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Trinity Term 2011

In recent years the extraction of energy from tidal streams has grown in popularity as a
potential source of clean renewable energy. To extract this energy, tidal devices, resembling
underwater turbines or hydroplanes, are deployed in a fast moving tidal stream. However,
an important consequence is that the devices then act as a resistance to the tidal stream,
which can in�uence local and far �eld natural tidal hydrodynamics and ultimately the
power potential. This thesis is concerned with modelling idealised tidal stream devices
deployed in a number of generic coastal basins, or sites, to better understand these e�ects
on natural tidal �ows and the potential to generate power.

Firstly, to describe the operation of an ideal tidal stream device Linear Momentum
Actuator Disc Theory (LMADT) is applied to a porous disk placed in a steady uniform
tidal stream of �nite Froude number. A device e�ciency is derived, which is de�ned as the
power available to the device relative to the total power removed, or extracted, from the
tidal stream including downstream mixing losses in the immediate wake of the devices.

A line sink of momentum is then proposed to represent a fence, or row, of ideal tidal
devices in a 2D depth-averaged shallow water tidal �ow. It is suggested that LMADT can
be used to de�ne this momentum sink in terms of the local Froude number, the spacing and
size of devices, denoted by a blockage ratio, and the porosity of the devices. Implementation
of the line sink of momentum into a numerical solution of the Shallow Water Equations
(SWEs) using the Discontinuous Galerkin (DG) �nite element method is outlined.

Extraction of energy from tidal channels, oscillating bays and an idealised coastal head-
land are analysed numerically and analytically using the proposed line sink of momentum.
In general a maximum amount of energy extraction is calculated because the �ow through
the turbine fence reduces as the resistance of the fence increases. For each coastal geometry
this maximum is not related in any simple way to the natural rate of energy dissipation due
to bed friction or the undisturbed kinetic �ux (despite the fact that both of these metrics
have been used in the past to predict power extraction). The available power to devices
within a tidal fence is maximised if large and closely packed turbines are adopted. More-
over, unless devices within the fence are perfectly e�cient the maximum available power
does not generally coincide with maximum power extraction.

For tidal channels and enclosed oscillating bays energy extraction tends to reduce tidal
currents and tidal range, which may have environmental implications. In contrast energy
extraction is found to increase tidal range in non-enclosed oscillating bays that are longer
than a natural resonant length. Energy extraction is also found to augment tidal dispersion
around coastal headlands.

A survey of real coastal sites and details of a numerical code, developed in this thesis to
solve the SWEs to arbitrary spatial order of accuracy using the DG �nite element method,
are given in Appendices.
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Nomenclature

Common to Chapters 1-7

a Amplitude of tidal elevation
Ab Surface area of bay impounded by tidal barrage
Ac Cross-sectional area of �ow
B Blockage ratio of actuator disc/turbine (=a/bh)
Cd Depth-averaged seabed drag coe�cient
C ′d E�ective drag coe�cient
Cd,eff E�ective depth-averaged drag coe�cient of an ideal device
CP Dimensionless power coe�cient
CT Dimensionless thrust coe�cient
f Coriolis parameter
Fr Froude number (U/

√
gh)

g Acceleration due to gravity
h Total �uid depth
hd Characteristic channel depth
ho Mean depth
kt Additional bed roughness due to tidal devices
Kc Keulegan-Carpenter number (U/ωL)
L,L1, L2 Dimensional length scales
n Unit normal vector
p Static pressure
P Instantaneous power (In Chapter 2 this is the power available to

the tidal device; in all following chapters it is the total power
extracted from a coastal site.)

Pa Available power
Pd Dissipated power
Pf Kinetic �ux
Pt Instantaneous total power dissipated (P + Pd)
t Time
u = (u, v)T Depth-averaged tidal velocity vector
U Characteristic velocity
α2, α4, β4 Turbine, turbine wake and bypass velocity coe�cients
γ Power coe�cient
η E�ciency of an ideal tidal device
νT Depth-averaged turbulent eddy viscosity
ξ Free surface elevation above mean water depth
ρ Fluid density
τx,b, τy,b Components of bed shear stress
ω Tidal frequency

( ) Time average (in Chapters 5-7)

Chapter 2

ai Turbine induction factor
A Cross sectional area of actuator disc/tidal device(s)
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b Width of open channel or center-to-center spacing between tidal
devices

PW Power dissipated in the wake of an ideal tidal device
T Thrust applied by an ideal tidal device on the �uid
X Net thrust, above atmospheric, acting on the body of �uid

contained within the streamtube
z Vertical coordinate
( )b,t Denotes b- bypass �ow, t−turbine �ow
( )1,2,3,4,5 Denotes location within �ow �eld

Chapter 3

u∗ Velocity vector in three dimensions
u∗, v∗, w∗ Velocity components in three dimensions
x, y, z Spatial Coordinates
Tf Reynolds averaging time period
βxx, βxy, βyy Momentum correction factors
µ Dynamic Viscosity
νt Turbulent eddy viscosity

Chapter 4

b Centre to centre spacing between tidal devices
c =
√
gh Celerity

F(U,Q),G(U,Q) Flux vectors

F̂, Ĝ, R̂x, R̂y, Numerical �ux
i, k, p Integers
hm Characteristic mesh dimension
lv, lh Vertical and horizontal mixing lengths
M Degrees of freedom per element
n Polynomial order of approximation
Q =
(∂u
∂x
, ∂u
∂y
, ∂v
∂x
, ∂v
∂y

)T
Vector of auxiliary variables

Rx(U), Ry(U) Auxiliary �ux vectors
S(U) Vector of source terms
U = (u, uh, vh)T Vector of dependent variables
Uh, Qh Polynomial approximation to the dependent and auxiliary

variables
δ Smoothing variable at the edge of a turbine fence
Γe Boundary of an element
Ω, Ωe Global and element domain
B, E , G, S, A Element matrices
M Mass matrix
{φk} Test function or auxiliary function
{lk,}, {ψk} Nodal and modal basis function, resp.

( ) Normal to a computational element interface
( )b Denotes boundary value
( )∗ Denotes element interface values
( )L,R Denotes left and right of interface
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Chapter 5

a2 Amplitude of elevation di�erence across a subchannel with tidal
devices

A Amplitude of linear tidal wave at boundary

c Parameter describing channel geometry: equal to
´ L

0
A−1
c dx

FGC Force, per unit mass, due to tidal devices and bed roughness
Ft Force per unit mass due to tidal devices
Pmax Maximum extracted power
Q Channel �ow rate (isolated channel)
Qmax, QX,max Maximum undisturbed channel �ow rate (X = 1, 2, 3)
δ0, δ1 Parameters related to natural bed friction and tidal devices
λ0, λ1 Non-dimensional parameters related to δ0, δ1

σ Phase di�erence between driving tide and channel �ow rate
V, I, L, C, R Electrical voltage, current, inductance, capacitance and resistance
()e Denotes exit of the channel
( )1,2,3,4 Denote intermediate locations in a multiply connected channel
( )0 Undistrubed conditions (i.e. without turbines)

Chapter 6

b Width of non-enclosed bay
hc E�ective depth in connecting channel
he E�ective depth in enclosed bay
j Complex number j =

√
−1

l Non-dimensional length of non-enclosed bay
L Length of inlet channel to enclosed bay
m1, m2 Exponents describing non-enclosed bay geometry
S Surface area of bay
xb Non-dimensional position of turbine fence along non-enclosed bay
α Exponent describing variable surface area in an enclosed bay
β Non-dimensional parameter describing enclosed bay geometry
δ0, δ1 Parameters related to natural bed friction and tidal devices, resp.
λ0, λ1 Non-dimensional parameters related to δ0, δ1

λ′0, λ
′
1 Non-dimensional parameters describing bed friction and tidal

devices, resp., in a non-enclosed bay
λ∗0, λ

∗
1 Linearised parameters of λ′0, λ

′
1

λT Non-dimensional parameter describing total friction in channel
(= λ0 + λ1)

Λ Amplitude of enclosed bay elevation normalised by ocean
amplitude

Λs Enclosed bay intertidal area
ξb Free surface elevation above mean water level in an enclosed bay
σ Phase lag of bay elevation behind ocean elevation in natural state
φ Non-dimensional amplitude in an enclosed bay
V, I, L, C, R Electrical voltage, current, inductance, capacitance and resistance
( )0 Denotes undisturbed values

6



Chapter 7

K Di�usion coe�cient
Qc Total �ow rate through tidal channel
Qf Total �ow rate through tidal fence
Qf,0 Maximum undisturbed total �ow rate through the location where

tidal fence is to be installed
ul Lagrangian velocity vector
U0 Characteristic background current amplitude
x0 Lagrangian particle position
α Headland aspect ratio
σx,y Variance of particle positions

Appendix B

Also see Chapter 4 nomenclature.
(a, b) Computational coordinates

Ê(Y) One dimensional numerical �ux normal to element interface
HI , HV Transformed inviscid and viscous numerical �ux evaluated at the

element interface
J, Js Volume and surface Jacobians
L1, L2 Computational norms
q, m Integers
S Wave speeds in local Riemann problem
T Rotational transformation matrix
~x = (x, y) Global coordinates
Y = (h, uh, vh)T Conserved variables orientated normal to element interface
~ξ = (ξ1, ξ2) Natural coordinates
~ξq, ~ξqs Quadrature points within element and along element edge
wq, wqs Quadrature weights within element and along element edge
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Chapter 1

Introduction

The vast movement of seawater caused by the astronomical tide is a potential source of

renewable energy. In addition to traditional tidal barrages, in recent years an increasing

number of in-stream tidal energy devices have been proposed to exploit this resource and

reduce CO2 emissions. However a pressing question is how much energy can be extracted

from the tide for human use? One would expect that an upper bound will exist, because

tidal devices and barrages retard the movement of water. An equally important question

is that of how much energy can be extracted from the tide without causing signi�cant

environmental distress?

Following a brief introduction to the tide, natural energy dissipation and the predomi-

nant methods of tidal energy extraction, comment is made in this chapter on recent studies

that appear to make incorrect estimates of the energy potential of the tidal resource around

the United Kingdom and North America. Consequently the need for further research into

understanding the tidal resource is outlined, and the objectives of the thesis are stated.

1.1 Introduction to the Tide and Tidal Energy

1.1.1 Rise and Fall of the Tide

The rise and fall of the ocean tide is the dynamic response of the world's oceans to the

gravitational forcing of the Moon, Sun and other astronomical bodies (Pugh [1987]). It is

well known that if the Earth were completely covered by very deep water, this forcing would

result in an equilibrium tide that would move freely around the planet in phase with the
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gravitational forcing. However, in reality, because of the variable and �nite ocean depth,

rough seabed and the presence of continents, the actual ocean response to the forcing is

much more complicated. A consequence is that the tidal range varies signi�cantly between

di�erent locations around the world. For example, in the deep ocean the amplitude of tidal

oscillations is less than approximately 1 m (Pugh [1987]), while at certain coastal locations,

such as the Bay of Fundy, Canada, and the Bristol Channel, UK, the mean tidal range is

11.7 m and 9.6 m, respectively (NOAA [2010]).

Perhaps the simplest explanation of the complicated tidal response is that the deep

oceans, such as the Atlantic and the Paci�c, slosh periodically, or seiche, between con-

tinents due to the direct gravitational forcing (Platzman [1991]). This seiching response

is dominated by several natural modes, each having periods close to that of the gravita-

tional forcing (Platzman [1991] and Garrett and Greenberg [1977]). In contrast to the deep

oceans, the adjoining shallow continental shelves are too small in horizontal extent, despite

their shallow depth, to respond signi�cantly to direct astronomical forcing (Garrett [1975])

and are instead driven predominantly by co-oscillation with the deep ocean basins at the

edge of the continental shelves (Defant [1961]). The ampli�ed tidal range observed at var-

ious coastal locations occurs where the co-oscillation leads to resonant excitation or, more

speci�cally, where a constituent frequency of the tidal seiching in the deep ocean at the

edge of the shallow continental shelf is su�cient to establish quarter wavelength resonance

of the coastal tide (Defant [1961], Garrett [1973] and Terra et al. [2004]). The proximity of

a particular coastline to the resonant condition is dependent on both the depth and width

of the continental shelf. In constant water depth of 75-200 m for example, simple linear

shallow water theory predicts that a shelf width of approximately 300-500 km will lead to

resonant excitation from the semi-diurnal M2 forcing tide. Notably, both the Bay of Fundy

and the Bristol channel, which have been shown to oscillate close to resonance with the

semi-diurnal tides (Garrett [1973], Heath [1981]), have depths and shelf widths within this

range. As a general rule, locations with shelf width much narrower than around 300 km,

assuming an average depth greater than 75 m, experience a much smaller tidal response,

closer to that observed in the open ocean.
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Figure 1.1: Widely accepted map of power loss due to the M2 tide. Areas of apparent
negative dissipation result from empirical noise. Taken from Egbert and Ray [2001].

1.1.2 Natural Rate of Energy Dissipation due to the Tide

Locations with a large tidal range often generate sizeable tidal currents or tidal streams,

which vary in direction and strength due to the presence of local bathymetric and coastal

features, such as channels and headlands (Pugh [1987]). In the natural state, without

arti�cial energy extraction, the frictional interaction of coastal tidal streams with the rough

seabed leads to signi�cant natural energy dissipation (Taylor [1920]). On a global scale this

dissipation, which is mapped in Figure 1.1, is estimated at around 2-3 TW (Egbert and Ray

[2001]), or two thirds of total global power dissipation due to tidal forcing; the remainder

is believed to be lost in deeper water due to internal mixing processes. Compared to the

current global human power consumption of 17 TW (EIA [2009]) this natural dissipation

equates to roughly 10-15%.

1.1.3 Extracting Energy from the Tide

The extraction of energy from coastal tides can be in achieved in two main ways. The �rst

involves the construction of a barrage across an estuary (or bay) to exploit the rise and fall

of the tide. The second, which is the main focus of this thesis, involves the deployment of

tidal stream devices to extract energy from fast moving tidal streams.
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Figure 1.2: (a) Plan view of a hypothetical tidal barrage. (b) Operation of an ebb only
tidal barrage over one tidal period. The dashed line is the tidal elevation seaward of the
barrage and the solid line is the uniform elevation inside the barrage. Power generation
occurs between t1 and t2, and sluicing occurs between t3 and t4. Figure taken from Prandle
[1984].

1.1.3.1 Tidal Barrages

Figure 1.2 explains the operation of a typical tidal barrage extracting power on an ebb tide.

During the �ood (or rising) tide, the sluice gates of the barrage are left open and sea water

is allowed to �ow into the impoundment. At the point of high tide the sluices are then

closed until a su�cient height di�erence, or head, is established between the impounded

water and the falling tide. The turbines in the barrage are then used to extract energy

from the water that discharges from the impoundment when the turbine gates are opened.

In this way the potential energy of the impounded water, which generates the �ow through

the turbines, is exploited for energy extraction. It is also possible to extract energy during

the �ooding process, which is termed two-way operation.

If the rise and fall of the tide is uniform in the impounded area Ab, and all the water

is allowed to �ll and empty instantaneously at high and low tide respectively, then for a

two way operation the theoretical maximum power available averaged over a tidal period

is 2π−1ρgAbωa
2, for a sinusoidal tidal elevation of ξ = acos (ωt), where a is the tidal ampli-

tude, ω is the angular frequency, g is acceleration due to gravity, ρ is the density of seawater

and t is time (Prandle [1984]). In practice a fraction of the theoretical maximum power

is available because it takes time to empty and �ll the impoundment. This practicality,

combined with the fact that many estuaries and bays have a surface area Ab that is not

constant with depth, leads to a number of interesting problems for determining the optimal

time of emptying and �lling of a barrage. Some of these are discussed in more detail by
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(a) (b) (c)

Figure 1.3: (a) MCT SeaGen horizontal axis turbine. Figure taken from Marine Current
Turbines [2010]. (b) THAWT Darrieus type turbine. Figure taken from McAdam et al.
[2009]. (c) Pulse tidal hydrofoil device. Figure taken from Pulse Tidal [2010].

Bondi [1982] and Prandle [1984]. It may also be possible to employ pumping strategies

for barrages to obtain better e�ciency and to match electricity demand better (MacKay

[2007a]).

Two tidal barrages with rated capacity greater than 10 MW are currently in opera-

tion. The �rst is at La Rance, in France (240 MW), and the second is Annapolis in the

Bay of Fundy (20 MW) (O'Rourke et al. [2010]). Larger developments proposed for the

Bristol Channel in the UK, and the Bay of Fundy, in North America, have been delayed

by concerns over the possible environmental impacts and the large capital cost involved in

construction (WEC [2007]). Although attempts are being made to quantify the potential

of tidal barrages around the North West of the UK and further sites have been proposed

around the world (O'Rourke et al. [2010]), most recent interest has been centered on tidal

stream devices.

1.1.3.2 Tidal Stream Devices

Tidal stream devices act super�cially like wind energy devices to extract energy from

moving tidal streams. Broadly, tidal stream devices can be classi�ed into three types:

horizontal axis turbines; Darrieus-type turbines; and, hydrofoils or hydroplanes. Figure

1.3 provides an example of each type. It appears that perhaps more than 50 di�erent

devices are currently in various stages of development (see O'Rourke et al. [2010] for a

recent review). At present however, only Marine Current Turbines SeaGen device (Figure

1.3(a)), installed in the Strangford Lough, Ireland, has generated electricity for more than

1000 hours (Marine Current Turbines [2010]).
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The best device(s) to use in the long term will have to be economic to construct and

maintain, whilst also remaining hydrodynamically e�cient and capable of covering a large

proportion of the cross section of a given tidal stream. The motivation behind several of the

tidal stream designs, including the Transverse Horizontal Axis Water Turbine (THAWT)

developed at the University of Oxford (Figure 1.3b), has been to cover the cross sectional

area of the tidal stream as completely as possible, with minimal foundations (McAdam et al.

[2009]). More speci�cally, the rectangular cross section of the THAWT device, similar to the

reciprocating hydrofoil design of Pulse Tidal, has better coverage than a circular horizontal

axis turbine. An accurate comparison of the cost and e�ciency of competing devices is

clearly ideal, but has not yet been undertaken.

In practice it is expected that tidal stream devices will be employed as fences of turbines

in constrained channels and inlets, where the optimal tidal power can be extracted with

very few rows (Garrett and Cummins [2007]), or as either a fence or array (or farm) in

areas that are less well bounded, such as around a headland (Blunden and Bahaj [2007b]).

Understanding the �ow �eld around an individual tidal device placed within an array is an

ongoing research topic (see, for example, Myers and Bahaj [2010]). The majority of this

thesis will be concerned with tidal fences modelled using the theory outlined in Chapter 2.

Present interest in tidal stream turbines, compared with tidal barrages, has stemmed

from environmental considerations (WEC [2007]). By the nature of their operation tidal

stream turbines should have less impact on natural tidal currents than barrages, allowing

water to pass though them at all times. From an economic perspective, tidal stream devices

can be installed sequentially, thereby reducing the initial capital investment characteristic

of tidal barrages.

1.2 The Exploitable Tidal Stream Resource

The natural dissipation rate of 2 - 3 TW is not the size of the tidal resource that is available

for human use. To estimate the exploitable tidal stream resource, which is a principal focus

of this thesis, it is necessary to understand how coastal tides and tidal streams will change

when energy is extracted. To date two approaches have been undertaken to calculate the

exploitable tidal stream resource. The �rst has involved semi-empirical desk studies of
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recorded and simulated natural undisturbed tidal currents, which has culminated in the

publication of tidal stream resource assessments. The second has focused on theoretical

models for simpli�ed, or idealised, coastal geometries together with numerical simulations

of energy extraction.

1.2.1 Tidal Stream Resource Assessments

Several recent studies, documented in Table 1.1, have produced estimates of the exploitable

tidal stream resource on the European Continental Shelf and around North America. These

estimates suggest that a useful contribution to both the UK and Canadian energy supply

could be made from tidal energy extraction. In the UK for example, the 2.5 GW resource

estimated by Black and Veatch Ltd [2005] represented around 6% of UK electricity demand

in 2004. However, despite these promising numbers there has been considerable criticism by

MacKay [2007b], Garrett and Cummins [2005], and others, of the methodology employed to

determine the resource potential listed in Table 1.1. For example, the most recent of these

studies, conducted by Black & Veatch Ltd [2005] in the UK and Triton Consultants Ltd.

[2006] in Canada, estimate the tidal resource based on the undisturbed kinetic energy �ux

ρ |u.n|3 dAC , integrated over a cross sectional area of �ow AC , at a particular coastal site,

where u is the depth-averaged tidal current vector and n is the unit normal vector to A. To

determine the tidal resource in Canada, Triton Consultants Ltd. [2006] simply summed up

this undisturbed power �ux at various sites, taking no account of the fact that tidal devices

may have a feedback e�ect on natural tidal currents, which will act to reduce the energy �ux.

Black & Veatch Ltd [2005] attempted to account for the feedback e�ect of tidal devices by

multiplying the undisturbed energy �ux by a Signi�cant Impact Factor (SIF) of 20%. This

impact factor was informed from a quasi-steady analysis of a rectangular channel (Bryden

et al. [2005] ) and was considered to be the amount of energy that could be extracted

without signi�cant changes to natural tidal currents. Unfortunately, the application of this

SIF had two shortcomings. Firstly, the SIF was used to determine the tidal resource for

a number of coastal sites, including sites like the Severn Estuary, which do not resemble

quasi-steady rectangular channels. Secondly, as outlined by Garrett and Cummins [2005]

and discussed further in Chapter 5, the natural kinetic �ux does not explain the tidal

forcing which generates the tidal currents in a tidal channel, and consequently bears no
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Author Data Source Resource Estimate

Tidal Resource Assessments of the European Shelf

European Commission [1996] Navigational Charts 3.9 GW

Black & Veatch Consulting Ltd [2004] Natural Tidal Flows 2.5 GW

Black & Veatch Ltd [2005] Natural Tidal Flows 2.1 ± 0.5 GW

Tidal Resource Assessments in North America

Triton Consultants Ltd. [2006] Natural Tidal Flows 42 GW*

Electrical Power Research Institute, EPRI [2006] Natural Tidal Flows 15.7 GW

Table 1.1: Tidal Energy resource assessments for the European Shelf and North America
over the last 15 years. For more detailed discussion on the European Shelf see Blunden
and Bahaj [2007a]. * Includes Hudson Strait, which accounts for 29.6 GW or 70%.

general relationship with the maximum tidal power that can be extracted or the e�ect on

natural tidal currents as a result of energy extraction.

Because of this criticism, the estimates in Table 1.1 should be treated with caution.

In particular, Karsten et al. [2008] have performed recent numerical simulations of energy

extraction in the Minas Passage in the Bay of Fundy, Canada, representing tidal energy

extraction as an additional depth-averaged shear stress. As pointed out by Karsten et

al. this analysis, which explicitly accounts for the presence of tidal devices, calculated the

energy potential of the Passage to be 9 GW, much higher than the 1.9 GW calculated by

Triton Consultants Ltd. [2006] using the kinetic �ux approach.

1.2.2 Theoretical Energy Potential

On the assumption that tidal oscillations at some arbitrary distance from a coastal site are

�xed, such as a �xed tidal range either side of a channel or at the entrance to a bay, it is

reasonable to expect that there will be an upper limit to the amount of energy that can be

dissipated due to a combination of natural friction and tidal devices. This is because, as

illustrated in Figure 1.4, if a particular site had a perfectly smooth seabed, slowly varying

geometry and no tidal devices, natural tidal streams resulting from the oscillating tide

would accelerate in and around land masses but dissipate little power1 (Point A in Figure

1.4). At the opposite extreme, if a large number of tidal devices were distributed over

the site, or if the natural seabed o�ered signi�cant resistance to the �ow, tidal streams

would eventually reduce towards zero (Point B in Figure 1.4) and again no power could

be dissipated at the site. Therefore, somewhere in between a maximum level of dissipation

1Here, and in Figure 1.4, power can be thought of as the power averaged over a tidal cycle.
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Power Dissipated
Total Resistance to Flow (natural and due to tidal devices) A B

CD Extracted PowerTotal Power Dissipated
Figure 1.4: Dissipated power as a function of total resistance at a given coastal site. If the
site is smooth with no tidal devices the dissipated power is small (point A). When a very
large number of tidal devices are introduced natural tidal streams reduce and dissipated
power again approaches zero (point B). In between a maximum should exist (point C). The
natural dissipation at a real coastal site is indicated by point D. Note the power curve is
drawn with two peaks to indicate that the form of the curve is site dependent and maybe
complex.

should exist (Point C). In reality of course, a coastal site will have an arbitrary amount of

friction and turbulence, and so will dissipate power naturally somewhere on the idealised

power curve in Figure 1.4 (Point D) . From an energy extraction point of view it is the

fraction of power extracted by devices when total friction is increased above these natural

levels that is important. This fraction, indicated by the solid line in Figure 1.4, must

also have a maximum value, which will de�ne the theoretical tidal energy potential of the

coastal site.

Consistent with this simple principle, Garrett and Cummins [2004, 2005] and Blanch�eld

et al. [2008b] have determined the theoretical optimum power dissipation, and the optimum

power that can be extracted by in-stream tidal devices, for idealised coastal geometries

that resemble a strait connecting two co-oscillating basins and a strait connecting one large

oscillating basin to an enclosed bay (see Chapter 5 and 6 for further discussion). Unlike

the resource assessments discussed in Section 1.2.1 the results from these two theoretical

models have provided estimates of the optimum extractable power for a number of locations

around North America, including the Minas Passage, Bay of Fundy (Karsten et al. [2008])

and the Johnstone Strait, Vancouver Island (Sutherland et al. [2007]), which have been

shown to agree well with predictions by numerical models.

At the ocean scale Arbic and Garrett [2009] have employed the mechanical analogy of

a coupled oscillator to describe the co-oscillation of the ocean and an adjacent continen-

tal shelf using a simpli�ed analytical model. (At this scale an upper limit should also be

19



expected because gravitational forcing is essentially independent of the ocean tide.) Intro-

ducing natural friction, and arti�cial friction due to tidal devices, as a drag varying linearly

with current velocity on the continental shelves, the optimum power that can be removed

from the shallow shelf seas is estimated to be a fraction, possibly as high as 0.8, of the

natural global dissipation rate (given as 2 - 3 TW in Section 1.1.2).

1.3 The Need for Further Research

Existing theoretical models can be used to predict tidal stream energy extration, but only

for a small subset of idealised coastal geometries including a strait connecting two co-

oscillating basins and a strait connecting one large oscillating basin to an enclosed bay

(see Garrett and Cummins [2004, 2005], Blanch�eld et al. [2008b]). Tidal stream energy

extraction in estuaries or non-enclosed oscillating bays, around headlands and in two di-

mensional �ow �elds is clearly feasible, but has not yet been fully understood or assessed.

Consequently it appears that a larger set of generic sites, which better represent the full

variety of coastlines where tidal energy extraction may take place, require investigation.

Perhaps the most signi�cant constraint to tidal stream energy will be environmen-

tal impacts that may result from energy extraction. For example, expert feedback to a

research group established by UK Department of Business, Enterprise and Regulatory Re-

form (BERR), stated that �larger scale impact on the underlying resource of tidal energy

converter (TEC) operation is an ongoing research question� (Edinburgh University [2007]).

Although predicting and understanding environmental e�ects will require specialised in-

sight, there is a pressing need to quantify changes to hydrodynamic quantities, from tidal

energy extraction, which will in�uence these environmental e�ects.

1.4 Aims of this Thesis

To understand how tidal devices will a�ect natural tidal currents, and to quantify better

the tidal resource, an understanding of both the local �eld about a typical tidal energy

device and the interaction of this local �eld with the far �eld tidal hydrodynamics of a

coastal basin is required. With this in mind, this thesis sets out three objectives. The �rst

two objectives are concerned with approximating the local �eld about an idealised tidal
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device and the simulation (numerically) of the far �eld tidal hydrodynamics. The third

objective is to investigate the amount of tidal energy that can be extracted by the idealised

tidal devices, and the hydrodynamic impact of extracting this energy, from a set of generic

coastal geometries.

1.4.1 Understanding the Local Field

Linear momentum actuator disc theory (LMADT) provides a useful approximation to the

complicated �ow �eld about a wind turbine. The initial objective of this thesis was to

apply the same theory to a tidal device, allowing for both the free surface boundary of a

tidal stream, �nite gravitational e�ects and the mixing process in the wake of a device.

Ultimately a relationship for the momentum sink imparted by a particular geometry of

tidal device in a uniform tidal stream is obtained, and the power available to the turbine,

distinct to that extracted from the tidal stream, is de�ned together with a turbine e�ciency.

1.4.2 Simulating Tidal Flows

The shallow water equations, discussed in Chapter 3, have been used successfully to simu-

late tidal hydrodynamics in coastal waters for many years (many examples exist including,

for example, Flather [1976] and the theoretical models discussed by Lamb [1932]). A num-

ber of numerical schemes to solve the non-linear shallow water system, both with and

without turbulent di�usion terms, have been developed (see, for example Abbott [1979]

and LeVeque [2002]). Of these schemes, �nite element methods based on unstructured

meshes o�er particular advantages in coastal engineering applications. These advantages

include an ability to conform to complex basin geometries, provide increased resolution in

speci�ed areas of the �ow �eld, the straightforward application of boundary conditions and

a theoretical background to quantify numerical error and undertake numerical convergence

tests.

The second objective of this thesis is to develop a discontinuous �nite element solution to

the shallow water equations. This approach inherits the advantages of unstructured �nite

element methods, but has the additional advantage of conserving mass and momentum

on an element by element basis (see, for example, Kubatco et al. [2009]). This local

conservation is particularly important for tidal resource assessment to ensure that the
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�ow rate and momentum �ux in the vicinity of a tidal device are computed accurately and

consistently (Sutherland et al. [2007]). With this in mind two separate tasks have been

undertaken:

1. The development of a numerical code, based on the discontinuous Galerkin �nite ele-

ment method, which has been validated for a number of linear and non-linear shallow

water benchmark problems and veri�ed against low Reynolds number incompressible

�ow experiments; and

2. Development of a numerical method to introduce a line sink of momentum due to

a fence of tidal devices into a 2D depth-averaged numerical model, thereby allowing

for the simulation of tidal energy extraction. In particular, it is suggested that this

line sink of momentum can be de�ned by LMADT allowing for an estimate of the

available power for a real fence of tidal devices de�ned by a blockage ratio and wake

velocity coe�cient or porosity.

1.4.3 Analysis of Generic Coastal Basins

There are many coastal sites around the world, generally located on the resonant continental

shelfs, which have large tidal currents. Although each of these sites may possess useful

tidal energy, analysis of the tidal resource for every location would be labour intensive and

involve the construction of a detailed numerical model in each case. Moreover the collection

of bathymetric and input data, together with �eld observations for veri�cation, would add

signi�cantly to the time and cost of analysis. As an alternative to this, the third main

objective of this thesis is to investigate the tidal resource, both in terms of the maximum

extracted and available power together with the hydrodynamic e�ects of extracting energy,

for a number of generic coastal geometries. These generic geometries are de�ned in Chapter

3 to include: (a) strait between two oscillating water bodies; (b) oscillating bay or estuary;

(c) strait between an island and a semi-in�nite land mass; and (d) accelerated �ow around

a headland. A number of idealised forms of these generic basins, or class of basin, are

investigated in Chapters 5-7 revealing that in each situation a limit to power extraction

and available power exists because the tidal devices have a feedback e�ect on the local tidal

stream which is dependent on the coastal geometry.
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1.5 Thesis Outline

This thesis includes the analysis of the local �ow �eld around a tidal device, development of

a numerical solver to simulate tidal hydrodynamics, and an investigation into tidal energy

extraction at di�erent coastal sites. A brief literature review is included at the beginning

of most chapters, rather than within one dedicated chapter.

Chapter 2 begins with a review of traditional actuator disc theory and its application

to wind turbines. Extensions are outlined to traditional actuator disc theory to allow

for application to tidal energy devices, which leads to an analytical expression for the

momentum sink of a tidal device in a uniform tidal stream. Following this, Chapter 3

presents the SWEs, which are commonly used to simulate tidal hydrodynamics. Chapter 4

then describes the numerical solution of the SWEs using the Discontinuous Galerkin Finite

Element Method. The incorporation of tidal devices within the numerical model as a line

sink of momentum is discussed together with the problem of open boundary conditions in

tidal models. Chapters 5, 6 and 7 investigate the generic coastal basins. In each chapter

insight is gained from conducting numerical simulations of the SWEs and comparing the

results with analytical models where relevant. Lastly, in Chapter 8 the main conclusions

of this thesis are presented and suggestions for further work are made.

A survey of real coastal sites and details of the numerical solution of the SWEs are

given in the Appendices.
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Chapter 2

Approximating the Local Field

2.1 Introduction

In this chapter the local �eld about a tidal device in a uniform tidal stream is approximated

by Linear Momentum Actuator Disc Theory (LMADT). The unbounded �ow �eld appli-

cable to wind turbines, and adopted in the traditional LMADT, is extended to include:

1) a pressure constraint; 2) a volume constraint; and, 3) a combined pressure-volume con-

straint, typical of a tidal turbine in a tidal stream of �nite Froude number. Constraint 2

is a general case of that considered by Garrett and Cummins [2007]. Constraint 3 is an

extended version of the case considered by Whelan et al. [2009], which accounts for mixing

in the downstream wake of a tidal device. Importantly, allowing for this mixing leads to a

measure of e�ciency for a tidal energy device in a uniform tidal stream of non-zero Froude

number, where e�ciency is de�ned as the ratio of power available to the tidal device to the

total power extracted from the tidal stream. Closely packed tidal devices, which occupy

a large fraction of the tidal stream cross-section and have high-porosity, are shown to be

most e�cient for a given quantity of power extraction. Lastly, using the extended LMADT

the e�ect of Froude number on the extracted power, e�ciency and the local �ow �eld are

investigated. The chapter then concludes with a discussion of the limitations of actuator

disc theory.
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2.2 Linear Momentum Actuator Disc Theory

2.2.1 Application of LMADT to Wind Turbines

LMADT was �rst developed by Rankine [1865] and extended by Froude [1889] to analyze

the �ow �eld formed around a driving ship propeller. Several years later Lanchester [1915]

and Betz [1920] adopted the same approach to model a wind turbine in uniform �ow. For

this application the key characteristic of the theory involved the introduction of an actua-

tor disc, of porosity de�ned in terms of a velocity coe�cient and capable of exerting only

an axial thrust on the �uid, to approximate a real wind turbine. This ultimately allowed

the complicated �ow �eld about the turbine to be approximated by a much simpler �ow

�eld amenable to standard control volume techniques. The idealized �ow �eld assumed

by Lanchester and Betz on the basis of the actuator disc approximation is equivalent to

that sketched in Figure 2.1(a), where a streamtube is drawn to enclose the �uid passing

through the disc. This tube expands as it moves through the disc representing the re-

duction in velocity of the air in the steady �ow. Intuitively, the rate of expansion of the

streamtube increases, and consequently the upstream cross sectional area of �uid entering

the streamtube reduces, as the disc becomes less porous.

Several interesting results can be determined from analysis of the simpli�ed �ow �eld in

Figure 2.1(a) assuming that the �uid outside and within the streamtube is irrotational and

incompressible. The most well known of these, which is discussed further in Section 2.3.1,

is that the power removed by the actuator disc cannot exceed 16/27 of the kinetic �ux

passing through an equivalent cross-sectional area to that of the disc in the upstream �uid

�ow. This result indicates a theoretical upper bound to power extraction and is commonly

referred to as the Lanchester-Betz limit1. Qualitatively the limit exists because, if the disc

has low porosity and exerts a large force on the �uid, very little �uid will �ow through the

turbine and less than optimum power will be removed (where power is equal to the force

exerted by the disc times the velocity of �uid passing through the disc). Conversely, if

the retarding force of the disc is too small the �ow velocity through the disc will be high,

but again the product of thrust and velocity, and so the power removed by the turbine,

1van Kuik [2007] suggests the limit should be called the Lanchester-Betz-Joukowsky limit, to recognize
the work completed independently by Joukowsky to derive the limit. We note this here, but refer to the
limit as the Lanchester-Betz limit throughout the remainder of the thesis to avoid confusion with recent
papers written on actuator disc theory.
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(a) (b)

Figure 2.1: (a) Flow �eld through a horizontal axis wind turbine. The shaded disc is
representative of the uniform porosity actuator disc. Figure taken from Burton et al. [2001].
(b) Schematic representation of a vertical axis wind turbine of Darrieus type. Figure taken
from Paraschivoiu [2002].

will again be less than optimum. The Lanchester-Betz limit therefore represents an ideal

solution, when the optimum thrust is applied and the extracted power is a maximum.

In modern wind turbine design the Lanchester-Betz limit and the underlying use of

LMADT have proven to be very useful as a guide to power potential and as a qualitative

diagnostic tool (Wilson [1980], Burton et al. [2001], van Kuik [2007]). Typical commercial

wind turbines operate at up to 75% of the theoretical limit for some wind speeds2. The

slight under performance, as compared to the theoretical limit, is a consequence of the

simpli�ed assumptions in the actuator disc approximation. For example, both horizontal

axis turbines, depicted in Figure 2.1(a), and vertical axis turbines, depicted in Figure

2.1(b), introduce some component of swirl or tangential velocity into their wakes, which is

not accounted for by the one dimensional streamwise analysis of the simple actuator disc

theory (Glauert [1947]). This associated rotational energy in the real wake represents an

additional loss of energy from the axial �ow, thereby reducing the available power to the

turbine (Burton et al. [2001]). Furthermore, and perhaps more importantly, real turbines

also encounter frictional drag between the �uid and the rotating blades, in addition to

aerodynamic losses, which add to the axial thrust exerted on the �uid but reduce the

useful power available to the turbine (Wilson and Lissaman [1974]).

2See for example the wind turbine V52/850 at www.vestas.com
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2.2.2 Application of LMADT to Tidal Devices

Based on the insight gained from the application of LMADT in wind turbine design, it is

reasonable to expect that the theory might be equally bene�cial for tidal energy devices,

such as those outlined in Chapter 1 (Figure 1.4). The justi�cation for this assumption is

that, although the various tidal devices are markedly di�erent in mechanical operation,

the most e�cient (or ideal) tidal device should still remove momentum from the �ow in

the streamwise direction and impart very little wasted rotational momentum into the wake.

Therefore the introduction of an actuator disc, like that for a wind turbine, should provide a

useful upper bound to power removal for tidal device developers to aspire towards (the word

�turbine� and �actuator disc� will be used interchangeably hereafter, on the assumption that

the turbine is approximated by an actuator disc).

However, early research into tidal energy devices indicated that the application of

LMADT is not straightforward. For example, Fraenkel [2002] noted that the classic appli-

cation of LMADT intended for wind turbines will only apply to tidal turbines when the

�ow boundaries are far from the turbine rotor. When the �ow boundaries are su�ciently

close to the rotor the assumptions made in standard actuator disc theory, which work well

for the �ow of air in an unbounded domain, are no longer relevant (Bryden et al. [2007]).

In addition, simple open channel theory implies that the removal of energy from a sub-

critical tidal �ow will lead to a lowering of the free surface and an increase in �uid velocity

downstream of the turbine, which is clearly at odds with the removal of kinetic energy

observed in the wind turbine case (Houlsby et al. [2008]). To partly address these issues

two recent papers have extended the Lanchester-Betz theory to a bounded �ow, which is

more representative of a tidal stream.

The �rst of these papers is due to Garrett and Cummins [2007] (hereafter GC07),

and considers an analogy to the aeronautically similar case of an inverse propeller in a

wind tunnel, or constant width �ow �eld, considered previously for a standard propeller

by Milne-Thomson [1966]. In the GC07 model the wind tunnel is formed by the parallel

banks of the channel, the channel bed and the assumption of a �xed free surface (see

Figure 2.2). The last of these boundaries requires that the deformation of the free surface

is small compared with depth, or that the Froude number of the uniform �ow is negligible,

where the Froude number is de�ned as Fr = u/
√
gh, and u is the uniform depth-averaged
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Figure 2.2: Actuator disc model of a tidal turbine in a channel (viewed from above) due to
Garrett and Cummins [2007].

velocity, h is the depth and g is acceleration due to gravity. Using the constant volume

model GC07 show that the power coe�cient (de�ned as the power removed by the turbine

divided by the upstream kinetic �ux passing through a cross sectional area equivalent

to the turbine) is dependent on the size, or blockage, of the turbine in the �nite �ow

and the porosity of the turbine (de�ned such that the velocity at the turbine is a given

fraction of the upstream velocity). For vanishingly small blockage the optimum power

coe�cient is equivalent to the Lanchester-Betz limit, while for �nite blockage the optimum

coe�cient increases monotonically above this limit with blockage. This second �nding can

be explained by the fact that the boundary walls allow for a greater pressure drop across the

turbine. Alternatively, as shown in Section 2.3.3, it is also possible to obtain an expression

for a pressure thrust, introduced by the presence of the walls on the streamtube, and acting

on the body of �uid within streamtube, that acts to force �uid through the turbine.

In addition to determining a limit on power removed, GC07 extend their analysis to

include downstream mixing beyond the wake of the tidal device - an artifact not originally

considered by Lanchester and Betz for unbounded �ows. Introducing downstream mixing

leads to a measure of e�ciency for a tidal turbine, de�ned as the power removed by the

turbine divided by the total power extracted from the �ow, in a channel of negligible Froude

number. In this sense it is realised that the power removed by the turbines incurs a larger

extraction of power from the �ow, or equally, only a fraction of the power extracted is

available to the turbines. The measure of e�ciency suggests that for a turbine operating

at the maximum power coe�cient the e�ciency of the device ranges between 2/3 for a

very small turbine in a wide channel and 1/3 for a turbine that occupies almost the entire

channel.
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The second paper, produced more recently by Whelan et al. [2009] (hereafter W09),

discusses an extension to the GC07 model of constant depth and volume. In particular

W09 allow the free surface to deform, which removes the restriction on Froude number,

and derive an implicit expression for the power coe�cient that is dependent on the size,

or blockage, of the turbines in the channel, the upstream Froude number of the uniform

�ow and the porosity of the turbines. Again the optimum power coe�cient is shown to

exceed the Lanchester Betz limit when the blockage ratio is �nite, and to increase still

further with increasing Froude number. However, the prediction of the power coe�cient

is restricted by the fact that the model only achieves physically admissible solutions for a

subset of Froude numbers, blockage ratios and turbine porosity. W09 state that the loss

of a physical solution is connected with the bypass �ow becoming hydraulically critical,

but provide no reasoning why. A more complete explanation is given here in Section 2.3.4.

In addition, W09 do not introduce downstream mixing into their analysis, despite the

fact that power is inevitably dissipated in downstream mixing. This dissipation must be

introduced to understand the e�ciency of a turbine in a tidal stream of non-zero Froude

number. In addition, the introduction of mixing is also important when determining the

relationship between upstream and downstream depth-averaged �ow velocities and depths,

as a function of turbine geometry and porosity. This relationship is useful in specifying

the momentum sink due to a tidal device in a depth-averaged numerical model, as will be

outlined in Chapter 4.

In summary, both GC07 and W09 provide useful extensions to LMADT. The former

have accounted for the �nite nature of the �ow �eld, which allows for an analysis of down-

stream mixing, and the latter have accounted for gravitational e�ects and the formation of

a free surface. The theoretical extensions that follow here in Section 2.3 form an extended

summary of Houlsby et al. [2008] and e�ectively combine the work of GC07 and W09 to

investigate an open channel �ow with a deformable free surface and downstream mixing.

An expression will be determined for the e�ciency of a tidal turbine in a tidal stream of

�nite Froude number. Several additional results will also be obtained as a result of the

systematic theoretical extensions.
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2.3 Theoretical Extensions to LMADT

2.3.1 Unbounded Flow

The application of LMADT to an unbounded �ow is well known in aerodynamics. Although

the derivation is given in many text books (see, for example Burton et al. [2001]) the

analysis will be reproduced brie�y here to provide a basis from which to extend the theory

to bounded �ows in the subsequent sections.

The traditional theory considers the idealized �ow �eld sketched in Figure 2.3 for an

actuator disc of area A, placed in a uniform upstream �ow of velocity u. Four stations are

introduced to de�ne the �ow �eld: Station 1 located far upstream of the disc; Stations 2

and 3 located immediately upstream and downstream of the disc; and, Station 4 located

far downstream of the disc. The main feature of Figure 2.3 is the control volume (denoted

by dashed lines), which is drawn to coincide with a streamtube that bounds all the �uid

which passes through the actuator disc (turbine �ow), and assumes that the �ow separates

at the edge of the disc forming a singular surface where viscous forces are important. Both

the �uid within the streamtube and the �uid outside (bypass �ow) are considered to be

steady, incompressible and inviscid, with viscous forces and rotational �ow con�ned to the

surface of the tube. To model the e�ect of the turbine on the �ow �eld, the traditional

theory introduces a momentum sink, or equivalently a thrust T , exerted by the disc on the

air, and the �ow through the disc is taken to be continuous in the streamwise direction to

ensure continuity. To represent the average velocity in the stream tube and bypass �ow,

the coe�cients α2 and α4 are introduced, where the coe�cient α2, or the induction factor

ai = 1−α2, can be related in practice to a particular turbine geometry and rotation speed

via blade element theory (Wilson and Lissaman [1974]). At Station 4 the downstream

static pressure is assumed to recover to that of upstream static pressure p. Lastly, to

better understand the traditional theory and the extensions to bounded �ows which follow,

a pressure thrust X is introduced, which represents the net external force (equal and

opposite) due to the pressure, above atmospheric, acting on the �uid within the streamtube

over the surface of the streamtube (Milne-Thomson [1966]).

Continuity, conservation of energy and conservation of momentum can now be applied

to the �ow �eld to arrive at an analytical expression relating the power absorbed by the
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Figure 2.3: The classic actuator disc model for an unbounded �ow. Figure taken from
Houlsby et al. [2008].

disc to the kinetic �ux in the upstream �ow. To begin, the Bernoulli equation is applied

to the �ow within the stream tube between Stations 1 and 2, and Stations 3 and 4, to give

p+
1

2
ρu2 = p2t +

1

2
ρα2

2u
2, (2.1)

and

p3t +
1

2
ρα2

2u
2 = p+

1

2
ρα2

4u
2. (2.2)

where the numerical subscripts indicate the appropriate averaged quantity at a given station

in the �ow �eld, and the subscript t indicates �ow through the turbine. Combining Equation

2.1 and Equation 2.2 then gives an expression for the pressure change across the disc

∆p = p2t − p3t =
1

2
ρu2

(
1− α2

4

)
. (2.3)

This pressure is equivalent to the static pressure across the disc, so that

T

A
=

1

2
ρu2

(
1− α2

4

)
. (2.4)

A second equation for the thrust can also be established by applying momentum �ux

conservation in the streamwise direction for the streamtube control volume in Figure 2.3

X − T = ρu2Aα2 (α4 − 1) . (2.5)
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In the classical derivation it is assumed that there is no net change in the streamwise

momentum of the bypass �ow and so the force X is omitted, without detailed justi�cation,

leading to

T

A
= ρu2α2 (1− α4) . (2.6)

Equation 2.4 and Equation 2.6 can then be equated to give the �rst well known conclusion

of the classical analysis

α2 =
1 + α4

2
, (2.7)

which implies that the �ow through the disc is the average of the upstream and downstream

�ow. Interestingly this result indicates that the �ow �eld is a single parameter family

requiring the speci�cation of α2 or α4. Once either of these two variables has been de�ned

the thrust is given directly by Equation 2.4 and the power removed by the turbine can be

determined as

P = Tα2u =
1

2
ρu3Aα2

(
1− α2

4

)
=

1

2
ρu3A

(1 + α4)

2

(
1− α2

4

)
. (2.8)

For convenience the dimensionless thrust coe�cient CT and the power coe�cient CP , which

de�ne the ratios of thrust to the integral of upstream dynamic pressure, and removed power

to the upstream kinetic �ux, respectively, are commonly introduced such that

T =
1

2
ρu2A

(
1− α2

4

)
=

1

2
ρu2ACT , (2.9)

P =
1

2
ρu3A

(1 + α4)

2

(
1− α2

4

)
=

1

2
ρu3ACP . (2.10)

Maximum power is therefore removed by the turbine when the power coe�cient is optimised

with respect to, for example, α4. This optimization gives α4 = 1/3, α2 = 2/3, CT = 8/9

and CP = 16/27 which is the Lanchester-Betz limit.

The analysis above summarises the classic Lanchester-Betz derivation for a turbine, or

actuator disc, in an unbounded �ow. In retrospect two interesting points can be highlighted.

First, it is clear that there is no justi�cation made for the treatment of the pressure force

X, acting on the body of �uid within the control volume depicted by the streamtube, which

is neglected from the momentum balance for the streamtube. Secondly, the �ow �eld in

Figure 2.3 only extends to Station 4. However, far downstream from the turbine the wake of
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Figure 2.4: Flow �eld for an actuator disc placed in �ow that has a constant pressure
boundary. Figure taken from Houlsby et al. [2008].

a real �uid (with molecular viscosity) will eventually mix. Since the traditional unbounded

case cannot be extended to include this mixing an analysis of a �nite �ow �eld is required.

2.3.2 Pressure Constrained Flow

The unbounded �ow in Section 2.3.1 can be made �nite by introducing a constant atmo-

spheric pressure boundary, as shown in Figure 2.4. The �nite boundary has a reference

dimension of A/B measured at Station 1, where B ≤ 1 is the blockage ratio of the turbine.

Station 5 is also introduced to de�ne the location where complete mixing of the wake has

occurred and the axial velocity is uniform.

In light of these alterations the analysis in Section 2.3.1 can be repeated. To begin,

conservation of energy in the streamtube, and upstream and downstream of the turbine,

leads again to Equation 2.3, and static equilibrium across the disc yields Equation 2.4.

However, unlike the classical case, the presence of the constant pressure boundary now

allows for a more precise investigation of the momentum change in the bypass �ow. Writing

the Bernoulli equation along the constant pressure boundary in Figure 2.4 (or any chosen

streamline in the bypass �ow) leads directly to the result u = ub4. From continuity the

cross-sectional area of the bypass �ow therefore remains constant, from which it is clear

that there is no change in the streamwise momentum for the bypass �ow, implying that the

applied force along the constant pressure boundary is equal to the negative of the force X.

However, since the force acting along the pressure constrained boundary is constant and

atmospheric by de�nition, it follows that the assumption X = 0 in the traditional theory
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is satisfactory. As a result the �ow velocity through the turbine will again satisfy Equation

2.7 and the thrust and power also remain unaltered from Equation 2.4 and Equation 2.8

respectively. The optimum power results when α4 = 1/3 for all blockage ratios.

In addition to clarifying the momentum change in the bypass �ow, the second advantage

in pursuing the constant pressure boundary is that an analysis of the wake mixing between

Stations 4 and 5 can be undertaken. Applying momentum conservation over the mixing

region gives

u2ABα2α4 + u2A (1−Bα2) = uAu5, (2.11)

so that rearranging for the uniform far downstream velocity gives

u5 = u

(
1− B (1− α2

4)

2

)
. (2.12)

Notably when B = 0, this result is consistent with the classical analysis that requires

u5 → u (i.e. the vanishingly small area of slower turbine �ow has a negligible e�ect on

the average downstream �ow velocity) . Equation 2.12 can also be used to determine the

power lost in the wake PW , since

PW =
1

2
ρu3Aα2α

2
4 +

1

2
ρu3A

(
1

B
− α2

)
− 1

2
ρu
A

B
u2

5,

so that

PW =
1

2
ρu3Aα2 (1− α4)2

(
1− B (1 + α4)

2

)
. (2.13)

An e�ciency measure for the turbine, de�ned as the power removed by the disc (or available

to the turbine), to the total power extracted from the �ow, then follows directly

η =
P

P + PW
=

(1 + α4)

(1 + α4) + (1− α4) (1−Bα2)
. (2.14)

Therefore, for a turbine operating at maximum power (α4 = 1/3) the power lost in the

wake is PW = P/2 and the e�ciency is 2/3 for B = 0, which corresponds to an unbounded

�ow. Consequently, in the classical Lanchester-Betz analysis a further 50% of the extracted

power is dissipated in the wake as it mixes. Interestingly, maximum e�ciency is achieved

when α4 = α2 = 1, but then no power is produced by the turbine regardless of blockage.
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Figure 2.5: Flow �eld for an actuator disc placed in �ow that has a constant volume
boundary. Figure taken from Houlsby et al. [2008].

For blockage ratios above zero the e�ciency increases monotonically with blockage for all

values of α4.

2.3.3 Volume Constrained Flow

In practice the �ow �eld about a turbine is often bounded by a volume constraint. The

most common example in aerodynamics is that of a wind turbine in a wind tunnel (Milne-

Thomson [1966]). Another common and increasingly important example occurs with the

introduction of an arti�cial boundary in a numerical model of a turbine device, where

the necessary termination of the numerical mesh (commonly using a non-slip re�ection

boundary condition) introduces the volume constraint. For both examples LMADT can

be applied to the bounded �ow provided that the volume boundary is parallel with the

direction of �ow (so that no normal force occurs in the streamwise direction), as shown in

Figure 2.5.

The most obvious di�erence between the constant volume �ow �eld and the traditional

�ow �eld in Figure 2.4 is that the velocity in the bypass �ow must now increase to ensure

continuity between Stations 1 and 4, so that

u4b = u
(1−Bα2)

(1−Bα2/α4)
= β4u, (2.15)

where β4 > 1 is the velocity coe�cient for the bypass �ow. A second important di�erence

is that the pressure at Station 4 is no longer equal to the upstream pressure. The change in
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pressure p− p4, which presents an additional energy source to the turbine, can be obtained

by considering the Bernoulli equation in the bypass �ow, which leads to

p− p4 =
1

2
ρu2

(
β2

4 − 1
)

=
1

2
ρu2

(
(1−Bα2)2

(1−Bα2/α4)2 − 1

)
. (2.16)

Application of the Bernoulli equation either side of the turbine in the streamtube also yields

the result

p2t − p3t = p− p4 +
1

2
ρu2

(
1− α2

4

)
, (2.17)

so that combining Equation 2.17 and Equation 2.16 gives

p2t − p3t =
1

2
ρu2

(
(1−Bα2)2

(1−Bα2/α4)2 − α
2
4

)
. (2.18)

Satisfying static equilibrium across the disc therefore leads to

T

A
=

1

2
ρu2

(
(1−Bα2)2

(1−Bα2/α4)2 − α
2
4

)
. (2.19)

Conservation of momentum �ux in the streamwise direction for the combined bypass and

turbine �ow between Stations 1 and 4 produces a second equation in terms of the thrust

pA/B−p4A/B−T = u2Aρα2 (α4 − 1)+u2ρA/B (1−Bα2)

(
(1−Bα2)

(1−Bα2/α4)
− 1

)
. (2.20)

Rearranging this expression leads to

p− p4 =
TB

A
+ ρu2α2

α4

B (1− α4)2

(1−Bα2/α4)
, (2.21)

which can be can be combined with Equation 2.16 and Equation 2.19 to give

α2
4 (2α2 − 1− α4) +Bα2

(
2α2

4 + α2 − 3α4α2

)
= 0. (2.22)

Equation 2.22 can be considered the constant volume equivalent to Equation 2.7 derived

for the traditional LMADT. It illustrates that in the presence of a �xed volume constraint

the solution for the �ow is now a two parameter set: for a particular blockage B, the

speci�cation of either α2 or α4 will determine the remaining velocity coe�cient and, via
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Equation 2.15, the velocity in the bypass �ow.

For an unbounded �ow (B = 0), Equation 2.22 reduces to α2 = (1 + α4)/2, which

is consistent with the usual result. In the limit B → 1, Equation 2.22 leads to a cubic

expression that is consistent with α2 → 1 and α4 → 1. For arbitrary B, rearranging

Equation 2.22 yields

α2 =
(1 + α4)

(1 +B) +
√

(1−B)2 +B (1− 1/α4)2
. (2.23)

With this de�nition of α2 the power removed by the turbine follows directly from Equation

2.19

P =
1

2
ρAu3α2

(
(1−Bα2)2

(1−Bα2/α4)2 − α
2
4

)
. (2.24)

For all choices of B it can be veri�ed numerically that this expression is a maximum when

α4 = 1/3, giving

Pmax =
1

2
ρAu3 16

27

(
1

1−B

)2

. (2.25)

The limit to power removed is therefore a function of the blockage ratio

CP =
16

27

(
1

1−B

)2

, (2.26)

from which it is evident that the constant volume constraint allows for the extraction of

more power by comparison to the unconstrained case. For small B this increase in power

coe�cient is approximated by the factor 1 + 2B and will be important in the accurate

comparison of turbine devices analysed in a �nite numerical mesh, for example.

A physical interpretation of the additional power de�ned in Equation 2.25 can be ob-

tained by appreciating that the parallel walls con�ning the �ow �eld allow for a pressure

drop across the actuator disc (GC07). Consequently a pressure head is available to the

turbine and there is no change in kinetic energy across the �ow �eld. This means that the

kinetic e�ciency in isolation, given by the usual power coe�cient, may not be the most

rational measure of performance and can exceed unity. Perhaps a better expression for the

power coe�cient might be

C∗P =
P

1
2
ρu3A+ uA∆p

=
CP

1 +BCT
, (2.27)
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which incorporates the pressure head and remains bounded for all blockage ratios.

It is also of some interest to note that an alternative rationalisation for the increased

power, in place of the pressure drop across the disc, can be achieved by analysing the

pressure thrust X. In particular, one might expect that this force should actively push

�uid through the turbine when B > 0 allowing for greater power removal. Pursuing this

further, momentum conservation in the bypass �ow (assuming that X acts to the left for

the bypass �ow) gives:

(p− p4)A

(
1/B − α2

α4

)
−X = u2Aρ (1/B − α2)

(
(1−Bα2)

(1−Bα2/α4)
− 1

)
, (2.28)

and substituting for p− p4 from Equation 2.16 then gives

X =
1

2
ρu2A

α2

α4

(1− α4) (β4 − 1) . (2.29)

Since α4 < 1 and β4 >1 for a typical turbine it is clear that the pressure thrust is, in fact,

positive and acts to force �uid through the turbine, as depicted in Figure 2.5, when B > 0.

For B = 0 Equation 2.15 gives β4 = 1 and so X = 0 from Equation 2.29, which is in

agreement with the traditional analysis.

Given that the �ow �eld in Figure 2.5 is �nite it is again possible to analyse down-

stream mixing e�ects. Writing the momentum equation between Stations 4 and 5 gives an

expression for the pressure change in the wake

p4 − p5 = −ρu2 α2B (1− α4)2

α4 (1−Bα2/α4)
. (2.30)

The power lost in the wake can be then written in terms of this pressure di�erence

PW =
1

2
ρu3Aα2α

2
4 +

1

2
ρu3A (1/B − α2) β2

4 − (A/B)

(
1

2
ρu3 − u (p4 − p5)

)
. (2.31)

Substituting for Equation 2.30 therefore leads to

PW =
1

2
ρu3Aα2 (1− α4)2

(
1 +

Bα2 (1−Bα2)

α2
4 (1−Bα2/α4)2

)
. (2.32)

It is readily seen that for B = 0 this result agrees with the solution for the constant pressure
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boundary under the same limit (Equation 2.13), while for B > 0 the power loss is greater

than that for the constant pressure case. The total power extracted from the channel is

simple (p− p5)uAC = Tu. Combining this with the power removed by the disc α2uT , leads

to a measure of e�ciency of

η =
P

P + PW
= α2. (2.33)

So that for α2 = 1 the e�ciency is unity for all B, but again no power is extracted (as

is readily seen from substituting for α4 in Equation 2.24). Alternatively at optimal power

extraction (α4 = 1/3) it follows from Equation 2.23 that α2 = 2/[3 (1 +B)], so that the

e�ciency for optimal power extraction is

η =
2

3 (1 +B)
. (2.34)

Consequently, a loss in e�ciency is encountered when compared to an unconstrained �ow

although, of course, more power in total is extracted by the turbine with a �nite blockage.

2.3.3.1 Comparison to the results of Garrett and Cummins

The main results of the analysis discussed above for a constant volume boundary have been

determined by GC07 in relation to a tidal turbine in a channel. For this application the

�ow �eld in Figure 2.5 is interpreted as a plan view of a channel, and the actuator disc is a

considered to be a partial fence of turbines in the channel (see Figure 2.2). To enable this

interpretation the deformation of the free surface is neglected and the pressure of the �uid

is taken to be p = ρgz, where z is a vertical coordinate3. Bed friction is ignored.

GC07 calculate both the optimal power removed by the turbine (Equation 2.25) and the

e�ciency of the turbine (Equation 2.33). However GC07 note that perfect e�ciency leads

to the trivial case of zero power removal and, therefore, they only consider the e�ciency

of a turbine operating at the maximum power coe�cient. This leads to the derivation

of Equation 2.34 and several other quantities for a device operating at optimum power

coe�cient, including the pressure change between Stations 1 and 4 (but with an incorrect

3This expression for the variation in pressure is appropriate if changes to the free surface elevation are
small. This is because, for a hydrostatic �uid of depth h+ a, where it is assumed a� h, the along-stream
pressure force averaged over the depth h is ρgh/2+ρga+O(a2/h), so that ρga gives a good approximation
to the variation in average pressure due to the height change a.
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sign in GC07)

p− p4 =
4B (3−B)

9 (1−B)2 ρu
2, (2.35)

the pressure change between Stations 4 and 5

p5 − p4 =
8B

9 (1−B)
ρu2, (2.36)

and the thrust coe�cient, de�ned such that the thrust exerted by the turbine is

CT =
8 (1 +B)

9 (1−B)2 . (2.37)

(Note that in each of these relations GC07 use the parameter ε to denote the blockage ratio

B and the parameter CD to denote CT/2).

To determine the validity of their model GC07 revisit the assumption of a negligible

depth change, which is valid when (p− p4)/ρgh� 1, or

Fr2 =
u2

gh
<<

9 (1−B)2

4B (3−B)
,

where Fr is the Froude number. Although not calculated by GC07, it is also possible to

calculate the error in mass �ow across the entire �ow �eld (from Station 1 to Station 5),

associated with the assumption of small depth-change, by taking the change in pressure,

divided by speci�c gravity, to be the downstream depth. This error is

Continuity Error

Acu
=
p− p5

ρgh
= Fr2 4B(1 +B)

9(1−B)
, (2.38)

where the upstream channel area is Ac = A/B. For a turbine fence operating at maximum

power coe�cient with a blockage ratio 0.5 in a �ow of Froude number 0.15 this will lead

to an error, relative to the upstream �ow rate, of 1.5%. If multiple rows of turbines are

used, allowing for complete mixing between rows, then this error will be compounded at

each row if the Froude number is maintained.
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Figure 2.6: Flow �eld for an actuator disc placed in a tidal stream with a free surface.
Figure taken from Houlsby et al. [2008].

2.3.4 Pressure-Volume Constrained Flow

The extension of LMADT to a tidal stream that has a variable free surface elevation is

now considered. In terms of the actuator disc framework this extension can be achieved by

characterizing the free surface as both a constant (atmospheric) pressure constraint and,

in conjunction with the �xed sea bed, a volume constraint to the �ow �eld, as illustrated

in Figure 2.6. With respect to the preceding sections it can therefore be thought of as

a combined extension of both the constant pressure and the constant volume constrained

�ows, respectively, and it will be shown that the pressure-volume constrained �ow is in fact

consistent with both of these two �nite �ows under the appropriate asymptotic limits.

Before analysing the �ow �eld in Figure 2.6 several features require discussion. Firstly,

the �ow �eld now illustrates a slice, with depth, along a tidal stream of upstream depth

h, uniform channel width b (into the page), and average upstream velocity u. It could

therefore apply to a turbine in a channel with parallel sides or a turbine located within a

long fence of periodically placed devices (see Figure 2.7). The �ow �eld is equivalent to that

presented by Whelan et al. [2009] between Stations 1 to 4, however an additional region of

downstream mixing is included here beyond Station 4 to allow for a more complete analysis

of the �nite �ow �eld.

Secondly, unlike the pressure boundary and volume boundary �ow �elds analysed in

the previous sections, the �nite �ow �eld in Figure 2.6 introduces gravitational e�ects.

As a result the density of the �uid leads to the formation of a free surface. A striking

consequence is that the removal of energy from a sub-critical tidal stream will reduce the
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Figure 2.7: Stream-wise view of a section of two alternative tidal fences, (a) and (b), in a
tidal stream of uniform �ow with tidal devices placed periodically along the fence.

downstream depth and therefore lead to an increase in kinetic energy downstream. This is

in contrast to the �ow �elds in the preceding sections where the extraction of energy led

to a reduction, or no change, in downstream kinetic �ux.

Lastly, three additional assumptions are required to analyse the �ow �eld in Figure 2.6:

(1) the pressure is taken to be hydrostatic at Stations 1, 4 and 5, (2) seabed friction is

negligible, and (3) the seabed and channel walls remain straight and parallel to the tidal

stream over the �ow domain, or equivalently the spacing between devices within a fence

remains regular. As in the traditional LMADT however, no conditions are placed on the

geometry or position of the streamtube in the �ow �eld and so the analysis that follows

is indi�erent to the shape of the turbines. This implies that both turbine geometries in

Figure 2.7 for example, will be treated as equivalent by the theory.

To begin the analysis the Bernoulli equation is applied in the bypass �ow to give

h+
u2

2g
= h4 +

u2β2
4

2g
, (2.39)

Likewise, application of the Bernoulli equation either side of the turbine in the stream tube

yields

h+
u2

2g
= h2t +

u2α2
2

2g
, (2.40)

and,

h3t +
u2α2

2

2g
= h4 +

u2α2
4

2g
. (2.41)

Combining Equations 2.39-2.41 then gives an expression for the head drop across the turbine

h2t − h3t =
u2

2g

(
β2

4 − α2
4

)
, (2.42)
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which, from simple statics, can be used to determine the thrust across the turbine

T

ρgBbh
=
u2

2g

(
β2

4 − α2
4

)
. (2.43)

A second equation for the thrust can be obtained by applying the momentum equation

across the combined bypass and turbine �ow between Stations 1 and 4

1

2
ρgb

(
h2 − h2

4

)
− T = ρu2bhBα2 (α4 − 1) + ρu2hb (1−Bα2) (β4 − 1) . (2.44)

Eliminating T between Equation 2.43 and Equation 2.44 then gives

1

2
ρgb

(
h2 − h2

4

)
− ρBbhu

2

2

(
β2

4 − α2
4

)
= ρu2bhBα2 (α4 − 1) + ρu2hb (1−Bα2) (β4 − 1) .

(2.45)

Also, continuity between Stations 1 and 4 also leads to

h4 = Bh
α2

α4

+ h
(1−Bα2)

β4

, (2.46)

or

α2 =
α4

Bh

(h (1− β4) + β4 (h− h4))

(α4 − β4)
, (2.47)

so that Equations 2.39, 2.45 and 2.46 can be combined to give, after some manipulation,

α2 =
2 (β4 + α4)− (β4 − 1)3 (Bβ2

4 −Bβ4α4)
−1

4 + (β2
4 − 1) (α4β4)−1 . (2.48)

This result can be viewed as the constant pressure-volume boundary equivalent to the

traditional result de�ned by Equation 2.7 in Section 2.3.1 and the constant volume result

de�ned by Equation 2.22 in Section 2.3.3. Comparing the di�erent results it is immediately

clear how the complexity of the analysis has escalated. With the addition of the pressure-

volume boundary the �ow �eld is now a three parameter set, whereby, for a given β4 and B,

the speci�cation of either α2 or α4 will de�ne the thrust and power extracted by the turbine.

Alternatively, the coe�cient β4 can be related back to the upstream Froude number Fr,

after eliminating h4 and α2 in Equation 2.45 by making use of Equations 2.39 and 2.46, so
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Figure 2.8: (a) Power coe�cient and e�ciency as a function of wake velocity coe�cient α4

for a pressure-volume constraint with Fr = 0.1, and varying blockage ratio: B = 0.1 (solid
line), B = 0.2 (dash line), B = 0.3 (dash-dot line), B = 0.4 (dot-dot line). (b) Same as
(a), but with B = 0.2, and varying Froude number: Fr = 0.01 (solid line), Fr = 0.1 (dash
line), Fr = 0.2 (dash-dot line), Fr = 0.3 (dot-dot line). The horizontal line in both plots
indicates the Lanchester-Betz limit.

that

Fr2

2
β4

4 + 2α4Fr
2β3

4 −
(
2− 2B + Fr2

)
β2

4 −
(
4α4 + 2α4Fr

2 − 4
)
β4 +(

Fr2

2
+ 4α4 − 2Bα2

4 − 2

)
= 0. (2.49)

Equation 2.49 is a quartic equation in β4, which can be solved once the three parameters

of Froude number Fr, blockage ratio B and the wake velocity coe�cient α4 have been

de�ned. The thrust applied by the turbine T , and the power removed P = α2uT , then

follow directly from Equation 2.43

T =
1

2
ρu2Bbh

(
β2

4 − α2
4

)
=

1

2
ρu2BbhCT , (2.50)

and,

P =
1

2
ρu3Bbhα2

(
β2

4 − α2
4

)
=

1

2
ρu3BbhCP . (2.51)

Figure 2.8 plots the power coe�cient against the wake induction factor α4 for several

choices of Froude number and blockage ratio. It is clear from Figure 2.8 (a) that the maxi-

mum power coe�cient increases with blockage ratio (indeed this relationship is monotonic,

as can be readily veri�ed numerically) and exceeds the Lanchester-Betz limit. Figure 2.8

(b) shows that the power also increases with the upstream Froude number. The physical
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explanation for this increase follows from the arguments established for the constant volume

boundary in Section 2.3.3; the �nite volume constraint allows for a head di�erence to be

established across the disc, which is augmented by the �nite Froude number. Interestingly

the maximum power occurs very close to α4 = 1/3, which is the optimum value in the

constrained volume �ow case.

An important point to highlight is that the actuator disc is removing potential energy

from the �ow and not kinetic energy. In fact, when the Froude number of the upstream

�ow is greater than zero the turbine increases the kinetic energy in the downstream �ow,

at the expense of a reduction in potential energy.

With respect to the �ow �eld it is simple to show that the relationship between the

velocity coe�cients α2 and α4, and consequently the thrust and power coe�cients, are

entirely consistent with those derived in Sections 2.3.1-2.3.3 under the appropriate asymp-

totic limits. Firstly, letting B → 0, so that the �ow �eld becomes equivalent to that of

the traditional unbounded analysis, it follows that β4 → 1 from Equation 2.46 and, since

it can be shown numerically that (β4 − 1)3 approaches zero faster than B, Equation 2.48

reduces to α2 = (1 + α4)/2, which is identical to the unbounded result given by Equation

2.7 in Section 2.3.1. Secondly, letting Fr = 0, so that the free surface deformation is zero

(as can be readily seen from Equation 2.46) the quartic 2.49 reduces to the quadratic

(1−B) β2
4 − (2α4 − 2) β4 +

(
2α4 −Bα2

4 − 1
)

= 0, (2.52)

and Equation 2.47 leads to

β4 =
1−Bα2

1−Bα2/α4

, (2.53)

Combining Equation 2.52 with Equation 2.53 it can be readily seen that the �ow �eld

is identical to that established for the constant volume boundary (Equation 2.22). The

�ow �eld is consistent, therefore, in the limit of small blockage to the constant pressure

boundary �ow and, in the limit of small Froude number, to the constant volume boundary

�ow.

Interestingly, for general values of B and Fr a physically admissible solution to the

quartic Equation 2.49 does not always exist (Houlsby et al. [2008], Whelan et al. [2009]).

This loss of a solution is typical for an open channel �ow problem and usually implies the
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onset of hydraulically critical �ow at some point in the �ow �eld (the simplest example is

uniform �ow over a smooth bump, see White [1994]). For the problem at hand it is easy to

identify the reason for the loss of the physical solution by considering energy conservation

within the bypass �ow4

E4 =
u2

2g
+ h =

β2
4u

2

2g
+ h4. (2.54)

Critical bypass �ow is consistent with the condition dE4/dh4 = 0, which on a plot of energy

against depth de�nes the point at which the downstream depth h4 has become so small

that energy is only just conserved in the bypass �ow. Any further in�nitesimal reduction

in h4 will lead to a back up of the bypass �ow and probably the onset of a hydraulic jump.

Evaluating the derivative leads to

d

d (h4/h)

(
β2

4

)
= − 2

Fr2
. (2.55)

It is easily con�rmed numerically that this equality holds at the point when physically

admissible solutions to the quartic Equation 2.49 cease to exist, and so the onset of critical

bypass �ow is the limiting factor to the existence of physically admissible solutions. To

better appreciate Equation 2.55 a contour plot of the velocity coe�cient α4, in terms

of the Froude number and blockage ratio at the onset of critical bypass �ow, is given in

Figure 2.9 (b). The range of admissible solutions reduces with the wake velocity coe�cient.

Furthermore, in the limit B → 0, the bypass �ow becomes critical when the upstream

Froude number becomes critical. In the opposite limit B → 1, critical �ow is unavoidable

for all non-zero Froude numbers.

2.3.4.1 Downstream Mixing

Since the �ow is not uniform with depth at Station 4 downstream mixing is possible.

Applying momentum conservation in the horizontal direction between Stations 1 and 5

leads to

1

2
ρgb

(
h2 − (h−∆h)2)− T = ρbhu

(
uh

h−∆h
− u
)
. (2.56)

4Of course momentum or energy conservation across another section of the �ow �eld could be considered,
but it turns out that these conservation relationships do not limit the solution space of the model.
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Figure 2.9: (a) Analysis of the roots to the quartic Equation 2.49. The example solution
of Whelan et al. [2009] for Fr = 0.14 and B = 0.64 (dash-dot line), alternative case of
Fr = 0.3 and B = 0.2 (solid line). (b) Allowable range of Froude number and blockage
ratio to yield a physical solution for a range of velocity coe�cient α4 (α4 labelled on the
plot).

Substituting for the thrust coe�cient and rearranging then gives

1

2

(
∆h

h

)3

− 3

2

(
∆h

h

)2

+

(
1− Fr2 +

CTBFr
2

2

)
∆h

h
− CTBFr

2

2
= 0. (2.57)

This is a cubic expression that can be solved for the downstream depth change that results

from the operation of the turbine. Notably for zero Froude number the relative depth

change tends to the solutions ∆h/h → 0, 1 and 2, with the former being the physically

admissible solution. The power lost in the wake can be determined in terms of ∆h from

PW =
1

2
ρu3Bbhα2α

2
4 +

1

2
ρu3bh (1−Bα2) β2

4 −
1

2
ρu3bh

(
h

h−∆h

)2

+ hbu (h4 − h5) ρg.

(2.58)

By combining Equation 2.58 with Equation 2.51, the total power lost in the channel, or

extracted by the turbine(s), is then

P + PW = ρgubh∆h

(
1− Fr2 1−∆h/(2h)

(1−∆h/h)2

)
. (2.59)

To a very good approximation this is simply the rate at which potential energy is being

lost in the channel (ρgubh∆h), with a small correction in brackets for the increase in

downstream kinetic energy. A measure of e�ciency, de�ned as the ratio of power available

to the tidal device(s) to the total power extracted from the tidal stream, follows directly
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from Equation 2.59,

η =
P

P + PW
=

P

ρgubh∆h

(
1− Fr2 1−∆h/2h

(1−∆h/h)2

)−1

. (2.60)

This is a very important equation for tidal devices and provides an indication of how e�ec-

tive a turbine is at using the energy that it extracts from the �ow. Such a measure becomes

especially relevant when, as discussed in Section 2.4, the power that can be extracted by a

tidal fence is limited at an actual coastal site.

Several observations can be made about the measure of e�ciency. Firstly, as Fr → 0,

η → α2, which agrees with the result obtained for a volume constrained �ow (GC07 and

Section 2.3.3). This result is easy to deduce from Equation 2.60 by �rst neglecting the term

proportional to Fr2 and noting that the power can be written as P = (α2u)T , so that

η ∼=
α2uT

ρgubh∆h
, (2.61)

and second, by rearranging u times Equation 2.56 to give

uT = ρgubh

(
∆h− ∆h

2

∆h

h
− Fr2 h∆h

h−∆h

)
∼= ρgubh∆h, (2.62)

which follows by ignoring terms proportional to Fr2 and ∆h/h (since ∆h/h → 0 when

Fr → 0 from Equation 2.57). Substitution of Equation 2.62 into Equation 2.61 then leads

to η → α2 as required.

For arbitrary Froude number, the e�ect of the free surface on e�ciency is best appreci-

ated through manipulation of Equation 2.60. Combining Equation 2.60 with the expression

for power from Equation 2.51 and substituting for CTBFr
2/2 from Equation 2.57 leads to

η = α2
(1−∆h/(2h))− Fr2 (1−∆h/h)−1

1− Fr2 (1−∆h/(2h)) (1−∆h/h)−2 . (2.63)

For small but �nite Froude number and downstream depth change (i.e. Fr2 (1−∆h/h)−1 �

1), which is realistic for many tidal �ows, the e�ciency can therefore be approximated as

η ≈ α2

(
1− 1

2

∆h

h

)
. (2.64)
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On comparison with Equation 2.33 this indicates that the main e�ect of the non-zero

Froude number and the associated relative depth change, is to reduce e�ciency by a factor

of
(
1− 1

2
∆h/h

)
, as compared to that of a device with identical blockage ratio and turbine

velocity coe�cient placed in a �ow with a rigid lid. Physically this result implies that

the added constriction in downstream area caused by the deformed surface increases the

speed of the bypass �ow, relative to the turbine wake �ow, and therefore introduces greater

mixing losses.

2.4 E�ciency: Design Implications for Tidal Turbines

In the design of a row of wind turbines it can generally be assumed that the operation of

devices will not have a signi�cant e�ect on the upstream wind velocity. As a result mixing

losses in the wake of the devices can have no e�ect on the power removed by the turbines

and so the best turbines are those which maximise the power coe�cient. By contrast,

for tidal turbines the problem is more subtle since, as will be shown in Chapters 5-7, the

power extracted by a tidal fence at a given coastal site (equal to the power removed by, or

available to, the devices plus that lost in downstream mixing) can signi�cantly a�ect tidal

currents immediately upstream of devices. This feedback on the upstream velocity will be

seen to ultimately limit the total power that can be extracted. Since the power that is

available to a tidal device within the fence is de�ned by

Power Available=η × Power Extracted, (2.65)

it follows that at the limit of power extraction optimising device e�ciency will recover the

most available power. It is therefore of direct interest to understand what tidal devices will

maximise e�ciency.

To determine the most e�cient devices it is useful to note that, for a given �ow rate,

upstream depth and downstream depth change, the force applied by the disc is �xed. It

is then immediately evident from Equation 2.64 that devices with large α2 will be most

e�cient, implying that one should design a device to have the highest possible α2 whilst still

achieving the given depth change and power extraction across the device. Furthermore,

because B must increase with increasing α2 to extract the required depth change (see

49



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α
2
=η(1−∆h/(2h))−1

B

∆h/h=0.01

0.02

0.05

0.1

0.010.020.05

(a)

Figure 2.10: (a) Contours of dimensionless depth change, as a function of turbine velocity
coe�cient α2, and blockage ratio B. Fr = 0.05 (dashed lines), Fr = 0.15 (solid lines),
cut-o� condition (dotted line).

Figure 2.10 (a)), this is equivalent to the statement that devices with large blockage are

most e�cient or, more plainly, less power is lost in wake mixing when a large area of water

is slowed by a small amount, than when a small area of water is slowed by a large amount.

Alternatively, since the ratio of power coe�cient to thrust coe�cient is simply α2, the

most e�cient turbine can also be interpreted as the turbine which minimises the thrust

coe�cient for a given power coe�cient.

It is useful to point out that maximising the e�ciency of a tidal device is not the same as

maximising the power coe�cient. This is obvious from Figure 2.8, where the highest power

coe�cient does not achieve the highest e�ciency. It should also be noted that there is a

limit to how large α2 and B can become to maximise e�ciency. Using the model derived

for pressure-volume constrained �ow discussed in Section 2.3.2 the bypass �ow becomes

critical when the increase in α2 and B, required to extract a given depth change, becomes

too large (see Figure 2.10 (b)). Economic and serviceability constraints will also restrict

the device blockage ratio at real tidal sites.

2.5 E�ect of Finite Froude Number on Local Field

The step by step extensions to LMADT discussed in Section 2.3 have identi�ed two actu-

ator disc models that describe tidal energy devices in a uniform tidal stream. The �rst of

these, identical to that of GC07, assumes a constant volume �ow �eld and therefore pro-
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vides an analytical approximation for the turbine thrust and downstream pressure change

assuming that the Froude number is zero. The second model, similar to that of W09,

but allowing for downstream mixing, considers a combined pressure-volume constrained

�ow �eld and provides an approximation for the thrust applied by a tidal device and the

resulting downstream depth change when the Froude number is non-zero. In this section

both of these two models are compared with an emphasis on the importance of the Froude

number. In particular, the turbine performance, in terms of the thrust coe�cient, the

power coe�cient and the e�ciency are compared, followed by the di�erences in predicted

�ow �elds described by the change in downstream depth.

Figures 2.11(a) and 2.11(c) display the thrust and power coe�cient, respectively, as

a function of the Froude number for several blockage ratios and a �xed wake velocity

coe�cient of α4 = 1/3 (close to maximum power coe�cient, see Figure 2.8). The vertical

intercept of these individual curves (Fr = 0) represent the power and thrust coe�cient

for the volume constrained �ow analysed by GC07. It is evident that for small Froude

number (Fr < 0.1) the power and thrust coe�cient change very little relative to the

constant volume result. However, for larger Froude number, especially close to that when

the bypass region becomes critical (dashed line), a substantial increase in the thrust and

power coe�cient of the tidal device results. This is more pronounced for larger blockage

ratio. Figure 2.11(b) and 2.11(d) explore the e�ect of the wake velocity coe�cient on these

results for blockage ratios of B = 0.05 and B = 0.4. For the smaller blockage ratio the

change in power coe�cient is minor for both power and thrust when α4 is varied. For the

larger blockage ratio the power coe�cient reduces, as expected, when α4 is either increased

(α4 = 1/2) or decreased (α4 = 1/6). The thrust increases substantially when α4 reduces,

and the onset of critical �ow occurs at lower Froude number, in agreement with Figure

2.9(b).

Perhaps the most interesting result of Figure 2.11 is the rate at which the thrust coe�-

cient varies with Froude number. This suggests that if the blockage ratio of a tidal device

remains relatively constant over a tidal cycle the equivalent depth-averaged drag force of a

tidal device will be a time varying fraction of the time varying quantity ρu2h.

The e�ect of Froude number on e�ciency is evident in Figure 2.12(a), which plots the

e�ciency for turbines with varying blockage ratio and a wake velocity coe�cient α4 = 1/3.
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Figure 2.11: Plots of the thrust coe�cient CT and the power coe�cient CP against the
upstream Froude number for various blockage ratios. (a) CT against Fr where α4 = 1/3;
(b) CT against Fr where α4 = 1/2 (dash-dot line), α4 = 1/3 (solid line) and α4 = 1/6
(dotted line); (c) CP against Fr where α4 = 1/3; (d) CP against Fr where α4 = 1/2
(dash-dot line), α4 = 1/3 (solid line) and α4 = 1/6 (dotted line).
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Figure 2.12: (a) Plot of e�ciency against blockage ratio for tidal devices with wake velocity
coe�cient α4 = 1/3, and various Froude numbers (labeled on plot). (b) Plot of dimension-
less downstream depth change against blockage ratio for tidal devices with wake velocity
coe�cient α4 = 1/3, and various Froude numbers (labeled on plot).

For higher Froude number the e�ciency reduces below that of the constant volume �ow

(Fr = 0), which is explained by the fact that the depth change is greater (Figure 2.12(b)).

It is also clear that, holding α4 �xed, the e�ciency reduces as the blockage ratio increases

regardless of the Froude number, but of course more power in total is being removed from

the tidal stream, as is evident by the greater depth change in Figure 2.12(b).

Figure 2.13(a) plots the change in non-dimensional downstream depth change that

results from an actuator disc of various blockage and �xed wake induction factor and

upstream Froude number. It is obvious that signi�cant downstream depth change can

occur. For example, a depth change close to 5 % results at each fence of tidal devices

when B ∼ 0.45 and Fr ∼ 0.2. This change in depth would equate to 2 m in a �ow depth

of 40 m. Given the size of such a depth change it is interesting to compare these results

with the constant volume results derived by GC07. Although the constant volume �ow

has by de�nition no change in area, a depth change can be implied from the change in

pressure across the �ow divided by speci�c gravity. Figure 2.13(a) plots this change in

depth, for various blockage ratios, and compares them to that produced by the pressure-

volume constrained �ow. The agreement is surprisingly good despite the inconsistency in

mass �ow rate outlined in Equation 2.38.
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Figure 2.13: (a) Plot of ∆h/h, as a function of Froude number, for various blockage ra-
tios (labeled on the plot) based on a volume-pressure bounded �ow. The wake velocity
coe�cient is α4 = 1/3 (solid lines), α4 = 1/2 (dash-dot line), and α4 = 1/6 (dotted line).
(b) Plot of ∆h/h, as a function of Froude number, for various blockage ratios (labeled
on the plot) based on a volume-pressure bounded �ow (solid lines) and implied from the
downstream pressure change in a constant volume bounded �ow (dotted lines).

2.6 Discussion

2.6.1 Limitations of LMADT

It is useful at this stage to consider the limitations of LMADT in approximating the local

�ow �eld about a tidal energy device. The majority of these limitations are due to the one-

dimensional nature of the theory, which is unable to account for two dimensional phenomena

such as non-uniform upstream currents, changes in bathymetry, bed friction e�ects, drag

forces due to the support structure or asymmetry in the placement of a tidal device in

the water column. Over a long tidal fence, however, it would be expected that changes

in the horizontal component of upstream velocity and the along fence bathymetry would

have a minor e�ect on the theoretical result for a device placed within the fence provided

that they change over a length scale much larger than the centre to centre spacing between

turbines. If this is not the case, or when changes in the vertical velocity pro�le, bed

friction or the asymmetric and irregular placement of turbines in the fence are deemed to

be important detailed 3D numerical modelling and experimental work will be required to

better understand the local �eld.

Actuator disc theory applies strictly to steady �ows. By contrast, at tidal sites the

motion is unsteady due to both long period variations in tidal stream velocity over a tidal

cycle and shorter period variations in velocity due to free surface waves and turbulence.
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Although LMADT gives no indication of the length scale of the local �eld (distance between

Stations 1 and 5), recent experiments on porous discs suggest that mixing may occur over

20-30 device diameters (∼O(102) m) for a low blockage device (Myers and Bahaj [2010]).

At this length scale time varying velocity �uctuations of the order of the period of a

tidal wave will be negligible. Shorter period variations will however remain important and

will introduce added mass e�ects and dynamic in�ow e�ects. These have been shown to

increase the forces experienced by a tidal device (Whelan [2010]). They may also have

some in�uence on the average momentum sink introduced by a device within a fence or the

useful power extracted by a tidal device. Despite this observation these e�ects are not yet

well understood and are overlooked in the Thesis.

Lastly, perhaps the most well known limitation of actuator disc theory is its inability to

model correctly highly loaded turbines (i.e. turbines with small velocity coe�cient α2). For

instance, when α2 < 1/2 the traditional Lanchester-Betz theory will predict a reversed �ow

in the wake, which is clearly at odds with the turbulent wake that is produced in practice

(Burton et al. [2001]). However, from the discussion in Section 2.4, e�cient tidal turbines

should typically aim to have large α2 values and so this limitation should be unimportant.

2.7 Conclusions

The most important conclusion from this chapter is that power removed by a turbine(s) in

an open channel �ow can exceed the traditional power coe�cient but the removed power is

only a fraction of the total power extracted from the �ow. This fraction can be increased

by maximising the e�ciency of the tidal devices within the fence, which is not the same

as maximising the traditional power coe�cient. In particular, devices with large blockage

ratio and wake velocity coe�cient will be the most e�cient.

In Chapter 4 it will be shown how the momentum sink implied by LMADT for a

particular tidal fence can be introduced into a 2D shallow water model to calculate power

extraction. The e�ciency from Equation 2.60 will then be used to determine the available

power from tidal fence deployed in a range of di�erent coastal basins in Chapters 5-7.
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Chapter 3

Simulating Coastal Tidal Flows

3.1 Introduction

This chapter presents the Shallow Water Equations (SWEs), which are commonly employed

to model tidal �ows in coastal waters. The SWEs are �rst derived by vertically integrating

the continuity and Navier Stokes equations. Next, the limitations of the two dimensional

SWEs for modelling tidal �ows, as compared to more complex three dimensional (3D)

numerical models, is discussed. Chapter 3 concludes with the de�nition of a set of generic

coastal basins, which will provide a framework for studying the e�ects of tidal energy

extraction in later chapters. The relevance and generality of this set is discussed, with

reference to a number of locations around the world that have been highlighted as having

signi�cant tidal energy potential.

3.2 The Shallow Water Equations

The SWEs have been used for many years to approximate the evolution of long waves in

shallow water, one aim being to understand tidal hydrodynamics in coastal basins (see,

for example, Lamb [1932]). The equations are valid when the horizontal scales of a time

varying �ow are much larger than the vertical scales, and can be derived by vertically

integrating the continuity and Navier Stokes (NS) equations over the �ow depth (see, for

example, Falconer [1993]) or from a control volume analysis of a �uid element of in�nitesimal

plan area extending over the entire water depth (see, for example, Abbott [1979]). The

former of these two approaches provides insight into the origin of the depth-averaged shear
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stress terms and the depth-averaged dispersion coe�cient. To bene�t from this insight,

a derivation, based on that of Falconer [1993] and Dean and Dalrymple [1984], will be

presented brie�y below.

The governing equations for an incompressible and Newtonian �uid constitute the con-

tinuity equation

∂u∗
∂x

+
∂v∗
∂y

+
∂w∗
∂z

= 0, (3.1)

and the associated Navier Stokes momentum equations

∂u∗
∂t

+ u∗
∂u∗
∂x

+ v∗
∂u∗
∂y

+ w∗
∂u∗
∂z

= X − 1

ρ

∂p

∂x
+
µ

ρ

(
∂2u∗
∂x2

+
∂2u∗
∂y2

+
∂2u∗
∂z2

)
, (3.2)

∂v∗
∂t

+ u∗
∂v∗
∂x

+ v∗
∂v∗
∂y

+ w∗
∂v∗
∂z

= Y − 1

ρ

∂p

∂x
+
µ

ρ

(
∂2v∗
∂x2

+
∂2v∗
∂y2

+
∂2v∗
∂z2

)
, (3.3)

and,

∂w∗
∂t

+ u∗
∂w∗
∂x

+ v∗
∂w∗
∂y

+ w∗
∂w∗
∂z

= Z − 1

ρ

∂p

∂x
+
µ

ρ

(
∂2w∗
∂x2

+
∂2w∗
∂y2

+
∂2w∗
∂z2

)
, (3.4)

where the velocity vector u∗ = (u∗, v∗, w∗)
T , x = (x, y, z)T , the pressure is p, the density of

the �uid is ρ, the dynamic viscosity is µ, and the terms X, Y, and Z represent body forces.

(For a discussion and detailed derivation of the above equations see, for example, Massey

[1998], Hughes and Brighton [1967] or Young et al. [2001].)

In shallow coastal basins the �ow is generally turbulent (Taylor [1920], Jirka [2002])

and so the velocity �eld can be considered, using the Reynolds decomposition, to comprise

a local mean velocity u∗, and a local �uctuating velocity u
′
∗, such that

u∗ = u∗ + u
′

∗. (3.5)

Over a time period Tf , which is long compared to the timescale of the �uctuations but

short compared to the timescale of tidal motions, these components satisfy

u∗ =
1

Tf

ˆ t+Tf

t

u∗dt, and u′
∗ =

1

Tf

ˆ t+Tf

t

u
′

∗dt = 0.

Introducing these velocity components into the continuity and NS Equations (3.1-3.4), and

averaging the result over Tf , leads to the time-averaged continuity equation (Reynolds
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[1895])

∂u∗
∂x

+
∂v∗
∂y

+
∂w∗
∂z

= 0, (3.6)

and the time-averaged momentum equation (in the subsequent discussion only the x direc-

tion will be given for brevity)

∂u∗
∂t

+ u∗
∂u∗
∂x

+ v∗
∂u∗
∂y

+ w∗
∂u∗
∂z

= X − 1

ρ

∂p

∂x
+

1

ρ

∂

∂x

(
µ
∂u∗
∂x
− ρu′

∗u
′
∗

)
+

1

ρ

∂

∂y

(
µ
∂u∗
∂y
− ρu′

∗v
′
∗

)
+

1

ρ

∂

∂z

(
µ
∂u∗
∂z
− ρu′

∗w
′
∗

)

The non-linear �uctuations u′
∗u

′
∗, u

′
∗v

′
∗ and u′

∗w
′
∗ in this expression indicate the e�ect of

random �uctuations on the long term mean �ow pattern, and are commonly known as the

Reynolds, or turbulent, stresses. Using the Boussinesq eddy viscosity concept (Boussinesq

[1877]), these stresses can be written in terms of the mean velocity components

−ρu′
∗u

′
∗ = ρυt

(
∂u∗
∂x

+
∂u∗
∂x

)
, −ρu′

∗v
′
∗ = ρυt

(
∂u∗
∂y

+
∂v∗
∂x

)
, −ρu′

∗w
′
∗ = ρυt

(
∂u∗
∂z

+
∂w∗
∂x

)
,

(3.7)

where υt is the turbulent eddy viscosity (which may vary with both position, time and

Reynolds stress component). The eddy viscosity is generally much larger than the molecular

viscosity µ, due to turbulence and because the dispersive momentum transport by turbulent

eddies is signi�cantly larger than that possible by laminar di�usion. Neglecting the laminar

contribution therefore leads to the momentum equation

∂u∗
∂t

+ u∗
∂u∗
∂x

+ v∗
∂u∗
∂y

+ w∗
∂u∗
∂z

= X − 1

ρ

∂p

∂x
+

∂

∂x

(
υt

(
∂u∗
∂x

+
∂u∗
∂x

))
+

∂

∂y

(
υt

(
∂u∗
∂y

+
∂v∗
∂x

))
+

∂

∂z

(
υt

(
∂u∗
∂z

+
∂w∗
∂x

))
,(3.8)

where the over-bar symbols have been removed for convenience. (Each dependent variable

hereafter now represents a locally time-averaged mean value.)

The body force terms, per unit mass, applicable for a rotating earth are simply

X = 2fv∗, Y = −2fu∗, and, Z = −g, (3.9)

where g is the acceleration due to gravity and f is the Coriolis parameter that results from

58



z

x

(x,y,t)

h(x,y)

y

u*(x,y,-h,t)=0

Figure 3.1: De�nition sketch and co-ordinate system for the shallow water equations.

the Earth's rotation. It should be noted that equilibrium tidal forcing and self attraction

and loading have been omitted from these terms, on the assumption that the coastal basins

that will be investigated are su�ciently small, in horizontal extent, so that their e�ects are

negligible.

Following the classical shallow water assumption, provided the horizontal scales of �uid

motion are much larger than the �uid depth, as would be the case for very long waves

over smooth bathymetry, the vertical accelerations of the �uid can be neglected. The

vertical momentum equation then reduces to a balance between the pressure gradient and

gravitational acceleration

1

ρ

∂P

∂z
− g = 0. (3.10)

Integrating Equation 3.10 over the depth results in a hydrostatic pressure distribution

P = Pa + ρg (ξ − z) , (3.11)

where Pa is the atmospheric pressure at z = ξ (see Figure 3.1).

Because vertical motions are assumed to be negligible it is e�cient to integrate the

continuity and momentum equations over the depth. Using Leibniz's rule, integration of

the continuity Equation 3.6 leads to

ˆ ξ

−ho
udz +

∂

∂y

ˆ ξ

−ho
vdz − u(x, y, ξ, t)

∂ξ

∂x
− u(x, y,−ho, t)

∂ho
∂x
−

v(x, y, ξ, t)
∂ξ

∂y
− v(x, y,−ho, t)

∂ho
∂y

+ w(x, y, ξ, t)− w(x, y,−ho, t) = 0. (3.12)

where the free surface is at z = ξ(x, y, t) and the seabed is at z = −ho(x, y) (see Figure
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3.1). A no slip boundary condition exists at the seabed

u∗(x, y,−ho, t) = 0, (3.13)

together with a kinematic boundary condition at the free surface

∂ξ

∂t
+ u∗(x, y, ξ, t)

∂ξ

∂x
+ v∗(x, y, ξ, t)

∂ξ

∂y
= w∗(x, y, ξ, t). (3.14)

Introducing these boundary conditions into Equation 3.12 leads to the depth averaged

continuity equation

∂ξ

∂t
+
∂uh

∂x
+
∂vh

∂y
= 0, (3.15)

where h = ho + ξ, and the depth averaged velocities are de�ned as

u =
1

h

ˆ ξ

−ho
u∗dz, v =

1

h

ˆ ξ

−ho
v∗dz.

Likewise, adding u∗ times Equation 3.6 to the momentum equation 3.8 and integrating

over the depth leads to (again only the x direction is shown for brevity)

ˆ ξ

−ho

(
∂u∗
∂t

+
∂u2
∗

∂x
+
∂u∗v∗
∂y

+
∂u∗w∗
∂z

)
dz =

ˆ ξ

−ho
fv∗dz −

1

ρ

ˆ ξ

−ho

∂P

∂x
dz +

ˆ ξ

−ho

[
∂

∂x

(
2υt

∂u∗
∂x

)
+

∂

∂y

(
υt

(
∂u∗
∂y

+
∂v∗
∂x

))
+

∂

∂z

(
υt

(
∂u∗
∂z

))]
dz.

Employing Leibniz's rule and the boundary conditions Equation 3.13 and Equation 3.14,

this expression can be rewritten as

∂uh

∂t
+
∂βxxu

2h

∂x
+
∂βxyuvh

∂y
= fvh− 1

ρ

ˆ ξ

−ho

∂P

∂x
dz +

∂

∂x

ˆ ξ

−ho
2υt

∂u∗
∂x

dz − 2υt
∂u∗
∂x

∣∣∣∣
ξ

∂ξ

∂x
− 2υt

∂u∗
∂x

∣∣∣∣
−ho

∂ho
∂x

+

∂

∂y

ˆ ξ

−ho
υt

(
∂u∗
∂y

+
∂v∗
∂x

)
dz − υt

(
∂u∗
∂y

+
∂v∗
∂x

)∣∣∣∣
ξ

∂ξ

∂y
+

υt

(
∂u∗
∂y

+
∂v∗
∂x

)∣∣∣∣
−ho

∂ho
∂y

+ υt

(
∂u∗
∂z

)∣∣∣∣
ξ

− υt
(
∂u∗
∂z

)∣∣∣∣
−ho

, (3.16)
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where βxx and βxy are momentum correction factors de�ned so that

βxx =
1

hu2

ˆ ξ

−ho
u2
∗dz, βxy =

1

huv

ˆ ξ

−ho
u∗v∗dz. (3.17)

Likewise the momentum equation in the y direction leads to the additional correction factor

βyy =
1

hv2

ˆ ξ

−ho
v2
∗dz. (3.18)

If the vertical velocity pro�les of u∗ and v∗ vary with depth these correction factors will

di�er slightly from unity. However in most practical applications this di�erence is ignored

and βxx, βxy and βyy are taken to be unity (Falconer [1993]).

Traditionally Equation 3.16 is simpli�ed through the introduction of two additional

assumptions. The �rst is that the depth integration of the viscous terms can be rewritten

as ˆ ξ

−ho
υt
∂u∗
∂x

dz = υTh
∂u

∂x
, (3.19)

where υT is introduced to de�ne the depth averaged turbulent eddy viscosity. A similar

de�nition is made for the integrals involving eddy viscosity multiplied by the velocity

gradients ∂u∗/∂y, ∂v∗/∂x and ∂v∗/∂y. In practice there are several ways to de�ne νT

(Elder [1959], Stansby [2006]), but in this thesis it will be taken as a constant value for

simplicity.

Secondly, the viscous terms evaluated at the free surface and the seabed are parame-

terised. For example, at the free surface (z = ξ(x, y, t)) it is assumed that viscous terms are

related to surface shearing action, which can be described by a wind shear stress τW . In the

present thesis the wind shear terms will be ignored to simplify the analysis, however their

inclusion in depth-averaged models is straightforward (see, for example Falconer [1993]).

At the seabed, (z = −ho(x, y)) the viscous terms are assumed to represent frictional re-

sistance between the seabed and the �uid �ow. This seabed shear stress has a signi�cant

physical e�ect in coastal basins and is modelled with the introduction of a bed shear stress

τx,b, de�ned such that

τb,x
ρ

= υt

(
∂u∗
∂z

)∣∣∣∣
−ho

+ 2υt
∂u∗
∂x

∣∣∣∣
−ho

∂ho
∂x

+ υt

(
∂u∗
∂y

+
∂v∗
∂x

)∣∣∣∣
−ho

∂ho
∂y

. (3.20)
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For a �at seabed this becomes

τb,x
ρ

= υt

(
∂u∗
∂z

)∣∣∣∣
−ho

. (3.21)

The bed shear τb,y is de�ned similarly from the momentum equation in the y direction.

Introducing the hydrostatic pressure de�ned by Equation 3.11, the de�nition of depth

averaged eddy viscosity introduced in Equation 3.19 and, the bed shear stress given in

Equation 3.20, the SWEs can be written as

∂ξ

∂t
+
∂uh

∂x
+
∂vh

∂y
= 0, (3.22)

∂uh

∂t
+
∂u2h

∂x
+
∂uvh

∂y
= fvh− gh∂ξ

∂x
−

τb,x
ρ

+
∂

∂x

(
2υTh

∂u

∂x

)
+

∂

∂y

(
υTh

(
∂u

∂y
+
∂v

∂x

))
, (3.23)

∂vh

∂t
+
∂uvh

∂x
+
∂v2h

∂y
= −fuh− gh∂ξ

∂y
−

τb,y
ρ

+
∂

∂x

(
υTh

(
∂u

∂y
+
∂v

∂x

))
+

∂

∂y

(
2υTh

∂v

∂y

)
. (3.24)

3.2.1 Bed Shear Stress

In practice the bed shear stress is usually de�ned empirically using a variety of models such

as the Darcy-Weisbach equation, the Chézy equation and Manning's equation (see Soulsby

[1997] for a review). Each of these approaches assumes a quadratic friction law of the form

(τb,x, τb,y)
T = ρυt

((
∂u∗
∂z

)∣∣∣∣
−ho

,

(
∂v∗
∂z

)∣∣∣∣
−ho

)T
= ρCdu|u|, (3.25)

where u = (u, v)T and Cd is a drag coe�cient that can be related to a Darcy-Weisbach

resistance coe�cient fDW , the Chézy coe�cient C and Manning's coe�cient n, through

the relationships

Cd =
fDW

8
=

g

C2
=
gn2

h1/3
. (3.26)
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Alternatively, if the turbulent tidal �ow is assumed to have a logarithmic velocity pro�le

of the form

u∗(z) =
uf
κ
ln (z/zo) , with uf =

(
|τb|
ρ

)1/2

, (3.27)

where κ = 0.4 is the von Kármán constant and zo describes a roughness length, the drag

coe�cient according to Equation 3.25 can be de�ned as (Soulsby [1997])

Cd =

(
−κ

1 + ln (zo/h)

)2

. (3.28)

In practice the roughness parameter zo can be calculated by adding the roughness due to

skin friction zos and the roughness due to form drag zof (Soulsby [1997]). The former is

dependent on the seabed conditions (Table 7 in Soulsby [1997] gives roughness lengths for

various mixes of mud, sand and gravel). The latter can be estimated from the following

empirical expression

zof =
∆2
r

λr
, (3.29)

where ∆r is the height, and λr is the wavelength, of seabed undulations. In rocky tidal races

these undulations may be related to boulders or other large debris and so the parameter

zof might be signi�cant (Soulsby, personal communication, 2009).

3.2.2 Simpli�cations to the SWEs

If the horizontal scale of a tidal site is large and tidal currents vary smoothly over the

length of the site simple scaling arguments suggest that the viscous terms, which involve

second order spatial derivatives of the velocity �eld, can be neglected in the shallow water

approximation to the momentum equation. This leads to the inviscid SWEs

∂ξ

∂t
+
∂uh

∂x
+
∂uh

∂y
= 0, (3.30)

∂uh

∂t
+
∂u2h

∂x
+
∂uvh

∂y
= fvh− gh∂ξ

∂x
+
τb,x
ρ
, (3.31)

∂vh

∂t
+
∂uvh

∂x
+
∂v2h

∂y
= −fuh− gh∂ξ

∂y
+
τb,y
ρ
, (3.32)

which constitute a weakly damped hyperbolic system of partial di�erential equations (Sobey

[2008]). Of course, at any real coastal site turbulent viscosity will be important in the
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vicinity of small scale features where the �ow may separate, for example. However the

resolution of a tidal model is often insu�cient to represent these features. In such cases

bed shear stress will then e�ectively parameterise the additional mixing losses (Sutherland

[2007]).

If the amplitude of tidal oscillations is also small, with respect to the mean water depth,

and the velocity �eld varies smoothly over a length scale of the order of a tidal wave, then

the advection term becomes small relative to the remaining terms in the shallow water

momentum balance. The continuity equation can then be linearised and the advection

terms in the SWEs neglected, leading to (Lamb [1932])

∂ξ

∂t
+ ho

∂u

∂x
+ ho

∂v

∂y
= 0, (3.33)

∂u

∂t
+ g

∂ξ

∂x
= − τb,x

hoρ
+ fv, (3.34)

∂v

∂t
+ g

∂ξ

∂y
= − τb,y

hoρ
− fu. (3.35)

3.3 Limitations of 2D Shallow Water Models

As mentioned in the �rst section of this Chapter, the SWEs have been used for many years

to model tidal hydrodynamics with considerable success. However in certain situations the

ability of 2D SWE models to simulate shallow �ows is limited.

Stansby [2006] suggests that shallow water wake �ows are one example where numerical

simulation of the SWEs give poor predictions. The reason for this de�ciency may arise

from the assumption of a �xed vertical velocity pro�le in the SWEs, such that bed friction

in shallow �ows, which is related physically to the velocity gradients at the seabed, must

instead be speci�ed relative to the depth-averaged velocity and the assumed velocity pro�le

(see Equation 3.25). As a result the velocity near the seabed in a depth-averaged model is

implicitly assumed to be both in phase with, and a constant fraction of, the depth-averaged

velocity at all times. However, this assumption appears to be violated in shallow water �ows

when large-scale horizontal mixing is important, as for shallow wake �ows (Stansby [2006]).

One example that has been investigated is �ow in the wake of a small conical island, where

3D simulations indicate that the bed velocity gradients and the depth-averaged velocity

di�er substantially in phase and possibly in sign, resulting generally in increased bed shear
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relative to that which would be predicted using depth average velocity (Stansby [2003]).

Simulations of these �ows using a 2D depth-averaged SWE model have been shown to give

poor results unless the shallow wake is unsteady everywhere (Stansby [2006]). In particular

a 2D model was reported to predict an unsteady wake, when experiments indicated a steady

wake, and generally to underpredict the downstream extent of bubble wakes. Similar

problems may result when simulating the far wake of tidal devices modelled using a 2D

depth-averaged model.

More complex 3D numerical models avoid the problem of a �xed velocity pro�le by

simulating the vertical variations in horizontal velocity directly. However, with these more

advanced models care must still be taken in selecting an appropriate turbulence model to

simulate accurately horizontal and vertical mixing, which then drives variation in vertical

velocity pro�le and ultimately bed friction. Stansby [2003] proposed a mixing length model,

based on the assumption that the shallow �ow is everywhere turbulent. The application of

this mixing length model to a 3D numerical model, assuming hydrostatic pressure, provided

signi�cantly better predictions of wake formation in the lee of a conical island with shallow

slope.

It therefore appears that ideally a 3D numerical model, with a suitable turbulence

model, should be used to model tidal energy extraction. However, since the focus of this

thesis is to understand the potential of tidal energy for a variety of generic coastal basins,

a more computationally e�cient 2D numerical model is highly desirable. Furthermore, for

some of the geometries to be investigated it is unlikely that details of the �ow structure in

regions of separated �ow and perhaps in the localised wake behind a turbine fence (both

areas with potential large-scale horizontal mixing) will have a �rst order e�ect on power

potential or mean tidal currents. It would, however, be useful to con�rm this with 3D

models in future work.

3.4 Set of Generic Coastal Basin Geometries

Recent tidal stream resource assessments (see Table 1, Chapter 1, and Blunden and Bahaj

[2007a] for a review regarding the European shelf) have identi�ed large tidal streams in

excess of 2 m/s at a wide variety of di�erent coastal sites. Although these sites tend to be
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located on continental shelves that apear to be close to resonance and have large natural

energy dissipation, the mechanisms that lead to large tidal streams at each site vary. For

example, large tidal streams through the Pentland Firth are principally the result of a phase

di�erence established across the strait as the tide propagates from the Atlantic Ocean into

the North Sea, whereas in a large open bay, such as the Bristol Channel coupled to the

Euroepan shelf, quarter wavelength resonance with the Atlantic Ocean tide is believed

to generate ampli�ed tidal range and streams (Heath, 1981). This apparent di�erence

between sites suggests that site speci�c investigations are required to understand the tidal

resource at each coastal location. However, in practice such investigations would require

extensive numerical modelling and �eld observations, both of which are time consuming

and expensive.

A useful compromise, pursued in this thesis, is to de�ne a set of generic coastal sites, or

coastal geometries, which cover the various locations where tidal streams are known to be

large. The bene�t from de�ning this set of geometries is that the general physics of each

type of coastal location can be investigated, without site-speci�c anomalies, to provide an

understanding of the hydrodynamic e�ects of tidal energy extraction.

Based on a survey of a large number of tidal sites, summarised in Appendix A, the

set of generic sites illustrated in Figure 3.2 (which is an expanded version of Figure 1.6,

Chapter 1) has been de�ned. These geometries have been chosen so that every tidal site

documented in Appendix A can be classi�ed into one of the four fundamental classes in

Figure 3.2, or a combination thereof. Figure 3.3 summarises this classi�cation.

The �rst class of site describes a strait between two oscillating water bodies. In the

simplest example, considered in detail by Garrett and Cummins [2005], the tidal strait

is isolated and no interconnected channels or straits are present (Figure 3.2(a-i)). The

more complicated scenario (Figure 3.2(a-ii)) describes a strait with multiply connected sub

channels, duscussed in Chapter 5. Many real channels surveyed in Appendix A have this

characteristic.

The second class of site concerns an oscillating bay from which two distinct groups

can be de�ned, based on their geometry. The �rst group consists of enclosed bays which

have a narrow inlet channel connecting the bay to a much larger basin or ocean (Figure

3.2(b-i)). As outlined in Chapter 6, tidal oscillations in these enclosed bays will accelerate
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Figure 3.2: Four di�erent classes of generic coastal sites. Sub groups are included for classes
(a) and (b). (Extended version of Figure 1.6.) The lengths L, L1 and L2 are referred to in
Appendix A.
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Figure 3.3: Prospective tidal sites surveyed in Appendix A, listed by site class. A number
of sites represent a compound addition of more than one generic site.
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tidal streams through the narrow inlet. In contrast, Figure 3.2(b-ii) describes non-enclosed

bays or estuaries, such as for example the Bristol Channel. Tidal energy sites with this

geometry tend to be very large in extent, and many establish quarter wavelength resonance

with the semi-diurnal tide, as discussed further in Chapter 6.

Figure 3.2(c) outlines the third class of site which describes the occurrence of large tidal

currents between an island and a much larger land mass. As discussed below, it can be

considered as a limiting case of a tidal strait or network of tidal channels, and is considered

in more detail in Chapter 5.

Lastly Figure 3.2(d) describes accelerated �ow around headlands. Many examples of this

coastal geometry exists around the UK, including Portland Bill in England and Duncansby

Head in Scotland (see Appendix A). Chapter 7 investigates this geometry further.

3.4.1 Independence and Compound Sites

The generic sites in Figure 3.2 are not strictly independent and overlap under certain

geometric limits. In particular, class (a-i) becomes equivalent to class (b-i) when the

enclosed bay becomes very large (Blanch�eld et al. [2008b]). Similarly class (a-i) becomes

equivalent to class (c) when the island in the latter class is very large. Alternatively class

(c) is similar to class (a-ii) when both the channel and the sub-channel not containing the

tidal devices become very wide, or the island becomes small.

Compound sites may also be formed from the addition of one or more of the classes

depicted in Figure 3.2. Chapter 6 discusses the compound addition of class (a) and class

(b-i), which may occur when an enclosed bay is part of a larger multiply connected network

of tidal channels. Locations such as the Alderney Race (see Appendix A) provide a good

example of the compound addition of class (c) and class (d). Analysis of these sites are

outside the scope of the present thesis.
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Chapter 4

Numerical Solution of the Shallow

Water Equations

4.1 Introduction

This chapter describes the numerical solution of the Shallow Water Equations (SWEs) us-

ing the Discontinuous Galerkin (DG) �nite element method. The DG method is adopted

because of its ability to achieve an arbitrarily high order of accuracy, handle complex ge-

ometry, and, importantly for tidal resource assessment, ensure conservation of mass on an

element by element basis. Following a short literature review, the solution of the SWEs

using the DG method is outlined. Next, the representation of tidal energy extraction

within the resulting 2D numerical model is discussed and a line sink of momentum is im-

plemented to represent a fence of tidal devices. It is suggested that the momentum sink

associated with the tidal fence can be de�ned using Linear Momentum Actuator Disc The-

ory (LMADT). Lastly open ocean boundary conditions are discussed and a characteristic

based open boundary condition, consistent with the well known Flather condition (Flather

[1976]), is adopted to simulate the open boundary. Further detailed discussion of the DG

numerical solution and extensive validation of a numerical solver called OxTide, which has

been developed to perform the numerical analysis in the thesis, are given in Appendix B.
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4.2 Characteristics of the DG Method

For complicated coastal domains, or when non-linear terms become important, the SWEs

can rarely be solved analytically. As a result there is a substantial body of literature

concerned with the numerical solution of the equations. Traditionally, the methods used

to solve the equations have included Finite Di�erences (FD), Finite Volumes (FV), Finite

Elements (FE) and the Method of Characteristics (MoC), among others. Although each of

these methods have their own strengths and weaknesses the present thesis will be concerned

with the relatively new application of the Discontinuous Galerkin (DG) method, which was

�rst introduced in 1973 by Reed and Hill [1973] to model the neutron transport equation.

In e�ect the DG method combines the FE and FV numerical approaches (Cockburn

and Shu [1998]). It therefore inherits various characteristics from both numerical methods,

including: (1) the ability to model �ows with strong advection; (2) compatibility with

unstructured meshing, so as to model complex geometry and provide increased resolution

within the �ow �eld; (3) straightforward application of boundary conditions through a

numerical �ux; and, (4) a sound theoretical base to quantify numerical error and undertake

numerical convergence tests. Despite these similarities the DG method is distinct from FV

and FE methods in a number of important ways. Firstly, unlike continuous FE solutions

of the Generalized Wave Equation (GWE) formulation of the SWEs1, the DG method

conserves mass on an element by element basis. This is achieved because the continuity

equation is satis�ed in the weak sense for each individual element in the DG formulation

(Dawson and Proft [2004]), whilst for the GWE the continuity equation is not solved directly

and so residuals in mass can exist locally, even though conservation is ensured globally

(Dawson and Proft [2004], Sutherland et al. [2007]). Local conservation is particularly

important when simulating tidal energy extraction, where the local mass �ux must be

computed consistently to allow accurate representation of the momentum sink of a tidal

device.

Secondly, unlike low order FV methods, the DG method can incorporate high-order ele-

ments in addition to high-order time stepping schemes. This has the advantage of reducing

numerical di�usion in a similar manner to spectral FE models (see for example Ma [1993]

1The GWE was introduced because numerical solution of the primitive SWEs using continuous FE
methods results in well-known unphysical oscillations (see, for example, Lynch and Gray [1979]).
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and Iskandarani et al. [2005]) and will be important when accurately simulating compli-

cated shallow �ows around islands and tidal fences for example, provided that secondary

�ows are not important.

Despite these promising advantages, the well known downside of the DG method has

been its computational cost compared with continuous FE methods. This additional cost

is a direct result of the discontinuous polynomial basis functions used in the DG method,

which introduce many more degrees of freedom than comparative continuous FE methods

(Karniadakis and Sherwin [2005]). To overcome this disadvantage the development of

quadrature free DG formulations (see, for example Atkins and Shu [1998], Hesthaven and

Warburton [2008]) have helped to reduce slightly the computational disadvantage. In

practical applications the adoption of parallel computation, which is easily achieved in the

DG method because of the compact form of the mass matrix, can also be employed (Atkins

[1997]). In fact, a simulation of the SWEs on a numerical mesh with approximately 160,000

elements conducted by Kubatco et al. [2009] demonstrated that a DG solver achieved better

parallel e�ciency than a continuous FE model when run on 256 and 1024 processors.

4.2.1 Application of the DG Method to the SWEs

There has been a steady increase in the application of the DG method to the inviscid SWEs

in recent years, beginning with the simulation of non-linear shock wave problems in both

one and two dimensions (see, for example, Li and Liu [2001], Aizinger and Dawson [2002],

Schwanenberg and Harms [2004], Kubatco et al. [2006a] and Kesserwani et al. [2008]).

These earlier papers have tended to conclude two main �ndings: (1) the DG method is

comparable with FV methods for capturing shock waves; and (2) the order of convergence

of the DG method is n + 1 for smooth solutions, where n is the order of the polynomial

basis functions. Both of these two �ndings con�rm that the DG method e�ectively combines

useful aspects of FV and spectral FE methods.

High order applications of the method (up to n = 15) have been presented by Eskilsson

and Sherwin [2004] and Giraldo and Warburton [2008], and have illustrated the ability of

the DG method to achieve spectral convergence for a number of test problems involving the

linearised SWEs. This property has been con�rmed both for unstructured and adaptive

grids (see Giraldo and Warburton [2008] and earlier work for n < 5 by Atkins and Shu
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[1998]). For the non linear inviscid SWEs only qualitative comparisons have been made to

analytical approximations and alternative numerical solutions. For this reason, in Appendix

B (B.2.2) a quantitative comparison between the Method of Characteristics and the DG

method is presented for a non-linear test problem.

To extend the DG to more practical problems the well balanced property of the SWE

source terms has been investigated by Ern et al. [2008] and an extension including a mor-

phodynamic model have been presented by Kubatco et al. [2006b]. A wetting and drying

treatment has also been implemented by Bunya et al. [2009] and Ern et al. [2008]. Although

the development of a wetting and drying routine is outside the scope of the present thesis,

the well balanced nature of the numerical solver is demonstrated in Appendix B (B.2.4.2).

To date very little analysis has been undertaken for the viscous form of the SWEs

using the DG method. Notable exceptions are by Schwanenberg and Harms [2004], who

outline an application of the method to viscous equations, and by Bernard et al. [2009] who

investigate shallow wake �ows around islands. In the present thesis the numerical solution

of the SWEs including viscous terms is outlined and veri�ed with experimental results (see

Appendix B.2.3).

4.3 Matrix form of the SWEs

The SWEs (introduced in detail in Chapter 3), may be written in matrix-form as

∂U

∂t
+
∂F(U,Q)

∂x
+
∂G(U,Q)

∂y
= S(U), (4.1)

and,

Q− ∂Rx(U)

∂x
− ∂Ry(U)

∂y
= 0, (4.2)

where the vector U = (h, uh, vh)T contains the dependent variables and the vector Q =

(∂u
∂x
, ∂u
∂y
, ∂v
∂x
, ∂v
∂y

)T parameterise the �rst order spatial derivatives. The �ux vectors are given

by

F(U,Q) =


uh

u2h+ gh2/2− 2hυT
∂u
∂x

uvh− hυT
(
∂v
∂x

+ ∂u
∂y

)
 , G(U,Q) =


vh

uvh− hυT
(
∂v
∂x

+ ∂u
∂y

)
v2h+ gh2/2− 2hυT

∂v
∂y

 , (4.3)
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Rx(U) =



uh
h

0

vh
h

0


, Ry(U) =



0

uh
h

0

vh
h


, and S(U) =


0

−gh ∂z
∂x
− τx,b

ρ
+ fvh

−gh∂z
∂y
− τy,b

ρ
− fuh

 , (4.4)

where use has been made of the identities ∂ξ/∂t = ∂h/∂t, on the assumption of a �xed

seabed, and gh∇ξ = ∇ (gh2/2)− gh∇z, where ∇z = −∇ho is the seabed slope.

The inviscid SWEs, de�ned in Section 3.3.1 (Chapter 3), result when υT = 0. The

auxiliary Equation 4.2 is then redundant. For the linearised SWE de�ned in Section 3.3.2

(Chapter 3), the �ux vectors are given by

F(U) =


uho

ghoh

0

 , G(U) =


vho

0

ghoh

 , (4.5)

where ho(x, y) is the still water reference depth de�ned in Chapter 3 and the appropriate

conserved variables become U = (h, uho, vho)
T .

4.4 Discontinuous Galerkin Formulation of the SWEs

This section describes the application of the DG method to the SWEs. The formulation

loosely follows the approach outlined by Schwanenberg and Harms [2004] and includes the

treatment of viscous terms. As outlined in Section 4.3 the viscous SWEs are considered

as a system of �rst order equations. This allows for polynomial approximations at n = 1

(because the second order derivatives are now parameterised). When υT = 0 the equations

are similar to those considered by Eskilsson and Sherwin [2004] and Giraldo and Warburton

[2008].

To begin, an arbitrary two dimensional domain Ω(x, y) is divided into a �nite number

of Ne non-overlapping elements de�ned over Ωe(x, y). Across each of these elements an

orthogonal projection of the shallow water system, into a polynomial space characterized

by an arbitrary smooth polynomial φi, is taken

ˆ
Ωe

(
∂U

∂t
+
∂F(U,Q)

∂x
+
∂G(U,Q)

∂y
− S(U)

)
φidΩe = 0, (4.6)
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ˆ
Ωe

(
Q− ∂Rx(U,Q)

∂x
− ∂Ry(U,Q)

∂y

)
φidΩe = 0. (4.7)

An approximate solution Uh is then sought which satis�es Equation 4.6 and Equation 4.7

for a range of polynomials φi. As this range becomes larger the approximation will usually

become more accurate. Notably because the approximation is sought on an element by

element basis, conservation of mass is ensured within each computational element.

The DG �nite element method seeks an approximation to the true solution within each

element of the form

U(x, y) ∼ Uh(x, y) =
M∑
k

Ûk(x, y)ψk(x, y) =
M∑
k

Uk(x, y)`k(x, y), (4.8)

with the associated auxiliary variables

Q(x, y) ∼ Qh(x, y) =
M∑
k

Q̂k(x, y)ψk(x, y) =
M∑
k

Qk(x, y)`k(x, y), (4.9)

where the vectors2 {Ûk} and {Q̂k} are a set of discrete time dependent modal coe�cients,

and the vectors {Uk} and {Qk} are a set of discrete time dependent nodal coe�cients.

The set of polynomials {ψk} and {`k} are the time independent two dimensional modal

and nodal basis functions, respectively. In two spatial dimensions the polynomial degree of

these approximations, denoted by n, is related to the number of basis functions, or degrees

of freedom within an individual element, M . For example, for the triangular elements and

basis functions used herein (see Appendix B.1.2) M = 1
2
(n+ 1)(n+ 2).

Substituting the nodal or modal form of the approximation (for brevity the nodal ap-

proximation will be considered hereafter) into Equations 4.6 and 4.7, and integrating the

�ux terms by parts, then gives the semi-discrete equations

∂

∂t

ˆ
Ωe

(
M∑
k

Uklk

)
φidΩe −

ˆ
Ωe

(
∂φi
∂x

F (Uh,Qh) +
∂φi
∂y

G (Uh,Qh)

)
dΩe +

ˆ
Γe

(F (Uh,Qh)nx + G (Uh,Qh)ny)φidΓe =

ˆ
Ωe

S (Uh)φidΩe (4.10)

2The brackets {ak} are used throughout this Chapter to represent the column vector (a1, . . . , aM )
T
,

k ≤M .
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and,

ˆ
Ωe

(
M∑
k

Qklk

)
φidΩe +

ˆ
Ωe

(
∂φi
∂x

Rx (Uh) +
∂φi
∂y

Ry (Uh)

)
dΩe −

ˆ
Γe

(Rx (Uh)nx + Ry (Uh)ny)φidΓe = 0, (4.11)

where n = (nx, ny)
T is the unit normal vector orientated out of the element Ωe, and Γe is

the positively orientated boundary about Ωe.

In the DG approach continuity of the basis functions is not enforced between elements,

in contrast to the standard continuous �nite element approach. This implies that the

boundary integrals in Equations 4.10 and 4.11, or more speci�cally the �ux vectors in the

integrands, are not uniquely de�ned. As a compromise the �ux terms in these integrals

are replaced by the numerical �ux terms computed from the solution of a local Riemann

problem at the interface. This choice naturally leads to consistency with �rst order FV

schemes when n = 0. Stability of the numerical scheme, with the aid of slope limiters,

can also be achieved in the presence of strong advection and numerical discontinuities

(Eskilsson and Sherwin [2004]). However, for the simulations in this thesis no slope limiter

was required.

Introducing the numerical �uxes F̂, Ĝ, R̂x and R̂y, Equations 4.10 and 4.11 become

∂

∂t

ˆ
Ωe

(
M∑
k

Uklk

)
φidΩe −

ˆ
Ωe

(
∂φi
∂x

F (Uh,Qh) +
∂φi
∂y

G (Uh,Qh)

)
dΩe +

ˆ
Γe

(
F̂ (Uh,Qh)nx + Ĝ (Uh,Qh)ny

)
φidΓe =

ˆ
Ωe

S (Uh)φidΩe, (4.12)

and,

ˆ
Ωe

(
M∑
k

Qklk

)
φidΩe +

ˆ
Ωe

(
∂φi
∂x

Rx (Uh) +
∂φi
∂y

Ry (Uh)

)
dΩe −

ˆ
Γe

(
R̂x (Uh)nx + R̂y (Uh)ny

)
φidΓe = 0. (4.13)

A unique set of discrete nodal coe�cients {Uk} and {Qk} can then be de�ned, provided

that Equations 4.12 and 4.13 are satis�ed for all φi = lk, as per the standard Galerkin

approach. The result is a set of M Ordinary Di�erential Equations (ODEs) in time, per
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element, for each conserved variable. The set can be summarized as

d

dt
{Uk} = M−1 [B + E − S] , with {Qk} =M−1 [A− G] , (4.14)

whereM is the mass matrix with elements

M(i,k) =

ˆ
Ωe

lilkdΩe, for i, k ≤M, (4.15)

and the elements of the remaining terms take the values

B(i) = Bx(i) + By(i) =

ˆ
Ωe

(
∂li
∂x

F (Uh,Qh)

)
dΩe +

ˆ
Ωe

(
∂li
∂y

G (Uh,Qh)

)
dΩe, (4.16)

E(i) =

ˆ
Ωe

S (Uh) lidΩe, (4.17)

S(i) =

ˆ
Γe

li

(
F̂(Uh,Qh)nx + Ĝ(Uh,Qh)ny

)
dΓe, (4.18)

A(i) =

ˆ
Γe

(
R̂x (Uh)nx + R̂y (Uh)ny

)
lidΓe, (4.19)

G(i) = Gx(i) + Gy(i) =

ˆ
Ωe

(
∂li
∂x

Rx (Uh)

)
dΩe +

ˆ
Ωe

(
∂li
∂y

Ry (Uh)

)
dΩe. (4.20)

for i ≤ M. Since each of the terms is solely a function of the nodal coe�cients {Uk} and

{Qk}, Equation 4.14 is often written in the simpli�ed form

d

dt
{Uk} = LU(Uh,Qh), where {Qk} = LQ(Uh). (4.21)

The �nal stage in the DG formulation requires the solution of these ODEs. Since the

mass matrix within the operator is compact, and can be decoupled for each element in the

domain, integration of Equation 4.21 can be achieved e�ciently by an explicit integration

scheme such as that implemented in the Runge-Kutta discontinuous Galerkin (RKDG)

method (Cockburn et al. [1989]). A third order RK method is used here to update the

variables {U(p)
k } to {U

(p+1)
k } over the time increment ∆t. Second and fourth order time

stepping were also used in the validation problems reported in Appendix B, and gave very

similar results. Third order time stepping was ultimately selected as a compromise because

it o�ers greater accuracy than second order time stepping, and is more computationally

e�cient than fourth order time stepping. The time stepping is achieved with the following
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operations: {
U

(1)
k

}
=
{
U

(p)
k

}
+ ∆tLU(U

(p)
h ,Q

(p)
h ), (4.22){

U
(2)
k

}
=

3

4
{Up

k}+
1

4

{
U

(1)
k

}
+

1

4
∆tLU(U

(1)
h ,Q

(1)
h ), (4.23)

and, {
Up+1
k

}
=

1

3
{Up

k}+
2

3

{
U

(2)
k

}
+

2

3
∆tLU(U

(2)
h ,Q

(2)
h ), (4.24)

where {Q(i)
k } = LQ(U

(i)
h ) and the time step ∆t is calculated as

∆t =
max

Ω

{
hm

0.5n2(
√
u2 + v2 +

√
gh)

}
(4.25)

where hm is a characteristic mesh dimension (taken to be the smallest vertex of an element).

In practice Equation 4.25 ensures a CFL number of 0.5 when n = 1 and includes a correction

factor of n2 for larger n, as suggested by Karniadakis and Sherwin [2005]. It should be

noted that other corrections for large n have been suggested in the literature (for example

Kubatco (2006a) adopt 2n + 1). The object of this thesis was not to determine the most

e�cient correction and so a thorough comparison has not been undertaken. A comparison

would comprise useful further work.

To solve Equation 4.21 at each time step a numerical solver called OxTide has been

written in FORTRAN. The general layout of this code is similar to that used by Hesthaven

and Warburton [2008] for hyperbolic conservation laws. Further details about the solver,

including the choice of linear and isoparametric triangular elements, basis functions, for-

mation of the spatial operators, and a series of validation and veri�cation tests, are given

in Appendix B.

Although the majority of the numerical code details are con�ned to Appendix B, two

aspects of the numerical solver are especially important to tidal energy resource assessment

and warrant explanation in the present chapter. The �rst involves the representation of

tidal devices in a 2D depth averaged model and the second concerns the treatment of open

boundary conditions.
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4.5 Representing Tidal Turbines

Two methods can be adopted to introduce a momentum sink, caused by tidal energy

extraction, into a depth-averaged numerical model of the SWEs. The �rst involves the

speci�cation of an additional bed shear stress term, whilst the second models tidal devices

(on the assumption they are deployed as a tidal fence) as a line sink of momentum.

4.5.1 Additional Bed Shear Term

When the Froude number is small, the analysis of an actuator disc in a volume constrained

�ow (see Garrett and Cummins [2007] and Chapter 2) indicates that the depth-averaged

drag force imparted by a disc scales with the velocity squared. More generally, many

blu� bodies also obey a simple drag law that is quadratic in the �ow rate (Pugh [1987]).

Therefore it seems rational as a �rst approximation to model tidal energy devices by a

drag force that is quadratic in the �ow rate. Adopting this approach the natural bed shear

stress coe�cient Cd in the vicinity of tidal devices is augmented to

CTot = Cd + kt, (4.26)

where kt is the thrust coe�cient of the tidal devices, per unit area of seabed. It then

follows from Equation 4.26 that the instantaneous power extracted by the tidal devices P

is (Sutherland et al. [2007])

P =
kt

Cd + kt
Pt, (4.27)

where Pt is the instantaneous total power dissipated due to CTot.

The use of Equation 4.26 to model tidal devices has been adopted in several studies on

tidal energy extraction in the literature. For example, Sutherland et al. [2007] and Karsten

et al. [2008] use Equation 4.26 to determine the power potential of the Johnstone Strait,

Canada, and the Minas Passage, Canada. Blunden and Bahaj [2007b] also adopt Equation

4.26 to model tidal energy extraction at Portland Bill in the UK.

As the studies by Sutherland et al. [2007] and Karsten et al. [2008] illustrate, the intro-

duction of additional bed shear for modelling tidal energy extraction is useful to determine

the theoretical maximum power that can be extracted at a particular coastal site. How-
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ever it is di�cult to relate the thrust coe�cient kt to a particular con�guration of tidal

device or an array of devices, and so the available power is unknown. Blunden and Bahaj

[2007b] have attempted to assign the coe�cient based on a case study of a yawed horizon-

tal axis marine current turbine and a hypothetical array design. However they admit that

veri�cation of that approach is needed.

4.5.2 Line Sink of Momentum

A key advantage of the linear momentum actuator disc theory (LMADT) presented in

Chapter 2 is that it provides a theoretical argument that links a tidal device, de�ned by

a blockage ratio and wake velocity coe�cient (see Chapter 2 for de�nitions), to the thrust

that the device should impart in a uniform �ow. The theory also allows for a distinction to

be made between the power extracted by the fence and the power available to the devices.

For these reasons it is of practical interest to de�ne tidal devices within a 2D depth-averaged

numerical model using LMADT.

In this section it is argued that a fence of tidal devices can be modelled as a line sink of

momentum de�ned by LMADT in a 2D shallow water model. To explain how this can be

achieved two typical scenarios for the deployment of a tidal fence are discussed. The work

e�ectively builds on the use of LMADT in 1D shallow water models, considered previously

by Draper [2008] and Polagye et al. [2008].

4.5.2.1 Simple Scenario

The simplest scenario for the deployment of a tidal fence is represented in Figure 4.1 (a),

which depicts a fence of devices that extends completely across a narrow channel. In this

situation one would expect that a time varying tidal stream con�ned to the channel will

pass through the fence, separate around the perimeter of any devices, and then mix to

reform a mean velocity pro�le, similar in shape to that upstream, over some mixing region

of length lv (the mixing region is denoted by the shaded region in Figure 4.1(a)). Limited

experimental evidence that is available for porous discs suggest that the length of this

mixing region may be roughly of the order of 20 tidal device diameters (Myers and Bahaj

[2010]), or perhaps 200 - 300 m for a 10-15 m diameter axial �ow turbine. However further

investigation is needed into the e�ects of ambient turbulence, device turbulence, device
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Figure 4.1: Plan view of a fence of tidal turbines in (a) Simple Scenario: a con�ned
channel and (b) Unbounded Scenario: a general 2D �ow. The upstream velocity is u,
having components u and v, normal and tangential to the turbine fence, respectively.
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blockage ratio and device shape.

LMADT can be used to de�ne the energy and momentum sink within the shaded

region at each point along the fence. For this to be appropriate a number of assumptions

are required, including: (1) periodicity in the placement of the devices within the fence;

(2) quasi-steady �ow over the length lv (i.e. the thrust of the turbines must dominate

bed friction and inertia forces locally), and (3) slowly varying device blockage ratio, device

porosity, channel depth, and depth-averaged velocity, along the fence relative to the center-

to-center spacing between devices b. Provided these assumptions are valid the perturbation

in depth and velocity across the region lv, at a given point along the fence, will be similar

to that between Stations 1-5 in Figure 2.6 (Chapter 2) and is therefore a known function

of the local upstream Froude number, device blockage ratio and wake velocity coe�cient,

at each point along the fence.

From the perspective of numerical modelling, since lv will often be much smaller than

the mesh discretisation in a 2D depth-averaged model (of the order of kilometers, and

perhaps larger for a high order code), introducing the perturbation in depth and velocity

implied by LMADT as a line discontinuity o�ers a useful approach to account for a tidal

fence in a 2D depth-averaged model. No numerical or experimental evidence is presented in

this thesis to justify this approach, but it is noted that a similar approach has been adopted

for a line of di�users, each with diameter smaller than the water depth, discharging into

shallow water (see Lee and Jirka [1980], Lee and Greenberg [1984]). In that situation

satisfactory results were achieved in treating the di�users as a line source of momentum in

a 2D depth-averaged framework.

4.5.2.2 Unbounded Scenario

Figure 4.1(b) now illustrates a more complicated scenario in which the fence of turbines is

deployed in a laterally unbounded 2D �ow. In this situation it is suggested that the �ow

�eld about the fence can be split into two �elds: (1) a near �eld extending over the distance

lv and (2) a far �eld extending over a distance lh, which will be dependent on the extent of

the tidal fence and so will generally be much larger than lv. Within the near �eld the �ow

structure should be similar to that in Figure 4.1 (a), at least towards the center of the fence.

In the far �eld region behind the fence the extraction of momentum by the tidal devices
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will lead to a depth-averaged wake with velocity lower than that in the surrounding tidal

stream. Generally actuator disc theory cannot be used to describe the energy extraction

of the entire fence over this far �eld length scale because the upstream �ow may not be

uniform, there might be substantial bed roughness and changes in bathymetry, or the length

scale may be too large to validate the assumption of steady �ow. However, provided the

assumptions presented in Section 4.5.2.1 are valid over the near �eld LMADT can be used

to de�ne the perturbation in depth and velocity at the fence. This amounts again to the

assumption that the change in depth and velocity across the fence is a function of the local

Froude number, device blockage ratio and wake velocity coe�cient at each point along the

fence. By analogy to experiments on a line of di�users and similar �ow structures in shallow

�ows (Lee and Jirka [1980], Lee and Greenberg [1984] and Jirka [2002]), the mixing of the

far �eld in the wake of a fence will result from shear generated turbulence, and will be

dependent on the bed roughness, bathymetry and, as mentioned above, the length of the

fence. These parameters will typically vary between di�erent locations and it is expected

they can be accounted for reasonably well in the depth-averaged numerical model, subject

to the limitations of 2D models discussed in Chapter 3.

4.5.2.3 Numerical Implementation of a Line Sink of Momentum

The introduction of a line sink of momentum into the DG method (and any piecewise

constant FV method more generally) can be achieved with a modi�cation to the numeri-

cal �ux passing through a fence. For example, consider Figure 4.2(a) which displays the

interface between two elements A and B that border a fence of tidal devices. With respect

to element A, the values hL, uL, hR and uR represent the depth and normal component

of velocity just inside and just outside the element, respectively, at a computational point

along the element edge. If the turbine acts as a line sink of momentum the �ux out of

element A, F (h∗L, u
∗
L, v

∗
L), and the �ux into element B, F (h∗R, u

∗
R, v

∗
R), need to be adjusted

to represent the loss of momentum, where the interface values h∗L, u
∗
L, h

∗
R and u∗R represent

the solution to a local Riemann problem (see Figure 4.2(b)).
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Figure 4.2: (a) Location of �ux calculation for two elements either side of a line sink
of momentum. (b) Linearised characteristic lines along a coordinate normal to the line
discontinuity in sub-critical tidal �ow. The solid lines are rarefaction waves and the dashed
line represents the contact discontinuity for the tangential velocity.

Provided the �ow is assumed to remain sub-critical at the location of the turbine fence,

the interface values should satisfy the conditions

I+ = uL + 2cL = u∗L + 2c∗L, (4.28)

I− = uR − 2cR = u∗R − 2c∗R, (4.29)

and,

(c∗L)2u∗L = (c∗R)2u∗R, (4.30)

where c∗(L,R) =
√
gh∗(L,R). Equations 4.28 and 4.29 are based on zero order extrapolation

of Riemann invariants along left and right going characteristic lines, and Equation 4.30

ensures conservation of mass across the momentum discontinuity. To uniquely de�ne the

interface values a fourth condition needs to be de�ned to describe the momentum sink.

Any number of choices is possible. Perhaps the most convenient approach is to specify the

change in depth across the discontinuity. Adopting LMADT the sink is then de�ned by

(c.f. Equation 2.52, Chapter 2)

1

2

(
∆h∗

h∗

)3

− 3

2

(
∆h∗

h∗

)2

+

(
1− Fr2 +

CTBFr
2

2

)
∆h∗

h∗
− CTBFr

2

2
= 0, (4.31)

where the blockage ratio B, Froude number Fr and depth h∗ are de�ned relative to the

depth and velocity upstream of the line sink, ∆h∗ is the absolute di�erence in the interface
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depth |h∗R − h∗L|, and the thrust coe�cient CT is obtained from the speci�cation of a wake

velocity parameter α4. In practice, because Equation 4.31 requires the solution of a cubic it

is more e�cient in a numerical code to work with a polynomial approximation to Equation

4.31 of the form: ∆h∗/h∗ = p (Fr,B, α4). A function describing the downstream celerity

in terms of the upstream celerity is then

g(z) = z
√

1− p(Fr,B, α4), where

 z = c∗L, F r = (I+ − 2z) /z, B = Ag/z2; for uL > 0,

z = c∗R, F r = − (I− + 2z) /z, B = Ag/z2; for uL < 0,

(4.32)

with the condition on uL de�ning the upstream values.

Combining Equations 4.28-4.30 with Equation 4.32 leads to the non-linear equation

G(z) :=


I+ − 2z −

(
g(z)2

g(z)2−z2

)
[I+ − I− − 2 (z + g(z))] , z = c∗L; for uL > 0,

I+ − 2g(z)−
(

z2

z2−g(z)2

)
[I+ − I− − 2 (g(z) + z)] , z = c∗R; for uL < 0,

(4.33)

which must satisfy the condition G(z) = 0.

In this thesis Equation 4.33 is solved numerically using the Newton-Raphson method.

The function G(z) is generally smooth and monotonic in the region of the root and so

convergence, from an initial guess of z = max(c∗L, c
∗
R), is usually rapid (Figure 4.3).
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(a) hL = 10, hR = 9, uL = 1 and uR = 1.11.
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(b) hL = 9, hR = 10, uL = −1.11 and uR = 1.

Figure 4.3: Convergence to the required root for G(z). The solid line represents G(z), the
dashed line represents g(z), and the circle is the location of the root.

No direct adjustment is required for the tangential velocity components in the �ux

either side of the fence because it is assumed that the devices will not exert a force in

the tangential direction. This is consistent with the classical actuator disc analysis. The
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tangential velocity used to compute the numerical �ux is determined relative to the contact

wave speed as de�ned in the HLLC method (see Toro et al. [1994] and Appendix B.1.4.1).

A direct result of this assumption is that, in the horizontal plane, a depth-averaged tidal

stream approaching oblique to a fence will refract through the fence.

It should also be noted that the assumption that devices do not excerpt a force in the

direction parallel to the fence introduces a distinction between the line sink of momentum

introduced in Section 4.5.2.3 and the conventional method of an additional bed roughness

noted in Section 4.5.1. More speci�cally, the additional bed roughness will introduce a

shear stress in the direction of the local velocity vector, and therefore does not account for

any directionality in the resistance of the fence. To overcome this the added bed roughness

could alternatively be modi�ed to act on the component of the velocity normal to the fence

(i.e. τ = ρktu |u| , where u is the component normal to the fence), but it would then have

to modelled as a separate sink term in the momentum equations as opposed to a simple

augmentation of the natural bed friction.

4.5.2.4 Edge of the Fence

For a tidal fence in an unbounded �ow (i.e. Figure 4.1) the thrust applied by the devices

will drop from a �nite value to zero at the edge of the fence. This represents an unbounded

shear stress on the �uid at the edge of the fence and will introduce singular behaviour in

the velocity �eld similar to that discussed by Sorensen et al. [1998] and van Kuik [2003]

concerning the numerical simulation of an actuator disc. This behaviour presents a problem

numerically because it prohibits numerical convergence. To circumvent this problem a

smoothing function was applied to remove the singularity at the edges of the fence. This

smoothing function was implemented by replacing Equation 4.32 with

g(z) = z
√

1− Φp(Fr,B, α4), for Φ =

 −2
(
|x′|
δLf

)3

+ 3
(
|x′|
δLf

)2

, |x′| < δLf

1 , |x′| ≥ δLf

,

(4.34)

where x′ is the shortest distance to the edge of the fence, Lf is the length of the fence and

δ is a constant that de�nes the smoothing. For arbitrarily small but �nite δ, a smooth

solution and numerical convergence can be achieved. In this thesis a value of δ = 1/40 is

generally used. It is anticipated that in future work a value of δ may be informed from more
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detailed modelling of tidal devices orientated within a fence, whereby a physical reduction

in depth change is expected towards the edge of the fence.

4.5.3 Example Calculations

4.5.3.1 Steady Flow Through a Tidal Fence: Simple Scenario

Two examples were used to test the algorithm in Section 4.5.2. The �rst considered the

simple scenario of a fence in a con�ned channel shown in Figure 4.4(a), with the location of

a turbine fence illustrated by the vertical line down the middle of the domain. The extent

of the channel was 400 m×1000 m and the depth was set to 10 m. A constant volume �ow

rate was used at the upstream (left) boundary (increasing gradually from 0 to full �ow rate

over 2000 s) and the downstream (right) boundary depth was held �xed at 10 m. The bed

friction coe�cient was set to Cd = 5× 10−3.

To test the algorithm over di�erent parameter values several �ow rates were simulated,

giving a range of Froude numbers. The momentum sink of the fence was de�ned by spec-

ifying the depth change across the fence using a polynomial approximation (both a linear

approximation and a 10th order polynomial approximation without odd terms) to the depth

change implied by LMADT (Equation 4.31) for a speci�ed �xed blockage ratio, wake in-

duction factor α4, and the simulated local Froude number immediately upstream of the

fence at each computational point.

Figure 4.4 (b) illustrates the depth discontinuity at steady state. A comparison of this

simulated depth change, to that intended for the momentum sink based on the simulated

Froude number, is shown in Figure 4.4 (c). It is evident that in each case the numerical

algorithm simulates the speci�ed depth change satisfactorily at steady state. Figure 4.4

(d) illustrates that this is also the case prior to steady state.

4.5.3.2 Steady Flow Through a Tidal Fence: Unbounded Scenario

The second example considers a tidal fence that does not extend over the full width of

the channel. The example numerical domain is shown in Figure 4.5 (a) with the turbine

fence located symmetrically around the horizontal centerline of the channel and extending

one quarter of the channel width. The extent of the channel was 4 km×10 km and the

depth was set to 1.0 m with a bed friction coe�cient of Cd = 5 × 10−4. Again a constant
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Figure 4.4: (a) Numerical domain with a central line of turbines modelled as a line sink
of momentum. (b) Example solution for depth at steady state: the discontinuity in depth
is evident across the turbine fence. (c) Linear and 10th order polynomial approximations
to the depth change, as a function of Froude number, implied from LMADT for various
blockage ratios and wake velocity coe�cients (full LMADT solution shown in red). The
circles represent simulated depth changes across the discontinuity in the numerical model
at steady state. (d) Variation of depth change with Froude number across the line sink at
various times prior to steady state. Circles represent simulated depth change and solid line
a 10th order polynomial used to de�ne the line sink.
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Figure 4.5: (a) Numerical mesh used for the unbounded turbine fence. (b) Example stream-
lines through a turbine fence with devices having blockage B = 0.6 and α4 = 1/3. The
channel has Cd = 5E− 4, h = 10 m and a turbine blockage ratio within the fence of 0.6.

volume �ow rate was used at the upstream (left) boundary (increasing gradually from 0

to full �ow rate over 10000 s) with the �ow rate set to give an upstream Froude number

of approximately 0.15. The downstream (right) boundary depth was held �xed at 1.0 m.

Devices within the turbine fence were characterised by α4 = 1/3 and a blockage ratio of 0.6,

and the depth change across the fence, as a function of the simulated Froude number, was

speci�ed using a 10th order polynomial approximation to LMADT. A value of δ = 1/40

was used to smooth the singularity at the edges of the fence (see Equation 4.34).

The e�ect of the momentum sink on the local �ow at steady state is illustrated in Figure

4.5 (b), which presents streamlines through the fence when elements of order n = 5 are used.

In this particular example the streamlines are steady and contract smoothly downstream

of the device because the bed friction is su�ciently high to avoid wake instability. At

higher blockage or lower bed friction an unsteady wake results (not shown). Figures 4.6 (a)

and (b) illustrate the depth change across the fence, with the latter �gure comparing the

simulated depth change to that intended for the momentum sink based on the simulated

Froude number along the fence. The agreement is satisfactory. The power extracted by the

fence and the �ow rate through the fence are shown in Figures 4.6 (c) and (d) for various

polynomial order n. Convergence under n re�nement is evident.

It is interesting to note that the �ow �eld in Figure 4.5 looks very similar to that
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assumed for an actuator disc in a constant volume �ow �eld in Chapter 2, where the disc

represents the entire fence. It is therefore interesting to compare the power extracted by

the entire fence in the channel to the power predicted by that theory. Taking the blockage

ratio to be B = 0.25, which is the ratio of fence to channel width, the theory in Chapter 2

predicts a maximum power coe�cient of 1.05 at which point the average velocity through

the disc is 0.53 of that in the upstream �ow. The comparable values for the simulated fence

are 1.3 and 0.64 (where the velocity through the fence is the value immediately upstream

of the fence, averaged along the fence). The simulated power extracted by the fence is

therefore higher than the maximum predicted by the theory. The reason for this additional

power is due to bed friction, which helps to retard the bypassing of �uid around the fence

and thereby allows for a greater extraction of power. This conclusion was con�rmed by

reducing the bed friction to Cd = 1×10−5 and repeating the simulation for device blockage

ratios of B = 0.5, 0.6 and 0.7. The total power extracted by the fence as a function of

the �ow rate through the fence for these cases is plotted in Figure 4.7 when t = 80000 s.

At this point in time the extracted power was still oscillating around the values shown in

Figure 4.7, but only with a variation of ±0.05×104 W. The simulated extracted power is

in reasonable agreement with theory.

4.6 Open Boundary Conditions

Arti�cial boundaries that separate a numerical coastal domain from a connecting body of

water are commonly referred to as open boundaries. In coastal hydrodynamic models it

is common to specify �xed time series elevations, obtained either from a larger numerical

model or observations, along these open boundaries (Blayo and Debreu [2005]). However,

as pointed out by Garrett and Greenberg [1977], if a substantial disturbance occurs within

the coastal region, due to the operation of tidal devices for example, then the elevations

and �uxes across the open boundary will alter from those in the undisturbed state. In that

case an allowance needs to be made at the open boundary to accommodate these changes.

If no correction is made, gross errors may occur when the disturbance excites a resonant

mode within the coastal domain (Rainey [2009]).

Provided the disturbances at the edge of an open boundary are of small amplitude
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Figure 4.6: (a) 3D view of the depth in the channel. (b) Simulated depth change a long
the fence. (c) Power extracted by the fence for various polynomial orders n. (d) Total �ow
rate through the fence for various polynomial orders n.
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Figure 4.7: (a) Total extracted power by the fence in Figure 4.5 (a), for three di�erent
device blockage ratios when the bed friction was set to Cd = 1 × 10−5. The red circle
indicates the predicted power extraction based on LMADT, taking the entire fence to be
an actuator disc in a constant volume �ow.
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relative to �uid depth (i.e. linear) it is useful to consider the solution at the open boundary

as the sum of two parts: (i) an elevation and velocity time series that represents the

natural conditions at the boundary of the coastal domain, and (ii) deviations from the

natural boundary conditions that result when arti�cial changes are made within the coastal

domain. In practice Part 2 is neglected if the numerical model is only used to simulate

natural tides or when it is argued that the open boundary is located in very deep water

(Figure 4.8(a)) compared with the location of the disturbance. This second argument

follows from the theory of long wave propagation over a large abrupt depth change, where

propagating scattered waves from a coastal disturbance into deeper water will have very

low transmission coe�cient across the step, and so have minimal e�ect on the natural

elevations and �uxes at the open boundary (see Mei [1989] and the discussion by Arbic and

Garrett [2009]).

In the absence of a signi�cant continental shelf, as shown in Figure 4.8(b), or for cross-

shelf boundaries, a more general approach is required to account for both Parts 1 and 2.

Provided that the boundary separates the numerical domain from a semi-in�nite connecting

ocean of constant depth then an appropriate boundary treatment is one that will absorb,

or radiate, the Part 2 component (Chapman [1985], Martinsen and Engedahl [1987] and

Rainey [2009]). Numerical implementation of this radiation condition is discussed in Section

4.6.0.4, and a clamped boundary condition, suitable when Part 2 is negligible, is discussed

in Section 4.6.0.3.

For more general situations, where the connecting ocean is neither constant in depth or

semi-in�nite, the speci�cation of numerical boundary conditions can become ambiguous.

For example, if the connecting ocean is not constant in depth then scattered waves due

to Part 2 might re�ect from depth discontinuities external to the numerical domain and

re-enter the shallow coastal region. If the connecting ocean is not semi-�nite (as is indeed

the case in the real world) disturbances due to Part 2 may excite the normal modes of the

�nite ocean (see Garrett and Greenberg [1977] for further discussion). In either of these

two situations a larger numerical model would be required.
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Figure 4.8: The open boundary for two hypothetical coastal regions. (a) Open boundary
located in the deep ocean bounding a shallow shelf. (b) Open boundary located adjacent
to an ocean of moderate and constant depth.

4.6.0.3 Clamped Boundaries

Boundary conditions in the DG formulation enter weakly through the evaluation of the

numerical �ux. At an open boundary speci�cation is required of the depth and velocity

components exterior to the numerical domain (see Appendix B.1.5). These exterior values

will be referred to as Ub = (hb, ubhb, vbhb)
T .

For a clamped boundary consider, for example, a prescribed time series of depth h(s, t),

where the open boundary is de�ned along a positively orientated (anti-clockwise) curve

s and the �ow is sub-critical. At a discrete point s(b) along s, the velocity normal to

the boundary can be calculated from the numerical solution inside the domain and the

assumption of either mass conservation (see, for example Aizinger and Dawson [2002]), or,

the conservation of the Riemann invariant along the right going characteristic line normal

to the boundary (see, for example Liang and Borthwick [2009] and Figure 4.9). Pursuing

the second of these options the external boundary condition at a particular computational

time step ti, becomes

hb = h(s(b), ti) and ub = uin + 2
(√

ghin −
√
ghb

)
. (4.35)

This will ensure that the computed depth at the boundary is clamped to the prescribed

time series. In a similar manner the �ow rate, velocity or another useful quantity, could be

clamped at the boundary.
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Figure 4.9: 1D Riemann problem in the direction x, directed outward normal to the com-
putational boundary. The subscript in refers to the solution within the boundary, and b
refers to the speci�ed values external to the boundary.

4.6.0.4 Radiation Boundaries

A substantial body of literature has been established on the use of radiation, or open,

boundary conditions for hyperbolic and parabolic systems. Two particular numerical ap-

proaches have seen signi�cant development. The �rst includes characteristic-based bound-

ary conditions, shown by Blayo and Debreu [2005] to be consistent with, for example, radi-

ation methods based on the Somerfeld condition, characteristic invariants and the Flather

[1976] condition (also see Chapman [1985] and the references cited therein). The second

approach consists of absorbing layers such as Perfectly Matched Layers (PML) and Flow

Relaxation Schemes (FRS) (see Martinsen and Engedahl [1987], Lavelle and Thacker [2008]

and the references cited therein). In the present work a characteristics-based approach has

been adopted and will be discussed here.

Ignoring source terms in the vicinity of the boundary, a set of Riemann invariants I± =

u±2
√
gh exist along the projected characteristic lines normal to the boundary (Figure 4.9).

If advective terms are also ignored, as is appropriate in deep water or when the disturbances

are of small amplitude, these invariants further reduce to u±(h−ho)
√
g/ho, where ho is the

mean water depth. Thus for a positively orientated boundary I+ = uin + (hin − ho)
√
g/ho

then de�nes the information leaving the numerical domain and I− = ub− (hb− ho)
√
g/ho,

the information entering. An important observation, and the basis for the accuracy of

the characteristics approach used here, is that linear waves propagating out of the domain

normal to the boundary will not contribute in any way to I−. This is simply because the

velocity of a linear wave traveling normal to the boundary is given by ub = (hb−ho)
√
g/ho

so that its contribution to I− once it leaves the computational domain is zero. A practical

approach to the boundary condition is therefore to specify ub and hb using Part 1 of the
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solution at the boundary only, because any superimposed normal radiating waves will

not e�ect the computation of I− (in practice the Part 1 values could be obtained by (a)

�rst running a simulation without any disturbance using a boundary condition clamped

to known elevations so as to obtain the Part 1 �uxes, or (b) as may be appropriate in

very deep water, by simply setting hb equal to the observed elevation and ub = vb = 0).

Following changes to the internal domain additional scattered waves will then exit through

the boundary and, crucially, if these waves are propagating close to normal to the boundary,

they will radiate e�ciently.

For small amplitude disturbances this characteristic boundary condition is consistent

with the well known Flather condition (Flather [1976]), which has been shown to produce

satisfactory results for a wide variety of coastal problems in practice (see, for example,

Nycander and Doos [2003]).

4.6.1 Example Calculations

4.6.1.1 Radiation in 1D

The �rst test problem undertaken was similar to that adopted by Modave et al. [2009] and

simulates the radiation of an initial Gaussian mound having the form

ξ(x, y, t) = exp[−(x+ L/4)2/(3h)2] and u(x, y, 0) = ξ(x, y, t)
√
g/ho,

in otherwise still water of depth ho = 100 m, de�ned in a domain (x, y) ∈ [−L, 0]×[0, L/10],

where L = 1000 km. The left boundary of the domain (x = −L) was set as a re�ective

boundary and at the right boundary of the domain (x = 0) ub = hb = 0. A structured

triangular mesh with hm = L/20 was adopted. The purpose of the test was to determine the

e�ectiveness of the characteristic boundary condition to radiate waves out of the domain.

The energy density within the domain at any time is

E =

ˆ B/2

−B/2

ˆ 0

−L/2

(
1

2
gξ2 +

1

2
hu2

)
dxdy. (4.36)

An exact solution will have zero energy in the wake of the radiated wave. It is clear in Figure

4.10 that the boundary condition works satisfactorily. The L2 norm of the energy E at
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Figure 4.10: Snapshots of a radiating wave computed using the characteristic boundary
condition (n = 3). (a)t = 0.44tf , (b) t = 0.53tf , (c) t = 0.61tf , (d) t = 0.70tf .

tf = (L/2)/
√
gh is 1.85×10−2, 1.98×10−5, and 2.08×10−8, for n = 1, 2 and 3, respectively.

This indicates spectral convergence towards the true solution with polynomial re�nement.

4.6.1.2 Harbour Resonance

This test problem considers the response of a rectangular bay of constant depth to an

incoming wave ξi = (A/2)cos(kx + ωt), where k = ω/
√
gho is the wave number and ho is

the depth (see Figure 4.11(a) for geometry). An approximate analytical solution to this

problem, valid for small amplitude linear waves, has been obtained by several authors (see,

for example, Miles [1971], Mei [1989]). Using the method of matched asymptotic expansions

Mei [1989] gives

ξ = Re
{
AΛ1cos(k(x+ L))e−jωt

}
for x < 0, (4.37)

ξ = Re
{(
Acos(kx) + AΛ2H

(1)
0 (k

√
x2 + y2)

)
e−jωt

}
for x > 0, (4.38)

where H
(1)
0 is a zero order Hankel function of the �rst kind, and

Λ1 =
1

cos(kL) + (2ka/π)sin(kL)ln(2γka/πe)− jkasin(kL)
, (4.39)

Λ2 = Λ1jkasin(kL). (4.40)

The second term in Equation 4.38 represents a scattered wave radiating from the mouth of

the bay with an amplitude that is a function of the incoming wave frequency. To accurately

simulate the bay response over a range of frequencies this radiated wave must be allowed

to propagate through the open boundary. To model the problem using the DG method the

mesh depicted in Figure 4.11(b) was used. The bay had geometry a/L = 0.1, the water

depth was set to ho =10 m and A/ho = 2.5 × 10−3 to ensure small amplitude (linear)
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Figure 4.11: (a) Geometry for the harbour oscillation validation test and (b) Example
numerical mesh.
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Figure 4.12: Elevation time series at (a) the end of the bay (−L, 0), and (b) at the open
boundary (R, 0), when kL = 0.5. Approximate analytical solution: solid line; numerical
solution: circles. The solution (hb, ub) that would exist without the harbour present is
shown as the dashed line in �gure (b).

behavior. The radius of the curved outer boundary of the numerical mesh R, was normally

set to 3L and the depth and velocity normal to the boundary were set to

hb = ho + Re
{
Acos(k(x+ L))e−jωt

}
, ub = Re

{
jgk

ω
Asin(k(x+ L))e−jωt

}
, vb = 0,

(4.41)

to de�ne the elevation and velocity that would exist at the boundary in absence of the

rectangular bay. Consequently this simulation tests the ability of the characteristic bound-

ary condition to radiate scattered waves associated with the existence of the bay. The

remaining coastal boundaries were treated as slip re�ective walls.

Figures 4.12 (a) and (b) compare the free surface elevation for kL = 0.5 at two locations

within the domain: the end of the bay (−L, 0) and the open boundary (0, R). Agreement

between the numerical model and the approximate analytical solution is satisfactory in
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Figure 4.13: (a) Response curve for the harbour oscillation test problem. Solid line: approx-
imate analytical solution; Circles: numerical solution. (b) Numerical convergence under n
re�nement for kL = 1.4. (c) Bay response as a function of the location of the open bound-
ary condition. Dashed line: approximate analytical solution; Circles Numerical solution.

both examples. As required, the elevation at the open boundary di�ers from the externally

prescribed values to account for the radiation of the scattered wave from the harbour mouth.

Figure 4.13 compares the numerical results with the analytical solution for various length

of bay. The simulations and the analytical solution agree well over most of the response

curve. Close to the �rst resonant mode there is small disagreement, even after re�nement

and convergence of the numerical solution (Figure 4.13(b)). However exact agreement is

not expected given that the approximate analytical solution assumes ka� 1.

The results presented in Figure 4.13 (a) should, of course, be independent of the place-

ment of the open boundary. Figure 4.13 (c) presents the bay response when the open

boundary is located at several di�erent distances from the mouth of the bay. There is vari-

ation in the bay response, especially for the bay closest to resonance (kL = 1.4). Far from

resonance, the convergence properties are better (i.e. kL = 0.8, 3). The channels, bays and

headlands modelled numerically in the remaining chapters constitute systems that are far

from resonance and so the present boundary condition will be satisfactory.

4.7 Conclusions

The solution of the SWEs using the DG method has been outlined and a numerical solver

developed to simulate tidal hydrodynamics in coastal basins. Extensive validation of the

numerical solver has been undertaken for linear, non-linear and viscous test problems, with

the results presented in Appendix B. The validation tests highlight the excellent properties
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of the DG method. The importance of open boundary conditions in numerical simulations

of tidal energy extraction have been discussed and a characteristic based open boundary

condition has been shown to give satisfactory results for 1D and 2D test problems.

A new method to introduce fences of tidal devices into a depth-averaged numerical

model has been implemented numerically as a line sink of momentum. An appealing aspect

of this new method is that the properties of the tidal devices can be related, by LMADT,

to the actual momentum sink imparted in the coastal basin. It is however acknowledged

that experimental or numerical veri�cation is required for this new approach.
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Chapter 5

Tidal Channel

5.1 Introduction

This chapter begins with a summary of the tidal channels in Appendix A and a review of

the existing literature concerning the analysis of energy extraction from a tidal channel.

Numerical simulations are then presented for an idealised tidal channel with energy extrac-

tion introduced, as discussed in Chapter 4, using a line sink of momentum to represent a

fence of devices modelled using actuator disc theory. The simulation results show that the

maximum extracted power is achieved for a range of device blockage ratio and wake veloc-

ity coe�cient, however the available power is maximised if the devices have large blockage

ratio and a high wake velocity coe�cient (i.e. large, closely packed turbines slowing a large

cross-section of tidal stream). Simulations are also presented for variable channel geometry

and for multiply connected channels, with the extracted power interpreted in the latter

case using an electrical analogy. Overall, the maximum simulated energy extraction is in

good agreement with a theoretical model due to Garrett and Cummins [2005] for isolated

channels over the full range of channel dimensions. For multiply connected channels the

model of Garrett and Cummins [2005] is less appropriate and an alternative model is pre-

sented which is more applicable when the total �ow rate through the multiply connected

channels is largely una�ected by the introduction of a tidal fence.
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5.2 Tidal Channel Sites

A signi�cant number of the coastal sites surveyed in Appendix A resemble a tidal channel

connecting two bodies of water which oscillate with di�erent phase or amplitude. These

channels are generally narrow (Figure 5.1 (a)), vary over an order of magnitude in length

and have a natural Froude number in the range 0.1-0.3 (Figure 5.1 (b)). To summarise the

basic dynamics within each channel the �ow through the channel can be considered one

dimensional so that the shallow water momentum equation reduces to

−g ∂ξ
∂x

=
∂u

∂t
+ u

∂u

∂x
+
Cd |u|u

h
, (5.1)

where x is the along channel coordinate, u is cross-sectional average channel velocity, ξ is the

free surface height above mean water level and Cd is the depth-averaged drag coe�cient.

Consequently, if the velocity within the channel has a characteristic maximum U, and

varies from this maximum to zero over the length of the channel L and over a tidal period

proportional to ω−1, simple scale analysis can be used to determine the importance of the

terms on the right hand side of Equation 5.1,

−g ∂ξ
∂x

= Uω
∂u′

∂t′
+
U2

L
u′
∂u′

∂x′
+
U2

hd

Cd |u′|u′

h′
, (5.2)

A B C (5.3)

where hd is the mean depth in the channel and the terms involving primes are of order one.

The three terms on the right hand side of Equation 5.2 balance the surface slope on the

left hand side, which drives �ow through the channel. The ratio of the relevant right hand

terms is given by

A

B
=

1

Kc

=
ωL

U
, and

C

B
= C ′d =

CdL

ho
(5.4)

The �rst of these two ratios explains the importance of acceleration relative to advection

in balancing the seabed slope within a channel of length L and depth ho and is equal to the

inverse of the Keulegan Carpenter number Kc. The second ratio explains the importance of

seabed friction relative to advection and describes an e�ective bottom drag C ′d, or stability

number (Jirka [2002], Signell and Geyer [1991]). Figure 5.1 (c) plots these dimensionless

numbers for each of the channels surveyed in Appendix A. There is a good scattering over
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Figure 5.1: Summary of class a tidal sites in Appendix A. (a) Aspect ratio and geometry.
(b) Froude number as a function of channel length. (c) Key dimensionless numbers. The
solid and hollow markers assume Cd = 0.001 and 0.01, respectively. North American sites
(triangles), UK sites (circles). Where both Spring and Neap tides are listed in Appendix
A, Spring tides are used.

both ratios, indicating that tidal energy extraction may occur at sites with moderate ac-

celeration and drag (1/Kc & 0.5, C ′d & 0.5), signi�cant drag forces (1/Kc . 0.5, C ′d & 0.5),

and advection dominated �ow (1/Kc . 0.5, C ′d . 0.5). The last two of these regimes de-

scribe quasi-steady �ows, in which acceleration is unimportant and the time varying head

di�erence across the tidal strait is in phase with the velocity.

5.3 Background

5.3.1 Early Analysis and Resource Assessments

Early analysis of energy extraction from a channel between two large bodies of water focused

exclusively on quasi-steady �ow (see Bryden et al. [2005], Bryden and Couch [2006, 2007]

and Bryden et al. [2007]). In that work the one dimensional momentum and continuity

equations were used, in the quasi-steady limit, to de�ne the steady �ow rate Q within a

uniform rectangular channel. The e�ects of energy extraction were considered as a simple

bed roughness, modelled as a fraction of the local kinetic �ux over an increment of channel

length, and the inlet and outlet of the channel were assumed to conserve energy and depth,

respectively.

Figure 5.2 (a) illustrates an example solution for the depth and velocity along a channel

with energy extraction calculated by Bryden et al. [2005]. A visible result is that the extrac-

tion of energy leads to an increase in �speed� and kinetic energy across the extraction zone,

which is consistent with a reduction in speci�c energy in an open channel �ow (Chapter 2;
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Figure 5.2: (a) Depth and velocity in a steady channel when 10% of local kinetic energy is
extracted by a device. Channel dimensions given in Bryden et al. [2005]. (b) Reduction in
�ow rate as a function of extracted power. Solid-circle: channel displayed in sub�gure (a);
Solid-triangle: as in (a) but with 4 times the channel length and 15% larger bed roughness.
Solid-square: as in (a) but with one quarter the channel length and 40% smaller bed
roughness.

Young et al. [2001]). To investigate the e�ect of energy extraction on the natural velocity

within the channel Figure 5.2 (b) plots various levels of power extraction, normalised by

the raw kinetic �ux (raw implying �ux in the undisturbed channel) against the reduction

in average velocity within the channel. The variation in power extraction is achieved by

varying the amount of local kinetic �ux removed over the extraction zone. As noted by

Bryden et al. [2005] the velocity within the channel reduces below that of the undisturbed

state as energy extraction increases.

Based on these results Bryden et al. [2005] suggested that 10% of the raw undisturbed

kinetic �ux could be extracted �without causing undue modi�cation to the �ow character-

istics�. Black & Veatch Ltd [2005] assumed that up to 20% of the raw kinetic �ux could

be extracted from a number of di�erent coastal sites and used this estimate, or Signi�cant

Impact Factor (SIF), to calculate that the tidal resource potential of UK coastal waters is

2.1 ± 0.5 GW.

Although the development of a SIF was a novel attempt to account for the feedback

e�ect of tidal energy extraction on tidal streams, its use to estimate resource potential

has been criticized by many authors (see, for example MacKay [2007b] and Garrett and

Cummins [2005]). The main reason for this criticism is that there is no clear reason why

the raw kinetic �ux should provide any general indication of the maximum power that

can be extracted from a channel or, perhaps more importantly, the change in �ow rate
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that results from energy extraction. The �rst of these de�ciencies is discussed in the next

section and demonstrated with numerical simulations in Section 5.4, whilst the second can

be easily illustrated by considering two channels with slightly di�erent parameters to that

analysed by Bryden et al. [2005]. For example, using the model outlined in Bryden et al.

[2005], Figure 5.2 (b) plots (i) a channel that is four times shorter with 40% small Manning

bed roughness coe�cient , and (ii) a channel that is four time longer with 15% larger

Manning bed roughness coe�cient. Substantially di�erent changes in velocity result for an

extraction of power equal to 20% of the natural kinetic �ux. In particular, the long channel

experiences �ow reduction of 2% when extracting at the SIF, whereas the channel analysed

by Bryden et al. [2005] and the short channel experience 6% and 13%, �ow reductions.

5.3.2 Theoretical model due to Garrett and Cummins

An alternative theoretical model of energy extraction from a tidal channel has been devel-

oped by Garrett and Cummins [2005] (hereafter GC05). Unlike the quasi-steady analysis

discussed above, this model accounts for a time varying tidal stream and is applicable to a

channel of slowly varying cross-sectional area separating two large basins of water (Figure

5.3). To describe the �ow within the channel the 1D shallow water approximation to the

momentum equation is rewritten

∂u

∂t
+ u

∂u

∂x
+ g

∂ξ

∂x
= −FGC , (5.5)

where FGC is now a force, per unit mass, associated with bed friction and tidal devices.

To form the model, GC05 assume (i) the channel length is short, compared to the tidal

wavelength, so that the �ow rate Q is constant with position along channel; (ii) the Froude

number and tidal range are small so that, to the leading order, depth and velocity become

functions of position only; (iii) the tidal elevations in the adjoining basins are unaltered

by changes in the channel �ow which result when turbines are added, and (iv) the channel

length, or the cross-sectional area at exit, does not vary in time. Based on these assumptions

Equation 5.5 can be integrated along the channel length to give

c
dQ

dt
− gξo = −

ˆ L

0

FGCdx−
1

2
|ue|ue, (5.6)
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Figure 5.3: A channel connecting two basins with di�erent elevations. Taken from Garrett
and Cummins [2005].

where c =
´ L

0
A−1
c dx, Ac(x) is the channel cross sectional area, ξo(t) is the sea level di�erence

between the two adjoining basins (taken to be ξo = acos (ωt), where a is the amplitude of

the tide and ω is the frequency) and ue is the exit velocity at the downstream end of the

channel. The last term in Equation 5.6 arises from integration of the non-linear advection

term in Equation 5.5 and the assumption that the tidal �ow enters smoothly upstream and

exits as a jet into the ocean. This term is e�ectively the velocity head (multiplied by g) at

the channel exit.

Within the channel the drag due to natural bed friction is modelled as Cdu
2/h, where

Cd is the bed friction coe�cient, and the force applied by tidal devices is, in the standard

case, taken to be a function of the �ow rate squared, so that

ˆ L

0

FGCdx =

ˆ L

0

Cdu
2

h
dx+

ˆ L

0

Ftdx =

(ˆ L

0

Cd
h
dx+ δ1

)
|Q|Q, (5.7)

where Ft is the component of FGC due to tidal devices and δ1 is an arbitrary constant

related to the devices. In this sense the devices are considered as a �roughness�, distributed

arbitrarily over the tidal channel. The average power extracted over a tidal cycle is then

P = ρQ

ˆ L

0

Ftdx = ρδ1|Q|Q2, (5.8)

and Equation 5.6 can be written as

gacosωt = c
dQ

dt
+ (δ0 + δ1) |Q|Q, where δ0 =

ˆ L

0

Cd
hA2

c

dx+
1

2

(
1

(Ac)e

)2

. (5.9)

The form of Equation 5.9 is physically meaningful, indicating that the driving head is bal-

anced by a combination of acceleration and velocity head at the channel exit combined
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with natural and arti�cial drag. GC05 introduce the non-dimensional variables t = ω−1t′,

Q = ga (cω)−1Q′, δ0 = λ0(cω)2(ga)−1 and δ1 = λ1(cω)2(ga)−1, so that Equation 5.9 be-

comes

cost′ =
dQ′

dt′
+ (λ0 + λ1) |Q′|Q′. (5.10)

Conveniently λ0 in Equation 5.10 now represents the ratio of drag losses and velocity head

at exit to acceleration, normalised by the amplitude of the driving tide. The value of

this term therefore de�nes the dynamic balance in the channel. In particular for large λ0

acceleration is relatively small and the �ow is quasi-steady.

GC05 solve Equation 5.10 for all values of λ0 and determine the turbine drag parameter

λ1 that optimizes the non-dimensional extracted power. Qualitatively a maximum exists

because, for λ1 = 0 no turbine power is extracted, but for λ1 � 1 the �ow is choked

(Q′ → 0), and again no power is extracted. Returning to dimensional variables, a convenient

representation of the maximum average power available Pmax, is shown by GC05 to be

Pmax = γρgaQmax, (5.11)

where Qmax is the peak �ow rate over the tidal cycle in the undisturbed channel and γ is

a multiplier that depends on λ0, as shown in Figure 5.4(b). Equation 5.11 is a particularly

useful representation of the extracted power because Figure 5.4 (a) shows that the range

in γ is very small for most values of λ0. GC05 point out that choosing a value of γ = 0.22

provides a good approximation regardless of whether the channel is acceleration dominated

(λ0 → 0) or quasi-steady (λ0 � 0). However a more exact estimate can be obtained if

the phase lag between the driving tide and the dominant harmonic of the peak �ow rate is

known (Figure 5.4(b)).

An important conclusion is that the form of the maximum average power, given by

Equation 5.11, is not generally related in any simple way to the undisturbed kinetic �ux

in the channel, but rather the rate of work done by the driving tide. In fact GC05 note

the maximum average power only becomes a constant fraction of the natural kinetic �ux

if the velocity head at exit is much larger than natural drag losses and acceleration (i.e.

the channel is advection dominated). In this situation the natural driving amplitude is

proportional to the velocity squared at the exit of the channel, based on simple energy
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Figure 5.4: (a) Multiplier γ as a function of the non-dimensional natural drag λo (solid line).
Phase lag between the forcing tide and the channel �ow rate (dash line). Figure taken from
Garrett and Cummins [2005]. (b) Flow rate at the point of maximum power extraction,
normalised by undisturbed �ow rate, as a function of the non-dimensional natural drag λo.

arguments, and GC05 show that

Pmax = 0.38

(
1

2
ρ (Ac)e |ue|

3

)
,

or 0.38 times the undisturbed �ux at the end of the channel.

5.3.2.1 Including the Local Field in a Uniform Tidal Channel

The model of GC05 predicts the power that can be extracted from a channel as the drag

due to turbines λ1 is varied. Garrett and Cummins [2007] suggest that this drag can be

related to a fence (or fences) of tidal devices modelled using LMADT provided the channel

walls are parallel and the �ow is uniform and quasi-steady over the mixing length scale

associated with the devices within the fence. Based on these assumptions Garrett and

Cummins [2007] equate the thrust (per cross sectional area of channel) to that obtained for

N rows of actuator discs, having a blockage B and operating at wake velocity coe�cient

α4,

ˆ L

0

Ftdx = N
CTB

2
u2 = δ1Q |Q| , where (c.f. Equation 2.19) CT =

(1−Bα2)2

(1−Bα2/α4)2
−α2

4,

(5.12)
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and (c.f. Equation 2.23)

α2 = (1 + α4)
[
(1 +B) +

√
(1−B)2 +B(1− 1/α4)2

]−1

(5.13)

The power extracted is then compared directly with the power estimated from the theo-

retical model of GC05

P = ρQ

ˆ L

0

Ftdx = N
CTB

2
ρACu

3, (5.14)

The available power to the devices within the fence therefore follows from Equation 5.14

as,

P a = ηP = α2P . (5.15)

This last result importantly establishes a link between the available and extracted power

for tidal devices deployed within a tidal channel. It is surprising that Garrett and Cummins

[2007] only explored this expression for devices operating at maximum power coe�cient (i.e

α4 = 1/3) and when the power extracted from the channel is a maximum. Under these

conditions the available power is

P a = α2Pmax =
2

3(1 +B)
γρgaQmax. (5.16)

Devices that operate at maximum power coe�cient (i.e α4 = 1/3) are however not the most

e�cient (see Chapter 2). E�cient devices with large blockage and α4 can introduce the same

thrust as those at maximum power coe�cient (i.e. the same CTB/2) and from Equation

5.14 the same power extraction, but recover more available power. This is discussed further

in Section 5.4.1.3 and in Vennell [2010].

The application of LMADT assumed in Equation 5.14 requires that the Froude number

is small, so that the drag force associated with the fence is quadratic in the �ow rate.

However, for the more realistic pressure-volume constrained analysis in Chapter 2 the

thrust coe�cient was shown to vary with Froude number, and so the drag force associated

with tidal devices may not necessarily behave quadratically with the �ow rate in a real

tidal channel. This is also investigated further in Section 5.4.1.3.
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5.3.3 Numerical Resource Assessment

Several site-speci�c numerical simulations of tidal energy extraction have been documented

in the literature. Relevant to a tidal channel, Sutherland et al. [2007] studied energy ex-

traction from tidal straits east of Vancouver Island, Canada, using a 2D depth-averaged

model. In that study several scenarios are considered, including the extraction of energy

from Johnstone Strait which provides a useful cross validation to the model of GC05 dis-

cussed previously. Using a uniform bed roughness to simulate energy extraction within the

Strait, Sutherland et al. computed a maximum average power that agreed with Equation

5.11 to within 10%; the discrepancy being due to the slight increase in driving amplitude

across the Strait following the addition of added roughness. In two further scenarios, energy

extraction from multiply connected channels is investigated. Due to the ability of the �ow

to divert away from the channel with energy extraction, the simulated power was found to

be signi�cantly lower than predicted by the theory of GC05.

Idealised numerical modelling has also been undertaken by Bryden et al. [2007] and

Polagye and Malte [2011]. In the �rst of these studies �ow around an island is considered

using a 2D numerical model. The results show that �ow does indeed divert away from

the channel with energy extraction, although no general conclusions are given. Polagye

and Malte [2011] consider a range of 1D tidal channels including: serial constrictions,

multiply connected networks and branching networks. A detailed comparison is made with

the theoretical model of GC05 showing that generally the model is adequate for serial

constrictions, although there is sensitivity to the tidal amplitude across the constriction

with energy extraction. The model is again found to be less useful for multiply connected

channels.

5.4 Numerical Simulations

5.4.1 Idealised Channel

To explore the relevance of the theoretical model of GC05 described in Section 5.3.2, and

to investigate the available power for a turbine fence, numerical simulations have been

undertaken using the idealised channel geometry illustrated in Figure 5.5. In total 12 cases

are considered (see Table 5.1), covering the di�erent channel geometries in Appendix A and
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Case L [km] W [km] ho [m] Cd A [m] A/ho σ Fr ωL/U CdL/h

5-1 6 1.2 40 0.0025 0.7 0.01 52o 0.21 0.25 0.375

5-2 6 1.2 80 0.01 1.75 0.02 20o 0.15 0.2 0.8

5-3 6 1.2 25 0.0025 0.4 0.02 42o 0.13 0.4 0.6

5-4 6 1.2 25 0.01 1.1 0.04 15o 0.13 0.4 2.4

5-5 20 4 80 0.0025 1.5 0.02 68o 0.11 0.90 0.625

5-6 20 4 80 0.01 4 0.05 28o 0.13 0.75 2.5

5-7 20 4 35 0.0025 1.7 0.05 50o 0.10 0.95 1.4

5-8 20 4 35 0.01 2.5 0.07 21o 0.11 0.90 5.7

5-9 1 0.2 80 0.0025 0.5 0.01 34o 0.19 <0.1 <0.1

5-10 1 0.2 80 0.01 0.6 0.01 14o 0.16 <0.1 0.1

5-11 1 0.2 10 0.0025 0.15 0.02 15o 0.21 <0.1 0.2

5-12 1 0.2 10 0.01 0.3 0.03 8o 0.17 <0.1 1.0

Table 5.1: List of di�erent test cases undertaken for the idealised channel geometry. In all
cases Ri = W and σ is the phase lag of the �ow rate behind the tidal forcing. The last
three columns represent non-dimensional ratios in the channel prior to the installation of
turbines, where U is the maximum velocity in the tidal channel and Fr = U/

√
gho.

a similar range in the dimensionless ratios Kc and C
′
d. The di�erent cases are grouped into

intermediate (1-4), long (5-8) and short (9-12) channels, with each channel length allowing

for variations in depth and bed friction coe�cient.

In the numerical simulations the tide is introduced as a linear incident wave ξi =

(A/2)cos(ωt− kx) at the left open boundary, where A would be the amplitude of the tide

at x = 0 if the channel did not exist and non-linear e�ects were negligible, k = ω
√
gho is the

wave number, ho is the uniform mean depth, and ω is the frequency of the tide, taken to be

0.00014 rad/s to represent the principal M2 component. To implement the tide numerically

at the open boundary, the sum of the incident tidal wave and its re�ection, in the absence

of the channel, are speci�ed using a characteristic non-re�ecting boundary condition (i.e.

hb = ho + Acos (ωt) cos (kx), ub =
√
g/hohb and vb = 0). At the right open boundary

hb = ho and ub = vb = 0. Each simulation commenced from quiescent initial conditions,

with the amplitude of the incident wave ramped-up over two tidal periods according to

A(t) = A

(
−2

(
t

2T

)3

+ 3

(
t

2T

)2
)
, t < 2T, (5.17)

where T = 2π/ω is the tidal period. Generally 8 tidal periods were simulated, with steady

periodic �ow achieved typically after 3-4 tidal periods. Energy extraction was introduced

with a line sink of momentum de�ned along x = L/2, |y| ≤ W/2, representative of a fence

of tidal turbines extending completely across the channel. The amplitude of the incoming
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Figure 5.5: (a) Idealised geometry of a tidal channel. (b) Example numerical mesh. Ele-
ments of order n = 3 were used. Curved isoparametric elements were adopted along the
inlets of the channel and around the open boundaries (red lines). The open boundary is
located a distance of 4L from the opening of the channel and the P1, P2 and P3 are located
at (−4L, 0), (0, 0) and (L/2, 0), respectively.

tide was adjusted to ensure that the Froude number remained within the realistic range

observed in Figure 5.1 (b). Bed friction and the seabed elevation were kept uniform over

the domain. Coriolis acceleration was neglected (since most real channels are narrow).

Viscous terms were omitted, based on the arguments in Chapter 3.

5.4.1.1 Undisturbed Flow

The theoretical model of GC05 makes several assumptions about the natural �ow through

a tidal channel. To investigate these assumptions snapshots of the velocity component u,

together with a pro�le of depth along y = 0, are presented at the point of high tide in the

left basin in Figure 5.6 for cases 5-4,5,11 before devices are installed. These three cases are

representative of moderate acceleration/drag, drag dominated and advection dominated

tidal channels, respectively. In Figure 5.6 the velocity �elds for cases 5-4 and 5-5 are

similar, indicating smooth acceleration and deceleration of �uid into and out of the channel.

In contrast, the velocity �eld in case 5-11 resembles more of an ori�ce-type �ow with

a prominent velocity jet at the channel exit. This implies advection of the �ow at the

channel exit and an associated loss of �velocity head� to the channel, as accounted for in

the model of GC05. For all three cases the variation in velocity and depth throughout

the uniform section of channel is small, implying that the �ow rate along the channel is

constant to very good approximation, as suggested by GC05.

110



The elevation pro�les for the di�erent channels illustrate a reduction in elevation over

the channel length, with the greatest slope evident for case 5-4, which has the largest

frictional drag coe�cient. For case 5-11 there is a noticeable change in depth at the inlet

and outlet of the channel. This change is dependent on the channel geometry and is

consistent with a head drop of the order of (∆ |u|)2 /2g over the contraction and expansion

in channel cross-section at the ends of the channel, where ∆|u| is the di�erence in the

instantaneous velocity magnitude at the channel opening and inside the uniform section of

channel. A similar head drop also results for the other two channels, but is less noticeable

because, for case 5-4, the magnitude of the head drop is a much smaller fraction of the tidal

amplitude while, for case 5-5, the velocity through the channel is not close to a maximum

at the time of high tide.

The natural dynamic balance within each of the channels in the natural state can

be inferred from the phase lag of the channel �ow rate behind the maximum di�erence

in elevation across the channel (GC05). This phase lag σ is recorded in Table 5.1 for

each of the cases simulated. For the longer and deeper channels (cases 5-1,3,5,7), when

acceleration is expected to be important, the phase lag is above 30o. For short, shallow and

rough channels (i.e. cases 5-4,9:12) the phase lag falls below 15o and the �ow is closer to

quasi-steady as expected.

It should be noted that the �ow for case 5-11, illustrated in Figure 5.6 (e), is not

symmetric about the x axis because the �ow is unsteady as it exits into the basin. This

unsteady �ow is a result of the fact that, at the reduced geometric scale of case 5-11, there

is insu�cient net drag due to bed friction to stabilise the jet of water exiting into the basin.

In contrast, for cases 5-5 and 5-5 bed friction acts over a much larger scale (and the bed

friction coe�cient is larger for case 5-5) to stabilise the �ow as it exits into the basin. This

ensures a symmetric snapshot of velocity contours in Figures 5.6 (a) and (c).

5.4.1.2 Power Extraction

For each of the cases listed in Table 5.1 between 8 and 10 simulations were run with a

tidal fence deployed across the full width of the channel. In each simulation the fence

was modelled using LMADT with a �xed wake velocity coe�cient of α4 = 1/3 and a �xed

blockage ratio. To map out an extracted power curve the blockage ratio was varied between
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Figure 5.6: Contours of velocity component u, spaced equally at 20 increments between
maximum and minimum, for (a) case 5-4, (c) case 5-5, (e) case 5-11, at t/T = 8. The �ow
is from left to right. Depth pro�le along y = 0 shown for (b) case 5-4, (d) case 5-5 and (f)
case 5-11. Thick solid line: natural elevation; Thin solid line: elevation close to maximum
power extraction; Dashed line: still water depth.
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runs, allowing for a change in turbine thrust or depth-averaged drag coe�cient.

Example Case: Case 5-1 Figure 5.7 (a) plots the power extracted by the turbine fence

together with the power available to the fence and the total power dissipated in the channel

for case 5-1. The basic shape of the extracted power curve is illustrative of all the cases

examined and shows the e�ect of increasing the e�ective drag coe�cient of the turbine

fence; initially there is an increase in extracted power until eventually the turbines begin

to slow the �ow rate to such an extent that a reduction in extracted power results. The

total power dissipated within the channel peaks for the same reason, but at a higher �ow

rate, whereas the power dissipated due to natural bed friction, which is proportional to

the velocity cubed within the channel, reduces monotonically throughout. The maximum

power extraction is 190 MW, which is achieved when the peak velocity in the channel is

1.8 m/s, or 55 % of the peak velocity in the natural state, and the turbines block ∼70 %

of the channel cross-section. However, at this blockage ratio and wake velocity coe�cient

the e�ciency of the devices within the fence is approximately 44% over the tidal cycle,

meaning that only 84 MW is available for use, with the remaining 106 MW lost in wake

mixing behind the devices.

With reference to Table 5.2 the maximum extracted power is signi�cantly smaller than

the undisturbed time-averaged kinetic �ux (370 MW) and the time-averaged natural power

dissipation within the channel (270 MW). In contrast, combining the natural �ow rate

through the channel (1.56 ×105 m3/s) and the driving amplitude across the channel (0.53

m, measured between the points (−4L, 0) and (5L, 0)), with the phase lag of the �ow rate

behind the tidal forcing given in Table 5.1, the model of GC05 predicts a maximum power

extraction of 175 MW. This is in better agreement with the simulated result. Furthermore,

at maximum power extraction the model of GC05 predicts that the channel �ow rate will

be ∼56 % of that in the natural state, which is also in very good agreement.

To explore the simulated changes to the natural tidal hydrodynamics Figure 5.7 (b)

plots the amplitude in elevation at the points P1, P2 and P3 as the fence blockage ratio

increases. The change in elevation amplitude at P1 is small, as assumed in the model of

GC05. There is a more noticeable reduction in amplitude at point P3, indicating that with

less �ow through the channel the drawdown in depth, associated with the change in velocity

head at the channel entrance and exit, is reduced. For point P2 there is also a reduction
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Figure 5.7: (a) Extracted power, total power dissipated in the channel due to turbines and
natural bed friction and available power, as a function of normalised �ow rate, for case
5-1. (b) Amplitude of M2 elevation at points P1, P2 and P3, with varying blockage ratio.
(c) Phase lag of M2 velocity behind M2 elevation at points P1, P2 and P3, with varying
blockage ratio.

because the reduced �owrate through the channel leads to less �sucking and blowing� of the

channel in the adjoining water connecting the channel to the basins. Close to maximum

power extraction approximately 2/3 of the driving amplitude, or head, is lost at the turbine

fence (see Figure 5.6), which is again in agreement with the model of GC05. Figure 5.7 (c)

illustrates the phase di�erence between the elevation and velocity at the three points. The

lag at both P2 and P3 reduces towards zero with increasing blockage ratio as the turbine

fence forces the �ow closer to a quasi-steady regime. The phase lag at P1 approaches 90o,

which is close to the expected value that would exists in the absence of the tidal channel.

Extraction for all Cases Table 5.2 summarises the energy extraction for all 12 cases.

Across the full range of dynamic regimes Table 5.2 illustrates that the natural kinetic

�ux and the natural power dissipation provide a very poor indication of the power that

the tidal fence can extract. For example, the natural dissipation overpredicts the power

potential in all channels, measuring four times larger than the extracted power for the

roughest channel case 5-8 (largest C ′d), and just 10% larger than the smoothest channel

case 5-9 (smallest C ′d). The natural �ux signi�cantly over-predicts the extractable power for

the short smooth channels (case 5-9:11), where the driving elevation across the channels is

small, and signi�cantly under-predicts the extractable power for the longer rougher channels

(case 5-4:8), where the driving elevation across the channels is large.

Comparing the maximum power extracted from each channel to that predicted by the

model of GC05 (PGC in Table 5.2) there is very good agreement for cases 5-1:8,12 but a

noticeable under-prediction of power by GC05 for the smaller advection dominated channel
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Case Natural Flow Maximum Power

γ a (m) Qmax (m3/s) P (MW) P/PGC P/P f P/P d Cd,eff Q/Qmax ∆a/a0

5-1 0.2 0.53 1.6E+5 190 1.10 0.52 0.70 1.1 0.54 1.1

5-2 0.2 1.3 3.9E+5 985 1.18 0.71 0.47 4.5 0.54 1.17

5-3 0.2 0.30 5.7E+4 35 1.10 0.81 0.67 3.1 0.52 1.09

5-4 0.2 0.95 6.3E+4 115 1.06 1.9 0.41 2.9 0.53 1.06

5-5 0.2 1.3 1.0E+6 2600 1.0 1.3 1.0 2.7 0.58 0.98

5-6 0.2 3.4 1.2E+6 8950 1.04 2.4 0.48 5.9 0.54 1.04

5-7 0.2 1.4 4.1E+5 1200 1.05 1.6 0.57 2.8 0.54 1.01

5-8 0.2 4.4 4.4E+5 3900 1.02 4.2 0.37 6.0 0.56 1.01

5-9 0.2 0.15 8.2E+4 25 2.21 0.05 0.87 0.41 0.50 2.01

5-10 0.21 0.27 7.1E+4 40 1.51 0.14 0.54 0.61 0.53 1.57

5-11 0.2 0.10 4.0E+3 0.8 1.21 0.24 0.48 0.79 0.55 1.19

5-12 0.21 0.25 3.2E+3 1.8 1.03 1.0 0.52 2.31 0.56 1.08

Table 5.2: Summary of power potential for numerical cases 5-1:12. P f and P d are the
time average kinetic �ux and natural power dissipation in the channel. The ratio∆a/a0 is
the amplitude of the tidal forcing at maximum power extraction (measured between points
(−4L, 0) and (5L, 0)) divided by that in the undisturbed �ow.

cases 5-9:11. This under-prediction of power is, however, proportional to the increase in

amplitude of the driving tide across the channel when turbines are introduced, and suggests

that for the smaller channels the driving tide needs to be measured much further from the

channel mouth to be independent of the tidal devices, so as to obtain accurate predictions.

Therefore, although Equation 5.11 appears to provide a very good prediction of the power

that can be extracted from a given channel, one limitation of its application in practice is

that the driving amplitude may need to be observed ambiguously far from the entrance and

exit of the channel (which may be hard to de�ne) in order to make accurate predictions

(see also the study of the Minas Passage by Karsten et al. [2008]).

Comparing across the di�erent channel lengths in Table 5.2, it can be seen that substan-

tially more power can be extracted from the longer channels (cases 5-5:8). This is because

a larger driving tidal elevation exists to accelerate the �ow through the longer channels to

achieve the required peak tidal current in the natural state. Consequently there is more

power driving the longer channels, which can be used to do work on the tidal devices

within the channel leading to a greater power extraction. Likewise, comparing channels

of the same length and depth, more power can be extracted from channels with greater

bed friction because a larger driving amplitude is again required in the natural state to

overcome the drag forces and achieve the required peak tidal currents. For channels of the

same length and friction factor, Table 5.2 indicates that more power can be extracted from
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deeper channels, which is consistent with a larger �ow rate in the undisturbed channel and

again a greater driving power in the natural state.

Table 5.2 also records the e�ective depth-averaged drag coe�cient Cd,eff (computed

when Fr = 0) at maximum power extraction. (For reference, when α4 = 1/3 and Fr = 0,

blockage ratios of 0.3 and 0.6 give Cd,eff = 0.35 and 2.7, respectively.) It is clear that for

the longer channel cases (i.e cases 5-5:8 with moderate Kc and C
′
d) and the rough channels

with large natural drag (i.e. cases 5-2:4 with large C ′d), the e�ective turbine drag required to

extract the maximum power is larger. This is consistent with the need for a larger turbine

drag to decelerate the larger mass of accelerating �uid �owing through a long channel and

to compete with the large natural bed friction in a rough channel, respectively. In contrast,

for very short and smooth channels (cases 5-9:11) the required blockage ratio is su�ciently

low that the maximum extracted power might be removed in practice with only one tidal

fence (Garrett and Cummins [2008]).

Figures 5.8 (a) and (c) display the time variation in power extraction, normalised by

the maximum instantaneous power, for all cases. It is clear that the time series of extracted

power close to maximum extraction, and when the peak �ow rate in the channel is 90%

of the natural conditions, are asymmetric about the �ood and ebb tide. This asymmetry

is a result of the manner in which the tide was introduced solely in the left basin and the

non-linearty inherent in the shallow water equations, which generates shallow water over

tides in velocity (i.e. higher harmonics at a multiple of the driving frequency) within the

channel (Figures 5.8 (b) and (d)). The even harmonic overtides in particular are responsible

for the asymmetry in power extraction (Friedrichs and Aubrey [1988]) and their amplitude

generally increases when the driving tidal amplitude is large relative to the mean depth

in the channel. However, even for long rough channels such as case 5-4, which has the

largest driving amplitude relative to the mean depth, the asymmetry in power extraction is

only small. Furthermore, the asymmetry reduces with energy extraction (compare Figure

5.8(a) with 5.8(c)), which is due to the fact that although the amplitude of the �rst odd

harmonic, which arises from the quadratic bed friction and drag from the turbines, slightly

increases in relative amplitude with energy extraction, the �rst even harmonic, which is

most responsible for asymmetry, reduces.

It is also interesting to note that the extracted power is noticeably 'peaky' over the tidal
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Figure 5.8: (a) Time series of power extraction close to maximum power extraction and
(b) frequency spectrum of velocity in the channel, normalised to the M2 component, close
to maximum power extraction. Figures (c ) and (d) are equivalent to (a) and (b), but for
a power extraction that results in approximately a 10% reduction in natural �ow rate. All
12 cases are shown with case 5-8 represented by red.

period in Figures 5.8 owing to the time dependence of extraction on the cube of the �ow

rate. This will have implications for device developers who will need to choose between a

device with high rated power to remove all of the power, or a lower rated device to extract

power at a higher capacity factor.

Lastly, the changes to the natural �ow rate at maximum power extraction for each of

the cases in Table 5.2 agree well with the model of GC05 and generally indicate a 40-

50% reduction. In some situations this reduction may be perceived to be environmentally

unacceptable, however fortuitously the shape of the power curve illustrates that signi�cant

power can still be extracted whilst maintaining �ow rates well above values at maximum

extraction (Garrett and Cummins [2004] and Sutherland et al. [2007]). Across the di�erent

cases, between 40-50% of the maximum power extraction can be removed when the �ow

rate in the channel is reduced by only 10%.

5.4.1.3 Available Power

The results presented in the previous section simulated energy extraction for a fence of

turbines with variable blockage ratio and a �xed wake velocity coe�cient of α4 = 1/3, so
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that the fence was operating close to the maximum power coe�cient (Chapter 2). For

case 5-1 in particular, this meant that only 44% of the extracted power was available to

the turbine. However based on the e�ciency arguments outlined in Chapter 2 there is no

reason why the wake velocity coe�cient could not be set at higher values, to increase device

e�ciency and maximise the power available to devices. To investigate this further Figure

5.9 presents the power that is extracted by a fence of various wake velocity coe�cients,

together with the maximum Froude number in the channel, for case 5-1. Although the

actuator disc theory in Chapter 2 indicates that the depth averaged turbine thrust Cd,eff

will vary over the tidal cycle with Froude number by an amount dependent on the particular

fence blockage ratio and wake velocity coe�cient, it is evident in both �gures that when

the results are plotted against the depth-averaged e�ective drag ratio of the fence, Cd,eff =

CTB/2 (computed using Fr = 0), the di�erent curves are very similar regardless. The

curves are also consistent with that obtained using LMADT for an actuator disc in a

constant volume �ow to de�ne the fence, which ensures that the e�ective drag coe�cient

is independent of Froude number and constant over the tidal cycle (dark black circles in

Figure 5.9). As such, the time variation in thrust coe�cient, introduced by the variation

in Froude number over the tidal cycle (see Figure 2.11, Chapter 2), appears to have little

bearing on the extracted power. Consequently many di�erent device con�gurations (i.e.

blockage and wake velocity coe�cient), each giving the same Cd,eff when Fr = 0, can

extract the maximum extractable power. This result was consistent for all the channels in

Table 5.1.

A convenient conclusion from Figure 5.9 (a) is that, for any combination of B and

α4, it is possible to interpolate the extracted power from the unique curve in Figure 5.9

and subsequently, after computing the e�ciency from Equation 2.64 (Chapter 2) assuming

Fr = 0, obtain an estimate of the available power. As an example, Figure 5.10 plots contours

of extracted and available power (normalised by the maximum extractable power) as a

function of the blockage ratio and wake velocity coe�cient for case 5-1. These plots, which

are similar to those presented recently by Vennell [2010], illustrate clearly that although

the maximum extracted power can be achieved for any wake velocity coe�cient, the largest

proportion of the maximum extracted power is available to a tidal fence of devices with

large wake velocity coe�cient and large blockage ratio. This is because devices with large
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Figure 5.9: (a) Extracted power as a function of Cd,eff = CTB/2. (b) Froude number as a
function of Cd,eff = CTB/2. Cd,eff is calculated using a Fr = 0. The * indicates a fence
modelled using LMADT for a constant volume �ow.

B and α4 are e�cient and provide su�cient thrust to extract maximum power. In practice

these e�cient fences would be formed with devices of large cross-sectional area and small

centre to centre spacing.

Fixing the blockage ratio at 0.5 for case 5-1, Figure 5.10 illustrates that the available

power is maximised when devices operate with a wake velocity coe�cient close to 0.6, giving

an e�ciency of roughly 73%. Interestingly at this point the power extracted by the fence

is only between 80-90 % of the maximum extractable power highlighting the distinction

between maximising the available power and the extracted power discussed in Chapter

2. For comparison, if the wake velocity coe�cient was set close to 0.35 almost all of the

extractable power could be extracted but then the e�ciency of the devices would reduce to

42% because of a reduction in wake velocity coe�cient, reducing the overall available power.

In agreement with Vennell [2010] there is therefore clearly a need to select, or �tune�, the

wake velocity coe�cient to maximise the available power for a given channel and turbine

fence blockage ratio. Only for a fence with very large blockage ratio, where the appropriate

wake velocity coe�cient is close to unity, or for a fence with very small blockage ratio,

where the back e�ect on the �ow is small and the appropriate wake velocity coe�cient is

1/3 in agreement with the classic Betz analysis, is the choice of velocity coe�cient obvious.

To investigate the available power over the range of tidal channels Figure 5.11 illus-

trates contours of the extracted and available power, divided by the maximum extractable

power, for cases 5-3,7,9. These channels have a dynamic balance that is drag dominated,
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Figure 5.10: (a) Contours of available power, normalised by the maximum extractable
power, plotted as a function of blockage ratio and wake velocity coe�cient for case 5-1.
(b) Same as for (a), but contours of extracted power, normalised by maximum extractable
power. Black dot indicates location of optimum available power for a turbine fence with
B = 0.5.

acceleration/drag dominated, and advection dominated, respectively. In all three cases it

is evident that a turbine fence with a blockage ratio of 0.5 can extract the maximum ex-

tractable power, however the available power is maximised when less than this maximum

power is extracted. Interestingly for case 5-9 the fraction of the maximum extractable

power available to the devices at a blockage ratio of 0.5 is much higher than for cases 5-3,7.

This can be explained by the fact that a greater e�ective drag coe�cient Cd,eff is required

to achieve the maximum extracted power in cases 5-3,7 (see Table 5.2) so that a much

lower wake velocity coe�cient, and consequently a lower device e�ciency, is required to

operate at maximum power extraction and a given fraction thereof. In practice this result

implies that a large fraction of the extracted power will not be available in a long or rough

channel when only one fence of moderately blocked turbines is used. In contrast, for a

short advection dominated channel (i.e. case 5-9) not only can the maximum extracted

power be achieved with one fence but, since devices within the fence operate e�ciently at

maximum power, and a given fraction thereof, a large proportion of the extracted power is

available to the fence.

Lastly, because most of the extracted power is available to the devices when the blockage

ratio is large it is useful to investigate how large the devices can become before the bypass

�ow, passing between the devices in the fence, becomes hydraulically critical. Taking case

5-1 as an example, the nature of the bypass �ow can be determined for a fence of given
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Figure 5.11: Extracted power divided by maximum extractable power (a-c). Available
power divided by maximum extractable power (d-f). Dots locate maximum available power.

blockage ratio and wake velocity coe�cient by interpolating the Froude number from 5.9 (b)

and comparing the result with Figure 2.9 (b) in Chapter 2. Undertaking these calculations

it was found that critical bypass �ow did not occur until B > 0.95, regardless of the wake

velocity coe�cient. For cases 5-2 and 5-6, which require much larger e�ective fence drag

coe�cients at maximum power extraction, critical bypass did not occur until B > 0.9.

The reason for this is that the addition of a turbine fence acts to reduce the �ow rate and

Froude number in the channel, thereby reducing the possibility of critical bypass �ow. For

longer and rougher channels the reduction in �ow rate for a given turbine fence is smaller,

but even in those cases only at impractically high blockage ratio is the reduction in Froude

number insu�cient to maintain sub critical �ow. It is also important to note that when

multiple fences are introduced subcritical bypass �ow will be even less likely.

5.4.1.4 Alternative Representation of Turbines

For each channel case energy extraction was also simulated using an added bed roughness

within the channel. An example comparison to the line sink of momentum for case 5-1 is

presented in Figure 5.12. It is clear that the extracted power and reduction in �ow rate is

indi�erent to the use of a line sink of momentum or added bed roughness. This result was
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Figure 5.12: (a) Elements within the channel with added bed roughness indicated by
crosses. (b) Power extraction for case 5-1 using bed roughness and a line sink of momentum.

representative of all the cases in Table 5.1.

5.4.2 More Complex Geometry

5.4.2.1 Permutations of case 5-1

To investigate the e�ect of variable geometry on power extraction six geometric permuta-

tions of case 5-1 have been analysed, as shown in Figure 5.13. The �rst three permutations

involve variations in coastline and the last three consider variations in bathymetry.

Comparing the �rst three permutations, which are all driven by the same ocean tide,

it is interesting to observe in Table 5.3 the e�ect of the geometry on the natural �ow rate

through the channels. For instance, in cases 5-1 a,c the �ow rate is higher than in the

reference case 5-1 because both the width of the channel, averaged over the channel length,

is larger, and because the reduced velocity over most of the seabed area within the channel

implies a reduced drag force due to bed friction. In contrast, case 5-1 b contains a bend and

is longer than the reference case, which results in a greater e�ective resistance to the �ow

and a smaller natural �ow rate. Importantly, these di�erences in natural �ow rate directly

impact the power potential of the di�erent geometries, as can be seen in Table 5.3, because

when the channel geometry o�ers less impedance to the �ow the �xed driving elevation

of the tide can do relatively more work on the tidal fence placed within the channel. If

one was to construct an arti�cial tidal channel of constant depth to extract energy, the

channel should be slowly converging like case 5-1 a and made as wide as possible whilst

still maintaining the driving elevation across its length.

Across all three coastline permutations the agreement between the simulated power

122



extraction and that predicted by the model of GC05 is generally good. The slight under-

estimation of power in cases 5-1 a,c can be reconciled by the change in driving amplitude

with the addition of devices.

An advantage of the 2D simulations over the 1D analytical model of GC05 is that

the variation in �ow rate and power extraction across the fence can be simulated directly.

Figure 5.14 displays the time series of power extraction, close to maximum extraction, at

three locations along the fence for cases 5-1 a,c. For case 5-1 a the power extraction is

greatest on the inside of the bend where the �ow must accelerate to satisfy continuity.

For case 5-1 c the power on the northern end of the fence is lower and asymmetric over

the tidal cycle. This is because tidal �ow from left to right advects through the narrow

gap in the channel leading to lower velocities and lower power extraction on the northern

end of the fence, compared with �ow from right to left. If viscosity was included in the

model together with a no-slip boundary at the coastline, separation of the �ow passing

through the constriction might be expected to enhance this asymmetry in power extraction

along the fence. Although not pursued here, simulations of this nature would allow the

distribution of turbines along the fence to be optimised.

For the three permutations in bathymetry di�erences in natural �ow rate are also evident

in Table 5.3. For cases 5-1 d,e in particular, the natural �ow rate is reduced because the

average cross-sectional area of channel is smaller and because the bed friction force, per

unit depth, increases as the channel depth reduces. In contrast, for case 5-1 f the �ow rate

is slightly increased, compared with the reference case. Since the driving elevation is similar

for all three bathymetry the variations in natural �ow rate are again consistent with the

power potential of the channels. The simulated power extraction matches the predictions

of GC05 very well accounting for the small back e�ect on the driving tide.

5.4.2.2 Flow around an Island

Flow around an island situated near to a semi-in�nite coastline, as shown in Figure 5.15,

resembles one of the four classes of basin proposed in Chapter 3. If the island is small

compared with the tidal wavelength a signi�cant �ow rate between the island and coastline

will occur only if the background tidal velocities away from the island are also large, as may

be the case for an island within a channel discussed in the next section. For larger islands
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Figure 5.13: Velocity �eld at time of highest tide in the left basin for geometric and
bathymetric permutations of case 5-1. All snapshots are taken when the blockage ratio of
the fence is close to the optimum blockage ratio for power extraction. Solid lines in (d,e,f)
indicate equal contours of bathymetry. Velocity vectors not shown for (f).
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Figure 5.14: Power extraction, per unit width, at three locations along the turbine fence
for (a) case 5-5b, and (b) Cases 5-5c. The points are de�ned in Figure 5.13.

Undisturbed Flow Maximum Power

Case σ γ a (m) Q0 (m
3/s) P (MW) PGC (MW) ∆a/a0

5-1a 50 0.2 0.54 2.0E+5 230 200 1.1

5-1b 45 0.2 0.49 1.4E+5 150 145 1.1

5-1c 45 0.2 0.54 2.0E+5 230 200 1.1

5-1d 45 0.2 0.54 1.3E+5 160 140 1.1

5-1e 45 0.2 0.54 1.4E+5 170 150 1.1

5-1f 45 0.2 0.57 1.7E+5 210 190 1.1

5-1 52 0.2 0.53 1.6E+5 190 170 1.1

Table 5.3: Natural �ow conditions and maximum power extraction for the various channel
geometries shown in Figure 5.13. Case 5-1 is included for reference.

signi�cant �ow rates in the strait can result when a phase di�erence is established around

the island. This is characteristic of the island considered here, which has dimensions given

in Figure 5.15, and could be thought of as a very crude representation of the Orkney Isles

located adjacent to the Scottish mainland. To investigate the power potential of the island

geometry, numerical simulations have been undertaken with tidal forcing introduced as a

linear M2 progressive tidal wave traveling from left to right (i.e. hb = ho+(A/2)cos(ωt−kx),

ub =
√
g/hohb and vb = 0, where A = 3.5 m). Figure 5.15 (b) illustrates lines of constant

phase around the island in the natural state, spaced at 15o intervals, that result from this

tidal forcing. The di�erence in elevation either side of the strait, shown in Figure 5.15 (c),

leads to a maximum tidal velocity of 2 m/s through the strait. The peak velocity lags the

maximum elevation di�erence across the strait by 68o.

Modelling a tidal fence across the centre of the channel as a line sink of momentum, the

maximum power extraction was simulated as 4.25 GW when the fence reached an e�ective

drag coe�cient of Cd,eff ≈ 9.3 (i.e. a blockage ratio of 0.75 when α4 = 1/3). This optimum

drag coe�cient is similar to the long channel cases listed in Table 5.1 and implies that
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Figure 5.15: (a) Numerical mesh used to simulate �ow around an island located close to
a semi-in�nite coastline. The depth was set to 60 m and Cd = 0.0025 across the whole
region. (b) Elevation co-phase lines, spaced at intervals of 15o. (c) Time series of elevation
at two points either side of the Island Strait.

the majority of the strait's power will only be available to a single fence if the fence is

�lled with devices having an unrealistically high blockage ratio. This would suggest that

realistically many fences (or farms) are needed to extract power e�ciently from a similar

coastal geometry, such as the Pentland Firth.

Taking the driving amplitude as the di�erence in natural elevation between the points

1 and 2 in Figure 5.15, and the undisturbed �ow rate to be 9.7×105 m3/s, the theoretical

model of GC05 predicts a maximum extracted power of 3.2 GW. The di�erence between this

prediction and the simulated power can be explained almost entirely by the change in the

driving amplitude as turbines are introduced into the channel; the amplitude at maximum

power extraction is 1.3 times larger than the natural driving amplitude. Allowing for this

discrepancy it is apparent that the model of GC05 satisfactorily explains the basic physics

of the Strait. Equally, it is apparent that the �ow will not bypass around the island and

limit the power potential at this geometric scale.

Lastly, it is of interest to investigate the far �eld e�ects of energy extraction within

the strait. Figure 5.16 displays the M2 elevation amplitude in the natural state together

with the di�erence in elevation amplitude when a fence is operated at maximum power
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(a) (b)

Figure 5.16: (a) Natural M2 elevation amplitude. (b) Change to the M2 elevation amplitude
when a tidal fence is operating at maximum power extraction.

extraction. Although the depth change is large within the strait, the change in amplitude

is less than 0.1m (less than 10% of the natural elevation) over the majority of the �ow �eld.

5.4.3 Multiply Connected Channels

Many tidal channels are either complicated by the presence of small islands or form part

of large multiply connected channels (see, for example, UK1, UK2, US6; Appendix A).

In these channels the theoretical model of GC05 will tend to overpredict the extracted

power because the tidal �ow can bypass around the island or subchannel when a turbine

fence begins to extract power (Sutherland et al. [2007], Polagye and Malte [2011]). In

this section, the theoretical model of GC05 is interpreted using an electrical analogy. An

extended electrical analogy is then used to interpret simulations of multiply connected

channels.

5.4.3.1 An Electrical Interpretation

The �ow rate through an isolated channel, in the presence of energy extraction, is given by

GC05 to be (c.f. Equation 5.9)

ρgacos (ωt) = ρc
dQ

dt
+ ρδ0 |Q|Q+ ρδ1 |Q|Q. (5.18)

An interpretation of this equation can be achieved by reference to an electrical circuit

analogy. A similar analogy has been used by many researchers to solve problems involving

the shallow water equations in channels (see, for example, Miles [1971], Lighthill [1978] and
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Figure 5.17: Equivalent electric circuit for an isolated tidal channel.

Rainey [2009]). Using the electrical analogy the dynamic pressure ρgacos (ωt) is analogous

to the alternating voltage V and the �ow rate Q is analogous to the alternating current I.

Equation 5.18 can then be compared to the di�erential equation

V = LdI
dt

+RI + C
ˆ
Idt, (5.19)

which describes the alternating current in an electric circuit comprised of an inductance L,

capacitance C, and resistance R. The acceleration of water through the channel therefore

represents an inductance with L = ρc, the natural bed friction and velocity head at the

channel exit represent a non-linear resistance R0 = 8
3π
ρδ0 |Q| and the tidal devices represent

an additional non-linear resistance R1 = 8
3π
ρδ1 |Q|. The equivalent electrical circuit for the

isolated channel is shown in Figure 5.17.

An advantage of the electrical analogy lies in the simple interpretation of Figure 5.17.

For instance, the assumption made by GC05 that the elevation in the connecting ocean is

independent of the action of the turbines requires that the voltage across the channel is

�xed. As a result, introducing tidal devices will increase R1 and the total impedance of

the circuit ultimately reducing the current in the circuit. The electrical analogy therefore

highlights the feedback e�ect of tidal devices on the �ow rate through the channel, so that

the existence of a maximum power dissipation across the resistorR1 is readily demonstrated.

The electrical circuit also explains that a higher natural �ow rate, for a given driving in

elevation or voltage, is achieved in wide and deep channels (discussed in Section 5.4.2)

because they have a lower natural impedance and resistance. Furthermore, the optimum

resistance for R1 in the circuit must increase when either the imaginary or real part of

the natural impedance increases, in agreement with the increased e�ective drag coe�cient

required in the long and rough channels documented in Table 5.2.
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The electrical circuit also highlights that both the natural �ow rate and the driving

amplitude are required to fully describe the impedance of the channel in the natural state

so that the e�ect of an additional resistance in the form of tidal turbines can be predicted.

As such it is no surprise that the undisturbed kinetic �ux in the channel (which only

describes the current in the circuit) and the natural power dissipated in the channel (which

only describes the time-average product of the �ow rate and resistance R0), do not give

good estimates of the power that can be extracted from the channel. In contrast, the

formula of GC05 involves both the amplitude and the �ow rate, completely describing the

power driving the channel in the undisturbed state.

To extend the model of GC05 to a multiply connected channel, with a total length much

smaller than the tidal wavelength, the 1D shallow water approximation to the momentum

equation can be integrated along each subchannel. With reference to the multiply connected

channel shown in Figure 5.18, the integrated equations are then

ρg (ξ1 − ξ4) = ρ (c1 + c4)
dQ1

dt
+ ρ (δ0,1 + δ0,4) |Q1|Q1 + ρg (ξ2 − ξ3) , (5.20)

ρg (ξ2 − ξ3) = ρc2
dQ2

dt
+ ρδ0,2 |Q2|Q2 + ρδ1 |Q2|Q2, (5.21)

ρg (ξ2 − ξ3) = ρc3
dQ3

dt
+ ρδ0,3 |Q3|Q3, (5.22)

where, Q = Q1 + Q2, ci and δ0,i describe the geometry and natural resistance in each

subchannel, δ1 is related to the tidal devices placed in subchannel 2, and ξ2 and ξ3 are

the average tidal elevation in the connecting channel either side of the multiply connected

subchannels. In a similar manner to the isolated channel this system of equations can

be represented by the electrical circuit given in Figure 5.5 (b): two subchannels represent

separate impedance in parallel and connected in series to a third impedance de�ning the

connecting channel. If subchannel 3 had subchannels of its own, δ0,3 |Q3| and ρc3 may

de�ne the e�ective resistance and inductance, respectively.

5.4.3.2 Voltage and Current Limit

With reference to the electrical circuit two limiting conditions for the subchannels clearly

present themselves. The �rst is the condition in which the voltage or driving tidal elevation

across the subchannels is constant, whilst the second is the condition when the total �ow
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1 2 3 4Q1 Q2Q3
(a) (b)

Figure 5.18: (a) Sketch of a multiply connected channel. (b) Equivalent electric circuit for
the multiply connected channel.

rate through the subchannels is constant. The occurrence of these two limiting conditions is

dependent on the relative impedance of the subchannels to that of the connecting channel.

When c2, c3 � c1 + c4 and δ0,2, δ0,3 � δ0,1 + δ0,4, the constant voltage limit is appropriate,

while for c2, c3 � c1 + c4 and δ0,2, δ0,3 � δ0,1 + δ0,4 the constant total current limit is

appropriate.

To explore the two limiting conditions Figure 5.19 presents the energy extracted from

two di�erent multiply connected channels when a fence of tidal turbines (with α4 = 1/3) is

deployed in one subchannel. In each set of simulations the channels have a uniform mean

depth of 40 m, a bed roughness coe�cient of Cd =0.0025 and a driving tidal amplitude of

0.7 and 1.5 m, for the channels in Figures 5.19 (a) and (c), respectively. (The boundary

conditions are identical to those employed for the idealised channels.)

Using the electrical analogy, the channel in Figure 5.19 (a) describes the constant volt-

age limit, since the connecting channel is non-existent. The elevation or voltage across

each subchannel is approximately constant and, as would be expected, the model of GC05

predicts the maximum extractable power well (Figure 5.19 (b)). The �ow rate in the sub-

channel not containing the turbines is increased by just 6% at maximum power extraction.

Figure 5.19 (c) describes the second limiting condition in which the connecting channel

is very long compared with the subchannels, such that its impedance is expected to be

much greater. This is con�rmed in Figure 5.19 (d) which illustrates that the total �ow

rate through the channels only reduces by 12% at the point of maximum power extraction

(the change in phase of the total �ow rate behind the tidal forcing is just 4o). Figure

5.19 (d) also illustrates that the model of GC05 signi�cantly overpredicts the maximum

power extraction (where a is taken over the entire channel and Qmax is measured in the

130



−2000 0 2000 4000 6000 8000

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5 m/s

(a)

4 6 8 10 12

x 10
4

0

5

10

15
x 10

7

A
ve

ra
ge

 P
ow

er
 (

W
)

Flowrate (m3/s)

 

 

4 6 8 10 12

x 10
4

0.7

0.8

0.9

1

1.1

1.2

1.3

(Q
3) m

ax
/(

Q
3,

0) m
ax

B=0

0.1

0.2

0.7

0.6

0.5
0.4

0.3

(b)

0 5000 10000 15000 20000

−4000

−2000

0

2000

4000

6000

8000

10000

12000

x (m)

y 
(m

)

8000 9000 10000 11000 12000
−2000

−1000

0

1000

x (m)

y 
(m

)

5 m/s

5 m/s

Point 2
(11250,650)

Point 1
(8750,650)

(c)

4 6 8 10 12

x 10
4

0

0.5

1

1.5

2

x 10
8

A
ve

ra
ge

 P
ow

er
 (

W
)

Flowrate (m3/s)
4 6 8 10 12

x 10
4

0.5

0.6

0.7

0.8

0.9

1

(Q
1) m

ax
/(

Q
1,

0) m
ax

300 GW GC05

B=0

0.1

0.2

0.4

0.3

0.5

0.6

0.7

(d)

Figure 5.19: (a) Multiply connected channel with negligible connecting channel. Velocity
vectors are at high tide and maximum power extraction. (b) Left axis, solid line: Extracted
power for the channel in (a); right axis, dashed line: Maximum �ow rate, normalised by the
undisturbed maximum �ow rate, in the subchannel without turbines. Cross hairs locate
the predicted power and �ow rate due to the model of GC05. (c) Multiply connected
channel with long shallow connecting channel. (d) Left axis, solid line: Extracted power
for the channel in (c); Right axis, dashed line: Maximum total �ow rate, normalised by
the undisturbed maximum �ow rate, through the channel. Cross hairs locate the predicted
power and �ow rate consistent with Equation 5.27.
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subchannel with the turbines), because the �ow is able to bypass to the subchannel without

devices.

For the limiting case of �xed total current, or tidal stream �owrate, a more accurate

prediction of the power potential might be obtained by revisiting the basic physics. For

example, equating the voltage across the subchannels and neglecting inductance (as would

be realistic if the subchannels are short and shallow), provides an estimate for the relative

resistance of the channels in terms of the readily observed natural �ow rates

δ0,2

δ0,3

=

(
(Q3,0)max
(Q2,0)max

)2

. (5.23)

Where, for convenience, the maximum �ow rates over the tidal cycle (Q2,0)max and (Q3,0)max

are used. Now, assuming Q1 does not change with the introduction of turbines, the �ow rate

through the subchannel in the presence of a tidal fence, or some arrangement of devices, is

given by

Q2 = Q1

[
1 +

(
δ0,2

δ0,3

+
δ1

δ0,3

)1/2
]−1

, (5.24)

with the turbines contributing an additional bed roughness to the channel. The instanta-

neous power extracted by the turbines then follows as

P = ρδ1 |Q2|Q2
2 = ρδ1 |Q1|Q2

1

[
1 +

(
δ0,2

δ0,3

+
δ1

δ0,3

)1/2
]−3

. (5.25)

Comparing the extracted power to the reference power dissipated naturally in the subchan-

nel Pref = ρgQ2,0 (ξ2,0 − ξ3,0) = ρδ0,2 |Q2,0|Q2
2,0, gives the fraction

P

ρgQ2 (ξ2,0 − ξ3,0)
=

P

ρδ2 |Q2,0|Q2
2,0

=
δ1

δ0,3

δ0,3

δ0,2

 1 +
(
δ0,2
δ0,3

)1/2

1 +
(
δ0,2
δ0,3

+ δ1
δ0,3

)1/2


3

. (5.26)

This expression has a maximum γ2, as δ1/δ0,3 is varied, which is dependent on the ra-

tio δ0,2/δ0,3. Figure 5.20 plots γ2 together with the maximum �ow rate in the subchan-

nel at maximum extraction, divided by the maximum �ow rate without energy extrac-

tion. As δ0,2/δ0,3 → ∞ the �ow can bypass the devices easily and γ → 2/33/2 with

(Q2)max / (Q2,0)max → 1/31/2, but, of course, the natural �ow rate will be small. In the

opposite limit, when δ0,2/δ0,3 → 0, γ2 is unbounded and (Q2)max / (Q2,0)max → 1/3. In this

132



0 1 2 3 4 5
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

γ 2

δ
0,2

/δ
0,3

0 1 2 3 4 5
0.3

0.3375

0.375

0.4125

0.45

0.4875

0.525

0.5625

0.6

(Q
2) m

ax
/(

Q
2,

0) m
ax

Figure 5.20: Left axis, solid line: Variation of γ2 with the relative resistance between both
subchannels. Right axis, dashed line: Flow rate at maximum power extraction, relative to
that in the natural state, as a function of the relative resistance between both subchannels.

limit, however, the assumption that the �ow rate Q1 is independent of the devices becomes

less likely.

The instantaneous maximum power can now be written as Pmax = γ2ρg (ξ2,0 − ξ3,0)Q2,0.

Therefore, assuming a sinusoidal driving tide ξ2,0 − ξ3,0 = a2cos (ωt) in the natural state,

(ξ2,0 − ξ3,0)Q2,0 can be written as a2 (Q2,0)max |cos (ωt)|3/2 so that the maximum power

averaged over a tidal cycle is simply

Pmax = 0.56γ2ρga2 (Q2,0)max . (5.27)

Conveniently this expression can be evaluated using just the natural �ow rates in the

channel and the driving amplitude a2. For the subchannel in Figure 5.19 (c) taking a2 to

be the driving amplitude between the points 1 and 2, and adopting γ2 = 1 because both

subchannels have the same �ow rate in the natural state, leads to a signi�cantly better

prediction than the model of GC05 (see Figure 5.19 (d)). This estimate is however still an

overestimate of the simulated maximum power extraction because the simulated total �ow

rate through the subchannels has reduced.

5.4.3.3 Intermediate Cases

Figure 5.21 displays the power extracted from a channel with an island located in three

di�erent positions. When the island is located in the center of the channel (Figures 5.21

(a) and (b)) the extracted power is smaller than that predicted by both the model of GC05

and Equation 5.27. This can be explained in the �rst case by the increase in �ow rate
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through the subchannel without tidal devices and, in the second case, by the reduction in

total �ow rate through the channel, respectively.

Translating the island to the left (Figures 5.21 (c) and (d)) results in a very similar

power extraction to the geometry in Figure 5.21 (a). This is consistent with the compact

length of the channel, relative to the tidal wavelength, which implies that only the total

impedance of the connecting channel is relevant and not the distribution of impedance at

either end of the subchannels.

Translating the island within the channel cross section (Figures 5.21 (e) and (f)) leads

to an increase in power potential. Using the electrical analogy, this additional power can

be explained by the increase in impedance of the subchannel not containing the turbines

(i.e. both the inductance and resistance increase with a reduction in cross-sectional area)

and the reduction in the natural impedance of the subchannel with the turbines. It is also

useful to note that the proportion of �ow bypassing the devices reduces so that the model

of GC05 provides a better approximation than for the other two island locations, whereas

Equation 5.27 provides a worse approximation.

For all intermediate cases, when the impedance's in the subchannel and connecting

channel are comparable, both the model of GC05, and Equation 5.27 will overpredict the

maximum power extraction, with the lower of the two predictions providing the better

estimate. However, an even better estimate might be possible if an accurate observation of

the phase and magnitude of the �ow rate through each channel can be made, together with

the phase and amplitude of the driving tide across the whole channel and the subchannels

in the natural state. This would provide su�cient information to calibrate each inductor

and resistor in the electric circuit shown in Figure 5.18.

5.5 Conclusions

For energy extraction in isolated channels the model of GC05 provides a very good predic-

tion of maximum extraction across a range of dynamic regimes, provided that an accurate

measure of the driving amplitude across the channel can be obtained. The natural power

dissipation and the kinetic �ux do not give a satisfactory prediction of the extracted power

across the range of dynamic regimes found in practice.
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Figure 5.21: (a) Tidal channel containing an island. A uniform bed roughness of Cd =
0.0025 and a uniform depth 40 m are speci�ed. The driving tide has amplitude 0.7 m.
(b) Left axis, solid line: Extracted power; Right axis, dashed line: Maximum total �ow
rate through both subchannels, normalised by the undisturbed value; Right axis, dash-
dot line: Maximum �ow rate through the subchannel without turbines, normalised by the
undisturbed value. Cross hairs locate the predicted power and �ow rate using the model
of GC05 and Equation 5.27. Figures (c,e) similar to (a), Figures (d,f) similar to (b).
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In agreement with Vennell [2010] the fraction of extracted power available to a tidal

fence increases as the blockage ratio and wake velocity coe�cient of the fence increase. Gen-

erally, shorter advection dominated channels can achieve a higher fraction of the maximum

extractable power in the channel when a single fence of given blockage ratio is deployed.

The shape of a tidal channel, for a given driving tide, can e�ect the maximum extractable

tidal power. Channels that are wide and deep provide the least impedance to the �ow,

thereby increasing the power that can be extracted by tidal devices. Simulations of energy

extraction close to a large island, forming a crude representation of the Orkney Isles, UK

suggest that many tidal fences will be required to remove the extractable power e�ciently.

The model of GC05 is less accurate for multiply connected channels when the tidal

devices are deployed in a subchannel that has an impedance which is a small fraction of

the connecting channel impedance. A revised model has been proposed that appears to

provide a better estimate in this situation.
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Chapter 6

Oscillating Bay

6.1 Introduction

The �rst part of this chapter concerns enclosed tidal bays, where tidal devices might be

deployed in a narrow channel connecting the bay to a larger sea or ocean. An existing

theoretical model developed by Blanch�eld et al. [2008b] is reviewed and compared to

numerical simulations of both an idealised and complicated enclosed bay geometry. A

modi�cation to the theoretical model of Blanch�eld et al. [2008b] is then discussed to

account for wetting and drying in the enclosed bay. Wetting and drying is shown to

introduce asymmetry into power extraction over a tidal cycle but have little e�ect on

maximum power extraction.

The second part of the chapter considers non-enclosed bays, which have no obvious

narrow constriction in coastline to place tidal devices. Using a one dimensional analytical

model, the power that can be extracted by a tidal fence, and the power available to the

fence, is explored for various non-enclosed bay geometries. It is shown that the optimum

location to place a tidal fence along the bay is dependent on the number of devices installed

within the fence and the channel geometry.

6.2 Distinction Between Bays

It is convenient to outline two subgroups of tidal bays observed in Appendix A. In the �rst

group (see US 11, US 14; Appendix A) signi�cant tidal currents result in a narrow passage

between an enclosed bay and a larger sea. In contrast, in the second group of bays (see
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UK 19, US 13; in Appendix A), which have a non-enclosed geometry, there is no narrow

channel to accelerate tidal streams and so signi�cant tidal currents will result when the

tidal range at the head of the bay is very large or when quarter wavelength resonance is

established with the tidal forcing at the mouth of the bay. In this chapter enclosed bays

will be considered �rst, followed by non-enclosed bays.

6.3 Enclosed Bay

6.3.1 Existing Theoretical Model

A theoretical model has been developed by Garrett and Cummins [2004], with revisions by

Blanch�eld et al. [2008b] and Karsten et al. [2008], to determine the tidal power potential

of a narrow isolated channel connecting an oscillating enclosed bay to a larger sea (see

Figure 6.1 (a)). The assumptions of the theoretical model are similar to those adopted for

a channel connecting two very large bodies of water presented by Garrett and Cummins

[2005] and discussed in Section 5.3.2, Chapter 5. To describe the �ow rate through the

channel the shallow water approximation to the momentum equation is integrated along

the channel length to give

g(ξ − ξb) = c
dQ

dt
+ (δ0 + δ1) |Q|Q, with c =

ˆ L

0

A−1
c dx, (6.1)

where Q is the �ow rate in the channel, L is the channel length, Ac is the cross sectional

area of the channel, δ0 parameterises the drag from tidal devices and δ1 parameterises

losses due to bed friction and velocity head at the channel exit. The key di�erence between

Equation 6.1 and the model of Garrett and Cummins [2005], is that the surface slope across

the channel is now represented by ∆ξ = ξ − ξb, where ξ is the tidal elevation in the open

sea and ξb is the elevation in the enclosed bay. The second of these elevations is no longer

taken to be independent of the �ow rate through the channel, but is instead determined

by mass conservation in the bay:

dξb
dt

=
Q

S0

, or ξb =
1

S0

ˆ
Q dt, (6.2)
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(a)

R1=V=

(b)

Figure 6.1: (a) Schematic of channel linking an open sea to an enclosed bay, taken from
Blanch�eld et al. [2008b]. (b) Equivalent electrical circuit describing the �ow rate through
the channel.

where S0 is the surface area of the bay. Equation 6.2 assumes that the surface area of the

bay is constant with elevation and that the elevation within the bay is spatially uniform.

The latter of these two assumptions requires that both the horizontal scale of the enclosed

bay is small relative to a tidal wavelength and the connecting channel is narrow compared

with the bay surface area (Miles [1971]).

Equation 6.1 and 6.2 constitute a non-linear system of equations that describe the

�ow rate in the connecting channel. Taking the driving tide in the adjoining sea to be

ξ = acos(ωt) and combining the mass and momentum equations leads to the expression

ρgacos (ωt) = ρc
dQ

dt
+ ρ (δ0 + δ1) |Q|Q+

1

(S0/ρg)

ˆ t

0

Q dt. (6.3)

Equation 6.3 can be interpreted using the electrical analogy discussed in Chapter 5, with the

equivalent electrical circuit given in Figure 6.1 (b). In particular, it is apparent that the bay

introduces a capacitor, C = S0

ρg
, into the circuit: with a change in pressure in the bay (voltage

across the capacitor) excess water (charge) is stored (Lighthill [1978]). The remaining

impedance of the inlet channel includes an inductance L = ρc, due to the acceleration term

in the momentum equation, and a non-linear resistance R = ρ (δ0 + δ1) |Q| , due to bed

friction, exit head loss and tidal devices. From the perspective of power extraction it is

clear using the electrical analogy that despite the addition of the bay there must still be

a resistance ρδ1 |Q| that will optimise the power removed by tidal devices, provided the

voltage input into the circuit is �xed (independent elevation in the connecting sea).

Blanch�eld et al. [2008b] non-dimensionalise the non-linear system of equations 6.1 and
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6.2. They set λ0,1 = δ0,1(ωc)2/(ga), ξ = aξ′, ξb = aξ′b, Q = Q′ga/(ωc) and t = ω−1t′ to give

cos(t′) =
dQ′

dt′
+ (λ0 + λ1) |Q′|Q′ + ξ′b, (6.4)

and,

dξ′b
dt′

= βQ′, where β =
g

ω2cSo
, (6.5)

where the new non-dimensional parameter β describes the geometry of the bay relative to

the connecting channel. As pointed out by Blanch�eld et al. [2008b] in the limit of β → 0

the system of equations 6.4 and 6.5 become equivalent to those discussed in Chapter 5

to describe the �ow rate through a channel connecting two large basins. As discussed in

Chapter 3, the coastal sites denoted by class (a), and the enclosed bays denoted by class

(b), are therefore equivalent when the enclosed bay is very large (So →∞), or the channel

cross section is very small (Ac → 0).

The non-linear system 6.4 and 6.5 can be solved numerically for the �ow rate, bay

elevation and, subsequently, the time averaged non-dimensional power extracted by the

tidal devices (P ′ = λ1|Q′|3) for di�erent values of λ0 and various bay geometries de�ned by

β. Example results are presented in Figure 6.2 (a) with the extracted power described by

γ, where

Pmax = γρgaQmax, (6.6)

with ρga the dynamic pressure in the connecting sea and Qmax the maximum �ow rate

through the connecting channel in the undisturbed state. It is evident in Figure 6.2 (a)

that, as for the channel between two large water bodies, the variation in γ is small, ranging

between 0.19 and 0.26, though a now refers to the amplitude of the ocean tide not the

elevation di�erence across the channel. To inform the environmental e�ects of energy

extraction Figure 6.2 (b) presents the ratio Λ = ab/a, at maximum power extraction to that

in the natural state ∗0. When natural friction is large (λ0 � 1) this ratio is approximately

0.57, while for negligible natural friction (λ0 → 0) it varies between 0.5 and 0.75 for the

geometries shown.
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Figure 6.2: (a) Maximum average power, in terms of γ, for an enclosed bay. (b) Amplitude
ratio Λ at maximum power extraction relative to that in the natural state. Values of β are
labelled.

6.3.2 Numerical Simulations

In this section numerical simulations of an idealised enclosed bay, depicted in Figure 6.3,

are compared to the analytical model of Blanch�eld et al. [2008b] and the available power

is explored. A more complicated bay geometry is then analysed to highlight the short

comings of the Blanch�eld et al. [2008b] model and the usefulness of the electrical analogy

in interpreting the extracted power.

6.3.2.1 Extraction from an Idealised Bay

Simulations of an idealised enclosed bay connected to a larger sea via a channel with

dimensions identical to the tidal channel case 5-1 (Chapter 5) are now discussed. In all

simulations the open ocean boundary condition, driving tide and the line sink of momentum

representing the turbine fence are modelled in the same way as outlined in Chapter 5.

To give an overview of power extraction from the channel Figure 6.4 (a) presents the

power extracted by a fence of devices, with a wake induction factor of α4 = 1/3, for case

6-4 (see Table 6.1). The power extracted by the fence initially increases as the blockage

ratio increases, but then reduces because the devices slow the channel �ow rate. Figure

6.4 shows that the fence also acts to increase the phase lag between the elevation in the

bay and the open ocean, and to reduce the tidal range in the bay. Both of these e�ects are

consistent with the electrical analogy as the turbine resistance increases. For instance, the

reduction in tidal range within the bay implies a reduction in voltage across the capacitor,

whereas the phase lag in the tidal range within the bay corresponds to an increase in the
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Figure 6.3: (a) Idealised geometry of an enclosed bay. (b) Example numerical mesh. El-
ements of order n = 3 were used together with curved isoparametric elements along the
inlets of the channel and around the open boundaries. The open boundary is located a
distance of 4L from the opening of the channel.

Undisturbed Flow Maximum Power

Case Rab [km] A [m] Qmax[m
3/s] Λ0 σ β λ0 Cd,eff P [MW] PB [MW]

6-1 20 0.7 8.7E+4 1.3 9o 4 1.3 2.7 130 120

6-2 10 0.7 3.2E+4 1.1 1o 8.5 1.3 16 55 55

6-3 5 0.7 8.2E+3 1.0 0.05o 27 1 330 14 15

5-1 ∞ 0.7 2.0E+5 - - 0 - 1.1 190 209

6-4 20 1.4 1.7E+5 1.3 17o 4 2.7 1.9 480 475

6-5 10 2 9.1E+4 1.1 4o 8.5 4.1 6 450 440

6-6 5 4 4.8E+4 1.0 0.5o 27 6 85 390 440

Table 6.1: List of enclosed bays analysed. A refers to the amplitude of the driving tide
(see Chapter 5), Qmax is the maximum undisturbed �ow rate in the channel, Λ0 is the
amplitude ratio ab/a in the natural state (with ab recorded at the center of the bay), σ
is the phase lag of the bay tide behind the ocean tide in the natural state, and Cd,eff is
the e�ective depth-averaged drag coe�cient of the fence. PB is the power predicted by the
model of Blanch�eld et al. [2008b]. All bays have Cd = 0.0025 and Rai =1.2 km.
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Figure 6.4: (a) Power extraction as a function of natural �ow rate through the inlet channel
for case 6-4. (b) Amplitude of tidal elevation at the center of the bay |ξb|, amplitude of
elevation di�erence across the channel |ξ − ξb|, and phase lag of the the bay tide behind
the ocean tide, as a function of fence blockage ratio (when α4 = 1/3) for case 6-4.

e�ective impedance of the bay and channel.

Table 6.1 summarises undisturbed �ow and simulated power extraction for a range of

idealised bays. In each case the simulated maximum extracted power is compared quanti-

tatively with the model of Blanch�eld et al. [2008b] by �rst solving Equation 6.3 for the

�ow rate, based on the non-dimensional drag coe�cient, λ0, and the bay geometry term,

β, for each bay. (These latter values are chosen so that the simulated undisturbed tidal

amplitude in the bay to that in the ocean, Λ0, and the phase lag of the bay tide behind

the ocean tide, σo, match that predicted by Equation 6.3.) The simulated and theoretical

maximum power extraction agree to within 5 % in each case. The simulated changes in

elevation in the bay also agree to the same degree with those predicted by the theoretical

model (not shown).

Comparing across the di�erent bays in Table 6.1 it is interesting to observe the rela-

tionship between the bay surface area and power extraction. For example in cases 6-1:3

and 5-1, which are driven by a similar driving tidal amplitude, the power potential reduces

with bay surface area. This can be explained by the fact that the capacitance of the bay

is smaller for small surface area, leading to an increased impedance and consequently a

reduced channel �ow rate in the natural state. Physically it implies that a bay with small

surface area can respond quickly to the driving tide, thereby reducing the phase lag and

elevation di�erence across the channel, which drives the �ow against the tidal devices (note

also that for a very large bay, so that β → 1, Helmholtz resonance will result at which
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Figure 6.5: (a) Extracted power as a function of depth-averaged turbine drag coe�cient
Cd,eff = CTB/2. (b) Froude number as a function of Cd,eff = CTB/2, calculated for
Fr = 0. Cd,eff is calculated using maximum Froude number over the tidal cycle. Circles
and diamonds are for α4 = 1/3, crosses and x's are for α4 = 1/3.

point the �ow rate through the inlet will be at its largest). It is also evident in Table 6.1

that a larger resistance must be applied by the fence at maximum power extraction for the

smaller bays (i.e. higher Cd,eff ). This is because a higher resistance is required to compete

with the large capacitance of the smaller bays.

Comparing cases 6-1:3 with 6-4:6 it is evident that the natural �ow rate also increase

when the o�shore tidal amplitude increases. This is simply because the increased o�shore

driving tide can do more work on the tidal devices. The resistance of the turbines, Cd,eff ,

required to extract maximum power reduces as the driving amplitude increases.

6.3.2.2 Available Power

Figure 6.5 displays the extracted power and maximum Froude number over a tidal cycle

for cases 6-1 and 6-4 when a turbine fence with wake velocity coe�cient of α4 = 1/3 and

α4 = 1/2 is installed. For both cases the curves formed by the di�erent wake velocity

coe�cients are very similar. This result is equivalent to that obtained for tidal channels

in Chapter 5 and again suggests that the extracted power, and changes to the natural

hydrodynamics, are dependent only on the e�ective drag coe�cient of the fence (i.e. Cd,eff

calculated when Fr = 0) and not the particular choice of wake induction factor and blockage

ratio. This is consistent with the variation in thrust coe�cient with Froude number over

the tidal cycle having negligible e�ect on power extraction.

For all values of blockage ratio and wake velocity coe�cient the available power to a
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Figure 6.6: Available power, divided by the maximum extractable power from the inlet, for
(a) Case 6-1 and (b) Case 6-3.

tidal fence is shown in Figure 6.6 for cases 6-1 and 6-3. It is again evident, as shown

in Chapter 5, that the available power can be maximised when tidal devices with large

blockage ratio, small center-to-center spacing and low wake velocity coe�cient are used.

Comparing Figures 6.6 (a) and (b), it is also evident that for a �xed blockage ratio a higher

fraction of the maximum extractable power is available at a larger wake velocity coe�cient

for case 6-1, which has a much larger bay surface area. This result highlights that for

a given driving tide not only can more power be extracted from the inlet to a bay with

large surface area, but, because a lower e�ective drag is required by the fence at maximum

power extraction and a fraction thereof (i.e. lower Cd,eff in Table 6.1), the devices within

the fence can be more e�cient.

The fraction of the extractable power available to a fence, of given blockage ratio, also

increases when the connecting bay has a larger surface area. This is result is not shown

graphically here, but can be anticipated by comparing the e�ective turbine resistance Cd,eff

for bays of di�erent bay surface area in Table 6.1.

6.3.2.3 More Complex Bay Geometry

In practice geographically complicated bays and channel networks might be considered

for tidal energy extraction (see for example Polagye and Malte [2010] and sites around

Admiralty Inlet (Appendix A, US 7)). As an example of a complicated site Figure 6.7

(a) considers an enclosed bay that is connected to the open ocean by two parallel inlet

channels. (This could be thought of as a compound addition of a class b and class c coastal
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Figure 6.7: (a) Enclosed bay connected to an adjoining ocean by two parallel channels.
The ocean extent, depth and bed friction are identical to the enclosed bays summarised in
Table 6.1. The o�shore amplitude was set to 0.7 m. (b) Equivalent electric circuit (the
circuit is formed in a similar manner to the parallel channels in Section 5.4.3, Chapter 5).

site, discussed in Chapter 3.) In the natural state the amplitude of the open ocean tide

for this bay measures 0.69 m, and the �ow rate through the upper channel is 1.65×104

m3/s. Using Equation 6.6, with γ = 0.21 as an approximation, then gives a predicted

maximum power extraction of 280 MW. Figure 6.8 (a) illustrates that this is signi�cantly

larger than the simulated power that can be extracted from the upper channel. The simple

theoretical model of Blanch�eld et al. [2008b] thus provides a very poor indication of the

power potential for this more complicated geometry.

To understand the power extraction from the multiply connected bay it is useful to

consider the equivalent electrical circuit given in Figure 6.7 (b), which shows the capacitance

of the enclosed bay connected in series to two parallel impedance representing the entrance

channels. In the electrical circuit it is clear that the addition of a tidal fence will increase

the overall e�ective impedance of the circuit, but only until the e�ective impedance of the

channels are equal to that in the undisturbed channel. If the enclosed bay has a small

surface area (i.e. small capacitance and large impedance compared with the channels) the

addition of turbines may have very little e�ect on the total �ow rate in the circuit and

the voltage across the capacitor. The electrical analogy therefore predicts that the change

in tidal range and phase within the bay will remain unaltered, despite the introduction

of the fence, if the bay surface area is su�ciently small. This appears to be the case in

Figure 6.8 (b) where, in fact, the bay tidal range actually increases very slightly with the

introduction of a fence. Consequently the driving elevation across the channel and the
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Figure 6.8: (a) Extracted power from the subchannel in Figure 6.7. (b) Bay elevation
amplitude |ξb|, amplitude of elevation di�erence across the channel |ξ − ξb|, and phase lag
of the the bay tide behind the ocean tide, as a function of fence blockage ratio (when
α4 = 1/3).

phase lag between the bay and ocean tide cannot increase signi�cantly with the addition

of turbines, drastically limiting the power potential.

Since the elevation in the bay and ocean are una�ected by the introduction of the

tidal fence it would appear that a more appropriate estimate of the power potential can

be calculated, as in Chapter 5, by replacing a in Equation 6.6 with the amplitude of the

elevation di�erence between the ocean and the bay. This amplitude is 0.059 m and is

signi�cantly smaller than that in the open ocean alone. Using this revised formula, and a

value of γ = 0.21, gives an estimated maximum extracted power of 20 MW, much closer to

the simulated result.

The bay in Figure 6.7 highlights the di�culty of estimating the tidal response in more

realistic channel geometries. The simple analytical model of Blanch�eld et al. [2008] for

an enclosed bay and Garrett and Cummins [2005] for a tidal channel are not generally

appropriate to estimate the maximum extracted power of turbine fence placed subchannel.

Applying an electrical analogy, such as that presented here, and in Section 5.4.3 (Chapter

5), together with numerical simulations provide a more rational approach to assess the

resource for complicated geometries.
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6.3.3 Enclosed Bay with Wetting and Drying

Large tidal currents are generally found at coastal locations with large tidal range and, as

a result, signi�cant inter-tidal area (land that is wet at high tide and dry at low tide). The

Minas Basin in the Bay of Fundy, which is connected to the Bay of Fundy by the Minas

passage, provides one well known example having a surface area at high water that can

be three times greater than at low water (Prandle [1984] and Gregory et al. [1993])1. It is

therefore of some interest to understand the e�ect that extracting tidal energy might have

on the extent of inter-tidal area and, conversely, the e�ect wetting and drying might have

on tidal dynamics and energy extraction.

The theoretical model described in Section 6.3.1 can be extended to include wetting

and drying for a coastal site resembling an inlet to an enclosed bay. This can be achieved

by de�ning a bay surface area that is a function of elevation within the bay (see Figure 6.9

(a)),

S(ξb) = So

(
1 +

ξb
he

)α
, (6.7)

where the parameters he and α describe the bathymetry of the bay and So is the bay

surface area at still water level. Boon and Byrne [1981] and Maas [1997] have used a

similar expression for the surface area to study the morphodynamic response of coastal

inlet systems and the nonlinear Helmholtz response of tidal basins, respectively. Using

Equation 6.7, the continuity Equation 6.2 can be updated and non-dimensionalised, in a

similar manner to Equation 6.5, to give

dξ′b
dt′

= βQ′ (1 + φξ′b)
−α
, (6.8)

where φ = a/he and α now describe the importance of wetting and drying. When φ = 0 or

α = 0, Equation 6.8 becomes identical to the original model of Blanch�eld et al. [2008b].

The system de�ned by Equations 6.4 and 6.8 can be solved numerically to investigate

the e�ect of wetting and drying. However one caveat with the numerical solution is that for

a lightly damped system (i.e. small λT = λ0 +λ1) the non-linearity introduced by Equation

6.8 can lead to multiple solutions (Maas, 1997), consistent with the bent response curve

1In the UK Townend [2005] has also calculated that the surface area of mean high water to mean low
water maybe as high as 4.5, averaged across 150 estuaries. However many of these estuaries do not resemble
enclosed bays.
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Figure 6.9: (a) An enclosed bay with sloping sides. (b) Response curve (for Equation
6.10 ) describing the dynamics of an enclosed bay with wetting and drying when α = 1
and φ = 0.5. The jump phenomenon, consistent with multiple solutions, is evident for
λT = 0.075β.

observed in, for example, the Du�ng equation (Stoker [1950]). To explain this di�culty it

is useful to rescale t′ → β−1/2t′, and introduce the variable V ′, de�ned by Q′ = dV ′/dt′, so

that Equations 6.4 and 6.8 can be combined to give (Maas, 1997)

cos(β−1/2t′) =
d2βV ′

dt′2
+ β−1(λ0 + λ1)

∣∣∣∣dβV ′dt′

∣∣∣∣ dβV ′dt′
+ φ−1

[
(1 + (α + 1)φβV ′)

1/(α+1) − 1
]
.

(6.9)

For small φ the last term can be approximated by its Taylor series, leading to

cos(β−1/2t′) =
d2βV ′

dt′2
+ β−1(λ0 + λ1)

∣∣∣∣dβV ′dt′

∣∣∣∣ dβV ′dt′
+ βV ′ − φ

2
(βV ′)

2
+
φ2

2
(βV ′)

3
, (6.10)

when α = 1. A response curve, in terms of the maximum value of βV ′ plotted against

against β1/2, for Equation 6.10 is given in Figure 6.9 (b) for various choices of β−1λT . For

φ ≤ 0.5 and α = 1, only values of λT & 0.15β produce a smooth response curve without the

jump phenomenon characteristic of multiple solutions. In the following analysis Equation

6.10 will be used to describe the dynamics in the connecting channel and all enclosed bays

will lie within the range of unique solutions (i.e. λT & 0.15β, φ ≤ 0.5 and α = 1).

6.3.3.1 Example Parameter Values

Equation 6.10 involves three parameters: λT , β and φ. Example values for the �rst two

parameters have been listed in Table 6.1. In addition, Karsten et al. [2008] have estimated
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β ≈ 7.6−13 and λ0 ≈ 9.8−11.5 for the Minas Passage, Bay of Fundy (US 11, Appendix A),

and Blanch�eld et al. [2008a] have obtained β ≈ 1.45 and λ0 ≈ 8 for Masset Sound, Hadai

Gwaii (US 5, Appendix A). The remaining parameter φ is related to the change in surface

area of the bay and can be determined from detailed hypsometric curves when α 6= 1 (a

plot of basin area with depth) or, alternatively for α = 1, by estimating he from high, mean

and/or low water tidal data (Maas [1997]). As an example, for the Minas Basin the ratio of

elevation amplitude in the Bay of Fundy to the basin is ab/a ≈ 1.1 (Karsten et al., 2008),

and the maximum surface area is approximately 1.5S0. Consequently, taking α = 1 gives

φ ≈ 0.5. This value will be adopted as an upper bound in the following discussion.

6.3.3.2 Flow Dynamics

The addition of wetting and drying has a noticeable e�ect on the dynamics within the

connecting channel. For example, Figure 6.10 presents the �ow rate and the bay surface

area for an enclosed bay with λ0 = 10, α = 1, β = 4 and values of φ = 0 and 0.5. It

is evident that as wetting and drying become signi�cant (φ = 0.5), the �ow rate becomes

larger on the ebb tide (negative �ow rate) and the duration of the �ood tide (positive �ow

rate) increases, implying an ebb-dominant channel (Friedrichs and Aubrey [1988]). This

asymmetry can be explained by the fact that when φ = 0.5 changes in the bay elevation are

slowest near high tide. Therefore there is a large lag between the elevation in the connecting

sea and the bay near high tide, resulting in a slower turn to the ebb tide. At low tide the

lag between the connecting sea and bay is smallest, and so the turn to �ood tide is much

quicker, cutting the ebb tide duration short. Since the total time of the ebb tide is therefore

reduced, larger ebb currents occur to ensure mass conservation, as observed in Figure 6.10

(a). In Figure 6.10 (b) it is also evident that for φ = 0.5 the surface area at high tide is

approximately three times larger than that at low tide and the surface area at low tide is

proportionally smaller than that at high-tide, due to the non-linearity introduced by the

sloping bay.

6.3.3.3 Power Extraction and Inter-Tidal Area

Because the variable bay surface area introduces asymmetry into the �ow rate the power

dissipated by tidal devices and bed friction, which is dependent on the velocity cubed,
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Figure 6.10: (a) Flow rate and (b) surface area, for an enclosed bay with natural friction
de�ned byλ0 = 10, and bay geometry de�ned by α = 1, β = 4 and φ = 0 (dash line) and
φ = 0.5 (solid line). The �ow rate is normalised by the maximum absolute �ow rate for
φ = 0.5. The two horizontal dotted lines in (b) highlight the asymmetry in maximum and
minimum surface area.

may be asymmetric over the tidal cycle. This is illustrated in Figure 6.11 for a range

of parameter values. The asymmetry is most prominent when λT is small, as would be

the case for a long deep channel with low natural drag, small driving amplitude and very

few tidal devices. In contrast, at higher values of λT the increased damping reduces the

amplitude of oscillations in the bay and consequently reduces the e�ect of wetting and

drying on the channel dynamics. It also is evident in Figure 6.11 that asymmetry increases

with the bay geometry parameter β. This is because the bay surface area is small relative

to the connecting channel cross-sectional area, so that a given volume �ow rate into the

channel leads to relatively larger tidal range in the bay and increased wetting and drying.

The results in Figure 6.11 are also consistent with Figure 6.12, which plots the amplitude

of the �rst harmonic over tide in the bay elevation, relative to the principal response, for

various values of β and λT . For increasing β and small λT , the amplitude of the �rst

harmonic increases (in fact as λT → 0 the amplitude of the second harmonic peaks close

to β = 4 consistent with superharmonic resonance). The interaction of this �rst (even)

harmonic over tide with the principal tidal constituent causes the tidal asymmetry (Speer

and Aubrey [1985]).

Since the asymmetry in power extraction is most pronounced for low λT , asymmetry

will be most prominent for smaller deployments of tidal devices. For larger installations

of devices it is of interest to investigate whether wetting and drying has any in�uence on

the maximum power potential. Figure 6.13 (a) displays the non-dimensional maximum
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Figure 6.11: Non-dimensional power (P/ (ρg2a2/ (ωc))), normalised by the maximum non-
dimensional power obtained when φ = 0.5, for a range of di�erent bays. In each case α = 1
and three values of φ are plotted: φ = 0 dash-dotted line; φ = 0.2 dashed line; and, φ = 0.5
solid line.
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extracted power for three di�erent bay geometries. Only when λ0 is small is there any

noticeable dependence on φ, but this is still less than 10%. For larger λ0 the e�ect of

wetting and drying is nulli�ed because the amplitude in the bay is damped.

Figure 6.13 (b) displays the power potential in terms of γ, calculated as Pmax/ρgaQmax,

for a bay with β = 4 and various φ. It is evident that γ can reduce signi�cantly with φ.

This is because γ is de�ned relative to the maximum �ow rate within the channel, which

is ampli�ed by the wetting and drying. Consequently, although wetting and drying has

little e�ect on the power potential, its e�ect on the ebb �ow rate can lead to signi�cant

reduction in γ. Caution must therefore be taken in estimating maximum power extraction

based on Equation 6.6 with an approximate γ = 0.22 and the undisturbed maximum �ow

rate in bay with wetting and drying, suggested by Blanch�eld et al. [2008b]. A much more

consistent prediction could be made by using the average of maximum ebb and �ood �ow

rate in Equation 6.6.

Figure 6.13 (c) displays the maximum inter-tidal area at maximum power extraction

Λs = Smax − Smin, as a ratio of the intertidal area in the natural state Λs,0 (when φ > 0),

together with tidal range at maximum power extraction as a ratio of the range in the

natural state Λ (when φ = 0). For small values of λ0 it can be seen that the inter-tidal

area at maximum power extraction is a smaller fraction of the natural intertidal area. This

is because the non-linearity associated with the changing bay surface area ampli�es the

natural tidal range and the natural inter-tidal area by a relatively larger amount than that

at maximum power extraction. However, the e�ect of wetting and drying is again reduced

for larger values of λ0. In fact, a very close approximation for the change in inter-tidal area

can be obtained from the change in tidal range for a bay with constant surface area. This

is evident in Figure 6.13 (c) by the agreement between Λ/Λ0 and Λs/Λs,0, regardless of φ,

when λ0 is large.

6.3.3.4 Discussion

A simple extension to the model of Garrett and Cummins [2004] to allow for wetting and

drying in the enclosed bay illustrates that wetting and drying does not have a signi�cant

e�ect on the power potential of a channel linking an ocean to an enclosed bay. However, at

lower levels of power extraction wetting and drying can introduce time asymmetry into the
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Figure 6.13: (a) Maximum non-dimensional time-average power (Pmax/ (ρg2a2/ (ωc))) for
various bay geometries. Solid line: φ = 0; Dashed line: φ = 0.2; Dash-dot line: φ = 0.5.
(b) γ for a bay with β = 4. (c) Change in bay surface area Λs (when φ > 0) and change
in bay tidal elevation Λ (φ = 0) for a bay with β = 4 at maximum power compared with
natural conditions.

available power. This asymmetry may have implications for device developers looking to

develop uni- or bi-directional devices and suggests that numerical models should account

for wetting and drying to re�ect accurately the tidal dynamics.

With respect to simulating the dynamics in the channel, the extended model assumes

implicitly that a/hc � 1 (i.e c and λT are independent of time) and a/he ∼ O(1), where

hc is a typical depth in the channel and he is the e�ective depth in the bay. The model is

therefore valid when he � hc, as would be the case for a bay with large tidal �ats and a

deep connecting channel. In future work it will be necessary to consider an enclosed bay

with a/hc ∼ O(1) and a/he ∼ O(1), which may occur for some bays such as the Minas

Passage. When a/hc is large, the �ow through the channel can become �ood dominant, or

at least oppose the ebb-dominance introduced by wetting and drying (Speer and Aubrey

[1985]).

6.4 Non-Enclosed Bays

Unlike the enclosed bays discussed above, non-enclosed or open bays have no identi�able

inlet or constriction in width at their mouth to accelerate tidal streams. The large tidal

currents observed in practice must therefore be attributed to either a signi�cant driving

elevation outside the bay or a resonant co-oscillation with the driving tide at the mouth

of the bay. A typical example of the �rst scenario is the Cumberland Basin, Canada (see

US 13, Appendix A), whilst the Bristol Channel, UK (Heath [1981]) is an example of the
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second scenario.

Historically observed tidal resonance, and more generally the approximate tidal dynam-

ics within many real non-enclosed bays, have been well explained using analytical models

based on the one dimensional (1D) linearised shallow water equations. For example, Taylor

[1921] produced remarkably accurate predictions of the observed tides in Bristol Channel

using an inviscid 1D analytical model of a bay with linearly reducing depth and width.

Likewise Hunt [1964] achieved equally good predictions using a similar 1D model for the

Thames Estuary, allowing for an exponential reduction in width towards the head of the

estuary. More recently, 1D models that account for frictional losses via a simple linearised

bed friction coe�cient have also been shown to give satisfactory predictions for a range of

di�erent estuaries (Prandle and Rahman [1980], Prandle [1985] and Robinson [1980]).

To understand better the tidal energy potential of non-enclosed bays Robinson and

Perry [1980] extended a 1D model based on the linearised shallow water equations to

include a tidal barrage represented as a perturbation in depth proportional to the local

average velocity. Using this approach they demonstrated that a limit to power extraction

exists for both rectangular and triangular shaped estuaries, and obtained a solution for the

optimum resistance of the barrage. Their results were based on the assumption that tidal

oscillations at the mouth of the bay are �xed. More recently Rainey [2009] has extended

the analysis of Taylor [1921] to investigate the power that can be extracted by a tidal

barrage at di�erent positions along the Severn Estuary. Rainey [2009] showed that the

extracted power typically increases as the barrage is moved towards the head of the bay, on

the assumption that long waves radiated from the barrage can propagate uninhibited into

deeper ocean. (However the free radiation of waves from the barrage, proposed by Rainey

[2009], is unlikely once the re�ected waves reach the shelf edge where re�ection may result.

Ideally a 2D numerical model, which includes a non-re�ecting boundary condition beyond

the shelf, is needed to investigate the power potential correctly.)

Although the studies of Rainey and Robinson et al. provide insight into the power

extraction from open bays, their analyses were restricted to tidal barrages modelled by

an arbitrary linear resistance. The available power to tidal devices installed within, say,

a tidal fence was therefore not considered. In the remainder of this chapter, a simple 1D

analytical model, following Lamb [1932], is developed to approximate tidal elevation and
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velocity along a narrow open bay of variable geometry. A turbine fence of tidal devices

is introduced into the model using linear momentum actuator disc theory (LMADT) and

both the extracted and available power are calculated, under the assumption of a �xed

open ocean boundary condition, for various bay geometries. The open ocean boundary is

held �xed on the assumption that tides beyond, say, the continental shelf for a long bay

or the mouth of the bay for a short bay, are unaltered with energy extraction. Ideally

a numerical model is required to better investigate this for actual cases, in which details

regarding the geometry beyond the bay must be accurately represented to determine how

the elevation at the open ocean boundary reacts to energy extraction.

6.4.1 1D Model

Assuming that a non-enclosed bay is su�ciently narrow that Coriolis forces can be neglected

and the tidal range within the bay is small compared to the depth, Lamb [1932] showed that

tidal oscillations in the bay can be approximated by the shallow water mass and momentum

equations

∂ξ

∂t
+

1

b

∂ (bhu)

∂x
= 0, and

∂u

∂t
+ g

∂ξ

∂x
+ Cd

|u|u
h

= 0, (6.11)

where u(x, t) describes the one dimensional cross-sectional averaged velocity, ξ(x, t) is the

free surface elevation, Cd is the natural bed friction coe�cient, and the channel geometry

is described by the functions b(x) and h(x) that de�ne the breadth and depth of the bay

respectively (see Figure 6.14).

On the assumption that the elevation and velocity in the bay are dominated by a single

tidal constituent with frequency ω, the non-linear friction term in the momentum equation

can be linearised without signi�cant loss of accuracy (Hunt [1964]) so that solutions to

Equations 6.11 are of the form ξ = Re {ξoejωt} and u = Re {uoejωt}. Linearising the non-

linear friction term with respect to the temporal oscillations and combining the mass and

momentum equations then gives

d2ξo
dx2

+
(bκ)x
bκ

dξo
dx

+
ξo
κ

= 0, with κ =
gh2

ω2h− j(8/3π)Cdω |uo|
, (6.12)

where the subscript indicates di�erentiation with respect to x. For a bay of length L, with
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its head located at x = εL < L, the relevant boundary conditions for Equation 6.12 are

ξ(L) = acos (ωt) , and
dξ(εL)

dx
= 0, (6.13)

which imply a driving tide of amplitude a at the mouth of the bay and zero velocity at the

head of the bay.

In practice there are many choices available for the bay geometry. However in the

present work the following functions are considered

h(x) = ho

(x
L

)m1

and b(x) = bo

(x
L

)m2

with m1,m2 ≥ 0, (6.14)

where the mouth of the bay has reference dimensions ho and bo. In the absence of friction

(Cd = 0) a number of classical solutions have been obtained for various values of m1

and m2 (see Lamb [1932] for (m1,m2) = (0, 0), (1, 0) and (0,1), and Taylor [1921] for

(m1,m2) = (1, 1)). For arbitrary values of m1 and m2, in the presence of bed friction, it is

convenient to introduce non-dimensional variables x′ = x/L, t′ = ωt, ξ′ = ξ/a, h′ = h/ho,

b′ = b/bo and u
′ = (ho/a)u/

√
gho. Equation 6.12 then becomes

Φ(ξ′o) =
d2ξ′o
dx′2

+

[
2m1 +m2

x′
− m1

x′
κ′
]
dξ′o
dx′

+
l2

xm1κ′
ξ′o = 0, with κ′ =

(
xm1

x′m1 − jλ′0 |u′o| /l

)
,

(6.15)

where λ′0 = 8/(3π)(CdL/ho)(a/ho) describes an e�ective drag coe�cient, normalised by the

tidal amplitude to depth ratio, and l = ωL/
√
gho describes the non-dimensional length of

the bay. The boundary conditions become

ξ′o(1) = 1, and
dξ′(ε)

dx′
= 0. (6.16)

Following the speci�cation of these two parameters the elevation along the bay can be

solved numerically over the complete range of geometries de�ned by Equation 6.14.

To simplify the analysis in the following sections it will be assumed that λ∗0 = λ′0 |u′o| is

constant along the length of bay. Furthermore, the head of the bay will be set at ε = 0.001

to avoid the numerical di�culties which result at x = 0 for some bay geometries in the

presence of friction. In the discussion of analytical solutions a value of ε = 0 will be
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Figure 6.14: Sketch of a non-enclosed open bay with variable geometry.

assumed.

6.4.1.1 Natural Resonance

It is well known that for a bay of constant depth and width, resonance will result when the

bay length is equal to one quarter of the wavelength of the driving tide (where the driving

tidal wavelength is 2π
√
gho/ω). By solving Equation 6.15 with Cd ∼= 0 the computed

response for various bay geometries are given in Figures 6.15 (a)-(c), with the bay response

de�ned as the elevation amplitude at the head of the bay divided by that at the mouth.

As expected, when m1 = 0 the response is a maximum close to l = π/2, which coincides

with the classic result (see Figure 6.15 (a)). However, for variable geometry the equivalent

�quarter wavelength� can alter considerably from this value. In particular, a reducing depth

slows the wave speed so that a shorter bay will resonate, while a reducing width increases

the wave speed due to continuity, and therefore increases the resonant bay length. The

net result for a bay with m1 = m2 = 1, similar to that of the upper reaches of the Bristol

Channel (Taylor [1921]), is a resonant length of l ≈ 1.9, or 1.2 times the equivalent length

for a rectangular bay. It is useful to bear these results in mind in the following analysis.

6.4.1.2 Introducing Tidal Devices

Tidal devices can be introduced into the simple 1D analytical model as a tidal fence that

extends completely across the bay (Figure 6.14). Furthermore, LMADT can be used to

describe devices within the tidal fence provided the length scale over which vertical mixing
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Figure 6.15: Elevation response for an open bay with various values of m1 and m2. The
dashed line in (c) coincides with a bay that has m1 = m2 = 1. The thick dark lines
correspond to unbounded elevation response. (See Equation 6.14 for de�nition of m1 and
m2.

occurs in the wake of the fence is small compared to the characteristic tidal wavelength

and variation in bay geometry. Assuming this is the case, and that the Froude number is

small everywhere in the bay, the perturbation in depth across the fence can be given as a

function of the continuous velocity through the fence:

∆ξ =
∆p

ρg
=
CTB

2g
|u|u, (6.17)

where CT is the thrust coe�cient and B is the blockage ratio of devices within the fence

assuming the Froude number is small (see Section 2.3.3, Chapter 2). This expression can

be linearised without signi�cant loss in accuracy provided that the elevation and velocity

within the bay are dominated by a single constituent and non-dimensionalised, leading to

∆ξ′ =
8

3π

CTB

2

a

ho
|u′o|u′, (6.18)

In terms of non-dimensional variables the elevation along a bay with a tidal fence

prescribed by LMADT then becomes

Φ(ξ′1) = 0, for x′ ≤ xb, and Φ(ξ′2) = 0, for xb ≤ x′ ≤ 1, (6.19)

with the relevant boundary conditions at the turbine fence (x′ = xb)

u′1(xb) = u′2(xb) and ξ′1(xb)− ξ′2(xb) = λ′1 |u′2(xb)|u′2(xb). (6.20)
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where λ′1 = 8/(3π)(CTB/2)(a/ho) and, ξ′1, ξ
′
2, u

′
1 and u′2 are the complex elevation and

velocity either side of the fence (i.e. ξ′o = ξ′1∪ξ′2 and u′o = u′1∪u′2; see Figure 6.14). To close

the problem a no-�ow boundary can be speci�ed at the head of the bay and the elevation

speci�ed at the mouth of the bay, such that

ξ′2(1) = 1, and
dξ′1(ε)

dx′
= 0. (6.21)

6.4.2 Maximum Power Extraction

6.4.2.1 Inviscid Case

To explore the maximum power that can be extracted by a tidal fence situated somewhere

along a non-enclosed bay it is instructive �rst to consider the simple case of a rectangular

bay (m1 = m2 = 0) with no natural friction (λ′0 = 0) and turbine fences modelled as a �xed

linear resistance (i.e. let λ∗1 = λ′1 |u′2(xb)| be constant). A closed-form solution to Equation

6.19 is then (Robinson and Perry [1980])

ξ′1 = A1cos (x′l) ; ξ′2 = A2cos (x′l) +B2sin (x′l) , and (6.22)

u′1 = −jA1sin (x′l) ; u′2 = −j (A2sin (xl′)−B2cos (x′l)) , (6.23)

where the coe�cients are

A1 = A2 −B2cot (xbl) , (6.24)

A2 = sec (l)−B2tan (l) , (6.25)

B2 =
λ∗1sin

2 (xbl)

λ∗1sin (xbl) cos ((1− xb) l)− jcos (l)
. (6.26)

It is convenient to explore this solution in terms of the elevation amplitude on the ocean

side of the fence, relative to that at the mouth of the bay,

A =

∣∣∣∣ξ′2(xb)

ξ′2(1)

∣∣∣∣ =

∣∣∣∣ λ∗1sin(xbl)− jcos(xbl)
λ∗1sin(xbl)cos((1− xb)l)− jlcos(l)

∣∣∣∣ , (6.27)

which describes, in part, the e�ect that a turbine fence will have on the natural tidal range

within the bay. In terms of this measure, when there are no tidal devices within the fence
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(λ∗1 = 0) it can be seen that the relative tidal range varies along the bay according to

A = A1 =

∣∣∣∣cos(xbl)cos (l)

∣∣∣∣ , (6.28)

which increases towards the head of the bay when l < π/2 and is unbounded for all values of

xb when the non-dimensional length approaches l = π/2 at which point the bay resonates.

In the opposite extreme, when many tidal devices are placed within the tidal fence so as

to create a tidal barrier (λ∗1 � 1), the tidal range behaves like

A = A2 =

∣∣∣∣ 1

cos ((1− xb)l)

∣∣∣∣ (6.29)

which has a resonant response when the distance between the barrier and the mouth ap-

proaches a quarter wavelength (1 − xb)l = π/2, while, for bay lengths less than this, the

range increases monotonically as the barrier is moved towards the head.

In between the two extremes of no devices and many devices the tidal range on the

ocean side of the fence varies between Equation 6.28 and Equation 6.29. Provided that

l < π/2, it is easy to show that

A1 ≤
∣∣∣∣ λ∗1sin(xbl)− jcos(xbl)
λ∗1sin(xbl)cos((1− xb)l)− jlcos(l)

∣∣∣∣ ≤ A2, for all λ
∗
1 and xb ∈ (0, 1), (6.30)

which implies a monotonic reduction in tidal range on the ocean side of the fence, as

compared to natural conditions, when the fence is placed at any position along the bay. The

only exceptions being at the head or mouth of the bay where neither an increase or decrease

in range results compared with natural conditions. For longer bays, l > π/2, the result is

not so simple. For example, the addition of tidal devices can act to increase the elevation

on the ocean side of the fence when the distance between the mouth and fence approaches

π/2. In this sense the addition of the barrier e�ectively �tunes� the bay closer to resonance.

However, when a fence is not placed at this resonant location an decrease in range occurs if

the fence is placed towards the middle of the bay. The region over which this decrease occurs

is bounded by the roots of the expression tan(l) + (1 + cos2(xbl)) / (sin(xbl)cos(xbl)) = 0.

To explore the power potential of the simple bay, the power extracted by the tidal fence
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can be written as

P = ρg∆ξ(xbL) (b(xbL)h(xbL)u(xbL)) (6.31)

where ∆ξ(xbL) is the change in elevation across the fence and u(xbL) is the velocity through

the fence. This can be non-dimensionalised so that

P ′ =
P

a2ρg
√
ghobo

= (ξ′1(xb)− ξ′2(xb)) b
′h′u′2(xb) = b′h′λ′1 |u′2(xb)| (u′2(xb))

2
. (6.32)

Keeping λ∗1 = λ′1 |u′2(xb)| constant, it therefore follows from Equations 6.22 and 6.23 that the

non-dimensional power time-averaged over a tidal cycle can be written for the rectangular

bay as

P ′ =
1

2
λ∗1 |u′2(xb)|2 =

1

2
λ∗1A2

∣∣∣∣ 1

λ∗1 − jtan−1(xbl)

∣∣∣∣2 , (6.33)

which illustrates that the extracted power is dependent on the location and resistance of

the turbine fence. For very short bays l � π/2, it follows from Equation 6.27 that A ∼ 1,

so that

P ′ ≈ 1

2
λ∗1

∣∣∣∣ 1

λ∗1 − jtan−1(xbl)

∣∣∣∣2 . (6.34)

This has a maximum as λ∗1 is varied of P ′max = 1
4
tan(xbl) and, given l� π/2, implies that

the maximum power increases almost linearly with the distance of the fence from the head

of the bay. Figure 6.16 (a) plots the maximum power extracted by a fence located at all

positions along a rectangular bay with l equal to 0.5. It is evident that the increase in

power is close to linear and, as a result, the maximum power extraction is at the mouth

of the bay. It also useful to note that the optimum resistance of the fence is given by

λ∗1,max ∼ tan−1(xbl), which reduces like 1/(xbl) with distance from the head for a short bay.

For longer bays the power from Equation 6.33 can be rewritten in full as

P ′ =
1

2
λ∗1

∣∣∣∣ sin (xbl)

λ∗1sin(xbl)cos((1− xb)l)− jcos(l)

∣∣∣∣2 . (6.35)

If l > π/2, the left term in the denominator of this expression is zero when the fence is

placed one quarter wavelength from the mouth of the bay. The extracted power is then

unbounded for large λ∗1, as shown in Figure 6.16 (b).

In summary, based on the analysis of a simple rectangular bay it is apparent that for

bays shorter than the resonant length the tidal range will reduce with the addition of tidal
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fences and the extracted power increases with distance from the head of the bay so that the

best place to position a fence is at the mouth of the bay. For longer bays, the tidal range

and power increase signi�cantly when the fence is approximately one quarter wavelength

from the mouth of the bay. Away from this resonant location power extraction is reduced

and a resulting increase or decrease in tidal range depends on the particular location of the

fence.

Figure 6.16 (c) and (d) show that similar results hold for other bay geometries. For

shorter bays (Figure 6.16 (c)) the power increases monotonically towards the mouth of the

bay. The increase is almost linear when m2 = 0. When m2 > 0 the power increases faster

but is smaller than for m2 = 0, re�ecting both the change in size and the absolute size

of the bay surface area enclosed by the fence. These results can be borne out of more

complicated analytical solutions for di�erent integer values of m1 and m2 and is consistent

with the importance of surface area in an enclosed bay discussed in Section 6.3. For the

longer bays (Figure 6.16 (d)) an unbounded extraction is evident at a location along the

bay that is dependent on the particular resonant length of each bay. It should also be noted

that the results in Figure 6.16 are identical when λ′1 is held constant, as opposed to λ∗1.

It is of considerable interest to compare the maximum extracted power to the rate at

which potential energy is stored and dissipated within the channel, which can be approx-

imated in the absence of extraction by the maximum �ow rate at a given point along the

bay Qo = b′(x)h′(x) |u(x)| multiplied by the maximum dynamic pressure po = ρg |ξ(x)|).

This metric is of particular interest because it has been used, with considerable success, to

summarise the power potential in short channels and inlets (Garrett and Cummins [2005,

2008]). Figure 6.17 (a) plots the parameter γ, equal to the maximum extracted power

divided by the potential energy stored and dissipated shoreward of the tidal fence, given

at each point along the bay by

γ =
λ′1b
′(xb)h

′(xb) |u′2(xb)|3

po(xb)Qo(xb)
, (6.36)

for a range of di�erent bay length and geometry. It is evident that for short bays this

parameter is approximately 0.25 at all points along the bay, which agrees well with the

analysis of a frictionless inlet to an enclosed bay discussed by Blanch�eld et al. [2008b].

For longer bays, however, the parameter is only similar to this value close to the mouth and
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Figure 6.16: Maximum average power extraction at various positions along an open bay.
(a) Rectangular bay of length l = 0.5, (b) Rectangular bay of length l = 2, (c) Various bay
geometry (l = 0.5), (d) Various bay geometry (l = 2.5).

head of the bay where there is no change in tidal range with the introduction of a fence.

Away from these locations the parameter can increase close to where the extracted power

and change in elevation is a maximum along the bay and also where the tidal range in the

natural state is small (i.e. at an elevation node point). Towards the middle of a long bay

the parameter may decrease well below 0.25 because of the reduction in tidal range that

can result from the introduction of the fence. It would thus appear that a constant value of

γ ∼ 0.25 is not as successful at predicting the power potential of a resonant non-enclosed

bay, when a tidal fence is located at certain positions along the bay, as it is for frictionless

inlets and short channels.

6.4.2.2 Including Natural Dissipation

In the preceding section the variation in power extraction along the bay was analysed in the

absence of natural friction. Actual bays, of course, have natural dissipation and this can

be accounted for in the analytical model via λ∗0. Figure 6.18 plots the maximum extracted

power for a fence situated at various locations along a rectangular bay (m1 = m2 = 0)
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Figure 6.17: (a) Parameter γ computed for various positions along a frictionless open bay.
Solid line: m1 = m2 = 0, l = 2.0, dashed line: m1 = m2 = 0, l = 1.0, dash-dot line:
m1 = m2 = 0, l = 0.5, and dotted line: m1 = m2 = 1, l = 2.5. (b) Same as (a) but for an
open bay with bed friction. Solid line: m1 = m2 = 0, l = 1.5, λ∗0 = 0.25, solid circle line:
m1 = m2 = 0, l = 1.5, λ∗0 = 1, dashed line: m1 = m2 = 0, l = 0.5, λ∗0 = 1, dash-dot line:
m1 = m2 = 0, l = 2.5, λ∗0 = 0.25, dotted line: m1 = m2 = 0, l = 2.5, λ∗0 = 1, and solid
cross line: m1 = m2 = 1, l = 2.5, λ∗0 = 0.25.

and triangular bay (m1 = m2 = 1) for di�erent levels of natural friction λ∗0. The extracted

power in each �gure is compared with the time average non-dimensional natural power

dissipation within the channel P ′d, which is equal to the time average �ux of power entering

though the mouth of the bay:

P ′d = b′(1)h′(1)ξ′2(1)u′2(1) =

ˆ 1

0

λ∗0b
′(u′o)

2dx′ + P ′, (6.37)

where P ′ is the time average of power extracted by the turbine fence (Equation 6.32).

Figures 6.18 (a)-(d) represent short bays, with a length below that required for res-

onance. For these bays it is clear that increasing natural friction leads to a decrease in

extracted power at all points along the bay. This is to be expected, since the turbine fence

must now compete with natural friction to extract power. However, as noted by Robinson

and Perry [1980], the amount of power that can be extracted from the bay can still exceed

that dissipated naturally without a turbine fence (which is equal to the total dissipation

when xb = 0) by several orders of magnitude. This is in fact to be expected since, in the

limit of no natural dissipation, the extracted power was shown in the previous section to

be greater than zero and so in that case in�nitely larger than the natural dissipation. Less

expectantly, Figures 6.18 (a)-(d) also show that for a fence placed at the mouth of the bay
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more total power is dissipated (due to both natural bed friction and the fence) in each of

the bays when the natural friction is lower. This implies that a tidal fence, which represents

a concentrated friction along the bay, can extract power more e�ectively, when positioned

towards the mouth of the bay, than a distributed roughness over the whole bay.

Figures 6.18 (e)-(h) represent bays that are longer than resonant length. What is

immediately evident in these plots is that the presence of friction ensures that the extracted

power is now bounded for a fence placed a quarter wavelength from the mouth of the bay.

However, unless the friction is large, this resonant location is still the optimum place to

deploy fences along the bay. (To provide some perspective on the friction parameter, a bay

with length 350 km, drag coe�cient of 0.0025, depth 80 m and average current amplitude

1.5 m/s, would have an equivalent damping of λ∗0 ∼ 0.3 and the e�ective length would

be l ∼1.7.) As was the case for short bays, the natural dissipation due to bed friction

correlates poorly with the maximum extracted power across the di�erent bays and fence

locations. However, unlike for a short bay, the introduction of a turbine fence may now

lead to an increase in dissipation due to bed friction if the fence tunes the bay closer to

resonance (i.e. Figures (e), (g) and (h)).

For the inviscid bays it was shown that the ratio γ, which is equal to maximum extracted

power divided by the product of maximum natural dynamic pressure and �ow rate, varied

considerably along the length of the bay. It is now useful to investigate this parameter in

the presence of friction2. Figure 6.17 (b) shows, for a number of bays, there is considerable

variation in γ along the bay when the total bay length is comparable to, or greater than,

the resonant length for realistic values of natural friction. The reason for the variation is, as

in the inviscid case, due to the fact that the tidal range seaward of the fence changes with

the addition of devices and so the rate at which potential energy is stored or dissipated

in the natural state no longer provides as good an indication of the power that can be

extracted. Although linear bed friction is adopted here, a similar variation to this would

be found with a representation of bed friction that varies quadratically with velocity.

2It should be noted, however, that the natural friction considered here varies linearly with velocity (i.e.
λ∗0 is constant). For reference, the equivalent result of Blanch�eld et al. [2008b] for an enclosed bay in the
limit of large linear natural friction is γ → 0.125, which is less than the value of γ = 0.21 obtained when
the friction is taken to vary with the velocity squared.
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(e) m1 = m2 = 0, l = 2.0.
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(f) m1 = m2 = 1, l = 2.0.
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(g) m1 = m2 = 0, l = 2.5.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x
b

N
on

 D
im

en
si

on
al

 P
ow

er

λ
0
*=0.25

λ
0
*=1.0

λ
0
*=1.0

λ
0
*=0.25

(h) m1 = m2 = 1, l = 2.5.

Figure 6.18: Maximum extracted power (solid lines) and total dissipated power due to bed
friction and tidal fence (dashed lines) for a range of non-enclosed bays.
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6.4.3 Maximum Available Power

Using LMADT to relate the resistance of the turbine fence to the devices within it, the

power extracted by the fence can be written as

P ′ =
1

2
λ′1b
′h′ |u′o(xb)|

3
= r

CTB

2
b′h′ |u′o(xb)|

3
, with r =

8

6π

a

ho
, (6.38)

so that the total available power to devices within the fence is simply

P ′a = ηP ′ = α2r
CTB

2
b′h′ |u′o(xb)|

3
, (6.39)

where α2, which de�nes the velocity through the devices, is equivalent to the device e�-

ciency on the assumption that the Froude number is small (see Chapter 2) and r parame-

terises the non-dimensional amplitude. From Equation 6.39 it is possible to calculate the

available power, for a given value of r (de�ned in Equation 6.38), as a function of the device

blockage ratio and turbine velocity coe�cient at any point along a bay. As an example

Figures 6.19 (a) and (b) plot contours of the available power, normalised by maximum ex-

tractable power, for a turbine fence positioned half way along a short triangular bay when r

is taken to be 0.1 and 1.0, respectively. These plots are similar to those presented recently

by Vennell [2010] for a rectangular channel. The thick dark lines in both �gures illustrate

the maximum available power as a function of the blockage ratio. It is clear that as the

blockage ratio increases the maximum available power increases, which is consistent with

the devices becoming more e�cient. However for small blockage ratio the devices can not

achieve the maximum level of power extraction and therefore yield the most power, in the

limit of zero blockage, when they maximise the power coe�cient (α2 → 2/3) as opposed

to the e�ciency. The available power is then a very small fraction of that which could be

extracted with a highly blocked fence and is equal to 0.59 times the natural kinetic �ux.

Comparing Figures 6.19 (a) and (b) it is evident that more of the maximum extracted

power is available, for a given blockage ratio, when a higher value of r is used. This is

a general result for all bays and arises because the extracted power, for a given bay, is

dependent on the resistance λ′1: larger values of r ensure that the velocity in the bay is

larger and so a reduced thrust (i.e. smaller CTB/2) is required by the devices at any level

of power extraction. For a �xed blockage ratio, the ratio of thrust to power coe�cient
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Figure 6.19: Contours of maximum available power, normalised by the local maximum
extracted power, plotted as a function of blockage ratio and wake induction factor α4. The
turbine fence is position half way along a triangular bay (m1 = m2 = 1) with l = 1 and
λ∗0 = 0. (a) r = 0.1, (b) r = 1. The thick dark line indicates the maximum available power
for a given blockage ratio.

(equal to 1/α2) must reduce implying an increase in device e�ciency and available power.

6.4.3.1 The Optimum Location to Place a Fence

In practice the area (or the number) of tidal devices within a fence will be constrained

for economic reasons. An important question then concerns the best location to deploy a

fence of limited devices along the bay to maximise the available power. The answer to this

question is not immediately obvious because, for a bay with variable cross-sectional area,

placing turbines towards the head of the bay will increase the blockage ratio and fence

e�ciency, but will also reduce the maximum extracted power. To explore this trade-o�

further, Figure 6.20 presents contour plots of the maximum available power (i.e. optimised

velocity coe�cient α2) for tidal fence of various blockage ratio positioned at di�erent lo-

cations along the several bays. Superimposed on these plots are lines corresponding to

turbine fence with a �xed number of devices or turbine area (each bay has r = 0.1).

Initially ignoring the lines of constant fence area, what is clear from all of the plots is

that, for a �xed location along the bay, the highest fraction of extractable power is available

when a fence with large blockage ratio is used. In contrast, for �xed fence blockage ratio, the

highest fraction of extractable power occurs at various positions along the bay, depending

on the particular bay. For example, for the shorter bays (l = 1) the available power is

optimised with a fence placed at the mouth regardless of the blockage ratio. If a fence of
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given blockage ratio is not placed at the mouth of a short bay then the available power

reduces as the fence is moved towards the head of the bay. This reduction is fastest for a

bay with reducing width (i.e. m2 > 0) because the surface area of the bay enclosed by the

fence and the extracted power reduces faster with distance from the mouth. In terms of

the longer bays (l = 2), the most available power is achieved at a distinct location within

the bay where the extracted power is maximised, provided that the fence blockage ratio is

close to unity (i.e. Figure 6.20 (g)). If the blockage ratio is less than unity there is shift in

the optimum location of the turbine fence towards the location of maximum undisturbed

kinetic �ux within the bay as B reduces smoothly to zero (dark chained lines in Figures

6.20 (g,h) locates the optimum location along the bay based on available power).

With respect to the e�ects of bed friction, Figures 6.20 (d,e) illustrate that for shorter

bays additional bed friction generally reduces the available power at all locations along

the bay for a given blockage ratio. This is consistent with the need for a higher turbine

thrust coe�cient to overcome the increased bed friction and extract a given quantity of

power, thereby reducing the device e�ciency and the available power. For the longer bays,

comparing Figures 6.20 (g) and (h) illustrates that bed friction can have a signi�cant e�ect

on the available power at any point along the bay because it can alter the position of

maximum power extraction along the bay. Increasing the friction coe�cient to λ∗0 = 0.5

moves the location of maximum available power, for a highly blocked fence, to the mouth

of the bay.

Returning to the realistic constraint of fences with a �xed number of devices, the dashed

lines in all of the plots in Figure 6.20 show that, despite the location of maximum power

extraction along the bay, more power is available to the fence when it is moved away from

the mouth of the bay: the gain in e�ciency due to the increased blockage experience by

the devices outweighs any reduction in extracted power that may result. Consequently

the optimum location to place a tidal fence is dependent on the geometry of the bay and

the number of devices that are used to construct it, as opposed to simply the location of

maximum power extraction.

For short bays the increase in available power achieved by moving a fence with a �xed

number of devices away from the mouth of the bay is greater when the contraction in the

channel cross-section is associated with a reduction in depth rather than width (Figure 6.20
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(c)). This is because the extracted power reduces faster when the width varies, limiting the

available power despite the increase in e�ciency achieved by the devices. When the depth

and width reduce at a faster rate (compare Figures 6.20 (d) and (e)), both the e�ciency

of the fence and consequently the available power increases more rapidly as the devices are

moved away from the mouth of the bay (Figure 6.20 (f)).

For the longer bays there can be a signi�cant gain in available power by optimally siting

a limited number of devices in the bay because both the fence e�ciency and the maximum

power can increase as the devices are moved away from the mouth. This is illustrated in

Figure 6.20 (i), where the normalised available power approaches unity when λ∗0 = 0.15 if a

fence which has a blockage ratio at the mouth of the bay equal to 0.025 (line 3-4 in Figure

6.20 (i)) is moved to xb ≈ 0.2.

6.5 Conclusions

Numerical simulations of an isolated enclosed bay agree well with the theoretical model of

Blanch�eld et al. [2008]. However, for more complex enclosed bays, such as an enclosed

bay with two inlet channels, the model of Blanch�eld et al. [2008] can lead to signi�cant

errors. Numerical simulations or alternative theoretical models are required to predict the

maximum extraction in those cases.

Accounting for wetting and drying in the model of Blanch�eld et al. [2008] illustrates

that the variation in bay surface area has little e�ect on the maximum power that can be

extracted from an isolated enclosed bay, but can lead to asymmetry in power extraction

over a tidal cycle.

The tidal range in an open bay will typically decrease with the addition of a tidal fence,

however if the bay is longer than a resonant length (an equivalent quarter wavelength)

and the fence is placed approximately one quarter wavelength from the mouth of the bay,

then an increase may result. Similarly the extracted power is a maximum at the mouth

of the bay unless the bay is longer than the resonant length and does not have excessive

bed friction, in which case the extracted power is greatest when the fence is also placed

approximately one quarter wavelength from the mouth of the bay.

The available power at all points along a non-enclosed bay is greatest when a fence
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Figure 6.20: (a,b,d,e,g,h) Maximum available power, normalised by maximum extractable
power from the bay, as a function of fence blockage ratio B and fence location xb. Dotted
and solid lines track tidal fences with constant area. In Figures (d,e) the additional thin
contour lines represent λ∗0 = 1.0. In Figures (g,h) the thick chained lines locate the maxi-
mum available power as a function of blockage ratio. (c,f,i) Available power with position
along the bay for a fence of �xed area: the lines correspond to the contour plots on the
same row of �gures.
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with large blockage ratio is deployed. Furthermore, the available power is maximum along

the bay if the highly blocked fence is placed at the location of maximum power extraction.

For the more realistic case of a fence with a �xed number of devices, or turbine area,

the optimum place to locate a fence to maximise the available power is dependent on the

geometry of the bay and the number of devices installed within the fence. Importantly,

this location may no longer coincide with the location of maximum power extraction.
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Chapter 7

Coastal Headland

7.1 Introduction

In this chapter numerical simulations are undertaken to investigate the energy potential

of a tidal fence deployed near to an idealized Gaussian-shaped headland with a sloping

seabed. Simulations indicate that power extracted by the tidal fence is limited because

�ow will bypass the fence, predominantly on the ocean side, as the thrust applied by the

devices increases. For the dynamic conditions, fence placements and headland aspect ratios

considered, the maximum power extracted at the fence is not related in any obvious way

to the local undisturbed kinetic �ux or to the natural rate of energy dissipation due to bed

friction (although both of these have been used in the past as measures of the amount of

power that may be extracted). The maximum extracted power is found to be insensitive

to the size and spacing of devices within the fence; however the available power (equal

to the extracted power net of vertical mixing losses in the immediate wake of devices) is

optimized for devices with large area and small centre-to-centre spacing within the fence.

The in�uence of energy extraction on the natural �ow �eld is assessed relative to changes in

the M2 component of elevation and velocity, residual bed shear stress and tidal dispersion.

7.2 Background

A number of coastal headlands, or promontories, have been identi�ed as promising tidal

energy sites around the UK (see for example, UK 4, UK 14-16, UK 18, UK 20-21 and UK

22 in Appendix A). To date, however, studies of energy extraction from a headland, or
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a two dimensional (2D) laterally unbounded �ow �eld �eld, have been scarce. A notable

exception is that due to Blunden and Bahaj [2007b] (see also Blunden and Bahaj [2006])

who conducted numerical simulations of an array of tidal devices, represented by an added

bed roughness, close to the tip of Portland Bill (UK 21). The simulations highlighted that

useful power extraction may be exploited from currents close to a headland (in this case, 60-

70 MW). They also indicated that, with energy extraction, the magnitude and orientation

of the M2 tidal currents in the vicinity of the array could change by approximately 15 % and

up to 10o. However, although these simulations provide useful insight into the potential

and e�ect of energy extraction close to an actual headland by explicitly including tidal

devices, they are unfortunately restricted to one speci�c turbine array location and a single

level of added bed roughness. Consequently the results do not establish whether a limit to

energy extraction exists for devices deployed near to a headland. They also do not consider

the e�ects of extraction on tidal dynamics not encapsulated by the M2 components.

7.2.1 Headland Physics and UK Sites

The general physics of shallow water �ow around coastal headlands have been well explored

in the literature. Early work by Pingree and Maddock (Maddock and Pingree [1978],

Pingree and Maddock [1979]) investigated the elevated tidal currents that form in the

vicinity of a headland and outlined the importance of bottom friction and bathymetry

in the generation of transient eddies observed at many real headland sites. Signell and

Geyer [1991] extended the work of Pingree and Maddock [1979], developing a more general

understanding of transient �ow, and the phenomenon of separated �ow, around shallow

headlands. They outlined three dimensionless numbers to explain the basic �ow features

around a headland:

1. Aspect ratio of the headland, taken here to be α = 2L1/L2, where L1 and L2 are

length scales (see Figure 7.2)

2. E�ective drag ratio C ′d = Cd(L2/2)/ho, where Cd is a constant drag coe�cient and

ho is the average still water depth; and

3. Keulegan-Carpenter number Kc = Uo/(ω(L2/2)), where Uo is the amplitude and ω

the dominant tidal frequency.
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The last two of these dimensionless numbers describe the basic dynamic conditions and

de�ne the importance of friction to advection, and advection to acceleration, in the mo-

mentum balance, respectively.

For a given tidal headland Signell and Geyer [1991] show that C ′d and Kc indicate

whether separation will result at the headland tip and, if separation does occur, how the

resulting eddies evolve in the local �ow �eld. In general separation is more likely when the

coastline is deep, the headland length scales are small relative to the tidal wavelength, and

when the seabed is smooth (i.e. 1/C ′d � 1 or Kc � 1) . Separation is also more likely

when the headland has a narrow aspect ratio (α � 1). The dependency of the headland

�ow �eld, following separation, to the dynamic conditions is given in Figure 7.1 (a) for

an idealised headland of aspect ratio α = 4 and a Gaussian shape. For comparison the

relevant dimensionless ratios C ′d and Kc of the UK headland sites listed in Appendix A,

which have aspect ratios in the range α = 2 − 6, are shown in Figure 7.1 (b). There is

considerable spread in the dimensionless numbers for the UK sites, which would suggest

a large variation in the dynamic balance and �ow characteristics where energy extraction

may result. For headlands located towards the upper right of Figure 7.1 (b) separation

is more likely, for a given aspect ratio, leading to a transient �ow regime similar to those

de�ned in Figure 7.1 (a) (i.e. the Portland Bill (UK 21) could represent regime 3 or 4).

Towards the bottom left of the Figure 7.1 (b) the headland scale is generally su�cient to

suppress large scale separation and resulting large coherent eddy structures (i.e. Angelsey

(UK16)).

7.3 Idealised Headland

To investigate energy extraction near to a coastal headland, an idealised coastline, similar

to that considered by Signell and Geyer [1991], is adopted as illustrated in Figure 7.2. The

headland shape approximates the function L1exp[−(5x/L2)2/2], where L1 is the o�shore

extent and L2 is the breadth at a distance ∼ 0.96L1 from the tip of the headland. Following

Pingree and Maddock [1979] and Signell and Geyer [1991] a sloping bathymetry is used

to create the coastal boundary layer �ow, instead of specifying a vertical no-slip boundary

condition. The headland is located in a channel of width W to represent the coastline
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Figure 7.1: (a) Flow dependence on C ′d and Kc, adapted from Signell and Geyer [1991].
In regime 1 and 2 (left) the Kc number is small, so that eddies formed from separation
at the headland tip remain close to the headland over the tidal cycle. With reducing C ′d
these eddies persist over more than once cycle leading to interaction e�ects (regime 2).
For large Kc sites (regime 3 and 4), transient eddies advect quickly from the headland
tip, and decay faster in shallow water with high bed friction (regime 3). The dashed lines
track the advected path of the eddy. These lines converge for regime 3 to indicate that
the eddy dissipates during advection because of the increased in�uence of drag forces. (b)
Dimensionless numbers for the headland sites listed in Appendix A.

typical of many UK sites (e.g. the Mull of Kintyre located within the Northern Passage to

the Irish Sea). Boundary conditions comprise: a clamped sinusoidal current U0sin(ωt) at

the west upstream boundary; a non-re�ecting radiation condition at the east downstream

boundary; and no-slip re�ective walls along the south and north coastlines (which become

slip walls when υT = 0 m2/s). Isoparametric elements are used along the headland tip to

ensure that �ow separation is not mesh dependent1 . High-order quartic basis functions

are used in the DG solution to resolve the transient features close to the headland.

Four headland cases are considered in this chapter (see Table 7.1). The dimensionless

ratios span a similar range to the UK headlands in Appendix A. In all cases: w =0.00014

rad/s, U0 =1.5 m/s, h0=30 m, f=0 rad/s and υT=0 m2/s. (The e�ects of Coriolis acceler-

ation and eddy viscosity are discussed in Section 7.9.)

7.3.1 Undisturbed Tidal Flow

In the natural state without energy extraction, the water elevation �eld around the headland

in case 7-1 (a rough approximation to tidal �ow around Anglesey) can be described in terms

of M2 elevation co-amplitude lines as shown in Figure 7.4 (a). These lines converge towards

1Obviously a real coastline may have imperfections that induce separation naturally, but in this idealised
example these are ignored.
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(a)

(b)

Figure 7.2: (a) Idealised headland geometry, after Signell and Geyer [1991]. Relevant
dimensions are outlined in Table 7.1. The insert de�nes the reference area over which
natural power dissipation is considered in Section 7.4. (b) Example computational mesh.
The curved headland boundary is modelled with isoparametric elements. All simulations
are undertaken with basis functions of order n = 4.

Case Dimensional Parameters Dimensionless Parameters
Cd L1(km) W (km) α = L1/L2 Kc 1/C ′d

7-1 0.0025 10 50 2.0 2.1 2.4

7-2 0.0050 10 50 2.0 2.1 1.2

7-3 0.0025 1.5 7.5 2.0 21 24

7-4 0.0025 10 50 1.0 1.05 1.2

Table 7.1: Idealised numerical cases. In all examples the o�shore depth the bed friction
coe�cient is constant throughout the site.
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the headland tip where the acceleration of the �ow around the headland is largest. The

elevation co-tidal lines (Figure 7.4(b)) converge near the headland tip, as predicted in Taylor

[1921]. Figures 7.4 (c-f) shows snapshots of the tidal velocity �eld throughout the tidal

cycle. Enhanced currents are evident close to the headland tip. However, since the velocity

reduces towards the coastline where the frictional force per unit depth is largest, the location

of maximum velocity at t/T ∼ 1/4 (∼3.3 m/s or roughly twice the background velocity) is

located ∼5 km from the headland tip. To illustrate the importance of the basic dynamic

conditions on the natural tidal �ow Figures 7.4 (b) and (c) show the instantaneous velocity

�eld close to maximum tidal current (t/T = 1/4) for cases 7-2 and 7-3. The existence

of transient eddies advecting far from the headland tip are most pronounced for case 7-3,

which has a similar dynamic balance to Portland Bill. In contrast, the �ow �eld for case

7-2 has no identi�able transient features, indicating that the �ow has not separated and is

in agreement with Signell and Geyer [1991].

7.3.2 Natural Energy Flux and Dissipation

As outlined in previous chapters, the natural kinetic �ux has been used to assess the tidal

resource in the UK (Black & Veatch Ltd [2005] and Triton Consultants Ltd. [2006]). In

addition, a slightly di�erent metric, de�ned as the power density,

Pd =
1

2
ρ|u|3, (7.1)

is displayed in the Atlas of UK Marine Renewable Energy resources (ABPmer et al. [2004]),

where the over bar denotes averaging over a tidal cycle. The integral of this quantity over

a plan area is proportional to the natural power dissipation, which has also been used to

imply the size of the tidal resource (MacKay [2007b]). For reference, Figure 7.5 plots both

the kinetic �ux and the natural power dissipation, which is proportional to Equation 7.1

given the constant bed friction coe�cient, for case 7-1. It is evident that the headland

creates a region of elevated kinetic �ux which, because of the sloping seabed and higher

frictional force per unit depth at the coastline, moves the location of maximum kinetic �ux

some distance o�shore. Furthermore the region of high �ux does not coincide with the

region where transient eddies are formed in the wake of the headland. The power density
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Figure 7.3: Natural �ow conditions for case 7-1. (a) Co-amplitude lines for the M2 elevation
constituent, (b) Co-tidal lines for the M2 elevation constituent (the phase lag behind the
driving current at the western boundary is labelled), (c-f) snapshots of velocity through
the tidal cycle: (c) t/T = 0, (d) t/T = 1/12, (e) t/T = 1/4, and (f) t/T = 1/2.
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Figure 7.4: Velocity �eld at t/T = 1/4 for (a) case 7-2 and (b) case 7-3.

(a) (b)

Figure 7.5: (a) Kinetic �ux per meter width (de�ned as 1
2
ρu3h) averaged over a tidal period

for case 7-1 in the natural state. This �ux can be converted into a time averaged power
by integrating over a line orientated in the y-direction. (b) Natural power dissipation, per
square meter, for case 7-1 in the natural state. The location of the turbine fence, considered
later in the chapter, is superimposed on both plots.

is more representative of the depth-averaged velocity and has a maximum slightly closer to

the headland tip.

7.4 Limits to Power Extraction

7.4.1 Example case: Case 7-1

The �ow �eld at the point of maximum tidal current (t/T ∼ 1/4) is shown in Figures 7.6

(a-d) for case 7-1 when a tidal fence is deployed in the location of highest natural �ux

(see Figure 7.2 for location). In each �gure, the devices within the fence have a4 = 1/3
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and a di�erent �xed blockage ratio2. It is evident that the instantaneous velocity through

the fence reduces with increasing blockage ratio. This trade-o� between blockage ratio (or

e�ective resistance of the fence) and the local velocity through the fence is qualitatively

similar to that between porosity and velocity in the classic Lanchester-Betz actuator disc

analysis. For the tidal fence, no power can be extracted at either of the two extremes of

zero or unit blockage ratio; power extraction is maximum at some intermediate (optimum)

blockage ratio. A similar result should apply for any fence deployed in a laterally unbounded

�ow. The extracted power, averaged over a tidal cycle, is plotted in Figure 7.7 (a) as a

function of the maximum total �ow rate through the fence, Qf for several blockage ratios.

Up to 560 MW can be extracted when Qf ≈ 60% of the maximum in the natural state and

the blockage ratio is close to 0.6. Given that a4 = 1/3, the overall e�ciency of the devices

within the fence is approximately 41% over the tidal cycle, implying that only 230 MW is

available for generation.

There is little variation in power extraction over the length of the fence (Figure 7.7

(b)). However, prior to maximum extraction slightly more power (between 1 and 15%)

is removed from the southern end of the fence. Beyond maximum power extraction, an

increasing proportion of the power comes from the northern end of the fence. Although

not pursued here, the model could be used to optimise the distribution of devices along the

fence.

To compare the extracted power with natural energy dissipation Figure 7.7 (a) displays

the total power dissipated (due to bed friction and the turbine fence) in a reference area

surrounding the fence (see Figure 7.2). It is evident that the total dissipation also has a

maximum value, which peaks before that of the turbine fence itself. The di�erence between

both curves, which represents the power that is dissipated naturally due to bed friction,

decreases monotonically with the fence blockage ratio. The undisturbed time-averaged

kinetic �ux passing through the location of the turbine fence (also illustrated in Figure 7.2

(a)) overestimates the maximum power extraction.

2Since the bathymetry is non-uniform at the location of the devices �xed blockage ratio implies that
the spacing between devices, or the device diameter, varies slightly along the fence. Furthermore, a value
of δ = 1/40 is used to smooth the singularity at the edge of the fence (see Section 4.5.2, Chapter 4).
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Figure 7.6: Velocity �eld at t/T = 1/4 (close to maximum tidal current) in the natural
state (a), and in the presence of a turbine fence with an e�ective blockage ratio of (b)
B = 0.4, (c) B = 0.6 and (d) B = 0.8. The maximum power extraction occurs close to
B = 0.6.
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Figure 7.7: (a) Power extraction for for case 7-1. Solid-circle line: power extracted by the
turbine fence. Solid-cross line: total power dissipated in the reference area. Note: The
kinetic �ux and natural dissipation in the reference area are labeled. (b) Extracted power
along the fence at various points in the tidal cycle. North and South refer to points one
�fth of the fence length from the Northern and Southern ends of the fence, respectively.
Middle refers to a point located in the center of the fence.
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7.4.2 Variation in Dynamic Balance

Figures 7.8 (b) and (c) present the extracted power curves for cases 7-2 and 7-3, together

with the undisturbed kinetic �ux and natural power dissipation. For case 7-2 the natural

dissipation is higher than the maximum extracted power, whilst for case 7-3 the natural

dissipation is signi�cantly lower. This suggests, independent of the reference area selected,

that natural dissipation does not provide a useful guide to power potential over a realistic

range of tidal dynamics. The result is perhaps to be expected, given that a fence deployed

near to a headland with no seabed drag could still extract energy but, of course, the natural

dissipation would be zero and provide no guide to the maximum energy extraction.

A lack of correlation between the undisturbed time-averaged kinetic �ux and the max-

imum extracted power is illustrated by the di�erent headland cases in Figures 7.7 and 7.8,

with the ratio of extracted power to undisturbed kinetic �ux equal to approximately 1.2,

1.6 and 0.7 for cases 7-1, 7-2 and 7-3, respectively. The highest kinetic e�ciency (de�ned

as the optimal power potential divided by the kinetic �ux) is achieved for case 7-2, where

friction forces are the largest compared to advection (i.e. largest C ′d) and local acceleration

is the largest compared with advection (i.e. smallest Kc). This suggests that it is harder

for �ow to bypass a fence when the seabed friction and local acceleration surrounding the

fence are signi�cant, compared with advection, in the natural state. More importantly

the results in Figures 7.7 and 7.8 indicate that the undisturbed time-average kinetic �ux

appears to be a poor predictor of the energy potential in the vicinity of a tidal headland

because the undisturbed kinetic �ux provides no indication of the ability for the �ow to

divert around the turbine fence. (It should be noted that this is di�erent to the discussion

in Chapter 5, where the natural kinetic �ux was seen to be a poor indicator of the energy

potential for a tidal channel because the �ow rate through the channel, and consequently

the kinetic �ux, reduced with energy extraction.)

Comparing the absolute maximum power extraction across all three cases most power is

extracted in case 7-1, followed by case 7-2 (530 MW) and case 7-3 (50 MW). Consequently

in these simulations, although case 7-2 has higher kinetic e�ciency than case 7-1, case 7-2

extracts less power than case 7-1 because, for the �xed western boundary tidal current,

the increased bed friction in case 7-2 reduces natural tidal currents and kinetic �ux at the

headland tip. The extracted power in case 7-3 is 9% of that in case 7-1 because the turbine
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Figure 7.8: See caption of Figure 1.6 (a). (a) case 7-2; (b) case 7-3.

fence deployed in case 7-3 has reduced cross-sectional area (approx. 15% of case 7-1) and

because it is relatively easier for the �ow to bypass, consistent with the kinetic e�ciency.

7.4.3 Locating the Turbine Fence

Despite the inability of natural kinetic �ux to determine absolute power extraction, it is

nevertheless intuitive that the location of maximum kinetic �ux may indicate the best

position to site tidal devices. For example Figure 7.9 (a) shows the power extracted at two

alternative fence locations. In both cases, it is evident that placing the turbine fence away

from the location of maximum natural kinetic �ux results in signi�cantly less power, even

though placing the turbine fence further o�shore results in more power than moving the

fence closer to the coastline. The ratio of extracted power to undisturbed kinetic �ux of the

fence is 1.7 and 0.8 for Positions 1 and 2, respectively, compared with 1.2 for case 7-1. As

the turbine is placed further o�shore the extracted power is therefore a higher fraction of

the undisturbed �ux. This indicates that the �ow bypasses the fence most easily when it is

placed in shallow water next to the headland, and is consistent with the surrounding water

on the ocean side being relatively deeper so as to o�er less impedance to the bypassing

�ow.

7.4.4 Headland Geometry

To examine what e�ect the headland shape has on the �ow �eld Figure 7.9 (b) plots

the undisturbed kinetic �ux for cases 7-1 and 7-4. The power extracted by the fence of

185



(a) (b)

Figure 7.9: (a) Location of alternative turbine fence for case 7-1 and respective power
curves for each fence location. (b) Power curve for headland cases 7-1 and 7-4.

turbines declines substantially as the aspect ratio α reduces. This is despite the fact that

the channel width, measured between the tip of the headland and the northern channel

wall (W − L), is identical for both aspect ratios. Consequently the shape of the headland

can have a signi�cant e�ect on the power potential, for a given background tidal current.

This is primarily because the shape of the headland dictates the size of the tidal currents

in the natural state, with a narrower headland leading to faster natural tidal streams in

the natural state and at a given level of power extraction.

7.5 Boundary Conditions

For the idealised domain used in Section 7.4 the �ow rate at the western boundary was

clamped. However, in reality, the tide is driven by elevation di�erences across the seas and

oceans so that as a consequence the total �ow rate through the channel may reduce as

turbines are introduced This reduction in �ow rate will be dependent on the connecting

boundary conditions to the channel and (see Chapter 5 for example) the power dissipated by

the turbines over and above the natural dissipation. To investigate the boundary conditions

further, Figure 7.10 (a,b) presents an alternative numerical domain to that in Figure 7.2

where the tide is introduced as a driving elevation along the open ocean boundary in an

identical manner to that discussed in Chapter 5. Using this geometry the analysis for

case 7-1 was repeated (denoted case 7-1a), with the amplitude of the incoming tidal wave

adjusted until the maximum natural �ow rate through the channel was similar to that
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speci�ed in the clamped simulations (this required elevation di�erence across the channel

of 2.8 m in the natural state).

Figure 7.10 (c) compares the power extracted by the tidal fence for case 7-1 and case

7-1a using a turbine fence of various �xed blockage ratio and α4 = 1/3. Figure 7.10 (d)

displays the power dissipation due to bed friction and the total dissipation within the

channel (due to bed friction and devices) together with the maximum �ow rate through

the channel Qc. From these �gures it is evident that the channel �ow rate reduces as the

the tidal fence is introduced. The reduction in �ow rate is however only 2% and appears

to have a small e�ect on the power extracted by the fence. Additional simulations of case

7-3, in which the turbine bed friction is a higher fraction of the total dissipation in the

channel, led to a reduction in �ow rate of less than 5% at maximum power extraction. As

such it would appear that a clamped upstream velocity boundary condition is a sensible

approximate boundary condition for the headland geometries and turbine fence modelled.

With reference to Figures 7.10 (c) and (d) it is evident that the introduction of the

turbine fence leads to an initial reduction in natural dissipation but an increase in total

dissipation within the channel. This is consistent with the total dissipation in the channel

being below an optimum amount for maximum power dissipation in the channel. Inter-

estingly, as the tidal fence blockage ratio increases above 0.6, the power extracted by the

fence reduces and, although the �ow rate continues to reduce because the unblocked area

of the channel is smaller than without tidal devices, the power dissipation due to bottom

bed friction increases. This can be explained by the fact that the velocity bypassing the

fence increases with the fence blockage ratio, eventually increasing the total dissipation due

to bed friction.

7.6 Available Power

It was noted in Draper et al. [2010] that operating at a wake velocity coe�cient higher

than 1/3 can increase device e�ciency by reducing mixing losses. Figure 7.11 (a) therefore

plots the extracted power for case 7-1 as a function of the fence depth-averaged turbine

thrust Cd,eff (computed when Fr = 0) for fences of devices with various �xed a4 values.

Interestingly, although the near-�eld solution (Chapter 2) indicates that for each fence the
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Figure 7.10: (a), (b) mesh and bathymetry for case 7-1a. (c) Extracted power extraction for
cases 7-1 and 7-1a. (d) Left axis, solid line and triangles: Total power dissipated in channel
due to natural bed friction and fence; Left axis, dash-dot line and circles: Power dissipated
in channel due to bed friction only; Right axis, dashed line and circles: Maximum �ow rate
through the channel Qc normalised by the maximum �ow rate without tidal devices.
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depth-averaged turbine thrust coe�cient Cd,eff will vary over the tidal cycle with Froude

number by an amount dependent on the depth change and therefore the particular fence

blockage ratio and wake velocity coe�cient, all points appear to lie on the same line in

Figure 7.11 (a), with only minor deviation for a4 = 3/4 at higher Cd,eff values. This

result suggests that for realistic blockage ratio and wake velocity coe�cient the variation

in Cd,eff with Fr over the tidal cycle, which should be di�erent for di�erent fences, must

have a negligible e�ect on power extraction. The coe�cient Cd,eff calculated for Fr = 0

therefore uniquely de�nes the power extraction to a good approximation. A similar result

was also observed for cases 7-2, 7-3 and 7-4 (not shown).

Exploiting the weak dependence of Cd,eff on Fr the extracted power can be calculated for

a fence of any given B and a4 by �rst computing Cd,eff with Fr = 0 and then interpolating

the extracted power from the curve in Figure 7.11 (a). The available power can then be

found to an acceptable level of accuracy by multiplying the extracted power by the e�ciency

assuming Fr = 0. Using this approach the extracted power and available power, normalised

by the maximum extractable power, are plotted for cases 7-1 and 7-3 as a function of fence

blockage ratio and wake velocity coe�cient in Figures 7.11 (b) and (c). Consistent with

the �ndings in Vennell [2010], Figures 7.11 (b) shows that maximum power extraction can

be achieved for a range of combinations of a4 and B (dashed lines), with each combination

having the same (optimal) Cd,eff coe�cient highlighted in Figure 7.11 (a). The fraction

of maximum power available to the devices within the fence, however, is maximised when

the blockage ratio and wake velocity coe�cient approach unity (Figure 7.11 (c)). This is

because devices with large B and a4 are most e�cient (Draper et al. [2010]) and provide

su�cient thrust to extract the maximum power.

Interestingly, for general blockage ratio (i.e. B = 0.5 in Figure 7.11) the available power

is maximised when power extraction is not maximised (see the circles in Figure 7.11). This

is because the gain in e�ciency achieved by operating at a higher a4 than required for

maximum extraction more than o�sets the reduction in power extraction. Consequently,

for typical values of B, the maximum available power may not coincide with the maximum

extracted power. Consistent with �ndings in Vennell [2010] for a tidal channel, there is

therefore a need to �tune� the velocity coe�cient of a fence of devices near a headland to

maximise available power. This tuning requires knowledge of the complete power curve in
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Figure 7.11 (a). For complicated coastal geometries such as headlands this curve can only

be obtained using a model similar to that employed here.

Comparing the two cases in Figure 7.11 (c), it is interesting to note that a larger fraction

of the maximum extractable power for a given fence blockage ratio below unity is available

to the fence in case 7-3 than case 7-1 (see the circles in Figure 7.11), although more power

in absolute terms is available for case 7-1. This result is consistent with the requirement

for the turbine fence in case 7-1 to provide a higher e�ective thrust coe�cient at maximum

power, and at a given fraction thereof, to compete with the increased importance of bed

friction and acceleration in the momentum balance (i.e. higher C ′d and lower Kc). Since

a higher thrust coe�cient for a given blockage ratio can only be achieved with a lower

velocity coe�cient, the fence e�ciency must reduce due to (3). This ultimately reduces

the fraction of extractable power available to the devices for case 7-1 at a given blockage

ratio. It should also be noted that this result is true for all B regardless of the fact that

at suboptimal conditions of high B and very low a4 (bottom right corner of Figure 7.11

(c)) the normalised extracted power, and consequently the normalised available power, is

higher for case 7-1.

Lastly Figure 7.11 (d) plots the available power at two locations along the fence for case

7-1: one-�fth the distance from the northern and southern ends of the fence, respectively.

For a given blockage ratio, it is evident that a higher fraction of the extracted power is

available on the southern side of the fence. Since an identical blockage ratio and a very

similar e�ciency is realised on both sides of the fence, this result is consistent with the

slightly greater extraction of power noted on the southern side of the fence.

7.7 Comparison to Added Bed Roughness

Figure 7.12 (b) displays the extracted power when an additional bed roughness is introduced

over a rectangular region close to the tip of the idealised headland for case 7-1 (Figure 7.12

(a)). As the region of bed roughness limits to a line, the power extraction approaches the

results obtained using the line sink of momentum in Section 1.4, indicating an indi�erence

between a line sink of momentum and a thin strip of distributed roughness. For the larger

region of bed roughness, however, more power can be extracted. This additional power
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Figure 7.11: (a) extracted power for case 7-1. Markers represents blockage ratios taking
the values, from left to right: (0.4,0.5,0.6,0.7,0.8,0.85,0.9). TheCd,eff resulting in maximum
extraction is labelled, (b) extracted power, normalised by max. extracted power, for case 7-1
(thick dark lines) and case 7-3 (thin red lines), (c) as in (b) but available power, normalised
by max. extractable power, (d) fraction of extracted power, per m of fence, available at two
locations along the fence for case 7-1: one-�fth of fence length from southern end (thick
dark lines), and from northern end (thin red lines). Circles in (b) and (c) indicate max.
available power for B = 0.5.
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Figure 7.12: (a) Regions of added bed roughness surrounding tidal headland. (b) Extracted
power as a function of added bed roughness kt.

extraction, which occurs at a lower drag coe�cient kt, can be attributed to the �ow not

encountering the rectangle of bed roughness perpendicular to the western edge.

Importantly the results obtained for the two regions of bed roughness imply a tradeo�

between distributing low resistance devices over a large plan area so as to extract more

power and placing devices close together in a fence to e�ciently extract less power. How-

ever, until a more detailed relationship between added bed roughness and an array of

idealised tidal devices can be determined, so as to determine their e�ciency, this trade o�

will be di�cult to resolve.

7.8 E�ect of Energy Extraction on the Flow Field

The analysis in this section begins with the simplest case of steady �ow before considering

time varying �ows, and the e�ects of energy extraction on M2 tidal and transient currents.

Finally, to better quantify the environmental impact of energy extraction mean stress and

tidal dispersion are computed. For brevity all the analysis is presented hereafter for case

7-1. The results are qualitatively similar for the other cases.

7.8.1 Steady Tidal Flow

The general e�ects of a turbine fence on the �ow �eld can be easily observed in the limit

of steady �ow (ω → 0). Figure 7.13 plots streamlines around the headland for case 7-1

in the natural state (with ω = 0), together with the streamlines when a fence of turbines
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Figure 7.13: Streamlines for case 7-1, with ω = 0: (a) Natural state. (b) Fence of tidal
turbines de�ned by a wake velocity coe�cient of α4 = 1/3 and a blockage ratio of B = 0.4.
(c) Same as (b), but for B = 0.6.

is extracting approximately half of the maximum power (B = 0.4) and all of the maxi-

mum power (B = 0.6). For all three conditions the streamline contours separate an equal

amount of mass �ow, becoming more widely spaced towards the coastline where the depth

is shallower. Following the introduction of the turbine fence it is evident that the stream-

lines begin to diverge immediately upstream and downstream of the fence, indicating, as

expected, a reduction in velocity through the turbines and an increase in the immediate

bypass velocity. The divergence of the streamlines is however not symmetric about the

center of the fence, with the increase in bypass �ow rate on the coastal side accounting for

only 33% and 30%, respectively, of the reduction in �ow though the turbines in Figure (b)

and (c). The �ow will therefore tend to bypass on the ocean side where the depth is largest

and the bed friction force per unit depth is lower. The average increase in velocity either

side of the turbines, over a length equal to that of the fence itself, is approximately 7%

on the ocean side and only 5% on the coastal side at maximum power extraction (Figure

7.13(c)).

7.8.2 Time Varying Tidal Flow

For time-varying tidal currents, tidal ellipses are typically used to describe the �ow �eld

(Maddock and Pingree [1978] and Blunden and Bahaj [2007b]). Figure 7.14 (a) displays the

M2 tidal current ellipse minor and major axes at various points in the �ow �eld for case 7-1

without a turbine fence. Ampli�cation of the major axis is obvious close to the headland

tip, whereas the minor axis is generally small relative to the major axis for this particular

headland case. Figure 7.14 (b) presents changes to the ellipse parameters following the

193



−1.5 −1 −0.5 0 0.5 1 1.5

x 10
4

−1

−0.5

0

0.5

1

1.5

2
x 10

4

x (m)

y 
(m

)

3 m/s

(a)

−2 −1 0 1 2

x 10
4

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

4

x (m)

y 
(m

)

1 m/s

(b)

Figure 7.14: (a) Tidal ellipse parameters for case 7-1. (b) Change in tidal ellipse properties
with power extraction (B = 0.6). The ellipse axes in (b) are the absolute di�erence between
the natural �ow and �ow with extraction. Red (blue) ellipse axes indicate that the natural
magnitude is higher (lower) than with extraction. The change in ellipse orientation is
multiplied by a factor of 3 to make the di�erence more visible.

introduction of a turbine fence operating close to maximum energy extraction. It is evident

that there is a reduction of the major axis immediately upstream and downstream of the

fence, while an inclination (declination) in orientation of the ellipse, with reference to the

positive x axis, is evident further east (west) of the fence. This suggests that the �ow

tends to bypass on the ocean side, consistent with the �ndings for the steady tidal �ow.

Moreover the reduction in the time-averaged absolute total �ow rate through the fence is

8.2 × 104 m3/s at maximum extraction, whereas the increase in time-averaged absolute

total �ow rate passing between the fence and coastline is just 7.6 × 103 m3/s. In the

presence of energy extraction, the M2 elevation co-amplitude and co-tidal lines (Figure

7.15) concentrate towards the end of the turbine fence, consistent with the accelerating

�ow around the fence. An e�ect similar to this was noted by Blunden and Bahaj [2007b]

for energy extraction close to Portland Bill.

The substantial change in the velocity �eld implied by 7.14 (b) indicates that the ad-

dition of a tidal device may have a signi�cant impact on the local environment. As a

compromise it is interesting to consider energy extraction at, say, one half of the maxi-

mum power extraction. In this case, simulations show the maximum �ow rate through

the fence decreases by 17% as opposed to 44 % incurred at maximum power. This implies

that a fraction of the maximum power can be removed in the vicinity of the headland for

a comparatively smaller fractional change in the natural �ow conditions, and is entirely

consistent with the power curves presented in Figures 7.7 and 7.8.
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Figure 7.15: (a) M2 elevation co-amplitude lines, and (b) co-tidal lines. Lines with circles
are for the scenarios with turbines operating at close to maximum power (B = 0.6), solid
lines represent the natural conditions. Phase is given as the lag behind the forcing velocity
at the western boundary.

7.8.3 Mean Stress and Tidal Dispersion

Although the M2 constituents provide some insight into the e�ects of energy extraction on

natural hydrodynamics, the local �ow �eld is inherently nonlinear (Signell [1989], Pingree

and Maddock [1979]). This non-linearity gives rise to compound and residual tides and

contributes to residual bed shear stress and tidal dispersion. The addition of tidal devices

can have an impact on these non-linear quantities.

The importance of the residual shear stress on sand transport has been demonstrated

in a study of the Southern UK (Pingree and Gri�ths [1979]), where the mean stress on the

seabed was given by

(τx, τy)
T = ρCdu |u|, (7.2)

with u the depth-averaged velocity vector. Figure 7.16 (a) plots this vector quantity for

the headland in case 7-1. Without energy extraction a slight asymmetry in the stress about

the headland tip is evident, and is consistent with the propagation, from the west, of the

damped progressive tidal wave. The general pattern of bottom stress is very similar to

that calculated for actual headland sites (Pingree and Maddock [1979]) and is indicative

of the continual scouring and deposition that leads to the observed grading of the seabed.

To investigate the impact of energy extraction, Figure 7.16 (b) plots the vector di�erence

in mean stress between natural conditions and those at maximum power extraction. The

obvious features are the four circular regions surrounding the ends of the turbine fence.

Interestingly these residual stresses mimic the stress �eld at the tip of the headland sug-
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Figure 7.16: (a) Mean stress over the headland site case 7-1 in the natural state. (b) Vector
di�erence between mean stress with a turbine fence operating at close to maximum power
and the natural �ow.

gesting that the tidal fence has a similar e�ect to that of an o�shore island. The resulting

changes to the bed shear stress could have a signi�cant e�ect on bed load transport and

grading at a sandy site, such as the Portland Bill where sand at the seabed is found o�shore

surrounding the headland.

In addition to the changes to mean stress, an interesting �nding illustrated in Figure

7.14 is that the introduction of energy extraction in the vicinity of a headland augments

natural tidal currents surrounding the turbine fence. This is in contrast to the placement of

a turbine fence across a signi�cant fraction of a narrow channel where, due to back e�ects on

the �ow rate through the channel, the velocity �eld close to the turbines may vary spatially

but will generally be everywhere reduced. The large spatial gradient in velocity between

the �ow passing through and bypassing the fence is expected to alter tidal dispersion in

the vicinity of the headland. To explore this further Awaji et al. [1980] suggests that a

di�usion coe�cient can be used to quantify the dispersion, or the degree of possible mixing,

in a time-varying tidal �ow. This coe�cient can be related to the variance in position of a

number of released particles or �oats according to the expression

K =
1

2

dσ2
x

dt
, (7.3)

where sv
2 is the spatial variance in the distribution of particles, with time t, relative to

the time-varying mean position (x, y) To obtain an estimate of this variance a box of N

regularly distributed particles can be introduced at a given location and tracked over a
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tidal cycle, giving a measure for K, assigned to the initial location, of (Signell [1989])

K =
1

2

∆σ2
x

∆t
, where

∆σ2
x

∆t
=

1

2

(
σ2
x(t+ ∆t)− σ2

x(t)

∆t
+
σ2
y(t+ ∆t)− σ2

y(t)

∆t

)
, (7.4)

with sv
2
x and sv

2
y the variance in x and y positions of the N particles relative to the time-

varying mean position. A useful location to investigate tidal dispersion is in the gap

between the tidal fence and the coastline. Figure 7.17 presents snapshots of 153 particles

released in a region (x, y) ∈[-1000,1000] mÖ[4000,5000] m for case 7-1 both with and

without energy extraction. In the second of these plots, t/T = 1, the particles released

with energy extraction are already beginning to stretch over a larger distance than those

released without energy extraction due to the increased bypass velocity. At t/T = 5 many

particles released in the presence of energy extraction have encountered the tidal fence

(red particles) and there is a visible increase in dispersion compared to those particles

released without energy extraction. The variation in K over several tidal cycles is plotted

for both scenarios in Figure 7.18. The results con�rm that tidal dispersion does increase

when energy is extracted and implies that the mixing of suspended sediment and pollutant

transport can be augmented (in this case by a factor of 2) close to the headland.

7.9 Discussion and Conclusions

In each of the simulations performed in this paper both Coriolis and viscous terms have been

neglected. Setting the Coriolis parameter to f = 0.00012 rad/s (representative of latitude

55°N) and repeating the simulations for case 7-1 led to an increase in maximum power

extraction of ~20 %. This increase is to be expected since the e�ect of the Coriolis forcing

on the eastward propagating tidal wave is to increase the tidal range and tidal currents

close to the headland, which lie to the right hand side of the progressive wave. Introduction

of depth-averaged eddy viscosity coe�cients of 1 m2/s and 5 m2/s had negligible e�ect on

the extracted power (less than 5 % change) for all of the cases.

A main conclusion from the work in this chapter is that the power that can be extracted

from a tidal fence located next to a tidal headland is limited because the �ow can bypass

when energy is extracted. Analysis of the �ow �eld shows that the bypass �ow is not

symmetric round the fence, but is greater on the ocean side where the depth is greater.
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Figure 7.17: Tidal dispersion for Case A. (a) Initial location of 152 particles. (b) Particle
positions at t/T = 1. (c) Particle positions at t/T = 5. The crosses represent particles
released without energy extraction and the circles with energy extraction (B = 0.6). Circles
coloured red have passed through the tidal fence.
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Figure 7.18: Time varying di�usion coe�cient evaluated relative to the released particles.
Dash-dot line is without energy extraction, solid line is with energy extraction (B = 0.6)
and the circles indicate the di�usion coe�cient obtained when 561 particles are released in
the presence of energy extraction.
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Importantly, natural dissipation and kinetic �ux are not a consistent fraction of the maxi-

mum power extraction over the range in dynamic conditions typical to the tidal headlands

found around the UK. Despite this, the kinetic �ux does appear to be potentially useful

in identifying the best location to deploy a fence in the vicinity of a headland. It is not

unreasonable to expect that this will also be the case for other laterally unbounded tidal

�ows.

Numerous combinations of device blockage ratio and velocity coe�cient can be chosen to

maximise power extraction. However, consistent with results discussed in Vennell [2010] for

a tidal channel, the available power is maximised when devices with large blockage ratio

are used within the fence. The results also demonstrate that the fraction of maximum

extractable power available to devices within the fence is dependent on their location along

the fence as well as the tidal dynamics. Moreover, a greater fraction of extractable power

appears to be available, for a given blockage ratio, when acceleration and bed friction e�ects

are small relative to advection terms in the momentum balance.

Energy extraction can augment both residual shear stress at the seabed and the poten-

tial for mixing of suspended material at a coastal headland site. Interestingly, the second

of these e�ects may have bene�cial environmental consequences, helping to dilute contam-

inants introduced at sewage outfalls, which are commonly located close to headlands.
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Chapter 8

Conclusions

8.1 Introduction

This thesis is concerned with estimating the tidal energy potential of various coastal sites,

or basins, and the e�ect of energy extraction on natural hydrodynamics. In each case

emphasis has been placed on introducing tidal energy devices as a momentum sink that

can be related directly, via momentum actuator disc theory, to a fence of actual tidal devices

of known diameter, spacing and wake velocity coe�cient. This has enabled models and

simulations of both the extracted and available power for a tidal fence deployed at each

coastal site. In this chapter, the main conclusions of the work are summarised and possible

future research is suggested.

8.2 Conclusions

8.2.1 The local Field

� Linear momentum actuator disc theory (LMADT) has been applied to a tidal device

placed in a uniform tidal stream, allowing for both a deformable free surface and

downstream mixing (pressure-volume constrained �ow). This application of LMADT

has e�ectively combined the previous analysis of Garrett and Cummins [2007] (for a

�xed free surface) and Whelan et al. [2007] (without downstream mixing), to establish

a measure of e�ciency η, for a tidal device in a tidal stream of �nite Froude number.

� The measure of e�ciency η has allowed for a distinction to be made between the
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power extracted by a tidal fence and the power available to tidal devices within the

fence. The most e�cient fences are comprised of devices with large area and small

center to center spacing.

� Because the power that can be extracted from a tidal site is generally limited (see

Section 8.2.3), the measure of e�ciency becomes as important in tidal turbine design

as the traditional power coe�cient. In fact, if a fence is operating at maximum

power extraction, an e�cient device will yield the most available power, not a device

operating at maximum power coe�cient. Moreover, at all levels of power extraction

the available power is de�ned by the product of e�ciency and extracted power.

� In a tidal stream with negligible Froude number, η is consistent with the measure of

e�ciency derived by Garrett and Cummins [2007] for a tidal channel with a �xed free

surface. However for �nite Froude number, the e�ect of the free surface is to reduce

the e�ciency η by an amount that is approximately 1 −∆h/2h, where ∆h/h is the

dimensionless depth change across the turbine fence.

� The application of LMADT to a tidal device in a tidal stream with a deformable free

surface has provided a relationship between the depth and velocity both upstream and

downstream of a tidal fence. Unlike a similar relationship that can be obtained for a

device in a tidal stream with a free surface that is assumed to be �xed (Garrett and

Cummins [2007]), the relationship established here conserves mass and is therefore

better suited to the representation of a momentum sink in a shallow water model.

� Lastly, for the pressure-volume constrained �ow it has been shown that solutions

to the actuator disc model become physically inadmissible when the bypass �ow is

hydraulically critical. It has also been noted that the traditional power coe�cient

increases rapidly as the blockage ratio approaches unity. This latter result was also

noted for an actuator disc in a volume constrained �ow and, consequently, a revised

power coe�cient has been suggested to normalise for the head di�erence that results

between the upstream and downstream �ow.
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8.2.2 Simulation of Tidal Flow

� The numerical code OxTide has been written to solve the Shallow Water Equa-

tions (SWEs) with the discontinuous Galerkin Finite Element Method. A series of

validation and veri�cation tests (Appendix B) have shown that the code achieves

satisfactory results for linear, non-linear and viscous simulations. It has also been

demonstrated that the code is well balanced in the sense that is can simulate quies-

cent initial conditions in cases when the bed topography is varying.

� A line sink of momentum has been implemented within the numerical code to simulate

momentum extraction by a tidal fence of devices in a shallow water �ow. It has been

shown that the perturbation in depth and velocity across the tidal fence can be de�ned

by LMADT when the devices with the fence have a known blockage ratio and wake

velocity coe�cient. This provides a means to relate the momentum sink within the

shallow water model to a real con�guration of devices. Hence estimates can be made

of both the extracted and available power for a tidal fence deployed within any coastal

geometry. This is distinct from previous research concerning 2D shallow water tidal

models.

8.2.3 Analysis of Coastal Sites

8.2.3.1 General Results

� Based on a desktop survey of various coastal sites, which have been earmarked for

tidal stream energy extraction, four classes of coastal geometry have been de�ned.

Each of the surveyed sites listed in Appendix A can be classi�ed into one of these

four classes of geometry, or a combination thereof. Several idealised cases of these

generic classes have been modelled numerically and analytically, with the following

common conclusions:

� For all coastal sites modelled, the amount of power that could be extracted by

a tidal fence deployed at the site was limited (i.e. a maximum power extraction

was shown to exist).

� For all coastal sites considered the maximum power extraction was not related
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in any simple way to the natural kinetic �ux or the natural rate of energy

dissipation due to bed friction.

� The available power from a tidal fence was maximised when tidal devices with

large blockage ratio and high wake velocity coe�cient were used. In contrast the

extracted power was generally indi�erent to the blockage ratio of devices within

the fence.

� Maximum available power does not generally coincide with the point of maxi-

mum power extraction. This result is consistent with the recent work of Vennell

[2010] for an idealised rectangular channel, and implies that more than just the

maximum power extraction from a coastal site is required to identify the op-

timum available power. A numerical model which can represent tidal devices,

such as the model developed in this thesis, is therefore necessary to determine

the available power at a given coastal site.

8.2.3.2 Tidal Channel

� The theoretical model of Garrett and Cummins [2004], which described the power

extraction in terms of the natural channel �ow rate and driving tide, agrees well

with numerical simulations of an idealised tidal channel. The theoretical model is

less accurate for multiply connected channels when tidal devices are deployed in a

subchannel. Furthermore, an alternative model has been presented to predicted the

maximum extractable power for cases when the subchannel has an impedance that

is much smaller than that of the total multiply connected channel.

� For a single fence of given blockage ratio, a greater fraction of the maximum ex-

tractable power can be removed from advection dominated channels (shallow and

short channels) than for acceleration and drag dominated channels (long, deep and

rough channels).

8.2.3.3 Oscillating Bay

� The maximum extracted power predicted by the theoretical model of Blanch�eld et

al. [2008] agrees well with numerical simulations of isolated enclosed bays connected
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to an adjoining sea or ocean by a single inlet channel. For more complicated geome-

try, resembling two inlet channels to the bay, the theoretical model is not appropriate

and provides an inaccurate indication of the maximum power extraction. Numeri-

cal simulations or alternative theoretical models are required to predict the power

extraction for these, more complicated, geometries.

� Wetting and drying in an enclosed bay connected to the open ocean by a narrow

channel has been shown to introduce time asymmetry into the time series of extracted

power but have little e�ect on the limit to power extraction.

� The power that can be extracted from an open non-enclosed bay varies along the bay

length. Taking the tidal elevation at the mouth of the bay to be �xed, the extracted

power is generally largest at the mouth of the bay unless the bay is longer than some

resonant length. For any bay length the optimum place to locate a fence along the

bay to maximize the available power is dependent on the geometry of the bay and

the number of devices installed within the fence.

8.2.3.4 Coastal Headland

� The power that can be extracted from a tidal fence deployed near to a coastal headland

is limited because �ow will tend to bypass, predominantly on the ocean side. The

maximum power is not well predicted by the undisturbed kinetic �ux or the natural

dissipation of energy due to bed friction. For a given background tidal current, the

extractable power increases when the device is placed at the location of maximum

natural kinetic �ux.

� Unlike the deployment of tidal devices in channels and inlets where the reduction

in tidal �ushing may be of major concern, the deployment of a tidal fence near to

a headland can lead to an increase in mean bed shear stress and tidal dispersion,

increasing the potential for bed load transport, and the mixing and transport of

suspended sediment and pollutants, respectively.
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8.3 Future Research

8.3.1 Veri�cation of Local Field

Actuator disc theory has been used in the present thesis to approximate the local �eld

around a tidal device. However, this theory cannot account for a rough seabed or non-

uniform and unsteady upstream �ow. It is therefore indi�erent to the shape and position

of the actuator disc in the �uid cross-section. To understand better the local �eld about a

tidal fence 3D numerical simulations of porous plates, similar to those being conducted at

Southampton University (see, for example, Harrison et al. [2010]), should be undertaken

but with an emphasis on varying the disc shape, disc placement and �ow conditions (i.e.

non-uniform and non-steady) in a variety of rough channel cross-sections. An important

metric to compare across these numerical experiments will be the thrust applied by the disc

for a given quantity of power removed at the disc, which together with the device blockage

ratio, will also de�ne the disc e�ciency.

Models of the local �eld should also be extended to incorporate supporting structure,

such as foundation or moorings. Models of this kind are necessary to estimate the thrust

of the tidal device and the drag due to the supporting structure, the latter of which will

increase the power extracted from the �ow but not generally the power available to the

turbines. Consequently these models will allow for a better estimation of the installed

e�ciency of a tidal device.

8.3.2 Shallow Wake of a Tidal Fence

In the present thesis a line sink of momentum has been used to introduce a tidal fence,

comprised of many tidal devices, into a 2D model based on the SWEs. When the fence is

laterally unbounded, as for the case of �ow around a fence near to a headland, a shallow

water wake is simulated behind the fence that eventually mixes with the surrounding tidal

stream. To use the 2D model to accurately assess the environmental e�ects of energy

extraction, and the interaction between unbounded fences placed in close proximity, it

is important to verify if the shallow wake simulated with the 2D model is an accurate

representation of reality. This veri�cation could be undertaken by comparing simulations

to experimental results (for example those of Chen and Jirka [1995] concerning perforated
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plates that extend over the full depth of a shallow water �ow, or new experiments on porous

strips that do not traverse the full depth of the �uid). 3D numerical models would also

provide a useful comparison.

8.3.3 Compound Sites and Fence Interaction

Using a line sink of momentum to represent a fence of tidal devices in a shallow water

model, several idealised coastal basins have been investigate in the present thesis. It has

been shown in each case that there is a limit to power extraction and available power. Due

to time constraints many other idealised cases of interest, including (1) various compound

additions of the individual class of geometry outlined in Chapter 3 and (2) the introduction

and interaction of numerous tidal fences at a given coastal site, have not been analysed in

this work. The numerical code and representation of tidal fences developed in this thesis

can, however, be applied to such cases.

There is also capability, with the simple numerical representation of tidal fence discussed

in this thesis, to model fence comprised of turbines which have cut-in and cut-out power

limits. This would be achieved by calculating the momentum sink for a fence that has a

turbine porosity (α2) which is de�ned by a simple function of the power removed by the

turbines or the magnitude and direction of the incident tidal current. Modelling turbines

in this way would allow for a more realistic representation of turbines. Furthermore, since

the cut-in and cut-out limits will e�ect the structural requirements and thus cost of the

turbines, this modelling could also be used to determine the most appropriate turbine

loading range (i.e. cut-in and cut-out limits) to reduce the cost of the turbines relative to

the power they remove.

8.3.4 Analysis of Actual Coastal Basins

It is inevitable that, prior to the installation of tidal fences or farms, site speci�c models

will be required. These models will need to provide estimates of available tidal energy and

inform environmental e�ects, such as localised changes in tidal range, currents and inter-

tidal area. The models will also need to account for the interaction of tidal farms placed

in close proximity, which appears to be inevitable given the recent leasing of 10 individual

sites clustered in the Pentland Firth and Orkney waters (Crown Estate, 2010).
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Research currently underway at Oxford is investigating energy extraction from three

UK sites: Pentland Firth, Anglesey, and Bristol Channel. It is intended that this work will

introduce tidal devices using the line sink of momentum suggested in this thesis. Another

important aspect of that research will concern the treatment of open boundary conditions,

particularly for a resonant site such as the Bristol Channel (Rainey [2009]). A simple

characteristic boundary condition, similar to that presented in Chapter 4, would be a

useful starting point to avoid the excitation of arti�cial resonant modes when tidal devices

are introduced.
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Appendix A

Survey of Tidal Stream Sites

The growing interest in tidal power around the globe has led to the investigation of

numerous coastal sites. This appendix surveys some of these sites, focusing on North

America and the United Kingdom. The aim of the survey is determine general topography,

bathymetry and seabed conditions across the range of identi�ed sites.

A.1 United Kingdom

A study of the UK tidal stream resource has been conducted by Black and Veatch

Ltd, 2005 (and Black and Veatch Ltd, 2004), in which 57 UK sites were investigated.

The characteristics of a number of these sites are summarised in Table A.1, together with

a classi�cation based on the generic set of coastal basins discussed in Chapter 3. The

characteristics include, where relevant, length scale L, L1 and L2 (see Figure 3.2), average

site depth hd close to the location of peak tidal currents, width W (for a channel), basin

area S0 (for an enclosed bay) and peak tidal current on spring (Sp.) tides and neap (Np.)

tides. General topography, bathymetry and (predominant) seabed conditions are also noted

and a sketch of each site is given in Figure A.3. The regional locations of the individual

sites around the UK are outlined in Figure A.1.

A.2 North America

The tidal stream resource on the West and East coasts of North America have also been

investigated by Triton Consultants Ltd. [2006] and EPRI [2006]. Figure A.2 outlines several

regional locations of perspective tidal sites highlighted in these investigations. Table A.2
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records similar characteristics to Table A.1 and Figure A.4 sketches the individual sites.

Current velocities are often recorded as peak velocities in the literature, and are assumed

to be representative of Spring tidal velocities.
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Figure A.1: Regional locations around the UK (A-F) of the sites listed in Table A.1. The
axis are degrees of longitude and latitude.
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Figure A.2: Regional locations around North America (G-P) of the sites listed in Table A.2
(a) The West Coast, (b) The East Coast. The axis are degrees of longitude and latitude.
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Parameters(1,2) Comments

Site

Name

(Loc.)

L

km

hd

m

W

km

S0

km2

U , m/s

Sp. Ne.

Topography(1,2) Bathymetry(1,3) Seabed(4) Class Sketch

Yell

Sound

(A)

3 30 1.5 - 3.45 1.72 Two ~1.5 km wide

channels separated by

string of islands.

Average depth 30

m.

RSG a UK 1

Bluemull

Sound

(A)

5 25 1.5 - 3.45 1.72 1 km wide

constriction near

Belmont.

Average depth 25

m.

RSG a UK 2

Pentland

Firth

(A)

24 59 12 - 6.18 2.64 Three main islands

interrupt the strait,

(Swona, Stroma and

the Muckle Skerry.)

Depth 60-80 m

over majority of

Strait.

Bedrock. a/c UK 3

Dunscansby

Head

(A)

4x4 65 - - 5.15 2.2 Smooth headland.

Adjacent island

Stroma is ~1 x 2 km.

Bathymetry

contours follow

coastline. Depth

drops smoothly to

70 m at 200 m

from shore.

Bedrock.

GS

near

shore.

d UK 4

Inner

Sound

(A)

2 33 2 - 3.35 1.44 Located between

Stroma and the

Scottish Mainland.

Average depth 33

m.

RSG a/c UK 5

Papa

Westray

(A)

7 30 2.5 - 2.93 1.46 Papa Westray Is. is

~2 km wide by 7 km

long.

Average depth 30

m.

RSG a/c UK 6

Fall of

Warness(5)

(A)

2 18 1.5 - 3.45 1.72 EMEC tidal testing

site. Muckle Green

Holm Is. provides

some constriction.

Test locations

depth ~20 m.

RSG a/d UK 7

FersNess

(A)

6 25 1 - 2.59 1.29 Channel turns to the

west 90 degrees.

Average depth 25

m.

RSG

a

UK 8

Gulf of

Cor-

ryvreckan

(B)

2 22 1 - 2.6 1.29 Site of the world's

third largest

whirlpool.

Sign�cant

variation in

bathymetry.

RSG a/c UK 9

Dorus

Mor (B)

.75 22 .75 - 4.1 2.04 Island diameter <1

km.

Average depth 22

m.

RSG a/d UK

10

Loche

Linnhe -

Corran

(C)

1 30 0.4 - 2.59 1.29 Large currents �ow

through constriction

North of Loche.

Average depth 30

m.

RSG a/b UK

11

Kyle

Rhea

(C)

3 22 0.4 - 4.1 2.04 Slight meander along

the channel. Part of

channel network.

Average depth 22

m.

RSG a/b UK

12

Table A.1: Summary of tidal sites around the United Kingdom - Part (1)
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Sanda

Sound

(D)

1 22 - - 2.6 1.29 Sanda Is. diameter 1

km.

Average depth 22

m.

SG c/d UK

13

Mull of

Kintyre

(D)

12x12 22 - - 2.6 1.29 Rounded headland. Average depth 22

m.

SG d UK

14

Mull of

OA (D)

6x6 22 - - 2.6 1.29 Rounded headland. Average depth 22

m.

RSG d UK

15

Anglesey

(D)

20x20 35 - - 3.21 1.61 Rounded headland. Depth increases

to 40-60 m far

from shore.

SG d UK

16

Rathlin

Island

(D)

10 80 5 - 2.6 1.4 Rathlin Island has

dimensions of 1.5x5

km.

Depth increases

to 100 m 2 km

beyond Rathlin

Is.

RSG c UK

17

Mull of

Galloway

(D)

4x6 80 - - 2.6 1.4 Rounded headland

with a thin cape.

Average depth 33

m.

SG d UK

18

Bristol

Channel

(6)(E)

100 33 40 - 2.6 1.4 Linear reduction in

width East of

Ilfracombe (40 km

wide)

Bathymetry

reduces linearly

inland.

Sand &

mud.

b UK

19

Isle of

Wight

(F)

20x20 30 - - 3.2 1.6 Relatively well

rounded

island/headland.

Depth slopes to

80 m depth 20-30

km to South.

RSG d UK

20

Portland

Bill (7)

(F)

2x5 33 - - 3.8 1.9 Average depth 33

m. Slopes to 50 m

depth over 20 km.

SG d UK

21

Alderney

Race (8)

(F)

2x5 39 10 - 4.4 2.4 Right angled

headland. Forms 10

km channel with

Alderney Is.

10 km north of

Alderney depth

80 m.

RSG c/d UK

22

Casquets

(F)

- 70 - - 2.6 1.4 Flow beyond

Alderney Island.

Average depth

70m.

RSG c/d UK

23

North

West

Guernsey

(F)

- 57 - - 2.1 1.1 Flow around

Guernsey Is., which is

10 km long.

Average depth 57

m.

RSG d UK

24

North

East

Jersey

(F)

- 22 - - 3.1 1.7 Continuation of the

Alderney Race.

Jersey Is. 10 km long.

Average depth 22

m.

RSG d UK

25

Sources: (1) Black and Veatch [2005]; (2) Google Maps: maps.google.co.uk/; (3) Tidal Stream Atlas' UKHO;

(4) British Geological Survey (BGS); (5) European Marine Energy Centre: www.emec.org.uk;

(6) Rainey [2009]; (7) Bahaj and Myers [2004]; (8) Blunden and Bahaj [2007]

Notes: RSG=Rock, Sand and Gravel, SG=Sandy Gravel, for class (d) sites L ≡ L1 × L2.

Table A.1: Summary of tidal sites around the United Kingdom - Part (2)
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Parameters Comments

Site

Name

(Loc.)

L

km

hd

m

W

km

S0

km2

U ,

m/s

Topography Bathymetry Seabed Class Sketch

N. Inian

Pass(4,5)

(G)

6 230 3 - 4.1 Deep site, �at

bottom at depths

> 290 m.

Rock a/b US 1

S. Inian

Pass(4,5)

(G)

5 45 1.5 - 4.9 45 m averaged

depth, 120 m

max. depth.

Rock a/b US 2

N.

Passage(4,5)

(G)

8 110 3 - 2.9 Width increases

linearly to west.

110 m average

depth, 140 m

max. depth.

Rock a/b US 3

S.

Passage

(4,5) (G)

8 90 4 - 3.3 90 m average

depth 140 m max.

depth. Slope of

20-30 m.

Rock a/b US 4

Haidai

Gwaii

(6,7) (H)

27 14 2.5 - 2.5 Long inlet to a small

basin.

14 m average

depth, 40-75 m

max. depth.

SG b US 5

Johnstone

Strait (8)

(J)

100 5 400 - 6-7 Uniform width. Many

tributaries exist.

Mid channel

depth up to 400

m.

Rock,

mud &

silt.

a US 6

Admiralty

Inlet (K)

(9,10)

20 50 5 - 2 Island forms

south-west boundary.

Average depth of

35-50 m, 120 m

max. depth.

SG a/b US 7

Tacoma

Narrows

(11) (K)

8 40 1.2 - 3.3 Uniform width and

substantial bend.

Average depth of

40 m, 68 m max.

depth.

SG a/b US 8

San

Francisco

(9,10) (-)

10 70 1.5 1000 2.5 Under bridge 70

m average depth.

Bedrock

& Sand

b US 9

Minas

Channel(1)

(L)

13.1 40 3.9 600 2.5 Strong separation

near the cape (Split).

Area of bay at HW 3x

area at LW.

40 m averaged

depth, 70 m max.

depth.

Bedrock b US

10

Minas

Passage(1)

(L)

4.5 50 1.4 660 4 Western exit

dominated by cape

(Split). Area of bay

at HW 3x area at LW.

50 m averaged

depth, 100 m

max. depth.

Bedrock b US

11

Cobequid

Bay(1)

(L)

7 10 2.1 120 2 Short bay ~20 km

long. No notable

constrictions

6 m averaged

depth, 8-12 m

max. depth. >

linear slop to

shore

SG b US

12

Table A.2: Summary of tidal sites around North America - Part (1)

212



Cumberland

Basin(1)

(M)

2.2 10 0.4 13.2 2.3 25% change in A

between LW & HW.

Uniform

rectangular

section. At

entrance 10 m

averaged depth,

18-23 m max.

depth.

GSB. b US

13

Digby

Gut(1)

(O)

3.5 25 0.8 75 3.5 20-25 m average

depth, up to 90 m

max. depth.

Sand,

&

Boul-

ders.

b US

14

Petit

Passage(1)

(O)

3.7 16 0.6 - 3.5 Parallel channel sides,

with a step change at

half way.

16 m average

depth, up to 40 m

max. depth.

Sand,

&

Boul-

ders.

a/b US

15

Muskaget

Channel(3)(P)

7 22 2.5 - 2 Wide channel

between Nantucket Is.

and mainland.

16 m deep

channel (width 7

km) located on

northern edge.

Bedrock a/c US

16

Lubec

Narrows(2)

(N)

.1 7.5 0.025 - 1.6 Small capes at inlet

and outlet.

Deep trench, 50 m

max. depth.

GMB a/b US

17

Western

Passage(2)(N)

7 30 2 - 2 Part of a channel

network. Very

turbulent �ow

conditions

108 m depth

towards the

Southern end of

the channel.

GMB a/b US

18

Harbour

Passage(2)

(N)

7 30 2 - 2 Many islands and

interconnected

channels. Entry and

exit poorly de�ned in

South.

30 m average

depth, 90m max.

depth.

GMB a/b US

19

Latete

Passage(2)

(N)

7 20 2 - 2.5 Two islands to the

North. Stream

meanders to South..

10-20 m average

depth, 40 m max.

depth.

Bedrock a/b US

20

Sources: (1) EPRI-TP-003-NS; (2) EPRI-TP-003-NB; (3) EPRI-TP-003-MA; (4) EPRI-TP-003-AK;

(5) NOAA Electronic Navigational Charts;(6) Blanch�eld et al. [2008];

(7) Dept. Fisheries & Oceans (CHS): http://www.dfo-mpo.gc.ca; (8) Sutherland et al. [2005];

(9) Puget Sound Tidal Energy: http://www.pstidalenergy.org; (10) NOAA Tidal Current Predictions;

(11) EPRI-TP-006-WA; (12) EPRI-TP-006-CA

Notes: RSG=Rock, Sand and Gravel, SG=Sandy Gravel, GMB=Gravel, Mud and Bedrock, for class (d) sites L ≡ L1 × L2.

Table A.2: Summary of tidal sites around North America - Part (2)
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−1.3 −1.2 −1.1 −1
60.2

60.4

60.6

60.8

(a) UK 1: Yell Sound

−1.1 −1 −0.9 −0.8
60.4

60.6

60.8

61

(b) UK 2: Bluemull Sound

−3.6 −3.4 −3.2 −3 −2.8
58.4

58.6

58.8

59

59.2

(c) UK 3: Pentland Firth

−3.1 −3.05 −3 −2.95
58.5

58.55

58.6

58.65

58.7

58.75

(d) UK 4: Dunscansby Head

−3.2 −3.1 −3
58.55

58.6

58.65

58.7

58.75

(e) UK 5: Inner Sound

−3.1 −3 −2.9 −2.8
59.1

59.2

59.3

59.4

59.5

(f) UK 6: Papa Westray (Orkney)

−3.2 −3 −2.8 −2.6
58.8

59

59.2

59.4

(g) UK 7: Fall of Warness (Eday)

−2.85 −2.8 −2.75 −2.7
59.15

59.2

59.25

59.3

(h) UK 8: Kili Hom/Fers Nes

−5.75 −5.7 −5.65 −5.6
56.1

56.15

56.2

56.25

(i) UK 9: Gulf of Corryvreckan

−5.64 −5.62 −5.6 −5.58 −5.56
56.08

56.1

56.12

56.14

56.16

(j) UK 10: Dorus Mor

−5.4 −5.3 −5.2 −5.1
56.5

56.6

56.7

56.8

(k) UK 2: Loche Linnhe - Corran

−5.75 −5.7 −5.65 −5.6
57.1

57.2

57.3

57.4

(l) UK 12: Kyle Rhea

−5.7 −5.6 −5.5
55.2

55.25

55.3

55.35

55.4

(m) UK 13: Sanda Sound

−6 −5.9 −5.8 −5.7 −5.6
55.1

55.2

55.3

55.4

55.5

(n) UK 14: Mull of Kintyre
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(o) UK 15: Mull of OA

Figure A.3: Sites around the UK documented in Table A.1 (Part 1).
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(y) UK 25: North East Jersey

Figure A.3: Sites around the United Kingdom documented in Table A.1 (Part 2).
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(i) US 9: San Francisco
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(j) US 10: Minas Channel

−65 −64.5 −64 −63.5

45

45.2

45.4

45.6
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(m) US 13: Cumberland Basin
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(o) US 15: Petit Passage

Figure A.4: Sites around North America documented in Table A.2 (Part 1).
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(s) US 19: Harbour Passage

−67 −66.9 −66.8
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(t) US 20: Latete Passage

Figure A.4: Sites around North America documented in Table A.2 (Part 2).
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Appendix B

DG Numerical Solver (OxTide)

This appendix documents (1) the detailed numerical solution of the discrete system of

equations outlined in Section 4.4, which has been implemented into a numerical code called

OxTide, and (2) validation tests of OxTide for a series of linear, non-linear and viscous

becnhmark problems and experiments.

B.1 Numerical Solution

To implement the DG formulation of the SWEs the semi-discrete system of equations out-

lined in Section 4.4, Chapter 4, must be formed at each time step and for every element Ωe.

This requires speci�cation of the shape and basis functions and the subsequent formulation

of the terms in the discrete equations.

B.1.1 Shape Functions

The elements usually considered in the present work are three node straight sided triangular

elements. (Triangular isoparametric elements are also used in some of the simulations.

Section B.1.5 discusses the implementation of these elements.) Triangular elements have

been adopted, as opposed to say structured and unstructured rectangles or curvilinear

rectangles, because of the availability of open source triangle mesh generators and the

practical need to model complex geometry with little e�ort (Persson [2004]).

A linear three node triangle in global (x, y) coordinates is shown in the top left of

Figure B.1. As in the standard �nite element approach it is e�cient to specify a set of

basis functions ψk or `k, in a natural coordinate system ~ξ = (ξ1, ξ2) which will ensure that
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x

y

b
a

(x1,y1)

(x2,y2) (x3,y3)

(-1,1) (1,1)

(1,-1)(-1,-1)(1,-1)(-1,-1)

(-1,1)

side1

side2

side3

Figure B.1: Linear triangular elements mapped to the natural coordinates (ξ1, ξ2) via the
transformation Ψ(ξ1, ξ2), and subsequently mapped onto the warped square de�ned in
integration coordinates (a, b).

the numerical integration is identical for each element. Therefore, the global triangle is

mapped to the standard natural triangle de�ned for {0 ≤ ξ1, ξ2; ξ1 + ξ2 ≤ 0}, as shown in

the bottom left of Figure B.1. This mapping is achieved with the shape functions:

N1(ξ1, ξ2) =
1 + ξ2

2
, N2(ξ1, ξ2) = −ξ1 + ξ2

2
, N3(ξ1, ξ2) =

1 + ξ1

2
. (B.1)

The global coordinates are then related to the natural coordinates through the following

relationships x(ξ1, ξ2) = N(ξ1, ξ2) · xi, and y(ξ1, ξ2) = N(ξ1, ξ2) · yi, where N(ξ1, ξ2) is the

vector of the shape functions de�ned in Equation B.1, and the vectors xi and yi describe

the vertex coordinates (listed in anticlockwise order). The Jacobian associated with the

transformation is

J~x,~ξ =
∂(x, y)

∂(ξ1, ξ2)
=

1

4
((x1 − x2)(y3 − y2)− (x3 − x2)(y1 − y2)) . (B.2)

B.1.2 Basis Functions

From the discussion in Section 4.4 it is clear that either modal or nodal basis functions can

be adopted. Theoretically numerical convergence can be proved when either approximation

is used, and so either form is an acceptable choice in a �nite element context (Hesthaven and

Warburton [2008]). In fact, when the true solution is a polynomial with degree less than

n, both approaches will yield identical results. In practice however, the nodal approach
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provides one subtle advantage in that physical boundary conditions, as would be required

in coastal models near an open boundary, can be introduced directly through a nodal value

rather than via a projection into modal space (Giraldo and Warburton [2008]). Nodal basis

functions are therefore adopted herein.

B.1.2.1 Choice of Nodal Points

The set of element nodal points that provide the best polynomial approximation minimise

the Lebesgue constant (Karniadakis and Sherwin [2005]). A number of nodal point sets

for natural triangles exist which give consistent results with respect to the Lebesgue con-

stant (see, for example, Karniadakis and Sherwin [2005]). In the present thesis, warped

equispaced points are used. MATLAB algorithms to compute these points for the natural

triangle are available in Warburton [2006]. Example points for n = 2, 4 and 8 are given in

Figure B.2.

B.1.2.2 Choice of Nodal Basis Functions

There are no known explicit nodal basis functions that pass through the warped equispaced

nodal points. Instead the basis functions must be de�ned implicitly in terms of a set of

auxiliary polynomials {φk}, which can be arbitrary provided that they have the required

polynomial degree, by writing

M∑
k

škφk(~ξi) =
M∑
k

sk`k(~ξi), for all i ≤M, (B.3)

where {šk} are a set of modal coe�cients, {sk} are nodal coe�cients and `(~ξ) are nodal

basis functions, which have the typical Lagrangian property that at the M node points

`k(~ξi) = δki, where δ is the Kronecker delta. Equation B.3 can be expressed in matrix form

by enforcing the Lagrangian property of the functions {`k}, as

sk = V šk, with V(i,k) = φk(~ξi), (B.4)

where V is termed the Vandermonde matrix. The nodal basis functions are therefore related

to the auxillary polynomials {φk} by
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VT{`k} = {φk}, or `k(~ξ) =
M∑
j

(VT )−1
(k,j)φj(

~ξ), (B.5)

which illustrates that the nodal basis functions are dependant on the nodal points and the

choice of auxillary polynomials. An obvious choice for the auxillary polyomials is ξα1 ξ
β
2 ,

where {α, β : 0 ≤ α, β;α+ β ≤ n}. However, as pointed out by numerous authors (see, for

example, Dubiner [1991], Kirby and Sherwin [2006]), these basis functions are only well-

conditioned when n is small (meaning that for larger n (& 6) the Vandermonde matrix will

have a large condition number). Dubiner [1991] has proposed a set of basis functions on

the natural triangle that is well conditioned for large n. These functions are orthonormal

and constitute a warped tensor product of Jacobi polynomials given by

φk(a, b) = θm,j(a, b) =

√
2

2m+ 1

(
22m+2

m+ j + 1

)
P 0,0
m (a)(1− b)mP 2m+1,0

j (b), (B.6)

where the subscripts m and j are such that {0 ≤ m, j;m + j ≤ n} giving in total M

functions. The coordinates (a, b) are related to the natural coordinates (ξ1, ξ2) by (see the

bottom right of Figure B.1 for a geometrical representation of the coordinates (a, b))

a = 2
(1 + ξ1)

1− ξ2

, b = ξ2, or ξ1 =
(1 + a)(1− b)

2
− 1, ξ2 = b, (B.7)

and Pα,β
n is a Jacobi polynomial de�ned by

Pα,β
n (x) =

(−1)n

n!2n
dn
[
(1− x)α(1 + x)β(1− x2)n

]
dxn

(1− x)−α(1 + x)−β. (B.8)

Using Equation B.6 a set of M auxiliary polynomials {φk} can be formed that, combined

with a set of M nodal points, can be used to de�ne a set of nodal functions through

Equation B.5. For example, an approximating polynomial of order n = 2 (M = 6) would

require the set of auxilliary polynomials {θ0,1, θ0,1, θ1,0, θ0,2, θ2,0, θ1,1} from which six nodal

basis functions {l1, l2, l3, l4, l5, l6} follow from Equation B.5 when six node points {ξi} are

de�ned (see Figure B.2 for an example).
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(a)

(b)

Figure B.2: (a) From left to right, example warped nodal points on the triangle for n = 2, 4
and 8. (b) Plots of the computed nodal basis function {lk}, for n = 2. The nodal basis
functions take a value of unity at the nodal points illustrated for n = 2 in sub-�gure (a).

B.1.3 Forming the Spatial Operators

B.1.3.1 Mass Matrix, M

Adopting nodal basis functions {lk} and introducing the relevant Jacobian (Equation B.2),

the elements within the mass matrix can be written as

M(i,k) = J~x,~ξ

¨
Ωe

`i`kdξ1dξ2, (B.9)

where the variable T refers to the natural triangle de�ned in Section 4.5.1. Based on

Equation B.5, Equation B.9 can be rewritten in terms of the Vandermonde matrix to give

M(i,k) = J~x,~ξ

¨
Ωe

(
M∑
j

(
VT
)−1

(i,j)
φj

)(
M∑
m

(
VT
)−1

(k,m)
φm

)
dξ1dξ2. (B.10)

Since the polynomials {φk} are orthonormal over the triangle T , this integral can be evalu-

ated exactly to giveM =J~x,~ξ(VV
T )−1, which is easily computed for a given element in the

domain.
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B.1.3.2 Area Integrals, B, E ,G

Initially consider B. Adopting nodal basis functions and natural coordinates, the ith term

of the vector B becomes

Bx(i) = J~x,~ξ

¨
Ωe

(
∂`i
∂x

F (Uh,Qh)

)
dξ1ξ2 + J~x,~ξ

¨
Ωe

(
∂`i
∂y

G (Uh,Qh)

)
dξ1ξ2 (B.11)

which can be expanded via the chain rule to read and split into two integrals by factoring

out the constant derivatives ∂ξ1/∂x and ∂ξ2/∂x (the second part By(i), is not written for

brevity)

Bx(i) = J~x,~ξ
∂ξ1

∂x

¨
Ωe

∂`i
∂ξ1

F (Uh,Qh) dξ1dξ2 + J~x,~ξ
∂ξ2

∂x

¨
Ωe

∂`i
∂ξ2

F (Uh,Qh) dξ1dξ2. (B.12)

The �ux terms within this expression are determined relative to Equation 4.3, as

F (Uh,Qh) =


U

(2)
h(

U
(2)
h

)2

/U
(1)
h + 1

2
g
(
U

(1)
h

)2

+ 2υTU
(1)
h Q

(1)
h

U
(2)
h U

(3)
h /U

(1)
h + υTQ

(1)
h

(
Q

(3)
h + Q

(2)
h

)
 (B.13)

where U
(i)
h =

∑M
k U

(i)
k `k refers to the ith element of the vector Uh, for example, and g and

υT are gravity and depth-averaged eddy viscosity. The numerical computation of Equation

B.12 is achieved with quadrature over the triangular domain Ωe for each element

Bx(i) = J~x,~ξ
∂ξ1

∂x

Q∑
q

[
wq
∂`i( ~ξq)

∂ξ1

F
(
Uh( ~ξq),Qh( ~ξq)

)]
+

J~x,~ξ
∂ξ2

∂x

Q∑
q

[
wq
∂`i( ~ξq)

∂ξ2

F
(
Uh( ~ξq),Qh( ~ξq)

)]
, (B.14)

where {wq} are a set of quadrature weights corresponding to the quadrature points {~ξq}. A

set of exact quadrature points on the right angled triangle are used (compiled by Hesthaven

and Warburton [2008]), which can integrate polynomials up to n = 28 exactly. However

it should be noted that the integrand in Equation B.12 is a rational function (due to the

division by U
(1)
h =

∑M
k U

(1)
k `k, in various terms of the �ux vector) and so integration is not

exact using quadrature. Despite this, the assumption is made herein that the �ux vector is
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at most of order 3n and so quadrature is performed on Equation B.12 assuming that the

integrand is at most order 4n− 1 (where an additional n− 1 occurs due to the derivatives

of the basis functions).

To compute the quadrature formulae in Equation B.14, the gradients of the nodal basis

functions are evaluated, together with the �uxes, at the quadrature points. The gradients

of the basis functions are computed from (only the ξ1 direction is considered for brevity)

∂`k
∂ξ1

∣∣∣∣
~ξq

=
M∑
j

(
VT
)−1

(k,j)

∂φj
∂ξ1

∣∣∣∣∣
~ξq

, (B.15)

where the derivatives of the polynomials {φk} are found from

∂φk
∂ξ1

∣∣∣∣
~ξq

=
∂a

∂ξ1

∂φk
∂a

∣∣∣∣
~ξq

+
∂b

∂ξ1

∂φk
∂b

∣∣∣∣
~ξq

. (B.16)

For convenience a di�erentiation matrix D−→
ξ
, containing the derivatives for each nodal basis

function at each quadrature point, is de�ned as

Dξ1 = Vξ1V−1, where Dξ1,(q,k) =
∂`k
∂ξ1

∣∣∣∣
~ξq

and Vξ1,(q,k) =
∂φk
∂ξ1

∣∣∣∣
~ξq

. (B.17)

Noting that the conserved and auxiliary variables can be obtained at the quadrature points

via

{U(~ξq)} = {Uq} = VQV−1{Uk}, and {Q(~ξq)} = {Qq} = VQV−1{Qk}, (B.18)

with (VQ)(q,k) = φk(~ξq), introducing Equation B.17 into B.14 gives

Bx(i) = J~x,~ξ
∂ξ1

∂x

Q∑
q

[
wq(Dξ1)(q,i)F (Uq,Qq)

]
+ J~x,~ξ

∂ξ2

∂x

Q∑
q

[
wq(Dξ2)(q,i)F (Uq,Qq)

]
,

so that the complete vector Bx is simply J~x,~ξ
∂ξ1
∂x
DTξ1{wqFq} + J~x,~ξ

∂ξ2
∂x
DTξ2{wqFq}, where

{wqFq} represents the vector (w1F (U1,Q1) , . . . , wQF (UQ,QQ))T .

The formation of G, which contains the viscous �uxes, is similar to that of B. The
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resulting calculation for the �rst component amounts to

Gx = J~x,~ξ
∂ξ1

∂x
DTξ1 ({wqRx,q}) + J~x,~ξ

∂ξ2

∂x
DTξ2{wqRx,q}, (B.19)

where {wqRx,q}is the vector (w1Rx (U1) , . . . , wqRx (UQ))T . Again the integration of the

viscous �uxes using quadrature is inexact because of the presence of rational functions.

Satisfactory results have, however, been achieved using quadrature su�cient to integrate a

polynomial of order 3n− 1.

E can be computed as |J~x,~ξ| (VQV−1)
T {wqSq}, where {wSq}= (w1S (U1) , . . . , wQS (UQ))T .

The quadratic friction term introduces rational functions into the source terms. However

quadrature su�cient to integrate a polynomial of order 4n has been found to work satis-

factorily.

B.1.4 Forming the Line Integrals

Calculation of the terms S andA can be split into two steps: (1) evaluation of the numerical

�ux, and (2) quadrature of the line integral.

B.1.4.1 Evaluation of the Numerical Flux

The numerical �ux at a point along an element boundary ~ξb, is dependent on the interpo-

lated �eld variables within the element
(
Uh(~ξb),Qh(~ξb)

)
= (UL,QL), and values external

to the element (UR,QR), which may be obtained from an adjacent element or from a

global boundary condition. (Here the subscripts L and R describe the left and right side of

a positively oriented boundary.) Two approaches are used herein to evaluate the numerical

�uxes.

1. Lax-Friedrich Method In the presence of viscosity (υT 6= 0) the numerical �ux is

computed with the Lax-Friedrich method (see, for example, LeVeque [2002]) such that

F̂(Uh,Qh)nx + Ĝ(Uh,Qh)ny = ĤI(UL,QL,UR,QR)

=
1

2

(
F(UL,QL)nx + F(UR,QR)nx + G(UL,QL)ny +

G(UR,QR)ny

)
− C (UL −UR) (B.20)
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where C is the maximum eigenvalue at the element edge, taken to be

C = max

(√
u2
L + v2

L +
√
ghL,

√
u2
R + v2

R +
√
ghR

)
. (B.21)

The viscous �uxes are calculated by taking a simple average (Schwanenberg and Harms

[2004])

R̂x (Uh)nx + R̂y (Uh)ny = ĤV (UL,UR)

=
1

2

(
Rx(UL)nx + Rx(UR)nx + Ry(UL)ny + Ry(UL)ny

)
.

(B.22)

2. HLLC Riemann Solver In absence of viscosity (υT = 0) the numerical �ux is

computed by constructing a one dimensional Riemann problem at the interface of an ele-

ment. The solution is approximated using the Harten, Lax and van Leer Contact (HLLC)

method (Toro et al. [1994]). The advantages of pursuing this more involved numerical �ux

for inviscid problems are: (1) the HLLC method can be used when the depth of �uid on one

side of the interface is zero, allowing for implementation of a wetting and drying scheme

(Toro [2001]); and (2) the HLLC method is less dissipative than the Lax-Friedrich method

allowing for better resolution of hydraulic jumps and tidal bores (LeVeque [2002], Toro

[2001]), which occur in locations such as the Severn Estuary, for example (Pugh [1987]).

The Riemann problem at a point along the boundary of an element is formed by pro-

jecting the dependant variables onto a local coordinate system, with axis x′ normal to the

element boundary, using the transformation matrix

T =


1 0 0

0 nx ny

0 −ny nx

 or T−1 =


1 0 0

0 nx −ny

0 ny nx

 , (B.23)

so that F̂(U)nx + Ĝ(U)ny = ĤI(UL,UR)= T−1Ê(TU) = T−1Ê(Y), where Ê(Y) repre-

sents the one dimensional �ux in the direction normal to the boundary and TU = Y =

[h hū hv̄]T are the conserved variables in the rotated coordinate system - i.e. the nor-

mal velocity to the boundary is ū and the tangential velocity to the boundary is v̄ (see
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Figure B.3). The one dimensional �ux is then obtained from the approximate solution of

the Riemann problem

∂Y

∂t
+
∂E(Y)

∂x
= 0, (B.24)

with initial conditions Y(x, 0) = YL, x < 0, and Y(x, 0) = YR, x > 0, obtained

from the nodal points on either side of the boundary were the �ux is to be calculated.

The approximate solution using the HLLC method assumes a linear wave structure in the

vicinity of the element edge, as shown in Figure B.4, and estimates the wave speeds to be

SL = ūL −
√
ghLsL, SR = ūR +

√
ghRsR (B.25)

S∗ =
SLhR(ūR − SR)− SRhL(ūL − SL)

hR(ūR − SR)− hL(ūL − SL)
(B.26)

where the �nal speed S∗ is formed by considering continuity over the wave region and the

Rankine-Hugoniot condition (Toro et al. [1994]). A correction in the presence of shock

waves is introduced via the variables sL and sR, which are de�ned as

s(L,R) =


√

(h2
∗ + h∗h(L,R))/2h2

(L,R) if h∗ > h(L,R),

1 if h∗ ≤ h(L,R).
(B.27)

where the height h∗ = 1
g

(
1
2
(
√
ghL +

√
ghR) + 1

4
(ūL − ūR)

)2
. The �ux over the computaitonal

timestep is then given as:

Ê(Y) =



E(YL) if SL ≥ 0,

E(Y∗L) if SL ≤ 0 ≤ S∗,

E(Y∗R) if S∗ < 0 ≤ SR,

E(YR) if SR ≤ 0.

(B.28)

where the ∗ �uxes in the interior region are E(Y∗L) = (F
(1)
∗ ,F

(2)
∗ , vLF

(1)
∗ )T and E(Y∗R) =

(F
(1)
∗ ,F

(2)
∗ , vRF

(1)
∗ )T , with F

(i)
∗ the ith term of the vector

F∗ =
SRF (YL)− SLF (YR) + SLSR(YR −YL)

SR − SL
, (B.29)

with F as de�ned in Section 4.3 for υT = 0.
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Figure B.3: Coordinate transformation at a given point along an element boundary to
yield a local one dimensional Riemann problem. Variables with subscript L are internal to
the element at the boundary. Variables with subscript R are obtained from an adjacent
element or global boundary conditions.

x

t

SL
SRS*

TUL TURTU*RTU*L
Figure B.4: The assumed wave structure of the HLLC Riemann solver.

B.1.4.2 Quadrature of the Line Integrals S,A

Following the solution of the numerical �uxes, the line integrals for triangular elements can

be restated as

S(i) =
3∑
s

(ˆ
Γs

`iĤI (UL,QL,UR,QR) dΓs

)
and A(i) =

3∑
s

(ˆ
Γs

`iĤV (UL,UR) dΓs

)
,

(B.30)

where the summation considers the line integral over all three edges of the triangle. Pa-

rameterising each edge with a positively orientated coordinate ts(ξ1, ξ2), such that

ts :=


ξ1 = −1, ξ2 = −t, |t| ≤ 1, along side 1,

ξ1 = t, ξ2 = −1, |t| ≤ 1, along side 2,

ξ1 = −t, ξ2 = t, |t| ≤ 1, along side 3,

where the side numbers are referenced in Figure B.1, leads to the integral (A(i) is similar)

S(i) =
3∑
s

(ˆ 1

−1

`iĤI (UL,QL,UR,QR)

∣∣∣∣ ∂x∂ts
∣∣∣∣ dts) , (B.31)
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with the Jacobian resulting from the parametrization of the edges. Conveniently for a

straight edge this Jacobian will be

∣∣∣∣ ∂x∂ts
∣∣∣∣ =

√(
∂x

∂ξ1

∂ξ1

∂t
+
∂x

∂ξ2

∂ξ2

∂t

)2

+

(
∂y

∂ξ1

∂ξ1

∂t
+
∂y

∂ξ2

∂ξ2

∂t

)2

= Js
~x,~ξ

=
Lsx,y

2
,

where Lsx,y is the length of the triangular edge s in global coordinates.

Evaluating the integrals in Equation B.32 with quadrature leads to

S(i) =
3∑
s

Js
~x,~ξ

Qs∑
qs

(
wqs`i(~ξqs)ĤI

(
UL(~ξqs),QL(~ξqs),UR(~ξqs),QR(~ξqs)

))
, (B.32)

where {wqs} are the quadrature weights and {~ξqs} = {(ξ1(tq), ξ2(tq))} are Gauss quadrature

points along the interval (−1, 1). Lastly, introducing the implicit de�nition of the nodal

basis functions (Equation B.5), both vectors can be computed with the matrix operations

S =
3∑
s

Js
~x,~ξ

(
VQsV−1

)T {wqsĤI,qs}, and A =
3∑
s

Js
~x,~ξ

(
VQsV−1

)T {wqsĤV,qs}, (B.33)

with ĤI,qs = ĤI

(
UL(~ξqs),QL(~ξqs),UR(~ξqs),QR(~ξqs)

)
, and ĤV,qs = ĤV

(
UL(~ξqs),UR(~ξqs)

)
,

where {wqsĤ(I,V ),qs} = (w1Ĥ(I,V ),1, . . . , wQsĤ(I,V ),Qs)
T , while VQs has elements (VQs)(qs,k) =

φk(~ξ(tqs)).

B.1.5 Boundary Conditions

The treatment of boundary conditions in the DG formulation is straightforward in principle

and amounts to the speci�cation of the depth and velocity components along the exterior

of the numerical boundary, Ub. These values are then used to construct the numerical

�ux for an element on the domain boundary, as explained in Section B.1.4 (for example

Ub = UR ). Several boundary conditions are implemented, including: (1) simple re�ective

boundaries; (2) constant �ow rate boundaries; (3) radiation, or open, boundaries; and (4) a

line sink of momentum to represent a fence of tidal devices. The last two of these conditions

have been discussed in depth in Chapter 4. A re�ective boundary condition is simulated
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by specifying the boundary values (LeVeque [2002])

hb = hin, ūb = −ūin, v̄b =

 v̄in, slip

0, no slip
, (B.34)

where the subscript b refers to the solution external to the boundary, the subscript in refers

to the solution just within the computational domain (for exampleYin = (hin, uinhin, vinhin)T =

TUL) and, ū and v̄ denote the normal and tangential velocities to the boundary. As ex-

pected, Equation B.34 can be interpreted as the solution of a Riemann problem normal to

the boundary shown in Figure 4.7. For example, setting u∗(t) = 0 will ensure zero mass

�ux at the wall, and the appropriate h∗ can be calculated so as to conserve the Riemann

invariant I+, along the right going characteristic line. Using a zero order extrapolation to

obtain the invariant gives

2
√
gh∗ = I+ = uin + 2

√
ghin. (B.35)

Conservation of the Riemann invariant along the left going characteristic line (I− = u∗ −

2
√
gh∗ = ub − 2

√
ghb ) is therefore automatically satis�ed if ub = −uin and hb = hin in

agreement with Equation B.34. A constant �ow rate boundary condition is introduced by

considering the same one dimensional problem outlined in Figure 4.7. For a prede�ned �ow

rate Q, the boundary values are obtained by solving the system of equations

u∗h∗ = Q and uin + 2
√
ghin = u∗ + 2

√
gh∗, (B.36)

which amounts to the solution of the cubic

2c3
∗ −

(
uin + 2

√
ghin

)
c2
∗ + gQ = 0, where c∗ =

√
gh∗. (B.37)

Setting ub = u∗ and hb = h∗ automatically satis�es the left going characteristic. The

tangential component vb is speci�ed directly.

B.1.6 Isoparametric Elements

When simulating shallow coastal �ows it is often necessary to use mesh that can conform

to a smooth coastline. This is because, although real coastal geometry will not be perfectly
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(a) I = 1.299 (b) I = 3.031 (c) I = 3.128

Figure B.5: Example of high order mapping for a triangular element (shown in red). (a)
n = 1, (b) n = 2, (c) n = 4. Location of global coordinates given by red circles. The three
small lines indicate the normal direction to the element boundary. The area of the element
I =
´ ´
T J~x,~ξ dξ1ξ2 is given below each sub-�gure.

smooth, it is important to use a mesh that will not trigger arti�cial separation at mesh

dependent locations. Bernard et al. [2009] present a good example of this arti�cial sep-

aration when analysing shallow non-steady wakes behind Rattray Island, Australia. For

this reason high-order curved triangular elements have also been used in addition to the

straight edged linear triangles discussed in Section B.1.1. The geometry of the high order

elements is described by

x(ξ1, ξ2) =
R∑
k

Nk(ξ1, ξ2)xk, and y(ξ1, ξ2) =
R∑
k

Nk(ξ1, ξ2)yk, (B.38)

where {Nk} is a set of nodal shape functions and {xk} and {yk} are the global coordinates of

the nodal points in the natural triangle. In practice there are several choices available for the

shape functions {Nk}. Here the order of the shape functions is kept the same as the order

of the numerical approximation n (i.e. elements are isoparametric). Furthermore, following

Hesthaven and Warburton [2008], the nodal basis functions de�ned in Section 4.5.2.2 are

used for the shape functions (i.e lk = Nk and R = M). Although this choice of shape

function is convenient computationally, serendipity shape functions, or other alternatives,

may be more useful in some circumstances (Bernard et al. [2009]). Figure B.5 illustrates

the accuracy achieved by using higher order shape functions to represent a unit circle with

a single element. The computation of the area of the element approaches π rapidly.

Introducing curved elements de�ned by Equation B.38, the formation of the spatial

operators described above require modi�cation to account for the variation the spatial

Jacobian, line Jacobian and outward pointing normal around the element boundary, with

ξ1 and ξ2. To illustrate how this is acheived the formulation of the mass matrixM and the
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two vectors B and S will be outlined brie�y (the remaining terms follow similarly). The

discussion follows that of Hesthaven and Warburton [2008].

To begin, the mass matrix is now given generally by

M(i,k) =

ˆ ˆ
T
lilkJ~x,~ξdξ1dξ2, (B.39)

where

J~x,~ξ =
∂x

∂ξ1

∂y

∂ξ2

− ∂x

∂ξ2

∂y

∂ξ1

. (B.40)

Solving Equation B.39 using cubature now leads to M = (VQ)TWVQ, where VQ,(q,k) =

φk(~ξq),W = diag(w1J~x,~ξ(
~ξ1), . . . , wQJ~x,~ξ(

~ξQ)), {wq} are the cubature weights and {J~x,~ξ(~ξq)}

represents the Jacobian calculated at the quadrature points {~ξq}. The Jacobian can be

calculated at each of the quadrature points via

{J~x,~ξ(~ξq)} = Dξ1{xk}.Dξ2{yk} − Dξ2{xk}.Dξ1{yk}, (B.41)

where Dξ1,2(q,k) = ∂lk
∂ξ1,2

∣∣∣
ξq

. Likewise, the operator B now becomes

Bx = DTξ1{wqFqJ~x,~ξ(
~ξq)

∂ξ1

∂x

∣∣∣∣
~ξq

}+DTξ2{wqFqJ~x,~ξ(
~ξq)

∂ξ2

∂x

∣∣∣∣
~ξq

}, (B.42)

where J~x,~ξ(
~ξq) is calculated as above and the partial derivatives can be taken from the

vectors Dξ1{xk} and Dξ2{xk}, respectively. Lastly, the line integral S requires two modi�-

cations. First the numerical �ux is evaluated using either approach in B.1.4, but with the

normal directions computed at the quadrature points along the element edge. Secondly the

line Jacobian at the quadrature points must be evaluated at each point according to

Js
~x,~ξ

(~ξqs) =

∣∣∣∣∣∂x(~ξqs)

∂ts

∣∣∣∣∣ =

√√√√( ∂x

∂ξ1

∣∣∣∣
~ξqs

∂ξ1

∂t
+

∂x

∂ξ2

∣∣∣∣
~ξqs

∂ξ2

∂t

)2

+

(
∂y

∂ξ1

∣∣∣∣
~ξqs

∂ξ1

∂t
+

∂y

∂ξ2

∣∣∣∣
~ξqs

∂ξ2

∂t

)2

,

which can be given in terms of the normal directions as Js
~x,~ξ

(~ξqs) =
√(

nx(ξqs)
)2

+
(
ny(ξqs)

)2
.
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B.2 Validation Tests

A series of benchmark tests have been undertaken to validate the DG numerical solver. In

many cases the error is investigated by computing the L1 and L2 norms, de�ned as

L1 =

ˆ
Ω

|g(x, y)| dΩ L2 =

√ˆ
Ω

(g(x, y))2 dΩ, (B.43)

where g(x, y) is the variable to be measured or the error between the computed solution

and a reference solution.

Firstly, two linear problems are considered, with the �ux terms in the numerical solution

replaced with the linearised versions given in Section 4.3, Chapter 4. The aim of the initial

linear tests were to verify the coding of the quadrature and connectivity routines, etc. by

comparison to exact solutions. In the subsequent test problems (i.e. non-linear, viscous

and non-trivial boundary conditions) non-linear terms in the �ux and source terms are

computed.

B.2.1 Linear Problems

B.2.1.1 L1 Seiching in a Rectangular Basin

This �rst problem considers seiching in a constant depth domain (x, y) ∈ [0, L] × [0, L] .

The analytical solution for the amplitude of the free surface is available in many texts (see,

for example Mei [1989])

ξ(x, y) =
∞∑
n,m

An,mcos
(nπx
L

)
cos
(mπy

L

)
cos(ωn,mt), (B.44)

where An,m represent the various modal amplitudes determined from the initial conditions

and distinguished by the integers n and m. The associated modal angular frequencies are

ωn,m = π
√

(n/L) 2 + (m/L)2. Convergence of the numerical solution towards the analytical

solution is investigated for four uniform meshes having a di�erent element size, indicated

by hm. The coarsest mesh coincides with hm = L/2 (see Figure B.6). Both the �rst mode

(n = 1,m = 0) and the third mode (n = 1,m = 1) of seiching in the basin are simulated.

In both cases, the water depth is 10 m, the maximum free surface amplitude is 0.01 m

and the basin length is L=1000 m. The initial conditions are obtained from the analytical
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n h Order h/2 Order h/4 Order h/8 Order

First Mode (n = 1,m = 0)

1 L2 2.903E+01 - 6.640E+00 2.13 1.368E+00 2.28 2.966E-01 2.21

CPU 1.00 2.24 7.15 32.2

2 L2 1.190E+00 - 9.689E-02 3.62 1.086E-02 3.16 1.331E-03 3.03

CPU 2.27 5.53 18.5 96.6

5 L2 3.917E-04 - 6.411E-06 5.93 1.020E-07 5.97 1.621E-09 5.98

CPU 10.2 31.2 132 852

8 L2 4.407E-08 - 1.065E-10 8.69 1.702E-10 -0.68

CPU 25.9 94.4 464

Third Mode (n = 1,m = 1)

1 L2 4.211E+01 - 1.060E+01 1.99 2.221E+00 2.25 4.618E-01 2.27

CPU 1.00 2.27 7.35 31.7

2 L2 2.167E+00 - 3.054E-01 2.83 2.951E-02 3.37 3.521E-03 3.07

CPU 2.28 5.61 19.5 97.1

5 L2 7.949E-03 - 8.794E-05 6.41 1.374E-06 6.00 2.186E-08 5.97

CPU 10.0 32.8 12.3 891

8 L2 8.127E-07 - 8.585E-09 6.56 4.158E-10 4.37

CPU 25.9 98.3 492

Table B.1: A selection of convergence results for the L1 test case of seiching in a rectan-
gular basin. The CPU time is normalised by the the time required to compute the lowest
polynomial order at the largest mesh size.

solution, and the numerical solution is compared against the analytical solution after four

periods of oscillation, where the period is T = ωn,m/2π. Table B.1 and Figure B.7 show

the convergence test results and the normalized computational time1 required to perform

the calculations. The convergence achieved is order n+ 1 for both mode shapes in almost

all test cases. The one exception is the case n = 8 for the �ner mesh. Since re�nement

of the time step (one tenth of that in Equation 4.28) provided no change to the results

for this high order case it was concluded that computational precision had been reached.

Lastly it is interesting to note that less computational time is required to achieve high order

accuracy if a polynomial re�nement is used as opposed to mesh size re�nement.

Figure B.6: Computational mesh used in the convergence study for L1. The element size
reduces by one half between successive mesh.

1Computations where performed on a standard 2.0 GHz Intel Core 2 Duo processor.
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Figure B.7: Error convergence plots for seiching in a rectangular basin: (a) n = 1,m = 0,
(b) n = m = 1.

B.2.1.2 L3 Linear Kelvin Wave

This test validates the Coriolis source term in the linearized numerical model. The test

problem, referenced by Eskilsson and Sherwin [2004], Giraldo and Warburton [2008], con-

siders the westward propagation of an initial mound due to Coriolis forcing. The problem

works on a dimensionless form of the SWEs, by introducing the following non-dimensional

variables

x =
r

E1/4
x′, t =

E1/4

2Ω
t′, ξ = hoξ

′ u =
√
ghou

′, f =
2Ω

E1/4
y′ (B.45)

where E = 4Ω2r2(gho)
−1 is the Lamb parameter, r is the radius of the Earth (6.38×106 m),

Ω = 2π day−1 is the angular frequency of the Earth's rotation and ho is the standard mean

depth (Note, the non-dimensional velocity is de�ned incorrectly by Giraldo and Warburton

[2008]). Ignoring bed friction, the linearized SWEs now become

∂ξ′

∂t′
+∇.u′ = 0, and

∂u′

∂t′
+∇x′ = (−k× u′)y′. (B.46)

For initial conditions ξ′(x′, 0) = exp (−y′2/2) exp (−(x′ + 5)2/2) , u′(x′, 0) = ξ′ and v′(x′, 0) =

0,Boyd [1980] gives the analytical solution:

ξ′(x′, t′) = exp

(
−y′2

2

)
exp

(
−(x′ + 5− t′)2

2

)
, u′(x′, t′) = ξ′, v′(x′, t′) = 0. (B.47)

A spatial domain (x′, y′) ∈ [−10, 10]× [−5, 5] was used (ho was set to 1.0 m, with Coriolis

force speci�ed as f = (2Ω/r)y and (x, y) ∈
(
E1/4/r

)
[−10, 10] × [−5, 5]). Convergence
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n h Order h/2 Order h/4 Order h/8 Order

1 L2 1.164E+00 - 5.314E-01 1.13 1.352E-01 1.97 3.001E-02 2.17

CPU 1.00 4.04 24.2 191

2 L2 5.756E-01 - 6.401E-02 3.17 4.306E-03 3.89 4.386E-04 3.30

CPU 3.24 11.0 66.8 546

3 L2 1.087E-01 - 6.138E-03 4.14 3.396E-04 4.18 2.116E-05 4.00

CPU 7.81 25.0 148 1270

4 L2 2.293E-02 - 8.559E-04 4.74 2.544E-05 5.07 8.059E-07 4.98

CPU 9.77 52.3 303 2750

8 L2 7.638E-05 - 2.798E-07 8.09 1.045E-08 4.74

CPU 51.6 361 3350

Table B.2: Convergence for the linear equatorial (L3) Kelvin wave test case. The CPU
time is normalised by the the time required to compute the lowest polynomial order at the
largest mesh size.

was analysed for four meshes at a non-dimensional time t′ = 5 (the meshes were similar

to those in Figure B.6, with the largest having hmesh = 2.5 non dimensional units, and

the remainder reducing in element size by one half). Boundary conditions were set to

simple re�ective boundaries. Satisfactory spatial convergence is recorded in Table B.2

together with computational time. Again an increased accuracy is achieved, for a given

computational time, when polynomial re�nement is used instead of mesh size re�nement.

B.2.2 Non-Linear Problems

B.2.2.1 NL1 Convergence to Linearized Analytical Solutions

The �rst test problem undertaken with the non-linear terms (but with υT = 0) was used

to test the consistency of the code in the linear limit ξ/ho → 0. A test setup identical

to that considered in the L1 linear test was used. Table B.3 presents the convergence of

the non-linear solution to the linear solution for the seiching mode n = 1,m = 0. Notably

the requirement on linearity becomes more stringent as n increases. The agreement is

satisfactory for su�ciently small ξ/ho in each case.

B.2.2.2 NL2 Comparison against the Method of Characteristics

The previous test case proved the consistency of the non-linear model under linearized

conditions, however it did not validate the ability of the model to simulate non-linear �ow.

This test considers the convergence of a non-linear numerical solution to an alternative

numerical solution obtained using the Method of Characteristics (MoC). The MoC theory
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n ξ/ho h h/2 Order h/4 Order h/8 Order

1 1E+00 L2 3.331E+02 1.178E+02 1.50 1.474E+02 -0.32 1.708E+02 -0.21

1E-01 L2 3.290E+01 5.886E+00 2.48 1.305E+00 2.17 4.182E-01 1.64

1E-02 L2 3.289E+00 5.815E-01 2.33 1.215E-01 2.26 2.783E-02 2.13

2 1E-01 L2 1.455E+00 2.900E-01 2.33 2.476E-01 0.23 2.472E-01 0.00

1E-02 L2 1.388E-01 1.347E-02 3.36 1.443E-03 3.22 2.981E-04 2.28

1E-03 L2 1.387E-02 1.342E-03 3.37 1.403E-04 3.26 1.574E-05 3.16

5 1E-04 L2 4.520E-07 7.110E-09 5.99 4.947E-10 3.85

1E-05 L2 4.519E-08 7.362E-10 5.94 4.108E-10 0.84

1E-06 L2 4.523E-09 2.399E-10 4.24 4.066E-10 -0.76

Table B.3: Convergence of the non-linear numerical solution to a linearized analytical
solution under the limit ξ/ho → 0.

and numerical approach is explained in more detail by Abbott [1979] and Draper [2008].

The reference MoC solution is formed in the one dimensional domain x ∈ [0, L], L =100

m, for the splitting of a Gaussian mound de�ned by

h(x) = ho + ξe−0.01(x−L/2)2 . (B.48)

where ho = 10 m and three separate amplitudes ξ = 1, 5 and 10 m are considered each

having a di�erent height to depth ratio ξ/ho describing the degree of non-linearity. Figures

B.8(a)-(c) present the characteristic hodograph for the three values of ξ/ho and t ∈ (0, 6)

s. Typically between 5000 and 10000 characteristic lines have been used to generate the

reference solutions, with every 100 lines shown in Figure B.8. The DG numerical solution is

calculated in a basin (x, y) ∈ [0, 100] m × [0, 50] m, with an initial surface pro�le constant

in the y coordinate and equivalent to Equation B.48 in the x coordinate. The numerical

mesh is uniform with hm = 10 m, which amounts to 100 triangular elements.

Figure B.8 shows that the most non-linear case (ξ/ho = 1.0) develops a discontinuity

at around t = 3 s. The comparison between the DG solution and the MoC is therefore

conducted at t = 2 s. Figure B.9 illustrates the e�ect of the non-linearity on the numerical

solution at this time. Figure B.10 displays the exponential convergence of the DG method

to the MoC for the three non-linear cases. Agreement is satisfactory.

The same methodology adopted above in the frictionless case was also used to test

the non-linear solver for problems involving quadratic bottom friction. The e�ect of the

additional bottom friction when cd = 4, compared to the frictionless non-linear simulation

(for ξ/ho = 0.1), is seen clearly in Figure B.9(d). Figure B.10(d) presents the convergence
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Figure B.8: Characteristic hodographs for three (NL2) non-linear benchmark test cases.
The cases involve the splitting of an initial Gaussian mound of amplitude ξ, in a still water
channel of depth ho. (a) ξ/ho = 0.1, (b) ξ/ho = 0.5, (c) ξ/ho = 1.0
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Figure B.9: Comparison between linear and non-linear solutions for the splitting of an
initial Gaussian mound of amplitude ξ, in a still water channel of depth ho. (a) ξ/ho = 0.1,
(b) ξ/ho = 0.5, (c) ξ/ho = 1.0, (d) same as (a) but with quadratic friction factor Cd = 4.
Solid lines represent the non-linear solution, dashed lines represent the linear solution.
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Figure B.10: Error norms between the DG method and the MoC for the non-linear test
cases shown in Figure B.9. A numerical mesh of 100 elements is used.

238



of the DG solution to the MoC for this particular case. The agreement is again satisfactory.

B.2.2.3 NL3 Steady Uniform Flow in a Channel

This test examines the bed slope term introduced in the SWEs to account for variable

bathymetry. The test is very simple and considers a sloping channel with dimensions

(x, y) ∈ [0, 1000]× [0, 500] m. The initial water depth h is set to 10 m and the surface slope

is So = 1/1000. The upstream and downstream depths are set to 10 m using a clamped

boundary condition and a quadratic bed friction of Cd =0.005 is adopted. Equating forces

along the slope of the channel gives the analytical expression for the depth-averaged velocity

(see, for example, Young et al. [2001])u =
√
ghS0/Cd = 4.429446918070 m/s. Using a

uniform triangular mesh with hm = 50 m, gives u = 4.429446918070 m/s, correct to 13

signi�cant �gures.

B.2.2.4 NL4 Non-Linear Rossby Wave

Lastly, a westward propagating solitary Rossby wave is simulated to test the accuracy of

the non-linear terms in the presence of Coriolis forcing. This test case has been considered

by Eskilsson and Sherwin [2004] and Giraldo and Warburton [2008] among others, for

qualitative validation. An approximate analytical solution for a westward traveling Rossby

wave is given by Boyd [1984]:

ξ′(x′, t′) = A(η, x)

(
9c1(−5 + 2y′2)

16
+

3 + 6y′2

4
+ A(η, x)ξ

(1)
)
exp

(
−y
′2

2

)
, (B.49)

u′(x′, t′) = A(η, x)

(
9c1(3 + 2y′2)

16
+
−9 + 6y′2

4
+ A(η, x)u(1)

)
exp

(
−y
′2

2

)
, (B.50)

v′(x′, t′) =
∂

∂x
(A(η, x))

(
2y′exp

(
−y
′2

2

)
+ A(η, x)v(1)

)
, (B.51)

where primes indicate non-dimensional variables de�ned relative to Equation B.45, the

terms ξ
(1)
, u(1) and v(1) are in�nite Hermite series with coe�cients given in Boyd [1984],

and

A(η, t) = 0.771a2sech2(aη), where η = x′ − ct′, (B.52)

in which c = −1/3− c1 = −1/3− 0.395a2. Figure B.11(b) presents a plot of the numerical

solution obtained using the present DG method, taking a = 0.394, together with the
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(c)

Figure B.11: (a) Numerical mesh and (b) simulated non-Linear Rossby wave at t = 40s.
(c) Numerical solution obtained by Giraldo and Warburton [2008] using the DG method
(left) and a spectral element method (right).

solution of Giraldo and Warburton [2008] obtained using a DG method and a continuous

Spectral FE method. The numerical mesh used consisted of 260 elements, each with n = 8

(see Figure B.11(a)) and was similar to that employed by Giraldo and Warburton [2008].

The domain spanned (x′, y′) ∈ [−24, 24]× [−8, 8], and re�ecting boundary conditions were

applied along the boundaries. Equations B.49-B.51 were used for initial conditions. Figure

B.11 shows that the agreement between the numerical solutions at t′ = 40 is very good.

Furthermore, the computed phase velocity was approximately -0.77 m/s, in agreement

with -0.77 m/s simulated by Eskilsson and Sherwin [2004] and the approximate analytical

solution of -0.78 m/s given by Boyd [1984].

B.2.3 Viscous Problems

B.2.3.1 V1 Sidewall Expansion

The problem of laminar �ow past a sidewall expansion provides a useful test of the viscous

and non-linear advection terms. In particular, as the �ow passes the expansion, shown in

Figure B.12(a), separation occurs followed by downstream reattachment. For laminar �ow

the reattachment length has been shown experimentally to vary with the inlet Reynolds

number (Denham and Patrick, O'Leary and Mueller [1969]) ReI = UBb/υ, where UB de-

�nes the mean stream-wise �ow velocity at the upstream inlet, b is width of the sidewall
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Figure B.12: (a) Sidewall expansion problem geometry and schematic �ow. (b) Computa-
tional mesh.

expansion and υ is kinematic eddy viscosity, taken here to be the turbulent depth-averaged

eddy viscosity υT . Various numerical and experimental studies of this problem have been

considered in the literature. Denham and Patrick conducted experiments in an enclosed

�ume and O'Leary and Mueller [1969] measured reattachment lengths for a range of inlet

Reynolds numbers using a towing tank facility. Numerical simulations have been presented

by Anastasiou and Chan [1997] for the viscous SWEs. Provided that the variation in surface

elevation is negligible, the numerical simulations based on the SWEs should be essentially

identical to the results obtained by O'Leary and Mueller [1969] and Denham and Patrick.

Here the simulated reattachment length is used to assess the ability of the numerical code

to approximate the physical �ow.

The veri�cation test adopts the geometry in Figure B.12, with b set to 1.0 m. At the

inlet a parabolic velocity pro�le of the form:

U(y) =
3

2
UB

(
1− (

y

b
− 1)2

)
, (B.53)

is speci�ed. This parabolic pro�le, which is a sensible approximation for the open channel

�ow (when the change in depth across the channel section is small), was chosen to reduce

the simulation time to achieve a steady solution. For all tests UB was set to 0.5 m/s and

the downstream depth to 1.0 m. The computational mesh consisted of 553 unstructured

elements (Figure B.12(b)), with average edge length of 0.5 m. Polynomial approximations

up to order n = 4 where adopted to simulate �ows having inlet Reynolds numbers of 7.9,

50, 73, 98, 150 and 229.

A plot of the streamlines Ψ, de�ned by the relations u = (1/h)∂Ψ/∂y and v =
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Figure B.13: Streamline plots at steady state for the sidewall expansion problem. (a)
ReI = 7.9, (b) ReI = 50, (c) ReI = 73, (d) ReI = 98, (e) ReI = 150, (f) ReI = 229.

(−1/h)∂Ψ/∂x, is presented for each of Reynolds number in Figure B.13. The reattachment

length clearly increases with the inlet Reynolds number. Figure B.14 plots the simulated

reattachment length against Reynolds number and compares the results with the experi-

mental data of Denham and Patrick and O'Leary and Mueller [1969]. At lower Reynolds

number (Re<150) the agreement is satisfactory. For higher Reynolds number the numer-

ical reattachment length increases above experimental data as the polynomial order of

approximation n increases. Therefore, to further compare the simulated and experimental

results Figure B.15 superimposes the simulated along channel velocity pro�les, obtained

when n = 3, with the pro�les presented by Denham and Patrick at an inlet Reynolds num-

ber of 73 and 229. Agreement at the lower of these two Reynolds numbers is very good

throughout. Discrepancy at the higher Reynolds number is visible, however it is also clear

that the inlet pro�le for the experiment is not fully developed, which Denham and Patrick

report may be a result of skewness introduced by the asymmetry of their upstream inlet.

B.2.3.2 V2 Jet-Forced Flow in a Circular Reservoir

A second well known validation test for the viscous SWEs concerns the simulation of laminar

jet forced �ow in a �at bottomed circular reservoir. The geometry of this problem is given

in Figure B.16(a). Previous numerical simulations of the SWEs have been conducted by

Anastasiou and Chan [1997] among others. The validation test employs the mesh depicted

in Figure B.16(b). The inlet width of the stem is b = 0.156 m, the inlet and outlet
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Figure B.14: Reattachment length as a function of inlet Reynolds number ReI . Simulation
results n = 2 (o), n = 3 (.), n = 4 (4); Experimental results due to Denham and Patrick
(+); Experimental results due to O'Leary and Mueller [1969] (♦).
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Figure B.15: Comparison of simulated horizontal �ow pro�les with those recorded experi-
mentally by Denham and Patrick. (a) ReI = 73. (b) ReI = 229.
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(a) (b)

Figure B.16: (a) Jet �ow geometry. (b) Computational mesh (the red line indicates the
curved boundary of the isoparametric elements formed for n = 4).

(a)

Figure B.17: Jet forced �ow at ReI = 10. Overlay of streamlines for n = 5 and the most
re�ned numerical result computed by Rogers [2001].

lengths are l = 0.5 m and the radius of the reservoir is r = 0.75 m. The computational

elements bordering the perimeter of the reservoir are isoparametric to conform to the

circular boundary (red line in Figure B.16(b)). The mean inlet velocity was Ub = 0.1 m/s

and a parabolic pro�le was assumed (see Equation B.53). The initial water depth was

0.1 m and �xed at the outlet boundary. All remaining boundaries were no slip and bed

friction and Coriolis forces were ignored. The depth-averaged eddy viscosity was set to

υT = 0.000784 m2/s, so that the inlet Reynolds number ReI is 10, where ReI = Ubb/(2υT ).

Figure B.17 compares the result obtained with n = 5 to that obtained by Rogers [2001]

using over 16 000 �nite volume elements at t = 300 s. The agreement is good and indicates

that a high order polynomial approximation on a coarse grid can produce similar results to

low order methods on very �ne numerical grids. Figure B.17 is also in qualitative agreement

with those produced by Anastasiou and Chan [1997].
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B.2.4 Quiescent Initial Conditions

A useful and necessary property of a numerical code concerns the ability to simulate quies-

cent still water conditions. For a basin with depth h(x, y) and variable bathymetry z(x, y),

quiescent conditions exist when:

h+ z = C and hu = 0, (B.54)

for some constant C. The DG method developed here preserves quiescent conditions of

this form provided bathymetry and depth are continuous spatial functions. This is because

symmetric nodal basis functions are adopted and the numerical �ux is calculated at the

edge of each individual element. As a result the polynomial representation of the initial

still water depth will be identical either side of element boundaries. This ensures that the

numerical �ux normal to the element boundaries reduces to F̂(Uh) = (0, g
(
U

(1)
h

)2

/2, 0)T .

For a given element the x momentum equation, for example, then reduces to

−
ˆ

Ω

g

(
U

(1)
h

)2

2

∂lk
∂x

dΩ +

ˆ
Γ

g

(
U

(1)
h

)2

2
lknxdΓ = −

ˆ
Ω

ghh
∂zh
∂x

lk, for k ≤M, (B.55)

where lk are the respective test functions. Equation B.55 is satis�ed exactly if the bed

slope is formed from the polynomial representation of depth (i.e. ∂zh/∂x = −∂(U
(1)
h )/∂x),

and quadrature is performed exactly. Both these conditions are satis�ed in the present

numerical code. To illustrate the well balanced nature of the numerical model, a test

identical to that employed by Ern et al. [2008] has been undertaken. In this case h+ z = 1

m, and the bathymetry is de�ned as

z(x, y) =
(

10e−x
2

+ 15e−(x−2.5)2 + 10e−(x−5)2/2 + 6e−2(x−7.5)2 + 16e−(x−10)2
)
/20,

over the domain (x, y) ∈ [0, 10]2. Figure B.18 plots the free surface elevation after t = 1

s (the time considered by Ern et al. [2008]) when 100 triangular elements of order n = 2

are used. It is clear that still water conditions are simulated accurately. The error in the

velocity �eld after t =100 s (Figure B.18 (b)) is at numerical precision.
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Figure B.18: Numerical simulation of quiescent conditions for variable bathmetry. Polyno-
mial order n = 2. (a) is the free surface level h+ z, at t = 1 s, (b) the velocity magnitude
at t =100 s.
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