (3.16)
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3.3 Governing Equations of Fluid Flow

In the Computational Fluid Dynamics (CFD), the governing equations of fluid flow in a

fluid-solid mixture system are derived from the theory of multiphase flow (Brennen, 2005).

The mixture system consists of fluid and solid particles and it is assumed that the solid

materials are well mixed in the fluid so that the system can be regarded as homogeneous in

all directions. As shown in Figure 3-6, the fluid density (ρ), the three components of fluid

velocity (u, v, w) and the fluid volume fraction (n) are all functions of position and time.

The discussion below will focus on the mass and momentum conservations of fluid flow in

the mixture system, in which the fluid volume is the taken as the product of n and the mesh

element volume (dxdydz). The open source CFD code OpenFOAM (OpenCFD, 2004) was

modified and employed for the simulations presented herein.

Figure 3-6. The infinitesimally small element of the fluid-solid system

3.3.1 Fluid mass conservation law

Figure 3-7 illustrates the fluid flow though faces of a mixture element. The fluid velocity

has been averaged to make it homogenous within the control volume (Anderson and
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Jackson, 1967). The average fluid velocity is defined as n nui nv j nwk   
  

U U over

the control volume, which represents the superficial fluid velocity in the fluid mesh cell.

Figure 3-7. Fluid flow through faces of the mesh element

The equation of mass conservation for fluid in the x direction of this element is derived as:

( )
( )

( )nu nu
nu dx dydz nu dydz dxdydz

x x

 
 

  
   

  
(3.17)

Similarly, the net out flow in the y and z directions can be derived as ( )nv
dxdydz

x




and

( )nw
dxdydz

x




, respectively. Thus, the total net outflow of the fluid element is:

( ) ( ) ( )
( )

nu nv nw
dxdydz n dxdydz

x y z

  


   
     

   
U (3.18)

On the other hand, the time rate change of fluid mass is expressed as:

( ) ( )
( )

ndxdydz n
dxdydz

t t

  


 
(3.19)

According to the mass conservation law, the net fluid mass outflow must be equal to

the time rate decrease of fluid mass inside the element. If the decrease rate of fluid mass is

defined as negative, the mass conservation law can be expressed as:

( )
( ) 0

n
n

t





   


U (3.20)
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As a comparison, the continuity equation of pure fluid (n = 1) (Anderson, 1995) is given as:

( )
( ) 0

t





   


U (3.21)

3.3.2 Fluid momentum conservation law

The forces acting on a fluid element (in the x-direction) is sketched in Figure 3-8.

According to the Newton's second law of motion, the net forces acting on the fluid element

are equal to the product of fluid mass and acceleration. For simplicity, the derivation here

presented only considers the momentum equation in the x direction, as:

x xF m a  (3.22)

In general, there are two different types of forces acting on the fluid element: (a) body

force, such as gravity, drag, electric, and magnetic forces; (b) surface force, such as the

pressure, viscous shear and normal forces acting on the element surface (Anderson, 1995).

Figure 3-8. The forces acting on the surface of fluid element

Without the electric and magnetic forces, the body force can be written as:

b g fluidF f f 
  

(3.23)



48

in which gf


is the gravity force defined as g n gdxdydzf 
 

; and fluidf


is the interaction

force between fluid and solid particles.

Thus, the body force per unit volume is expressed as:
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where N is the total number of solid particles within the volume. Let
1

d d

N

i
if F dxdydz




 

be

the drag force per unit volume, then ( ) ( )1 1 df pg n n fn     
  

τ .

The surface forces are forces directly acting on the surface of the fluid element. There

are two sources of surface force: (a) the hydraulic pressure imposed by the outside fluid

surrounding the fluid element, and (b) the shear and normal stresses acting on the surface

(also imposed by the outside fluid by means of viscous friction). The unbalanced surface

force acting on the fluid element in the x direction is,

xx
s xx xx

yx zx
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yxxx zx
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  
         

(3.25)

From Eq.(3.24) and Eq.(3.25), the total force in the x-direction is summarized as:

yxxx
x dx

zx
x xF n p n dxdydz

x y z
n g f

      
             

+ (3.26)

The acceleration of fluid flow in the x-direction is calculated as the material derivative

of flow velocity,

x

Du u
a u

Dt t


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
U (3.27)
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The term
u

t




is the time rate change of momentum, while uU is the net flux of

the momentum out of the mixture element in the x direction. Thus, Eq.(3.22) is rewritten as:

yxx
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x zx
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u
n n u n p n n g f
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U + (3.28)

The following transformations can be applied to the two terms on the left hand side of

Eq.(3.28) in the analysis, as:

( ) ( )nu nu
n u

t t t

 

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(3.29)

( ) ( ) ( )n u nu u n     U U U (3.30)

By substituting (3.29) and (3.30) into the left hand side of Eq.(3.28), one can get
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Recalling Eq.(3.20), that
( )

( ) 0
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n
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
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
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U , Eq.(3.31) can be reduced to:
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Consequently, the momentum equation in the x-direction is written as,
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The momentum equations in the y and z directions can be derived accordingly. Thus,

the momentum balance equation for the solid-fluid mixture system is summarized as:
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( ) d

n
n n p n g fn

t






         



U
UU

 
+ (3.34)

The momentum equation for pure fluid (n = 1) (Anderson, 1995) is given here as:
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3.4 The Viscous Shear Stress

In simulating large scale landslides, the fluid flow can range from the laminar to turbulent

regimes. In each flow regime, the calculation of the fluid viscous shear stress tensor (τ) is

different. In the following sections, a detailed discussion of the derivation of the fluid shear

stress tensor of viscous, incompressible and Newtonian fluid in the laminar and turbulent

flow regimes is presented.

3.4.1 Laminar flow regime

In the laminar fluid flow regime, the shear stress is a product of fluid viscosity and velocity

gradient. The corresponding equation was firstly proposed by Isaac Newton in the late

seventeenth century as:

ji
ij

j i

UU

x x
 

 
     

(3.36)

For a fluid-solid mixture system, the bulk viscosity of a suspension can be larger than

that of pure fluid (Yang et al., 2008; Schupp, 2009) due to the presence of fine particles in

the suspension (Iverson, 1997). The bulk viscosity can be estimated by Einstein’s equation

or its modifications, as can be found in the literature (Kunitz, 1926). Most of these

equations are only applicable to very dilute suspensions, while some others depend highly

on the model configurations. For example, the empirical equation of suspension viscosity

of glass beads (spherical particles of size in the order of micrometers) proposed by Toda

and Furuse (2006) is expressed as:
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 
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(3.37)

with
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1.6 0.6n   (3.38)

where n is the porosity of suspension, which ranges from 0.55 to 1.0.

However, in this study, the difference between the pure water and bulk viscosity is not

considered as important, because the solid grains are relatively coarse and the packing

porosity is out of the suggest range.

Based on Eq.(3.36), it can be observed that the fluid viscous stress tensor is a function

of fluid velocity, which is independent of the influence of solid grains. Thus, the gradient

of fluid shear stress in the x direction is written as:
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(3.39)

According to Eq.(3.21), the following expression holds true (N.B. the fluid density is a

constant as it is incompressible.):

( ) ( ) ( )
( ) 0
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Thus, Eq.(3.33) is reduced to:
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x dx
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 

 
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Summarising the momentum equation for x, y and z components together, one can get:
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3.4.2 Turbulent flow regime

In the turbulent flow regime, the fluid flow is characterized by irregular velocity

fluctuation, vortices, energy cascade, irreversibility and high dissipation rate, high

diffusivity of momentum (Tennekes and Lumley, 1972). Figure 3-9 illustrates the variation

of fluid flow velocity over time. In general, the fluid velocity and pressure can be written

in the following forms, as:

p p p    U U U (3.43)

where U and p are the mean fluid velocity and pressure, while U and p are their

fluctuating components. If the mean flow is steady, the following relationships are satisfied:

0 0

1 1t t

U Udt p pdt
t t

   (3.44)

Figure 3-9. Variation of fluid velocity over time in a turbulent flow

Substituting Eq.(3.43) into Eq.(3.42), Eq.(3.20) and eliminating all terms containing

the products of mean and fluctuating values (Pope, 2000; Schlichting and Gersten, 2000;

Wilcox, 2006), the following equation can be obtained:

( ) ( ) 0
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n
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When compared with Eq.(3.42), there is a new term, ( )' 'n U U , in Eq.(3.46). The

number of unknown variables are more than the number of governing equations. Thus,

more equations are needed to relate the extra turbulence terms to the mean flow variables.

It is necessary to introduce a “turbulence model” to solve the “turbulence closure problem”.

Eq.(3.46) and Eq.(3.45) are called the Reynolds-Averaged Navier-Stokes (RANS) model

for a fluid-solid mixture system.

The Reynolds stress tensor is defined as:

' '
T   U U (3.47)

where T is a second rank symmetric tensor. Based on the Boussinesq eddy viscosity

assumption (Schmitt, 2007), the Reynolds stress tensor is proportional to the mean strain

rate tensor as:

2
2

3
T T k   S I (3.48)

where T is known as the eddy viscosity; ( )1

2

T
   S U U is the mean strain rate tensor;

ij= δI is an identity matrix; ' '1

2
i ik U U , is the turbulent kinetic energy.

Note: the eddy viscosity T in Eq.(3.48) is not the physical property of fluid flow, as its

value depends only on the flow conditions. The value of eddy viscosity decreases towards

the wall and it becomes zero on the wall.

To calculate T and solve the “turbulence closure problem”, the classical k 

model (Launder and Spalding, 1972; Wilcox, 2006) is used in this study. This model is

characterised by two variables: turbulent kinetic energy (k) and energy dissipation rate (ε).

The transport equation for the turbulent kinetic energy (k) is,

( ) ( ) T

k

k
k k G
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 
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U (3.49)
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where ( )
2

1

2

T

TG 
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U U .

The second variable ε determines the scale of turbulence and the corresponding

transport equation is,

( ) ( )
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1 2
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t k k
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   
U (3.50)

The turbulent viscosity is then defined as:

2

T

k
C  


 (3.51)

According to Pope, S. B. (2000), the constants used in the k-ε model are listed as,

1 21.44, 1.92, 0.09, 1.0, 1.3kC C C       .

3.4.3 Near-wall treatment

The turbulence structure is significantly influenced by the presence of boundary walls

(Oosthuizen and Naylor, 1999). The boundary layers with very high Reynolds number are

very thin, and both velocity and turbulent properties (e.g. k and ε) have very high gradients

(Jasak, 2009). In this region, an inverted energy cascade occurs because the small vortices

are rolled up and ejected from the wall. Thus, small vortices will accumulate to create

bigger ones, which cannot be simulated by the standard k–ε model. To overcome this

problem, a straightforward approach is to make the fluid mesh grid sufficiently fine near

the wall, so that the gradients prevailing there can be accurately solved. However, this

approach is very computationally expensive for modelling a complex three-dimensional

flow problem. In addition, the extra variables in the k–ε model also require specifications

of their own boundary conditions, which are not a priori on purely physical grounds. An

alternative approach is to employ a prescribed wall function at the boundary layer of the

turbulent flow and assume that the fluid flow near that region behaves in the same way as
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that of a fully developed turbulent layer (Davidson, 2003). The use of wall function can

enhance the convergence and stability of numerical simulations.

Figure 3-10 shows the fluid flow velocity profile near the wall, which consists of three

distinct flow layers. The very thin layer next to the wall is the viscous layer, in which the

velocity profile is linear and the flow can be treated as laminar. The viscous effect of fluid

is significant in this layer and the turbulence can be neglected. Next to the viscous layer is

the buffer layer in which both viscous and turbulent effects are significant. Above the

buffer layer is the turbulent layer where fully turbulent flow is developed. Since the

characteristics of fluid flow are different in these flow layers, it is difficult to formulate an

analytical relationship for velocity profiles of the entire flow domain. A general approach

to handle this problem is first to identify key variables dominating the fluid flow and then

formulate proper relationships with some unknown constants by dimensional analysis. The

unknown constants can be determined by correlating with experimental or numerical data.

Figure 3-10. The velocity profile near the wall

In the viscous layer, the thickness of flow is very small. However, it plays a dominant

role in the fluid motion. The velocity gradient inside this layer is very large and the

presence of solid boundary walls dampens any eddy motion. Thus, the fluid motion is

essentially laminar, so that the shear stress of a Newtonian flow can be calculated as:

w

du u u

dy y y
      (3.52)

where u is the transient fluid velocity parallel to the wall; y is the distance from the wall; ν

is the fluid kinematic viscosity, defined as    .
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Since the term w


has the dimension of velocity, it is usually called the friction

velocity (u*). Substituting this term into Eq.(3.52), the velocity profile in the viscous layer

can be expressed in a dimensionless form as:

*

*

yuu

u 
 (3.53)

Eq.(3.53) is called the law of wall. The term � � ∗⁄ has a dimension of length and it can

be used to normalize the distance from the wall surface (y). Thus, the normalized distance

and flow velocity are defined as:

*

*

and
yu u

y u
u

   (3.54)

The relationship of Eq.(3.53) then becomes:

u y  (3.55)

Eq.(3.55) has been reported to be adequately describe the mean velocity distribution

from the wall out to y+=5. In the turbulent layer (y+>30), the velocity profile follows a

logarithmic distribution with distance away from the wall (Townsend, 1980). The

dimensionless form of a log-law wall function is written as:

*

1
ln

u
Ey

u 
 (3.56)

where κ is the von Karman constant with the value of 0.41; E = 9.8 is a constant.

In the buffer layer (5<y+≤30), both the molecular and turbulent stresses are important. 

From experiments, the velocity distribution can be approximated as:

5ln 3.05u y   (3.57)

When using the wall function, the variables k and ε are not solved at the nodes

adjacent to the walls. Instead, they are fixed values (Davidson, 2003) defined as:
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2
*

P

u
k

C

 (3.58)

3
*

P

u

y



 (3.59)

where

22
*u

C
k



 
  
 

is a constant (0.09) determined from experiments.

3.4.4 Initial conditions

In solving the differential equations by the finite difference method, the initial values of

related variables, such as, k, ε, p, and U should be set appropriately. For a turbulent flow, it

is often difficult to do so, because the initial fluid turbulence is rarely known accurately.

One common practice is to estimate the initial turbulent properties of the internal fluid flow

field and then use the same values as initial estimations for the wall functions. Based on

this concept, the following equations are used to estimate k and ε (Wilcox, 2006), as:

( )
23

2
k U I (3.60)

3
2k

C
l

  (3.61)

where U is the magnitude of mean fluid flow velocity; I is the turbulence intensity and l

is the turbulent length scale.

In the current research on grain sedimentation and submerged debris flows, the

numerical simulations are assumed to start from an initial static state. The initial values of

pressure and velocity are zeros, so that Eq.(3.60) and Eq.(3.61) predict the values of k and

ε as zeros. However, as shown in Eq.(3.51), ε also appears at the denominator, so that a

zero value would cause numerical problems. Therefore, a very small value, for example,

10-6 2 -3m s will be used as the initial value of ε.
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3.5 The MPI Implementation and Data Exchange

Simulation of landslides by using the DEM–CFD coupling method present considerable

computational challenges. The slope mass is modelled by a collection of polydispersed

spheres which might be bonded together to represent an initial integrate soil mass. For

example, a typical landslide model in the DEM could consist of approximately 200,000

particles, with the mean diameter of 0.002 m. Based on the DEM stability and accuracy

criteria (see Section 4.2), the numerical time step can be as small as 10-7 second. It can be

estimated that to conduct a 10 minutes landslide simulation would require approximately

6109 iteration steps. For the DEM simulations presented herein, it will take around 23

days using the author’s desktop (Intel® Core™ i7 CPU (2.93 GHz)) (for the model with

200,000 particles, it can only perform at most 1000 DEM iterations per second). The

situation can become even worse if a large portion of fine grains are included in the model.

The DEM and CFD programs used in this research are the open source codes ESyS-

Particle (Weatherley et al., 2011) and OpenFOAM (OpenCFD, 2004), respectively. Both

codes exploit Message Passing Interface (MPI) parallelization to speed up the calculation

across the parallel computational resources. In the current landslide simulations, the main

computational cost comes from the DEM calculation due to a huge number of particles

modelled. As for the CFD model, the total number of fluid mesh cells is relatively small,

because the sizes of fluid mesh grids are always larger than the size of solid particles. Thus,

the available processors and memory of the computer used in this research are not a

limiting constraint for the CFD model. As a result, several processors are used in the DEM

calculation, while only one processor is assigned to the CFD model. The implementation

of MPI in the DEM code has followed a simple master-slave paradigm (Olivier, 2001),

with a master processor performing the model initialization and domain decomposition

(Plimpton, 1995). Subsequently, the slave nodes perform computations on the decomposed

domains. The temporal synchronizations and output aggregations are carried out by the

master processor during the simulation at every iteration step.
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For a typical DEM–CFD coupling simulation using the MPI, the computational

domain of the DEM model is initially partitioned into several subdomains by the master

processor. Each subdomain is assigned a processor to perform local calculations. One

processor is assigned to the CFD code to perform the calculation for fluid flow. The

particle properties, such as position, diameter and velocity are local to specific processors

and are updated within the subdomain. Elements locating at the boundaries of subdomains

may interact and exchange data with their neighbours at the end of each iteration step,

performed by the master processor. The inherent synchronization and non-blocking

communication in MPI can increase the computing efficiency, especially for simulations

running on the distributed memory clusters (Girolami et al., 2012).

Figure 3-11. The diagram of DEM–CFD coupling (Pi represents the computer processor)

The data exchange programs between the DEM and CFD threads (N.B. one thread can

be regarded as an independent program.) is based on the DEM–CFD coupling model

initially proposed by Chen et al. (2011). In the initial model, the DEM and CFD codes are

running on a single processor, such that information of fluid-solid interaction is exchanged

sequentially during the simulation. The current research has improved the DEM–CFD

coupling code by using a parallel data exchange model as illustrated in Figure 3-11. The

two threads can run in parallel during the simulation, performing numerical calculations

and updating solid and fluid properties, respectively. A dynamic linked library (DLL) – the

DEM–CFD shared library – has been developed by the author to link these two threads.
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The calculation and transfer of the fluid-solid coupling information (e.g. buoyant and drag

forces) are carried out within the DLL, as illustrated in Figure 3-12.

Figure 3-12. Data exchange during one DEM–CFD coupling step. The geometric information

includes the particle position and radius; Tp,n and Tf,n represent the solid and fluid simulation time at

iteration step n, Up,n, Uf,n, Pf,n represent the particle velocity, fluid velocity and pressure at step n.

At the beginning of the simulation, the DEM thread takes control of the simulation. It

receives the parameters of granular properties and coupling information from the input file.

These parameters will then be transferred into the initiation subroutine of the DEM

program. The DEM model is generated accordingly and the simulation time for the DEM

and CFD are set as the same value (e.g. 0). As discussed before, the time step used in the

DEM is generally much smaller than that used in the CFD, which indicates the DEM

thread can run several iterations per CFD iteration step, so that the total simulation time of

the DEM and the CFD threads is the same. The number of iteration steps of the DEM

simulation during two successive DEM–CFD coupling steps is called the coupling

frequency. The use of a large coupling frequency in the simulations is necessary, based on

the following considerations: (i) As the CFD calculation uses the PISO (Pressure-Implicit

Split-Operator) method, it will converge at the end of each coupling iteration step (Issa,

1986; Jasak, 1996); (ii) The velocity and displacement of solid particles within one

iteration step vary very little and thus there is no need to exchange the granular information

between the DEM and CFD threads at every iteration step; (iii) By using a relatively large
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coupling frequency, the efficiency of numerical simulation can be enhanced significantly.

However, if the coupling frequency is too large, the motion of solid grains in fluid cannot

be well captured by the CFD code within each coupling step. Therefore, the value of

coupling frequency should be chosen based on the stability and accuracy criteria of the

DEM and CFD. In this research, it is set within the range of [10, 100] for all simulations.

When the data exchange begins, the DEM thread is activated, while the CFD thread is

paused. The DEM thread links the DEM–CFD Shared Library and sends all the particle

information, such as the particle velocities, positions and diameters into the shared library.

The fluid properties, such as the fluid velocity and pressure, at the previous time step (or

initial values) are obtained from the CFD thread. Based on these information, the sample

porosity and fluid-solid viscous drag forces are calculated (the detailed algorithm used to

calculate the porosity of a fluid mesh cell is presented in Appendix B). Then, the drag

forces are transferred to both the DEM and CFD threads, which will be used as the source

force terms in the governing momentum equations of the solid and fluid phases. The

particle velocity, position and contact forces will then be updated in the DEM thread

accordingly. After that, the CFD thread is activated, while the DEM thread is paused. The

CFD thread will solve the momentum equation and perform the PISO iteration, so that the

fluid velocity and pressure fields are updated. When the CFD calculation finishes, the

simulation control returns back to the DEM thread and a new iteration step repeats. This

mechanical loop will continue until the prescribed total coupling iteration step is reached.

The data manipulation within the shared library is shown in Figure 3-13.

Figure 3-13. Data manipulation in the DEM–CFD coupling shared library
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Chapter 4 Calibration of Soil Strength

Properties

This chapter describes the DEM model configuration used in this research, including the

selection of input parameters, and the determination of time step. Based on the triaxial tests

and granular column collapse model, the fundamental strength properties of material

internal friction angle and stress–strain behaviour have been studied. The goal of this study

is to calibrate these parameters, so that they can be used in the following chapters to

investigate the mechanical behaviour of granular flows. Conclusions are drawn with regard

to the selection of numerical time step, microscopic particle friction and rolling parameters.

4.1 Input Parameters of the DEM Model

The particle size distribution (PSD) is one of the most important factors controlling

landslide initiation and soil permeability. PSD of debris flows vary hugely at different

locations (see for instance Casagli et al. (2003)). In addition, the grain size distribution

may vary significantly within the same landslide mass at different depths (Crosta et al.,

2007). Figure 4-1 shows examples of particle size distributions from 7 cases of landslides

in the Northern Apennines (Casagli et al., 2003) and 6 cases of rock avalanches in Val Pola

in the Alps (Crosta et al., 2007). It can be observed that the grain size ranges from 0.001

mm to 1000 mm, with a large percentage of fine and medium sized grains and a small

amount of coarse grains. Large discrepancies can be observed between the various site

investigations.
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Figure 4-1. Particle size distribution of landslides occurred in the Northern Apennines (Italy) (after

Casagli et al. (2003)) and rock avalanches in the Alps (Italy) (after Crosta et al. (2007)). The

particle size distribution adopted in the numerical simulations is plotted as the red curve

According to Figure 4-1, the solid grains with diameters ranging from 0.1 to 10 mm

were widely observed in different locations. However, in DEM simulations, due to

computational limitations, a much narrower particle size distribution with the ratio of

maximum to minimum particle sizes equal to 2 is used, as shown by the red curve in

Figure 4-1. The input parameters are listed in Table 4-1.

Table 4-1. Input parameters of DEM simulations

DEM Parameters Value DEM Parameters Value

Particle diameter, D (mm) See Figure 4-1 Damping Coefficient 0.0

Sample packing porosity, n
Loose sample 0.45

Dense sample: 0.37
Coefficient of rolling stiffness, β 1.0

Particle density, ρs (kg/m3) 2650 Coefficient of plastic moment, η 0.1

Normal stiffness, Kn (N/m) 3107 Simulation Parameters Value

Shear stiffness, Ks (N/m) 2.7107 Gravity, g (m/s2) -9.81

Particle friction angle, θ (°) 30 DEM Time step, Δt (s) 10-7

4.2 Determination of Numerical Time Step

The choice of the numerical time step used in the DEM simulations is very important since,

if it is too large, inaccurate results and violation of thermodynamic laws (i.e. violation of
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conservation of energy) may result (Tsuji et al., 1993). Since the linear elasticity contact

model is adopted in the current simulations, the time step is assumed to have a simple

expression (Bathe and Wilson, 1976; Tsuji et al., 1992), as:

nt m K  (4.1)

where λ is a reduction factor; m is the particle mass; Kn is the normal contact stiffness.

Theoretically, a system consisting of a large number of particles should conserve

energy if no energy dissipation mechanism is active. However, the explicit numerical

integration techniques (e.g. forward, backward or central difference) used in the DEM,

inevitably leads to slight numerical errors in the calculations of grain velocity and position

during each iteration step. These numerical errors result from the assumption used in the

DEM that the velocities of solid grains can keep constant within one iteration step.

However, it is not true for the real granular system, because the forces acting on solid

grains might vary over time. In general, the larger the numerical time step employed in the

simulations, the larger the resulting errors introduced in the analysis. Thus, to conserve

energy in numerical simulations, a proper reduction factor (λ), should be used in Eqn.(4.1)

to obtain a smaller numerical time step, such that the integration errors can be neglected.

Hence, in this work, to determine the time step, simulations of undamped particle

collision using various values of time step have been performed, in which 1250 particles

were randomly generated within a prismatic box. The initial velocities of particles were

randomly set with each component in a range of [-1.0, 1.0] m/s employing the Mersenne

Twister algorithm (Matsumoto and Nishimura, 1998). All particle collisions, either

particle–particle or particle–wall collision, are entirely elastic (i.e. the coefficient of

restitution is equal to 1.0). In addition, the gravity, friction coefficient, rolling and damping

parameters were all set to zero, so that no mechanism of energy dissipation exists. Other

DEM parameters have the same values as those listed in Table 4-1.

In Figure 4-2, the results are plotted in terms of kinetic energy of the granular system

against time. It emerges that for time step larger than 1.010-7 s, the total kinetic energy of
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the granular system is not conserved even though no mechanism of energy dissipation is

presented. The lack of energy conservation can be entirely ascribed to the numerical

algorithm of the DEM code. Thus, the value 1.010-7 s is chosen as the proper time step

used in this research. This issue with DEM simulations has been discussed by Tsuji et al.

(1992). Unfortunately there are several publications where no parametric analysis on the

choice of the time step is carried out, so that the simulations may be affected by errors due

to the unphysical artificial energy introduced by the numerical algorithms employed.
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Figure 4-2. The kinetic energy of the granular system

According to the discussion above, the undamped grain collision model has effectively

determined the time step of an undamped granular system. As the undamped particles can

move faster than grains in a damped condition (e.g. models with granular friction, fluid

viscous drag forces and plastic contacts) under the same initial and boundary conditions,

the time step determined by the current model would be smaller than the theoretical time

step used in the granular flow model. Thus, the time step determined in this section can be

used in the subsequent simulations of granular flows and submerged debris flows.

In the DEM-CFD model, the DEM time step is determined by the undamped grain

collision model, while the maximum time step used in the CFD is determined by the

Courant–Friedrichs–Lewy condition (CFL condition) (Courant, 1928; Guo, 2010) that the

Courant number of the system should be smaller than 1.0.
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where C is the Courant number; Ur is the relative velocity between fluid and solid particle;

∆ � is the minimum size of the CFD mesh cell; t is the time step used in the CFD.

According to Eq.(4.2), the time step used in the CFD should satisfy the condition as:
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According to Eq.(4.1) and Eq.(4.3), the critical time step used in the CFD model is

generally larger than that used in the DEM simulation (Kafui et al., 2002). Therefore, in

numerical simulations using the DEM–CFD coupling method, the total numerical

simulation time is mainly determined by the critical time step of the DEM model.

In this research, no numerical damping was employed. There are two reasons to be

considered. Firstly, although several damping models exist in the literature, few of them

have physical bases. The use of damping can dissipate kinetic energy in a granular system

and bring the whole system to the steady state very quickly. As a result, it is often used in

quasistatic simulations as only the static state is of interest (Jiang et al., 2005; Modenese et

al., 2012). However, in the simulations of landslides, the granular materials would go

through dynamic motion, such that any damping would alter the mechanical behaviour of

the system significantly. Even though the viscous damping forces have been used to model

energy dissipation due to plastic particle contacts (Brilliantov et al., 2007), the magnitude

of energy dissipation is very difficult to be evaluated correctly. Thus, this research assumes

that the energy dissipation in landslides only comes from frictions between particles.

4.3 Calibration of Soil Strength Properties

Both the strength and stiffness properties of soil can influence the mechanical behaviour of

landslides at different stages of granular motion. For instance, the elastic deformation
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under loading is mainly determined by the stiffness properties (e.g. Young’s Modulus),

while for slope failure with large deformations, the strength parameters, such as the peak

and residual soil strengths, are dominant (Fang, 1991). In this study, the primary purpose is

to investigate the large deformation of soil. Thus, the strength parameters are calibrated in

this section, so that they can be used to simulate soil behaviour during granular flows.

4.3.1 Numerical simulation of triaxial tests

In general, the motion of granular materials is resisted by the sliding friction and

geometrical interference (Rowe, 1962; Terzaghi et al., 1996), when grains slide along the

adjacent particle surfaces. This frictional effect is characterized by the internal friction

angle of granular materials (φ) which depends mainly on the particle surface roughness and

interlocking, while it is independent of the confining stress and density (Barrett, 1980). As

the drained strength of sand is widely used in experimental and numerical studies, the

current research will mainly focus on the calibration of soil strength properties using the

numerical drained triaxial tests. Particular emphasis is given to the soil behaviour at the

critical state, i.e. the state that soil mass can be sheared continuously without further

changes in stresses and volume (Schofield and Wroth, 1968; Wood, 1990).

4.3.1.1 Model configuration

The DEM triaxial testing model for drained condition is shown in Figure 4-3. An assembly

of polydispersed solid grains are packed within a parallelepiped prism bounded by six

smooth and rigid walls. These walls can move freely so that the prescribed confining stress

and strain can be achieved. The particle properties, such as particle size distribution,

contact stiffness are listed in Table 4-1. Since the quasi-static (QS) conditions are desired

during the triaxial tests, the particle density is scaled up to be 2.651012 kg/m3. In such a
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case, the inertial forces of grains are negligible when compared with the inter-particle

contact forces (Thornton and Antony, 1998; Modenese, 2013).

The triaxial test consists of two stages: isotropic compression and deviatoric shear. In

the isotropic compression stage, the same confining pressures are applied on the boundary

walls in the x, y and z directions. The magnitude of the confining pressure increases

gradually from zero to the projected confining pressure (p0). After reaching p0, the

confining pressures will remain constant until the deviatoric shear stage starts. In the

deviatoric shear stage, the confining pressures in the lateral directions are maintained

constant (i.e. � � = � � = � � ), while the sample is compressed in the vertical direction at a

constant strain rate (e.g. 10-4 s-1). The deviatoric shear of the soil sample continues until the

prescribed axial strain is reached (e.g. 30%).

Figure 4-3. The DEM model configuration of the trixial test

Loose and dense granular samples are obtained using different inter-particle friction

and rolling parameters. For loose samples, the friction and rolling coefficients are set as the

same values as those listed in Table 4-1, and the isotropic compression can produce a

relatively loose granular sample. Dense samples are prepared as the following steps:

(i) isotropic compression of the sample with zero friction and rolling coefficients

until the aimed confining pressure and QS conditions are reached;
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(ii) set the inter-particle friction and rolling coefficients to those listed in Table 4-1

and a sufficient number of iteration steps are used to stabilize the sample;

(iii) isotropic compression of the sample until the desired confining pressure and QS

conditions are reached.

The total number of particles in the model is 10000, which can satisfy the definition of

Representative Elementary Volume (REV) of triaxial tests (Modenese, 2013). By using the

REV, the number of particles in the model is believed to be large enough, such that the size

of the DEM sample has no impact on the numerical results. At the end of sample

generation, the dense and loose samples have porosities of 0.37 and 0.45, respectively.

4.3.1.2 Results

In analysing the DEM triaxial tests, the compressive components of stress are defined as

positive. The mean and deviatoric stresses are defined as:

( )1 2 3 3p      (4.4)

( )1 3q    (4.5)

These two stress invariants are defined such that, for isotropic, homogeneous materials,

p corresponds to the hydrostatic stress, responsible for the isotropic volumetric changes,

and q incorporates all the shear stresses which cause the material distortion.

The strain is defined as ( )i i i il L L    , where li is the current length of the sample

in the i-th direction (e.g. i = 1 is for the vertical direction; 2 and 3 are for lateral directions.).

Li is the length of sample prior to deformation. In this definition, the compressive strains

are positive, as in classical soil mechanics. The volumetric strain is defined as

0v V V   with V0 being the volume prior to the deformation and V being the change

of volume.
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Figure 4-4. Stress– strain and porosity– strain behaviour: (a) left: the lateral confining pressure is

50 kPa; (b) right: the lateral confining pressure is 100 kPa.

Figure 4-4 compares the stress-strain and porosity-strain behaviour of dense and loose

sand samples under confining pressures of 50 and 100 kPa, respectively. For the dense

sand sample, there is a considerable degree of particle interlocking which, together with

the material friction and rolling resistance at contacts, leads to a very high shear strength.

Thus, the shear stress increases to its peak value at a relatively low strain, and then

decreases with the increasing strain as the particle interlocking is progressively overcome.

Eventually, the shear stress reaches an ultimate value (i.e. the critical state shear strength at

failure). For the loose sand sample, the shear stress increases gradually with the axial strain,

until the final peak strength is reached. With the same initial model configurations (e.g.

confining pressure, microscopic particle friction and rolling properties), the dense and

loose samples will arrive at the same value of critical shear strength.



71

During the deviatoric shear stage, it can be observed that the evolution of porosity of

the granular samples at different confining pressures behaves similarly. The loose samples

contract, while the dense samples dilate to reach a constant porosity (i.e. 0.454). The axial

strain from which the porosity becomes constant, is around 0.20, which corresponds to the

axial strain at the critical state. Therefore, the critical state is also called the constant

volume state. For simulations at a confining pressure of 100 kPa, the porosity of dense

sample is slightly larger than that of loose sample at the critical state. The reason for the

observed deviation is due to the large constraints on the rearrangements of grains at

relatively high confining stresses. The Mohr circles representing stress states at failure are

shown in Figure 4-5(a) and (b), from which the peak and critical (constant volume)

material internal friction angle is measured as 41.8° and 32.6°, respectively.

Figure 4-5. Mohr-Coulomb representation of stress conditions at failure using the maximum and

minimum principal stresses: (a) left: the peak strength; (b) right: the critical strength.

Figure 4-6. Stress paths for (a) left: loose sand sample, and (b) right: dense sand sample
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Figure 4-6 illustrates the stress path of loose and dense sand samples during the

deviatoric shear stage. In this analysis, triaxial tests using confining pressures of 10, 50 and

100 kPa have been investigated. According to Figure 4-6 (a), the deviatoric stress of loose

sample increases gradually from zero to the critical shear stress at the failure state. The

envelope or the critical state line (CSL) of the shear strength of sand at failure is a straight

line. For the dense sand sample, the shear stress initially increases to the peak strength in a

short period of time. Then, it decreases gradually to reach the critical shear strength at

failure.

Based on the discussion above, it can be concluded that the microscopic inter-particle

friction angle and rolling parameters can influence the mechanical and deformational

behaviour of granular assembly significantly. In order to obtain a clear understanding of

how the material internal friction angle is determined by the combination of θ and η, a

series of triaxial tests have been conducted. The numerical results obtained are plotted as

contour curves in Figure 4-7. According to Figure 4-7 (a) and (b), it can be observed that

the peak material internal friction angle (φpeak) is within a range of [32°, 51°], while the

constant volume material internal friction angle (φcv) is within a range of [26°, 40°]. The

typical value of φcv for real quartz sand is found to range from 32° to 34°. For the

combination of large values of η and θ, the gradient of internal friction angle contour

curves is relatively small, indicating that the material internal friction angle is not very

sensitive to the change of microscopic particle friction and rolling parameters. From Figure

4-7(c), it can be observed that the higher the inter-particle friction is, the larger the

difference between the peak and constant volume material internal friction angles (φpeak –

φcv) will be. For typical dense sand materials, the value of (φpeak – φcv) is between 9° to 10°,

while for typical loose sand materials, this value is less than 5°.

Based on these graphs, the selection of microscopic particle friction and rolling

parameters in the DEM model can be made rationally, so that the projected values of peak

and constant volume material internal friction angles can be reproduced.
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(a) peak material internal friction angle (φpeak (°))

(b) constant volume material internal friction angle (φcv (°))
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(c) φpeak – φcv

Figure 4-7. Contours of material internal friction angles for different combinations of θ and η 

To highlight the influence of θ and η, two series of numerical results of stress-strain

and volumetric strain behaviour of the dense DEM samples are illustrated in Figure 4-8(a)

and (b). According to Figure 4-8 (a), it can be concluded that on average the inter-particle

friction angle can influence the peak strength of soil sample significantly, while little

impact is found on the critical state strength. As the inter-particle friction angle ranges

from 15° to 40°, the peak shear strength of granular sample increases progressively.

However, the critical state strength of soil remains almost unchanged, except for the

simulation using an inter-particle friction angle of 15°. High fluctuations of the stress-

strain curves is found in simulations using large inter-particle friction angles (i.e. θ = 40°),

particularly towards the critical state where particle rearrangement becomes predominant.

Figure 4-8(b) shows that on average the volumetric strain of the granular sample

increases with the axial strain, which suggests that the dense granular sample would dilate

during the triaxial tests. The volumetric strain tends to remain constant at the critical state.

At any specific value of axial strain, the magnitude of volumetric strain increases with the
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inter-particle friction angle. For samples using different θ, the peak and constant volume

material internal friction angles are given in Table 4-2.
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Figure 4-8. Results of triaxial test using different friction angles (β = 1.0, η = 0.1)

Table 4-2. The peak and constant volume material internal friction angles (β = 1.0, η = 0.1)

θ (°) 15 20 25 30 35 40

φpeak (°) 35.7 38.6 40.4 41.4 41.5 42.6

φcv (°) 29 31.3 32 32.6 32.6 32.6
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Figure 4-9. Results of triaxial tests using different coefficients of plastic moment (θ = 30, β = 1.0)

Table 4-3. The peak and residual friction angles (θ = 30, β = 1.0)

η 0 0.1 0.3 0.5

φpeak (°) 35.0 41.4 45.5 47.2

φcv (°) 27.6 32.6 37.9 40.9

To investigate the influence of grain rolling resistance on the soil strength properties, a

series of triaxial tests using different values of rolling plastic moment have been conducted

in this research. As shown in Figure 4-9(a), the rolling plastic moment can influence both

the peak and critical state strengths of soil significantly. On average, the magnitudes of
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peak and critical state strengths increase with η. Figure 4-9(b) shows that the volumetric

strain of granular sample varies little as η increases from 0.1 to 0.5. However, for the

simulation with η being 0.0 (i.e. free rolling particles), the volumetric strain is smaller than

those of other simulations, indicating that the dilation of granular sample during shearing is

not significant for free rolling particles. This phenomenon is similar to the results obtained

by Modenese (2013). For samples using different coefficients of rolling plastic moment,

the peak and constant volume material internal friction angles are summarized in Table 4-3.

4.3.2 Calibration of material angle of repose

To study the depositional behaviour noncohesive granular materials, it is useful to measure

the angle of repose. This variable is defined as the steepest angle of the descent of slope

relative to the horizontal plane, when grains on the slope surface is on the verge of sliding

(Lowe, 1976). The granular materials start to move if the slope inclination angle is above

the angle of repose, while it is stable if the slope angle is below the angle of repose. The

typical values of angle of repose can range from 25° (for smooth spherical particles) to 40°

(for rough angular particles) (Carrigy, 1970; Pohlman et al., 2006). Once in motion, the

grains would flow below the angle of repose, while at the end of the flow, the granular

materials would deposit at the angle of repose (Hungr, 1995; Walton et al., 2007;

Mangeney et al., 2010). Theoretically, the angle of repose is approximately close to the

macroscopic material internal friction angle (φ). This section will calibrate the angle of

repose, as a verification of the material internal friction angle discussion in Section 4.3.1.

A simple granular column collapse model is used to study the angle of repose. As

shown in Figure 4-10(a), the solid grains (i.e. dry sand used in this research) are poured

into a vertical tube to form a static sand pile. The width and height of the pile are 0.05 m

and 0.05 m, respectively. After consolidation, the frontal boundary (B) is removed quickly,

so that the granular materials can fall downwards under gravity and spread horizontal

along the ground floor. The horizontal ground floor is covered with solid grains with the
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same properties as grains in the pile, so that the roughness of the ground floor can be

modelled. When all the grains stop moving, the angle of repose is measured as the steepest

angle of the deposit profile (Figure 4-10(b)). In addition, it is also possible to observe a

failure plane of the slope, which is defined as the sliding surface of the granular flow.

Figure 4-10. Model configuration for the granular column collapse

In order to simulate the mechanical behaviour of debris materials, the numerical model

should produce the same angle of repose as that used in laboratory experiments. As

suggested by Lube et al. (2005), the angle of repose for different granular materials used in

small-scale laboratory experiments ranges from 29° to 35°, as listed in Table 4-4. The

grain properties of the DEM sample used in this research can approximately match that of

coarse quartz sands, in which the angle of repose is close to 31°. Thus, in the numerical

model, the microscopic friction angle between grains has initially been set as 30°, while the

rolling resistance parameters (of particular importance is the coefficient of plastic moment

(Modenese et al., 2012)) increase gradually from the minimum value of 0.0 to the

maximum value of 1.0. During this process, the rolling stiffness is assumed to change very

little, as is expected not to influence the debris motion significantly.

Table 4-4. Grain properties used in experiments (data cited from Lube et al. (2005))

Particle Mean density (g/cm3) Mean grain size (mm) Angle of Repose (°)

Fine quartz sand 2.6 0.15 29.5

Coarse quartz sand 2.6 1.5 31

Sugar 1.58 1 35

Rice 1.46 4.5 32
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4.3.2.1 Results

In a normal gravity field (1 g), the relationship between the macroscopic angle of repose

and the coefficient of plastic moment in the microscopic rolling resistance model is shown

in Figure 4-11. It can be observed that the simulation with η being 0.0 can lead to a

relatively small angle of repose, while simulations with η > 0.0 can reproduce realistic

angles of repose, when compared to that of materials used in laboratory experiments.

When the rolling resistance model is active, there is a sudden increase of the angle of

repose. This result is in accordance with the conclusions made by Rothenburg and Bathurst

(1992); Pöschel and Buchholtz (1993) and Modenese (2013) that the free rolling spherical

particles have a smaller angle of repose than the spherical particles with rolling resistance.
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Figure 4-11. Angle of repose for granular materials with different rolling resistance (for each point,

the error bar is achieved for two measurements at different locations on the slope surface.)

According to Figure 4-11, the numerical results obtained from the simulations using a

combination of inter-particle friction angle of 30° and the coefficient of rolling plastic

moment of 0.1 can lead to an angle of repose being equal to 31.3°, which is close to the

value of coarse quartz grains given by Lube et al. (2005) and the constant volume material

internal friction angle calibrated in Section 4.3.1.
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4.4 Conclusions

This chapter has outlined the configurations of numerical model used in this research,

based on which, a series of calibration tests were carried out with three main objectives: (i)

to determine the time step for simulations of granular flows; (ii) to calibrate the angle of

repose and material internal friction angle for the DEM model; and (iii) to give insights

into the mechanical and deformational behaviour of sand under shearing. The main

findings and remarks can be concluded as:

(i) A combination of microscopic friction angle of 30° and rolling plastic moment

coefficient of 0.1 can produce an angle of repose of 31.3° and a material internal

friction angle of 32.6°, respectively. These two parameters can qualitatively

match the property of coarse quartz sands and will be used in the simulations in

the following chapters.

(ii) In the triaxial tests, different combinations of θ and η can lead to distinct values

of material internal friction angle, as represented by the contour curves in this

chapter. These graphs can be used as guidelines for selecting appropriate

microscopic particle friction and rolling resistance parameters in the DEM model.

(iii) The undamped particle collision model is used in this research to determine

the numerical time step used in the DEM simulations. Based on the input

parameters, the time step of 10-7 s is chosen for simulations of granular flows.
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Chapter 5 Investigation of Dry Granular Flows

This chapter presents a numerical investigation of the behaviour of dry granular flows

generated by the collapse of prismatic columns via 3D Discrete Element Method (DEM)

simulations in plane strain condition. Firstly, by means of dimensional analysis, the

governing parameters of the problem are identified, and variables are clustered into

dimensionless independent and dependent groups. Through parametric studies, the

influence of these dimensionless groups on the runout distance and deposit height of the

granular materials are analysed. Detailed analyses of the mechanical behaviour of the

granular assembly throughout the simulation are performed for a granular column with

aspect ratio of 3.3. Qualitatively good results, in terms of the granular flowing velocity,

energy evolution, stress variation, bulk coordination number, force chain and the mobility

of solid grains, are presented.

5.1 The Granular Column Collapse Model

The study of flowing dense granular material is very important in understanding the

propagation of geophysical mass flows (e.g. landslides, pyroclastic flows, rock and debris

avalanches). For instance, long runout granular flows can travel distances several times

larger than the size of the source topography along flat or almost flat surfaces, sweeping

away populated areas located considerably far away from the mountainside (Crosta et al.,

2005; Carrara et al., 2008). Research in this field mainly focus on small scale laboratory

experiments and numerical simulations of dry granular materials, aiming to study the

mechanical behaviour of granular flows (Kerswell, 2005; Lajeunesse et al., 2005; Lube et

al., 2005; Saucedo et al., 2005; Staron and Hinch, 2007; Mangeney et al., 2010; Roche et



82

al., 2011). Among various issues raised, the prediction of their runout distance is of the

primary importance, mainly due to their high destructive power. The main objective is to

establish scaling functions to relate the initial slope geometry and the final granular

depositional morphology, so that possible predictions of the landslide hazards can be made.

The current research employs a three dimensional (3D) DEM model to investigate the

initiation and propagation of granular flows, based on which, the general features of

granular flows, such as slope deformation, grain propagation and deposition, and energy

evolution will be analysed. The numerical model configuration used in this research is

based on a simple granular column collapse model proposed by Lube et al. (2005). As

shown in Figure 5-1(a), the back wall (A) is rigid and frictionless, while a removable gate

(B) is placed in the front of the model to control the granular collapse. The horizontal floor

(D) is made of particles of the same PSD as the granular column that were kept fixed at all

times to simulate a non-erodible base of the same roughness as the flowing material.

Figure 5-1. Model configurations: (a) Left: initial sample; (b) Right: final deposit (A: fixed smooth

back wall; B: removable front gate; C: the DEM periodic boundary; D: fixed coarse floor; Li: initial

column length; Hi: initial column height; Lf: final runout length; Hf: final deposit height.)

In this DEM model, if a rigid wall boundary condition is used, a low sphere packing

fraction would occur near the boundary due to the wall friction. As a consequence, the

numerical conditions of homogeneity cannot be satisfied (Radjaï and Dubois, 2011). In

addition, the rigid wall boundary cannot reproduce realistic grain friction and interlocking
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effects near the boundary. To eliminate the wall effects, the periodic boundary (Parrinello

and Rahman, 1980; Cundall, 1987) is implemented in the lateral direction of the DEM

model. In this framework, all the granular materials are packed within a unit periodic cell

in the form of a parallelepiped, from which the plane strain condition is achieved. Any

particle with its centroid moving out of the cell through one particular face is mapped back

into the cell at a corresponding location on the opposite side of the cell. Particles with only

one part of the volume laying outside the cell can interact with the particles near the face

and an image particle is introduced into the opposite side at a corresponding location, so

that it can interact with other particles near the opposite face (Cundall, 1987).

The use of periodic boundary in the numerical model presents three main advantages:

firstly the number of particles is small, and as a consequence, the computational time is

reduced (Allen and Tildesley, 1989). Secondly, the numerical simulation can produce

macroscopically homogeneous strain, because the boundary configuration can effectively

eliminate the spurious surface effects resulting from the rigid wall boundaries (Radjaï and

Dubois, 2011). Thirdly, the plane strain condition can be easily employed in simulations,

so that the granular flow can reproduce realistic depositional morphology.

In Figure 5-1(a), a loose granular column consisting of randomly placed polydispersed

spheres is initially generated within a parallelepiped prism bounded by the planes A, B, C

and D. After generation, gravity is applied to all particles, leading to granular deposition.

The porosity of the loose sample is 0.45. At the end of the deposition, a dense sample with

a height of Hi and porosity of 0.37 is obtained. Once a static granular pile is obtained, gate

B is removed immediately to initiate the granular flow. The granular materials would fall

downwards and spread horizontally along the coarse floor (D). When grains stop moving,

the final runout distance (Lf) and height (Hf) of the granular deposit is measured, as shown

in Figure 5-1(b). The definition of Lf is not very clear, or even confusing in the literature.

According to Zenit (2005), the outermost edge of the deposit is the location where the

majority of the flowing materials remain in contact with each other, disregarding

individual loose particles locating very far away from the debris mass centre. In this study,
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in order to track the position of the front in a way consistent among the various simulations

(the number of particles moving ahead depends on the aspect ratio), an algorithm which

identifies the front as the boundary between 99% and 1% of the flow mass, i.e. 1% of the

mass is travelling ahead of the boundary is implemented. This guarantees that the front is

not confused with the position of loose single particles jumping ahead the flow.

5.2 Dimensional Analysis

In simulating dry granular flows, a number of physical parameters are used to determine

the response of granular materials, regarding their dynamic motion and depositional

morphology. These parameters include microscopic soil properties, geometric properties

and debris flow velocity and duration time, as listed in Table 5-1, where the units are

expressed using fundamental dimensions of mass (M), length (L) and time (T), respectively.

Table 5-1. The governing parameters of the granular column collapse model

Parameter Symbol Unit of Measure

Independent

parameters

Initial column length Li [L]

Initial column height Hi [L]

Particle diameter D [L]

Particle density ρs [ML-3]

Gravitational acceleration g [LT-2]

Sample porosity n [ - ]

Normal stiffness Kn [MT-2]

Shear stiffness Ks [MT-2]

Particle friction angle θ [ - ]

Coefficient of rolling stiffness β [ - ]

Coefficient of plastic moment η [ - ]

Dependent

parameters

Final deposit length Lf [L]

Final deposit height Hf [L]

Particle velocity V [LT-1]

Debris duration time t [T]
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Based on how these parameters are related during the simulation, they can be

categorised as independent and dependent ones. Since the objective of this research is to

investigate the large deformation and destructive power of granular flows, the dependent

parameters are the final runout distance (Lf), deposit height (Hf), particle velocity (V) and

flow duration time (t). The other parameters, such as the microscopic soil properties and

the initial model configurations, are termed as the independent parameters.

In this study, the governing parameters of the microscopic particle contact model are

the normal and shear particle contact stiffness (i.e. Kn, Ks), particle friction angle (θ) and

the coefficients of rolling resistance model (i.e. β, η). The parameters θ, β and η

characterize the roughness of solid grains, which are closely related to the macroscopic

frictional property of granular materials and can be bundled together as the macroscopic

material internal friction angle (φ). In addition, the soil porosity has been identified to have

a significant influence on the mechanical behaviour of granular flows. However, this

influence varies widely from study to study, depending on the packing state and slope

geometry. As the purpose of this study is to explore the applicability of the DEM in

modelling dry granular flows, the porosity of the numerical samples are assumed to be the

same as those of real landslides. Assuming a link exists between the independent and

dependent quantities, a functional relationship can be written as:

( ) ( ), , , , , , , , , , ,f f i i s n sL H V t f L H D g K K n  (5.1)

Performing the dimensional analysis (Palmer, 2008), and assuming that the sample

porosity is the same for all the tests, Eqn.(5.1) can be rewritten in a form as:

       ( )    ( ), , , , , ,L H V T f a S  (5.2)

where   ( )f i iL L L L  is the normalized particle runout distance; [ ] f iH H L is the

normalized deposit height;   iV V gH is the normalized sliding velocity of the

granular materials;   /iT t H g is the normalized duration time of the granular flow;
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i ia H L is the initial column aspect ratio;   ( ) ( )1s i ngH n K D   is the

characteristic strain of the initial granular column;   iS H D is the model size ratio.

In principle, the dimensionless groups identified for the granular column collapse

model should be kept the same for both the numerical model and the prototype (e.g.

laboratory tests, in situ landslides), so that unique behaviour of granular motion can be

achieved. The range of the input dimensionless groups are shown in Table 5-2. It can be

observed that the numerical model can reproduce correct values of characteristic strain and

material internal friction angle, while it is impossible to get the model size ratio correct.

Table 5-2. Typical ranges of dimensionless groups

a [ε] [S] φ

Real landslides - [0.002, 0.06] [1.1105, 9.33108] [25, 40]

Laboratory tests [0, 20] [2.8, 10]10-7 [2000, 1000] [25, 35]

Numerical simulations [0, 12] [0.0001, 0.1] [25, 250] [25, 40]

According to Table 5-2, the model size ratio of numerical simulations is far smaller

than that of real landslides. This dimensionless group indicates that Li and D should be

scaled down by the same factor, so that the model size ratio can remain the same for both

model and prototype. If so, a huge number of particles need to be generated in the DEM

model, which would place an extremely heavy burden on the computational power and

memory capacity. In addition, the grain size can influence the soil properties (e.g. bulk

density, hydraulic permeability) significantly. Therefore, it is essential to keep the grain

size the same as that of real soil materials and use small model dimensions.

Actually, the model size ratio effectively represents the total number of grains in the

model, as estimated by the relationship: ( )
3

iN H D , with N being the total number of

grains. As discussed by Modenese (2013), it is necessary to select a Representative

Elementary Volume (REV) for the DEM model, in which the number of grains in the

model is sufficiently high, so that the size of granular sample only have little or no impact

on the numerical results. To obtain the REV, a general approach is to study the influence of
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model size ratio on the simulations by using small scale model dimensions and real grain

sizes (Taylor, 1995). Detailed discussions will be presented in the following sections.

5.3 Numerical Simulation

This study aims to simulate the mechanical behaviour of granular flows composed of non-

cohesive sand grains. According to the discussion in Chapter 4, the physical properties of

granular assembly depend highly on the microscopic grain properties, such as the inter-

particle friction angle and rolling resistance parameters. By calibrating these parameters,

the DEM model is found to be able to reproduce realistic material internal friction angle, as

that of granular materials used in laboratory experiments. According to these microscopic

parameters, a detailed analysis of granular flow will be given in this Chapter.
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Figure 5-2. The number of grains in granular columns

In the current numerical simulations, the dimensions of granular sample is largely

constrained by the computational power and memory capacity. To speed up the simulation,

the size of the periodic cell is set as 0.03 m and the width of the granular column is 0.05 m.

The total number of grains in the model increases with column aspect ratio, as shown in

Figure 5-2. In the current analyses, the total number of grains employed in the DEM model
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is limited to be less than 70000, so that the calculations are affordable on a standard

desktop PC (i.e. Intel® Core™ i7 CPU (2.93 GHz), Memory 7.8 GiB).

5.3.1 Deformation of the granular assembly

The deformation of granular assemblies can be visualized by taking snapshots of the model

successively from the lateral direction after removing the front confining wall. The input

parameters of the DEM simulations are listed in “SD1” of Appendix C. Initially, the whole

granular column is divided into 10 equal-sized layers with colour red and green along the

vertical direction. The coarse ground floor is coloured blue, as shown in Figure 5-3. By

doing so, the motion and deposition of granular materials can be visualized clearly.

Figure 5-3. The deformation of granular assembly during the simulation (Evolution of the static

granular pile is illustrated by the solid and dashed curves.)

Once released, the granular materials in the upper region of the sample fall downwards

and spread horizontally. The deformation starts from the region near the confining wall and

moves inwards into the static region gradually, leading to intensive shearing along the

flowing thickness and the travelling directions. The deformed layers remain approximately
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parallel to each other at the initial stage of the collapse, while they mingle together once

the solid grains collide on the ground floor. Throughout the simulation, there exists a static

pile at the bottom left region of the column (i.e. the region enclosed by the black solid

curves), over which, the upper debris materials continuously slide horizontally. As the

granular flowing velocity decreases slowly, the volume of the static pile increases

gradually, as shown by the evolution of the black dashed curves in Figure 5-3. At the end

of the simulation, the granular materials can form a static, loose deposit along the

horizontal floor. The maximum inclination angle of the deposit is measured and plotted

against the column aspect ratio in Figure 5-4.
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Figure 5-4. Inclination angle of the granular deposit for different granular columns (for each point,

the error bar is achieved for two measurements at different locations on the slope surface.)

Theoretically, the inclination angle of the granular deposit should be equal to the angle

of repose, which has been calibrated as 31.4° using a small granular column collapse

model in Chapter 4. In the calibration process, the motion of granular materials is mainly

controlled by the inter-particle friction, so that the granular materials can deposit slowly,

resulting in an inclination angle close to the angle of repose. In this study, small granular

columns can effectively reproduce the same model configurations as those used in Chapter

4, such that the measured inclination angle of granular deposits can match the angle of

repose. However, for large granular columns, the granular motion is mainly controlled by
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the inertial forces of the solid materials, in which the majority of solid grains are in

dynamic motion, resulting in very flat deposits with much smaller inclination angles.

(a) motion of solid grains
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(b) inclination angle of the slope failure plane.

Figure 5-5. Active failure state of the granular sample(for each data point in (b), the error bar is

achieved for two measurements at different locations on the slope surface.)

After removing the confining wall, the granular materials start to move under gravity

force. In Figure 5-5(a), grains with velocities smaller than 1% of the characteristic velocity

( )igH are coloured grey, while grains moving at higher velocities are coloured red. The

shearing failure of the granular sample occurs approximately along a plane as represented

by the dashed line. As it takes time for solid grains to acquire velocities under gravity, the
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failure of granular assembly is assumed to occur at the normalized time of 0.07, at which,

the majority of grains near the slope surface are involved in motion.

According to the Rankine (1857) theory of earth pressure, the failure of the granular

column corresponds to the active failure state, in which, the inclination angle of the failure

plane (θf) can be estimated by Eq.(5.3).

45 2f   (5.3)

where φ is the internal friction angle of grains (calibrated as 31.3° in Section 4.3).

Figure 5-5(b) shows that the inclination angle of the active failure plane is

approximately equal to 61° for different granular columns, which is very close to the

theoretical value obtained from Eq.(5.3) ( ≈ 60.7°). 

Figure 5-6. The measurement of the sample profile

During the granular flow, grains at the running front are in dynamic motion, such that

it is very difficult to obtain correct profiles of the sample, if focus is placed only on the

positions of individual solid particles. To overcome this limitation, the author has proposed

a numerical method to track the grain contact points within the whole sample during the

simulation. The profile of the granular assembly is obtained by joining the contact points at

the debris surface, as shown in Figure 5-6. The dispersed grains outside the profile are

ignored, because there is no particle contact existing there. At the front region, a “plug”

shape profile can be observed. This is due to the implementation of a frictional boundary

condition on the ground floor, so that the granular materials near the floor are decelerated

by the basal friction, while the upper grains can move faster with fewer constraints.
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Figure 5-7. Evolution of deposit profiles for different granular columns (Profiles are traced at

successive time ([T] = 0.5))
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Figure 5-8. Comparison of granular profiles: (a) left: DEM simulation results; (b) right: FEM

modelling results by Crosta et al. (2009) (Profiles are traced at successive time ([T] = 0.5)).

Depending on the value of initial aspect ratio, different regimes of granular flows can

be observed for columns, as illustrated by a sequence of deposit profiles in Figure 5-7. For

granular columns with small aspect ratios (e.g. a = 0.93), only a small portion of grains are
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involved in motion. The upper surface of the sample inclines gradually until the angle of

repose is reached. The final deposit has a shape of curved trigonal prism with its height

close to the initial column height. As the value of column aspect ratio increases gradually

(e.g. a = 3.26, 5.91, 9.27), the major portion of the debris mass would collapse downwards

and spread horizontally along the ground floor. For these samples, solid grains at the upper

front would go through a short period of free fall, and then collide with grains at the lower

region, after removing the confining wall. As the simulation continues, the granular

assembly stretches along the horizontal floor, forming an elongated and thin profile.

A comparison of the evolution of sample profiles between the current DEM analyses

and the results from finite element modelling by Crosta et al. (2009) is given in Figure 5-8.

It can be observed that the shape of the slope profiles from the DEM and FEM simulations

are very similar to each other, when the initial column aspect ratios are approximately the

same. The final granular deposit of the DEM sample is steeper, and the runout distance of

granular materials is longer than that of the FEM model. Furthermore, the FEM model is

unable to simulate the extreme tapering of the flow front. This can be explained by the fact

that the discrete solid grains has a greater mobility than the continuous soil elements. In the

DEM, all the solid grains can move independently, while in the FEM, the motion of soil

elements are largely constrained by the constitutive models used in the simulation.
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Figure 5-9. Normalised profiles of the granular deposit: (a) Left: 3D DEM results; (b) Right:

experimental results by Lube et al. (2005).
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According to the discussion above, it is clear to identify that the profiles of the

granular deposits depend highly on the value of the initial column aspect ratios, which

suggests that the best way to present the numerical results is to make them dimensionless

and plot in the same length scale (Lube et al., 2005). In Figure 5-9, the final profiles of the

granular assembly normalized by the final runout distance and deposit height are plotted. It

emerges that the normalized profiles of the DEM simulations and experiments have nearly

the same distribution patterns, regardless of the initial aspect ratios. The numerical results

from various granular columns can match the experimental results very well.

5.3.2 Influence of initial column aspect ratio

In the case of rock avalanches and debris flows, the assessment of the final run-out

distance is of primary importance, as it determines the extent of regions affected by the

avalanche or landslide. In Figure 5-10, the current numerical results have been compared

with previous numerical simulations (Staron and Hinch, 2005; Zenit, 2005; Crosta et al.,

2009) and experimental observations (Balmforth and Kerswell, 2005; Lajeunesse et al.,

2005; Lube et al., 2005) from the literature. The input parameters for the DEM is listed in

“SD1” of Appendix C and the dimensionless groups are listed in Table 5-3.

Table 5-3. Parameters for the experimental and numerical simulations

Material a [ε] [S] φ(°)

Lube et al. (2005) Quartz sand [0.5, 20] [4.7, 140 ]10-9 [9, 1000] [29.5, 32]

Lajeunesse et al. (2005) Glass beads [0.2, 12] [1.2, 8.7]10-8 [100, 300] [21.5, 22.5]

B & K (2005) Glass beads [0.5, 40] [5.2, 420]10-9 [12, 1000] [22.5, 26.5]

Zenit (2005) - [0.1, 10] [2.1, 13.1]10-5 [28, 173] 30

Staron (2005) - [0.2, 17] - [14, 369] 20

This study (T1)a - [1, 10] [6.5, 65]10-7 [25, 250] 31.7

This study (T2)b - [1, 10] [6.5, 65]10-7 [25, 250] 26.1

This study (T3)a - [1, 10] [6.5, 65]10-5 [25, 250] 31.7

a Numerical simulation using rolling resistance model

b Numerical simulation using free rolling model
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Three sets of simulations were performed: T1 and T2 refer to simulations run for the

same values of  (ranging from 6.5×10-7 to 6.5×10-6), but with η=0.1 and η=0 respectively,

whilst T3 refers to simulations run for  ranging from 6.5×10-5 to 6.5×10-4 and η=0.1.

Some of the T1 and T2 simulations were run with a gravity scaled up of 100 times and

Kn=3×107 N/m, whereas some others with unscaled gravity but particles 100 times softer,

i.e. Kn =3×105 N/m. In fact, in light of dimensional analysis, scaling can be introduced by

scaling either the value of gravitational acceleration or particle stiffness. The fact that the

obtained results are aligned in consistent trends in Figure 5-10 can be seen as a verification

of the correctness of the performed dimensional analysis. Comparison between T1 and T2

simulations allows examining the influence of particle shape on the run-out, whereas

comparison between T1 and T3 the influence of .

According to Figure 5-10(a), it can be observed that the final normalized run-out

distance obtained from the simulations matches well from a qualitative viewpoint both the

experimental observations of Lube et al. (2005) obtained in plane strain conditions, and the

2D FEM numerical analyses of Crosta et al. (2009). Also it emerges that if rolling

resistance is not employed (simulations T2), unrealistically large run-out distances are

obtained since particle angularity tend to reduce run-out. In other words, a flow of

spherical particles is more prone to sliding than a flow of particles of any non-spherical

shape. Equally, if 2D DEM simulations are employed (Staron and Hinch, 2005),

unrealistically long run outs are obtained. Presumably, this is due to the fact that the 2D

kinematics of particle interaction is too different from the real 3D kinematics. Comparison

between the simulation series T1 and T3 shows that the characteristic strain of a granular

column, , has no influence on the observed flow behaviour, at least for the range of values

here employed. In conclusion, simulations T1 and T3 show that if particle shape is

accounted for, albeit by means of a very crude approximation (i.e. employing a moment -

relative rotation law with spherical particles which avoids simulating the real non-spherical

geometry of the particles), the obtained run-out and final heights of the simulated flows are

in good agreement with experimental data.
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Figure 5-10. The influence of aspect ratio on the depositional morphology of granular flows. The

symbols coloured red are experimental results; symbols coloured blue are numerical results; the

symbols coloured black are the numerical results of this study.

The evolutions of granular spreading distances for different granular columns over

time are plotted on Figure 5-11. The granular flow duration time has been normalized by

the characteristic free fall time of the granular column. The current numerical simulation

series T1 and T3 are compared with the numerical (Crosta et al., 2009) and experimental

(Lajeunesse et al., 2005; Lube et al., 2005) observations. The time evolution of the

granular spreading distance from this study can match the evolution of debris runout
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distance described by Crosta et al. (2009) and Lajeunesse et al. (2005) very well, in which

four distinct regimes can be identified: the initial transient acceleration (A), the constant

velocity spreading (B), the gradual deceleration (C) and the final static deposition (D).
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Figure 5-11. Normalized granular flow distance versus the normalized duration time
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Figure 5-12. The duration time of different granular columns

The duration time of the granular flow is obtained as the time instant when the runout

distance approaches a constant value. For granular columns of various initial aspect ratios,

a comparison between the granular flow duration time is given in Figure 5-12. It can be

observed that the normalized duration time decreases with the aspect ratio and it will
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finally approach an asymptotic value of 2.5, which is in good agreement with that obtained

by Lacaze et al. (2008).

As discussed in Section 5.3.1, a short period of free fall exists for the collapse of large

granular columns. This phenomenon has been observed by Staron and Hinch (2007) and

Lacaze et al. (2008) in 2D and plane strain conditions. Theoretically, the free fall of the

granular materials should satisfy the following condition:

21

2
igt H h  (5.4)

where h is the height of the granular column at time t.

Eq.(5.4) can also be rewritten in a dimensionless form, as:

  ( )2 i iT H h H  (5.5)
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Figure 5-13. Evidence of the free fall at the beginning of the granular collapse

Figure 5-13 illustrates the relationship between ( )2 i iH h H and [T], with the free

fall period represented by a blue straight line of gradient 1.0. It can be observed that the

free fall of grains occurs within a short time period (i.e. [T] < 1.0), after which, the upper

grains would collide with the lower ones, leading to a gradual decease of vertical velocity.

As a static granular pile would form near the slope source region during the simulation, the
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velocity of the topmost grains would finally approach zero, resulting in a constant deposit

height after [T] = 2.0.

5.3.3 Influence of model size ratio

The model size ratio effectively reflects the representativity of DEM models. In general,

the size ratio   iS H D of real landslides can range from 41 0 to 71 0 , while it can

hardly be larger than 1000 for numerical models due to the limitation of computational

power and memory capacity. As a result, it is impossible to get this group correct in small

scale numerical models. This is especially true for DEM simulations, because only a

limited number of particles can be employed using the current computational resources.
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Figure 5-14. Influence of model size ratio on the normalized runout distance

To investigate the influence of the model size ratio on the depositional behaviour of

granular materials, simulations of granular flows using granular columns with the initial

aspect ratio of 2.0 were performed. As shown in Figure 5-14, [S] can influence the runout

distance of granular flows significantly only if it is smaller than 40, while little influence

can be observed for larger values of [S]. It can thus be postulated that further increase of [S]

will not change the depositional morphology of dry granular flows. Therefore, a model size
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ratio of 40 can be regarded as the critical model size ratio of the granular column collapse

model. In the current research using small scale DEM models, the model size ratio is

chosen as 50, while D10 is set the same as that obtained from field investigations.

5.3.4 Influence of column characteristic strain

Field investigations reveal that the dimensions of landslides can range from 10 to 3000

metres and the corresponding characteristic strains are in the range from 41.3 10 to 0.04

(see Appendix A). The current numerical model has tried to reproduce this number by

using a small scale granular column model with an initial aspect ratio of 3.3. According to

Figure 5-15, it can be concluded that on average the normalized runout distance and final

deposit height remain constant for different characteristic strains, which indicates that the

characteristic strain does not influence the depositional behaviour of granular flows. This

phenomenon can be explained by the energy conservation of the granular system. As the

normal contacts between particles are perfectly elastic, there is no energy dissipation

through particle normal collisions. As a consequence, the energy dissipation depends only

on the inter-particle frictions, rolling resistance and air viscous drag forces.
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Figure 5-15. Relationships between the normalized runout distance, deposit height and [ε]

The energy conservation of the granular system is expressed as:
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( )0 1 0 1( ) 00mg H H mg L L E     (5.6)

where m is the mass of granular materials; μ is the coefficients of friction; E0 is the energy

dissipation due to inter-particle friction and air viscous drag effect; H0, H1 and L0, L1 are

the initial and final height and length of the granular mass centre, respectively.

Rearranging Eq.(5.6), one can get:

0 1 1 0 0

0 0 0

H H L L E

L L mgL


 
  (5.7)

In Eq.(5.7), the second term on the right hand side is assumed to be constant. Thus, the

normalized height and length of the granular deposit are linearly related, and independent

of the characteristic strain of the initial granular column. Therefore, granular materials

would have the same final normalized deposit length and height, if the initial column

aspect ratios are the same.

5.3.5 Influence of material internal friction angle

Investigation of the mechanical behaviour of granular materials using the DEM is

challenging, because the numerical model generally includes some oversimplifications, for

instance the shape of solid particles is normally assumed to be spherical. As a result, the

particle interlocking, realistic friction can hardly be reproduced. To overcome this problem,

the current research has implemented the rolling resistance contact model in the open

source DEM code, such that the shape effect of solid grains can be included in the analyses

(Iwashita, 1998; Jiang et al., 2005; Belheine et al., 2009).

As discussed in Chapter 4, any combination of the microscopic inter – particle friction

angle and rolling parameters would produce a unique value of material internal friction

angle (φ). According to the input parameters used in the DEM model, the value of φ is in

the range of [27.5°, 42.5°]. Within this range, the relationship between the normalized

runout distance and φ for various granular columns is given in Figure 5-16. It can be
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concluded that as the material internal friction angle increases from 27.5° to 42.5°, the

normalized granular runout distance decreases exponentially. The debris materials have

very high mobility at small values of internal friction angle, which effectively reflect the

depositional behaviour of either smoothed or rounded solid grains. However, at larger

values of internal friction angle, the solid grains can only travel very short distances,

representing the motion of angular solid blocks, such as rock and debris avalanches.
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Figure 5-16. Influence of material internal friction angle on the normalized runout distance
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5.4 Mechanical Analysis

To analyse the mechanical behaviour of dry granular flows, the granular properties such as

particle velocity, force chain, stress distribution and bulk coordination number can be

plotted as contours on a two-dimensional plane, parallel to the flowing direction. Since the

wall effects of the numerical model can be diminished effectively by the plane strain and

periodic boundary conditions, these parameters can be taken as the average values within

each discrete measurement cell, as shown in Figure 5-17.

Figure 5-17. The discretised domain and measurement cells

The averaging process can be summarized as:

(1) Discretise the model domain into a number of equal sized measurement cells. The

dimensions of a measurement cell is 0.005 0.03 0.005  (m3);

(2) Check if the measurement cell contains any grains. If so, get the average properties

of solid grains (e.g. velocity, stress and bulk coordination number).

The input parameters for the DEM simulations are listed in “SD2” of Appendix C.
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5.4.1 Evolution of particle velocity field

Once released, the granular materials fall downwards and spread horizontally along the

ground floor. During this process, the motion of granular materials go through three stages

of dynamic motion: acceleration, constant velocity and deceleration. As shown in Figure

5-18, particle velocity vectors are scaled by the magnitudes of velocities. On these graphs,

particles with various velocities are distinguished by different sizes and colours. According

to Figure 5-18, it can be observed that the debris motion mainly involves the upper region

of the granular column, while grains located in the bottom region of the sample remain

static throughout the simulation. Initially, the solid materials accelerates to fall downwards

under gravity forces. The grain velocity increases quickly to reach the maximum

normalized value of 0.8 at [T] = 4.3. Meanwhile, due to the intensive inter-particle friction

and rolling resistance, the acceleration of solid grains would decrease gradually.

When the gravity of a particle is balanced by the net contact forces, the solid grains

would move at constant velocities. At the deceleration stage, the motion of grains mainly

occurs at the surface of the granular assembly, as represented by the particle vector fields.

Due to the influence of inter-particle friction and rolling resistance, the grain velocity

would finally approach zero and a static granular deposit is formed on the ground floor.

At the propagation stage of the granular flow, it is also possible to record the profiles

of particle velocities within the granular assembly. At any measurement location, the

length (L) and height (H) away from the bottom left origin of the model are normalized by

the initial column width, while the grain velocity is normalized by the characteristic

velocity ( )igL . Figure 5-19 shows the velocity profiles (i.e. horizontal (h) and vertical (v)

components) of granular flows with an initial aspect ratio of 3.3 at the normalized time of

[T] = 0.77 (N.B. at this time instant, the upper grains have already fall downwards, thus, the

normalized height shown on the graph is smaller than 3.3.).

For particles located within the initial granular domain (L* < 1.0), the velocity profile

starts from the origin point and remains zero in the static granular pile region. In the upper
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region of the sample, the vertical (Uv) and horizontal (Uh) velocities increase gradually. For

regions with L* being larger than 1.0, the horizontal velocity increases approximately

linearly with the height from zero to the maximum value at the middle upper part of the

sample. Beyond this region, the horizontal velocity decreases gradually with the height,

due to the dominant role of the vertical fall of grains in the upper region. For the vertical

velocity of grains, it increases gradually with the height and the maximum value occurs at

the top of the sample where individual grains are in free fall. The reciprocal value of the

slope of these curves represents the shear rate (Zhou and Ng, 2010). As shown in Figure

5-19, intensive shearing of the granular sample occurs within a region between the two

dashed lines.

Figure 5-18. Evolution of particle velocity field during the simulation
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Figure 5-19. Distribution of particle velocity: (a) left: horizontal velocity; (b) right: vertical velocity

5.4.2 Analysis of the energy contributions in the flow

The potential energy of the column at any time is:

E
p

= m
i
gh

i

i=1

N

å (5.8)

where mi and hi are the mass and height of a single particle i, respectively, and N is the

total number of particles of the column.

The kinetic energy of the system at any time is calculated as:

E
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i=1

N

å (5.9)

where vi and i are the translational and angular velocities respectively of a generic particle

i, and I is its moment of inertia (for a spherical particle 22 5I mR ).

A part of potential energy gets dissipated rather than being transformed into kinetic

energy, due to unelastic particle collisions (e.g. unelastic particle rebounds and frictional

sliding). In light of the principle of energy conservation, the energy dissipated in the flow

at any given time can be calculated as:
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0diss p kE E E E   (5.10)

where E0 is the total energy of the system, which can be calculated from the initial

potential energy of the column before particles start to move, as:

0 2iE MgH (5.11)

where
1

N

i
i

M m


 .

At the particle level, energy is mainly dissipated via frictional sliding at particle

contacts and viscous damping along both the normal and tangential directions of contacts

when damping is present, but also by the relative rotation between particles once the

plastic limit of the rolling moment is reached (see Figure 3-4(c)).
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Figure 5-20. Variation of energy during granular flow (a = 3.26) (E0: initial total energy; Ep:

potential energy; Ek: kinetic energy; Ediss: cumulative energy dissipation)

In Figure 5-20, the temporal evolution of the energy components of the flows, from

start of column collapse until end of motion, is plotted. After the instantaneous removal of

the confining gate at T=0, particles start to fall downwards, with potential energy being

progressively transformed into kinetic energy. The kinetic energy exhibits a peak at around

T=1.0 (see the dashed line in the figure), when both the rate of potential energy loss and

the rate of cumulative energy dissipation (see the slopes of the curves in the figure) reach
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their maximum values. After this time, both potential and kinetic energy decrease. The

flow comes to a stop at about T=4.0. Considering now columns of different aspect ratios,

the dissipated energy in terms of percentage of the initial total energy of the columns, has

been plotted against their aspect ratio in Figure 5-21. From the simulations, it emerges that

the higher the aspect ratio, the larger the proportion of energy dissipated during the flow.
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Figure 5-21. Total energy dissipated during the flow normalized by the initial potential energy

versus column aspect ratio.

Then, it is necessary to investigate how much of the kinetic energy of the flow is due

to the translation of particles and how much is due to their rotations. In Figure 5-22, the

two sources of kinetic energy are plotted separately against time. Unfortunately, viscous

damping coefficients strongly depend on the type of material making the granular flow.

Furthermore, a reliable experimental determination of damping coefficients for granular

flows is currently not yet available. Therefore, in this research, two cases of simulations

were run: one without viscous damping and the other one with a viscous damping

coefficient of 0.3, in order to obtain a rough indication of the potential influence of viscous

damping on the variables of interest but without trying to model any specific natural debris

flow. In the simulations with viscous damping, the damping coefficient of 0.3 was

employed in both the normal and tangential directions of particle contacts. This value

corresponds to a coefficient of restitution of around 0.5 (Tsuji et al., 1992). In Figure 5-22,

it can be noted that the kinetic energy stemming from particle rotations remains negligible
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at all times (i.e. less than 0.5% of the total kinetic energy) in both cases, with and without

the presence of viscous damping. In light of this finding, in the next section, where the

spatial distribution of the momentum inside the flow is investigated, special attention is

concentrated on the linear momentum since the angular momentum is negligible. Also,

from Figure 5-22, it emerges that the curves obtained for flows with and without damping,

are similar. This implies that the presence of damping decreases the magnitude of the

kinetic energy of the system, of the same proportion, throughout the duration of the flow.
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Figure 5-22. Evolution of kinetic energy over time (a = 3.26) (Ek_trans and Ek_rot are the translational

and rotational sources respectively of the kinetic energy of the system.).

5.4.3 Linear momentum

The evolution over time of the linear momentum of the flow, , is plotted in

Figure 5-23(a), in the case of the presence of viscous dissipation and in its absence. Given

the imposition of the periodic boundary condition along the y axis, it is expect py to be

negligible at all times, as it is shown in Figure 5-23(a). This confirms the effective

presence of plane strain conditions in the x-z plane for the simulated flows.
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Figure 5-23. Evolution of linear momentum over normalised time for flow with and without

damping: (a) momentum components normalised by p0; (b) components of momentum as a

percentage of the total momentum against normalised time; (c) components of momentum as a

percentage of the total momentum against normalised run-out;. x is the direction of flow

propagation, y is the out of plane direction, z is the vertical direction.
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Analogously to the energy analysis of the flow, it is convenient to normalise p


, for the

sake of generality in presenting results. To this end, a scalar quantity, p0 is introduced, with:

0 ip M gH (5.12)

This quantity can be thought of as an approximate average of the momentum of the flow:

0 i i ip M gH M H gH   with i iH gH being the average velocity of the flow. In

Figure 5-23(a), the components of the linear momentum along the x, y and z axes,

normalised by p0, are plotted against dimensionless time. A small difference between the

curves for the case with and without damping is noted with damping having the effect of

reducing the amount of momentum as it is expected. From the figure, it emerges that the

momentum in the vertical direction, pz, exhibits a higher peak than the momentum in the

direction of flow propagation, px. The two peaks occur at different times. To better

investigate which one is dominant and when, it is convenient to make a relative

comparison between the two components. To this end, the square of each component over

the square of the magnitude of the vector (� ⃗) is plotted in Figure 5-23(b) and (c). The use

of squares allows for plotting the components as percent, since
p

x

2

p2
+

p
y

2

p2
+

p
z

2

p2
= 100% .

From the figure, it can be noted that at the beginning of the flow, the vertical component,

pz, dominates due to the fact that the motion of the particles is mainly gravity driven free

fall. Then, during the propagation phase, the horizontal component, px, becomes dominant,

stabilising itself at around 90%. Finally, when the flow is coming to rest, a surge of vertical

component appears. This is due to the presence of decelerating particles exhibiting

bouncing in the vertical direction, especially near the flow forefront. In comparison with

Figure 5-23(b), the start point of the chart in Figure 5-23(c) looks shifted ahead in time,

since it takes some time for the flow front to propagate since gate removal.
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Figure 5-24. Evolution of linear momentum over time for various aspect ratios (with viscous

damping): a) components of momentum as a percentage of the total momentum against normalised

time; b) components of momentum as a percentage of the total momentum against normalised run-

out. x is the direction of flow propagation (dashed curves), z is the vertical direction (solid curves).

The following analyses examine the influence of the column aspect ratio on linear

momentum. This is an important aspect in order to ascertain how general the observed

trends on the linear momentum of the flow are. In Figure 5-24, the evolution of the vertical

and horizontal components of the linear momentum are plotted (as percentage over the

magnitude of the vectorial quantity � ⃗) against dimensionless time for columns of various

aspect ratios. Similar trends among the curves can be noted. However, in the initial phase

of the flow (for T<1.1), the vertical component of momentum increases with the aspect

ratio and obviously the opposite is true for the horizontal one. Instead, after T=1.1, the
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vertical component of momentum decreases with the aspect ratio. A possible explanation

for the observed aspect ratio dependent trend could be that the gravity driven free fall of

particles, which gives rise to the particle vertical motion, increases with the height of the

column whereas the friction between particles, which opposes the horizontal motion of the

particles, is independent of the column aspect ratio. In Figure 5-24(b) the components of

the momentum are plotted against run-out distance.

5.4.4 Flux of kinetic energy

To assess the vulnerability of existing structures hit by a debris flow / avalanche and to

design engineering works for the protection of existing structures, two quantities are of

interest: energy and momentum. The kinetic energy of the particle flow can be seen as an

upper bound on the destructive energy that could be unleashed on the structure impacted

by the flow. The amount of kinetic energy transferred from the flow to the structure,

depends on how flow and structure interact during the time the structure is impacted by the

flow. Hence, the amount of energy released by the flow on the structure, is a function of

the characteristics of both, flow and structure (for instance the relative stiffness between

the two). Also the flow – structure interaction is likely to change over time, for instance

due to the development of irrecoverable (plastic) deformations in the structure. So, it is not

possible to predict the transfer of energy (and equally of momentum), unless a specific

flow and a structure of interest are modelled. Here, however, an analysis of the linear

momentum and kinetic energy of the flow, measured at various distances from the initial

position of the columns is provided, in order to identify an upper bound on the maximum

energy that may be imparted to structures knocked by debris flows, under the simplifying

assumption of disregarding the effects of any structure – flow interactions.

Considering an imaginary vertical section perpendicular to the direction of horizontal

propagation of the flow (see the vertical plane depicted in Figure 5-25), the flow mass

transiting through such a section is a function of time. This is nil until the front reaches the
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position, then it increases gradually, then decreases and eventually becomes nil again once

the flow comes to a stop. In the following analyses, five locations along the flow path,

shown in Figure 5-26, are considered. Each location is identified by a letter.

Figure 5-25. Schematic view of granular flows past a structure.

Figure 5-26. Location of the sections where the granular flow is measured along the flow path.

A convenient measure of the maximum energy that can be transferred from the flow to

the impacted structure is the flux of kinetic energy. This is evaluated as follows: for a
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given location of interest, the kinetic energy of the particles passing through the vertical

plane oriented in the direction perpendicular to the flow, is recorded during a specified

time interval Δt and their total kinetic energy, ΔE, is evaluated. The flux of kinetic energy

through the plane is given by the ratio, , a quantity with dimension of power. It is

convenient to normalise this quantity, so that a comparison of fluxes between columns of

various sizes can be made. A simple way of doing so is to normalise both numerator (ΔE),

and denominator (Δt). Thus, the normalised flux of energy is defined as:

P º
DE

E0

Dt

H i g
(5.13)

Substituting E0 from Eq. (5.11) into Eq. (5.13) and rearranging, Eq. (5.13) is rewritten as:

P =
DE

Dt
×

2

M g3H
(5.14)

Eq. (5.14) makes clear that
2

M g3H
is the multiplying factor to normalise the flux

. The flux represents the maximum energy that can be transferred from the flow to

the impacted structure. In fact, if all the energy were to be transferred away, the flow

would be suddenly deprived of all its kinetic energy and therefore it would come to a stop,

which is evidently an unrealistic scenario. In reality, only a portion of the energy is lost in

the interaction with the structure that will cause the flow to slow down but not to stop. So,

P can be thought of, as an upper bound on the maximum destructive power that the flow

may impart on the impacted structure. In Figure 5-27(a), the flux of kinetic energy at the

selected locations is plotted versus dimensionless time. It can be noted that the section with

highest flux is B. Obviously the fluxes in the case damping is present are smaller than the

case of undamped flow. An interesting finding is the fact that the peak takes place at a

different time, with the time of peak for the damped system shifting progressively ahead of

the peak time for the undamped one. Also, the difference of value between the peaks for

the damped and undamped systems increases with the distance of the section investigated

DE Dt

DE Dt
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from the column initial position reaching up to 50% of the peak value for the undamped

system. Figure 5-27(b) illustrates the evolution of the height of the granular mass at

different locations. From the figure, it can be concluded that the further the location is

away from the slope source region, the lower the height of the final granular mass is.

(a) Flux of kinetic energy at different locations (a = 3.26)
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(b) Height of flow at different locations (a = 3.26)

Figure 5-27. Evolution of the flux of destructive energy and height of debris mass

Figure 5-28 illustrates the evolution of the flux of kinetic energy for different column

aspect ratios. From the figure, it can be observed the position of the section where the flux

is highest depends on the aspect ratio. For instance, in the case of small aspect ratios (e.g. a

= 0.93), the peak flux of destructive energy at location A is largest, with only a small
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amount of particles travelling to locations further down section B. For intermediate aspect

ratios (e.g. a = 3.26, 5.91), the largest flux takes place at location B. For large aspect ratios

(e.g. a = 9.27), the largest flux of occurs again at section A.

Figure 5-28. Evolution of the flux of destructive energy for different granular columns

5.4.5 Distribution of kinetic energy and linear momentum

To be able to design protective structures as effectively as possible, the spatial distribution

of kinetic energy and momentum over the depth of the considered section are also needed.

Considering section B, the depth of the flow, h(t), has been split into five parts and the flux

of kinetic energy through the section for each part is calculated so as to obtain a vertical

profile of the flux of kinetic energy (see Figure 5-29(a)). Looking at the figure, it emerges

that the profile of the flux is initially bilinear, with the maximum flux at middle height of
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the column, then the flux evolves into a linear profile whose amplitude progressively

reduces over time until becoming nil. The bilinear distribution points out to the presence of

an uppermost layer of particles in an agitated loose state, which, after some time,

consolidates so that a linear distribution is obtained. The presence of this layer of loose

material is confirmed by the calculation of the profile of mass rate in the unit of time in the

section (see Figure 5-29(c)).

A convenient measure of the maximum momentum that could be transferred by the

flow to the impacted structure is the flux of linear momentum over time. Analogously to

the flux of kinetic energy, it is useful to evaluate the linear momentum of the particles

passing through the vertical section of interest, p , during a specified time interval t .

The flux of linear momentum through the whole section or parts of it, is given by p t  ,

a quantity with the dimensions of force (so it is called F). It is convenient to normalise this

quantity so that comparison of fluxes between columns of various sizes can be carried out.

A simple way of doing this is by normalising both numerator and denominator. So, the

normalised linear momentum of the flow in the unit of time is defined as:

, ,

, ,

0

x y z

x y z

i

p t
F

p H g

 
 (5.15)

with p0 being an average linear momentum for the flow here defined in Eq.(12).

Rearranging Eq. (5.15) can also be written as:

Fx ,y,z =
Dpx,y,z

Dt
×

1

Mg
(5.16)

Eq.(5.16) makes clear that 1 M g is the multiplying factor to normalise the momentum

going through the plane in the unit of time. In terms of the value of the flux of the

momentum at various sections in time, similar figures as those obtained for the flux of

kinetic energy are obtained (Figure 5-27 and Figure 5-28) which are not reported here. To

locate critical sections and times of interest one of the two fluxes, either the flux of kinetic

energy or of momentum, are enough. However, it is of interest to practitioners appointed
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with designing engineering works for the mitigation of the flow hazard, to know the value

of the flux of linear momentum over depth in order to have an idea of the distribution of

the pressure that can act on the structure. In Figure 5-29(b), the distribution of the

horizontal component of the linear momentum along the direction of flow propagation, Fx,

over depth and is plotted against time. As it can be expected, the same shape of the profile

as the profile of the flux of kinetic energy is found.

(a) Profile of kinetic energy flux at location B for different times (a = 3.26)

(b) Profile of normalised momentum along the plane B at different times (a = 3.26). ( xp is the

summation of momentum at a specific region; 0 ip M H g  is the average momentum of the
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granular system, with
N

i
i

M m being the total mass of grains in the system, N being the total

number of grains in the system.)

(c) Profile of granular mass moving through the plane B at different times (a = 3.26) ( m is the

mass flowing through the plane B;
N

i
i

M m is the total mass of grains in the system.)

Figure 5-29. Profile of kinetic energy, momentum and mass at plane B

5.4.6 Evolution of force chains

The force chains within a granular sample illustrates the distribution of contact forces and

their magnitudes. Based on the plots of force chains, it is very convenient to study the

distribution and evolution of contact forces within a granular assembly during the granular

flow. In these graphs, straight lines are used to connect the centres of each pair of particles

in contact. The thickness of these lines represent the magnitudes of the normal contact

forces, while the tangential direction of these curves at a specific point corresponds to the

orientation of the contact force vector, as shown in Figure 5-30. In the current analyses, the

contact forces (Fc) are normalized by the characteristic force acting on a single particle, as:

  2(1 )
c

s i

F
F

n gH D



(5.17)
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Figure 5-30. Force chains within the granular assembly during the flow

At [T] = 0.0, the sample is densely packed due to consolidation under self-weight. The

normal contact forces increase linearly with the height and the orientations direct mainly

vertically. Once the confining wall is removed, the contact forces near the front surface are
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suddenly released and their magnitudes decrease quickly to be smaller than 0.25. The force

chains in the inner part of the model incline towards the fixed back wall. As grains in the

upper region fall downwards, the force chains previously existing there disappear, while

new force chains would build up in the flowing front. Discrete lines exist near the granular

surface, in which some particles bounce up in the air and collide with each other. At [T] =

4.24, the granular materials stop moving, forming a static deposit on the floor. The force

chains has a triangular prism shape, with small contact forces near the surface and large

contact forces in the inner part of the deposits.

5.4.7 Distribution of stress

In accordance with the analyses in the continuum mechanics, the distribution and evolution

of the major principal stresses of the granular assembly is plotted in Figure 5-31. The

magnitude of the stress is normalized by the characteristic stress of the granular sample, as:

 
( )1 s in gH








(5.18)

At the beginning of the simulation, the stress distributes non-uniformly within the

sample, such that it increases gradually along the depth of the granular column due to the

self-weight of grains. After removing the frontal confining wall, the granular materials fall

downwards quickly. The inertial forces exerted by the upper grains would place additional

loads on the lower grains, which in turn increase the stresses in the bottom region. Near the

slope surface, there are few contacts between grains, thus, the magnitudes of stresses are

very small. The maximum stress occurs in the static granular pile region. After [T] = 4.29,

a static granular deposit is formed on the horizontal floor, with the normalized stresses

smaller than 0.25.
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Figure 5-31. Evolution of stress within the sample (the black curves represent granular profiles)

5.4.8 Distribution of coordination number

As discussed in Chapter 3, the coordination number of a granular assembly can be used to

quantify its packing state. A dense granular sample normally has a large bulk coordination

number, while a loose sample has a very small bulk coordination number. In addition, the

spatial distribution and variation over time of the bulk coordination number is a good

indication of the bulk density of the granular assembly. Figure 5-32 illustrates the

evolution of the bulk coordination number of the granular assembly during the simulation.

It can be observed that two distinct regions of the evolution of bulk coordination number
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can be identified. Once released, the initial densely packed granular mass falls downwards

and spreads horizontally. In this process, the granular assembly would expand and the

corresponding bulk coordination number decreases gradually from its maximum value of

6.50 to the minimum value of 5.6 in the region A. At time [T] = 2.3, the minimum value of

bulk coordination number occurs, and it corresponds to the time for the occurrence of

maximum kinetic energy of the system in Figure 5-20. After this point, the solid grains

move slowly along the ground floor. In the region B, the system gradually comes to a rest

and a relatively dense granular deposit builds up on the ground floor. The corresponding

coordination number increases gradually to the final stable value of 6.3.
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Figure 5-32. Evolution of bulk coordination number within the sample

Figure 5-33 shows the distribution and evolution of bulk coordination numbers over

time within the sample. The vertical and horizontal boundaries delimit the dimensions of

the model, while the coloured blocks represent the bulk coordination numbers of grains in

that region. The initial densely packed sample is found at time [T] = 0.0, when the bulk

coordination numbers are larger than 6.5 within the sample. After the initiation of the

granular flow, the middle and upper grains descend downwards and spread horizontally,

leading to intensive shearing on an inclined surface between the static and moving grains.

Within the shearing zone, the coordination number is relatively small, indicating a dilation
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of the granular assembly. During the simulation, the dilation zone locates approximately

parallel to the inclined upper surface of the static granular pile region, as illustrated by

regions enclosed by dashed curves. Near the surface of the granular mass, solid grains are

in dynamic motion with the bulk coordination numbers smaller than 2.

Figure 5-33. Distribution of bulk coordination numbers within the sample

5.4.9 Destination of surface grains

During the granular flow, solid grains with the highest mobility can run a long distance,

stretching into very thin and wide layers at the outermost region on the floor. In the current
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analyses, the grains travelling to the outermost region are identified as the most hazardous

solid materials, as they have the highest mobility during the flow. By investigating the

locations of these grains in the initial granular column, a general understanding of the

major hazardous zones of the slope can be obtained (see Figure 5-34). This is of special

importance for identifying the hazardous regions of a potential unstable slope.

Figure 5-34. Destination of surface grains

This problem has been studied in the axisymmetric and two-dimensional conditions by

Thompson and Huppert (2007) who used a number of coloured grains as markers in

different layers of the initial granular column and then traced the movement of these grains

during granular flows. At the end of the experiment, they singled out these coloured grains

at the outermost point of the deposit and mapped their positions back into the original

column. By tracing the mobilized grains, the potential hazardous region of the initial

granular assembly can be identified. In this research, instead of studying the outermost

grains of the final deposit, focus has been placed on a region that contains a reasonable

number of grains near the outermost point. As discussed in Section 5.1, this region

contains solid mass amounting to 1% of the total mass of grains in the model. To quantify

the grain locations, a normalized height of an individual particle has been defined as:

ih
H

H
 (5.19)
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where hi is the height of particle i in the initial column; H is the height of the initial column.

Figure 5-35 shows the distribution of hazardous grains in the initial granular column.

It can be observed that for columns with aspect ratios smaller than 3.0, the majority of

hazardous grains come from the top of the initial granular column, while for columns with

aspect ratios larger than 3.0, the hazardous grains mainly come from a region of

 0.40, 0.60H  . When compared with the conclusion made by Thompson and Huppert

(2007), the current numerical results of short granular columns can match the experimental

ones very well, in which the hazardous grains come from a height in the range of

0.67 0.07 . However, for granular columns with large aspect ratios, the hazardous grains

mainly come from the middle of the initial granular assembly.
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Figure 5-35. The mapped initial height of grains in the outermost region of granular deposits

5.4.10 Influence of air viscous force

The DEM simulations discussed in the previous sections have ignored the influence of air

viscous drag force, as it is expected to have much smaller influence on granular flows

when compared with the inter-particle contact forces. However, quite few theoretical basis
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have been found to justify the ignorance of the air viscous drag forces. The current section

will investigate into this problem and give out reasonable justifications.

An accurate evaluation of air viscous drag force requires the use of the DEM-CFD

coupling algorithm, in which the governing equations for the DEM and CFD can be

resolved accurately. This process is computationally very expensive for simulations of

granular column collapse consisting of a large number of particles. As a preliminary study,

the current research only utilizes a modified version of air viscous drag force model, in

which the air is assumed to be static throughout the simulation. Based on this assumption,

the air viscous drag force (Fd) acting on a single particle is calculated as:

2 3
1

2 4 6

p p

f fd

d d
gC

 
  dF V V (5.20)

where
31.204 kg mf  is the air density at 20 °C, 1.0 atm.; pd is the particle diameter;

V is the particle velocity; Cd is the drag force coefficient as evaluated by Eq.(5.21).

( )0.68124 0.407
1 0.150Re

8710Re 1
Re

dC   


(5.21)

where Re is the “pseudo Reynolds number” defined as: Re f p Vd  , with μ = 1.702

Pa·s, being the viscosity of air at 20 °C, 1.0 atm.

Figure 5-36 compares the normalized runout distance of granular columns from two

series of simulations under conditions with and without considering the air viscous drag

forces. It can be concluded that the air viscous drag force has very little influence on the

motion of grains during granular flows. When the column aspect ratio is smaller than 7,

numerical results obtained from the two sets of simulations are identically the same, while

slight discrepancy is observed at larger aspect ratios in which the air viscous drag forces

are considerably high due to relatively large velocities of solid particles.
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Figure 5-36. Comparison between simulations with and without air viscous drag forces

In this study, the air has been assumed to be static during the simulation. However,

this is not true for real solid – fluid systems, in which air can move together with particles

due to the viscous drag forces. As a result, the relative velocity between particle and air in

simulations of real landslides would be smaller than that used in the preliminary estimation

discussed above. Thus, the air viscous drag forces used in this research can be regarded as

the upper bound of air resistant forces acting on solid grains. According to Figure 5-36, the

air viscous drag force has very small influence on grain motions for various granular

columns. Thus, the numerical results discussed in the previous sections without using air

viscous drag forces are validated to be acceptable for this research. In addition, the

implementation of Eq.(5.20) in the DEM code can reduce the computational cost

significantly when compared with the simulations using the DEM-CFD coupling program

(e.g. see Chapter 7), because there is no need to transfer data between different codes

during the simulation. The proposed air viscous drag force model in this study is superior

to the majority of air damping force models used in the literature with a clear physical

meaning. As this model only considers the motion of solid phase, it is thus called the

“semi-coupling” model.
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5.5 Conclusions

This chapter presents a numerical investigation of dry granular flows generated by the

collapse of prismatic columns via 3D Discrete Element Method (DEM) simulations under

plane strain conditions. This type of analysis showcases the potential of the Discrete

Element Method to investigate the phenomenology of dry granular flows and to gather

unique information currently unachievable by experimentation. By means of dimensional

analysis, the governing parameters of the problem were identified. Then, the influence of

key variables of the problem was analysed. The main results are summarised as below:

(i) Different regimes of granular motion have been observed, depending on the

initial aspect ratios. The DEM results qualitatively match the FEM analyses by

Crosta et al. (2009) and the experimental results by Lube et al. (2005). The

granular material slides along a plane which approximately corresponds to the

active failure plane of the column in agreement with Rankine’s theory.

(ii) Quantitative relationships between the column aspect ratio and normalized runout

distance and deposit height were established. Using the rolling resistance model,

i.e. assigning a moment - relative rotation contact law, the DEM simulations,

give rise to runout distances, deposit height which match well the available

numerical and experimental results.

(iii) A detailed analysis of how energy is dissipated by granular flows was performed

from which emerges that most of the energy of the columns is dissipated by inter-

particle friction, with frictional dissipation increasing with the column aspect

ratio. Also, the translational and rotational components of the kinetic energy of

the flows, associated to particle rotational and translational motions respectively,

were monitored during the simulations. It is found that the rotational component

is negligible in comparison with the translational one; hence in order to calculate

the destructive power of a debris flow slide, only the translational contribution of

the kinetic energy is relevant.
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(iv) A methodology is presented to calculate the flux of kinetic energy over time

carried by the granular flow through any vertical section of interest. This can be

related to the energy released by landslide induced granular flows impacting

against engineering structures under the simplifying assumption of neglecting all

structure-flow interactions. This represents the first step towards achieving a

computational tool quantitatively predicting the destructive power of a given

flow at any location of interest along its path. This could be useful for the design

of engineering works for natural hazard mitigation. To this end, the distribution

of the linear momentum of the flow over depth was calculated. It emerges that

the distribution is initially bilinear, due to the presence of an uppermost layer of

particles in an agitated loose state, but after some time becomes linear.

(v) The grains running to the outermost region of the granular deposits mainly

originate from a normalized height of  0.4, 0.6H  in the initial column.
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Chapter 6 Validation of the DEM-CFD Coupling

Method

This chapter is about the validation of the DEM-CFD coupling method. Two case studies

are discussed: (a) fluid flow through a porous soil sample, and (b) modelling of grain batch

sedimentation. The goal is to examine whether the numerical tool is capable of modelling

the behaviour of fluid – solid interactions.

6.1 Fluid Flow Through a Porous Soil Sample

As soil is permeable, water is able to flow through the interconnected pores between solid

particles. To quantify this property, it is necessary to study the hydraulic behaviour of soil,

when water flows through a soil mass. As discussed in Chapter 2, based on the value of

Reynolds number, four distinct flow regimes exist when fluid flows through a porous

medium, namely the laminar, Forchheimer, transition and turbulent flow regimes. In each

flow regime, the corresponding hydraulic gradients ( )h L  can be written as functions

of superficial fluid flow velocity (v).

If the fluid Reynolds number is smaller than 1.0, it is in the laminar flow regime. In

this regime, the hydraulic gradient is linearly related to the fluid flow velocity, which is

quantified by the Darcy’s empirical law (Craig, 1997), as:

1
h L i

k
    v (6.1)

where k is the coefficient of soil permeability.
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As a real soil mass normally consists of grains with a wide range of particle size

distribution, the coefficient of soil permeability can be evaluated using the Kozeny-Carman

empirical equation (Ergun, 1952; McCabe et al., 2005; Chen et al., 2011),

( )

2 3
10

2
150 1

fD n g
k

n







(6.2)

where D10 is the effective grain size; n is the porosity of soil sample.

In the laminar flow regime, the fluid head loss is linearly related to the fluid velocity,

while the relationship gradually becomes non-linear for large Reynolds numbers in the

Forchheimer, Transient and Turbulent regimes. As a consequence, the fluid flow properties

depend mainly on the soil porosity and fluid hydraulic gradient. Ergun and Orning (1949)

stated that the nature of non-linearity is due to the increasing importance of turbulence in

the fluid flow through a porous medium. For a given soil sample with a specific packing

porosity, an empirical relationship quantifying the head loss and flow velocity over a wide

range of Reynolds number has been proposed by Ergun (1952) as:
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where f is the fluid density; g is the gravitational acceleration; d is the diameter of a

sphere, which can be taken as D10 from the particle size distribution curve.

Trussell and Chang (1999) pointed out that the onset of turbulence in fluid flow tends

to occur at different Reynolds numbers, which depends highly on the grain size, shape, and

packing porosity. A modified equation of Eq.(6.3) is expressed as:

( ) 2

3

11
f

f

nn
h L a b

gdn d






 
    

 

V
V (6.4)

where a and b are coefficients related to the linear and nonlinear pressure head loss, which

characterize the flow behaviour of a particular type of soil for a range of sizes. The values

of a and b are listed below in Table 6-1.
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Table 6-1. Summary of head loss coefficient for selected medium

Medium
Coefficients Typical

porosities
References

a b

Crushed anthracite 210 - 245 3.5 - 5.3 0.47 - 0.52 Trussell and Chang (1999)

Crushed sand 110 - 115 2.0 - 2.5 0.40 - 0.43 Chang et al. (1999)

Glass beads 130 - 150 1.3 - 1.8 0.38 - 0.40 Trussell and Chang (1999)

As discussed by Trussell and Chang (1999), Eq.(6.4) incorporates linear and nonlinear

properties of fluid flow through a porous medium, which is applicable for all flow regimes.

Thus, Eq.(6.4) can be used to describe fluid flows through various types of soil. However,

one needs to keep in mind that the porosity of soil sample should range from 0.4 to 0.6. For

samples with porosity out of this range, Eq.(6.4) might produce erroneous results.

6.1.1 Analytical solution of soil permeability

As discussed in Chapter 3, the momentum equation of a fluid-solid mixture system is:

( )
( ) f

n
n n n p

t
n





         



U
U U dg + f (3.66’)

At the steady state, it can be assumed that no acceleration, no inertial effect exist in the

fluid-solid mixture system. Thus, the temporal, convection and diffusion terms on the left

hand side (LHS) of Eq.(3.66’) are zeroes. The equation can be reduced to Eq.(6.5), as:

0 fnn p     dg + f (6.5)

Thus,

f
n

p   df
g + (6.6)

where 1

N

i
diF

V



df , V is the volume of a CFD mesh cell; N is the total number of grains in

that fluid mesh cell. The term f g on the right hand side (RHS) of Eq.(6.6) can be written
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as sp , with ps being the hydrostatic pressure of fluid. Based on the Di Felice (1994) drag

force model, the drag force per fluid volume can be calculated as:

( )
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in which, Ur is the relative velocity between solid particle and fluid.

Thus, Eq.(6.6) becomes:
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If the fluid flow is in the laminar regime, the Stokes’ drag coefficient ( )24 RedC  and

the porosity correction factor χ = 3.7 can be used in Eq.(6.8). For simplicity, di is taken as

D10. Thus, the gradient of excess pore water pressure (u) is obtained as:

( ) 4.7

2
10

18 1 r
s

n n U
u p p

D

 
     (6.9)

Thus, the hydraulic gradient can be written as:
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Based on Eq.(6.10), the soil permeability can be calculated as:

( )
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
(6.11)

From Eq.(6.2) and Eq.(6.11), it can be observed that the soil permeability depends on

the parameters of D10, n, ρf, g and μ. The only difference between these two definitions is

the coefficients used to relate these parameters. In addition, Eq.(6.2) is an empirical

correlation of experimental results of fluid pressure drop when it flows through a packed

bed of solids, while Eq.(6.11) is an analytical investigation of the governing equation at the
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microscopic grain size scale. Due to the simplifications made in deriving Eq.(6.11), it can

only produce accurate prediction of permeability of soil consisting of equal sized grains,

while it would give out erroneous results for polydispersed granular sample. Figure 6-1

illustrates a comparison between the soil permeability predicted by the two equations. The

porosity of the soil sample is within a reasonable range of [0.3, 1.0]. It can be observed that

the predicted value of soil permeability from the empirical and the analytical equations can

be very close to each other, when the soil porosity is within the range of 0.6 to 0.8, while

for porosities out of this range, the empirical results are larger than the analytical ones.
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Figure 6-1. Relationship between the permeability ratio and soil porosity (k1 is the soil permeability

calculated by Eq.(6.2), while k2 is the soil permeability calculated by Eq.(6.11).)

6.1.2 Numerical model configuration

In this study, two soil samples with different particle size distributions are used: (1) equal

sized grains, and (2) polydispersed grains as listed in Table 6-2. The solid and fluid

materials used in these tests are sand and water. As shown in Figure 6-2, a randomly

packed granular assembly is generated within a rectangular prism with dimensions of

0.050.050.05 m3. The solid grains are fixed in space, such that the variation of particle

motions and interactions can be ignored. The fluid domain has initially been meshed as
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equal-sized parallelepiped prisms with dimensions of 0.005 m in each direction. At the

beginning of the simulations, a constant pore water pressure (p0) is applied at the upper

boundary of the CFD model, so that water is forced to flow downwards through the porous

sand mass. The pore water pressure has been measured near the upper and lower surfaces

of the soil sample. The discharge rate of fluid flow is taken as the mean flow velocity at the

inlet and outlet boundaries.

Figure 6-2. Model configuration of fluid flow through porous soil sample: (a) left: Numerical

model configuration; (b) right: Detailed view of the measurement layers

Table 6-2. Properties of soil samples

Sample A Sample B

D (mm) Porosity Grain number D (mm) Porosity Grain number

2.0 0.64 10746 [1.80, 3.80] 0.47 8651

6.1.3 Laminar flow

In the laminar flow regime, the fluid flow Reynolds number is smaller than 1.0. Thus, the

Darcy’s law of permeability can be used to describe the relationship between the flow

velocity and hydraulic gradient. For simulations using sample A, the flow velocities and

hydraulic gradients are linearly related (Figure 6-3), and the coefficient of soil permeability
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is obtained as 0.48 m/s which can match the analytical and empirical values (i.e. 0.475 m/s

and 0.529 m/s) very well.
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Figure 6-3. Relationship between flow velocity and hydraulic gradient for equal sized sample
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Figure 6-4. Relationship between flow velocity and hydraulic gradient for polydispersed sample

For soil sample with a polydispersed particle size distribution (sample B), a similar

relationship can be found to relate the flow velocities and hydraulic gradients, as shown in

Figure 6-4. The coefficient of soil permeability is obtained as 0.102 m/s which is very

close to the empirical value (0.097 m/s) calculated using Eq.(6.2). However, the analytical
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value (0.056 m/s) cannot match the numerical results. This is due to the fact that Eq.(6.11)

is unable to predict the permeability of soil sample consisting of polydispersed particles.

6.1.4 Turbulent flow

At higher Reynolds numbers, the fluid flow could be in the Forchheimer, Transition or

Turbulent regime. At the lower end of these regimes, the laminar flow behaviour is

dominant, such that the pressure head loss is approximately linearly related to the flow

velocity. At the upper end of these regimes, the fluid flow is fully turbulent, so that the

flow velocity is randomly fluctuating about the mean value throughout the fluid domain

and the pressure head loss is nonlinearly related to the flow velocity.
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Figure 6-5. The relationship between the flow velocity and hydraulic gradient (for the results of

Trussell et al. (1999), the coefficients are a = 128.5, b = 1.5)

For the soil sample composed of equal-sized spheres (sample A), the relationship

between the fluid flow velocity and hydraulic gradient is illustrated in Figure 6-5.

According to Figure 6-5, the numerical results of hydraulic gradient at low fluid velocity

(or low Reynolds number) can match the Ergun and Trussell’s empirical results very well,
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while a large discrepancy is observed when the Reynolds number is larger than 200. As

discussed before, Ergun and Trussell’s equations cannot give accurate prediction of the

fluid head loss for soil samples with porosities outside the suggested range of [0.4, 0.6]. As

the soil sample has a porosity of 0.64, the empirical correlations would predict slightly

larger values of hydraulic gradient than the numerical ones.
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Figure 6-6. The relationship between fluid velocity and hydraulic gradient (for the results of

Trussell et al. (1999), the coefficients are a = 128.5, b = 1.5)

For the soil sample consisting of polydispersed grains (sample B), The numerical

results can match the empirical correlating results by Ergun (1952) very well for Reynolds

number smaller than 400, while a slight discrepancy occurs at higher Reynolds numbers, as

shown in Figure 6-6. This phenomenon indicates that Ergun’s correlation is not accurate to

capture the fluid turbulent properties at high Reynolds numbers. On the other hand, the

numerical results can match the empirical correlation proposed by Trussell and Chang

(1999) very well for Reynolds number up to 1000.
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6.2 Numerical Investigation of Granular Sedimentation

The sedimentation and consolidation of granular materials are common in nature, either in

terrestrial or submarine environments. The granular materials usually settle continuously

towards the seabed or the river floor to form a loose sediment layer. As the skeleton of

sediment layer is extremely compressible, it would have relatively large strain under

additional loads. These processes are very important for solid-liquid separations, as can be

found in chemical, mining, wastewater, food, pharmaceutical and some other industries (Di

Felice, 1999; Bürger and Wendland, 2001; Chaumeil and Crapper, 2014). The related

researches can be theoretical, laboratory experimental and numerical investigations on a

variety of materials (Kynch, 1952; Richardson and Zaki, 1954; Been and Sills, 1981; Tiller,

1981; Shih et al., 1987; Font, 1988; Tsuji et al., 1993; Komiwes et al., 2006).

During sedimentation, the average settling velocity of a suspension is the most notable

parameter quantifying the dynamic behaviour of the fluid-solid mixture system (Batchelor

and Green, 1972; Hinch, 1977; Batchelor, 1982; Batchelor and Wen, 1982; Wachmann et

al., 1998). As first proposed by Kynch (1952), the analytical settling velocity depends on

the concentration of solid materials. This statement has been validated by the experimental

measurements of the grain settling rates in granular suspension systems (Been, 1980; Been

and Sills, 1981; Font, 1988). Numerical simulations of granular sedimentation mainly

focus on the settling and depositional behaviour of solid grains in either monodisperse

(Richardson and Zaki, 1954; Batchelor and Green, 1972; Mills and Snabre, 1994) or

polydisperse (Shih et al., 1987; Davis and Gecol, 1994) systems. These researches reveal

three distinct zones from top to bottom in a grain settling system: the hindered settling

zone, where the surface settling velocity is approximately constant; the transition zone

where the settling rate decreases gradually to zero, and the compression zone where a soil

layer is formed at the bottom and consolidation appears due to the self-weight of sediments.

However, as reported by Richardson and Zaki (1954), there is no constant settling rate

zone for very fine flocculated pulps and their settling rates decrease progressively.
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In the literature, research on the mechanical behaviour of suspensions in the hindered

and the compression zones has been reported (Stokes, 1901; Terzaghi, 1943; Kynch, 1952).

Stokes (1901) first made a theoretical investigation of the forces acting on an isolated

spherical particle moving in fluid in the laminar flow regime. He proposed that the viscous

drag force acting on a single particle by fluid is expressed as:

3 rF U D (6.12)

where F is the viscous drag force; μ is the fluid viscosity; Ur is the relative settling velocity

between solid and fluid; d is the diameter of spherical particle.

The constant relative settling velocity (U0) is reached at an equilibrium state, when the

buoyant weight of the particle equals to the viscous drag force.
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where ρs is the density of solid particle.

Thus, the expression of the constant relative settling velocity is obtained as:
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The corresponding characteristic settling time is defined as:
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where H is the height that the particle settles through.

For many years, the analytical and numerical investigations of sedimentation

employing empirical correlations of the mixture properties based on laboratory

experiments have widely been reported (Ergun, 1952; Richardson and Zaki, 1954; Othmer,

1956; Wen and Yu, 1966; Di Felice, 1994; Komiwes et al., 2006). However, a systematic

study of sedimentation is still lacking as the fluid-solid mixture presents a highly

heterogeneous structure featured by a spatially non-uniform distribution of solid particles
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(Fitch, 1983; Font, 1988). The numerical investigation in this research is based on the idea

that the motion of solid particles is completely governed by the Newtonian equations of

motion and collisions are modelled by the soft particle approach (Komiwes et al., 2006).

The fluid flow is calculated by Navier-Stokes equations (Kalthoff et al., 1996; Wachmann

et al., 1998; Komiwes et al., 2006). Therefore, the DEM and CFD can be used to study the

mechanical and hydraulic behaviour of solid grains and fluid flow, respectively. By

coupling these two methods together, a complete analysis of the sedimentation of a fluid-

solid mixture system can be achieved (Chen et al., 2011).

This research aims to use the DEM-CFD coupling method to study the settling

behaviour of solid grains generated randomly within a parallelepiped prism. Through

dimensional analysis, fundamental parameters governing the settling process have been

identified as the fluid density (ρf) and viscosity (μ), the width of the prism (W), the

diameter of solid grain (D) and the porosity of granular sample (n). Based on the research

of Richardson and Zaki (1954), a function relating all these parameters is:
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In the current analyses, the normalized settling time is defined as:
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The vertical position of a particle (h) is normalized by the initial prism height, as:

 H h H (6.18)

In Eq.(6.16), the first two dimensionless groups on the right hand side correspond to

the Reynolds number and porosity correction of the governing equations used in the DEM-

CFD method. The size ratio ( )D W represents the influence of model size on the settling

velocity. The numerical model used in this research utilizes periodic boundaries for the

fluid domain, which can effectively reduce the wall friction effects, as shown in Figure 6-7.
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The numerical model configuration is shown in Figure 6-7. The parallelepiped prism

has equal cross-sectional dimensions of 0.025 m0.025 m and a height of 1.0 m. The solid

particles of various sizes are initially randomly generated within the prism and then settle

downwards under gravity. The input parameters of the simulations are listed in Table 6-3.

Figure 6-7. Configuration of the grain sedimentation model

Table 6-3. Input parameters for the sedimentation simulation

DEM Parameters Value CFD Parameters Value

Particle diameter, mm [1.8, 3.8] Material water (at 20 ºC)

Density, kg/m3 2650 Density, kg/m3 1000

Normal stiffness, N/m 3.0107 Viscosity, Pa·s 0.001

Shear stiffness, N/m 2.7107

Friction angle, ° 30 Simulation Parameters Value

Coefficient of rolling stiffness 1.0 Gravity, m/s2 (0.0, -9.81, 0.0)

Coefficient of plastic moment 0.1 DEM time step, s 10-7

Damping coefficient 0.0 CFD time step, s 10-5

The coupling frequency* 100

* The coupling frequency is the iteration steps used in the DEM during each data exchange interval.

6.2.1 The settling of a single particle

Simulations of the sedimentation of a single particle has been performed to validate the

DEM-CFD coupling code. A solid sphere with radius of 1 mm is placed 9 cm below the
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upper surface of the fluid domain. The porosity of the CFD mesh cell at which the particle

locates is 0.99. The motion of the spherical particle is governed by the equation below as:

( )3 3 2 24 4 1

3 3 2
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where U represents the relative velocity between particle and fluid. In Eq.(6.19), the drag

force coefficient (Cd) can be calculated by Eq.(3.15). Since U also appears in Cd, it is not

straightforward to obtain an analytical solution for the settling velocity from Eq.(6.19)

explicitly. Thus, the numerical technique – forward finite difference – is used to calculate

the relative settling velocity. Rearranging Eq.(6.19) as:

2
3

1
8

f f

d

s s

U
g C U

t r

 

 

 
   

  
(6.20)

Denoting Ui and Ui+1 as the velocities at the current and next numerical iteration time steps,

the difference equation can be written as:
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Figure 6-8. The relative settling velocity between solid and fluid during sedimentation
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Given the initial settling velocity as zero, the iteration continues until a constant

settling velocity is reached. The analytical results are compared with the numerical ones, as

shown in Figure 6-8. The numerical results can match the analytical ones calculated by

Eq.(6.21) well. The constant relative settling velocity is as 0.28 m/s.

As the coupling methodology only describes the average parameters (e.g. drag force,

flow velocity and pressure), the fluid flow around a particle is not explicitly represented. In

the calculation, the local porosity is assumed to be evenly distributed within one fluid

element (Itasca, 2008). In order to obtain good numerical results, several DEM particles

are required to fit inside one CFD mesh cell, which means the size ratio of fluid mesh size

(Dmesh) to particle diameter (D) should be larger than a critical value. Therefore, a series of

numerical simulations with different mesh size ratios have been conducted to study the size

effect (i.e. the fluid mesh size varies from 0.0025 m to 0.025 m, while the particle diameter

remains constant for different simulations). The terminal settling velocity obtained is

normalized by the analytical settling velocity (U0), as shown in Figure 6-9.
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Figure 6-9. Influence of the fluid mesh size ratio (Dmesh/D) on the normalized settling velocity

It can be observed that the relationship between the normalized constant relative

setting velocity and the mesh size ratio (Dmesh/D) is nonlinear. As the size ratio increases,

the normalized particle settling velocity increases gradually until a steady state settling
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velocity is reached. The value of size ratio reflects the accuracy of the averaging process

used in the DEM-CFD coupling model. If it is too small, intensive fluctuations would

occur across the solution domain due to the heterogeneous packing of fluid-solid mixture.

According to Figure 6-9, the particle settling velocity can match the theoretical value well

when the size ratio (Dmesh/D) is larger than 5. This conclusion also agrees very well with

the critical mesh size ratio suggested by Itasca (2008).

To consider the resolution of the CFD calculation and possible boundary wall friction

effects, one needs to study the influence of the ratio of the CFD model dimension (W) to

the mesh size (Dmesh) on the settling velocities. Itasca (2008) suggests that this ratio should

be no less than 5 and the implementation of periodic boundary conditions in the CFD can

effectively reduce the boundary wall friction effect.

6.2.2 Numerical simulation of batch granular sedimentation

For numerical simulations of batch granular sedimentation, 6000 polydispersed solid

spheres are randomly generated within the prism. The particle size distribution (PSD) is

checked along the prism.
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Figure 6-10. The particle size distribution curves of the sample
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As shown in Figure 6-10, the PSD curves of the granular materials at three different

locations along the prism (i.e. base, middle and top) overlap each other, indicating that the

initial DEM sample is uniformly generated. The average packing porosity of the sample is

0.89. In the following analyses, the fluid domain is meshed in x, y and z directions with

5 5 200  equal sized fixed-grid parallelepiped cells.

6.2.2.1 Segregation of grains

According to Stokes’s law of sedimentation (Stokes, 1901), the coarse grains can settle

faster than the finer ones in fluid, leading to a segregation of solid grains. To illustrate this

phenomenon, it is helpful to measure the particle size distribution (PSD) at different

locations within the sample, as shown in Figure 6-11. The granular assembly is divided

into three distinct layers along the prism (i.e. base, middle and top), with each layer

containing the same number of particles. At the beginning of the sedimentation, the

segregation phenomenon is not significant, such that the PSD curves for grains locating at

the base, middle and top of the prism are almost the same as the initial PSD curve. At [T] =

1.8, the PSD curve of the base region deviates slightly below the initial PSD due to the

accumulation of large grains at the bottom. As the simulation continues, the PSD curves of

the grains at the upper and bottom parts deviate gradually from the initial PSD curve. For

the PSD curve of the middle region, it remains the same as the initial PSD before [T] = 3.6,

and then deviates gradually towards the base PSD curve. This phenomenon indicates that

the coarse grains can move faster than the finer ones towards the base of the prism, leading

to a high concentration of coarse grains at the base and fine grains at the top.

Initially, coarse grains in the top layer settle into the middle region, while the coarse

grains in the middle layer settle into the base region. As a result, only the portion of coarse

grains at the base has increased, while the PSD of the middle layer remains unchanged.

After [T] = 5.4, a relatively thick deposit is formed at the base, such that the PSD curves of

the three layers remain unchanged. Even though some fine grains are still suspended in the
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fluid, they settle very slowly on top of the deposit. At the end of the simulation, it can be

observed that only the PSD curve of the upper region lies above the initial PSD curve,

while the PSD curves of the middle and bottom parts overlap each other and lie slightly

below the initial PSD curve. This phenomenon indicates that in small scale sedimentation

simulations, the grain segregation is significant near the upper part of the model, while it is

not very evident in the middle and bottom parts.
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Figure 6-11. Particle size distributions in suspensions and sediments at different times.

6.2.2.2 Density profile of the suspension

An important feature of batch granular sedimentation is the gradual change of bulk density

of the suspension due to the segregation of solid grains. The value of bulk density can be

calculated by the equation proposed by Di Felice et al. (1989), as:
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( )1b f sn n     (6.22)

During the simulation, the value of particle packing porosity in each fluid mesh cell

along the prism is recorded, which will then be used to calculate the bulk density of the

suspension based on Eq.(6.22). Figure 6-12 illustrates the evolution of the bulk density

profiles of the fluid-solid mixture. It can be observed that the density gradients along the

sample height decreases gradually as a result of intensive segregation of grains. At the

bottom region, solid grains accumulate to form a dense sediment layer, which consolidate

progressively under self-weight of the overlying grains. After [T] = 10.8, the bulk density

at the bottom reaches a constant value of 1965 kg/m3.

Figure 6-12. Density profile of the fluid-solid mixture during the simulation

In this study, the positions of solid grains can be extracted during the simulation in the

DEM. Figure 6-13 illustrates snapshots of settling column at four distinct settling times, in

which a “numerical ruler” consisting of a series of equal sized ticks is placed beside the

sample to show the relative location of these grains. To visualize the grain motion,

particles at different heights are coloured red and green. By tracking the positions of the

uppermost grains, the position of the fluid–suspension interface can be obtained. However,

as many grains would decelerate and consolidate at the bottom, there is no well-defined
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interface between the suspensions and sediments. Thus, a close investigation of several

successive snapshots of the sample has been carried out to find out a stable point of

sediment surface for a specific time. The evolution of the suspension-sediment interface is

plotted as a dashed curve in Figure 6-14.

Figure 6-13. Measurement of sediment height (the arrow points out the sediment height)

Figure 6-14. Height against time plot for constant density lines



152

Based on Figure 6-12, a series of constant density points along the prism at different

settling time can be mapped onto Figure 6-14. According to Figure 6-14, the general

variation patterns of constant density curves behave similarly to the theoretical results

based on Kynch (1952) theory of sedimentation. To be more specific, the upper surface

initially accelerates downwards to reach a constant velocity within a very short time and

then settles at a constant velocity towards the bottom. As the initial suspension is

uniformly generated, the height against time curve is a straight line in the hindered settling

zone on the graph. At the bottom the sediments, the grains decelerate until the velocity

becomes zero. The results indicate that the points with water density are located just above

the settling curve of the fluid–suspension interface. In the suspension, the bulk density

ranges from 1000 to 1500 kg/m3. The constant density curves with densities smaller than

the initial bulk density raise from the height axis, while other curves representing larger

densities raise from the sediment surface. If the bulk density of the suspension is close to

the initial bulk density, it would appear in both the suspension, and near the sediment

surface due to the gradual segregation of solid grains (e.g. the curve of 1268 kg/m3). The

observations in this research can match the analytical results by Tiller (1981) well.

As grains accumulate at the bottom, the soil bulk density changes gradually from the

intermediate to dense state, as represented by the density step between the suspension,

zones of intermediate density and the top of relatively dense grain layer (i.e. the shaded

zone on Figure 6-14). In addition, the stable suspension-sediment interface curve passes

through this region and is very close to the 1700 kg/m3 density curve, which suggests that a

stable soil structure can be formed with density being equal to or larger than 1700 kg/m3.

6.2.2.3 Excess pore water pressure and effective stress

During the simulation, the excess pore water pressure (u) along the prism is recorded in the

CFD code, based on which, the evolution of the excess pore water pressures (normalized

by the hydrostatic water pressure at the bottom: 0 fp gH ) at the bottom is obtained (see
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Figure 6-15). As the grains accelerate immediately after releasing, the excess pore water

pressure increases quickly to reach the peak value of 0.17 at [T] = 0.54. After that time, a

loose soil structure builds up at the bottom, and the excess pore water pressure dissipates

gradually. A linear dissipation period is observed between [T] = 0.54 and [T] = 7.2. After

[T] = 7.2, a sediment layer is formed at the base, and the excess pore water pressure

dissipates slowly due to soil consolidation.

Considering the fact that part of the grains accumulated at the bottom before [T] =

0.54, the theoretical maximum excess pore water pressure is higher than the measured

value. A rational estimation of the peak excess pore water pressure from Figure 6-15 can

be the intercept of the linear pressure line on the vertical axis at point A, with a normalized

excess pore water pressure of 0.178. On the other hand, the analytical maximum excess

pore water pressure can be calculated as the difference between the total stress and the

hydrostatic water pressure of the system (see Eq.(6.23)) at the beginning of the simulation.
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Figure 6-15. Evolution of pore pressure at the bottom of prism (p0 is the hydrostatic pore pressure)

Based on the input parameters, the analytical maximum pore water pressure is

calculated as 0.18 which can match the estimated peak value from Figure 6-15 (≈0.178). 
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(a) numerical results of the DEM-CFD coupling simulation

(b) results from Been (Been and Sills, 1981) (the time has been normalized by the

characteristic settling time of a grain with diameter of 5 μm) 

Figure 6-16. Isochrones of excess pore water pressure along the prism at different time

The isochrones of excess pore water pressures are given in Figure 6-16(a). As only

water exists in the region above the solid-water interface, the excess pore water pressure is

zero. From [T] = 0.54, the excess pore water pressure builds up and varies linearly along

the prism. As time passes by, the linear distribution pattern remains in the upper region of

the prism, while at the bottom, there exists a region of constant excess pore pressure. This
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can be explained by the fact that once the grains stop moving, there is no relative flow

between solid grains and fluid, and therefore no excess pore water pressure gradient exists

in the sediment. However, in the suspension, the solid grains can settle downwards

continuously, and thus, the linear distribution pattern can be maintained there. A

qualitative comparison is made between the numerical results (Figure 6-16(a)) and the

experimental results from Been and Sills (1981) (Figure 6-16(b)). Even though the

materials used in the numerical and experimental models are very different, the general

features of the isochrones of excess pore water pressure presented in a dimensionless form

are qualitatively the same.

During the simulation, the total stress acting on the bottom of the prism is calculated

by the pore pressure and contact forces, as:

s

F
p u

S
    (6.24)

where ps is the hydrostatic pressure; u is the excess pore water pressure; F is the contact

force exerted by sediments on the bottom of prism; S is the cross section area of the prism.

Figure 6-17. Total stress at the base of the bottom

Figure 6-17 shows that the total stress measured at the base of the prism is almost

constant throughout the simulation. This phenomenon indicates that the periodic boundary



156

condition used in the simulation can effectively reduce the wall friction effects on the

overall settling behaviour of solid grains.

According to Been (1980), the total stress of the suspension along the height of the

prism can be evaluated by integrating the bulk density of suspensions, while the effective

stress is calculated by subtracting the measured pore water pressure from the total stress.

Figure 6-18 illustrates that the distribution of pore water pressure and total stress along the

prism height at [T] = 3.6. At this time instant, the solid grains initially locating at the upper

part of the prism (above point A) have already settled downwards, such that only water

exists there. Thus, the pore water pressure is equal to the total stress. In the suspension

(between points A and B), grains can either settle at a constant velocity (near Point A) or

collide with each other forming a loose structure (near Point B). The weight of solid grains

is partly or wholly supported by the fluid viscous drag and hydrostatic forces. Thus, the

curve of pore water pressure deviates gradually from the total stress curve, indicating that

the effective stresses occur within the sample. In the sediments (below point B), the soil

structure can sustain the overlying loads and a relatively large effective stress exists there.

Figure 6-18. Stress distribution along the prism at [T] = 3.6

The relationship between the soil void ratio and normalized effective stress (σ’) within

the sample at different settling times is shown in Figure 6-19. According to Figure 6-19,
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three distinct zones of the relationship between effective stress and void ratio can be

identified: settling, transition and consolidation zones. The settling zone appears when the

normalized effective stress is smaller than 0.01. In this zone, the void ratio varies widely

from 4.0 to 14, indicating that the soil is extremely compressible. In the transition zone, a

loose soil structure begins to build up and the effective stress increases from 0.01 to 0.05,

while the void ratio decreases from 5.0 to 0.5 gradually. However, no unique relationship

between void ratio and effective stress is observed. In the consolidation zone, the

compressibility of soil is low and the void ratio varies very little.

Figure 6-19. Relationship between the void ratio and normalized effective stress at various

simulation times (the data points represent results from locations equally spaced along the column.)

6.2.2.4 Energy of solid grains in the system

The grain settling process is accompanied by energy conservation and transformation.

Initially, a static suspension is generated within the prism. The total energy is defined as

the summation of potential energy of each individual particle before sedimentation.
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E m gH


 (6.25)
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where mi and Hi are the mass and height of a single particle i, respectively; Np is the total

number of grains. In this model, the initial total potential energy (E0) is 0.896 J.

As the simulation continues, the settling velocity increases as part of the initial

potential energy transforms into the kinetic energy. The kinetic energy of solid grains at a

specific time is defined as the summation of translational and rotational kinetic energy,

( )2 2

12

1 pN

k i i i i
i

E m V I 


  (6.26)

where iV and i are the magnitudes of the translational and rotational velocity of

particle i; I is the moment of inertia, defined as I = 2mR2/5 for a spherical particle.

As the motion of solid grains is hindered by fluid, the major portion of potential

energy is dissipated via the fluid viscous drag forces. The dissipated energy transforms into

heat and fluid potential and kinetic energy. When particles collide or slide over each other,

part of the kinetic energy can be dissipated via plastic contact and inter-particle friction.

Therefore, the cumulative energy dissipation is simply calculated as the difference between

the initial total energy and the sum of potential and kinetic energy at a specific time.

Figure 6-20 illustrates the evolution of kinetic, potential and cumulative dissipated

energy throughout the simulation. According to Figure 6-20(a), it can been observed that

the kinetic energy only amounts for a small fraction of the total energy, which indicates

that the settling velocities of grains in the fluid are very small. Initially, as the solid grains

accelerate to settle downwards from rest, the kinetic energy increases linearly until it

reaches point A. After point A, an increasing number of grains would settle at constant

velocities and some grains would also deposit onto the bottom floor. Thus, the increasing

rate of kinetic energy decreases gradually. At point B, the kinetic energy of the granular

system reaches the maximum value, which amounts to only 1% of the total energy. After

point B, solid grains would continuously deposit on the bottom floor, which is represented

by a gradual decrease of kinetic energy. After point C, a loose granular layer is built up at

the bottom and the corresponding energy would gradually approach a constant value due to
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soil consolidation. Figure 6-20(b) indicates that throughout the simulation, around 80% of

the initial total energy has been dissipated.
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Figure 6-20. Evolution of energy (the value of energy is normalised by the initial total energy (E0).)

6.2.2.5 Force chain of the sediments

During the grain sedimentation, the sediments accumulate gradually at the bottom of the

prism to form a structured soil layer, which can be visualized by plotting the contact force
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chains of the whole granular packing, as shown in Figure 6-21. In these graphs, straight

lines are used to connect the centres of each pair of particles in contact. The width of these

lines is proportional to the magnitude of contact forces, while the orientation aligns to the

direction of contact force vector. The contact force is normalized by the characteristic

hydrostatic force acting on the cross section of a solid particle (e.g. the diameter is D) at

the bottom of the prism, as shown in Eq.(6.27):

 
( ) 2
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F
F

gH D 



(6.27)

Figure 6-21. Force chains of the sediments at different time

By plotting the contact forces of all the grain contacts as straight lines in the model, a

graph of force chain can be obtained. At the beginning of the simulation, the sediment

layer is very thin, such that the contact forces between grains are very small. As the soil

structure builds up gradually, the magnitude of contact force is mainly controlled by the

self-weight of solid grains. Due to soil consolidation, the contact forces at the bottom

increase gradually. The final stable soil structure has strong force chains preferable orient

vertically, indicating the self-weight of soil has a significant influence on the distribution

of contact forces.
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6.3 Conclusions

This chapter sets out to investigate the granular sedimentation via the DEM-CFD coupling

algorithm. The simulations of fluid flow through a porous soil sample and granular batch

sedimentation were used to validate the DEM-CFD coupling code.

For the first test, the model of water flowing through a granular sample is used to

study the behaviour of soil seepage. Based on this study, conclusions can be drawn as:

(i) The numerical results have confirmed the statement by Trussell and Chang (1999)

that the fluid flow through porous media can be in either laminar or turbulent

regime, based on the Reynolds number. In the laminar regime, the permeability

of soil is calibrated via the relationship between hydraulic gradient and flow

velocity. The numerical results can match the analytical and empirical ones well.

(ii) In the turbulent flow regime, the relationship between the hydraulic gradient and

flow velocity has been studied and compared with the empirical correlations by

Ergun (1952) and Trussell and Chang (1999). The analyses indicate that the

DEM-CFD coupling model can capture realistic hydraulic behaviour of fluid

flow in a wide range of Reynolds number (i.e. up to 1000). The numerical results

can match the empirical ones by Trussell and Chang (1999) well.

In modelling the granular sedimentation in water, the numerical results obtained for

the settling of a single particle can match the available analytical solutions very well. This

research also provides criterion of numerical accuracy in the DEM-CFD coupling

calculations: the size ratio between the fluid mesh cell and particle diameter should be

larger than 5. It also shows that the use of periodic boundary in the lateral directions of the

fluid domain can effectively reduce the fluid boundary wall friction effects. The findings of

granular batch sedimentation can be concluded as:

(i) During the batch sedimentation, progressive segregation of solid grains along the

prism can be visualized by the particle size distribution curves at different
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locations within the sample. The segregation is significant near the upper region

of the model, while it is not very evident in the middle and bottom regions. This

is partly because only a narrow particle size is used in the simulations. Due to the

grain segregation, coarse grains can accumulate at the bottom, leaving the finer

ones settle onto the upper surface of the deposit. As a result, the gradients of bulk

density profile curves increase gradually.

(ii) In the suspension zone, any constant density curve with a density smaller than the

initial bulk density originates from the height axis, while others start from the

sediment surface. At the end of the simulation, the bulk density of the sediments

reaches a constant value. The curves describing the vertical downward trajectory

of the fluid – suspension interface and the increase of suspension – sediment

interface can match the theoretical results proposed by Kynch (1952) very well.

(iii) As solid grains continuously settle downwards, forming a loose sediments layer

at the bottom of the prism, the sediments consolidate slowly under the self-

weight of overlaying grains. During this process, the excess pore water pressure

builds up and dissipates slowly. The normalized maximum excess pore water

pressure of the suspension is 0.178, which is very close to the analytical value (i.e.

0.18). When presented as dimensionless quantities, the isochrones of excess pore

water pressure can qualitatively match the experimental results by Been and Sills

(1981). Throughout the simulation, around 80% of the initial potential energy of

grains has been dissipated via water viscosity and inter-particle collision / friction.

In this Chapter, a DEM-CFD coupling formulation is presented for the investigation of

grain sedimentation in fluids. Many other applications of the formulation are possible, e.g.

submarine landslides, mudflows, river scouring, etc. The computational efficiency of the

numerical model depends highly on the numbers of particles present and the size of the

mesh cells in the CFD model.



163

Chapter 7 Investigation of Submerged Debris

Flows

This chapter presents a numerical investigation of submerged debris flows using the DEM-

CFD coupling algorithm. The same DEM model of granular column collapse as that

discussed in Chapter 5 has been used in this research to simulate the mechanical behaviour

of solid particles, while an incompressible, viscous fluid flow model has been introduced

to capture the hydraulic behaviour of fluid flow in the submerged environment. This

research aims to shed light on the fluid-solid interaction and the hydraulic properties of

submerged debris flows. Conclusions are drawn with regard to the ability of the DEM-

CFD coupling algorithm to model the sediment transport and deposition processes.

7.1 Model Configuration

The initial static fluid-solid mixture system is shown in Figure 7-1. The configuration of

the granular column model and the notations are the same as those discussed in Chapter 5.

The DEM model is bounded by the CFD fluid domain as represented by a dashed box. The

boundary conditions of the CFD model are described as below:

(i) As the plane strain conditions are desired in the simulation, the fluid model has a

periodic boundary in the lateral direction, labelled as E.

(ii) An open air boundary condition is used in the upper boundary (G). The back (F)

and frontal (H) walls have slip boundary conditions. The bottom boundary (I) has

a non-slip boundary condition.
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The generation of the DEM sample has been detailed in Chapter 5 and the same

procedure is employed in the current simulations.

Figure 7-1. Model configuration of the submerged debris flow

7.2 Physical Properties of Sediments

Typical submerged landslides can involve solid materials of various sizes. Several site

investigations provide evidence that sediments transported to a long distance away from

their original locations are generally very fine materials, such as clay, mud and fine silt

(Prior et al., 1984; Lipman et al., 1988; Hubble et al., 2012). The deposits consist of sand

overlain by mud (Talling et al., 2007). An example of a submarine landslide is the Kitimat

landslide, British Columbia (53°59’N, 128°41’W) occurred in 1975, as shown in Figure

7-2. It can be observed that the major coarse debris materials (e.g. breccias and gravel) are

deposited near the toe of the original slope, while the fine materials (e.g. clay, mud and silt)

are transported to a long distance away from the source region. Observations have shown

that the debris flow has extended to more than 5 km away from the delta slope over the

almost flat floor of the fjord (Prior et al., 1984). The sediment samples have been obtained

from 7 piston cores, as labelled in Figure 7-2. The particle size distribution of 4 of these

samples are summarized in Figure 7-3 and the main conclusion can be drawn as:
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(i) The size of sediments are normally finer than 1 millimetre for different samples

obtained with piston cores;

(ii) A large portion of coarse grains are found near the crown of the slide (e.g. core 7),

while finer particles are found near the deposit front (e.g. core 3 and 4), which

suggests that the fine grains can travel a longer distance than the coarser ones.

Figure 7-2. Schematic view of the sea floor near the Kitimat delta (after Prior et al. (1984))
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Figure 7-3. Cumulative grain size distribution curves of bulk samples from cores 1, 3, 4, and 7
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Similar results are obtained from dredged samples in the southeastern Australian

continental margin landslides (Hubble et al., 2012), in which a large amount of grains have

particle sizes ranging from 2.0 to 200 μm. Due to the limitation of the DEM model, the 

simulations cannot include all particles with a wide range of sizes. As the main purpose of

the current study is to demonstrate the capability of the DEM-CFD model in analysing the

mechanical behaviour of submerged debris flows, the numerical model uses a relatively

coarse sand grains with a narrow particle size distribution (see Chapter 4). In order to

reproduce realistic mechanical and hydraulic behaviour of fine grains using the current

DEM configuration, proper scaling laws based on the dimensional analyses will be used.

By doing so, the computational cost can be acceptable for simulations consisting of a

reasonable number of grains. A detailed analysis will be provided in the following sections.

7.3 Dimensional Analysis

A dimensional analysis has been performed for numerical investigations of submerged

debris flows, based on a simple granular column collapse model. As the DEM model

configuration for dry and submerged debris flows are the same, the same set of parameters

will be used. The parameters involved in the simulations are listed in Table 7-1, where the

units are expressed using the fundamental dimensions of M, L and T (i.e. mass, length and

time). Performing the dimensional analysis, and assuming all the microscopic contact

parameters in the DEM model are the same as those used in modelling dry granular flows,

the relationship between the independent and dependent dimensionless groups is written as:

       ( )      ( ), , , , , , , , , , , ,L H V T f a S Re n θ β η   (7.1)

In the current analysis, the major dimensionless groups for the DEM model will be

kept the same as those obtained in Chapter 5. However, due to the presence of water, some

previously used dimensionless groups in the DEM model should be modified and new

groups in the DEM-CFD coupling model will be formulated accordingly. These groups
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include the physical properties of sediments, microscopic particle contact parameters and

fluid flow properties. The two new dimensionless groups [ρ] and Re, known as density

ratio and Reynolds number, are expressed as:

  s

f





 (7.2)
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The Reynolds number is defined at the microscopic grain size scale by using the

characteristic settling velocity of a single sphere in the laminar flow regime (see Chapter 6).

However, as the fluid flow may not be laminar, Eq.(7.3) only defines the characteristic

Reynolds number of a submerged landslide and may not be the exact value for a real fluid

flow. Alternatively, the Reynolds number can be expressed in a general form as:

( ) 3 2

18
Re

f

mi

f

c o

s

r

g D  




 (7.4)

Table 7-1. Input parameters of the DEM-CFD model. The symbol “[ - ]” denotes that the parameter

is inherently dimensionless.

Parameter Symbol Unit of Measure

Independent
parameters

Initial model length and height Li, Hi [L]

Particle diameter D [L]

Particle density ρs [ML-3]

Gravitational acceleration g [LT-2]

Sample porosity n [ - ]

Normal stiffness Kn [MT-2]

Shear stiffness Ks [MT-2]

Particle friction angle θ [ - ]

Coefficient of rolling stiffness β [ - ]

Coefficient of plastic moment η [ - ]

Fluid density ρf [ML-3]

Fluid viscosity μ [ML-1T-1]

Dependent
parameters

Deposit length and height Lf, Hf [L]

Particle velocity V [LT-1]

Flow duration time t [T]
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Some previously defined parameters, such as [V], [T], and [ε], should be modified

based on the hydrodynamic processes (e.g. settling and consolidation) under analysis. The

characteristic strain of the model is defined as:

 
( ) ( )1s f i

n

gH n

K D

 


 
 (7.5)

The dimensionless debris flow velocity and duration time are obtained by studying the

grain settling and soil consolidation processes, as detailed in the following section.

7.3.1 Discussion of the dimensionless groups

As discussed in Chapter 6, the constant relative settling velocity (v0) of a single particle is

reached when the viscous drag force is balanced by the buoyant gravity force.
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The dimensionless particle settling velocity is defined as the ratio of the particle

settling velocity (v) to the constant settling velocity.
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The characteristic settling time is defined as:
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The dimensionless time used in the simulation is defined as the ratio of the duration

time of the submerged debris flow to the characteristic settling time, as:
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As Eq.(7.6) represents the constant relative settling velocity of a single particle in the

laminar fluid flow regime, it is not applicable for flows in the Forchheimer, Transition and

Turbulent regimes. Thus, an appropriate evaluation of the particle settling velocity should

be made numerically by using Eq.(6.21). However, for the definition of dimensionless

groups, Eq.(7.6) will be used as the characteristic settling velocity of a granular system.

In the consolidation process, the granular assembly undergoes compression due to

self-weight. Excess pore water pressure can build up within the sample if soil permeability

is low. As time passes by, the pore pressure would dissipate gradually to zero and the

effective stress within the granular assembly increases to its maximum value. Thus, the

consolidation process is time-dependent and a dimensionless group to quantify this process

should be based on the consolidation time. One obvious group is obtained from Terzaghi’s

consolidation theory (Terzaghi, 1943) which defines the dimensionless time factor as:

2
v

v

c t
T

H
 (7.10)

where t is the consolidation time; vc is the coefficient of consolidation, defined as:

v

v f

k
c

m g
 (7.11)

where vm and k are coefficients of volume compressibility and permeability, which can be

assumed to be constants, and depend on particle size distribution, shape and soil structure.

As discussed in Chapter 5, the coefficient of soil permeability can be approximated as:
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The coefficient of volume compressibility is defined as (Chen et al., 2011):

v

n

D
m

K
 (7.13)

By substituting Eq.(7.13) and Eq.(7.12) into Eq.(7.11), one can get
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Substituting Eq.(7.14) into Eq.(7.10), the dimensionless consolidation time becomes,
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Eq.(7.15) indicates that the consolidation time of a granular assembly depends on both

the macroscopic sample properties (i.e. H, n and μ) and the microscopic particle properties

(i.e. D and Kn). The consolidation time can be long in view of the following conditions:

(i) If the soil sample is very thick, the seepage path of fluid flow can be very long;

(ii) If the fluid is very viscous, the fluid velocity can be very small;

(iii) If the grain is very fine or the soil is dense, the sample permeability is very low.

Since the submerged debris flow is a very complicated geotechnical phenomenon, it

involves both grain settling and soil consolidation. Depending on the research areas of

interest, either Eq.(7.9) or Eq.(7.15) can be used as the dimensionless time in the analyses.

The derivation of governing dimensionless groups in the above investigate the physics of

submerged debris flows, instead of analysing the units of each parameters, to get the

dimensionless groups. Although there is some freedom in the choice of the dimensionless

parameters (Palmer, 2008), such a choice can closely match the problem under analysis.

7.3.2 Summary of the dimensionless groups

Any numerical simulation attempting to reproduce the general behaviour of real in situ

landslides should have the same values of governing dimensionless groups as those in real

cases. Therefore, the input parameters should be scaled so that proper values of

dimensionless groups can be obtained. The corresponding output parameters can be

obtained by using scaling laws derived from dimensional analyses. The range of some
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input dimensionless groups are shown in Table 7-2 (N.B. the value of aspect ratio is not

listed here, because it is not applicable to real and experimental observations.).

Table 7-2. Typical ranges of dimensionless groups (reference data can be found in Appendix A)

[ε] [ρ] [S] Re

Real landslides [8.8e-5, 0.029] [1.95, 2.9] [1.1105, 9.33108] [0.0004, 882.2]

Laboratory tests N/A [2.0, 2.7] N/A [0.0005, 126.1]

Numerical simulations [8.9e-5, 0.09] 2.65 [25, 250] [8.5, 85]

According to Table 7-2, it can be concluded that the current numerical model can

reproduce realistic values of model characteristic strain, density ratio and Reynolds number,

while it is unable to reproduce correct model size ratio. This conclusion indicates that it is

possible to simulate grain settling behaviour by small scale numerical models, while it is

very difficult to model the correct consolidation time. This is due to the fact that the

consolidation of soil is influenced by many factors, especially by the model size, as

characterized by the group [S]. The dimensionless consolidation time can be rewritten as:

( ) ( )  

5.7 5.7

218 1 18 1
n n

v

tDn k tn k

n H n
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H S 
 

 
(7.16)

The range of model size ratio in real debris flows is far larger than that used in the

current numerical simulations. As the small scale numerical model cannot reproduce

correct values of [S], it is impossible to capture the full picture of consolidation. Therefore,

the current study mainly focuses on the propagation and deposition of submerged debris

flows, in which the flow duration time is quantified by the dimensionless settling time.

In a typical submerged landslide, the fluid material is generally sea water with a

density of 1025 kg/m3 and viscosity of 0.001 Pa·s. The solid materials involved can range

from very fine clay to coarse gravel and boulder. According to Hubble et al. (2012), the

bulk density of sediments from several landslide sites in the southeastern Australia ranges

from 8.9 to 11.8 kN/m3. Considering the loosely packed state of sediments at seabed, it is

assumed that the density of a single solid grain is 2650 kg/m3 which can roughly match the

density of coarse quartz grains. Thus, the density ratio [ρ] of 2.6 is used in this research.
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Analyses of the dimensionless groups listed in Eq.(7.1) show that some variables can

either change systematically in association with other variables or are constrained by the

presence or absence of certain conditions. These relationships may reveal the fundamental

mechanisms that control the submerged debris flows and provide insights into how they

can be mobilized to run a very long distance (Lee et al., 1991). Although a complete

analysis of all these relationships is beyond the scope of this research, the author believes

that two particular dimensionless groups are worth investigating: the characteristic strain,

  ( )s f i ngH D K    and the Reynolds number,
( ) 3 2

18

f s fg D
Re

  




 . These

two groups are thought to be the most significant ones, governing the motion of debris

flows. As real submerged debris flows can have a wide range of sizes and the solid

materials involved are of various sizes, these two dimensionless groups would have a

coupled influence on the motion of debris flows. A detailed parametrical analysis of these

groups will be provided in the following sections.

The current research using small scale numerical models is unable to reproduce the

correct model size ratio due to the constraint of computational power. However, this

analysis aims to reveal the general features of submerged debris flows based on simple and

well controlled conditions. Even though the numerical results cannot reflect the complete

mechanical and hydraulic behaviour of real submerged debris flows, some meaningful

conclusions can still be drawn regarding the capability of the DEM-CFD coupling model.

7.4 Modelling of Small Scale Submerged Debris Flows

In this section, the numerical results of small scale submerged debris flows are presented,

with special focus on the mechanical and hydraulic behaviour of granular particles and

fluid. The input parameters for the related DEM-CFD coupling simulations are listed in

“SS1” of Appendix C.
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7.4.1 Deformation of the granular assembly

The dynamic motion and depositional morphology of granular assemblies are illustrated by

a sequence of snapshots in Figure 7-4. From these images, three distinct patterns of debris

motion can be identified. For granular columns with small aspect ratio (i.e. a = 0.94), only

the upper front region of the granular mass crumbles downwards, tilting and thinning into a

grain layer on the horizontal floor. The final deposit has a roughly “truncated cone” shape

with the same height as the initial column height. Throughout the simulation, a static pile

region exists at the bottom left of the granular assembly, above which, intensive shearing

occurs between particles with high velocity gradients.

Figure 7-4. Three sequences of snapshots for the collapse of granular columns (Re = 85)

For columns with larger aspect ratios, the major granular mass is involved in motion.

Depending on the value of aspect ratio, the solid grains would go through a process of
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either sliding or sliding plus free settling. For intermediate aspect ratio (i.e. a = 3.3), the

slope failure is mainly by sliding, in which the granular materials in the upper region

would descent and spread outwards along the floor. Intensive shearing occurs at the surface

between the static pile and the upper moving mass. The final deposit has a conical shape,

and the height of which is smaller than the initial column height. For large granular

columns (i.e. a = 5.91), a short period of free settling exists for grains locating at the upper

part of the model, in which the solid particles suspend in water and move slowly.

According to Figure 7-4, it can be observed that granular columns would go through

very large deformations during the propagation of debris flows. The evolution of debris

profiles can vary dramatically for different granular columns, as shown in Figure 7-5.
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Figure 7-5. Evolution of granular profiles (Profiles normalized by the initial column width and are

traced at successive simulation time ([T] = 1.0), Re = 85)

For columns with small aspect ratios (i.e. a = 1.41), only a small fraction of granular

materials is involved in motion. As the solid materials collapse onto the ground floor, the



175

upper surface of the sample inclines gradually until the angle of repose is reached. The

final deposit has a shape of curved trigonal prism, with its height close to the initial column

height. As the value of aspect ratio increases gradually, the majority of debris materials are

involved in motion. The granular materials would stretch along the horizontal floor,

forming an elongated and thin granular layer. The general patterns of debris flow discussed

above are similar to those analysed in Chapter 5 for dry debris flows. The only difference

is that the profiles of submerged granular deposits are relatively flat and very few dispersed

grains are observed in the outermost region.

7.4.2 Influence of initial column aspect ratio

As a preliminary study, the simulations of submerged debris flows have been performed

using the same DEM model configurations as those used in Chapter 5. This numerical

model has effectively revealed the important influence of granular column aspect ratio on

the dynamic motion and depositional morphology of debris materials.
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Figure 7-6 Comparison between numerical results of submerged and dry granular flows (Re = 85).

(a) Left: relationship between the normalized runout distance and column aspect ratio; (b) right:

relationship between the normalized height and column aspect ratio.

Figure 7-6 compares the relationship between normalized runout distance, deposit

height and the column aspect ratio for the submerged and terrestrial dry granular flows. It

can be concluded that the submerged debris flows have a lower mobility than the dry
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granular flows, while they have almost the same final deposit heights. This phenomenon

can be explained by the fact that the kinetic energy of submerged grains would dissipate

quickly via the fluid viscous drag forces. Even though the positive excess pore pressure

generated within the sediments can decrease the inter-particle friction, its magnitude is still

too small to mobilize the debris materials to travel a long distance. In addition, if the initial

granular assembly is dense, the negative excess pore water pressure generated during the

sample dilation would inhibit the motion of solid grains (Iverson et al., 2000).

In the current analyses, the calculations were carried out on a desktop PC using three

of the four cores of an Intel® Core™ i7 CPU (2.93 GHz). The computational time is

linearly related to the number of particles in the granular model, as shown in Figure 7-7.
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Figure 7-7. Computational time used in simulations (the DEM time step is 1.010-7 s, Re = 85)

The use of computer cluster for the simulations might help decrease the computational

time. However, as the current MPI parallelization is based on a domain decomposition

strategy, the parallel efficiency depends highly on the choice of subdomains. For the DEM

model with a plane strain condition, the decomposition of domain is normally done along

the zero-strain direction, so that the number of grains in each subdomain is approximately

the same. Decomposition of domains in other directions should be carried out carefully,

because the computational time is mainly controlled by the processor running the slowest.
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In addition, the data exchange between subdomains can also take a long time. For instance,

the computation can be very costly for one subdomain containing a huge number of grains,

while the other subdomains contain only few grains. Thus, the current DEM-CFD model is

not appropriate for simulations with a huge number of grains on a computer cluster.

7.4.3 Influence of model size ratio

As discussed in Chapter 5, the model size ratio, defined as the ratio of the model height to

the mean particle diameter, has significant influence on the motion of dry granular

materials. For the dry granular flows, a value of 40 has been identified as the threshold of

the model size ratio. If [S] is larger than 40, the numerical results are independent of the

choice of [S]. However, in the submerged environment, this dimensionless group should be

calibrated for different flow conditions.
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Figure 7-8. Influence of [S] on (a) Left: the runout distance, and (b) Right: deposit height

Figure 7-8 compares the normalized runout distance and deposit height for samples of

various model size ratios. Results are also examined at increasing Reynolds number to

investigate the combined effect of flow property and model size ratio. According to Figure

7-8, it can be observed that the mobility of debris flow increases with the model size ratio.

This phenomenon is particularly evident for flows with very small Reynolds number, in

which, the fluid viscous effect plays a significant role in governing the debris motion.
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Ideally, the value of [S] should be chosen as large as possible, so that the numerical

model can be comparable with the real submerged debris flows. However, the current

DEM model has the difficulty in simulating the behaviour of granular assemblies

composed of a huge number of grains due to the unacceptable long computational time.
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Figure 7-9. Computational time versus model size ratio (the DEM time step is 5.010-7 s)

Figure 7-9 illustrates the computational time required in simulating debris flows with

various model size ratios. It can be observed that the computational time increases slowly

with the model size ratio, when [S] is smaller than 50, while it increases quickly as [S]

becomes larger than 50. In addition, for the same value of model size ratio, the

computational time decreases with the Reynolds number. This effect is particularly evident

for large values of [S]. For a granular column with aspect ratio of 2.0, Li of 0.1 m (i.e. [S] =

100), it could consist of more than 50,000 particles, which would place a heavy burden on

the current computational resources (e.g. simulation time can be more than 7 days). The

situation becomes even worse for simulations using large granular columns. As this study

aims to study the general mechanical and hydraulic behaviour of submerged debris flows,

the model dimensions are limited to small values, such that the initial column length (i.e. Li)

is fixed as 0.05 m, while the height is scaled up / down according to different column

aspect ratios.
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Since the field investigations always focus on the coefficient of flow mobility (i.e.

max maxL H , with Lmax and Hmax being the maximum runout distance and deposit height),

the following analysis will mainly discuss the relationship between the coefficient of

mobility and model size ratio, as shown in Figure 7-10. It can be observed that the real

landslides normally have size ratios larger than 105, while the numerical models can have

model size ratios up to 200 and the experiments can use model size ratios as large as 2000.

According to Figure 7-10, it can be concluded that on average, the coefficient of

landslide mobility increases with the model size ratio, which suggests that the current small

scale numerical model using the DEM–CFD coupling method can potentially reproduce

the correct behaviour of submerged debris flows, if the model size ratio employed in the

DEM model can increases to a value very close to that of real landslides. However, this

cannot be achieved until extremely efficient computing resources are available.

Figure 7-10 Relationship between model size ratio and coefficient of mobility. The legend

“Simulations” denotes the numerical simulations; “Real” denotes the site investigations (the source

data can be found in Appendix 2); “Experiments” denotes the laboratory experiments (source:

Lajeunesse et al. (2005); Lube et al. (2005))
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7.4.4 Influence of characteristic strain and Reynolds number

The dimensions of real submerged landslides are far larger than the numerical models. For

instance, the heights of real landslides can exceed 1000 metres, while the size of current

numerical models only range from 0.05 to 0.5 meters. In addition, the solid materials

involved in real landslides are diverse, ranging from fine silts to gravel. However, the

current research only focus on the medium and coarse sands. Because of these difference,

some parameters of numerical models should be scaled up / down, so that the values of

dimensionless groups can match those of real submerged landslides. By investigating the

characteristic strain and Reynolds number in Eq.(7.5) and Eq.(7.4), the values of normal

contact stiffness (Kn) and fluid viscosity (μ) can be scaled. As they only appear in these

two dimensionless groups, the scaling will not influence the value of other dimensionless

groups. The parameters estimated from real submerged landslides are listed in Table 7-3.

Table 7-3. Parameters estimated from real submerged landslides

Parameters Unit Values

ρf kg/m3 1000

ρs kg/m3 2650

g m/s2 9.81

Kn N/m 3.0107

H m [10, 3000]

D mm [0.001, 10]

μ Pa·s 0.001

[ε] - [8.110-5, 0.024]

Re - [9.510-4, 950]

The combination of the characteristic strain and Reynolds number encountered in real

submerged landslides is illustrated in Figure 7-11. The numerical model has employed a

granular column with an initial aspect ratio of 3.3. The height of the column is 0.165 m and

the effective particle size (D10) is 2.0 mm. A reasonable range of Re and [ε] were

reproduced, as shown by the red lines in Figure 7-12.
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Figure 7-11. [ε] and Re for real submerged landslides (data cited from Edgers and Karlsrud (1982))
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Figure 7-12. The range of Re and [ε] in numerical simulations

Several discrete points on these lines have been selected as the input parameters of

numerical simulations. If Re and [ε] are very small, very large value of fluid viscosity and

particle contact stiffness will be used. The corresponding numerical simulations require the

use of very small time steps (e.g. t ≤ 10-8 s), so that the numerical stability and accuracy

can be maintained. However, this requirement would increase the total simulation time

significantly, which to some extent is unacceptable in numerical simulations (see Figure

7-7 and Figure 7-9). According to Figure 7-12, the blue line shows the limit of the current
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DEM capability in simulating submerged landslides. The DEM–CFD model can only

reproduce the values of Re and [ε] above the blue line, while it is very difficult to simulate

the submerged landslides in regions below the limiting line.
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Figure 7-13. Comparison between results for different Reynolds numbers

Figure 7-13 compares the depositional morphologies of sediments for samples with

various Reynolds numbers and characteristic strains. On average, the length and height of

the final deposits are unaffected by the characteristic strains for a specific Reynolds
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number, which indicates that granular columns with different dimensions would result in

similar depositional profiles. This phenomenon effectively reflect the behaviour of slowly

slumped debris materials, in which the fluid viscous drag forces and inter-particle frictions

are significant in controlling the deposition of debris materials. Figure 7-13(a) also

indicates that the normalized runout distance is very sensitive to the Reynolds number. At

a specific value of characteristic strain, [L] increases gradually with Re, while it remains

constant if Re is larger than 800. Due to the limitation of computational power, the

Reynolds numbers in the current study are larger than 8.48, which effectively reveals the

sedimentary behaviour of relatively coarse grains.

7.4.5 Influence of material internal friction angle

According to the discussion in Chapter 4, any combination of the microscopic inter-

particle friction angle and rolling resistant parameters can produce a unique value of

material internal friction angle, which influence the depositional behaviour of granular

materials significantly. The relationship between the runout distance, deposit height and

material internal friction angle is shown in Figure 7-14.

As shown in Figure 7-14, the normalized runout distance decreases, while the final

deposit height increases gradually with the material internal friction angle. When compared

with the dry granular flows, the submerged debris flows have smaller values of [L] and

larger values of [H], under the same initial model configurations. The presence of water

would damp the dynamics of debris flows significantly, so that the solid mass would

deposit near the toe of the slope, leading to a short runout distance and large deposit height.
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Figure 7-14. Influence of material internal friction angle on granular depositional morphology

7.5 Mechanical and Hydrodynamic Analyses

To investigate the mechanical and hydraulic behaviour of submerged debris flows, the

solid and fluid properties, such as grain velocity, force chain and stress distribution and

fluid excess pore water pressure, will be analysed. The input parameters for the DEM-CFD

coupling simulations are listed in “SS2” of Appendix C.
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7.5.1 Evolution of particle velocity field

In the dimensional analyses, the particle velocity is normalized by the relative settling

velocity of a single particle with a diameter of D10 by Eq.(6.21) (i.e. v0 = 0.28 m/s). To

visualize the evolution of particle velocity field, the velocity vectors have been scaled by

the magnitudes of velocities, as shown in Figure 7-15.

Figure 7-15. Evolution of grain velocities (the black curves represent granular profiles)

At the beginning of the submerged debris flow, the upper grains fall downwards and

spread horizontally. The maximum granular velocity occurs in a triangular wedge zone in

the upper front region. In the bottom region, the particle velocity remains as zero during
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the simulation. During the simulation, the normalized particle velocity can be as large as

2.0, indicating the grains can move faster than the constant relative settling velocity of a

single particle with diameter D10.

When compared with the particle velocity field of dry granular flows, the solid grains

move much slower in the submerged environment. This phenomenon can be explained by

the fact that during the submerged debris flow, the grain velocity is mainly controlled by

the viscous drag force exerted by fluid on debris materials. As the fluid viscous drag force

is proportional to the square of the velocity, any high velocity initially acquired from the

collapse of granular column will be rapidly lost (Norem et al., 1990).

7.5.2 Fluid velocity field

During the simulation, the fluid velocity is generated by the viscous drag forces of the

fluid-solid interactions. The evolution of fluid velocity field (plotted as vectors) is shown

in Figure 7-16. As the granular materials fall downwards and spread horizontally, the fluid

motion occurs exactly in the same region as the moving grains. The magnitudes of the fluid

velocities are almost the same as the particle velocity fields shown in Figure 7-15. During

the debris propagation process, the fluid circulation phenomenon occurs near the slope

surface, as represented by the flow vector at the normalized time of 4.3, 6.5, 8.7 and 13.0.

At the end of the granular deposition process, the solid materials stop moving, while very

small fluid velocity still exists near the slope surface. This phenomenon can be used to

explain the sediment transport process near the seabed, that very fine solid grains can be

entrained in the ocean currents and transported to travel very long distances.
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Figure 7-16. Evolution of fluid velocity (the black curves represent granular profiles)

7.5.3 Relative velocity between particle and water

As discussed in Chapter 6, the generation of excess pore pressure depends mainly on the

relative velocity between fluid and solid particles. The evolution of the relative velocities

during the submerged debris flow is illustrated in Figure 7-17. On this graph, the solid

grains are set with different colours according to the magnitudes of relative velocities, so

that the distribution of relative velocity fields can be clearly identified. It can be observed

that the relative motion between solid and fluid phases mainly occur near the slope surface,

while the materials remain static in the bottom region.
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Figure 7-17. Evolution of the relative velocity field between particle and water

As the driving force of the submerged debris flow is mainly the gravity of solid

particles, these grains would settle in water for a certain distance until the constant relative

settling velocities can be reached (see Section 6.2.1). For the small scale model, the height

of the column is very short, such that the grains cannot settle freely for this distance,

because they would collide with the floor or the deposited grains. According to Figure 7-17,

the magnitude of the relative velocities are smaller than 50% of the constant relative

settling velocity of a single particle, indicating that none of these grains can reach the

steady settling state. Therefore, the small scale numerical models used in the current study

cannot produce high excess pore pressure during the submerged debris flows.
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7.5.4 Distribution of excess pore water pressure

The use of small scale DEM samples in modelling submerged debris flows makes it very

difficult to distinguish the dilative and contractive deformation of soil mass accurately.

However, it is possible to investigate these zones by studying the distribution of excess

pore water pressures, because the excess pore water pressure is very sensitive to sample

deformations. As discussed in Chapter 2, the positive excess pore water pressure occurs in

the shear contraction zones, while the negative pore water pressure exists in the shear

dilation zones. Thus, by investigating the distribution of excess pore water pressure within

the granular assembly, it is possible to get the correct patterns of soil deformation. This

technique is only valid inside the soil mass, while near the slope surface, it only reflects the

relative motion between solid grain and fluid.

Figure 7-18 illustrates the evolution of granular profiles and the corresponding excess

pore water pressures. Initially, a static granular pile is generated underwater and the excess

pore water pressure is zero within the sample. Once released, the upper grains fall

downwards and the bottom grains move horizontally. Thus, the bottom front part of the

sample is in compression, while the upper region is in dilation. The excess pore water

pressures are positive and negative in those regions, respectively. As the upper grains

continuously collide with grains in the bottom, the bottom region of the granular mass

contracts gradually, maintaining positive excess pore water pressures. After [T] = 6.54, the

horizontal spreading of grains is dominant, such that the dilative zone of the sample mainly

occurs at the moving front, in which the excess pore water pressures are mainly negative.

Meanwhile, the slowly moving or static region of the granular sample consolidate very

little, leading to very small variation of excess pore water pressures within the granular

assembly. Throughout the simulation, the maximum normalized excess pore water pressure

is 0.04, which is far smaller than the characteristic effective stress of the granular sample.

Thus, the small scale submerged debris flows cannot be mobilized to run a long distance.
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Figure 7-18. Evolution of excess pore water pressure (the black curves represent granular profiles;

“u” represents the excess pore water pressure, “p0” is the effective soil stress defined as:

( )0 (1 ) s f ip n gH    )

7.5.5 Evolution of force chains

As discussed in Chapter 5, the contact forces between particles can be visualized by using

graphs of force chains. In Figure 7-19, the magnitudes of particle contact forces are

normalized by the characteristic contact force   ( )( )( )2(1 )c s f iF F n gH D    .
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Figure 7-19. Evolution of force chains during the simulation

Before the initiation of debris flows, the granular assembly remains static and large

contact forces are found near the bottom of the granular column, where the overlaying

solid weight is large. Near the upper surface of slope, the packing is very loose, so that the

force chains are very thin. Once released, the solid grains near the initial confining wall

collapse downwards immediately onto the ground floor and spread horizontally. The
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contact forces at the moving front decrease quickly to very small values. The large contact

forces mainly concentrate within the static granular pile region, with their orientations

direct parallel to the sliding surface. At the end of the simulation, the contact forces

between grains at the deposit surface is negligibly small, while the large contact forces

occur mainly near the ground floor with their orientations direct approximately parallel to

the sliding surface.

7.5.6 Distribution of effective stress

As discussed in Chapter 2, the failure and mobility of debris materials depends highly on

the effective stress within the granular sample. To analyse the evolution and distribution of

effective stresses in the current DEM model, the stress tensor has been defined by invoking

the micro-macro averaging technique (Thornton and Antony, 2000), as discussed in

Chapter 3. In the current section, the contour of major principal stress (normalized by the

characteristic effective stress of the initial granular column ( )( )0 (1 ) s f ip n gH    )

is illustrated in Figure 7-20.

At the beginning of the simulation, the effective stress increases linearly with the

column depth. Once the confining wall is removed, the effective stresses near the front

surface of the column are released simultaneously (e.g. at [T] = 2.18) and the high effective

stresses concentrate mainly in the static pile region of the granular assembly. At the end of

the simulation, a thin and loose grain layer is formed on the ground floor with effective

stresses being smaller than 0.25. Throughout the simulation, the peak value of effective

stress is observed in the static pile region, while the minimum value occurs near the slope

surface. The variation of effective stress within the granular assembly against time is

illustrated in Figure 7-21. According to Figure 7-21, the maximum normalized value of

effective stress is 0.92, which can match the theoretical value ( = 1.0) well. When
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compared with the excess pore water pressure generated during the submerged debris

flows (see Figure 7-18), it is clear to observe that the normalized excess pore water

pressure can only amount to approximately 4% of the effective stress, which is too small to

mobilize the granular materials to run a long distance.

Figure 7-20. Distribution of effective stresses with the granular assembly (the black curves

represent granular profiles)
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Figure 7-21. The maximum effective stress measured during the simulation

7.5.7 Distribution of bulk coordination number

The packing state of granular assembly can be visualized by the distribution of bulk

coordination numbers, as illustrated in Figure 7-22. At [T] = 0.0, the whole granular

sample is static, such that all the particles are in contact with each other. The average bulk

coordination number within the sample is around 6.5. The maximum bulk coordination

number (i.e. 7.0) is found at the bottom of the column, while the minimum coordination

numbers occur near the boundary in which solid grains are partly in contact with the rigid

walls. After the initiation of debris flow, the bulk coordination number of grains near the

sliding interface is relatively small, as shown by the enclosed dashed curves at [T] = 4.36

and [T] = 8.72. In these regions, intensive dilative deformations occur, leading a quick

decrease of particle contacts. Additionally, the low coordination region is also observed at

the slope surface where the solid grains are in dynamic motion. As the debris flow

propagates horizontally, the granular materials can finally form a static deposit on the floor,

in which the value of coordination number increases with the depth of the granular deposits.
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Figure 7-22. Evolution of the bulk coordination number of the granular assembly (the black curves

represent granular profiles)

7.5.8 Evolution of the runout distance and deposit height

The evolution of debris runout distance and deposit height for different granular columns

are displayed in Figure 7-23. In these graphs the duration time of the simulation is defined

as   ( ) ( )2gD 18s f iT t L    , such that it is clear to compare the absolute duration time

for different granular columns. According to Figure 7-23, it can be observed that different

granular columns present similar depositional behaviour. The final normalized runout
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distance and deposit height increase with the initial column aspect ratios. During the

submerged debris flows, the dynamic motion of grains would go through four transient

stages: initial acceleration, a phase of approximately constant velocity followed by

deceleration and the final stage of static granular deposition. The small granular columns

can reach each stage earlier and takes less time for each stage than the large columns.
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Figure 7-23. Evolution of debris runout distance and height during simulations



197

7.6 Modelling of Large Scale Landslides

As discussed in the previous sections, the simulation of submerged debris flows using

small scale numerical models can reproduce the same grain settling time as that in real

submerged landslides. However, it is impossible to get the consolidation time correct due

to the limited number of grains used in the simulation. Consequently, the induced excess

pore water pressure is very small and unable to mobilize the debris materials to travel a

long distance. The difference between the numerical and field observations is believed

result from the use of small scale numerical models, such that the model size ratio is far

smaller than those of real submerged landslides. To overcome this difficulty, a modified

scaling relationship of drag force is provided in this section, which is expected to reveal the

correct grain sedimentation and consolidation mechanisms in modelling submerged debris

flows. In the DEM model, the width of the initial granular column are chosen as 50 metres,

while the height can range from 50 to 300 metres. The diameters of solid grains are set

within the range of [1.8, 3.8] metres, such that the total number of particles (i.e. 20000) in

the model is acceptable for the current computational power and memory capacity.

According to Chapter 6, the particle size is closely related to the hydraulic properties

of soil. To make sure the large grains used in the current analyses can reproduce the correct

hydraulic behaviour of soil, it is assumed that one large particle represents a clump of real

sized sand grains. A schematic view of the real submerged slope is shown in Figure 7-24.

Figure 7-24. Schematic view of real submerged slope and a clump of fine sediments
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The diameters of the scaled and real sand grains are denoted as D and d. Thus, the

total number of particles (N) in the clump can be approximated as:

3

3

D
N

d
 (7.17)

The fluid viscous drag force acting on a clump of fine grains is written as the

summation of the drag forces acting on individual grains in Eq.(7.18).

( )
2 3

1

3

1

2 4
d d f

d D
F C n

d


     U V U V (7.18)

The drag force acting on a scaled particle is calculated in the DEM-CFD coupling code as:

( )
2

11

2 4
d d f

D
F C n 

     U V U V (7.19)

Thus, the drag force calculated by Eq.(7.19) should be scaled up by a factor (α), such

that it equals that calculated by Eq.(7.18).

d d

d d
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F dC

 
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  
 

(7.20)

Since Cd and χ are functions of fluid Reynolds number, Eq.(7.20) can be reduced to

D d  if Re is chosen the same for these two terms (see the input parameters in

Appendix C). The hydrostatic forces acting on a scaled particle and a clump of sand grains

are the same, because it is determined only by the volume of solid materials. It is also

worth noting that the other parameters for the real and scaled particles are shown in

Appendix C, so that realistic soil properties can be modelled in the numerical simulations.

This method of scaling up the particle diameter is referred to in the literature as particle

“coarse graining” or “parcel-based” approach, is increasingly used in DEM simulations

(Radl et al., 2011; Hilton and Cleary, 2012; Sakai et al., 2012; Baran et al., 2013).

The loose and dense samples are prepared according to the following procedures:

(i) Loose sample: DEM spheres of diameters in the range of [1.8, 3.8] metres are

generated randomly by ESyS-Particle, using the model configuration in Figure
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7-1. The width of the prism is set as 50 m, while the length of the periodic cell is

30 m. The column height can range from 50 to 300 m for different aspect ratios.

The total number of grains ranges from 5000 to 25,000 and the porosity is 0.49.

(ii) Dense sample: Once the generation of a loose sample, gravity is applied to all

particles. After the gravitational deposition, a dense sample is obtained. The

porosity of the dense sample is 0.34.

For the following analyses, the input parameters of the simulations using the DEM-

CFD coupling algorithm are listed in “LS1” and “LS2” of Appendix C.

7.6.1.1 Determination of numerical time step

After obtaining the loose and dense samples, the simulations of granular column collapse

are conducted to investigate the mechanical and hydraulic behaviour of debris flows.

Based on Eq.(4.1), the critical time step for the granular system consisting of scaled large

grains using linear-spring contact model is calculated as 0.02 s. However, since the drag

forces have been artificially scaled up, a smaller numerical time step should be used in the

simulation, in view of the following two considerations:

(i) During the gravity driven debris flows, the viscous drag force acting on a single

solid particle should be smaller than the gravity force, such that the simulation is

stable. If a large time step is used, the change of particle velocity within one

iteration step might result in a rapid increase of viscous drag force. An artificial

scaling up of this drag force can possibly make it exceed the gravity force. The

resultant unbalanced force acting on an individual particle may cause it to move

unrealistically. Consequently, the simulation would go unstable.

(ii) A large time step can also cause numerical inaccuracy during the simulation. As

discussed in Chapter 4, the numerical integration errors generated in the DEM

would inevitably violate the energy conservation of a granular system.



200

To explore these two considerations, simulations of undamped granular collision by

the DEM and the submerged debris deposition by the DEM-CFD coupling method have

been performed. For the first simulation, the model configurations are similar to those

presented in Chapter 4, while the scaled particle diameters are used. The numerical results

are presented in terms of the kinetic energy of the whole granular system for simulations

using different time steps, as shown in Figure 7-25. It can be observed that only the

simulations using a time step smaller than 10-4 s can satisfy the energy conservation

criterion. Thus, the critical time step of the DEM collision model is chosen as10-4 s.
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Figure 7-25. The kinetic energy of the granular system

For the second simulation, the deposition of granular materials in the submerged

environment (i.e. Figure 7-1) is simulated using the DEM-CFD coupling method. The

kinetic energy of the granular assembly is recorded for simulations with various time steps.

According to Figure 7-26, it can be observed that the kinetic energy of the granular system

increases gradually as the grains deposit continuously onto the floor. In this process, the

relationship between the kinetic energy and simulation time is the same for simulations

using different time steps. As the grains can collide with each other, the simulation

becomes unstable if the time step is larger than a critical value, as represented by a sudden

increase of the total kinetic energy of the granular system. For simulations using time steps
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smaller than the critical value, the total kinetic energy would initially increase and then

decease gradually, due to the deposition of granular materials. The critical time step for

simulations with α = 100 is 10-5 s, while for α = 1000, it is 10-6 s, as illustrated in Figure

7-26 (a) and (b). This suggests that the critical time step may be inversely proportional to

the scaling factor, which is consistent with the hypothesis that the instability of the DEM-

CFD simulation is due to the viscous force becoming excessively large in a iteration step.
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Figure 7-26. Determination of the time step for the DEM-CFD modelling
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Based on the discussions above, the scaling factor (α) of 100 and the numerical time

step of 110-5 s are used in the current analyses. By doing so, the scaled particles can

effectively represent clumps of fine grains of diameters in the range of [0.018, 0.038] m.

Using a standard desktop PC, for the loose and dense samples with initial column aspect

ratio of 3.0, the computational times are 107 and 150 hours, respectively. Although the use

of larger scaling factor (e.g. α = 1000) can allow the modelling of very fine sediments, the

computational time would become inconveniently large. Therefore, as a preliminary study,

the current analysis will only focus on simulations using a scaling factor of 100.

By scaling the drag force with a factor 100, the current numerical model can simulate

the submerged debris flow consisting of 2.51010 solid particles. According to Figure 7-7

and assuming the computational time and the number of grains are linearly related, the

time used in modelling the submerged debris flows with real grain sizes via the DEM-CFD

coupling model can be as large as 4.7107 hours, which is completely unrealistic for

scientific research. Thus, the scaling method used in the current research is a useful tool

that can be used to investigate large scale submerged landslides within realistic timescales.

7.6.1.2 The mobility of large scale submerged landslides

To evaluate the mobility of large sale submerged landslides, granular columns of different

aspect ratios have been used in the DEM-CFD coupling simulations. The numerical results

obtained are compared with those discussed in the dry granular flows and small scale

submerged debris flows, as illustrated in Figure 7-27. It can be observed that the large

scale submerged granular flows present different depositional mechanisms. For dense

samples, the normalised runout distance and deposit height are close to those of small scale

submerged debris flows, with the runout distance rather lower, presumably because of

increased effective stress due to negative pore pressures. For loose samples, the granular

materials have very high mobility, such that they can travel very long distances, forming

very thin and gentle deposit layers. As a result, for granular samples with the same initial
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column aspect ratio (e.g. a > 1.0), the loose samples normally have relatively large

normalized runout distance and small deposit height than other samples. For loose samples

with aspect ratios larger than 6, the mobility of granular materials increases faster than

those of smaller granular columns.
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Figure 7-27. Comparison between small and large scaled simulations

This phenomenon can be used to explain the sediment transport process, in which the

fine grains in the suspensions are entrained by the fluid turbulent currents to travel a long
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distance. In addition, it is also due to the positive excess pore water pressures within the

granular assembly, which reduce the effective stresses and hence increase the flow

mobility. However, at small aspect ratios (e.g. a = 1.0), the granular materials can travel a

relatively short distance, because only a small amount of grains exist in the model, so that

the excess pore water cannot be maintained within the granular assembly. As a result, the

granular materials would quickly deposit on the ground floor, with relatively short runout

distance and large deposit height.

7.6.2 Mechanical and hydraulic behaviour of loose sample

Field investigations have shown that the geological morphology of slopes can be very flat

in the submerged environment. Under transient natural events, such as earthquakes and

volcano eruptions, these slopes could fail within a short period of time due to the impact

forces. The failed solid mass can disintegrate and move along the slope into the deep ocean.

This process of slope failure would produce a very loose granular assembly near the slope

source region. The reported huge submerged landslides mainly occur on slopes with

declivity ranges from 0.01° to 0.5° (Field et al., 1982) and the mobilized solid mass can

slide downwards into the very deep ocean basin, travelling up to 5 km away from the slope

source region (Hühnerbach and Masson, 2004). In this section, the loose granular sample is

used to investigate the behaviour of submerged debris flows, with special focus on slope

deformation, debris velocity, evolution of excess pore water pressure and effective stress.

The input parameters for the related simulations can be found in “LS1” of Appendix C.

7.6.2.1 Evolution of particle velocity field

During the simulation, the particle velocity is normalized by the constant relative settling

velocity of a sand grain (i.e. after using the viscous scaling) according to Eq.(6.21) ( = 1.0

m/s). The deformation of granular assembly and the evolution of particle velocity field
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(plotted as vectors) is shown in Figure 7-28. It can be observed that the maximum

normalized grain velocity is 10 times the constant relative settling velocity. As the debris

flow propagates horizontally, the upper grains suspend in water and move at high

velocities with the fluid currents. For grains in the bottom region, they decelerate gradually

due to the basal friction.

Figure 7-28. Evolution of particle velocity field (the black curves represent granular profiles)

7.6.2.2 Evolution of fluid velocity field

The evolution and distribution of fluid velocity field (plotted as vectors) is shown in Figure

7-29. It can be observed that at the beginning of the simulation, the fluid velocity increases

gradually due to the drag forces occurring when solid grains settle downwards and spread

horizontally. During this process, the fluid velocity field has the same distribution pattern

as the particle velocity field (see Figure 7-28). Meanwhile, a fluid flow vortex occur near

the slope surface, as represented by the circulation of fluid flow. After [T] = 72, the solid
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grains continuously deposit on the floor forming a static granular pile. As a result, the fluid

velocity decreases slowly to zero within the granular deposit, while small fluid velocities

still exist near the slope surface.

Figure 7-29. Evolution of the fluid velocity field (the black curves represent granular profiles)

7.6.2.3 Relative velocity between particle and water

The evolution of relative velocities between particle and water is shown in Figure 7-30. It

can be observed that the maximum relative settling velocity can be three times the constant

relative settling velocity of a single particle, which occurs near the flow surface. As the

relative motion between solid and fluid is mainly controlled by the gradient of pore water

pressure, the region with high velocity has large pressure gradients (see Figure 7-31).

According to the discussion in Section 7.5.3, the distribution of large relative velocity

within the loose granular sample can lead to the generation of high positive excess pore

water pressures, which could increase the mobility of the submerged debris flows.
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Figure 7-30. Evolution of the relative velocity field between particle and water

7.6.2.4 Evolution of excess pore water pressure

The evolution of excess pore water pressure during the submerged debris flow are

illustrated in Figure 7-31. It can be observed that the positive excess pore water pressure

can amount to 35% of the characteristic effective stress of the initial granular column

( )( )0 (1 ) s f ip n gH    , which can effectively increase the mobility of granular

materials in the submerged environment. The induced excess pore water pressure within

the granular assembly is mainly positive, while only a small region of negative excess pore

pressure exists at the front part of sliding solid mass. When compared with the results

obtained from small scale submerged granular flows in Section 7.5.4, the large scale DEM-

CFD coupling model of a loose granular assembly can effectively reproduce high

mobilization features of real submerged landslides (Hampton et al., 1996).
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Figure 7-31. Evolution of excess pore water pressure (the black curves represent granular profiles)

According to Figure 7-31, negative excess pore water pressure is observed in flowing

front of the granular assembly. This phenomenon can be explained by the fact that particles

in the front region move faster than any other grains behind, leading to a gradual expansion

of the granular sample in the horizontal direction. In addition, the grains near the upper

surface of the flow would settle downwards, causing a compression of the granular sample.

Therefore, the combined effect of horizontal expansion and vertical compression of the

sample could produce the distribution of excess pore water pressure shown in Figure 7-31.

However, it is still not clear about the thickness of the negative pressure region and how its

distribution would be for real submerged landslides consisting of millions of grains.

According to the current analyses, two assumptions are proposed as: (1) This region only

exists near the front surface, with a thickness of several grains; (2) The thickness of this

region is proportional to the size of the debris mass. As it is computationally very

expensive to simulate large scale submerged landslides (e.g. a scaling factor of 10,000),

these two competing assumptions have not been explored in this research. However, it is

recommended to carry out related work in future research.
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7.6.2.5 Evolution of effective stress

The evolution of effective stresses within the loose granular assembly is shown in Figure

7-32. At [T] = 0, a loose granular sample is generated within a rectangular prism. As only a

few particle contacts exist in the model, the effective stress within the granular assembly is

close to zero. Once released, grains in the upper region fall downwards, colliding with

grains in the lower region. Thus, the effective stresses would increase gradually at the

bottom. Grains in the upper region would settle slowly in water and the effective stresses

remain as zero. At the end of the simulation, a static and thin granular deposit can form

along the horizontal floor, with the normalized effective stresses smaller than 0.10.

Figure 7-32. Evolution of effective stresses within the granular assembly (the black curves

represent granular profiles)

7.6.2.6 Evolution of bulk coordination number

The distribution of bulk coordination number reflects the packing state of the granular

assembly, as shown in Figure 7-33. At [T] = 0, the loose sample is generated within the
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rectangular prism. As no particle contacts exist in the model, the bulk coordination number

is zero. Once released, the grains fall downwards and collide with each other. As a result,

the bulk coordination number increases with the depth. In the upper region, many grains

remain suspended in water, such that the bulk coordination numbers remain as zero. After

[T] = 90, the granular materials gradually deposit on the floor, forming a static granular

assembly. The corresponding coordination number of the deposit has a maximum value of

7 in the bottom region near the floor, while it is smaller than 2 near the slope surface.

Figure 7-33. Evolution of coordination number of the granular assembly (the black curves represent

granular profiles)

7.6.3 Mechanical and hydraulic behaviour of dense sample

On relatively gentle slopes, the solid mass can fail under slow geological processes, such

as sea-level change and gas hydrate dissociation. These processes are widely observed on

seabed as submarine slumps (Moore, 1961), in which relatively dense sediment blocks can

fail and slide along the submarine slopes. To investigate this process, the dense granular
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sample has been employed in the DEM-CFD coupling simulations in this section, with

regard to the mechanical and hydraulic behaviour of submerged granular flows. The input

parameters for the related simulations can be found in “LS2” of Appendix C

7.6.3.1 Evolution of particle velocity field

During the submerged dense granular flow, the evolution of particle velocity field (plotted

as vectors) is shown in Figure 7-34, in which the normalized particle velocity is defined the

same as that used in Section 7.6.2.1. It can be observed that the upper part of the granular

column would expand when the solid grains fall downwards and spread horizontally, while

the bottom region remains static. When compared with the distribution of particle velocity

field of loose granular sample, the particles in the dense sample move relatively slow. This

can be explained by the fact that the particle velocities acquired from the initial fall of

granular assembly would decrease quickly due to high friction forces between solid grains

and fluid viscous drag forces. In addition, the negative excess pore water pressures

generated during the submerged granular flow can inhibit the motion of solid grains. As a

consequence, the grains would slump slowly on the floor. At the end of the simulation, a

static granular deposit forms near the slope source region with a relatively short runout

distance.
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Figure 7-34. Evolution of particle velocity field (the black curves represent granular profiles)

7.6.3.2 Evolution of fluid velocity field

During the submerged dense granular flow, the evolution of fluid velocity field (plotted as

vectors) behaves similarly to the particle velocity field, as shown in Figure 7-35. It can be

observed that the high fluid velocity occurs near the upper part of the granular column,

which corresponds to the same region where the solid grains fall downwards and move

horizontally, while it is close zero near the bottom of the initial granular column. The

magnitude of the normalized fluid velocity can be as large as 10 which is very close to the

particle velocity. After [T] = 36, the major granular materials deposit on the horizontal

floor. The fluid motion only occurs near the slope surface, while it remains static within

the granular deposit. When compared with the distribution of fluid velocities in the

submerged loose granular flow in Section 7.6.2.2, the fluid flow in the current analysis has

relatively small velocity and no vortex has been observed throughout the simulation.
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Figure 7-35. Evolution of the fluid velocity filed (the black curves represent granular profiles)

7.6.3.3 Relative velocity between particle and water

During the simulation, the relative velocity between particle and water is shown in Figure

7-36. It can be observed that the normalized relative velocity can be as large as 5 at the

propagation stage of the submerged dense granular flow. After [T] = 27, the relative

velocity decreases quickly to be smaller than 2, which occurs mainly near the flow front.
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Figure 7-36. Evolution of the relative velocity field between particle and water

7.6.3.4 Evolution of excess pore water pressure

In the submerged environment, the failure of dense granular assembly would cause the

sample to dilate. As a consequence, negative excess pore water pressures would occur

within the sample and thus inhibit the granular motion, as illustrated in Figure 7-37.
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Figure 7-37. Evolution of excess pore water pressure (the black curves represent granular profiles)

It can be observed that the negative excess pore water pressures mainly occur at the

bottom of the sample, which amount up to 60% of the characteristic effective stress of the

initial granular column. The negative excess pore water pressure occurs in the same region

as the high relative velocity field, as shown in Figure 7-36. Positive excess pore water

pressures occur at the top region due to the gradual sedimentation of upper grains.
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However, their magnitudes are relatively small when compared with the negative excess

pore water pressures. Therefore, the upper grains can slide over the bottom static granular

pile, forming a thick deposit on the ground floor.

7.6.3.5 Evolution of effective stress

The evolution of effective stress within the dense granular assembly is shown in Figure

7-38. At [T] = 0.0, the granular column is densely packed and the effective stress increases

linearly with the column depth. The maximum effective stress occurs at the bottom of the

column, which matches the characteristic effective stress of the initial granular column

well. Once released, the granular materials in the upper region fall downwards, while

grains in the bottom region are pushed to move horizontally. The inertial forces exerted by

the upper grains would place an additional force on particles in the lower region. As a

result, the effective stress increases gradually in the bottom region, while it decreases in the

upper region. As some grains in the upper region can suspend in the fluid without any

contact with other grains, the effective stress there can remain as zero. At the end of the

simulation, a static granular deposit is formed on the ground floor and the magnitudes of

effective stresses within the granular assembly is smaller than 0.25.
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Figure 7-38. Distribution of effective stress within the granular assembly (the black curves

represent granular profiles)

7.6.3.6 Evolution of bulk coordination number

The evolution of bulk coordination number for submerged dense debris flow is shown in

Figure 7-39. As the solid grains are initially in contact, the bulk coordination number

increases with the depth and the average coordination number is around 6. Once released,

the granular assembly would expand to fall downwards and move horizontally, so that the

bulk coordination numbers of the granular sample decrease gradually. As many grains in

the upper region of the sample become suspended in water, the bulk coordination number

there remains as zero. At the end of the simulation, a static granular deposit is formed on

the floor, which has a similar distribution pattern of coordination number as that of the

loose sample (Figure 7-33). The bulk coordination number is smaller than 2 near the slope

surface, while it is around 6 in the slope source region.



218

Figure 7-39. Evolution of coordination number of the granular assembly (the black curves represent

granular profiles)

This section has analysed the different mechanical and hydraulic behaviour of

submerged debris flows and slumps using a modified scaling relationship of drag force in

the DEM-CFD coupling model. The numerical results have been obtained, regarding the

mechanisms controlling the motion of submerged landslides. It can be concluded that the

induced high positive excess pore water pressure can mobilize debris flows, while negative

excess pore water pressure would inhibit the granular motion. Therefore, the submerged

landslides with very long runout distances should be initially loose or become loose during

the disintegrative motion after the slope failure.
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7.7 Conclusions

In this chapter, the DEM-CFD coupling method has been employed to investigate the

mechanical and hydraulic behaviour of submerged granular flows. A set of governing

dimensionless groups have been identified via dimensional analyses. The influence of

these dimensionless groups on the depositional behaviour of granular materials were

analysed, with two main objectives: (i) to provide detailed information of the influence of

micro- and macroscopic dimensionless groups on the submerged debris flows; (ii) to give

insights into the mobilization process of submerged landslides.

In the submerged environment, the small scale submerged granular flows have shorter

runout distances and higher deposit heights than their terrestrial counterparts with the same

model configurations. During the simulation, the excess pore water pressure generated

within the granular assembly of small scale models amount to only a small fraction (i.e.

less than 4%) of the characteristic effective stress of the initial granular column, which is

insufficient to mobilize a large amount of granular materials to run a long distance. The

numerical results also reveal the limitation of the DEM-CFD coupling method that only a

small number of particles can be used in the simulation, due to the extremely high

computational cost. Thus, some fundamental features of real large scale submerged debris

flows cannot be reproduced. For instance, the very fine materials, such as silt, clay and

mud, have been reported be responsible for many huge onshore / offshore landslides on

very gentle slopes (Mitchell and Soga, 2005; Dean, 2009), while the current small scale

numerical model cannot reproduce this feature.

To overcome the limitations of small scale numerical simulations, a modified scaling

relationship of drag force has been employed in modelling large scale landslides. By

choosing relatively large grain diameters and proper scaling factors, the large solid grains

can effectively represent a clump of very fine particles. In this research, the positive excess

pore water pressure within the sample can amount up to 35% of the effective stress of the

submerged slope. As a result, the loose samples can run a very long distance, representing
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the features of real submerged debris flows, while dense samples can only run a very short

distance, revealing the general features of submerged slumps.

This research has successfully identified the general features of submerged debris

flows using the DEM-CFD coupling model. Future work on this subject will be mainly the

improvement of the DEM capability in modelling a wide variety of solid materials,

especially very fine grains, so that a complete study of the mechanical and hydraulic

behaviour of submerged landslides can be made.
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Chapter 8 Conclusions and Recommendations

for Future Work

This chapter presents a summary of the main conclusions reached in this research. The

chief contributions, findings are outlined and suggestions are advanced for future research.

8.1 Summary and Conclusions

In this thesis, the results of a series of numerical experiments using the DEM and CFD

have been presented, with the attempt to clarify the intricate behaviour of large scale

landslide-induced debris flows in the terrestrial and submerged environments. The main

challenge has been identified as the modelling of a variety of solid materials and the use of

correct model size ratio (i.e. the ratio of model size to the mean grain diameter) in

simulating large scale debris flows. In particular, it is still uncertain whether the DEM and

DEM-CFD coupling models are capable of revealing the mechanical and hydraulic

behaviour of debris flows. These problems have been addressed in this thesis through an

investigation of a simple granular column collapse model, regarding the deformation and

dynamic motion of debris flows. Based on this work, the general mechanisms of the

initiation, propagation and deposition of terrestrial and submerged debris flows have been

clarified. In addition, this research has also demonstrated the capability of the DEM and

DEM-CFD coupling methods in analysing the complicated behaviour of granular materials

in the processes of settling and consolidation.

Overall, the main contributions of this research have involved the following studies: (i)

a review of the literature on terrestrial and submerged landslides; (ii) the validation of the
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DEM as a suitable numerical tool to study the realistic soil properties; (iii) the study of the

initiation, propagation and deposition of dry granular flows; (iv) the validation of the

DEM-CFD coupling algorithm as a suitable tool to study the fluid-solid interactions, and

finally (v) the investigation of submerged debris flows using the DEM-CFD coupling. The

key findings from each of these studies are summarized as below.

(i) Review of the literature on terrestrial and submerged landslides

 The classification of terrestrial and submerged landslides has been made based on

the dynamic motion of slope mass. Among various types of landslides, the debris

flow is identified as the most hazardous event due to its high mobility and huge

amount of energy released within a short period of time. To provide some

insights into this field, theoretical, experimental and numerical research have

been reported in the literature. Particular focus has been put on the significant

influence of water on the mobilization of debris flows. It has been observed that

the generation and dissipation of excess the pore water pressures during debris

flows can directly influence the dynamic motion of solid materials.

 Although the experimental research has shed some light on the mechanisms of

debris flows, it is still unable to explain the apparent long runout distance of

submerged landslides, where a large amount of water is present. Thus, the

numerical investigation using the DEM-CFD coupling approach has been

proposed as a possible tool for understanding and predicting the mechanical and

hydraulic behaviour of submerged landslides.

(ii) DEM as a suitable numerical tool to study soil behaviour

 In the DEM mode, a very simple and effective undamped particle collision model

has been employed to determine the numerical time step. By using the critical

time step, the energy of the whole system can remain constant throughout the

simulation. As a damped granular system requires the use of smaller time step

than that predicted by an undamped model, the time step selected is believed to

be applicable in landslide simulations.
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 The motion of real solid grains in debris flows is inhibited by high friction due to

particle friction and interlocking, such that the granular assembly can only travel

a short distance. To consider the particle shape effect, the rolling resistance

contact model has been implemented in the DEM code. Additionally, the soil

strength properties, such as the internal friction angle and angle of repose have

been calibrated via numerical triaxial tests and granular column collapse model.

(iii) Study of the initiation, propagation and deposition of dry granular flows

 A dimensional analysis of a simple granular column collapse model has been

performed, based on which, a set of fundamental dimensionless groups were

formulated. A parametric study was conducted to clarify the influence of these

governing dimensionless groups on the depositional behaviour of debris materials.

In particular, the relationships between the column aspect ratio, characteristic

strain, model size ratio, material internal friction angle and normalised runout

distance, deposit height have been investigated.

 Detailed analyses of the mechanical behaviour of granular flows were conducted

on a specific granular column with aspect ratio of 3.3, regarding the particle

velocity profile, energy evolution, packing state, stress distribution and the

particle mobility.

(iv) Study of the fluid-solid interactions using the DEM-CFD coupling algorithm

 A new parallel data exchange program using the Message Passing Interface (MPI)

has been developed in the original DEM-CFD coupling code (Chen et al., 2011).

 The DEM-CFD coupling algorithm has been validated using two benchmark

numerical simulations: (a) fluid flow through a porous soil sample, and (b)

modelling of grain batch sedimentation. In the first example, the numerical

results have been compared with the empirical correlations proposed by Ergun

(1952) and Trussell and Chang (1999). It has been observed that the relationship

between flow velocity and hydraulic gradient can be linear or parabolic, based on

the Reynolds number of fluid flow. The second example investigates the settling
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behaviour of grains in water. The periodic boundary condition used in the CFD

model can effectively reduce the wall friction effects. Due to the segregation of

grains along the prism depth, coarse grains accumulate at the bottom, while fine

grains deposit on the top surface of sediments. This phenomenon leads to a

gradual change of density gradients and particle size distributions. The evolution

of the fluid–suspension interface and the suspension–sediment interface can

match the theoretical results proposed by Kynch (1952) very well.

(v) Investigation of submerged debris flows

 The granular column collapse model has been used to investigate the mechanical

and hydraulic behaviour of submerged debris flows, based on which, a detailed

dimensional analysis has been performed. The influence of the fundamental

dimensionless groups on the propagation and deposition of debris materials has

been analysed using the DEM-CFD model. Conclusions are drawn with regard to

the ability of the DEM-CFD coupling model to simulate the dynamic motion of

granular materials and hydraulic response of fluid.

 Using the small scale DEM models, the magnitude of excess pore water pressure

generated during debris flows amounts to less than 4% of the effective stress of

the granular assembly, which is not large enough to mobilize debris materials to

run long distances. The limitation is due to the fact that the model size ratio in the

simulation is smaller than the real value, such that the consolidation of sediments

and the induced excess pore water pressure cannot be accurately simulated.

 A modified scaling relationship of drag force has been employed in studying

large scale landslides. By scaling up the particle diameters and drag forces, a

large DEM particle can represent a clump of fine particles. As a result, the

positive excess pore water pressure within the sample can amount up to 35% of

the effective slope stress. Loose granular samples can travel a long distance,

representing the features of real submerged debris flows, while dense samples

can only travel a short distance, revealing the general features of slumps.
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 Based on the current computational resources, the DEM is still unable to simulate

large scale landslides consisting of millions of grains. However, the scaling

method employed in this research can reduce the simulation time significantly.

8.2 Recommendations for Future Work

Based on the summary of the current research, recommendations for future work include:

(i) The numerical model should be able to simulate a wider range of solid materials,

so that the correct mechanical and hydraulic behaviour of debris flows can be

obtained. This requirement would increase the number of grains in the model and

thus increase the computational cost significantly. The simulations in the current

research are mainly run on a desktop PC, in which the maximum number of

DEM particles is 100,000. For simulation with more particles, it is suggested to

use computer clusters to carry out the DEM and DEM-CFD coupling simulations.

(ii) Verification of the capability of the modified DEM-CFD coupling model in

investigating large scale submerged debris flows (see Chapter 7) using more

powerful computational resources is recommended. In particular, the combined

effects of horizontal expansion and vertical compression of the debris mass on

the distribution of excess pore water pressures remain to be explored.

(iii) The modelling of free water surface and unsaturated soil sample will be

challenging tasks for investigating debris flows. To accomplish these tasks, the

Volume of Fluid (VOF) and capillary force model could be implemented in the

current DEM-CFD coupling program.

(iv) Simulations considering the typography of slopes are needed in evaluating the

potential risks of real landslides. In particular, case studies of debris flows should

be performed using the DEM and DEM-CFD coupling methods.
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Appendix A Summary of the Selected Landslides

Terrestrial non-volcanic landslides

Name Lmax (km) Hmax (km) V (km3) Reference

Blackhawk 9.6 1.2 0.28 Hayashi and Self (1992)

Corno di desde 3.7 1.2 0.02 Hayashi and Self (1992)

Deyen, Glans 6.6 0.74 0.6 Hayashi and Self (1992)

Diaberets 5.5 1.9 0.05 Hayashi and Self (1992)

Disentis 2.1 0.74 0.015 Hayashi and Self (1992)

Elm 2.3 0.71 0.01 Hayashi and Self (1992)

Engelberg 7.4 1.6 2.75 Hayashi and Self (1992)

Fernpass 15.6 1.4 1 Hayashi and Self (1992)

Flims 15.6 2 12 Hayashi and Self (1992)

Frank 3.5 0.87 0.03 Hayashi and Self (1992)

Garnish 7.5 1.9 0.8 Hayashi and Self (1992)

Goldau 6 1.2 0.035 Hayashi and Self (1992)

Gros Ventre 3.4 0.56 0.038 Hayashi and Self (1992)

Kandertal 9.9 1.9 0.14 Hayashi and Self (1992)

Maligne Lake 5.47 0.92 0.5 Hayashi and Self (1992)

Medicine Lake 1.22 0.32 0.086 Hayashi and Self (1992)

Madison 1.6 0.43 0.029 Hayashi and Self (1992)

Mombiel 0.8 0.37 0.0008 Hayashi and Self (1992)

Obersee GL 5 1.8 0.12 Hayashi and Self (1992)

Pamir 6.2 1.5 2 Hayashi and Self (1992)

Poshivo 4.1 1.5 0.15 Hayashi and Self (1992)

Saidmarreh 18.9 1.5 20 Hayashi and Self (1992)

Schachental 3.1 1.8 0.0005 Hayashi and Self (1992)

Scimada Saoseo 5.5 1.5 0.08 Hayashi and Self (1992)

Sherman 6.2 1.3 0.03 Hayashi and Self (1992)

Siders 17.4 2.4 1.5 Hayashi and Self (1992)

Tamins 13.5 1.3 1.3 Hayashi and Self (1992)

Voint 1.5 0.5 0.25 Hayashi and Self (1992)

Val Lagone 2.4 1.05 0.00065 Hayashi and Self (1992)

Voralpsee 3.4 1.1 0.03 Hayashi and Self (1992)

Wengen 1 1.1 0.5 0.0025 Hayashi and Self (1992)

Wengen 2 1.4 0.59 0.0055 Hayashi and Self (1992)
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Terrestrial volcanic landslides

Name Lmax (km) Hmax (km) V (km3) Reference

Akagi 19 2.4 4 Hayashi and Self (1992)

Asakusa 6.5 1 0.04 Hayashi and Self (1992)

Asama 20 1.8 2 Hayashi and Self (1992)

Bandai-san 1888 11 1.2 1.5 Hayashi and Self (1992)

Bezymianni 1956 18 2.4 0.8 Hayashi and Self (1992)

Callaqui 15 3.1 0.15 Hayashi and Self (1992)

Chaos Crags 5 0.65 0.15 Hayashi and Self (1992)

Chimborazo 35 3.6 8.1 Hayashi and Self (1992)

Chokai 25 2.2 3.5 Hayashi and Self (1992)

Colima 40 4 12.5 Hayashi and Self (1992)

Egmont (Opua) 27 2.5 0.35 Hayashi and Self (1992)

Egmont
(Pungarehu)

31 2.6 7.5 Hayashi and Self (1992)

Fuji 24 2.5 1.8 Hayashi and Self (1992)

Galunggung 25 1.9 2.9 Hayashi and Self (1992)

Iriga 11 1.05 1.5 Hayashi and Self (1992)

Iwaki 14 1.6 1.3 Hayashi and Self (1992)

Jocotitlan 12 1.15 2.8 Siebe et al. (1992)

Komagatake 11.5 1 0.25 Hayashi and Self (1992)

Kurohime 6 0.8 0.12 Hayashi and Self (1992)

Mageik 9 0.8 0.09 Hayashi and Self (1992)

Mawenzi 60 4.5 7.1 Hayashi and Self (1992)

Meru 50 3.9 15 Hayashi and Self (1992)

Monbacho 12 1.3 1 Hayashi and Self (1992)

Mt. S. Helen 1980 24 2.55 2.5 Hayashi and Self (1992)

Myoko
(Sekikawa)

19 2 0.8 Hayashi and Self (1992)

Myoko (Taguchi) 8 1.4 0.23 Hayashi and Self (1992)

Ovalnaya Zimina 17 2.4 0.4 Hayashi and Self (1992)

Papandayan 11 1.5 0.14 Hayashi and Self (1992)

Peteroa 85 3.9 16 Hayashi and Self (1992)

Popa 11 1.2 0.8 Hayashi and Self (1992)

Popocatepetl 33 4 28 Hayashi and Self (1992)

Shasta 50 3.55 26 Hayashi and Self (1992)

Shiveluch 12 2 1.5 Hayashi and Self (1992)

Sierra Velluda 25 3.4 0.5 Hayashi and Self (1992)

Socompa 35 3.25 17 Hayashi and Self (1992)

Soufriere
Guadeloupe

9.5 1.35 0.5 Siebert (1984)

St. Helens 16 1.75 1 Siebert (1984)

Tashiro 8.8 0.7 0.55 Hayashi and Self (1992)
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Terrestrial volcanic landslides

Name Lmax (km) Hmax (km) V (km3) Reference

Tateshina 12.5 1.4 0.35 Hayashi and Self (1992)

Unzen 6.5 0.85 0.34 Hayashi and Self (1992)

Usu 6.5 0.5 0.3 Hayashi and Self (1992)

Vesuvius 1944 0.64 0.575 0.000179 Hazlett et al. (1991)

Vesuvius 1945 0.94 0.505 0.0009 Hazlett et al. (1991)

Vesuvius 1946 0.5 0.285 0.00055 Hazlett et al. (1991)

Vesuvius 1947 0.96 0.47 0.000793 Hazlett et al. (1991)

Vesuvius 1948 1.24 0.636 0.001 Hazlett et al. (1991)

Vesuvius 1949 0.68 0.36 0.0011 Hazlett et al. (1991)

Vesuvius 1950 0.82 0.41 0.00116 Hazlett et al. (1991)

Yatsugatake
(Nirasaki)

32 2.4 9 Hayashi and Self (1992)

Yatsugatake
(Otsukigawa)

12.5 1.4 0.27 Hayashi and Self (1992)

Submarine landslides

Name
Lmax

(km)
Hmax

(km)
V

(km3)
Slope (°) Material Reference

Alika-1 105 5.3 1800 15-20
Sandy silt,

gravel
Hürlimann et al. (2001)

Alika-2 95 4.8 300 Normark et al. (1993)

A1 370 1.7 250 Lipman et al. (1988)

A2 160 1.5 22 Lipman et al. (1988)

A3 140 1.4 8.5 Lipman et al. (1988)

A4A 130 1.3 320 Lipman et al. (1988)

A4B 400 2 320 Lipman et al. (1988)

Afen slide 12 0.14 0.7-2.5 Wilson et al. (2004)

Agulhas 106 0.38 Hampton et al. (1996)

Albatross Bank 5.3 0.3 7 Prior and Coleman (1979)

Alsek 2 0.02 1.3 Schwab and Lee (1993)

Atlantic Coast 3.4 0.03 3.8 Prior and Coleman (1979)

Bassein 215 2.2 800 6 Moore et al. (1976)

Bay of Biscay 21 0.25 Prior and Coleman (1979)

Blake
Escarpment

42 3.6 600 8.6 Dillon et al. (1993)

California 3.5 0.15 0.25 1-10 Sandy silt Edgers and Karlsrud (1982)

Canary debris
flow

600 3 400 0-1
Volcanic
sediment

Masson et al. (1998)

Cape Fear 30 0.7 4.2 Popenoe et al. (1991))

Copper river
delta

18 0.115 24 1 Muddy sand Edgers and Karlsrud (1982)

East Break East 70 1.15 13 1.5 McGregor et al. (1993)

East Break West 110 1.1 160 1.5 McGregor et al. (1993)
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Name
Lmax

(km)
Hmax

(km)
V

(km3)
Slope (°) Material Reference

El Golfo
avalanche

65 165 1-10
Volcanic
sediment

Masson (1996)

Grand Banks 110 5 200 3.5
Glacigenic
sediment

Fine et al. (2005)

Helsinki Harbour 0.4 0.011 6E-06 Sand / Silt Prior and Coleman (1979)

Icy Bay 12 80 32 0.4 Clayey silt Lee and Edwards (1986)

Kae Lae slide 60 5 40 Lipman et al. (1988)

Kayak Trough 15 0.15 5.9 1 Clayey silt Carlson and Molnia (1977)

Kidnappers
Slump

11 0.2 8 1 - 4
Sandy silt and

clay
Lewis (1971)

Kitimat slide 6 0.2 0.2 Fine sand Prior et al. (1984)

La Orotava
valley

15 2.2
Volcanic
sediment

Hürlimann et al. (2001)

Magdalena Delta 24 1.4 0.3 2 Clayey silt Shepard (1973)

Messina 220 3.2 0.001 1.5-2.5 Sand/Silt Billi et al. (2008)

Mid. Alb. Bank 5.3 0.6 19 Silty clay Hampton et al. (1996)

Mid. Atl. Cont. 3.5 0.3 0.4 Sand, Silty clay Lewis (1971)

Mississippi
River delta

0.02 0.04 0.5 Edgers and Karlsrud (1982)

Molokai slide 130 5.2 1100 Lipman et al. (1988)

Navarin Canyon 6 0.175 5 3 Carlson et al. (1993)

Nuuanu slide,
Hawaii

230 5 5000 0-5 Volcanic rock Moore et al. (1989)

Oahu slide 180 5.5 1800 Lipman et al. (1988)

Orkdalsfjord 22.5 0.5 0.025 3.5 Sand / Silt Prior and Coleman (1979)

Paoanui 70 200 1 1 - 6 Volcanic ash Lewis (1971)

Portlock Bank 6.5 0.2 4 Prior and Coleman (1979)

Ranger 37 0.8 20 3 Clayey silt Normark (1974)

Rockall 160 0.33 300 2 Prior and Coleman (1979)

Sagami Wan 70 11 Edgers and Karlsrud (1982)

Sandnesjoen 1.2 0.18 0.005 Edgers and Karlsrud (1982)

Santa Barbara 2.3 0.12 0.02 4.8 Silty clay Edwards et al. (1993)

Scripps Canyon 0.006 5E-5 7 Edgers and Karlsrud (1982)

Seward 3 0.2 0.003 25 Hampton et al. (1993)

Sokkelvik 5 0.1 0.005 Quick clay, sand Edgers and Karlsrud (1982)

Spanish Sahara 700 3.1 600 0.05-1.6 Pelagic sediment Gee et al. (1999)

Storegga slide 810 1.7 2400 1.4-0.05 Haflidason et al. (2004)

Sur 70 0.75 0.5 10
Gutmacher and Normark

(1993)

Suva, Fiji 110 1.8 0.15 3 Sand Rahiman et al. (2007)

Tenerife Island 100 3.7 1000 5-10
Sandy silt,

gravel
Watts and Masson (1995)

Tristan de Cunha 50 3.75 150 Holcomb and Searle (1991)

Valdez 1.28 0.17 0.075 6 Gravelly sand Edgers and Karlsrud (1982)

Wil. Canyon 60 2.8 11 8.6 Silty clay Edgers and Karlsrud (1982)
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Appendix B Calculation of Porosity

As each fluid mesh cell is a fixed and enclosed space, the solid particles may move across

the fluid mesh boundaries frequently during the simulation. The approach to calculate the

porosity of a fluid mesh cell only accounts for the solid volume of a particle when its

centre lies within that mesh cell. However, this method is not accurate, as the solid spheres

can be intersected by the mesh boundaries. One assumption is that the bounding surface of

fluid mesh cells can deform so that they never cut through the dispersed particles (Brennen,

2005). However, it is very difficult to do so in a fixed grid Eulerian fluid domain. In Figure

B-1(a) and (b), two different granular packing patterns can be identified, while Figure B-

1(c) illustrates the intersection between one solid particle and a plane. In Figure B-1(a), all

particles are packed within the fluid mesh cells and the porosity can be calculated as:

( )
1

1
pN

f s f si f
i

n V V V V V


    (B-1)

where n is the porosity; Vf is the volume of the mesh cell; Vs is the total volume of the

solid grains; Vsi is the volume of a single particle i; Np is the number of particles.

Figure B-1. The particle packing state in fluid mesh cells

In Figure B-1(b), the fluid cell boundary plane intersects some solid particles. For

particles at the boundary, the exact solid volume locating inside the fluid mesh cell should
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be calculated. Assuming the fluid mesh boundary intersects Mp particles and denoting the

solid volume outside the mesh cell of a single particle j as Voj, the porosity is calculated as:

( )
1 1

1
P PN M

f s f si oj f
i j

n V V V V V V
 

 
     

 
  (B-2)

In Figure B-1(c), the volume V1 is calculated as:

( ) ( )
2 3

1

1

3
V R R h R h     (B-3)

In a 3D model, the intersection patterns can be categorized into three fundamental

cases, as shown in Figure B-2.

Figure B-2. The solid-fluid intersection patterns

In the following illustrations from Figure B-3 to Figure B-5, the projected relative

locations of sphere and fluid mesh cell boundaries are represented by circles and straight

lines. The shaded areas are used to show the solid volumes intersected by the boundaries.

In case A, the projection of the sphere and plane in three different directions are:

Figure B-3. The projections of intersection pattern A
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For case B and C, according to the relative positions of the planes in space, several

sub-intersection patterns can be identified:

(a) Case B, pattern a

(b) Case B, pattern b

Figure B-4. The projections of intersection pattern B

(a) Case C, pattern a
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(b) Case C, pattern b

(c) Case C, pattern c

(d) Case C, pattern d

Figure B-5. The projections of intersection pattern C

From the discussions above, it can be observed that the intersection between the fluid

mesh cell boundaries and solid particles can be different according to the relative location

of the solid particle and fluid mesh cell boundaries. To get the accurate values of porosity

for each fluid mesh cell, it is highly necessary to calculate the accurate solid volume for

each part of intersected solid volumes. In the following sections, the analytical equations

used to calculate the solid volume in case B(a) is derived.
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Figure B-6. The three-dimensional view of intersection pattern B(a)

Figure B-7. The projections of intersections

The volume of the coloured region in Figure B-6 is represented by the diagram shown

in Figure B-7. The parameters a and b are the distance from the sphere centre to the y-z

and x-z coordinate planes. The solid volume is expressed in an integral form, as:

( )
2 2 2 2 2

2 2 2

2 21
R a b r a

R a b b
V r y a dy dz
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  

 
   

 
  (B-4)

where 2 2r R z  is the radius of the intersection circle at the height of z.

The inner integration of Eq.(B-4) is expressed as:

( )
2 2 2

2 2 2
R a z

b
R z y a dy

 
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2 2 2

2 2
2 2 2

2 2
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2 2
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b

y R z y
R z y ay

R z

 
 
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 



249

2 2 2 2 2
2 2 2 2 2 2

2 2

2 2
2 2 2

2 2

arcsin a
2 2

arcsin
2 2

a R z R a z
R a z R a z

R z

b R z b
R b z ab

R z

  
      




    



(B-5)

Since
2 2 2 2

2 2 2 2 2 2
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Thus, the integration Eq.(B-5) becomes,
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2 2 2 2
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Thus, Eq.(B-4) becomes,

2 2 2
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The integration in Eq.(B-8) cannot be done analytically. Thus, the numerical Gauss-

Legendre integration method will be used, as shown below.

First, let

( )
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2 2
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(B-9)

Then, let
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Thus, Eq.(B-8) becomes,

( )1

B

A
V F z dz  (B-11)

The method of Gauss-Legendre integration is expressed as:
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where m is the number of integration points; ti is the value of integration point; Ci is the

corresponding coefficient. Table B-1 shows the integration points and their coefficients.

Table B-1. The Gauss-Legendre integration coefficients

M ti Ci

2  0.5774 1

3  0.7746 0 0.5556 0.8889

4 0.8611 ±0.34 0.3478 0.6521

5
0.9062 ±0.5385 0.2369 0.4786

0 0.5689

6
0.9325 ±0.6612 0.1713 0.3608

0.2386 0.4679

7
0.9491 ±0.7415 0.1295 0.2797

0.4058 0 0.3818 0.4180

8
0.9603 ±0.7967 0.1012 0.2224

0.5255 ±0.1834 0.3137 0.3627

For other intersection patterns, the same procedure as that discussed above can be used

to calculate the solid intersection volume. One only needs to change the lower and upper

limits of the integral equation to the correct intersection height in the z direction.
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Appendix C Input Parameters for Simulations

Simulations* SD1 SD2 SS1 SS2 LS1 LS2

DEM Parameters

Li, m 0.05 0.05 0.05 0.05 50 50

Hi, m 0.05-0.5 0.165 0.05-0.5 0.165 150 150

D10, m 0.002 0.002 0.002 0.002 2 2

ρs, kg/m3 2650 2650 2650 2650 2650 2650

Kn, N/m 3.0107 3.0107 3.0107 3.0107 3.0107 3.0107

Ks, N/m 2.7107 2.7107 2.7107 2.7107 2.7107 2.7107

θ 30 30 30 30 30 30

β 1 1 1 1 1 1

η 0.1 0.1 0.1 0.1 0.1 0.1

Damping 0 0 0 0 0 0

CFD Parameters

ρf, kg/m3 N/A N/A 1000 1000 1000 1000

μ, Pa·s N/A N/A 0.01 0.01 0.1 0.1

Simulation Parameters

Gravity, m/s2 981 981 981 981 9.81 9.81

DEM time step, s 10-7 10-7 10-7 10-7 10-5 10-5

CFD time step, s N/A N/A 10-5 10-5 10-3 10-3

Coupling frequency** N/A N/A 100 100 100 100

Scaling factor N/A N/A 1 1 100 100

Dimensionless Groups

a 1-10 3.3 1-10 3.3 3 3

[ε] [5, 50]10-6 1.6510-5 [3, 30]10-6 10-5 0.082 0.112

[ρ] 2.65 2.65 2.65 2.65 2.65 2.65

[S] 25-250 82 25-250 82 80 80

Re N/A N/A 85 85 2682 2682

n 0.43 0.43 0.43 0.43 0.49 0.34

θ 30 30 30 30 30 30

β 1 1 1 1 1 1

η 0.1 0.1 0.1 0.1 0.1 0.1

* The label “SD” denotes “Small scale dry granular flow model”; “SS” denotes “Small scale

submerged granular flow model”; “LS” denotes “Large scale submerged granular flow model”.

** The coupling frequency is the iteration steps in the DEM during one data exchange interval.
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