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A 40-year lens spinning at 1000 rpm  Purpose 
To collect new data on the stiffness of the human lens using an 

improved form of the spinning lens test originally developed by 

Fisher (1971), and to investigate the causes of differences between 

Fisher’s original stiffness calculations and the results of recent 

indentation tests (Heys et al. 2004; Weeber et al. 2007). 

Methods 
 

(a) Experimental 
 

• Ten intact human lenses from the Bristol Eye Bank were tested in 

the rig illustrated below. 
 

• Lenses were spun at 700, 1000 and in some cases 1400 rpm. 
 

• Photographs were taken at eight angular orientations before, 

during and after each spin. 
 

• For seven of these lenses, the capsule was carefully removed and 

the test was repeated. 
 

• The lenses were not frozen and were tested within four days of 

death. 
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Compute a least-squares spline to 

describe the average outline from 

8 static photos of a given lens 
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(b) Finite element inverse analysis 
 

• The decapsulated lenses were analysed by using an axisymmetric 

hyperelastic finite element method to deduce their stiffnesses. 
 

• The lenses were modelled as a non-homogeneous neo-Hookean 

continuum. 
 

• Radial body forces corresponding to spinning at 1000 rpm were 

imposed, assuming an age dependent lens density. 
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Results 

Conclusions 
 

• Removing the capsule caused the deformation due to spinning to 

increase by 30-35%. 
 

• The current experiment produced diameter and thickness  

changes for intact lenses comparable with the lower values from 

Fisher (1971). 
 

• The FEM simulation shows that these measurements are 

consistent with a large increase in central lens stiffness with age, 

as reported by Heys et al. (2004) and Weeber et al. (2007). 
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The test regime for one 40-year 

lens, first tested intact at 700, 

1000, and 1400 rpm, then again 

with the capsule removed. 

Observed changes in  

diameter and thickness of 

intact lenses spinning at 1000 

rpm compared with equivalent 

values from Fisher (1971). 
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