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ABSTRACT 

A Type of Novel Energy Harvesting Device 

 
Jiewen Deng, St Anne’s College, Oxford 

A dissertation submitted for the degree of MSc by Research  
in the Department of Engineering Science at University of Oxford 

Hilary Term, 2013 

Pervasive networks of wireless sensors and communication nodes have been 

developed during past decades and most of them are powered by fixed-energy sources, 

e.g., wiring power and batteries. However, these traditional energy sources are 

impractical for powering wireless devices due to their inherent limitations, e.g., the 

high setup cost of wiring power and the finite life span of batteries. In view of these 

facts, more attentions have been drawn on vibration energy sources existing in 

ambient environment where sensors operate. Dozens of different types of vibration 

energy scavenging devices have been developed, which are mainly consisted of 

mechanical systems coupled with transduction mechanisms. The linear mechanical 

system has been used in most of existing vibration generators. The main drawback of 

such system is that it has a rather narrow bandwidth, meaning that the device can only 

effectively harvest vibration energy when the resonance frequency of the system 

coincides with the excitation frequency. Various methods have been proposed 

recently to overcome the drawback including utilising mechanical systems with non-

linear mechanisms in order to increase the bandwidth of vibration energy scavenging 

devices. 

The dissertation is intended to find a practically effective non-linear mechanical 

system with desirable dynamic behaviours for vibration energy scavenging devices. 

To do so, we first examined three non-linear mechanisms numerically to find the most 

desirable one based on the corresponding typical mechanical systems. The Numerical 

Simulation (NS) method built in Matlab has been used to explore the static and 

dynamic characteristics of these systems with hardening and softening mechanisms 

firstly. It has been found that these systems with hardening and softening mechanisms 

whose frequency response curves lean sideways can expand the operation bandwidths. 
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However, the former has comparatively low output displacements whereas unstable 

dynamic responses are often associated with the latter after the forcing amplitude 

exceeds the critical value. To overcome the new hurdles, we have examined a typical 

mechanical system with a snap-through mechanism using the NS method. It exhibits 

the characteristics of a system with a softening mechanism when the forcing 

amplitude is comparatively small, and those of a system with a hardening mechanism 

when the forcing amplitude increases. Despite the advantages of the typical system, it 

has been found to be impossible to attach the transduction mechanism to the typical 

system in order to harvest power.  

This has led to the development of a new mechanical system which consists of a 

central shim with four identical beams bonded by two blocks and magnetic buttons. 

By numerical simulation and experiments, we are able to show that the new design 

can be a system with either hardening mechanism or snap-through mechanism with a 

suitable selection of the column height. Due to the magnetic force from the magnetic 

buttons, the new design with a snap-through mechanism shows significant advantages 

in expanding the bandwidth and raising the dynamic displacement. However, the 

design leads to distortion of the two blocks in vibration, which makes the 

piezoelectric transduction mechanism unable to be coupled with it efficiently. As a 

result an improved design has been proposed in which a cross shim is used to replace 

the rectangular shim in the first design, which can be coupled with the piezoelectric 

transduction mechanism effectively to form a complete piezoelectric non-linear 

vibration energy scavenging device. Based on the results of numerical simulation and 

experiments, it is shown that the new device with a snap-through mechanism can 

generate enough voltage and power to power an existing wireless senor and has a 

wide off-resonance frequency bandwidth. Therefore, the new device with a snap-

through mechanism could be an alternative design to overcome the drawbacks of 

existing linear and non-linear vibration generators in certain conditions. 
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CHAPTER 1 INTRODUCTION 

1.1 Powering Wireless Sensors and Communication Nodes 

Pervasive networks of wireless sensors and communication nodes are widely used in 

areas including structural health monitoring and environment control. It has been 

predicted that low power embedded electronic devices will become a common part of 

the environment and perform functions in applications ranging from entertainment to 

factory automation [1-5].  

The total power requirement of a wireless sensor can be less than 1 W  in active mode, 

and much less in sleep mode, due to low power circuit design, the advanced Integrated 

Circuit (IC) manufacturing and networking technology [6]. In addition, the sensor 

network can operate in a multi-hop fashion in which multiple low power and low cost 

nodes replace a long transmission distance network (over 10 meters) [1, 7].  

Wiring power and batteries are generally adopted to power massive nodes in a dense 

network. However, wiring power is not an economical option due to its high setup cost, 

whereas batteries have limited operational lifespan. For instance, the non-rechargeable 

lithium battery can provide up to 800 WH/L or 2.88 3J/mm . Therefore, a 
31 10  

3mm  

battery lasts about 8000 hours or 333 days when powering an electronic device 

consuming 100 W  (an aggressive goal) [1]. It needs to be replaced within one year. 

Therefore, developing alternative powering methods for wireless sensors and 

communication nodes becomes a pressing need. 
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1.2 Energy Scavenging Technologies 

Technologies that enable a wireless electronic device to generate its own power have 

been considered as a desirable way to solve the problem. The fundamental principle is 

that a wireless electronic device converts energy sources in ambient environment into 

electricity to power itself. As a result, the lifespan of the wireless electronic device is 

only limited by the failure of its own components [1]. A number of energy scavenging 

technologies have been developed to harvest corresponding ambient energy from solar 

light, vibration, acoustic noise or temperature variation. A comparison of the power 

densities of these technologies is given in Table 1.1, which also includes batteries and 

other energy storage technologies. The upper half (in white) of Table 1.1 shows the 

power densities of the energy scavenging technologies where the power density remains 

constant with the increase in lifetime. In contrast, the power density of the energy 

storage technologies showed in the lower half (in gray) decreases with time. 

1.2.1 Solar Energy 

Solar energy is plentiful outdoors during the daytime. The power density is 15 

3W/mm  in direct sunlight at midday, and falls off by a factor of 100 on a cloudy day 

(see Table 1.1). The indoor power density drops dramatically to around 36 10  

3W/mm . The silicon solar cell is the most frequently used device to convert solar 

energy into electrical energy. The energy conversion efficiency of a single crystal 

silicon cell can range from 12% to 25%. 
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1.2.2 Vibration Energy 

As shown in Table 1.1, about 0.2 3W/mm  can be generated from vibration energy 

sources existing in a typical built environment according to theoretical and experimental 

data [1], which is sufficient to power wireless sensors and communication nodes. 

Reviews of applications of vibration energy are given in references [8 – 12]. A typical 

vibration energy scavenging device consists of two main parts, i.e., the mechanical 

system (or the mechanical structure) and the transduction mechanism (or the transducer). 

The latter is used to produce electrical energy from motions of the mechanical system 

due to vibrations. The conversion efficiency of vibration energy is low in existing 

vibration energy scavenging devices. A more detailed review of the working principle 

and the drawbacks of existing vibration energy scavenging devices will be given in 

Chapter 2.  

1.2.3 Acoustic Noise 

The power density generated from acoustic noise is 63 10  3W/mm  at 75 Db and 

49.6 10  3W/mm  at 100 Db (see Table 1.1), which is far too low to power a wireless 

electrical device, except in certain environment with supreme high noise levels.  

1.2.4 Temperature Variations 

The natural temperature variations over a 24 hours period could also be a source for 

electrical energy harvesting from the environment. A combination of theoretical studies 

and experiments shows that an average of 0.01 3W/mm  can be generated by an 
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enclosed volume containing an ideal gas with an average variation of 7 C  [1]. 

However, the achievement is based on the assumption that no power losses in the 

conversion process.  

Table 1.1 Power density comparison of energy scavenging and energy storage technologies [1].  

 
Power Density ( ) 

1 Year Lifetime 

Power Density ( ) 

10 Year Lifetime 

Solar (Outdoor) 
15 – direct sun 

0.15 – cloudy day 
15– direct sun 

0.15 – cloudy day 
Solar (Indoor)  – office desk  – office desk 

Vibrations 0.2 0.2 

Acoustic Noise 
 at 75 Db 

 at 100 Db 

 at 75 Db 

 at 100 Db 
Daily Temp. Variation 0.01 0.01 

Batteries (Non-rechargeable Lithium) 345 10   
Batteries (Rechargeable Lithium) 0 

Hydrocarbon fuel (Micro Heat Engine) 0.333 0.033 
Fuel Cells (Methanol) 0.28 0.028 

Nuclear Isotopes (Uranium) 30.6 10  

1.3 Objective 

The brief introduction above indicates that energy scavenging technologies based on 

solar and vibration energies are most attractive.  Both solutions meet the power density 

requirement of existing wireless sensors. However, the power density of solar energy is 

affected by ambient environment. In an indoor environment, the power density 

decreases to 36 10  3W/mm  which is insufficient to power a wireless electrical 

device [1]. Unlike solar energy, the power density of vibration energy is normally 

unaffected by ambient environment variation. Therefore vibration energy can be 

considered as the optimal ambient energy to be integrated into scavenging technologies 

to power existing wireless sensors and communication nodes. The focus of the 

dissertation is on the development of a novel vibration energy scavenging device with 

W/mm3 W/mm3

6103 6103

3106

9.6104

3106

9.6104

 3.5103

7 103

6103



Chapter 1 Introduction 

5 

 

higher conversion efficiency than that of existing devices with the suitable selection of 

external conditions. 

1.4  Layout of Dissertation 

Chapter 2 firstly reviews various existing types of vibration sources. Subsequently, a 

generic vibration energy to electrical energy conversion model is given which can be 

used to predict the power output. Furthermore, comparisons of the energy density of 

three transduction mechanisms are outlined. Finally, a particular type of vibration 

energy scavenging device, namely the piezoelectric device, is reviewed including its 

advantages and inherent limitations that can affect the vibration to electricity conversion 

efficiency.  

Chapter 3 intends to find an effective non-linear mechanism with desirable dynamic 

behaviors for the mechanical system in the forthcoming vibration energy scavenging 

device. To do so, static and dynamic behaviors of three non-linear mechanisms are 

analyzed based on the corresponding typical mechanical systems. Softening and 

hardening mechanisms are firstly investigated. Their strengths and limitations are 

discussed, that leads to the static and dynamic analysis of the snap-through mechanism. 

The practical constrains of the typical mechanical systems for the three mechanisms are 

analyzed subsequently. Based on this analysis, the snap-through mechanism is chosen 

as the optimal non-linear mechanism for the mechanical system design. 

A new mechanical system design based on a snap-through mechanism is outlined in 

Chapter 4. A series of mechanical experimental results are reported which validate the 

new design. The practical constraints of the new design are pointed out, followed by an 
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improved design to overcome its drawbacks. Furthermore, a novel vibration energy 

scavenging device based on the improved design and the piezoelectric transduction 

mechanism is fabricated. A series of electrical experimental results are given to 

demonstrate the advantage of the new device. 

The main achievements of the current research and suggestions for future work are 

summarized in Chapter 5, which conclude the dissertation. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Vibration Sources 

Vibration occurs commonly in household appliances, e.g., fridges and microwave ovens, 

as well as in large structures, e.g., buildings and bridges. Table 2.1 shows various 

vibration sources, including their peak accelerations and corresponding frequencies. 

Vibration sources ranging from 20.05 m/s  to  in peak acceleration and 5 Hz to 

240 Hz in frequency are commonly considered as the operational vibration range for the 

vibration energy scavenging device design. 

Table 2.1 List of vibration sources with the peak acceleration and corresponding frequency [1]. 

Vibration Source Peak Acceleration 
( ) 

Frequency of Peak 
( ) 

Base of 5 HP 3-axis machine tool with  bed 10 70 
Kitchen blender casing 6.4 121 

Clothes dryer 3.5 121 
Car instrument panel 3 13 
Small microwave oven 2.25 121 

HVAC vents in office building 0.2 – 1.5 60 
Bread maker 1.03 121 

External windows (size ) next to a busy 

street 
0.7 100 

Washing Machine 0.5 109 
Fridge 0.1 240 

Second story floor of a wood frame office building 0.2 100 
Bridge response under moving vehicle with driving 

velocity 20 km/h 
0.05 5 

2.2 Generic Vibration-to-Electricity Conversion Model 

A typical vibration energy scavenging device consists of two main parts, the mechanical 

system and the transduction mechanism. The former is a mechanical structure which 

10 m/s2

m/s2 Hz

36''

2 ft  3 ft
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turns ambient vibration into self-motion, whereas the later harvests electrical energy 

from motion of the mechanical system. The electromagnetic (inductive), electrostatic

(capacitive) and piezoelectric transduction mechanisms are commonly used 

transduction mechanisms. 

Williams and Yates proposed a generic vibration-to-electricity conversion model [13], 

which is a mass-spring-dampers linear mechanical system enclosed in a frame without 

the constraint of transduction mechanisms as shown in Fig. 2.1 [13].  

 

Figure 2.1 Generic vibration-to-electricity model 

The motion equation of the model is  

  m em z c c z kz m y    
  

,  (2.1) 

where z  is the relative displacement between the frame and the mass, m  the mass, mc  

the mechanical damping coefficient, ec  the electrically induced damping coefficient, k  

the spring constant, ‘.’ the differential with respect to oscillation time t  and y  the 

external sinusoidal vibration displacement, 
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  (2.2) 

in which  is the maximum excitation displacement and  is the excitation frequency. 

The standard steady-state solution for  is given by 

 ,  (2.3) 

where , the phase angle, is given by 

 . (2.4) 

The power removed from the mechanical system is equal to the power harvested by the 

electrical damper, i.e., . The electrically induced force is ec z

. And the electric power 

is given by 

 
2

0

1

2

z

e e eP c zd z c z 


  
. (2.5) 

Differentiating Eq. (2.3) with respect to , substituting z


 into Eq. (2.5) and rearranging 

terms yield the following expression for , 

y t   Y sin t 

Y 

z

z 
 2

k
m
 2





2


c

m
 c

e 
m











2
Y sin t  



  tan1
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m
 c

e 
k  2m




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


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e
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P
e
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 , (2.6) 

where , the natural frequency of the mass spring system, is 
k

m
, , the electrically 

induced damping ratio, , m , the mechanical damping ratio, 
2

m

n

c

m
, and , the 

overall damping ratio,  or e m  . 

Assuming the natural frequency of the mass-spring-dampers system matches the 

excitation frequency, i.e., n  , Eq. (2.6) is reduced to 

 , (2.7) 

or 

 , (2.8) 

where  is the maximum acceleration of input vibration, and equals . 

To understand the effect of the mass m , the damping ratios including the electrically 

induced damping ratio e  and the mechanical damping ratio m , the excitation 

frequency   and the acceleration of vibration sources A  on the output power eP , Figs. 

p
e


m
e


n
 2 


n








3

Y 2

2
T




n








2

 1



n








2










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e
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e
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4T
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2.2 – 2.5 are plotted based on Eq. (2.8). In addition, according to Roundy [1], the 

acceleration of vibration sources in ambient environment is generally either constant or 

decreasing with frequency. Therefore, the acceleration A  is chosen as 25 /m s . Some 

important conclusions can be drawn from Figs. 2.2 – 2.5. 

 m  should be as low as possible as shown in Figs. 2.2 and 2.3. 

 The output power is inversely proportional to the natural frequency, and is 

maximized when the excitation frequency is equal to the natural frequency as shown 

in Fig. 2.4. 

 The output power is linearly proportional to mass as shown in Fig. 2.5.  

 

Figure 2.2: Power output vs. mechanical and electrical damping ratios when , 

 and . 

 

Figure 2.3: Power output vs. input frequency and electrical damping ratio when , 

, 
 
and . 
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Figure 2.4: Power output vs. resonant and input frequencies when ,  and 

.  

 

Figure 2.5: Power output vs. input frequency and mass of the system when 2A 5 m/s , 

100 Hzn   and 0.05e m   . 

2.3 Transduction Mechanisms 

2.3.1 Electromagnetic Transduction Mechanism 

Electromagnetic induction is the generation of electric current in a conductor which is 

located in a magnetic field. The conductor is typically formed as a coil. The change of 

the magnetic field or the relative movement between the coil and magnetic field induces 

a current which flows in the coil. The open circuit voltage across the coil in the later 

case depends on the strength of the magnetic field, the number of turns of the coil, the 

length of a coil and the velocity of the relative movement, and is given by 
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 , (2.9) 

where  is the number of turns in the coil, 
 
the strength of the magnetic field, 

 the length of one coil and  the velocity of the relative motion. 

There are two significant advantages of the electromagnetic transduction mechanism in 

the vibration energy scavenging. First, in comparison with the electrostatic transduction 

mechanism which will be reviewed next, no start-up voltage is needed. Second, the 

device based on the electromagnetic transduction mechanism can be designed to avoid 

any mechanical contact, which extends the durability of the device and reduces 

mechanical damping. A main drawback is the low voltage level, typically at 0.1 V 

maximum, for a device whose volume is [1]. 

2.3.2 Electrostatic Transduction Mechanism 

A capacitor consists of two conductors which are electrically isolated from each other 

normally by air, vacuum or an insulator. A start-up DC voltage is connected to a 

capacitor initially and then disconnected, leading to a pair of equal but opposite charges 

on both conductors [14]. The energy stored in the capacitor changes when the 

conductors have relative motion, which provides the mechanism for the conversion 

from mechanical energy to electrical energy. The voltage generated by a capacitor is 

 , (2.10) 

where  is the charge on the capacitor, and , the capacitance, is 

V
mag

 N
mag

B
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l
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 sta sta sta
sta

sta

l w
C

d


 , (2.11) 

in which  is the dielectric constant (or permittivity) between the plates,  the 

length of the plate,  the width of the plate and  the distance between the plates.  

Substituting Eq. (2.11) into Eq. (2.10) and rearranging terms yields 

 sta sta
sta

sta sta sta

Q d
V

l w
 . (2.12) 

The most significant strength of the electrostatic transduction mechanism is that it is 

easier to be integrated with microelectronics than the electromagnetic and piezoelectric 

transduction mechanisms which will be reviewed next, with the assistance of MEMS 

technology. Furthermore, it can generate 2 volts or more directly for a device with a 

volume of  [1]. However, the electrostatic transduction mechanism has two 

disadvantages. First, a DC voltage source is required to start up the conversion process. 

Secondly, in order to prevent the capacitor electrodes from contacting each other, which 

could lead to short-circuiting, a mechanical displacement protector has to be included.  

2.3.3 Piezoelectric Transduction Mechanism 

Common piezoelectric materials include zirconate titanate piezoceramics (PZT-5H (soft) 

and PZT-5A (hard)), barium titanate (BatiO3) and polyvinylidence fluoride (PVDF). 

They usually come in the form of thin films (less than 0.1 mm). Because the 

spontaneous separation of charge within certain crystal structures under right conditions 

produces an electric dipole, an electric field can be generated when a piezoelectric 


sta

l
sta

w
sta

d
sta
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material is stressed or unstressed [1, 14 and 15]. The variety of the piezoelectric 

material, the direction of the input force, the orientation of the polarization and the 

arrangement of the electrode are key factors to determine the function mode of the 

piezoelectric material [16]. The established electromechanical coupling equations for a 

piezoelectric material are 

 , (2.13) 

and 

 , (2.14) 

where  is the six-dimensional strain vector, 
 
the six-dimensional stress vector, 

 the three-dimensional electric displacement vector,  the three-dimensional 

electric field strength vector,  the six by six compliance matrix evaluated at 

constant electric field,  the three by six matrix of piezoelectric strain coefficients, 

 
the six by three matrix converse piezoelectric effect, and  the three by three 

dielectric constant matrix evaluated at constant stress [17].  

Figure 2.6 shows two different function modes of piezoelectric materials. Labels 1, 2 

and 3 represent three orthogonal directions. A piezoelectric material can be used in 

either 33 or 31 mode, both of which are poled in direction 3. In 33 mode, both of the 

voltage and the mechanical stress act in direction 3. In 31 mode case the voltage acts in 

direction 3 whereas the mechanical stress acts in direction 1. Table 2.2 shows some 

 
S   sE  T  dt  E 

 
D   d  T   T  E 

S  T 

D  E 

 
sE 

d 

 
d t   T 



Chapter 2 Literature Review 

16 

 

important coefficients of common piezoelectric materials in both modes.  and   

are the piezoelectric voltage constants, i.e., the electric field generated per unit of 

mechanical stress, and can be defined as [14] 

 , (2.15) 

 . (2.16) 

 and  are the electromechanical coupling factors and are equal to electrical energy 

converted over mechanical energy input, and can be defined as [14] 

  2 2
31 31 11 33/ E Tk d s  , (2.17) 

  2 2
33 33 33 33/ E Tk d s  . (2.18) 

Note that the strain coefficient, voltage constant and coupling factor of 33 mode are 

higher than those of 31 mode. However, high mechanical stiffness in direction 3 of a 

piezoelectric film makes the material straining difficult, leading to little energy being 

harvested in 33 mode when subjected to a small force [19]. Therefore, 31 mode has 

always been selected as the preferred function mode in existing piezoelectric vibration 

energy scavenging devices.  

For 31 mode, Eqs. (2.13) and (2.14) can be expressed as 

 , (2.19) 

 . (2.20) 

g
31

g
33

g
31
 d

31
/ 

33
T

g
33
 d

33
/ 

33
T

k
31

k
33

S
1
 s

11
ET

1
 d

31
E

3

D
3
 d

31
T

1
 

33
T E

3



Chapter 2 Literature Review 

17 

 

Replacing 1S , 11
Es  and 1T  by the common notations piezo , 1 / piezoY  and piezo  where  

piezoY  is the Young’s Modulus of piezoelectric materials and substituting into Eqs. (2.19) 

and (2.20) yields  

 , (2.21) 

 . (2.22) 

Like the electrostatic transduction mechanism, the piezoelectric transduction 

mechanism can directly generate appropriate voltages in the range of one to several 

volts and currents in the range of tens to hundreds microAmps when the volume of the 

device is  [1]. However, unlike the electrostatic transduction mechanism, 

no mechanical displacement protector is necessary in a suitably designed vibration 

energy scavenging device based on the piezoelectric transduction mechanism. In 

addition, the piezoelectric transduction mechanism can initiate the conversion process 

without a voltage source. A drawback of the piezoelectric transduction mechanism is 

that the electromechanical coupling ratio is reduced when it is integrated into MEMS 

systems and subjected to an asymmetry strain along the piezoelectric film [20]. 

2.3.4 Comparison of Energy Densities of Transduction Mechanisms 

Energy density is an important parameter when comparing the three transduction 

mechanisms. 

The electromagnetic transduction mechanism  
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The maximum energy density of an electromagnetic converter is given by [1] 

 , (2.23) 

where  is the magnetic field strength and  is the magnetic permeability. 

Maluf [21] adopted 0.1 Tesla as the maximum strength of the magnetic field. Therefore, 

according to Eq. (2.23) the energy density is 34 10 3mJ/mm when the magnetic 

permeability of free space is 91.26 10  H/mm. If an extremely strong magnetic field, 

e.g., 1 Tesla, is chosen as the theoretical maximum magnetic field, the energy density 

can reach 0.4 3mJ/mm . 

The electrostatic transduction mechanism  

For a capacitive device, the energy density is [1], 

 , (2.24) 

in which  is the dielectric constant and  is the electric field strength.  

Assuming a realistic 30 volts over a 1 m   gap of an electrostatic capacitor, i.e., 

0.03 MV/mmstaE  , the energy density would be  with the dielectric 

constant of free space  F/mm. Furthermore, according to Paschen’s 

curve [1], the maximum electric field that gas in the air at atmospheric pressure can 
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withstand is 0.1 . Therefore, the theoretical maximum energy density of a 

capacitive device can be 0.044 .  

The piezoelectric transduction mechanism 

Equation (2.22) can be reduced to Eq. (2.25) by assuming a piezoelectric material 

working in an open circuit and replacing ,  and  by , 
 
and  for 

general applications, as 

 . (2.25) 

A piezoelectric material can also be considered as a capacitive device. Therefore, 

multiplying each side by 2piezoE , Eq. (2.25) becomes 

 . (2.26) 

The energy density of a piezoelectric material is 

 . (2.27) 

For a specific piezoelectric material, the maximum energy density can be achieved 

when the stress across the material reaches its yield strength . The maximum 

energy density of a common piezoelectric material, e.g., PZT-5H, is 0.035 . In 

practice, a margin factor of 2 will be implied [1], reducing the energy density to 0.0175 
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. Moreover, the theoretical maximum energy density can be raised to 0.335 

 by choosing a single crystal piezoelectric material, such as PZN-PT. 

 

Figure 2.6: Illustration of 33 mode and 31 mode working models of piezoelectric materials. 

Table 2.2: Coefficients of common piezoelectric materials [18]. 

Property PZT-5H PZT-5A BaTiO3 PVDF 

 593 374 149 -33 

 -274 -171 78 23 

 19.7 24.8 14.1 330 

31g   -9.1 -11.4 5 216 

 0.75 0.71 0.48 0.15 

 0.39 0.31 0.21 0.12 

Relative permittivity  3400 1700 1700 12 

2.3.5 Summary of Transduction Mechanisms 

Three transduction mechanisms adopted by existing vibration energy scavenging 

devices have been reviewed here. Table 2.3 summarizes the primary advantages and 

disadvantages of each type of transduction mechanisms, which can be a basis for 

selecting a suitable transduction mechanism for a vibration energy scavenging device. 

Note that the electromagnetic transduction mechanism cannot satisfy the voltage 

requirement of existing wireless sensors and nodes. In addition, a separate voltage is 

needed to start up the conversion process of the electrostatic transduction mechanism, 

which is impractical for on-site applications. The piezoelectric transduction mechanism 
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exhibits all strengths of the electromagnetic transduction mechanism and also provides 

suitable voltages and currents for existing wireless sensors and nodes. Therefore, the 

piezoelectric transduction mechanism is chosen as the primary transduction mechanism 

for the research reported in this dissertation, even though it has a relative low coupling 

ratio in micro-fabrication process and when it is subjected to asymmetry strain. 

Table 2.3: Summary of the comparison of the three transduction mechanisms. 

Transduction 
Mechanism 

Advantages Disadvantages 

Practical 
Maximum 

Energy 
Density 

( ) 

Theoretical 
Maximum 

Energy Density 

( ) 

Piezoelectric 

1. No start-up 
voltage source 
needed. 
2. No displacement 
protector needed. 
3. Voltages of one 
to several volts. 

Relative low coupling 
ratio in MEMS system 
and when subjected 
asymmetry strain. 

  

Electrostatic 

1. Easier to 
integrate with 
microelectronics. 
2. Voltages of two 
to several volts. 

1. Start-up voltage 
source needed. 
2. Displacement 
protector needed. 
 

  

Electromagnetic 

1. No start-up 
voltage source 
needed. 
2. No displacement 
protector needed. 

Low voltage 
generated.   

2.4 Existing Piezoelectric Vibration Energy Scavenging Devices 

Currently used vibration energy scavenging devices with the piezoelectric transduction 

mechanism can be classified into linear and nonlinear categories in accordance with the 

type of the mechanisms used by the mechanical system. 

mJ/mm3  mJ/mm3

17.5103 335103

4103 44103

4103 400 103
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2.4.1 Linear Piezoelectric Vibration Energy Scavenging Devices 

A bimorph cantilever beam with an additional mass at the end is a common mechanical 

system design among linear piezoelectric vibration energy scavenging devices due to its 

comparatively low resonant frequency, low structural volume and high level of strain in 

the piezoelectric layer.  

Roundy and Wright [17] presented such a linear piezoelectric vibration energy 

scavenging device with varying dimensions and a fixed total volume of 3 31 10 mm  

(see Fig. 2.7(a)). A prototype was fabricated with two layers of PZT-5A and a steel 

center shim. Experimental results showed that the maximum  and  

power could be transferred to an optimal load and a capacitive load, respectively, with 

the driving vibration of  at 120 Hz.  

The cantilever beam can also be tapered in order to obtain a symmetrical strain along 

the piezoelectric film, which was firstly proposed by Glynne-Jones et al. [22, 23]. In 

their model, the piezoelectric material composited by the PZT-5H powder was printed 

onto both sides of a hardened AISI 316 stainless steel as shown in Fig. 2.7 (b). It could 

generate up to  electric power into a 333 kΩ  load resistance when the excitation 

frequency met the natural frequency of the generator, which was . More 

information about the others can be found in Refs [24-26].  

375 W 190 W

2.5 m/s2

3 W

80.1 Hz
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2.4.2 Limitations of Existing Linear Piezoelectric Vibration Energy Scavenging 

Devices 

Existing linear piezoelectric vibration energy scavenging devices generate the 

maximum power when the natural frequency coincides with the excitation frequency. 

The bandwidth of a linear system is approximately 2 n  [30]. For instance, if the 

natural frequency of a linear system is 20 Hz with damping ratio 0.025, the bandwidth 

will be 1 Hz which is called the half-power bandwidth of a linear system [30]. In other 

words, the amount of energy harvested by the generator is optimal when the excitation 

frequency ranges from 19.5 Hz to 20.5 Hz. The energy harvested decreases dramatically 

otherwise. Because the excitation frequency of vibration source cannot be predicted 

accurately, widening the bandwidth of linear piezoelectric vibration energy scavenging 

devices to improve the vibration to electrical energy coupling efficiency has become the 

primary research objective.  

(a) (b) 

Figure 2.7: (a) Bimorph cantilever beam generator by Roundy and Wright [17], (b) tapered 
cantilever beam generator by Glynne-Jones et al. [22]. 
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2.4.3 Improvements to Linear Piezoelectric Vibration Energy Scavenging Devices 

Methods for improving the efficiency of vibration energy harvesting mainly involve 

altering the natural frequency of a linear mechanical system and adopting a non-linear 

mechanical system. 

Leland and Wright [27] proposed a resonance tuning method of a piezoelectric vibration 

energy scavenging generator by a compressive axial load at both ends of a simply 

supported piezoelectric bimorph shown in Fig. 2.8 (a). Experimental results showed that 

the resonance frequency of the vibration generator under a compressive axial load could 

be reduced up to . A sample generator mounted with a 7.1 g proof mass could 

generate  to  power with a constant driving acceleration of 

 at the operation frequency from 200 Hz to 250 Hz. 

Challa et al. [28] adopted four permanent magnets generating attractive force and 

repulsive force to alter the resonant frequency of a piezoelectric cantilever beam by 

adjusting distances between the magnets (see Fig. 2.8 (b)). It was reported that the 

resonance frequency could be shifted by 22 Hz to 23 Hz with power generated between 

240 and  under a driving acceleration of . 

Marinkovic and Koser [29] proposed a wide bandwidth vibration energy scavenger 

known as Smart Sand. They adopted fixed-fixed beams as the mechanical system which 

was non-linear in nature (see Fig. 2.8 (c)). Smart Sand could extend the operation 

bandwidth (or off-resonant bandwidth) to more than 100 Hz. 

24 %

300 W 400 W

9.8 m/s2

280 W 0.8 m/s2
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CHAPTER 3 NON-LINEAR MECHANISMS 

The reviews in Chapter 2 suggest that non-linear mechanisms could be a solution to the 

problems in existing linear piezoelectric vibration energy scavenging devices. Therefore, 

a number of non-linear mechanisms including hardening, softening and snap-through 

will be investigated in this chapter in order to determine the most suitable one for the 

vibration energy scavenging devices. 

3.1 Hardening and Softening Mechanisms 

3.1.1 Typical mechanical system with hardening mechanism 

Figure 3.1 shows a fixed-fixed rectangular beam subjected to a vertical concentrated 

load  at one of the fixed ends. This structural design is referred to as T1 hereafter. 

Assume that the shape of T1 can be represented by half of a cosine shape [36] 

 cos
2 2

b
b

B

lz z
y

L


  ， (3.1) 

where  represents the shape of the fixed-fixed beam, z  the deflection of the beam of 

length BL  at its right end, and bl  the horizontal from the left end.  

(a) (b) 

Figure 3.1: (a) A fixed-fixed beam T1; (b) its deformed shape when BF  acts on its right end.

F
B

y
b
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The deflected length of the fixed-fixed beam is

 ， (3.2) 

where . 

According to Eq. (3.1),  

 ， (3.3) 

and 

 . (3.4) 

Substituting Eq. (3.4) into Eq. (3.2) and rearranging terms result in the following 

expression: 

 . (3.5) 

Furthermore, the induced axial tension can be given as 

 , (3.6) 

where  is the cross-section area of the fixed-fixed beam T1, and  the Young’s 

modulus, assuming the beam behaves linear elastically. 
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The bending moment can be found as 

 , (3.7) 

where  is the second moment area of the beam. 

Therefore, the concentrated load  is given by 

 . (3.8) 

Equation (3.8) shows that the second moment area and the cross-section area are the 

critical factors which determine the force-deflection relationship of T1. It can be seen 

that a suitable selection of geometrical parameters of the beam section can lead to a 

non-linear relationship between the force and deflection. Equation (3.8) can be rewritten 

as  

 3
1 1B T TF A z B z  . (3.9) 

in which coefficients 1 3

12 B B
T

B

E I
A

L
  and 1 316

B B
T

B

A E
B

L


 . 

Generally T1 is considered as a typical mechanical system with a hardening mechanism 

which has the restoring force in the form of Eq. (3.9) [35].  
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3.1.2 Typical mechanical system with softening mechanism 

Figure 3.2 shows a pendulum consisting of a mass m  and a hinged weightless rod of 

length  and inclination  . It is referred to as T2 hereafter [40]. The restoring force of 

the pendulum is 

 , (3.10) 

where .  

Figure 3.2: A pendulum, where m  is the mass, PL  is the length of the rod and   is the inclination 

of the rod. 

The Taylor expansion for sin  when   is small is 

 . (3.11) 

Let us keep the first and third order items of Eq. (3.11) if  is small, and therefore, Eq. 

(3.10) becomes 

L
P

F
P
 mg sin
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 . (3.12) 

Equation (3.12) can be rewritten as  

 3
2 2P T TF A B   . (3.13) 

in which coefficients 2TA mg  and 2 6T

mg
B  . 

T2 is considered as a typical mechanical system with a softening mechanism which has 

the restoring force in the form of Eq. (3.13) [35].  

3.1.3 Mathematical Modeling 

The governing motion equation of a base-excited Duffing oscillator can be used to 

model certain non-linear systems in which overall stiffness does not obey Hooke’s law, 

and is written as [50 and 51] 

  cosrm z c z F F t  
 

， (3.14) 

where z  is the relative displacement, c  the damping coefficient, rF  the restoring force 

of a Duffing oscillator, F  the excitation force,   the excitation frequency, t  the 

oscillation time and ‘  ’ differentiation with respect to t . 

Based on Eqs. (3.9) and (3.13), the restoring force of mechanical systems with 

hardening and softening mechanisms can be given in a general form as 

 3
1 2rF k z k z  , (3.15) 

F
P
 mg  mg

6
 3
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where 1k  (>0) is the linear spring constant, and 2k  (>0) the non-linear spring constant. 

It is called the hardening Duffing oscillator when 3
1 2rF k z k z  , and the softening 

Duffing oscillator when 3
1 2rF k z k z  . Most of existing non-linear vibration energy 

scavenging devices use the mechanical system with the hardening mechanism [29, 31 

and 32].  

Substituting Eq. (3.15) into Eq. (3.14) yields 

  3
1 2 cosm z c z k z k z F t   

 
. (3.16) 

It is helpful to make Eq. (3.16) dimensionless, resulting in  

 ， (3.17) 

where , , , , , , ''
2
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0n

z
x
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

, ,  is the characteristic length of the system,  the natural 

frequency of the system when  and ‘ ' ’ differentiation with respect to the non-

dimensional oscillation time . 

The non-dimensional restoring force is therefore 

 . (3.18) 

And non-dimensional stiffness  can be obtained as 
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 . (3.19) 

3.1.4 Static Analysis 

In a linear system the restoring force RF x  [51]. The deflection of a linear system is 

linearly proportional to the restoring force. Furthermore, its stiffness, , keeps 

constant and is equal to 1. Therefore, in order to compare non-linear systems with the 

linear one, the force vs. deflection and stiffness vs. deflection relationships of the 

systems with hardening and softening mechanisms are considered, and plotted in Figs. 

3.3 and 3.4, respectively, in which   is taken as 1 0.0025  , 2 0.005   and 

3 0.0075  . 

It can be seen in Fig. 3.3 that the restoring force and stiffness of the systems with a 

hardening mechanism increase with the deflection. When subjected to an identical 

deflection, the system with 3  has the largest restoring force. Furthermore, stiffness is 

always greater than 1 which is the non-dimensional spring constant of the linear system. 

The restoring force of the systems with softening mechanism increases firstly with the 

deflection and starts decreasing when it passes its maxima (see Fig. 3.4(a)). In contrast 

to the system with a hardening mechanism, with the identical deflection, the system 

with softening mechanism has the smallest restoring force when . Moreover, 

stiffness keeps decreasing and switches sign from positive to negative when the 

deflection exceeds the point where the restoring force reaches its maxima (see Fig. 

3.4(b)). 
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of 0.0001. For a given frequency, the 4th order Runge-Kutta method was adopted to 

solve Eq. (3.17) at every 2 cn   , where cn  was the number of oscillation cycles 

and up to 1000. The part with transient effects was abandoned. Peak displacements 

among last 100 values of solutions were saved. This process was repeated with 

increasing frequencies.   

Dynamic analysis 

A total of nine sets of coefficients ,  and F  were considered, which are shown in 

Table 3.1. The frequency response curves (FRCs) of systems with hardening and 

softening mechanisms were obtained by using the NS method (see Figs. 3.5 – 3.7).  

Table 3.1: Coefficients’ sets used by the dynamic simulation of systems with hardening and 
softening mechanisms 

Group Set   

Fixed  and  
1 0.008 0.005 0.05 
2 0.012 0.005 0.125 
3 0.016 0.005 0.2 

Fixed  and  
4 0.012 0.0025 0.125 
5 0.012 0.005 0.125 
6 0.012 0.0075 0.125 

Fixed  and  
7 0.012 0.005 0.05 
8 0.012 0.005 0.125 
9 0.012 0.005 0.2 

The effect of the damping ratio 

Figure 3.5 shows the effect of the damping ratio  when other coefficients remain 

fixed. The maximum displacement responses rise with the decrease in the damping ratio 

due to the fact that less input vibration energy is consumed by damping, and vice versa.  

It can also be observed that the FRCs of systems with a hardening mechanism lean to 

the right of the linear resonance frequency, 1  . The FRCs lean to the left for the 

 

  F

 F

 F

 


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softening mechanism as shown in Figs. 3.5(a) and 3.5(b). Other dynamic behaviours of 

systems with hardening and softening mechanisms, including the jump-up and jump-

down phenomenons, etc., will be introduced in detail in Section 3.1.6.  

 
(a) 

 
(b) 

Figure 3.5: FRCs of systems with: (a) hardening mechanism, and (b) softening mechanism with 
coefficients’ set 1 (red), set 2 (blue) and set 3 (green) as shown in Table 3.1. 

The effect of non-linear spring constant 

Figure 3.6 shows the effect of the non-linear spring constant when other coefficients 

are fixed. It can be observed that FRCs of systems with a hardening mechanism lean 

over to the right more with the increase in  . However, the peak displacement in each 

FRC becomes smaller (see Fig. 3.6(a)), due to increasing overall stiffness shown in Fig. 

3.3(b). The FRCs of the systems with a softening mechanism lean to the left. But by 
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contrast, the peak displacement of systems with a softening mechanism increases with 

  because of decreasing overall stiffness (see Figs. 3.4(b) and 3.6(b)).  

 
(a) 

 
(b) 

Figure 3.6: FRCs of systems with: (a) hardening mechanism, and (b) softening mechanism with 
coefficients’ set 4 (red), set 5 (blue) and set 6 (green) as shown in Table 3.1. 

The effect of the forcing amplitude 

Figure 3.7 shows the effect of the forcing amplitude F  on the dynamic responses of 

systems with hardening and softening mechanisms, respectively, when other 

coefficients are fixed, which is similar to that of the damping ratio.  
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(a) 

 
(b) 

Figure 3.7: FRCs of systems with: (a) hardening mechanism, and (b) softening mechanism with 
coefficients’ set 7 (red), set 8 (blue) and set 9 (green) as shown in Table 3.1. 

3.1.6 Specific Dynamic Behaviours  

The frequency response curve of the system with a hardening mechanism is shown in 

Fig. 3.8. When the forcing amplitude keeps constant with slowly increasing excitation 

frequencies, the response displacement increases from point A to Point C. And a jump 

occurs from point C to point E. If the driving frequency reduces slowly from point D, 

the other jump happens from point F to point B. Furthermore, it can be observed that the 

FRC has multiple response displacements between  and . It may follow BC or 

EF curve, determined by the initial condition, particularly the initial velocity and 

displacement. The dynamic responses on BC and EF curves are stable, such as point S1 
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and point S3, whereas those of FC curve with dash line are unstable, such as point S2 

[35].  

When  and  0F   (free vibration), we obtain a graph of the response displacement 

versus the frequency which is represented by the purple curve known as the ‘backbone 

curve’ because of its shape [40]. The corresponding frequency Fun  is called the 

fundamental frequency. 

The system with a softening mechanism exhibits identical dynamic behaviors to the 

system with a hardening mechanism except that the peak tilts towards left.  

 

Figure 3.8: A typical FRC of the system with a hardening mechanism 

3.1.7 Comparison among the Linear System and Systems with Hardening and 

Softening Mechanisms 

Figure 3.9 shows the FRCs of the linear system and systems with hardening and 

softening mechanisms with identical damping ratio 0.012  , non-linear spring 

constant 0.005   and forcing amplitude  0.125F  . For the linear system, . 
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As mentioned in Section 2.4.2, the resonance bandwidth of the linear systems is 2 n . 

Therefore, the resonance bandwidth of the above linear system is 0.024. The 

corresponding displacement of the starting point of resonance responses is 2.303. The 

frequency range in which the displacement is larger than or equal to 2.303 is considered 

as the operation bandwidth of systems with hardening and softening mechanisms 

hereafter. Therefore, operation bandwidths are 0.060 for the system with a hardening 

mechanism, and 0.073 for that with a softening mechanism. The respective maximum 

response displacement of the system with a softening mechanism is X1=5.7 and that for 

the system with a hardening mechanism is X3=4.9. This is due to the fact that overall 

stiffness of the softening mechanism is smaller than  1K   whereas that of the 

hardening mechanism is larger than  1K   (see Figs. 3.3(b) and 3.4(b)).  

 

 

Figure 3.9: FRCs comparison of the linear system – red, systems with hardening (green), and 

softening (blue) mechanisms for 0.012  , 0.005   and  0.125F  . 

3.1.8 Limitations  
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Due to the extra positive stiffness term introduced by the non-linear spring, the system 

with a hardening mechanism has lower response displacement than those of the linear 

system and the system with a softening mechanism when they are subjected to an 

identical vibration source and have the same non-linear spring constant.  

System with a softening mechanism 

Recalling Eq. (3.17), the motion equation of a non-dimensional softening Duffing 

oscillator is 

 . (3.20) 

Using the harmonic balance method, the harmonic solution with the excitation 

frequency of Eq. (3.20) is [34, 35 and 38] 

 ， (3.21) 

where  is a positive integer and ,  the phase angle, and nA  is the amplitude 

of harmonic terms. 

Assuming that there is no super-harmonic response in the non-linear system, i.e., 

neglecting the higher order harmonic terms, Eq. (3.21) becomes 

 . (3.22) 

Substituting Eq. (3.22) into Eq. (3.20),  and 1  can be determined by the harmonic 

balance method, resulting in 

  x
''  2 x '  x  x3  F sin  

x  A
n
cos n 
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N



N N 1 
n

x  A1 cos  1 

A
1
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 ， (3.23) 

and 

 . (3.24) 

 will be maximized when  is minimized. Hence, let 

 ， (3.25) 

and expanding the term in the right hand-side, we have 

 . (3.26) 

When 

 , (3.27) 

the minimum magnitude of  is achieved. 

Substituting Eq. (3.27) into Eq. (3.23) and rearranging terms yield 
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 . (3.28) 

To ensure that Eq. (3.28) has the real root, there must be 

 . (3.29) 

As ,  and , Eq. (3.29) can be further simplified to 

 . (3.30) 

Since , the maximum magnitude of  becomes 

 , (3.31) 

or 

 , (3.32) 

Hence, the corresponding maximum displacement is 

 , (3.33) 

when . 
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The FRC of the system with a softening mechanism becomes unstable when 

. This is because with the further increase in the response 

displacement, negative stiffness appears, making the restoring force act along the 

motion, not against. Hence, the restoring force dominated by negative stiffness affects 

the dynamic response of the system significantly until 

 , (3.34) 

or 

 , (3.35) 

where the time-based displacement response increase infinitely. 

Furthermore, The non-dimensional potential energy of the system with a softening 

mechanism  is given by 

   2 4
2

1 1

2 4soft RE F dx x x   . (3.36) 

Figure 3.10 shows the potential energy-deflection curve of the system. It can be noted 

that the dynamic response of the system escapes from the potential energy well when 

the displacement exceeds . The trajectory can diverge to infinite which validates 

the analysis above. For a system made of known materials, this kind of behaviors has to 

be controlled when the system with a softening mechanism is used in scavenging 

devices. 
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Figure 3.10: Potential energy-deflection of the system with softening mechanism with 0.012   

and 0.005  , where the grey areas stand for the unstable regions.  is the point where the 

dynamic displacement is , and  is the point where the dynamic displacement is .  

3.2 Snap-through mechanism 

Systems with hardening and softening mechanisms have been analyzed statically and 

dynamically, which demonstrates that either of them could expand the operation 

bandwidth, and be practically constructed. However, they are impractical for a vibration 

energy scavenging device due to the limitations discussed above. Therefore, a snap-

through mechanism is proposed with the intention to overcome these limitations.  

3.2.1 Typical mechanical system with snap-through mechanism 

Figure 3.11 shows a mechanical system of two linear oblique springs connected by a 

point mass, which will be referred to as T3 hereafter. The restoring force along the 

symmetry line can be given by 

 , (3.37) 
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where Sk  is stiffness of the spring, Sy  the vertical deflection from the reference point 

refY  where ,  the horizontal length of the spring,  the original length of the 

spring and  the inclination. 

Since , Eq. (3.37) can be rewritten as 

 
2 2

2 1 S
S S S

S SH

L
F k y

y L

 
  
  

. (3.38) 

Equation (3.38) can be expressed in a dimensionless form as 
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, (3.39) 

where ,  and . 

Hence, non-dimensional stiffness of T3 is given by 

 . (3.40) 

T3 is considered as a typical mechanical system with a snap-through mechanism which 

has the restoring force in the form of Eq. (3.39) [35].  
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 Figure 3.11: T3, where  is stiffness of the spring,  the vertical deflection from the reference 

point refY  where ,  the horizontal length of the spring,  the original length of the 

spring,  the inclination and  the restoring force. 

3.2.2 Statics Analysis 

Let us consider three cases where 0.1  , 0.5   and 1  , which are denoted by T31, 

T32 and T33, respectively. According to Eqs. (3.39) and (3.40), the non-dimensional 

force vs. deflection and stiffness vs. deflection curves of T31, T32 and T33 can be 

obtained, which are showed in Fig. 3.12.  

For T31, it can be observed that three equilibrium points A, B and C exist when  

as shown in Fig 3.12(a).The corresponding deflections can be obtained from 
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 . (3.42) 

According to [39], in statics, with the increase in the restoring force or input force, T31 

follows FD curve and then directly jumps to point G once the restoring force reaches 

point D. With the decrease in the restoring force, T31 follows GE curve, and then jumps 

to point F as soon as the restoring force reaches point E. Therefore, the region between 

point D and point E is unstable. The jump phenomenon is called ‘snap-through’. 

As shown in Fig. 3.12(b), overall stiffness of T31 switches sign from positive to 

negative. In addition, it can be seen that stiffness of T31 varies very little and is close to 

the linear spring constant, i.e., , before switching sign from positive to negative. 

Furthermore, it can be noted that point D and point E where the jump happens have the 

identical deflection magnitude to the points where . As discussed above, when 

negative stiffness appears, non-linear systems become unstable. Therefore, the point 

where stiffness becomes negative is called the critical point hereafter. The 

corresponding deflection is given by 

 . (3.43) 

which yields 

 . (3.44) 
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Based on Eqs. (3.42), (3.44) and (3.46), the potential energy-deflection curves of the 

T31, T32 and T33 are shown in Fig. 3.13.  

It can be noted that two potential energy wells exist for T31 as shown in Figs. 3.13(a). 

Furthermore, since in dynamics the stable response of T31 is symmetrical about the 

equilibrium point  or  before the excitation force is large enough to cross the 

potential energy wells, four critical points  and three cross points  where 

T31 becomes unstable and crosses the potential energy wells exist, respectively [50]. 

Unlike the system with softening mechanism, the dynamic response of T31 does not 

diverge to infinite when the dynamic displacement exceeds the critical point and crosses 

the potential energy wells at  and . This is due to the fact that a higher 

potential energy barrier appears to limit the dynamic response of T31 as shown in Fig. 

3.13(a). The potential energy wells at  and  are called the Stage I potential 

energy wells hereafter. Furthermore, as discussed in Section 3.1.8, the symmetrical 

dynamic response at  and  is stable. However, the dynamic response near  

or S CROP   is unstable (see the grey area in Fig. 3.13 (a)) [50].  

For T32, it has similar potential energy-deflection curve to that of T31 except that the 

equilibrium points, critical points and cross points are different. 

For T33, it has a unique potential well. Therefore, no critical point or cross point exist. 

 is the unique stable equilibrium point. 

Table 3.2 lists the corresponding displacements of the critical points and cross points of 

T31, T32 and T33. 
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when subjected to various  and . In the figures, smooth curves represent stable 

periodic responses, and dispersed points represent unstable chaotic responses. In order 

to understand the dynamic behaviours of T31 and T32 clearly, the corresponding time 

based displacement responses and phase figures are also given near the fundamental 

frequencies, which 1Fun   for T31, and 0.8Fun   for the T32.  

Effect of the forcing amplitude  

 0.05F    

For T31, the FRC leans to the left of the linear resonance frequency 1   when 

0.04  , which is identical to that of a system with a softening mechanism shown in 

Fig. 3.14(a). It is because the maximum displacement is 1.895, which exceeds 

displacement of the critical point but is below displacement 

of the cross point. Therefore, negative stiffness shows up that renders 

T31 to a softening mechanism. In addition, unstable chaotic responses can also be 

observed. It is due to the fact that the dynamic responses of T31 around the fundamental 

frequency have entered the unstable regions as shown in Fig. 3.13(a). When 0.06   

and 0.08  , the maximum displacements are smaller than 1.799. Stiffness of T31 is 

close to the linear spring constant  before the dynamic response exceeds the 

critical point. Therefore, T31 demonstrates similar dynamic behaviors to that of a linear 

system (see Figs. 3.14(b) and (c)). 

For T32, the FRC leans to the left of the linear resonance frequency 1   when 

0.04  , which is identical to that of a system with softening mechanism shown in Fig. 

F 

xSCRI1  1.799
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3.14(a). This is due to the fact that the maximum displacement exceeds displacement 

1 1.349S CRIx     of the critical point but is below displacement 1 1.732S CROx     of the 

cross point when 0.04  . When 0.06   and 0.08  , the maximum displacements 

are smaller than . However, both FRCs leans to the left of the linear 

resonance frequency. It is because stiffness of T32 has a significant decrease before 

switching sign from positive to negative, similar to that of the softening mechanism 

shown in Fig. 3.4. 

Based on the analysis above, it can be concluded that  0.05F   is not large enough to 

allow T31 and T32 to cross the Stage I potential energy wells. This is confirmed by Figs. 

3.17 and 3.20 in which the mass keeps oscillating about one of the two stable 

equilibrium points periodically. 

 0.125F   

As shown in Fig. 3.15, T31 and T32 show significantly unstable chaotic responses when 

the excitation frequencies are close to the fundamental frequencies. This is due to the 

fact that the maximum displacements of T31 and T32 for given damping ratio are larger 

than the corresponding displacements of the critical points, which are 1.799 for T31 and 

1.349 for T32, but are smaller than those of the cross points, which are 1.990 for T31 and 

1.732 for the T32. Additionally, because of the relatively large restoring force 

accompanied by a negative stiffness, response displacements of T31 are larger than 

those of T32 near resonance frequencies. As shown in Figs. 3.18(a) and (c) and 3.21(a), 

when the excitation frequency is below the fundamental frequency, the mass oscillates 

xSCRI1  1.349
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about one of the two stable equilibrium points  and  periodically. When the 

excitation frequency is close to the fundamental frequency, the mass oscillates about the 

two stable equilibrium points alternately as shown in Figs. 3.18(e) and 3.21(b). In 

addition, no trajectory that crosses the equilibrium point  can be seen in Figs. 

3.18(f) and 3.21(d), which shows that  is unstable. With further increase in the 

excitation frequency, the response returns to periodical oscillations about a stable 

equilibrium point (see Figs 3.18(g) and 3.21(e) and (g)). 

 0.2F   

As shown in Fig. 3.16, T31 still shows significantly unstable chaotic responses around 

the fundamental frequency even though its maximum displacement has exceeded the 

corresponding displacement of the cross point. It can be understood with the assistance 

of Figs. 3.19(c) and (e). In Figs. 3.19(c) and (e), it can be seen that the most of peak 

displacements in each cycle remain smaller than . Therefore, T31 cannot 

overcome the Stage I potential energy wells completely. When 1.5  , the response 

returns to periodical oscillation about a stable equilibrium point with the decrease in the 

displacement (see Fig. 3.19(g)). 

In contrast to T31, when  0.2F  , the fundamental frequency of T32 becomes smaller 

and is approximately 0.4. When the excitation frequency is close to the fundamental 

frequency, the jump-up phenomenon followed by the right leaning of the FRCs can be 

observed. This is because all peak displacements are larger than the corresponding 

displacement of the critical point (see Fig. 3.22(a)). Therefore, T32 has crossed the 

P
SA

P
SC

P
SB

P
SB

xSCRO1
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Stage I potential energy well, and begun oscillating periodically about the equilibrium 

point  (see Fig. 3.22 (b)). Therefore, T32 shows similar dynamic behaviors to those 

of the hardening mechanism when the Stage I potential energy well is crossed. When 

0.7   the dynamic response of T32 becomes unstable due to the decrease in the 

response displacement. With the further increase in the excitation frequency, the 

response returns to periodical oscillation about a stable equilibrium point. 

In summary, when  0.2F  , a system with a snap-through mechanism with a relatively 

low nonlinearity, such as T32, is more likely to cross the Stage I potential energy well 

and exhibits similar dynamic behaviors to those of a system with a hardening 

mechanism. This applies to all systems with a snap-through mechanism [50]. 

Effect of the damping ratio 

As shown in Fig. 3.14, the unstable chaotic responses appear when the damping ratio is 

relatively small, e.g., 0.04  . If the damping ratio increases, the dynamic response 

tend to be more settled, which indicates that the increasing damping restricts the 

oscillation of the mass about one of the stable equilibrium points. 

3.2.4 Practical Constraints of the Typical Mechanical System 

T3 shown in Fig. 3.11 is difficult to be used directly in a vibration energy scavenging 

devices because it is hard to be incorporated into the existing transduction mechanisms. 

This problem can be solved by replacing the two oblique linear springs in T3 with two 

rectangular beams upon which the piezoelectric transduction mechanism can be 

P
SB
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attached. But this brings another problem. The beams may buckle which are 

compressed in practical [40]. 

3.3 Summary 

In the chapter hardening and softening mechanisms were firstly examined both 

statically and dynamically based on the corresponding typical mechanical systems, T1 

and T2. The NS method was used to investigate the effects of the damping ratio, the 

non-linear spring constant and the forcing amplitude on the dynamic response of these 

non-linear systems. The main findings are as follows:  

 The FRCs of the systems with a hardening mechanism leaned to the right of the 

linear resonance frequency. The maximum response displacement rises with the 

decrease in the damping ratio because less input vibration energy was consumed by 

damping. Moreover, the FRCs leaned over to the right with the increase in the non-

linear spring constant. Meanwhile, the response displacement becomes smaller due 

to increasing overall stiffness introduced by the non-linear spring constant.  

 The FRCs of the systems with a softening mechanism leaned to the left of the linear 

resonance frequency. In contrast to the systems with a hardening mechanism, the 

response displacement of the systems with a softening mechanism becomes larger 

with the increase in the non-linear spring constant due to decreasing overall stiffness. 

Operation bandwidths of systems with hardening and softening mechanisms are wider 

than the half-power bandwidth of a linear system when subjected to identical damping 

and forcing amplitude. Moreover, because of comparatively low overall stiffness, the 
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systems with a softening mechanism exhibit higher response displacements. However, 

the systems with a softening mechanism become extremely unstable when the response 

displacement exceeds the maximum displacement allowed where negative stiffness 

influences greatly the dynamic response.  

Therefore, the snap-through mechanism is introduced with the intention to overcome 

the limitations of hardening and softening mechanisms. The static and dynamic analysis 

of the typical mechanical system with a snap-through mechanism, T3, shows that: 

 With the proper selection of the nonlinearity, T3 exhibits softening dynamic 

characteristics when the excitation force is relatively small, and hardening dynamic 

characteristics when the excitation force is large enough to enable the system cross 

the Stage I potential energy barrier. Thus, the systems with a snap-through 

mechanism can broaden operation bandwidth.  

 T3 overcomes the limitations of both the system with a hardening mechanism, that 

is, comparatively low response displacement, and the softening mechanism, that is, 

increasing infinitely when the dynamic response exceeds the maximum 

displacement allowed. 

However, T3 cannot be a suitable design for the vibration energy scavenging device due 

to practical constrains. Therefore, in Chapter 4, a new mechanical system design based 

on the snap-through mechanism will be proposed.  
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(a) 

 
(b) 

 
(c) 

Figure 3.14: FRCs of T31 (blue) and T32 (green) when  0.05F  . (a) 0.04  , (b) 0.06   and (c) 

0.08  . 
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(a) 

 
(b) 

 
(c) 

Figure 3.15: FRCs of T31 (blue) and T32 (green) when  0.125F  . (a) 0.04  , (b) 0.06   and (c) 

0.08  . 
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(a) 

 
(b) 

 
(c) 

Figure 3.16: FRCs of T31 (blue) and T32 (green) when  0.2F  . (a) 0.04  , (b) 0.06   and (c) 

0.08  . 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 3.17: Time-based displacement responses (1st column) and the phase diagrams (2nd column) 

of T31 when  0.05F   and 0.06  . (a, b) , (c, d) , (e, f)  and (g, h) . 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 3.18: Time-based displacement responses (1st column) and the phase diagrams (2nd column) 

of T31 when  0.125F   and 0.06  . (a, b) , (c, d) , (e, f)  and (g, h) . 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 3.19: Time-based displacement responses (1st column) and the phase diagrams (2nd column) 

of T31 when  0.2F   and 0.06  . (a, b) , (c, d) , (e, f)  and (g, h) . 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 3.20: Time-based displacement responses (1st column) and the phase diagrams (2nd column) 

of T32 when  0.05F   and 0.06  . (a, b) 0.5  , (c, d) 0.7  , (e, f) 0.8  and (g, h) 1.5  . 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 3.21: Time-based displacement responses (1st column) and the phase diagrams (2nd column) 

of T32 when  0.125F   and 0.06  . (a, b) 0.5  , (c, d) 0.7  , (e, f) 0.8   and (g, h) 1.5  . 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 3.22: Time-based displacement responses (1st column) and the phase diagrams (2nd column) 

of T32 when  0.2F   and 0.06  . (a, b) 0.5  , (c, d) 0.7  , (e, f) 0.8   and (g, h) 1.5  .  
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CHAPTER 4 NEW NON-LINEAR MECHANICAL 

SYSTEMS 

This chapter introduces a new mechanical system based on the snap-through mechanism. 

The first design is referred to as the N1 hereafter. The dimensional parameters and 

physical properties of materials in N1 are presented, followed by its static and dynamic 

behaviors in two geometrical configurations. Experiments have been conducted to 

verify the accuracy of the simulation result. The discussion on advantages and 

disadvantages of N1 results an improved structural design known as N2. N2 is 

subsequently integrated with a piezoelectric transduction mechanism to complete a new 

piezoelectric non-linear vibration energy scavenging device. This device, known as ND, 

has then been statically analyzed. A piezoelectric mechanical and electrical domains 

dynamic coupling model is used to simulate the output voltage and power of ND when 

subjected to various input accelerations and increasing frequencies. A series of 

experiments have been conducted to validate the numerical simulation result. 

4.1 Design I 

4.1.1 Model 

Figure 4.1 shows the 3D model of N1 which consists of a beryllium copper shim of 

thickness I1 0.3 mmd   bonded by two aluminum alloy blocks of depth I2 5 mmd  , 

which acts like a lumped mass. The central shim has four identical beams of length 

 (see Fig. 4.2). The far end of each beam is rigidly fixed to the enclosureL
DCB

 35 mm
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by a column of width  and length . Six N42 permanent 

cylindrical magnetic buttons of diameter 15 mm   and thickness I3 2 mmd   are 

used in the design, four of which are fixed into the lumped mass. And the rest are 

attached into the center of the top and the bottom of the enclosure, respectively. The 

buttons are vertically aligned. Dimensional parameters of the central shim and the alloy 

block are shown in Fig. 4.2. Physical properties of the corresponding materials are listed 

in Table 4.1.  

(a) (b) 

Figure 4.1: The 3D model of N1: (a) isometric view of N1 and (b) arrangement of magnets. 

(a) (b) 

Figure 4.2: Design of (a) the central shim, and (b) the top and bottom alloy blocks forming the 
lumped mass in N1. Unit: mm.  

w
column

 5 mm l
column

 8 mm
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Table 4.1: Physical properties of materials 

Symbol Description Value 

 Residual flux density 1.18 T 

 Permeability of intervening medium  H/m 

 Density of the magnet  

 Density of the beryllium copper shim  

 Density of the aluminum alloy block  

 
Young’s modulus of the beryllium copper 

shim  

 Yield strength of the beryllium copper shim  

4.1.2 Static Analysis 

Doubly clamped beams 

The beams linking the lumped mass and columns can be treated as fixed-fixed beams, 

and will be referred to as the doubly clamped beams hereafter. Recalling Eq. (3.8), the 

relationship between the force and the deflection of each doubly clamped beam can be 

written as 

 , (4.1) 

where  is the second moment area of the doubly clamped beam,  is the cross-

section area of the doubly clamped beam, and  is the deflection of the doubly clamped 

beam. 

According to Eqs. (3.6) and (3.7), the force due to tension is  

 , (4.2) 

B
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and due to bending is 

 . (4.3) 

The total restoring force of N1, , is 

 
2

3
IE 3 3

48
4

4
b DCB DCB b

EDCB
DCB DCB

E I A E
F F z z

L L


   , (4.4) 

because there are four identical doubly clamped beams. 

In order to verify the accuracy of Eq. (4.1), Abaqus FEA 6.7 [41] was used to model the 

force-deflection behavior of each doubly clamped beam. Figure 4.3(a) shows the 

comparison between the numerical result of Abaqus and that of Eq. (4.1). It can be seen 

that both coincide well. It is also found that, with the suitable selection of materials and 

sectional geometries, tension could dominate the force vs. deflection behavior of the 

doubly clamped beam, which is the case here (see in Fig. 4.3 (b)).  

(a) (b) 

Figure 4.3: Force vs. deflection diagrams of the doubly clamped beam. (a) Eq. (4.1) and Abaqus 
simulation, (b) Eq. (4.1), Eq. (4.2) and Eq. (4.3). In the diagrams, Eq. (4.1) (red), Eq. (4.2) (blue), Eq. 

(4.3) (green), and Abaqus FEA (black). 
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The Finite Element Method Magnetic 4.2 (FEMM) [43] has been used to simulate the 

force-distance relationship between two N42 cylindrical magnetic buttons by adopting 

the dimensional parameters and physical properties of the circular magnets given above 

(see Fig. 4.4). The accuracy of FEMM has been verified by the official data posted by 

the supplier of the N42 circular magnets. Moreover, in order to analyze the dynamic 

response of N1 through the NS method, SPSS Statics [45] was used to generate the 

fitting formula, representing the relationship between the magnetic force and 

displacement, based on the output from FEMM, which can be expressed as 

                             2 3
TVACM TM TM TM TM TM TM TMF A B d C d D d    ,                 (4.5) 

where TVACMF  is magnetic force between two vertically aligned cylindrical magnets,  

TMd  is the distance between two magnets, TMA , TMB , TMC  and TMD  are coefficients, 

24.191, 16.440, 5.769 and 0.760, respectively. 

 

Figure 4.4: Force vs. distance diagrams of two attractive magnets basing on FEMM. 

Figure 4.5 shows a simplified model of N1 in which two doubly clamped beams and 

three magnets are considered. Therefore, the attractive force  between the 

magnets, MAG1 and MAG2 shown in Fig. 4.5, is 
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 2 3
1 1 1 1TVACM TM TM TM TM TM TM TMF A B d C d D d    ,   (4.6) 

And the attractive force  between the magnets, MAG2 and MAG3 also shown in 

Fig. 4.5, is 

 2 3
1 2 2 3TVACM TM TM TM TM TM TM TMF A B d C d D d    , (4.7) 

in which 1TMd  and 2TMd  are 

 , (4.8) 

and 

 , (4.9) 

where  is the distance between magnets when the simplified model of N1 is at rest, 

which is restricted by  because of the prospective displacement 

and the constraint of the volume of the design. 

 

Figure 4.5: The simplified model of N1. 

Furthermore, the resultant force of the MAG1, MAG2 and MAG3 can be expressed as 

F
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 . (4.10) 

Substituting Eqs. (4.6) – (4.9) into Eq. (4.10) and rearranging terms yield 

           
     

     

2 3

I4 I4 I4

2 3

I4 I4 I4

IM TM TM TM TM

TM TM TM TM

F A B d z C d z D d z

A B d z C d z D d z

      

        
           (4.11) 

Rearranging terms yield 

 
 

 

2 3
IM I4 I4

2 3
I4 I4

2 4 6 2

2 4 6 2

TM TM TM

TM TM TM TM

F B z C d z D d z z

z B C d D d D z

   

   
, (4.12) 

in which  

 2
I4 I42 4 6 0TM TM TMB C d D d   , (4.13) 

and  

 2 0TMD  , (4.14) 

Because I42 mm 15 mmd  and TMB , TMC  and TMD  are 16.440, 5.769 and 0.760, 

respectively . 

Hence, the resultant force of the doubly clamped beams and magnets can be obtained by 

RES IM

2
2 3

I4 I43 3

2

24
2 4 6 2

8

EDCB

b DCB DCB b
TM TM TM TM

DCB DCB

F F F

E I A E
B C d D d z D z

L L



 

   
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 ,  (4.15) 
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which provides the evidence that the continuous changing attractive magnetic force can 

decrease overall stiffness of N1, including stiffness of the linear term and the non-linear 

term. 

Restoring Force and Stiffness of N1 

Based on Eq. (4.4) and the fitting formula generated by SPSS Statics, the resultant force 

exerted on the lumped mass due to the restoring force of the beams and the attractive 

force of the magnets were obtained. The force vs. deflection and stiffness vs. deflection 

curves of N1 are shown in Fig. 4.6, in which two values, 12 mm and 15 mm, 

respectively, have been assigned to the height of the columns separating the top and 

bottom enclosure covers columnh , in order to obtain the optimum design. The resulting 

systems are named N11 and N12, respectively.   

As shown in Fig. 4.6, N11 has similar statics behaviors to those of T31 and T32 in 

Chapter 3 which is a typical system with a snap-through mechanism. N12 shows as a 

system with a hardening mechanism. Comparing with N12, N11 has a lower restoring 

force when subjected to an identical deflection (see Fig. 4.6(a)). It is because overall 

stiffness of N11 is lower than that of N12 (see Fig. 4.6(b)). In addition, similar to T31 

and T32, stiffness of N11 switches sign from positive to negative. The comparison above 

indicates that N11 will demonstrate similar dynamic behaviors to those of T31 and T32. 

The FRC of N11 will lean to left when the response displacement is lower than the 

critical point, show unstable chaotic response around the fundamental frequency when 

the response displacement exceeds the critical point but is lower than the cross point, 

and lean to the right when the peak displacements around the fundamental frequency 
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crosses the cross point completely. N12 has no critical and cross point due to uniform 

positive stiffness. The corresponding displacements of the critical point and cross point 

of N11 are given in Table 4.2.  

(a) 

(b) 

Figure 4.6: (a) Force vs. deflection and (b) stiffness vs. deflection of N11 (red), and N12 (green).  

Table 4.2: Displacement values of the critical point and cross point of N11.  

Critical point 
displacement 1 

1 1N CRIz   (mm) 

Critical point 
displacement 2 

1 2N CRIz    (mm) 

Cross point 
displacement 1 

1 1N CROz    (mm) 

Cross point 
displacement 2 

1 2N CROz    (mm) 

0.5 0.2 0.7 0 

4.1.3 Dynamic Analysis and Experiments 

Experimental Apparatus and Procedure 

Experiments were conducted to investigate the dynamic behaviors of N11 and N12. The 

prototypes adopted in the experiments were fixed onto an aluminium alloy plate by four 

bolts. The plate was then connected to the V406 shaker from Bruel & Kjaer UK Limited 

which was powered by PA100E amplifier. The frequency and amplitude signal inputted 
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into the amplifier were generated by Multi-Instrument 3.2 software package from 

Virtins Technology through the sound card of a desktop computer. A 355B04 

piezoelectric accelerometer from PCB Piezotronics was mounted on the roof of the 

prototype to measure the acceleration of the driving vibrations. quickDAQ software was 

used to record the acceleration data acquired by DT9800 Multifunction USB DAQ 

Modulues from the accelerometer. A Laser interferometric Vibrometer, SP-S LSV from 

SIOS was fixed on an aluminium alloy base plate which was placed vertically to the top 

magnet of the prototype. INFAS Vibro Vibrometer Software displayed and recorded the 

vibration amplitude data through the incremental signal-processing board equipped with 

vibrometer. The top and bottom cylindrical magnets were replaced by two ring magnets 

with the diameter 15 mmR  , the thickness I3R 2 mmd   and the sunk hole diameter 

3 mmr   to allow the laser of the vibrometer to pass through the hole so that the 

displacement of the lumped mass could be measured. The accelerations of the driving 

vibration used in these experiments were  and  with increasing 

frequencies with a step increment . The entire setup is shown in Fig. 4.7. 

(a) (b) 

Figure 4.7: (a) The prototype of N1 and (b) experimental apparatus 

21 m/s 25 m/s

1 Hz
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Dynamic Analysis 

The NS method introduced in Chapter 3 was used to simulate the dynamic responses of 

N11 and N12. To ensure the accuracy of the numerical simulation, the damping ratio of 

N11 and N12 was determined firstly. Several measurements were taken on the 

prototypes by applying an impulse to the prototypes and measuring the resulting 

damped harmonic oscillation displacement [17]. The mean value of these measurements 

was approximately 0.058, which was adopted in the numerical simulation. FRCs of N11 

and N12 are shown in Fig. 4.7 when subjected to constant acceleration excitations 

 and , respectively.  

The approach mentioned in Chapter 3 is used to identify operation bandwidths of N11 

and N12. To do so, a cantilever beam with an additional mass end which is a typical 

linear system is considered. The dimensional parameters and physical properties of 

materials of the cantilever beam are identical to those of the doubly clamped beam in 

N1. Moreover, the additional mass is equal to a quarter of the lumped mass and magnets 

inserted in N1. As a result, the natural frequency of the cantilever beam is about 18 Hz. 

Therefore, the half-power bandwidth is 2.1 Hz by adopting the mean value of damping 

ratio, 0.058. Furthermore, the displacements when the excitation frequency is 16.95 Hz 

or 19.05 Hz are 0.19 mm and 0.95 mm when subjected to constant acceleration 

excitations 21 m/scA   and 25 m/scA  , respectively. 

A
c
 1 m/s2 A

c
 5 m/s2
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(a) 

 
(b) 

Figure 4.8: FRCs of N11 (red), and N12  (green). (a) , (b) .  

21 m/scA    

Figure 4.8(a) shows that the FRC of N11 leans to the left in which the inconspicuous 

unstable chaotic response can be observed around the fundamental frequency. It is 

because the maximum dynamic displacement exceeds the corresponding displacement 

of the critical point 1 -1 0.5 mmN CRIz   , and is lower than the displacement of the cross 

point 1 -1 0.7 mmN CROz   . In contrast, the dynamic response of N12 is similar to that of 

a linear system due to the fact that the effect of the nonlinearity is insignificant when the 

displacement is small. The operation bandwidth of N11 is wider than that of N12. The 

operation bandwidth of N11 is around 4.3 Hz whereas it is 4 Hz for N12. Additionally, 

the response displacements of N11 are higher than those of N12 due to relatively lower 
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positive stiffness as well as negative. The maximum response displacement reaches 0.54 

mm for N11, comparing with 0.43 mm for N12.  

25 m/scA   

As shown in Fig. 4.7(b), a sudden jump-up followed by the right leaning emerges in the 

FRC of N11 which indicates that all peak displacements in a cycle of the time-based 

response around the fundamental frequency overrun the corresponding displacement of 

the cross point. In addition, significantly unstable chaotic responses can be observed in 

the frequency ranges of before and after the sudden jump-up. In these frequency ranges, 

though the maximum displacement in a cycle of the time-based displacement response 

has exceeded the cross point, most of the peak displacements still stay below the cross 

point, as discussed in Chapter 3. Therefore, the dynamic response in these frequency 

ranges is dominated by negative stiffness, which leads to the unstable chaotic response. 

The FRC of N12 leans to the right, which behaves essentially like that of a system with 

a hardening mechanism. The operation bandwidths of N11 and N12 further expand due 

to the right leaning behavior. The operation bandwidth of N11 is around 6.0 Hz whereas 

that of N12 is 4.2 Hz. Furthermore, response displacements of N11 are still higher than 

those of N12. The maximum displacements are 1.78 mm for N11 and 1.28 mm for N12. 

All of these demonstrate that N11 is superior. 

Experimental results and discussion 

The data recorded by the INFAS Vibro Vibrometer Software in each frequency was 

processed to obtain the displacement of the lumped-mass. Comparisons between the 

experimental data and the simulation data are showed in Fig. 4.9.  



Chapter 4 New Non-linear Mechanical Systems 

79 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.9: FRCs of: (a, b) N11 and (c, d) N12, when  for a and c,  for b and d. 

Simulation data (blue) and experiment data (red). 

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frequency (Hz)

A
m

pl
it

ud
e 

(m
m

)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

Frequency (Hz)

D
is

pl
ac

em
en

t (
m

m
)

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

Frequency (Hz)

D
is

pl
ac

em
en

t (
m

m
)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency (Hz)

D
is

pl
ac

em
en

t (
m

m
)

A
c
 1 m/s2 A

c
 5 m/s2



Chapter 4 New Non-linear Mechanical Systems 

80 

 

The experimental data fits the simulation data of N11 and N12 well when 21 m/scA   

(see Figs. 4.9(a) and 4.9(c)). By contrast, differences between the simulation data and 

the experimental data were observed when 25 m/scA  . Firstly, compared to the FRC 

generated by the simulation data, no dispersed point could be seen from the FRC of N11 

in accordance with the experimental data (see Fig. 4.9(b)). It was because the laser of 

the vibrometer had to be focused on the surface of the lumped-mass to read the response 

displacement. It could not be done properly and rapidly when the lumped-mass had 

unstable responses. As a result, only average data could be recorded in each frequency. 

Secondly, due to the twist of the lumped mass, the FRCs of N11 and N12 on the basis of 

the experimental data were higher than those of the simulation data, particularly in the 

vicinity of the fundamental frequency. Figure 4.10 shows that, when the lumped mass is 

loaded by a periodic force and starts oscillating in z-direction, the doubly clamped 

beams of the central shim were subjected to a torque, resulting in a twist of the lumped 

mass about z-direction and movements in x and y-directions up to the maximum 

 mm. Though the displacement was comparatively small, it caused a decrease in 

stiffness of N11 and N12, leading to an increase in the response displacement. In 

addition, the input acceleration could not be kept exactly constant during experiments. 

The true parasitic damping, the real physical dimensions and properties of materials, 

and fabrication error in the prototypes could not be represented accurately in 

simulations, all of which could lead to discrepancies.  

8102
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(a) 

(b) 

(c) 

Figure 4.10: Spartial displacement of N1 with 2 mmz   by Abaqus: (a) x-direction, (b) y-dirction 

and (c) z-dirction. 

4.1.4 Advantages of the Devices and Practical Constraints 

Application strengths 

Performance of N11 shows that a system with a snap through mechanism is superior to 

systems with hardening or softening mechanisms. The operation bandwidth has been 

widened. And the response displacement has increased when the excitation is large 

enough to overcome the energy barrier. Due to the adoption of the magnets, it can avoid 

the pitfalls of the T3, e.g., buckling of beams when the input force exceeds the critical 
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load. Additionally, the corresponding frequencies of fourth, fifth and sixth modes are 

much higher than those of the first, second and third modes (see Fig. 4.11). The out-of-

plan rocking oscillation in second and third modes which could be induced by lateral 

excitations can be eliminated by the parasitic damping eventually. Therefore, the first 

mode can have a much wider off-resonance frequency bandwidth ranging from 29 Hz to 

973 Hz.  

Figure 4.11: First six eigenmodes of N1 free of magnetic force by Abaqus. 

Practical constraints 

The doubly clamped beams of the central shim could be subjected to a torque when the 

lumped mass is excited, which makes it difficult to couple N1 with a piezoelectric 

mechanism. The asymmetric distribution of the strain along the doubly clamped beam 

could result in a decrease in the electromechanical coupling efficiency of the 

piezoelectric material as has been reviewed in Section 2.2 [20]. Additionally, some 

areas of the doubly clamped beam could have relatively high stress due to the torque, 

which may lead to failure of the piezoelectric material. 
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4.2 Design II 

An improved structural design, namely, N2, is proposed to overcome the drawbacks of 

N1. 

4.2.1 Model  

Figure 4.12 shows the 3D model of N2. It has a structural design similar to N1 except 

that a cross-shaped beryllium copper shim with four identical doubly clamped beams of 

thickness II1 0.3d   mm and length 35DCBL   mm is adopted to replace the rectangular 

shim in N1 (see Fig. 4.13(a)). At the centre, two rectangular aluminum alloy blocks of 

depth  mm shown in Fig. 4.13(b) are bonded to the beams.  In addition, 24 N42 

permanent cylindrical magnetic buttons of diameter  and the thickness 

 are used, 16 of which are fixed into the four corners of the lumped mass. 

The rest are embedded into the top and bottom of the enclosure, and vertically aligned 

with the magnets in the lumped mass. Dimensional parameters of the central shim and 

the alloy block are shown in Fig. 4.13. Physical properties of the materials are the same 

as those in N1 which are given in Table 4.1. 

(a) (b) 

Figure 4.12: The 3D model of N2: (a) isometric view of N2 and (b) arrangement of magnets. 

d
II2
 5


II
 6 mm

d
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(a) (b) 

Figure 4.13: Design of (a) the central shim, and (b) the top and bottom alloy blocks forming the 
lumped mass in N2. Unit: mm. 

4.2.2 The Device 

The twist mode vanishes in N2 because the cross beryllium copper shim is used. The 

piezoelectric transduction mechanism can be readily integrated with N2 to complete a 

piezoelectric non-linear vibration energy scavenging device, which will be referred as 

ND hereafter. A PZT-5H piezoelectric ceramic plate, SMPL25W5T15311, supplied by 

STEMiNC, is bonded to the doubly clamped beam in N2, (see Fig. 4.14). The 

dimensional parameters and physical and electrical properties are listed in Table 4.3. 

 
Figure 4.14: Arrangement of the beryllium copper doubly clamped beam, conductive glue and 

piezoelectric plate. Unit: mm. 
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Table 4.3: Dimensional parameters and physical and electrical properties of the selected 
piezoelectric plate 

Symbol Description Values 

 Length of the piezoelectric plate 25 mm 

 Width of the piezoelectric plate 5 mm 

 Thickness of the piezoelectric plate 0.15 mm 

 Young’s modulus of the piezoelectric plate 105.3 10 2N/m  

 Strain coefficient of the piezoelectric plate 12270 10   m/v 

 Coupling coefficient of the piezoelectric plate 0.38 

Relative permittivity 3500 

4.2.3 Static Analysis 

Abaqus FEA 6.7 was adopted to simulate strain on the piezoelectric plate when the 

lumped mass was subjected various static deflection. The results are displayed in Fig. 

4.15. Note that the strain along the piezoelectric plate was symmetry about the median 

line of the piezoelectric plate. In addition, the central portion of the piezoelectric plate 

(around 60% of the total length) was uniformly stretched when the deflection reached 2 

mm. 

Abaqus FEA 6.7 and SPSS Statics were selected to simulate the force vs. deflection and 

stiffness vs. deflection relationships of ND and the results are shown in Fig. 4.16. ND1 

and ND2 have the column heights  and , respectively. It 

can be seen that ND1 has similar static behaviors to those of the system of a snap-

through mechanism, while ND2 is similar to the system of a hardening mechanism. 

Overall stiffness of ND1 is lower than that of ND2 due to the comparatively larger 

magnetic force, which switches sign from positive to negative. Therefore, we can safely 

predict that ND1 and ND2 will exhibit dynamic behaviors similar to those of N11 and 

N12, respectively. Because N11 has the greater response displacement and wider 
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resonance frequency bandwidth than those of N12, ND1 was chosen for further 

investigation.  

 

Figure 4.15: Simulations of strain along the piezoelectric plate.  (red),  (green) 

and  (blue). 

(a) 

(b) 

Figure 4.16: (a) Force vs. deflection and (b) stiffness vs. deflection of ND1 (red) and ND2 (green).  
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4.2.4 The Coupling Model 

An equivalent electrical circuit model of the piezoelectric vibration energy scavenging 

device was used to estimate the voltage and power generated by ND1 (see Fig. 4.17) [17 

and 29]. The model coupled the mechanical system with the piezoelectric transduction 

mechanism. In the mechanical domain, the through mechanical variable was velocity 

dz

dt
. The across mechanical variables were force INF  and PF . The inertial mass m , the 

damping coefficient c , and the spring constant (linear and non-linear)  stiffnessk z were 

represented as a electrical resistance, inductance and inverse capacitance, respectively. 

In the electrical domain, the piezoelectric capacitance PC  was explicitly modeled and 

connected in parallel to an external load resistance LR . 

Figure 4.17: Piezoelectric mechanical and electrical domains coupling model. 

In comparison with other coupling models [17 and 28], the coupling relationship 

between the mechanical domain and the electrical domain of the piezoelectric 

transducer can be successfully captured in this model. The piezoelectric plate when 

subjected to the mechanical force or stress will generate charge in the piezoelectric 

capacitor and form electrical voltage across its electrodes. On the other hand, the 
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electrical voltage formed will exert additional mechanical stress which resists the 

deformation of the piezoelectric plate and restricts the movement of the lumped mass in 

ND1. Applying Kirchhoff’s voltage law to the mechanical domain and Kirchhoff’s 

current law to the electrical domain, the coupled differential equations are 

 , (4.17) 

and  

 , (4.18) 

where  and  is the number of the piezoelectric plate. 

It can be noted that Eq. (4.17) is essentially the same as the motion equation of the 

generic vibration-to-electricity conversion model should except the additional feedback 

piezoelectric force PF . PF  represents the backward coupling of the electrical domain to 

the mechanical domain, which derives from the additional vertical piezoelectric stress 

formed in response to the presence of the electric field within the piezoelectric 

capacitance . As has been discussed above, the central portion of the piezoelectric 

plate in ND1 is uniformly stretched. Therefore the stretched length of a piezoelectric 

plate can be approximately regarded as the hypotenuse of a triangle whose side is the 

original length of the plate and end deflection as the orthogonal sides. The additional 

feedback force PF  is obtained as [29] 
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2 2

5
4

49 25
P piezo piezo piezo

piezo

z
F w t

l z



, (4.19) 

where  is the vertical component factor of the feedback force, and ‘4’ 

stands for the four piezoelectric plate used in ND1. 

Furthermore, the stress-to-voltage relationship is given by Eq. (2.19) for the 

piezoelectric plate at zero strain [17]: 

 , (4.20) 

and 

 . (4.21) 

Therefore, substituting Eqs. (4.20) and (4.21) into Eq. (4.19), Eq. (4.19) can be 

rewritten as 
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
. (4.22) 

The current  in the electrical domain stands for the effect of the piezoelectric charge 

pump which couples the mechanical domain with the electrical domain [29]. By 

adopting the electrical displacement-to-stress relationship given by Eq. (2.22) for the 

piezoelectric plate at zero electric field [17], it can be found that 

5z

49l
piezo
2  25z2


piezo

 d
31

E
3
E

piezo

E
3


V

t
piezo

 

dq

dt



Chapter 4 New Non-linear Mechanical Systems 

90 

 

 . (4.23) 

Moreover, the electrical displacement can be related to current using 

 . (4.24) 

Therefore, substituting Eq. (4.23) into Eq. (4.24) and rearranging terms yields 

 31 31

5
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5
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piezo piezo piezo piezo piezo piezo
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d ddq

w l E d w l E d
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  
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. (4.25) 

The stretched piezoelectric plate length can be approximately considered as the 

hypotenuse of a triangle with the original length and the deflections the orthogonal sides. 

Therefore, the strain can be approximated using Pythagoras’ Theorem as 
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l z l

l


   
  . (4.26) 

Substituting Eq. (4.26) into Eq. (4.25) yields 

 . (4.27) 

Now substituting Eqs. (4.22) and (4.27) into Eqs. (4.17) and (4.18), the relationships 

between the mechanical domain and the electrical domain can be obtained, which are 
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and  

 . (4.29) 

In addition, the voltage generated in the model is an AC voltage. In practical application 

it will be transferred into a root-mean-square (rms) voltage by the rectifier [46], 

 , (4.30) 

where  is the peak value of half wave in the AC voltage. 

Hence, the rms power transferred to the external resistance load is 

 . (4.31) 

4.2.5 Dynamic Analysis and Experiments 

Experimental apparatus and procedure 

A prototype of ND1 was fabricated. The surfaces of the doubly clamped beams were 

chemically cleaned upon which the piezoelectric plates were bonded with the 

conductive glue (see Fig. 4.14). The piezoelectric plates were wired in parallel.  
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All the setup is identical to that for N1. Additionally, a circuit board was connected with 

the wired piezoelectric plates, in which variable load resistances could be inserted to 

find the optimal external load resistance. The NI USB – 6009 was used to read and 

record the AC voltage across these variable load resistances with the assistance of the 

LabVIEW 8.0 [47]. The entire setup is shown in Fig. 4.18. 

(a) (b) 

Figure 4.18: (a) The prototype of ND and (b) experimental apparatus 

Dynamic analysis 

The NS method was used to simulate the output voltage and power of ND1 when 

subjected to constant acceleration and increasing frequencies. To improve the accuracy 

of the numerical simulation, three coefficients used in the simulation were determined 

first, i.e., the damping ratio, the effective strain coefficient of the piezoelectric plate, and 

the external load resistances.  

The mechanical damping ratio and effective strain coefficient were experimentally 

determined. For the mechanical damping ratio, several measurements were taken on the 

prototype by applying an impulse to the prototype and measuring the resulting damped 

harmonic voltage oscillation in an open circuit [17]. The mean value of these 
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measurements was near 0.073. For the effective strain coefficient of the piezoelectric 

plate in Table 6.1, the ideal value of 31d  is 12270 10   m/v, which was obtained using 

[17] 

 , (4.32) 

in which the ideal electromechanical coupling factor is given as 0.38 (see Table 4.3). As 

 and  were constant,  was linearly proportional to the . Furthermore, the 

effective electromechanical coupling factor of ND1 could be determined by measuring 

the fundamental frequencies in the open circuit 
 
and closed circuit closed , Eq. 

(4.33) [49], 
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Within the open circuit, the NI USB – 6009 was directly connected with the wired 

piezoelectric plate without the external load resistance. In the closed circuit, the positive 

and negative terminals of the piezoelectric plates were connected with a 5   load 

resistance. The Laser interferometric Vibrometer was used to measure the displacement 

of the lumped mass under these two circuit conditions with increasing frequencies when

 21 m/scA  . As a result, the peak frequencies measured in open and closed circuits 

were approximately 50 Hz and 47 Hz, respectively. Therefore, the effective 

electromechanical coupling factor was 0.34. Substituting into Eq. (4.32), the effective 

strain coefficient became  m/v. 
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An external load resistance would be needed to measure ND1’s output against the load 

as outlined previously. An optimal load resistance, which can maximize the power 

transfer, can be determined by, 

 . (4.34) 

To simplify the simulation and experiments procedures, the frequency of the maximum 

voltage could be reasonably considered as that of the maximum power harvested [50]. 

Therefore, to find the corresponding frequency of the maximum voltage and validate 

ND1 in the meantime, the dynamic behaviors of the device with increasing accelerations 

was simulated using the NS method with the damping ratio and effective strain 

coefficient determined above. The load resistance of 10 kΩ  was firstly selected to be 

the load resistance because it provided a voltage drop large enough to be read by the NI 

USB – 6009, and has little effect on the dynamic behaviors of ND1. 

21 m/scA    

It was found that the FRC of ND1 leaned to the left (see Fig. 4.19(a)). When the 

excitation frequency was lower than the fundamental frequency, the dynamic response 

was stable due to the fact that the maximum displacement was lower than that of the 

critical point. Furthermore, insignificant unstable responses could be observed around 

the fundamental frequency. It indicated that the maximum dynamic displacement 

exceeded the corresponding displacement of the critical point but was lower than the 

displacement of the cross point. With the further increase in the excitation frequency, 

the voltage output became stable again with the decrease in the dynamic response. 
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25 m/scA   

ND1 exhibited significantly unstable chaotic responses when the excitation frequencies 

were close to the fundamental frequency, see Fig. 4.19(b). This is due to the fact that the 

maximum displacements of ND1 were larger than the corresponding displacements of 

the critical points but are smaller than those of the cross points. With the increase in the 

excitation frequency, the dynamic response would become comparatively stable 

because of the decreasing displacements. 

29 m/scA   

The FRC of ND1 leaned to the right due to the fact that the input acceleration was large 

enough to ensure the device overcome the Stage I potential energy wells. In addition, 

significantly unstable chaotic responses can be observed in the frequency ranges after 

the right leaning. As discussed in Section 3.2.2, in these frequency ranges, most of the 

peak displacements still stay below the cross point, though the maximum displacement 

in a cycle of the time-based displacement response exceeded the cross point. Therefore, 

the dynamic response in these frequency ranges is dominated by negative stiffness, 

resulting in the unstable chaotic response, which would be stable when the excitation 

frequency is far from the fundamental frequency. 

The analysis has shown that the dynamic behaviors of ND1 are typical of a system with 

a snap-through mechanism. Because the FRC of ND1 demonstrates significantly 

unstable chaotic response around the fundamental frequency when , it is 

difficult to identify the true maximum voltage output. Therefore, the accelerations of the 

A
c
 5 m/s2
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driving vibration used in the experiments were selected as  and  

with a step increment 1 Hz. The effect of the unstable chaotic response on the vibration 

energy scavenging demands further investigations in the future.  

The peak frequencies when  and  are approximately 45 Hz and 

43 Hz, respectively. According to [50], with the change of the load resistance, the peak 

frequencies could move insignificantly, i.e., 1 to 2 Hz, which has been validated by the 

numerical simulation. Therefore, 45 Hz and 43 Hz are considered as the frequency 

where the maximum voltage will be generated, and are substituted into Eq. (4.39). The 

corresponding optimal load resistances when  and  are 34 kΩ  

and 36 kΩ , respectively. In addition, load resistances in the vicinity of these optimal 

load resistances were chosen from 10 k  to 60 k  with an interval of 5 k  for 

experiments. 

(a) 

(b) 
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(c) 

Figure 4.19: Voltage vs. frequency of ND1: (a) , (b)  and (c) .  

Results and discussions 

The data recorded by the LabVIEW in 45 Hz and 43 Hz when subjected  

and , respectively, was processed to obtain AC voltage across various load 

resistances. Comparisons between the experimental data and the simulation data are 

given in Fig. 4.20.  

As it can be seen from Fig. 4.20, the experiment data fits well with the simulation data 

well, particularly the relationship between voltage and resistance. ND1 can generate up 

to 2.85 volts and 200 microWatts (see Fig. 4.20(d)), which is large enough to power an 

existing wireless sensor with the proper circuit design. 

However, some mismatches between the experimental and simulation data have also 

been observed, especially in the vicinity of the optimal load resistance (see Figs. 4.20 (b) 

and (d)). Explanations for these discrepancies are as follows: 

o The input acceleration could not be kept exactly constant during experiments. 

o The data read and recorded by the NI USB – 6009 and the LabVIEW 8.0 might not 

be fully accurate due to the precision of the equipments.  
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o The mechanical damping ratio and the electromechanical coupling factor used in the 

simulation were the mean values of several measurements. Therefore, there might 

be small discrepancies. 

o The properties of materials, the bonding method between the doubly clamped beam 

and piezoelectric plate, the electric conductivity of the glue and doubly clamped 

beam, the extra load resistances introduced by the electric wires and bonding points, 

and fabrication errors in the prototypes could not be represented accurately in 

numerical simulations. 

Furthermore, the optimal load resistance when  is about 1.75 kΩ , Fig. 

4.20(d), which is different from the predicated value of 3.6 kΩ . Therefore, the 

corresponding peak frequency will be approximately 88 Hz based on the Eq. (4.33). In 

Section 3.1.4, we mentioned that FRCs of non-linear systems may follow the upper 

curve or the lower curve, depending on the initial conditions. In the numerical 

simulation and experiments, however, it was difficult to determine the suitable initial 

conditions to ensure the FRC follow the upper curve entirely. Therefore, it can be 

considered that the frequency 88 Hz is the maximum peak frequency in theory. On the 

other hand, the frequency 43 Hz is the peak frequency when the initial conditions 

including the initial velocity and displacement are zero, which is the case here. 
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(b) 

 
(c) 

 
(d) 

Figure 4.20: Voltage and power output of ND1 with various load resistances when: (a, b) 

 and , and (c, d)  and . 

4.3 Summary 

In this chapter a new mechanical system with a snap-through mechanism N1 was firstly 

proposed. Two extended models of N1 including N11 with relatively short columns and 

N12 with relatively long columns were considered. Static behaviours of N11 and N12 

were analyzed. The main findings are as follows: 
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 N11 demonstrates similar static behaviors to those of a system with snap-through 

mechanism.  

 N12 behaves essentially like a system with hardening mechanism.  

Subsequently, the dynamic analysis of N11 and N12 were carried out when subjected to 

various constant accelerations and increasing frequencies based on the NS method. The 

main findings are as follows: 

 When the acceleration is relatively small, the FRC of N11 leans to the left with 

insignificant unstable chaotic response, which indicates that the maximum 

displacement in the vicinity of the fundamental frequency exceeds the displacement 

of the critical point and is lower than that of the cross point. Meanwhile, the FRC of 

N12 is similar to that of a linear system due to the insignificant effect of the non-

linearity when the displacement is small. In addition, N11 has a wider bandwidth 

and higher dynamic responses than those of N12 due to the lower stiffness. 

 With the increase in the acceleration, the FRCs of N11 and N12 lean to the right. A 

sudden jump-up appears in the FRC of N11 due to the fact that the input acceleration 

is large enough to ensure the dynamic response of N11 overcome the Stage I 

potential energy well. The dynamic responses before and after the jump-up are 

significantly unstable because most of the peak displacements of N11 in a cycle of 

the time-based displacement response stay above the critical point and are lower 

than the cross point and. Furthermore, N11 shows advantages in expanding the 

bandwidth and raising the dynamic displacement over N12. 
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The analysis results were validated by experiments. Discrepancies nevertheless could be 

observed when the acceleration was comparatively large, including: 

 When the dynamic response is in chaos, no dispersed point can be recorded by the 

vibrometer due to its operation limitation. 

 The displacements based on the experimental data are higher than those of the 

simulation data due to the twist of the lumped mass and the decrease in stiffness of 

N11 and N12. 

N11 demonstrates that the system with a snap-through mechanism can overcome the 

limitation of T3, and has a wider off-resonance frequency bandwidth. However, the 

design leads to distortion of the lumped mass in vibration, which makes the 

piezoelectric transduction mechanism unable to be coupled with N11 efficiently.  

As a result an improved structural design N2 has been proposed in which a cross 

beryllium copper shim is used to replace the rectangular shim in N1. The piezoelectric 

transduction mechanism can now been effectively coupled with N2 to form a complete 

piezoelectric non-linear vibration energy scavenging device ND. The simulation 

analysis for ND shows that the piezoelectric plate can be uniformly stretched when the 

deflection of the lumped mass is sufficiently large.   

Subsequently, two models, namely ND1 and ND2, have been statically analyzed. ND1, 

which has comparatively short columns, behaves essentially like a system with a snap-

through mechanism due to the large attractive magnetic force. Therefore, it has been 

selected for further investigation. And a piezoelectric mechanical domain and electrical 
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domain coupling model has been used to predict the output voltage and power. The 

analytical results have been validated by experiments. It has been found that: 

 Overall the experimental data matches the numerical data well.  

 Some issues have been detected in the experimental data, leading discrepancies 

between the experimental and simulation data. The reasons could be unstable 

dynamic responses, the reading and recording errors in equipments, the errors in 

measurement of the mechanical damping ratio and the electromechanical coupling 

factor, and the fabrication errors of the prototypes, etc. 

 The experimental optimal load resistance is different from the resistance predicated. 

It is because in the dynamic responses of ND1 are sensitive to initial conditions but 

these conditions cannot be guaranteed in experiments.  

In summary, ND1 is a vibration energy scavenging device which could be an alternative 

design to overcome the drawbacks of existing linear and non-linear vibration energy 

scavenging devices in certain conditions, e.g., relatively large excitation force required 

to cross the potential energy barrier and comparatively larger space needed to install the 

device in comparison with a linear device or a non-linear device with the hardening 

mechanism with an identical beam of dimensional parameters, etc. 
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

Pervasive networks of wireless sensors and communication nodes have been developed 

over past decades. Existing powering methods using wiring power and batteries have 

their own limitations such as expensive setting and high maintenance cost for the former, 

and limited lifetime for the latter. Technologies that enable a wireless electronic device 

power itself have been considered as the ideal method to solve the problem, especially 

the power requirement of the latest wireless sensor has been reduced to below 1 

microWatt. The main idea is to integrate the wireless sensor into a device that can 

harvest energy in ambient environment and convert it into electric power. According to 

the comparison of the power density of existing self-powered technologies in terms of 

various ambient energy sources, scavenging technologies of solar energy and vibration 

energy can meet the power density requirement of existing wireless sensors. This 

dissertation focuses on developing a novel vibration energy scavenging device to raise 

the conversion efficiency of the vibration energy.  

In this dissertation, existing common vibration sources in ambient environment were 

reviewed firstly, and then the emphasis was on the vibration energy scavenging devices 

and their operation vibration range. Subsequently, a generic linear vibration to 

electricity conversion model, a 2-DOF mass-spring-dampers system, was highlighted 

based on the analytical method. It has been found that: 
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 For a vibration energy scavenging device based on a linear mechanical system, the 

output power can only be maximized when the excitation frequency matches the 

natural frequency of the device. It falls dramatically when the excitation frequency 

does not coincide with the natural frequency. Moreover, the output power is 

inversely proportional to the natural frequency. 

 The output power can be optimized when the mechanical damping ratio is equal to 

the electrically induced damping ratio. In addition, the output is linearly 

proportional to mass. 

Three transduction mechanisms, the electromagnetic, electrostatic and piezoelectric can 

be used to harvest electrical energy from motions within the vibration energy 

scavenging device. After reviewing the primary advantages and disadvantages of 

existing transduction mechanisms, it is decided that the piezoelectric transduction 

mechanism will be chosen as the primary transduction mechanism for the subsequent 

design.  

In general, the excitation frequencies of vibration sources cannot be predicated correctly, 

which limits the amount of energy that can be harvested by a linear piezoelectric 

vibration energy scavenging device. Some improvements have been proposed in the 

past including altering natural frequencies of linear mechanical systems and adopting 

non-linear mechanical systems. However, each of them has its own drawback, e.g., 

external power needed to tune the natural frequency of a linear mechanical system, and 

comparatively low output displacement of a non-linear mechanical system currently 

used. To improve that, a detailed analysis of some of the non-linear mechanisms is 

carried out in Chapter 3. 
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Three non-linear mechanisms are extensively examined in Chapter 3 in order to identify 

a suitable one for the design of mechanical systems. The hardening and softening 

mechanisms are firstly analysed statically and dynamically based on the corresponding 

typical mechanical systems. The main findings are as follows: 

 The FRCs of the systems with hardening and softening mechanisms lean to the right 

and left of the linear resonance frequency, respectively, which indicate that either of 

them could have broader the operation bandwidths than the half-power bandwidth of 

a linear system in an identical vibration source.  

 The maximum response displacements of both systems increase with the decrease in 

the damping ratio because less input energy is consumed by damping. 

 The response displacement of the systems with a hardening mechanism becomes 

smaller with the raise of the non-linear spring constant because of the increase in 

overall stiffness, whereas becomes larger for the systems with a softening 

mechanism because of the decrease in overall stiffness.  

It has been found that the system with a softening mechanism has higher response 

displacements and a wider operation bandwidth due to comparatively low stiffness. 

However, it becomes extremely unstable when the response displacements exceed the 

maximum displacement allowed.  

To overcome the drawbacks of hardening and softening mechanisms, a snap-through 

mechanism has been looked into. The following has been found through both static and 

dynamic analysis. 
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 Overall stiffness switches signs from positive to negative when the deflection 

exceeds the critical point. 

 Two potential energy wells exist in the potential energy vs. deflection curves in 

which three equilibrium points, four critical points and three cross points are 

embedded. 

 Dynamically when the forcing amplitude is small, the FRC of the system leans to 

the left of the linear resonance frequency, and is stable. This makes it identical to 

that of a system with a softening mechanism due to the fact that the maximum 

dynamic response displacement of the system is smaller than the corresponding 

displacement of the critical point.  

 With the increase in the forcing amplitude, the FRCs of the system becomes 

unstable, particularly around the fundamental frequency, indicating that the dynamic 

response of the system has exceeded the critical point but stays below the cross 

point.  

 A jump-up phenomenon emerges from the right leaning FRC of the system when 

the forcing amplitude is large enough to allow the system to overcome the Stage I 

potential energy well and oscillate about the middle equilibrium point periodically.  

 The increasing damping ratio can restrict the dynamic response of the system, 

leading the decrease in the dynamic displacements and relieving the chaotic 

response. 

Despite that the system with a snap-through mechanism is advantageous over other 

systems, it cannot be easily coupled with existing transduction mechanisms. Hence, we 

have embarked on new designs in Chapter 4.  
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The first mechanical structure N1 consists of a rectangular beryllium copper shim 

bonded by two aluminium alloy blocks forming a lumped mass. The mass is connected 

to the enclosure through four beams. A suitable selection of materials and sectional 

geometries of the beams allows a tension dominated the force-deflection behaviour for 

these doubly clamped beams. Additionally six permanent cylindrical magnetic buttons 

are used in the design to alter stiffness of the system. The attractive force generated by 

these magnets can effectively reduce overall stiffness of the system. When a suitable 

distance between the magnets is chosen, N1 exhibits similar behaviours to those of a 

system with a snap-through mechanism. However, it has been found that the dynamic 

response displacements on the basis of experimental data were higher than simulation 

data, particularly in the vicinity of the fundamental frequency. It is because the doubly 

clamped beams are subjected to a torque when the lumped mass is loaded by a periodic 

force and starts oscillating in z-direction, resulting a twist of the lumped mass which 

causes the decrease in stiffness of N1.  

In view of this fact, an improved design N2 with a cross beryllium copper shim has 

been proposed. The piezoelectric transduction mechanism can be effectively coupled 

with N2 to form a complete piezoelectric non-linear vibration energy scavenging device 

ND. By numerical simulation and experiments, we are able to show that ND with a 

snap-through mechanism can generate enough voltage and power to power existing 

wireless sensors with a proper circuit design, and has wider operational bandwidth in 

comparison with a linear device, such as, a cantilever beam, with identical dimensional 

parameters and physical properties. Therefore, ND with a snap-through mechanism can 

be considered as an alternative design to overcome the drawbacks of existing linear and 
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non-linear vibration generators, when the excitation force is large enough to ensure the 

dynamic response of ND overcome the potential energy barrier. Furthermore, due to the 

existence of the frame, the volume of ND is relatively larger than a linear vibration 

energy scavenging device based on a cantilever beam, or a non-linear vibration energy 

scavenging device based on a fixed-fixed beam, with an identical beam of dimensional 

parameters. 

5.2 Future Work 

5.2.1 Investigations of the Effect of the Chaotic Response on Vibration Energy 

Scavenging  

Unstable chaotic responses can be observed in FRCs of s non-linear system with a snap-

through mechanism. Therefore, the effect of the chaotic response on the vibration 

energy harvesting needs to be investigated by using the NS method and experiments. 

Firstly, it is known that the dynamic behaviour of a non-linear system with a snap-

through mechanism is highly sensitive to initial conditions, e.g., initial velocity and 

acceleration. Therefore, the Monte Carlo method will be used to study the effects of 

various initial conditions on chaotic responses. Secondly, the experimental data in 

periodic stable responses will be compared with that in chaotic responses to investigate 

the effect of the chaotic response on the vibration energy harvesting. If the amount of 

energy harvested in chaotic responses is lower than that in periodic responses in the 

same period and frequency range, it is necessary to find a way to avoid chaotic regions, 

possibly by increasing damping ratio or by changing nonlinearities of non-linear 

systems, etc.  
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5.2.2 Physical Modeling and Experiments 

The fabrication process of ND1 will be further developed with the assistance of the 

MEMS technology. The method of coupling the MEMS technology with the 

magnetization material will be investigated. Furthermore, on the basis of more testing 

results in the laboratory, the device will be installed on a real structure to validate the 

workability of ND1. 

5.2.3 Optimizations 

Based on the experimental results, appropriate adjustments for ND1 will be made to 

optimize the energy harvesting function, e.g., the geometric size, the electrical circuit 

and the transduction mechanism. Furthermore, a three-dimensional mechanical 

structural design which contains the key dynamic characteristics of ND1 and is capable 

of capturing vibrations in all directions will be explored. 
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