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Recent advances in computational mechanics have opened the potential of carrying 

out the analysis and design of concrete structures in a realistic manner with the use of 
nonlinear concrete models. This encourages the development of more capable and realistic 
constitutive models, based on a rigorous approach, for the analysis and design of concrete 
structures. This research focuses on the development of a thermodynamic approach to 
constitutive modelling of concrete, with emphasis on the rigour and consistency both in the 
formulation of constitutive models, and in the identification of model parameters based on 
experimental tests. 

The key feature of the thermodynamic framework used in this study is that all 
behaviour of the defined model can be derived from two specified energy potentials. In 
addition, the derivation of a constitutive model within this framework merely follows 
procedures established beforehand. The proposed constitutive model here is based on 
continuum damage mechanics, in combination with plasticity theory, hence enabling the 
macroscopic material behaviour observed in experiments to be appropriately modelled. 

Damage-induced softening is the cause of many problems in numerical failure 
simulations based on conventional continuum mechanics. The resolution of these problems 
requires an appropriate special treatment for the constitutive modelling which, in this study, 
is based on nonlocal theory, and realized through the nonlocality of energy terms in the 
damage loading functions. For practical applications in structural analysis, the model 
requires a minimum number of parameters, which can be identified from experimental 
tests. All the above features of the model have been incorporated in a unified and consistent 
thermodynamic approach, which also distinguish the approach from existing ones. 

Numerical implementation and application are important parts of the study. A suitable 
implicit scheme is adapted here for the integration of the nonlocal rate constitutive 
equations. For the solution of systems of nonlinear algebraic equations in finite element 
analysis, the arc-length method in combination with local constraint equations employing 
dominant displacements is implemented, and proves its reliability in this study. Application 
of the proposed constitutive models in the analysis and design of concrete structures is 
straightforward, with several numerical examples showing the practical aspects of the 
proposed modelling. 
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1 Chapter 1: Introduction 

1.1 Aims and scope of the study 

Constitutive modelling of concrete materials has been a theme of research for 

some decades. Nevertheless, the complex behaviour of concrete, due to its composite 

nature, cannot always be faithfully reflected in any models dedicated to the constitutive 

modelling of the material. This study centres on the development of a thermodynamic 

approach to constitutive modelling of concrete, with emphasis on the rigour and 

consistency both in the formulation of constitutive models, and in the identification of 

model parameters based on experimental tests. Only isotropic damage is considered in 

this study. The constitutive model formulated within this approach can, to some extent, 

capture the main macroscopic features in the behaviour of the material, while still 

maintaining its applicability through the use of few model parameters, each identifiable 

from standard tests. This model is of macroscopic nature, with the underlying 

micromechanical processes being characterized by a few representative macroscopic 

quantities. Therefore, it can only capture the macroscopically observed behaviour of 

concrete materials in an approximate manner. In addition, as the nonlinearity in the 

material behaviour normally takes place under very small strain, continuum mechanics 

with the small strain assumption is used throughout the study. 

Thermodynamics plays an important role in the formulation and development of 

constitutive models. To avoid thermodynamically unrealistic results, the first and 

second laws of thermodynamics should be the basis for any approach to constitutive 

modelling. Although the requirements for the thermodynamic admissibility of a 

constitutive model can be applied retrospectively, it is more rigorous and consistent to 

build a constitutive model within a well-established thermomechanical framework. This 

way of developing constitutive models helps avoid introducing any further ad hoc 

assumptions during the model formulation. Therefore it is pursued in this study, with an 

existing thermomechanical framework (Houlsby and Puzrin, 2000) being extensively 

used as a basis for the construction of constitutive models. The formulation and 

development of a model within this framework then follows procedures established 
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beforehand, reducing the possibilities of introducing more assumptions during the 

model formulation. However, thermodynamics in this case only provides a general 

framework, as well as restrictions on the development of constitutive models. Details of 

the models must be based on experiments and/or the micromechanical analysis of the 

behaviour and interaction of all the material constituents. 

Continuum damage mechanics has been used extensively for the constitutive 

modelling of concrete. Prior to the establishment of damage theories with a 

thermodynamic and micromechanics basis in the 1970s, the nonlinear response of 

concrete could only be captured using plasticity theory, nonlinear elasticity theory or, 

more recently, fracturing theory (Dougill, 1976). Although on their own those theories 

can yield adequate results, which match those of experiments in some cases (e.g. in 

monotonic loading), a combination of them would be a better choice in the constitutive 

modelling of concrete. A coupled damage-plasticity approach is therefore adopted in 

this study. In the combined approach, the strain softening and stiffness degradation can 

be modelled by damage mechanics, while the residual strains and some other 

macroscopic features are seen to be related to and captured by plasticity theory. In 

relation to the micromechanical processes, the representative macroscopic variables 

characterizing the material behaviour at microscopic level are the damage indicators and 

plastic strains. In thermodynamic terminology, those quantities are considered as 

internal variables of the dissipation processes taking place in the material. However, the 

combination of damage and plasticity theories should only be regarded here as one of 

the possible ways of constitutive modelling. It has the advantage of using well 

established theories, but still needs more experimental evidence for the identification of 

model parameters as well as validation of numerical simulation results. 

Softening-related problems should always be considered in constitutive modelling 

of quasi-brittle materials based on continuum mechanics. These problems are direct 

consequences of the failure of conventional continuum mechanics in capturing the 

material behaviour at a scale below a certain level. From the mathematical point of 

view, softening leads to the loss of ellipticity of the governing partial differential 

equations in static analysis and results in ill-posed boundary problems. The solution of 

the boundary value problem therefore loses its uniqueness, with several pathological 

features [e.g. infinitely small softening zone and mesh-dependent solutions in finite 
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element analysis (Jirasek and Bazant, 2002)]. In the numerical simulation, localization 

of deformation takes place in the smallest softening zone that can be captured by the 

numerical disretization. In structural analysis, this zone is termed the fracture process 

zone for cohesive materials such as rocks and concrete or the shear band for frictional 

materials like soils. As a consequence of this localization, the numerical solution 

becomes mesh-dependent and the energy dissipation in the softening zone may 

approach zero upon mesh refinement. Use of classical continuum mechanics in this case 

has been proved to be inadequate (Peerlings, 1999; Comi, 2001; Jirasek and Bazant, 

2002). Therefore, special treatments, termed regularization techniques, are required for 

the resolution of the problem. In general, the aim of these techniques is to prevent the 

localization of deformation into a zero volume zone and therefore remedy the 

pathological problems (e.g. mesh-dependent numerical solutions, infinitely small 

softening zone) encountered in the analysis using conventional continuum mechanics.  

Various forms of regularization techniques have been proposed, encompassing 

both the simple and more mathematically complicated types of regularization. The term 

simple here refers to techniques such as fracture energy regularizations (e.g. use of 

smeared crack or crack band models) applied at structural level, which can help remove 

the mesh dependence of the numerical solutions but preserves the ill-posedness of the 

boundary problem. In other words, loss of ellipticity of the governing partial differential 

equations in this case still accompanies softening. In contrast with this is the fully 

mathematical regularization (e.g. nonlocal and gradient approaches, rate-dependent 

regularization), which aims at preserving the ellipticity of the governing partial 

differential equations throughout the analysis and hence automatically removes all 

softening-related problems in the numerical simulation. The nonlocal treatment is used 

in this study. With the introduction of spatial terms in the nonlocal constitutive 

relations, the ellipticity of the governing partial differential equations (in rate-

independent material models) is kept unchanged throughout the analysis. This helps to 

avoid the pathological aspects encountered with the use of classical continuum 

mechanics. 

The constitutive models in this study are constructed within a well-established 

thermodynamic framework, and can accommodate both damage and plastic dissipation 

mechanisms. Many of the important macroscopic behavioural features of concrete, 
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which will be briefly presented in the next chapter, can be captured and characterized by 

the proposed constitutive models. It should be mentioned here that for the continuum 

mechanics approach adopted in this study, the material behaviour to be modelled should 

be interpreted as the averaged response over a certain volume element, governed by 

several underlying microstructural phenomena. To deal with softening-related 

problems, a nonlocal regularization technique is employed and realized through the 

nonlocality of energy terms in the tensile and compressive damage loading functions. 

This nonlocal feature of the constitutive modelling can be readily incorporated in the 

thermodynamic approach used in this study, although the physical interpretation is not 

very clear. Therefore, it can be considered as a pure mathematical method used to 

remedy the problems of continuum mechanics in dealing with softening. 

Numerical aspects are also important in the constitutive modelling, with the 

proposal of an appropriate integration scheme for the constitutive relations and the 

employment of relevant numerical algorithms for the nonlinear finite element analysis. 

However, the aim of this research is not to carry out exact numerical simulations of 

structural problems, but to propose and develop a consistent and rigorous approach with 

promising potential of application in the constitutive modelling of concrete materials. 

Further investigation and research are still required to work out the proposed modelling. 

1.2 Outline of the thesis 

The starting point of this study is a brief review on the behaviour of concrete and 

the constitutive modelling of that material, all of which are presented in Chapter 2. 

Emphasis here is placed on capturing faithfully important features of the material 

behaviour in the constitutive modelling, and the identification of model parameters 

based on standard experiments. This results in the advocacy of combined approaches 

employing both damage mechanics and plasticity theory, with a tight connection 

between the model parameters and the experimentally-measured material properties.  

Chapter 3 of this thesis addresses the thermodynamic aspects of the constitutive 

modelling and presents a general formulation for constitutive models based on an 

established thermodynamic framework. Constitutive models with both damage and 

plastic dissipation mechanisms are constructed and discussed. It is also shown in this 
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Chapter that both stress- and strain-based damage-plasticity formulations can readily be 

accommodated in the existing framework. 

Chapter 4 of the thesis is concerned with the combined damage-plasticity approach 

for two-dimensional applications. To capture the different responses in tension and 

compression, the approach makes use of the separation of tensile and compressive 

behaviour, achieved through the decomposition of stress tensor and integrated in the 

thermomechanical framework. The dissipation process therefore consists of three 

separate dissipation mechanisms: tensile and compressive damage coupled with 

plasticity. Schematic presentation of the failure surfaces in biaxial loading shows the 

combined behaviour of the proposed constitutive model. The identification of model 

parameters from simplest (pure tensile damage) to most complicated cases (tensile and 

compressive damage coupled with plasticity) is also carried out. Some numerical 

examples are used at the end of the Chapter to show the capability of the proposed 

model. 

In Chapter 5, we focus on softening-related problems and regularization 

techniques employed for the treatment of the above-mentioned pathological problems 

encountered in classical continuum mechanics when dealing with softening materials. 

Various types of regularization, with the key feature of introducing additional material 

characteristics, are briefly reviewed and advantages and disadvantages of those 

techniques in practical applications are pointed out. The nonlocal regularization method 

for strain softening material models is introduced to the constitutive modelling in this 

Chapter. The thermomechanical aspects of nonlocality are briefly presented, followed 

by the incorporation of nonlocality into the thermodynamic framework used in this 

study. Various ways of integrating nonlocality into the modelling are presented and 

discussed. The connection between parameters of the nonlocal model and 

experimentally-provided material properties is established at the end of this Chapter. 

This connection furnishes a consistent way of identifying parameters for nonlocal 

models, which is not carefully considered in many nonlocal damage models proposed 

by several researchers. 

Numerical implementation plays an important role in the model development and 

is discussed in Chapter 6. An implicit integration scheme (Crisfield, 1997) for the rate 

constitutive equations is adopted, and modified in this Chapter for the nonlocal rate 
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constitutive equations. Because of the material nonlinearity, the system of algebraic 

equations in finite element analysis is nonlinear and its solution requires a reliable 

numerical algorithm. The arc-length incremental control with local constraint equations 

(May and Duan, 1997), in combination with Newton-Raphson iteration techniques, is 

adopted for the nonlinear finite element analysis. This helps to overcome limit points 

and snap back behaviour possibly encountered in the equilibrium paths.  

In the last two Chapters, various structural problems showing the behaviour of the 

material from simple to combined loading cases are numerically simulated to show the 

performance of the developed models. Conclusions are withdrawn and further studies 

are proposed. 
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2 Chapter 2: Constitutive Modelling of Concrete,           

A Brief Review 

2.1 Introduction 

The complex behaviour of concrete, which comes from the composite nature of the 

material, necessitates the development of appropriate constitutive models. Although 

recently there have been a large number of noteworthy contributions, with different 

levels of complexity and applicability, the complete features of the material behaviour 

have not always been acknowledged and reflected in the modelling. Further 

development in the constitutive modelling of concrete materials is therefore needed, 

with the motivation of incorporating important experimentally-observed features of the 

material behaviour in the macroscopic constitutive modelling. 

A brief review on the material behaviour and then an overview on the constitutive 

modelling of concrete along with a critical discussion are presented in this chapter. For 

the constitutive modelling, the focus here is mainly on continuum theories such as 

plasticity theory, continuum damage mechanics and damage coupled with plasticity. For 

the sake of simplicity, only the constitutive aspects are considered in this chapter. 

Softening and its related problems in the constitutive modelling and numerical 

simulation are included in the discussion in chapter 5. The main features, and 

advantages as well as shortcomings of constitutive models will be examined in this 

chapter to provide a general background and motivation for this study. Further details 

on the models and their applicability to concrete modelling can be found in the 

references. 

2.2 Mechanical behaviour of concrete 

Some important mechanical features of concrete are summarized in this section, 

mainly based on research available in the literature (Chen, 1982; Chen and Han, 1988). 

This furnishes a background for the review and further study on the constitutive 

modelling of concrete in the following sections. The macroscopic features of the 

material behaviour will only be briefly presented, with references to sources where 
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detailed information can be obtained. The structure of concrete such as the ratio of 

water to cement, the shape and size of aggregate, the kind of cement used, and other 

factors all have effects on the mechanical behaviour of the material. However, these are 

not mentioned here and the material is considered as a continuum with initial isotropic 

behaviour. 

2.2.1 Uniaxial behaviour 

 
Figure 2.1: Behaviour of concrete under monotonic and cyclic compressive loading                     

(after Bahn and Hsu, 1998) 

The mechanical behaviour of concrete is highly nonlinear in both tension and 

compression. In uniaxial compression, three different deformational stages (figure 2.1) 

can be observed (Kotsovos and Newman, 1977; Chen and Han 1988). For axial stresses 

up to about 30% of the maximum compressive stress cf ′  the uniaxial compressive 

behaviour of concrete can be considered linear, with existing micro-cracks in the 

material remaining nearly unchanged. The second stage is between cf ′3.0  and cf ′75.0 , 

in which cracks develop due to the breakage of bonds (among constituents), and cracks 

at nearby aggregate surfaces start to bridge. However, the crack propagation is still 

stable until the stress reaches about cf ′75.0 , which is generally termed the onset of 

unstable fracture propagation. Beyond this stress level is the third stage of deformation 

in which the mortar cracks join bond cracks at the surface of nearby aggregates and 
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form a fracture zone. Further deformation may be localized, followed by major cracks 

parallel to the direction of applied load, resulting in failure of the specimen. 

 
Figure 2.2: Stress-deformation curve of concrete subjected to                                             

uniaxial cyclic tensile loading (Reinhardt et al., 1986) 

 

Figure 2.3: Stress-deformation curve of concrete subjected to                                             

reversed cyclic tensile loading (Reinhardt et al., 1986) 

However, in uniaxial tension, the experimentally observed deformation process is 

different from that in compression. The low tensile strength of concrete is primarily due 

to the low tensile strength of the aggregate-mortar interface, which has a significantly 

lower strength than the mortar. This interface is known to be the weakest link in this 

composite material, with cracks usually occurring at the interface. Since the existing 

microcracks remain nearly unchanged under a stress less than 60% to 80% of the 

ultimate tensile strength tf ′ , this stress level can be regarded as the limit of elasticity in 

tension. However, the stress-deformation curve of the material in tension is almost 
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linear until the peak stress is reached (figures 2.2 and 2.3). Hence, the uniaxial tensile 

strength of the material is usually adopted as the elastic limit in constitutive modelling. 

 

 

 

(a) Sfer et al. (2002) (b) Jansen and Shah (1997) 

Figure 2.4: Failure of concrete in uniaxial compression                             

with cracks parallel to the loads applied 

 

Figure 2.5: Uniaxial behaviour of concrete under cyclic loading                        

(Ramtani, 1990; as presented by Nechnech, 2000) 

Unlike in a compressive test, where splitting cracks are parallel to the direction of 

the compressive stress (figure 2.4) or in the form of a zig-zag band depending on the 

specimen height (figure 2.6a), the direction of crack propagation in a tensile test is 

transverse to the stress direction (figure 2.5). This leads to a reduction of the load-

carrying area followed by an increase in the stress concentration at critical crack tips. In 

addition, unstable crack propagation in tension starts very soon, resulting in the brittle 

nature of concrete in tension (figures 2.2 and 2.3).  

 

Loss of stiffness 

Inelastic 
deformations 

Stiffness recovery 

Degradation in 
compression  
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Also experimentally observed in concrete under loading is the permanent 

deformation, both in tension and compression (figures 2.1, 2.2 and 2.3). At the 

macroscopic level, that permanent deformation can be considered as a result of 

“yielding” taking place in the material under continuous loading. Although similarity 

with metal plasticity is observed at the macroscopic level through the residual strains, 

the actual dissipation mechanisms in the two materials are completely different. In 

metallic materials, plastic deformation is the result of slips due to dislocations occurring 

at the microscopic level. However, dissipations due to friction in pulling out of 

aggregates and fragments, interfacial slips between mortar and aggregate when macro 

cracks are formed and crushing of the mortar can be regarded as main causes of 

irreversible strains in concrete. 

 

Figure 2.6: (a) Influence of specimen height on the uniaxial stress-strain curve in 

compression; (b) corresponding stress-displacement diagrams (Van Mier, 1986) 

Like other geomaterials such as soils and rocks, concrete also exhibits a significant 

strain-softening behaviour beyond the peak stress, in both tension and compression (see 

figures 2.1 and 2.2). The localization of deformations is a direct consequence of this 

softening behaviour of the material, making the determination of the material stress-

strain curve impossible. In fact, there is no unique stress-strain relationship 

(Gopalaratnam and Shah, 1985) and the softening branch of a stress-strain curve is 

generally considered as a mixed material-structural property (Chen and Han, 1988). 

This is illustrated in the experiments by Van Mier (1986) with different average strains 

obtained from compressive tests on specimens with different heights. In all three tests 

(figure 2.6a), the post-peak strains are localized in small regions of the specimens, while 

the average strain for each specimen is calculated by dividing the corresponding post-
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peak deformation (or the localized deformation, in the form of the difference between 

the total deformation u1,tot and the deformation at peak u1,σ1p), which have the same 

value in this case (figure 2.6b), by the specimen height. 

The stiffness degradation in concrete, both in tension and compression (figures 2.1 

and 2.2), is mainly due to the material damage, especially in the post-peak range (Chen 

and Han, 1988). The fact that concrete is a composite material made of aggregates and 

cement paste makes its mechanical behaviour complex. The microcracks caused by 

shrinkage, thermal expansion and other factors are initially invisible but will progress to 

become visible cracks with the application of external loads. From the 

thermomechanical point of view, the input energy is dissipated during the failure 

process through microcracks formed due to the loss of cohesion between the mortar and 

the aggregate, frictional slip at interface between the aggregate and the mortar, or 

crushing of the mortar.  

As mentioned above the mechanical behaviour of concrete is significantly 

different in tension and compression, with the ultimate compressive stress being about 

10 to 20 times as big as that in uniaxial tension (Chen, 1982; see also figure 2.5). 

However, the intact elasticity modulus in both loading cases was experimentally shown 

to be comparable, with that in uniaxial tension being somewhat higher (Chen, 1982). 

Nevertheless, failure under compression, e.g. crushing and microcracks through the 

mortar, is believed to have profound effects on the tensile behaviour of the material, 

through the compression-induced stiffness degradation in tension. In other words, the 

elasticity modulus changes during load reversal from compression to tension, of course 

after a certain failure degree in compression. However, this stiffness reduction does not 

happen in tension-compression load reversal. Physically, microcracks, which open 

under tension loading, will close upon load reversal, resulting in the stiffness recovery 

in compression (figures 2.3 and 2.5). 

2.2.2 Multiaxial behaviour 

The above experimental observations on uniaxial tensile and compressive 

behaviour of the material are also applicable in general multi-axial stress states (Chen 

and Han, 1988). The strength envelope of the material and the evolution of the envelope 

are used to characterize the material behaviour in those stress states. However, two 
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separate kinds of envelopes should be distinguished: the elastic-limit surface defining 

the elastic region, and the failure surface characterizing the maximum-strength envelope 

of the material (figure 2.7). 

 

Figure 2.7: Failure surface and elastic-

limit surface in principal stress space       

(Chen, 1982) 

Figure 2.8: Behaviour of concrete under 

hydrostatic compression                

(after Burlion et al., 2000) 

For the assumption of isotropic behaviour (Chen and Han, 1988), the equations for 

both surfaces can be expressed in terms of the stress invariants 1I , 2J  and 3J , and/or 

in terms of the three principal stresses 1σ , 2σ  and 3σ . The Haigh-Westergaard space is 

used to define the failure surface in principal stress space, in which the position of a 

stress point is determined by three coordinates ξ , ρ  and θ :  

 
3
1I=ξ ; where 3322111 σσσσδ ++== ijijI  (2.1) 
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3
1

3  (2.3) 

For reference, a comprehensive presentation of tensors and their invariants and the 

Haigh-Westergaard stress space can be found in Chen and Han (1988). Although the 

casting direction obviously has effects on the initial anisotropy of the material (Van 

Mier, 1986), it is not discussed here. The above assumption on the initial isotropy of the 
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material behaviour has been accepted and confirmed in several experiments (figure 

2.10), indicating that concrete has a fairly consistent failure surface in three-dimensional 

principal stress space (Chen, 1982).  

 

(a). Meridian sections (b). Deviatoric sections 

Figure 2.9: Failure surface in the meridian and deviatoric planes (Chen and Han, 1988) 

From experimental studies (see figure 2.10), it can be seen that the failure surface 

is of open shape, while the elastic-limit surface (or the initial yield surface) is believed 

to exhibit “cap behaviour” (figure 2.12), confirmed through the nonlinear behaviour of 

concrete under hydrostatic compression (figure 2.8). Under pure hydrostatic 

compression, the elastic-limit surface expands and gradually opens towards the negative 

hydrostatic axis (figure 2.12; see also figure 2.17b) and finally coincides with the failure 

surface. This is illustrated in figure (2.8) where there is no strength reduction observed 

on the mean stress–volumetric strain curve of concrete material under very high 

hydrostatic pressure (about 10 times the normal uniaxial compressive strength).  

The shapes of the failure surface in the meridian and deviatoric planes are shown 

in figure (2.9). As can be seen in the figure, the deviatoric sections of the failure surface 

are different in both shape and size, depending on the value of the hydrostatic pressure. 

The meridian ( )θσρρ ,mff = , where 31Im =σ  is the mean stress and θ  the Lode 

angle, defines the failure envelope on the deviatoric planes and can be experimentally 

determined (figure 2.10). In figure (2.9), the meridians tρ , sρ , and cρ  correspond to 

the values of the Lode angle θ  of 00, 300 and 600, respectively. On the deviatoric 

planes, the ratio tc ρρ  is about 0.5 near the π -plane (the deviatoric plane passing 

through the origin) and increases to about 0.8 for cf ′−≈ 7ξ  (Chen and Han, 1988; figure 

2.9).  
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Figure 2.10: Tensile and compressive meridians of 

the failure envelope (data from Ansari and Li, 1998; 

Imran and Pantazopoulou, 1996; Ottosen, 1977; and 

Mills et al., 1970; as presented by Chen and Han, 

1988 and Imran and Pantazopoulou, 2001) 

Figure 2.11: Biaxial compressive 

failure surface for concrete under 

low confining pressure (data from 

Kupfer et al., 1969; Yin et al., 

1989; and Van Mier, 1986; as 

presented by Lowes, 1999) 

 

Figure 2.12: Evolution of the yield surface (Chen and Han, 1988) 

The gradual change of the deviatoric sections with respect to hydrostatic pressure was 

also confirmed by Van Mier (1986) in biaxial loading tests, in which rather small 

confining pressures in the out-of-plane direction can significantly increase the material 

strength in the plane of primary loading (figure 2.11). 
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Figure 2.13: Stress versus axial strain and lateral strains curves 

(Palaniswamy and Shah, 1974) 

 

Figure 2.14: Volumetric expansion under biaxial compression 

(data from Kupfer et al., 1969; as presented by Chen and Han, 1988) 

Experiments (Kupfer, 1969; Palaniswamy and Shah, 1974) have also shown that 

the deformational behaviour of a concrete specimen is significantly affected by the 

confining pressure. As can be seen in figure (2.13), the axial and lateral strains at failure 

increase with increasing confining pressure. However, at a certain level, further increase 

of lateral stress results in the decrease in the values of axial strains at failure (figure 

2.13). In addition, under confining pressure the axial and lateral strains at failure are 

much larger that those in uniaxial compression. This shows that concrete in 

compression exhibits a certain degree of ductility before failure. 
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It was found experimentally (Shah and Chandra, 1968) that in concrete the cement 

paste itself does not expand under compressive loading. However, the composite nature 

of concrete, which is a mixture of cement paste and aggregates, results in its dilation at 

a certain level of stress. That stress level is also found to be related to the onset of a 

considerable increase of microcracks through the mortar. This is illustrated in figure 

(2.14), showing the expansion of concrete under biaxial compression through the 

increase of the volumetric strain near peak loads.  

2.3 Constitutive modelling of concrete materials 

In principle, it is desired that the above-mentioned macroscopic features of the 

material behaviour be reflected in any constitutive models dedicated to concrete 

modelling. However, it is quite difficult to incorporate all of these aspects of material 

behaviour in a constitutive model. Those experimentally observed features are all of 

macroscopic nature, which can only be characterized through some material and 

structural quantities and cannot always represent what truly happens at the microscopic 

level. This is the disadvantage of the macroscopic approach to constitutive modelling. 

In another aspect, the applicability of the proposed constitutive models is also of 

importance. Simple models with pure damage dissipation, i.e. models employing scalar 

damage variables, can be used in relevant cases thanks to their simplicity in the 

formulation, implementation and parameter identification. Complicated constitutive 

models should only be adopted with much care applied to the physical interpretation 

and identification of model parameters, which can only be done in combination with 

experimental work. 

Constitutive models proposed and used so far (Willam and Warnke, 1975; Simo 

and Ju, 1987; Mazars and Pijaudier-Cabot, 1989; Yazdani and Schreyer, 1990; Feenstra 

and de Borst, 1995; Lee and Fenves, 1998; Imran and Pantazopoulou, 2001; Grassl et 

al., 2002; Addessi et al., 2002; Jirasek et al., 2004; Salari et al., 2004), although having 

achieved great success in the numerical simulations of concrete structures, all have their 

own limitations and cannot always be universally used without much care. A brief 

review will follow, in which main features as well as limitations of models are pointed 

out. The focus here is only the behavioural features of the constitutive models based on 

continuum mechanics in capturing the macroscopic responses observed in experiments. 

From the point of view of continuum mechanics, these responses can be characterized 
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through the evolution laws of the failure envelope of the material behaviour in multi-

axial loading. Details of the constitutive models with appropriate treatments for 

softening-related problems will be presented in chapter 5. 

2.3.1 Plasticity theory 

In summary, any model based on conventional plasticity always requires an elastic 

constitutive relationship, the assumption of total strain decomposition, the definition of 

a yield surface with an evolution rule, and a flow rule. For plasticity models with a 

linear stress-strain relationship in the elastic region, the first two requirements are the 

same but the last two differ. 

Regarding the distinction of the yield surface and the failure surface (figures 2.7 

and 2.12), we can see that these two surfaces coincide in plasticity theory. In other 

words, a single loading surface acts as a yield-failure surface in plasticity theory. This 

combined surface is often a scaled down version of the failure envelope of the material. 

Numerous forms of yield surfaces have been proposed and can be classified based on 

either the number of model parameters (Chen and Han, 1988) or on the shape of the 

surface in principal stress space. The Von Mises and Tresca criteria are two typical 

examples of one-parameter pressure-independent yield surfaces, which were initially 

intended for metallic materials and are incapable of modelling the different responses in 

tension and compression. For the constitutive modelling of concrete, they can be 

augmented by tensile cut-off surfaces and should be used in combination with a non-

associated flow rule to reflect the plastic volumetric expansion observed in experiments 

(figure 2.14). An example of the augmentation using Rankine’s criterion was given by 

Feenstra and de Borst (1995), in which the failure of the material model is governed by 

a composite failure surface of the form 

 ( ) 03 2 =−= ccc Jy κσ  (2.4) 

 ( ) 01 =−= ttty κσσ  (2.5) 

where 1σ  is the major principal stress; ( )cc κσ  and ( )tt κσ  are two equivalent stress 

functions governing the size of the yield/failure surfaces in compression and tension 

respectively; and cκ  and tκ  are two internal parameters. This augmentation for Von 

Mises and Tresca criteria is however only adequate in biaxial loading, as these criteria 
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are pressure-independent and therefore cannot reflect faithfully the behaviour of the 

material under compression. 

Among the two-parameter models, the Mohr-Coulomb and Drucker-Prager 

surfaces (figure 2.15) are probably the simplest types of pressure-dependent criteria 

(Chen and Han, 1988). However the shortcoming of these surfaces is that they assume a 

linear relationship between 2J  and 1I  ( ρ=22J  and ξ=31I  in the meridian 

plane), although this relationship has been experimentally shown to be nonlinear (see 

figure 2.10). Moreover the lack of dependence of the deviatoric section on the Lode 

angle θ  is another shortcoming of the Drucker-Prager surface, even though it can be 

modified to have nonlinear relationships between 2J  and 1I , i.e. the parabolic 

Drucker-Prager presented in the next chapter. 

  

(a). Drucker-Prager (b). Mohr-Coulomb 

Figure 2.15: Drucker-Prager and Mohr-Coulomb failure surfaces 

Other failure criteria with nonlinear relationship between 2J  and 1I  and the 

dependence on the Lode angle θ  have been proposed: Hsieh-Ting-Chen (see Chen and 

Han, 1988), Ottosen (1977), Willam and Warnke (1975), Kang and Willam (1999), 

Imran and Pantazopoulou (2001), Grassl et al. (2002). Details on these models can be 

found in the relevant papers (Kang and Willam, 1999; Imran and Pantazopoulou, 2001; 

Grassl et al. 2002) and books by Chen (1982) and Chen and Han (1988). The typical 

deviatoric and meridian sections of those failure surfaces are shown in figure (2.16). 
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(a) Kang and Willam (1999) (b) Grassl et al. (2002) 

Figure 2.16: Deviatoric and meridian sections of two typical failure surfaces 

The above is a brief presentation of some typical failure criteria in the literature, 

aiming at setting a general background for the discussion on the use of plasticity theory 

for the constitutive modelling. In plasticity theory, the definition of a yield surface, the 

shape of which is usually similar to that of the failure surface (i.e. the yield surface by 

Grassl et al., 2002), is required. However, as pointed out by Chen and Han (1988), yield 

surfaces as scaled down versions of failure surfaces at maximum loading are inadequate 

for concrete modelling. The open shape of such yield surfaces does not reflect the true 

behaviour of concrete under hydrostatic loading. A solution for this is the use of an 

additional “cap surface” for the behaviour of the model under hydrostatic compressive 

pressure (Simo and Ju, 1987; Sfer et al., 2002). Slightly different from the use of “cap 

surface” is the direct modification of the equation of the open-shape yield surface so 

that plastic deformation under hydrostatic loading can be captured. Following the 

modification, the initial yield surface has a closed shape and, under loading, eventually 

opens towards the negative hydrostatic axis. This is the approach adopted by Kang and 

Willam (1999) and Imran and Pantazopoulou (2001), and illustrated in figure (2.17). 
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(a) Kang and Willam (1999) (b) Imran and Pantazopoulou (2001) 

Figure 2.17: Modification of the yield surface to account for the nonlinear behaviour of 

the material under hydrostatic pressure 

In addition to the disadvantage described in the preceding paragraph, the similar 

shape of the yield surface with respect to the failure surface results in uniform 

distribution of the elasto-plastic zone between the yield surface and the failure surface. 

As a consequence, the plastic strains can be overestimated in tension while being 

underestimated in compression (Chen and Han, 1988). One of the solutions to overcome 

these shortcomings is to use models with a yield surface of variable shape (or 

nonuniform hardening plasticity model; Han and Chen, 1987). In this model the yield 

surface consists of several parts representing different responses in tensile and 

compressive loading of concrete. Based on the independent hardening rule, Ohtani and 

Chen (1988) also proposed a model called multiple hardening plasticity. The key feature 

of this model is that the yield surface is allowed to expand independently in different 

directions due to the independent hardening parameters. 

The volumetric expansion of concrete under compression makes the application of 

the associated flow rule for concrete inappropriate. In addition, to avoid excessive 

inelastic dilatancy when using pressure-dependent yield criteria, a non-associated flow 

rule, which is defined by the plastic potential other than the yield function, should be 

used instead. Models which employ this feature include that of Chen and Han (1988), 

Lee and Fenves (1998a, 1998b), Kang and Willam (1999), and Grassl et al. (2002).  

In concrete both the proliferation and coalescence of microcracks, which exist 

within concrete even before loading, are believed to have an impact on the integrity of 
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the material at a macroscopic scale. The nonlinear behaviour of concrete is therefore    

partially or fully caused by the propagation and coalescence of these existing 

microcracks as well as the initiation of new microcracks. This leads inevitably to a 

progressive modification in the mechanical properties of concrete. Such aspects should 

be included in any theory designed to predict failures in concrete. Unfortunately, they 

cannot be modelled using conventional plasticity theory, which was originally 

developed for metallic materials and then modified to fit the experimental data of 

concrete without accounting for the underlying microscopic failure mechanisms of the 

material.  

To overcome this shortcoming, Bazant and Kim (1979), and Chen and Han (1988) 

have proposed a combination of plasticity theory and progressive fracturing theory 

(Dougill, 1976). The fundamental assumption of progressive fracturing theory is the 

loss of material stiffness due to progressive fracturing during the deformation process. 

This is characterized through the evolution of the constitutive tensor under loading, and 

resembles the loss of stiffness in the modelling using continuum damage theory. In fact 

the fracturing theory can be formulated in the context of continuum damage theory with 

the constitutive tensor being considered as internal damage variable (Kratzig and 

Polling, 1998). A brief presentation of the fracturing theory and its comparison with 

damage theory can be found in Kratzig and Polling (1998). However, upon unloading, 

no permanent plastic strain remains and the material returns to its zero-strain and stress-

free state. Combination of plasticity theory and progressive fracturing theory resolves 

their corresponding deficiencies in each individually attempting to model the behaviour 

of the material. However, without a consistent thermomechanical and micromechanical 

basis, this can be regarded as an ad hoc treatment in remedying approaches based on 

plasticity theory.  

2.3.2 Models based on damage mechanics 

The basic concepts of damage-based models are outlined in this part of the 

chapter. By the term “damage-based”, we also include a class of smeared crack models, 

i.e. fixed crack models, multiple fixed crack models, rotating crack models and, the 

closely related microplane models (see Carol and Bazant, 1997; Weihe et al., 1998; 

Ohmenhauser et al., 1999; and de Borst, 2002 for a brief review on those models). The 

appealing feature of this class of smeared crack models models is the introduction of the 
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failure plane (or plane of degradation, POD) in a reduced space, from which a 

constitutive law is postulated. The complex constitutive behaviour of the material is 

then obtained by transforming the constitutive relations in the reduced space (2-D plane 

of degradation) to the 3-D continuum level. This transformation can be of geometric 

nature (fixed crack models) or based on the principle of virtual work (microplane 

models). As can be seen, the anisotropic nature of damage is implicitly taken into 

account in smeared crack models. Nevertheless, more formal treatment of these models 

can be conceived within the framework of continuum damage mechanics, as illustrated 

by de Borst (2002). In this study, as only scalar damage models are considered, the 

above-mentioned smeared crack models will not be further discussed. 

The definition of damage indicator, following Lemaitre (1992), can be seen as the 

most widely used, as it covers the micromechanical, thermodynamic and geometrical 

aspects of the macroscopic representation of the material deterioration. It is therefore 

adopted here and briefly presented to furnish a basis for the review in this chapter. More 

details can be found in the books by Lemaitre and Chaboche (1990); and Lemaitre 

(1992). 

2.3.2.1 Concepts of damage mechanics 

 

Figure 2.18: Definition of damage variable (after Lemaitre, 1992) 

The idea of continuously representing material damage was first proposed by 

Kachanov (Lemaitre and Chaboche 1990; Lemaitre, 1992) and then a further 

contribution was given by Rabotnov (Lemaitre, 1992) with the concept of effective 

stress. However the basic development of Continuum Damage Mechanics only began in 

the 1970s and then in the 1980s with a more rigorous basis, based on thermodynamics 
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and micromechanics. Since then there have been numerous Continuum Damage 

Mechanics models proposed for the constitutive modelling of materials in general and 

concrete in particular. 

The quantities of continuum mechanics are defined at a mathematical point. 

However, from the physical point of view, and accounting for the heterogeneity of the 

material in reality, these quantities should be considered to have been averaged over a 

certain volume called a “Representative Volume Element” whose size depends on each 

material (Lemaitre, 1992). As a consequence, the stress and strain in continuum 

mechanics should be physically interpreted as mean quantities over this volume 

element. In a similar way, to define the material damage at a mathematical point M, let 

us consider a Representative Volume Element (RVE) oriented by a plane defined by its 

normal nr  and its abscissa x along the direction nr . The damage value ( )xnMD ,, r  at 

point M in the direction nr  and at abscissa x is defined as: 

 ( )
S

S
xnMD xD

δ
δ

=,, r  (2.6) 

in which Sδ  is the area of intersection of the considered plane and the RVE; and
xDSδ  

is the effective area of intersections of all microcracks and microcavities in Sδ  (see 

figure 2.18). It can readily be seen that the value of damage ( )xnMD ,, r  ranges from 

zero (undamaged) to unity (totally damaged). The failure of the RVE in direction nr  is 

defined at the most damaged intersection area. 

 ( ) ( )
S

SxnMDnMD D
x δ

δ
== ,,max, rr  (2.7) 

where DSδ  is the most damaged intersection area. Since the damage of the RVE 

depends on the direction nr , the anisotropic nature of damage is also enclosed in that 

definition. Damage theories provide us with an effective means to characterize the 

material deterioration at microscopic level by quantities at the macroscopic level. If 

microcracks and cavities are uniformly distributed in the RVE, it is adequate to assume 

the isotropy of damage, as the damage variable ( )xnMD ,, r  in this case does not depend 

on the direction. We restrict ourselves to the case of scalar damage variable in this 

study. 

The concept of “effective stress”, which is used here in a different sense from that 

used in metal plasticity and in geotechnical engineering, can be derived directly from 
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the above definition. For the sake of simplicity let us consider the case of uniaxial 

tension with scalar damage variable. Due to damage the cross sectional area is reduced 

and becomes the effective cross sectional area DSS −  in which S  is the original cross 

sectional area and DS  is the total area of microcracks. The stress is no longer SF=σ  

but replaced by the effective stress ( ) ( ) σσσ ≥−=−= DSSF D 1 . The extension of 

the concept to multi-axial stress state with scalar damage variable is straightforward 

since damage in this case does not depend on the direction nr . Therefore we still have 

( )Dijij −= 1σσ  where ijσ  and ijσ  are now the stress and effective stress tensors 

respectively. In unloading from tension to compression, due to the crack closure effect, 

the effective cross sectional area is larger than DSS − . In particular, if all the defects 

close ( 0=DS ), it is equal to S  and the stress σ  and effective stress σ  are now equal. 

This unilateral behaviour should always be accounted for in the constitutive modelling 

of concrete materials. 

The principle of strain equivalence (Lemaitre, 1971; see figure 2.19) follows 

directly the effective stress concept and helps us to avoid a micromechanical analysis 

for each type of defect and each type of damage mechanism (Lemaitre, 1992). It is 

stated: “Any strain constitutive equation for a damaged material may be derived in the 

same way as for a virgin material except that the usual stress is replaced by the 

effective stress” 

 

Figure 2.19: Schematic representation of the hypothesis of strain equivalence 

Application of the strain equivalence hypothesis results in the state coupling between 

damage and elasticity (Lemaitre, 1992). This coupling comes from the physical 

observation that damage due to the breakage of bonds in the material directly results in 

changes in the elastic properties of the material. In the constitutive modelling, this 

coupling can be written for uniaxial case as: ( ) εσ ED−= 1 . This expression is in fact in 

accordance with that observed in experiments (Lemaitre, 1992), with the effective 

elasticity modulus E  being dependent on the damage measure: ( )EDE −= 1 . 
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Continuum damage models, like models based on conventional plasticity theory, 

can also be developed within two alternative frameworks. In the strain-based 

formulation, damage is characterized through the effective stress concept along with the 

hypothesis of strain equivalence. Dual with this, in a stress-based formulation, the 

hypothesis of stress equivalence is proposed (Simo and Ju, 1987; see figure 2.20) and 

damage is presented through the effective strain concept, in which the effective strain 

tensor in the case of isotropic damage is: ( ) ijij D εε −= 1 . The hypothesis of stress 

equivalence (Simo and Ju, 1987) states: “The stress associated with a damaged state 

under the applied strain is equivalent to the stress associated with its undamaged state 

under the effective strain” 

 

Figure 2.20: Schematic representation of the hypothesis of stress equivalence 

Application of these two principles (of strain and stress equivalence) to the constitutive 

modelling based on damage mechanics and plasticity theory will be presented later. 

Models based on continuum damage mechanics are usually formulated within a 

thermodynamic framework, though in principle damage theory can be developed by 

simply stating a damage-related stress-strain law and a yield/damage criterion (Lee and 

Fenves, 1998; Addessi et al., 2002; see section 2.3.3 for details). This way of 

developing a constitutive model, however, is like using arbitrary assumptions in 

progressive fracturing theory (Kratzig and Polling, 1998). Although the thermodynamic 

admissibility of such models can be verified later using the Clausius-Duhem inequality, 

those kinds of approaches are not advocated in this study. For the discussion here, only 

constitutive aspects of damage-based approaches are considered; the thermodynamic 

issues will be presented in the next chapter. 

In principle, the choice of the damage variable D  is arbitrary, provided that the 

laws of thermodynamics are strictly obeyed. In addition to the above presented 

definition of damage (Lemaitre, 1992), there have been several ways of representing the 

damage measure D , which can be a single scalar for isotropic damage and a tensor for 
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anisotropic damage. It can be represented as a variable characterizing the material 

deterioration with the concepts of effective stress or effective strain (Simo and Ju, 1987; 

Mazars and Pijaudier-Cabot, 1989; Lemaitre and Chaboche, 1990; Lemaitre, 1992; Lee 

and Fenves, 1998; Peerlings, 1999; Jirasek et al., 2004); or as a function in terms of the 

position of the loading surface in stress space between the initial and bounding surfaces 

(Li and Ansari, 1999); or even it can be a decreasing function (Addessi et al., 2002) 

representing the damage experienced by the material and can hardly be directly related 

to the geometrical definition of damage in (2.2). In fact, in macroscopic constitutive 

modelling, physical interpretation of damage variables is not always straightforward. 

However, the convincing physical interpretation of the damage variable D  depends on 

the identification of the microscopic mechanism underlying the observed macroscopic 

response (DeSimone et al, 2001). The definition of damage variable D  following the 

concepts of effective stress and effective strain, which has been presented above, is 

probably the most well-known and widely used in literature. 

2.3.2.2 Damage mechanics in constitutive modelling of concrete  

The continuum Damage Mechanics approach has been shown and proved by many 

authors to be appropriate for constitutive models of concrete (Krajcinovic and Fonseka, 

1981; Simo and Ju, 1987; Mazars and Pijaudier-Cabot, 1989; Peerlings, 1999; Geers et 

al., 2000; Jirasek et al., 2004). Due to the anisotropic nature of damage, even for 

initially isotropic materials, the damage measure D  requires a tensorial representation. 

However damage models employing scalar damage variables are still preferred because 

of their simplicity in the formulation, numerical implementation and parameter 

identification (Burlion et al., 2000). We restrict ourselves to the case of scalar damage 

in this study. 

From the point of view of constitutive modelling, continuum damage mechanics 

alone can be used exclusively in the case that the structures analyzed are under 

monotonic loading, as it can reproduce the softening response of the material without 

necessarily paying attention to capturing the permanent deformation. In addition, the 

stiffness degradation, although overestimated in pure damage models, can also be seen 

as an important feature to be reflected in the constitute modelling of concrete materials. 

These features confirm the applicability of pure damage models in the constitutive 
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modelling of concrete materials, with promising results obtained in the literature 

(Peerlings, 1999; Comi, 2001; Comi and Perego, 2001; Jirasek et al., 2004). 

A constitutive model based on damage theory is usually formulated based on a 

stress-strain law with the presence of a damage variable to characterize the material 

deterioration, and a damage criterion and/or an evolution law for damage. The evolution 

law of damage, which plays a very important role in any damage-based model, is 

different for many Continuum Damage Mechanics models. However it is possible to 

group almost all existing approaches into three categories: one with imposed damage 

evolution laws (e.g. Faria et al., 1998; Peerlings, 1999; Jirasek and Patzak, 2002; Jirasek 

et al., 2004); one in which damage evolution laws are obtained from a dissipation 

potential, of which the existence is postulated (Lemaitre and Chaboche, 1990; Lemaitre, 

1992) and one using implicitly defined damage evolution laws (Luccioni et al., 1996; 

Comi, 2001; Comi and Perego, 2001; Nguyen, 2002; Nguyen and Houlsby, 2004; Salari 

et al., 2004). Besides the simple bilinear softening laws, explicit nonlinear softening 

laws have been used by several researchers (Peerlings, 1999; Jirasek and Patzak, 2002; 

Jirasek et al., 2004; Comi and Perego, 2001), with their parameters being related to 

relevant experimental tensile tests for the material properties. 

In Jirasek and Patzak (2002) and Jirasek et al. (2004), an exponential curve was 

proposed and can be calibrated based on the uniaxial behaviour of the material, with the 

area under the uniaxial stress-strain curve representing the local (or specific) fracture 

energy Fg  (see chapter 4 for details). The damage evolution is of the form: 
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where Eft′=0ε  is the strain at peak stress and fε  a model parameter controlling the 

initial slope of the softening curve (figure 2.21). This evolution law is in fact associated 

with a damage criterion: ( ) ( ) 0~, =−= κεκ εεdy . The history variable κ  here represents 

the maximum previously reached value of the equivalent strain ε~ , which is defined as 

(Jirasek et al., 2004): 

  ( ) ( ) ( )++= σσε :1~
E

ε  (2.9) 
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where εaσ :=  is the effective stress tensor ( a  is the elastic stiffness tensor), and +σ  

denotes the positive part of the effective stress tensor. 

 
Figure 2.21: Exponential softening law (after Jirasek et al., 2004) 

As can be seen, the decomposition of the effective stress tensor σ  (see chapter 4 

for details) is used in this model to properly capture the tensile behaviour of the 

material. In addition, the damage loading function is only used to define a failure 

criterion and does not play any role in the evolution law of damage. Although using 

arbitrary assumptions in the formulation, the model here was shown to be adequate in 

capturing the behaviour of the material in tensile-dominated stress states (Jirasek et al., 

2004). However, it was also admitted (Jirasek et al., 2004) that the model parameters 

cannot be uniquely evaluated based solely on the input fracture energy Fg . This is 

because there are several stress-strain curves producing the same Fg  and the problem 

of evaluating model parameters becomes ill-conditioned unless additional constraints 

are introduced. This non-uniqueness of the model parameters can also be observed in 

several damage-based models (Comi, 2001; Comi and Perego, 2001; Borino et al., 

2003). Details on this and simple remedies will be presented in chapters 4 and 5 of this 

thesis. 

Alternatively, implicitly defined damage evolution laws have also been used 

(Luccioni et al., 1996; Comi, 2001; Comi and Perego, 2001; Nguyen, 2002; Nguyen 

and Houlsby, 2004; Salari et al., 2004), in which the damage growth and the plastic 

strain evolution are implicitly embedded in the coupling yield and/or damage loading 

functions. The evolution laws of damage in this case are derived using the consistency 

conditions of the loading functions. This is in fact a special form of deriving the damage 

evolution law from a damage-dissipation potential, which coincides with the damage 

loading function in this case. For example, in Comi (2001), the increments of tensile 

and compressive damage are determined from the consistency conditions of the damage 
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functions ( ) 0,, =εct
t
d DDy  and ( ) 0,, =εct

c
d DDy , in which tD  and cD  are two 

separate damage variables in tension and compression, respectively: 
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(a) Comi and Perego (2001) (b) Mazars and Pijaudier-Cabot (1989); as 

presented by Chaboche (1992) 

Figure 2.22: Composite failure surfaces in biaxial stress states 

Different responses of concrete under tension and compression (see section 2.2) 

require special treatment in the constitutive modelling. This feature can be modelled 

mainly through two different ways, both of which use two separate damage variables 

(see 2.10 and 2.11 as an example) to capture the stiffness degradations in tension and 

compression. The first way is to use separate damage criteria for compressive and 

tensile response (Comi, 2001; Comi and Perego, 2001; see figure 2.22a). In this case the 

two damage criteria can be expressed (Comi and Perego, 2001) in the following form in 

stress space: 

   ( ) ( ) 01,, 2
1

2
12 =−−+−= ttctttct

t
d hkDIhbIaJDDy ασ  (2.12) 

   ( ) 0, 2
1

2
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c
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In the above expressions, ia , ib , ik  (i stands for t or c) and α  are non-negative model 

parameters determined based on the experimental failure envelope and properties of the 

material. The effect of compressive damage on the tensile strength of the material is 

also accounted for through the presence of the compressive damage variable cD  in the 

tensile damage criteria. The evolutions of the two failure surfaces are governed by two 

isotropic hardening-softening functions ( )tt Dh  and ( )cc Dh  (see Comi and Perego, 

2001 for details).  

Alternatively, based on the decomposition of stress/strain into positive and 

negative parts (Ladeveze, 1983; Ortiz, 1985; Simo and Ju, 1987; Mazars and Pijaudier-

Cabot, 1989), two separate damage loading surfaces can also be defined. In Mazars and 

Pijaudier-Cabot (1989), the composite damage surface is expressed as a double-criterion 

using two thermodynamic forces associated with the tensile and compressive damage 

variables. The Gibbs free energy function in this case is decomposed into two parts 

corresponding to the tensile and compressive behaviour of the material (see chapter 4 

for details on the decomposition): 
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The resulting thermodynamic forces associated with damage are: 
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The damage criteria are defined as: 

 ( ) 0=−= ttt
t
d DKYy  (2.17) 

 ( ) 0=−= ccc
c
d DKYy  (2.18) 

where ( )tt DK  and ( )cc DK  are two hardening-softening functions. The combination of 

these two damage criteria creates a composite failure surface in multi-axial loading (see 

figure 2.22b). However, in the case that the compressive behaviour of the material can 

be neglected (i.e. in tensile-dominated stress states) and no unloading-reloading cycle is 
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considered, the compressive damage criterion can be disabled and the constitutive 

model reduces to a much simpler form (see Jirasek and Patzak, 2002; Jirasek et al., 

2004).  

Different responses of concrete under arbitrary loadings should be reflected in the 

non-uniform expansion/contraction of the failure surface, through the use of a multiple 

or tensorial form of damage indicator. This is, however, difficult to achieve in 

constitutive modelling using only two scalar damage indicators for tensile and 

compressive behaviour, due to the lack of experimental data. Instead, the two 

independent hardening/softening processes (in tension and compression) are always 

assumed to be isotropic, resulting in the uniform expansion/contraction of the 

tensile/compressive failure surface. This evolution of the failure surfaces has been 

adopted by several researchers (Jirasek and Patzak, 2002; Jirasek et al., 2004; Comi and 

Perego, 2001) and is usually based on the uniaxial behaviour of the material, with the 

areas under the uniaxial stress-strain curves in tension and compression representing the 

local fracture energies of the material. For the restriction to isotropic damage and 

proportional loading in this study, this adoption of evolution law is acceptable. 

From the point of view of continuum mechanics, the multi-axial behaviour of 

concrete should be carefully taken into account in the constitutive modelling. In other 

words, the initial shape of the damage criteria in stress/strain space should be in 

accordance with experiments. This was, however, not always respected (e.g. in 

Peerlings, 1999; Jirasek and Patzak, 2002; Addessi et al., 2002). In those models, it is 

simple for the model formulation to declare a stress-strain relationship with scalar 

damage variables, along with a damage criterion and an evolution law for the damage 

indicator. No special attention has been paid to the macroscopic material behaviour in 

multi-axial loading, e.g. calibrating the failure envelope of the model against that of the 

material behaviour (see figure 2.28 in section 2.3.3). This inevitably restricts the 

capability of the models in capturing the material behaviour faithfully. 

The above-mentioned pure damage models, although applicable in several cases, 

are just attempts to capture the tensile and compressive behaviour of the material 

without paying careful attention to all the observed macroscopic features of the material 

behaviour. In addition, assigning all the dissipation energy only to damage mechanisms 

results in the inability of the model to capture the irreversible strains of the material 
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under loading. Fortunately, this deficiency of the model becomes serious only when an 

unloading-reloading cycle is to be considered. However, the inability to capture the 

permanent deformation of the material is in fact contrary to experimental observations, 

even in pure tension. Coupling between damage and plasticity is therefore an essential 

way to take into account the important macroscopic features of the material behaviour, 

which have been briefly presented at the start of this chapter. 

2.3.3 Coupling between damage and plasticity 

From the aspects of constitutive modelling, the changes of the internal variables 

(i.e. damage variable and/or plastic strains) used in a constitutive model characterize the 

micro-structural phenomena of the material. For concrete, these microstructural changes 

are the decohesion in aggregate and mortar, or between them, slips along the surface of 

decohesion, and crushing of the mortar. These phenomena lead to irreversible strains 

and material deterioration observed at the macro scale. Two kinds of coupling can be 

distinguished in the constitutive modelling (Lemaitre, 1992): state coupling between 

damage and elasticity, and indirect coupling (or kinetic coupling) between damage and 

plasticity. This comes from the physical observations that damage due to the breakage 

of bonds in the material directly results in changes in the elastic properties of the 

material (state coupling). On the other hand, it is also observed that the material 

deterioration leads to a decrease in the elementary area of resistance and hence the 

reduction of the material strength, resulting in the indirect coupling between damage 

and plasticity.  

In the constitutive modelling of concrete using damage mechanics, the concept of 

effective stress (section 2.3.2.1) furnishes a way to introduce coupling between damage 

and elasticity. However, coupling between damage and plasticity can be implicitly 

embedded in the yield and damage criteria (Luccioni et al., 1996; Nguyen, 2002; 

Nguyen and Houlsby, 2004; Salari et al, 2004), with the material strength being a 

decreasing function with respect to the damage variable D . This implicit coupling 

characterizes the strength reduction due to the material deterioration and is equivalent to 

introducing effective instead of nominal stress into the yield function (Lemaitre and 

Chaboche, 1990; Lemaitre, 1992). Therefore, the concept of effective stress is still 

applicable in this case. This way of introducing coupling enables the constitutive 

modelling to use separate yield and failure criteria, helping to remedy the problems 
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encountered in using only one combined yield-failure criterion for the dissipation 

process (see section 2.3.1). The corresponding internal variables (damage variable and 

plastic strains for the coupled model) of the model do not explicitly depend on each 

other. Nevertheless, the parameter identification becomes more difficult as the model 

responses in this case are governed by all the internal variables used in the coupled 

model. 

An alternative type of coupling has been used by some other researchers 

(Lemaitre, 1992; Lee and Fenves, 1998; Faria et al., 1998; Lemaitre, 2000), in which 

only one loading function is specified and used to control the dissipation process. This 

function can be a damage loading function (Faria et al., 1998) or a yield function 

(Lemaitre, 1992; Lee and Fenves, 1998; Lemaitre, 2000). In the first case with a 

damage loading function governing the dissipation process, an evolution law for the 

plastic strain is required (Faria et al., 1998). For the use of a yield function, the damage 

measures, activated based on a simple damage criterion [i.e. a threshold based on the 

equivalent plastic strain in Lemaitre (1992)], are expressed in terms of other internal 

variables controlling the plastic flow process. Despite the restrictions in modelling the 

material behaviour using only one loading surface, this is obviously much simpler than 

the coupling using two separate damage and yield surfaces. Nevertheless, many ad hoc 

assumptions are usually used during the formulation of constitutive models (see Lee and 

Fenves, 1998; Faria et al., 1998).  

   

Damage Plasticity Coupled Damage-Plasticity 

Figure 2.23: Uniaxial stress-strain behaviour of constitutive models 

Use of coupling between damage and plasticity in theoretical modelling is an 

essential way to capture the observed phenomenological behaviour of concrete. In this 

study, true coupling is used instead of ad hoc modification of a pure damage model to 

capture the permanent strains in cyclic loading (i.e. in models by Hordijk, 1992; and 
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Hatzigeorgiou and Beskos, 2002). In the combined approach, damage theory is used to 

model the material deterioration, while the permanent deformation, as well as the 

volumetric expansion under compression and some other features (section 2.2), can be 

captured using plasticity theory (see figure 2.23). All features of the two theories can be 

incorporated in this combined approach, making it very promising for use in the 

constitutive modelling. Despite the complexity, this approach to the constitutive 

modelling of concrete has been widely adopted by several researchers, e.g. Simo and Ju 

(1987), Yazdani and Schreyer (1990), Luccioni et al. (1996), Lee and Fenves (1998a, 

1998b), Hansen et al. (2001), Addessi et al. (2002), Ung-Quoc (2003), Jefferson (2003), 

Salari et al. (2004). Reviews on some selected coupled damage-plasticity models are 

presented hereafter. 

2.3.3.1 Model of Yazdani and Schreyer (1990) 

 

Figure 2.24: Separation of total strain in uniaxial case                                                

(after Yazdani and Schreyer, 1990) 

In the approach by Yazdani and Schreyer (1990), the pressure-dependent damage 

surface is used as a failure surface, and enhanced with a Von Mises yield surface. In 

principal stress space, this yield surface covers the damage surface in the positive 

hydrostatic axis, and lies almost entirely inside the damage surface in the opposite 

direction (figure 2.25). Attention was also paid to the multi-axial behaviour of the 

model, with the failure surface being calibrated to account for the strength enhancement 

and ductility under increasing lateral confinement (figure 2.25). 

Bypassing intermediate details on the model derivation, the constitutive relations 

of the model can be rewritten as follows. The stress-strain relationship is 
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 ( ) ( )p
pri D εεεε &&& +=  (2.20) 

in which 0C  denotes the compliance tensor for the uncracked material; ( )DcC  is the 

added flexibility tensor due to damage; 0ε  is the elastic strain tensor and D*ε  the 

additional recoverable strain due to elastic damage. The inelastic strain tensor is denoted 

as iε  and arises from two irreversible sources: inelastic damage ( rε ) and plastic flow 

( pε ) (see figure 2.24).  

 

(a). Biaxial strength envelope (b). Loading surfaces in shear-pressure space 

Figure 2.25: Schematic view of coupled damage-plasticity model by                  

Yazdani and Schreyer (1990) 

The yield criterion is defined as: 
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equivalent plastic strain), and function ( )pετ  defines the hardening rule. The associated 

flow rule is assumed here.  

The damage surface of the model is of the form: 
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In the above expression, the positive part of the stress tensor σ  is denoted as +σ  and is 

obtained by removing the eigen vectors associated with negative eigen values of σ  (see 
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chapter 4 for details); 3Trσ=p  is the mean pressure; ω , α , β  and µ  are model 

parameters; +S  and −S  are respectively positive part and negative part of the deviatoric 

stress tensor ( )′−σ  (the deviatoric stress of −σ ); σ~  is the stress tensor defined by 

iσσ λ−= −~  with i  denoting the second-order identity tensor and λ  the maximum 

eigenvalue of −σ ; λ~  and H  are the minimum eigen value of σ~  and the Heaviside 

function, respectively; ( )Dt  is the function controlling the damage process.  

The evolution of the flexibility tensor ( )DcC  in the model is defined as 

 ( ) ( ) ( )σRσRC III DDDc &&& +=  (2.23) 

where IR  and IIR  are two fourth-order tensors determining the direction of incurring 

damage in mode I (opening) and mode II (shearing) cracking respectively (see Yazdani 

and Schreyer, 1988; and Yazdani and Schreyer, 1990). It can be noted that the 

anisotropic nature of damage is accounted for using these two stress-dependent tensors. 

Compared to other coupled damage-plasticity models, this model is able to capture 

the irrecoverable strains using inelastic damage mechanism to account for the misfit of 

crack surfaces. The evolution equation for the strain rate due to inelastic damage is 

postulated as follows: 

 ( ) +− += SSε ωβω DDDr &&&  (2.24) 

Nevertheless, this capability is restricted to compressive mode of cracking only 

(Yazdani and Schreyer, 1990). As a consequence, with a pure damage mechanism 

activated in tension, the model exhibits an inability to capture the observed permanent 

deformation in tensile loading. 

2.3.3.2 Model of Lee and Fenves (1998a, 1998b) 

Lee and Fenves (1998a) developed their coupling damage-plasticity model for the 

numerical analysis of concrete dam. The stress σ  and effective stress σ  in this model 

are given by 

 ( ) ( )pD εεaσ −−= :1  (2.25) 

 ( )pεεaσ −= :  (2.26) 

where a  denotes the rank-four elasticity stiffness tensor; eε  and pε  are the elastic part 

and plastic part of the total strain tensor ε , respectively; and D  represents the damage 
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measure. In this model, a combined yield-failure surface is defined and evolves with 

damage variables, for which the evolution laws are postulated. This yield-failure surface 

is of the form (see figure 2.26): 

 ( )[ ] ( ) 0ˆ3
1

1
max21 =−++

−
= κκ cp cJIy σβα

α
 (2.27) 

In this yield function, maxσ̂  is the maximum principal stress; α  is a constant parameter 

and β  a function of the damage variable κ , defined by 

 ( ) ( )
( ) ( ) ( )ααβ +−−= 11
κ
κκ

t

c
c
c  (2.28) 

where ( )κtc  and ( )κcc  are the tensile and compressive cohesions respectively. The 

Macaulay bracket  is used in the expression of the yield function to create the 

desired shape of the yield surface in two-dimensional principal stress space (figure 

2.26).  

 

Figure 2.26: Yield surface in plane stress space (Lee and Fenves, 1998b) 

The opening/closing of microcracks also features in the model, using two 

independent scalar damage variables tκ  and cκ  in tension and compression 

respectively. The vector κ  in (2.28) is defined as: [ ]Tct κκ=κ . The damage measure 

D  in (2.25) is a function expressed in term of tκ  and cκ  as 

 ( )( ) ( )( )κκ tc sDDD −−−= 111  (2.29) 
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with parameter ( )σss =  representing the stiffness recovery, and tD  and cD  denoting 

the tensile and compressive damage measures. tD  and cD  in this case are defined as 

functions of the damage variables tκ  and cκ . 

The flow rule in the model is governed by a Drucker-Prager type plastic potential 

 122 IJ pαϕ +=  (2.30) 

where parameter pα  is used to control the dilatancy of the material model. Therefore 

the plastic strain rate is 

 
σ

ε
∂
∂

=
ϕλ&& p  (2.31) 

Coupling in the model is realized through the dependence of the yield threshold on 

the damage variables (see 2.27 and 2.28), the evolutions of which are expressed as (Lee 

and Fenves, 1998a) 

 ( )κσHκ ,λ&& =  (2.32) 

The forms of functions ( )κσH ,  as well as ( )κtD  and ( )κcD  can be found in Lee and 

Fenves (1998a, 1998b). 

The model of Lee and Fenves (1998a, 1998b) has no damage loading function. 

The evolution of the yield surface (2.27) is governed by the damage variables tκ  and 

cκ , which in turn depend on the equivalent plastic strain pε  (see Lee and Fenves, 

1998b). Although the whole model is defined from several “pieces”, its thermodynamic 

consistency can be readily ensured. However, the Drucker-Prager type yield criterion in 

this approach, although having been modified and calibrated for the biaxial test, cannot 

be considered appropriate for concrete modelling due to its lack of dependency on the 

Lode angle in the deviatoric plane. 

2.3.3.3 Model of Faria et al. (1998) 

Neglecting intermediate details in the thermodynamics-based formulation, we 

rewrite here the stress-strain law of the model 

 ( ) ( ) −+ −+−= σσσ ct DD 11  (2.33) 

In this expression, +σ  and −σ  are the positive and negative parts of the effective stress 

tensor σ  defined by 
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 ( ) ( ) epe εaεεaεσ :: =−=  (2.34) 

with a  being the fourth order elastic stiffness tensor. 

 
Figure 2.27: Initial 2D elastic domain (after Faria et al., 1998) 

Similarly to the coupled damage-plasticity of Lee and Fenves (1998a, 1998b), this 

model possesses only one loading surface. However, in contrast with that by Lee and 

Fenves (1998a, 1998b), a composite damage loading surface, instead of a yield surface, 

is used to govern the constitutive behaviour of the model. The two separated damage 

surfaces forming this composite loading surface are of the form 

 0=−= ++ ryt
d τ  (2.35) 

 0=−= −− ryc
d τ  (2.36) 

where +r  and −r  are two damage thresholds controlling the size of the damage 

surfaces; +τ  and −τ  are two functions of the effective stress. The initial values +
0r  and 

−
0r  of +r  and −r , respectively, along with +τ  and −τ  are all expressed as follows 

 
E

fr
+

+ = 0
0  (2.37) 

 ( )
3
2 0

0

−
− −
=

fKr  (2.38) 

 +−++ = σaσ :: 1τ  (2.39) 

 ( )−−− += octoctK τστ 3  (2.40) 
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In the above expressions, +
0f  and −

0f  are defined as the uniaxial tensile and 

compressive stresses beyond which non-linearity becomes visible under 1D tests (Faria 

et al., 1998). The decomposition of the effective stress tensor σ  is used here to 

distinguish the tensile and compressive responses of the model. In equation (2.40), −
octσ  

and −
octτ  are the octahedral normal stress and octahedral shear stress obtained from −σ . 

The model parameter K  in (2.38) and (2.40) is introduced to govern the ratio [about 

1.16 – 1.2 based on the experimental tests by Kupfer et al. (1969)] between the biaxial 

compressive strength and its uniaxial counterpart (figure 2.27).  

For the plasticity part of the coupled model, an evolution law was proposed for the 

plastic strain rate to capture the permanent deformations observed in experiments (Faria 

et al., 1998): 

 ( ) σa
σσ
εσ

ε :
:
: 1−=
&

&& c
p DEHβ  (2.41) 

where β  is a model parameter used to control the rate of plastic deformation. The 

appearance of the Heaviside step function ( )cDH &  here implies that permanent 

deformations occur in compression only. The Macaulay bracket in (2.41) is used to 

assure the non-negative value for the product εσ : , which is required for the 

thermodynamic admissibility of the model (Faria et al., 1998).  

In this model the damage loading functions (2.35) and (2.36) are only used to 

define a strength envelope in the general loading cases. For the evolution of damage 

variables, the following laws are used 
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where +A , −A  and −B  are all model parameters determined experimentally.  

Use of two separate damage variables and damage surface in this model help to 

capture the unilateral behaviour of concrete, as numerically illustrated by Faria et al. 

(1998). The biaxial behaviour of the model is also calibrated against experimental data 

(figure 2.27). However, the introduction of plastic dissipation mechanism through the 

plastic strain defined in (2.41) is arbitrary. As explained by the Faria et al. (1998), this 
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is to gain algorithmic efficiency in large time consuming seismic analysis. The resulting 

inability of the model to capture permanent deformation in tension is obvious. 

2.3.3.4 Model of Salari et al. (2004) 

In Salari et al. (2004), coupling between damage and plasticity results from the 

decrement of plasticity threshold with respect to change of a scalar damage variable, 

which is equivalent to the use of effective stress in the yield function. The stress-strain 

relationship with a single scalar damage variable is 

 ( ) ( )pD εεaσ −−= :1  (2.44) 

where a  denotes the elasticity stiffness tensor. The plastic behaviour of the coupled 

damage-plasticity model is controlled by the following pressure-dependent Drucker-

Prager yield criterion 

 ( ) 0121 =−−+= kDJIy p α  (2.45) 

where α  and k  are two functions of the equivalent deviatoric plastic strain pε ′ , which 

are expressed as follows 

 ∫
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′=′
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εε
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 ( ) ( )pmm b εαααα ′−−−= 10 exp  (2.48) 

 ( ) ( )pmm bkkkk ε ′−−−= 20 exp  (2.49) 

In the above expressions p
ijε ′  denotes the deviatoric plastic strain; 1b  and 2b  are two 

model parameters; 0α , mα  and 0k , mk  are the initial and maximum values of the 

frictional and cohesive parameters α  and k , respectively, in which 0α  and 0k  can be 

determined directly from the uniaxial tensile and compressive strengths of the material 

(see Salari et al., 2004). 

Use of a non-associated flow rule in the model requires the definition of a plastic 

potential ϕ , which is of the form: 

 21 JI += βϕ  (2.50) 
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The dilatation parameter β  is used here to control the inelastic volume expansion. 

For the damage loading function, the following thermodynamic force (following 

the proposal by Shao et al., 1998) is used to drive the damage evolution. 

 ∫+=

p
v

p
vm

e
vv dcKY

ε

εσε
0

20
2
1  (2.51) 

 tcc =  for 0>e
vε   

 ccc =  for 0<e
vε  

in which 0K  is the bulk modulus of the intact material; e
vε  and p

vε  are the volumetric 

parts of the elastic strain and plastic strain, respectively; mσ  is the mean nominal stress; 

cc  and tc  are two model parameters termed plastic participation factors in damage 

force; and  denotes the Macaulay bracket. The damage loading function is defined as 

 ( ) 0=−= DrYy vd  (2.52) 

with ( )Dr  being the energy resistance function (Salari et al., 2004). The evolutions of 

damage variable and plastic strain are obtained from the two consistency conditions of 

the yield and damage functions, which are expressed as follows: 
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The model presented above can capture the tensile and compressive behaviour of 

quasi-brittle materials separately, thanks to the use of different parameters in tension 

and compression ( cc  and tc ) for the damage function. However, with only a single 

scalar damage indicator, this model cannot be used to model the unilateral behaviour of 

the material when load reversal takes place. In addition, the identification and 

determination of model parameters have not carefully been addressed in the 

development of the model, resulting in somewhat arbitrary choices of model 

parameters. 
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2.3.3.5 Model of Addessi et al. (2002) 

The plastic nonlocal damage model proposed by Addessi et al. (2002) is like that 

of Salari et al. (2004) in the sense that only a single scalar damage parameter is used. 

For the constitutive aspects, only the local version of the model is considered here. The 

stress-strain law with damage is 

 ( ) ( )pD εεaσ −−= :1 2  (2.55) 

This is somewhat different from the previously reviewed models with ( )21 D− , instead 

of ( )D−1 , appearing in the stress-strain law. The definition of damage variable of 

Lemaitre (2.2) is therefore not applicable. However, the effective stress tensor in this 

case is the same as that defined in previously reviewed models (2.26 and 2.34): 

 
( )

( )p

D
εεaσσ −=

−
= :

1 2  (2.56) 

 

Figure 2.28: Evolution of the damage surface in 2D principal stress space            

(Addessi et al., 2002) 

For the coupling between damage and plasticity, two loading functions are defined; 

these being a damage function and a yield function. The damage limit function of this 

model is of the form 

 ( ) ( ) 01 =+−−= DKaYYyd  (2.57) 

In this function, K  and a  are two functions expressed in terms of other model 

parameters tK , cK , ta  and ca , which in turn are strain-based functions (see Addessi et 
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al., 2002 for details). The variable Y , termed equivalent deformation, in (2.57) is 

defined by 

 
c

c
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t
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YY

00
+=  (2.58) 

with tY0  and cY0  being the damage thresholds in tension and compression respectively. 

The equivalent tensile and compressive deformation tY  and cY  are functions of the 

equivalent elastic and total strains e
ie  and ie , all of which are defined as: 
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in which e
iε  and iε  are the elastic and total principal strains; and ν  is Poisson’s ratio. 

For the plasticity part of the coupled model, an associated flow rule is assumed. 

The following yield function is used 

 ( ) ( ) 03, 12 =+′′−′−′+= qffIffJqy tctcp σ  (2.61) 

where 1I  denotes the first invariant of the effective stress tensor and 2J  the second 

invariant of the deviatoric part of the effective stress tensor; q  is termed the 

thermodynamic force associated with the internal variable α  by the relation χα−=q , 

with χ  being the hardening parameter of the model. This leads to the following 

evolution laws (Addessi et al., 2002) 
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As can be seen, the above model uses the concept of effective stress to couple 

damage and plasticity. What is different from other reviewed models here is the flow 

rule (2.62), in which the differentiation of the yield function is taken with respect to the 

effective stress σ , instead of the true stress tensor σ  (Lemaitre, 1992). The 

thermodynamic admissibility of the coupled model was not addressed during the model 

formulation. The use of a single scalar damage variable here also restricts the model 
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capability to capture the experimentally observed stiffness recovery in unloading from 

tension to compression. In addition, the true multi-axial response of the model is also 

not accounted for in the damage criterion (see figure 2.28), and the ductility of the 

material in compression under confined pressure therefore cannot be faithfully captured 

by the model.  

2.4 Discussion 

The proper choice of constitutive models for an engineering application depends 

on the actual need and the loading circumstances. Simple models can give satisfactory 

results in relevant cases, e.g. pure damage or softening plasticity models if only 

monotonic loading is considered. Nevertheless, this is not always the case and advanced 

constitutive models being able to capture faithfully the observed macroscopic behaviour 

of the material are often needed. In this case, coupling between damage and plasticity is 

advocated. 

In constitutive modelling based on continuum mechanics, it is essential that the 

model capture faithfully the multi-axial behaviour of the material during the failure 

process. For isotropic damage models, at least the initial shape of the failure surface 

should be in accordance with the experimental failure envelope. For the macroscopic 

constitutive modelling pursued in this study, a yield surface and/or a failure surface with 

evolution laws governing the expansion/contraction of those surfaces are needed. These 

surfaces should account for the responses of the model in multi-axial loading. This, 

however, is not always respected in the modelling, e.g. models proposed by Addessi et 

al., 2002; Jirasek and Patzak, 2002; Ung-Quoc, 2003. 

Other aspects that should be mentioned are the identification and determination of 

model parameters. While there is no universally accepted and recommended test for the 

fracture properties of the material other than the standard three-point bending test of 

notched beam (Petersson, 1981; RILEM, 1985), for practical purpose, the identification 

of model parameters should be based on the recommended tests. Otherwise, new tests 

should be devised for the identification of model parameters. In this study, 

modifications of the standard three-point bending test (by Bazant, 1996) are adopted for 

the determination of parameters of a coupled damage-plasticity model (see chapter 4). 
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Along with the identification of model parameters, the evolution of the scalar 

damage variable is usually based on the uniaxial behaviour of the material, with the area 

under the stress-separation curve in a cohesive crack model (or equivalently the stress-

strain curve in continuum models) representing the fracture energy in pure mode I 

(opening) cracking. This stress-separation curve can be in fact obtained from the 

standard three-point bending test of a notched beam, or possibly a direct tension test. 

Although it is not universal in the general loading case, this way of obtaining damage 

evolution laws and identifying model parameters has been widely adopted in the 

research community (Petersson, 1981; Saleh and Aliabadi, 1995; Meschke et al., 1998; 

Comi and Perego, 2001; Jirasek and Patzak, 2002; Jirasek et al. 2004; Salari et al., 

2004). We will adopt it in this study without going into a debate on the importance of 

mode II fracture energy in the modelling. However, one important thing that should be 

mentioned here is that a process based solely on one experimentally-given fracture 

energy (mode I as adopted here) cannot give a unique response to the material model. In 

other words, several different stress-separation curves can produce the same given 

fracture energy. Furthermore, the nonlinear softening laws used in some models (Comi, 

2001; Comi and Perego, 2001; Jirasek et al. 2004) cannot be guaranteed to give the 

model responses in accordance with the material behaviour in all cases with different 

material properties. This observation has not always been addressed in the constitutive 

modelling of concrete materials. Without proper care of the parameter identification, 

numerical simulation based on a constitutive model seems to be an ad hoc fitting of the 

responses of the numerical model to those of the real structure. We will return to this 

issue in chapters 4 and 5 and propose a simple but useful way, based on experimental 

observation, for the parameter identification of the proposed models. 

 Although several coupling models of damage and plasticity have been proposed 

and studied, there is always space for new development. This observation comes from 

the deficiency of current coupled damage-plasticity models in macroscopically 

modelling the material behaviour in a convincing manner, in which the observed 

material behaviour is faithfully reflected, and close connections between the proposal of 

the models and the identification of parameters based on experiments should be 

established. In addition, the complication and use of ad hoc assumptions in models 

reviewed in the preceding sections should be avoided by formulating them within a 

rigorously and consistently built framework. However, the development of combined 
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damage-plasticity models is not an easy task, as it concerns the macroscopic modelling 

of the complex underlying microscopic phenomena, which are difficult or even 

impossible to be measured experimentally. Numerical microscopic analysis of the 

material behaviour is an alternative way to obtain some understanding on the underlying 

micro-structural phenomena. This, however, makes very high computational demands, 

and is outside the scope of the study. 

In macroscopic modelling, one possible and essential way of determining 

parameters for coupled damage-plasticity models is to base these on the separation of 

the total energy dissipated due to different dissipation mechanisms, e.g. due to 

microcracking processes in concrete. Those underlying microscopic processes can be 

observed as crack opening (mode I), sliding (mode II) or tearing (mode III) at 

macroscopic level. It should be noted that, the above distinction of macro cracking 

modes only has a relative meaning and is in the context of the macroscopic modelling, 

as the energy can be dissipated by several different underlying microstructural 

mechanisms even in pure mode I, mode II or mode III macro-cracking. For example, 

frictional slips at the interface between aggregate and mortar or due to aggregate 

interlocking can result in permanent deformations even in pure mode I cracking. As a 

consequence, the separation of dissipated energy should be appropriately performed, 

with relevant experimental tests on concrete needed to be carried out. For mode I 

cracking, Bazant (1996) suggested measuring the unloading slopes at sufficient number 

of points on the load-deflection curve in the standard three-point bending test for the 

separation of energies dissipated due to microcracking and frictional slips. This, 

however, is one simple demonstration of the suggested separation of dissipated energy, 

only for pure mode I cracking, which is believed to prevail in concrete even in mixed-

mode cracking (Di Prisco et al., 2000). The need for fracture energy in the shearing 

mode of cracking is still a controversial issue and therefore not considered in this study. 

The brief review in the preceding sections and the above discussion have shown 

the need to combine damage mechanics and plasticity theory in a rigorous way without 

introducing any ad hoc assumptions during the model formulation. The combination of 

damage mechanics and plasticity theory within a thermodynamic framework will be 

focused on in the next Chapters. Thermodynamic principles will serve as a basis for the 

approach to constitutive modelling of the material, helping to produce 
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thermodynamically reasonable results in the numerical analysis. The coupled damage-

plasticity model in this study is intended to capture important features of the material 

behaviour such as the strength reduction, stiffness degradation, and permanent 

deformation; all of which occurs in both tension and compression. In addition, the 

multi-axial behaviour along with simple mechanisms to capture the multiple hardening 

and the unilateral behaviour of the material will be featured in the modelling. The 

identification and determination of model parameters will also be addressed and 

discussed at length. 
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3 Chapter 3:  

Thermodynamic Aspects – A Formulation of Elasto-

plastic-damageable Models 

3.1 Introduction 

The constitutive models for concrete in this study are developed based on the 

thermodynamic framework proposed by Houlsby and Puzrin (2000). Modifications of 

the original thermodynamic framework (by Houlsby and Puzrin, 2000) to accommodate 

an additional internal variable for the microcracking process will be presented in this 

chapter, followed by the formulation of stress- and strain-based damage models. A 

comparison between the framework used in this study and that by Lemaitre (1992) is 

carried out at the end of this Chapter. 

3.2 Thermodynamic aspects 

This section presents a simple formulation of elasto-plastic damage models based 

on the thermodynamic framework for plasticity proposed by Houlsby and Puzrin 

(2000). Similarities, as well as differences, between this framework and the others, 

mainly those by Lemaitre and Chaboche (1990) and Lemaitre (1992) will also be 

addressed. In addition to a single internal variable of tensorial form ijα  in the original 

framework, which is identified with the plastic strain (Collins and Houlsby, 1997), a 

new internal variable, termed dα  instead of D  to be in accordance with the 

terminology used in the adopted framework, is introduced to model the material 

deterioration. In this study, we restrict ourselves to the case of isotropic damage, so that 

dα  is simply a scalar internal variable. The incorporation of tensorial form of damage 

is in principle possible but for simplicity is left here as a future development of the 

proposed approach. 
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3.2.1 Dissipation function 

The definition of internal variable here is in agreement with that of Lemaitre and 

Chaboche (1990), in which state variables comprising observable and internal variables 

define the thermodynamic state at a given point and instant of a medium. Temperature 

θ  and total strain ε  are considered as observable variables while other state variables, 

such as those representing the plasticity and damage processes, are regarded as internal 

variables. In fact these internal variables are macro variables characterizing micro-

structural processes (density of dislocations, crystalline microstructure, configuration of 

microcracks and cavities, etc) and there are no means of measuring them by direct 

observation (Lemaitre and Chaboche, 1990). However, the treatment to these two kinds 

of variables is the same. 

As mentioned in the original framework (by Houlsby and Puzrin, 2000), the 

generalization of the framework either to other forms of internal variable, or to multiple 

internal variables, is straightforward. The specific internal energy function in this case is 

of the form ( )suu dijij ,,, ααε= , from which the generalized stress corresponding to the 

newly introduced internal kinematic variable dα  is also identified as a scalar, termed 

dχ , and is defined by (Houlsby and Puzrin, 2000): dd u αχ ∂∂−= . In this case the 

derivation of a model entirely follows the procedures in the original work by Houlsby 

and Puzrin (2000) and is represented here, along with some minor modifications to 

integrate damage-related terms into the model, merely for the sake of illustration. 

Following the original work, we restate the local forms of the First and Second 

Laws of Thermodynamics, respectively 

 uQW &&& =+  (3.1) 
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in which ijijW εσ && =  is the mechanical work input; kkqQ ,−=&  is the heat supply to a 

volume element, s  is the entropy and θkq  is denoted as the entropy flux. It should 

also be noted here that the above rate equations are of local form and can generally be 

written for any given point of the whole continuum. The accommodation of nonlocality 

to the framework, for the treatment of softening-related problems, will be presented in 
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the chapter 6. We also exclude internal heat production, although some authors include 

it, as it is in fact contrary to the First law. Expansion of expression (3.2) then gives us 

 0,
, ≥−+

θ
θ

θ kk
kk

q
qs&  (3.3) 

 The dissipation here comprises two parts corresponding to the mechanical 

dissipation kkqs ,+&θ  and thermal dissipation θθ kkq ,− . As mentioned in the original 

framework, a more stringent law than the Second Law of Thermodynamics, can be 

assumed here by assuming that 0, ≥+ kkqs&θ , using the fact that the thermal dissipation 

is always non-negative and small compared to the mechanical one for small thermal 

gradients. However, for the sake of illustration we make use of this assumption in the 

finally derived expression. Therefore the dissipation function, which is actually the rate 

of dissipation function, can be rewritten 
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from which and the First Law of Thermodynamics, it follows that 
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In fact, this is the fundamental inequality combining the First and Second Law of 

Thermodynamics, which directly leads to the Clausius-Duhem inequality through the 

use of the Helmholtz specific free energy f , defined by 

 θsuf −=  (3.6) 

Differentiation of f  with respect to time results in 

 ssuf &&&& θθ −−=  (3.7) 

from which and (3.5) we obtain the inequality 
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θεσ kk
ijij

q
sfd &&&  (3.8) 

This expression embodies both the First and Second Laws of Thermodynamics and 

is called the Clausius-Duhem inequality. Processes satisfying the Clausius-Duhem 

inequality are said to be thermodynamically admissible. What is obtained here is similar 

to that in Lemaitre and Chaboche (1990) or Lemaitre (1992), with the only difference 

lying in the absence of the mass density ρ , as all the expressions here are written for a 



Chapter 3 – Thermodynamic Aspects –A Formulation of Elasto-plastic-damageable Models 3-4 

unit volume. The Clausius-Duhem inequality here implies the thermodynamic 

admissibility of any non-dissipative as well as dissipative processes. Making use of the 

assumption that the thermal dissipation θθ kkq ,−  is positive and small compared to 

the mechanical one for slow processes, and hence it can be neglected, the Clausius-

Duhem inequality now reduces to a more stringent form (Houlsby and Puzrin, 2000) 

 0≥−−= θεσ &&& sfd ijij  (3.9) 

or in a similar form using the internal energy u  

 0≥+−= sud ijij &&& θεσ  (3.10) 

3.2.2 Fundamental relations 

Fundamental relations or state laws, which define links between the state variables 

and their associated variables, are derived in this section. The relations can be obtained 

either by making use of the Clausius-Duhem inequality in specific physical cases 

(Lemaitre and Chaboche, 1990) or, mathematically, just by comparing the expressions 

of u&  derived in two different ways (Houlsby and Puzrin, 2000). The Clausius-Duhem 

inequality (3.9) in this case can be interpreted as a mathematical expression for any 

physical processes. It can now be used with the time differentiation of the Helmholtz 

free energy f , which is 

 d
d

ij
ij

ij
ij

fffff α
α

α
α

θ
θ

ε
ε

&&&&&
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=  (3.11) 

to obtain 

 0ij ij ij d
ij ij d

f f f fd sσ ε θ α α
ε θ α α

 ∂ ∂ ∂ ∂ = − − + − − ≥    ∂ ∂ ∂ ∂  
&& & &  (3.12) 

Physical interpretations of dissipation processes here lead to the independent 

cancellation of some terms in this inequality. For example, for an isothermal elastic 

deformation with no change in the internal variables, the dissipation is zero and hence 

the equality in the Clausius-Duhem inequality holds. It directly results in 

 
ij

ij
f
ε

σ
∂
∂

=  (3.13) 

In a similar way to this, for a reversible thermal process, the equality also holds, 

resulting in 



Chapter 3 – Thermodynamic Aspects –A Formulation of Elasto-plastic-damageable Models 3-5 

 
θ∂
∂

−=
fs  (3.14) 

Finally, we have 

 0≥
∂
∂

−
∂
∂

−= d
d

ij
ij

ffd α
α

α
α

&&  (3.15) 

The same results can be found using some mathematical manipulations and 

comparisons (Houlsby and Puzrin, 2000), in which the time differentiation of the 

internal energy ( )suu dijij ,,, ααε=  can be compared with (3.10), giving us similar 

state laws as obtained above. It can also be seen here that the associated variables with 

strain ijε  and temperature θ  are stress ijσ  and entropy s  respectively. Therefore, in an 

analogous manner, the thermodynamic forces associated with the internal variables ijα  

and dα  can be defined to be 

 
ij

ij
f
α

χ
∂
∂

−=  (3.16) 

 
d

d
f
α

χ
∂
∂

−=  (3.17) 

They are called generalized stresses (Houlsby and Puzrin, 2000) and, in connection with 

the dissipative generalized stress defined later, are the key features for obtaining the 

yield and damage loading functions in this framework. Although the above laws are 

formulated based on the employment of the Helmholtz free energy function f , similar 

results for the relationships between internal and associated variables can also be 

obtained for any energy function through the use of the Legendre transformations. A 

Legendre transformation in this case involves a change in the choice of internal 

variables and a corresponding change in the choice of the energy function. Those 

energy functions can be any of the internal energy u , enthalpy h , Helmholtz free 

energy f  or Gibbs free energy g , the use of which is interchangeable in the framework 

and all fundamental relations derived from which can be found in Collins and Houlsby 

(1997), and Houlsby and Puzrin (2000). 

3.2.3 Loading functions and evolution laws 

The dissipation now contains the mechanical dissipation (intrinsic dissipation) 

only and therefore is different from that in Lemaitre and Chaboche (1990). 
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 0≥+= ddijijd αχαχ &&  (3.18) 

The positiveness of the thermal dissipation θθ kkq ,− , is automatically satisfied based 

on the fact that the heat flow is always in the direction of the negative thermal gradient. 

Moreover, this dissipation is also small compared to the mechanical ones for small 

thermal gradient. Neglecting the thermal dissipation hence results in a slightly more 

stringent condition than the Second Law of Thermodynamics but can be widely 

accepted (Houlsby and Puzrin, 2000). In this case, the separation of the thermal and 

mechanical dissipations and enforcement of the positiveness of the mechanical 

dissipation should only be considered as a restriction on the field of continua treated in 

this study. 

Houlsby and Puzrin (2000) again made use of the Legendre transformation here, 

making this framework different from those having been developed. The evolution 

laws, following several thermomechanical frameworks (Lemaitre and Chaboche, 1990; 

Maugin, 1992; Lemaitre, 1992), are derived by differentiating the dissipation potential, 

which is postulated to exist. The whole problem of specifying a constitutive law is now 

reduced to specifying two potentials: the free energy and the dissipation potential. 

However, things are different here. Instead of postulating the existence of a pseudo 

dissipation potential, the dissipation in the original framework is assumed to be a 

function of the thermodynamics state of the material and the rate of change of state. It 

can be expressed variously as: 

 ( ) 0,,,,, ≥= dijdijij
u sdd ααααε &&  (3.19a) 

 ( ) 0,,,,, ≥= dijdijij
f sdd ααααε &&  (3.19b) 

 ( ) 0,,,,, ≥= dijdijij
h sdd ααααε &&  (3.19c) 

 ( ) 0,,,,, ≥= dijdijij
g sdd ααααε &&  (3.19d) 

depending on the energy function used. Using the fact that the dissipation of a rate-

independent material must be a homogeneous first order function in the rate ijα& , and 

dα&  (Houlsby and Puzrin, 2000), we have (Euler’s theorem): 

 ddijijd
d

ij
ij

ddd αχαχα
α

α
α

&&&
&

&
&

+=
∂
∂

+
∂
∂

=  (3.20) 
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with the definition of the dissipative generalized stresses: ijij d αχ &∂∂=  and 

dd d αχ &∂∂= . The consequences of keeping ijχ  and ijχ  as well as dχ  and dχ  

separate directly follow this definition. Comparing (3.15) and (3.20), one obtains 

 ( ) 0=− ijijij αχχ &  (3.21) 

 ( ) 0=− ddd αχχ &  (3.22) 

As ijχ  may be a function of ijα& , it can be concluded here that ijij χχ −  is always 

orthogonal to ijα& . However, as argued by Ziegler (1983) and presented by Houlsby and 

Puzrin (2000) and Walsh and Tordesillas (2004), a rather wide range of classes of 

materials can be described by enforcement of the stronger condition ijij χχ = . This 

condition is equivalent to Ziegler’s orthogonality condition and was adopted in the 

framework by Houlsby and Puzrin (2000). For the equality (3.22), with the scalar dα& , it 

is readily seen that dd χχ =  for 0≠dα& . 

The Legendre transformation is used for interchanging internal variables and their 

corresponding dissipative generalized stresses. In the original framework, since the 

dissipation function is homogeneous first order, the Legendre transformation is 

degenerate (Collins and Houlsby, 1997) and the yield function, as the transform of the 

dissipation function, is the result of this. However things are different here as there are 

two separate internal variables representing the two dissipation processes due to damage 

and plasticity respectively. In a similar way, we have 

 0=−−+ dpddijij ddαχαχ &&  (3.23) 

in which the dissipation d  has been assumed to be decomposed into two parts, 

corresponding to the energies dissipated due to plasticity and damage mechanisms. No 

generality is lost here, as damage and plastic flow can be considered as independent 

processes and can occur alone (Lemaitre and Chaboche, 1990). This decomposition of 

energy dissipation has been adopted by several researchers (Simo and Ju, 1987; Ju, 

1989; Lemaitre and Chaboche, 1990; Lemaitre, 1992; Walsh and Tordesillas, 2004). 

For rate-independent materials, the Legendre transformation of pd  and dd  gives 

us the yield and damage functions (see Houlsby and Puzrin, 2000) 

 0=−= pijijpp dy αχλ &  (3.24) 

 0p p d d dy dλ χ α= − =&  (3.25) 



Chapter 3 – Thermodynamic Aspects –A Formulation of Elasto-plastic-damageable Models 3-8 

or, using the fact that pd  and dd  are homogeneous first order, we have 

 0=










∂
∂

−= ij
ij

ijpp
dy α
α

χλ &
&

 (3.26) 

 0=







∂
∂

−= d
d

ddd
dy α
α

χλ &
&

 (3.27) 

where pλ  and dλ  are non-negative scalar multipliers playing the same role as that of 

the plasticity multiplier in conventional plasticity. Therefore, we obtain two “yield” 

functions, one of which is that concerned with the internal variable ijα  and, as in the 

original framework, is denoted here as the yield function. The new function here is of 

similar form and related to the damage process. Unlike the yield function, which can 

only be obtained by eliminating ijα&  from equations 0=∂∂− ijij d αχ &  (Houlsby and 

Puzrin, 2000), the damage function in this case can directly be obtained from (3.27). 

Using the fact that dα&  is non-zero during the damage process, we have the expression 

of the damage function 

 0=
∂
∂

−=
d

dd
dy
α

χ
&

 (3.28) 

The flow rules can be adopted here 

 
ij

p
pij

y
χ

λα
∂

∂
=&  (3.29) 

and 

 
d

d
dd

y
χ

λα
∂
∂

=&  (3.30) 

The above is merely a brief illustration of the adopted thermodynamic approach of 

the study. More details can be found in relevant papers (Collins and Houlsby, 1997; 

Houlsby and Puzrin, 2000; Houlsby and Puzrin, 2002). In the approach, the yield and 

damage functions occur naturally from the degenerate Legendre transformation of the 

dissipation function. This distinguishes the adopted thermodynamic approach from 

existing ones. The key difference, in comparison with some other thermodynamics 

approaches (Simo and Ju, 1987; Lemaitre and Chaboche, 1990; Lemaitre, 1992; 

Maugin, 1992), is the use of the fundamental constitutive assumptions ( ijij χχ =  and/or 

d dχ χ= ) equivalent to Ziegler’s orthogonality conditions. Those assumptions, when 
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combined with the Legendre transformation, help to avoid specifying an expression for 

the dissipation potential and then create ways for the derivation of the yield and damage 

loading functions. In addition, unlike conventional plasticity, where the flow rule is 

obtained from the differentiation of the plastic potential (or the yield surface for 

associated flow rule) with respect to the stresses, in expression (3.29) the plastic strain 

rates are obtained by differentiating the yield surface with respect to the dissipative 

generalized stresses ijχ . This results in the possibility of deriving non-associated 

plasticity within this framework (Collins and Houlsby, 1997). An illustration of this will 

be shown in the next section. 

3.3 Formulation of elasto-plastic-damageable models 

This section presents a simple formulation for continuum elasto-plastic-

damageable models based on the above thermodynamic approach (by Houlsby and 

Puzrin, 2000). The parabolic Drucker-Prager yield criterion (Hansen et al., 2001) is 

adopted and its derivation incorporated in the formulation. This yield criterion in this 

case is coupled with a damage criterion, which is based on the damage energy release 

rate. An isotropic hardening rule with a non-associated flow rule is assumed, thus 

making the stress and generalized stress in the original framework coincide. The 

derivation of a constitutive model here can be based on either strain- or stress-based 

formulation, which employs the Helmholtz or Gibbs free energy potentials respectively. 

They are all presented in the following sub-sections. 

3.3.1 Strain-based formulation 

For the strain-based formulation, the following Helmholtz energy is used 

 ( )
( ) ( )( ) ( ) ( )( )








−−

−
+−−

+
−

= llllkkkkijijijij
d Ef αεαε

ν
ναεαε

ν
α

2112
1  (3.31) 

or in a more convenient form 

 ( ) ( )( )klklijijijkld af αεαεα −−−= 1
2
1  (3.32) 

in which ijα  and dα  are internal variables characterizing the plasticity and damage 

processes; ijkla  is the elasticity stiffness tensor expressed in terms of elasticity modulus 

E  and Poisson’s ratio ν  
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 ( ) 



 ++
−+

= jkiljlikklijijkl
Ea δδδδδδ

ν
ν

ν 21
2

12
  

Use of loading functions (yield and damage functions) or dissipation function is 

interchangeable in the framework. Here, a dissipation function, which is in fact worked 

out from an energy-based damage function and a parabolic Drucker-Prager yield 

function (see section 3.3.1.2 for details), is used and takes the form 

 ( ) ( ) C
r

r
rkFd

kk

ijijkk
kkdd Λ+

′′
+








−−+=

α
ααβασ

β
αα

&

&&&
&

2
3

3
11  (3.33) 

where ( )dF α1  is a positive and increasing function associated with the damage process; 

this function in fact decides the rate of damage dissipation; C  is a constraint defining 

the accumulated plastic strain; Λ  is the Lagrangean multiplier associated with the 

constraint C  (see Houlsby and Puzrin, 2000 for the introduction of a constraint into the 

modelling); 10 ≤< r  is a factor related to the deviation of the plastic strain rate vector 

ijα&  from the normal vector to the yield surface in true stress space; β  and k  are 

parameters of the parabolic Drucker-Prager yield criterion 

 ( ) ( ) ( )
3

,,
,

κακα
καβ dtydcy

d
ff −

=  (3.34) 

 ( ) ( ) ( )
3

,,
,

κακα
κα dtydcy

d
ff

k =  (3.35) 

In the above expression, cyf  and tyf  denote the yield stresses in uniaxial compression 

and uniaxial tension respectively. As the material undergoes two dissipation processes 

due to damage and plasticity, cyf  and tyf  depend on both a hardening parameter κ  and 

damage indicator dα . The hardening parameter κ  in turn can be determined either 

from the accumulated plastic strain pε  (strain hardening) or the plastic work pW  (work 

hardening). 

In the expression of the dissipation function (3.33), it should be noted that dα&  

must be non-negative to assure the non-negativeness of the damage dissipation 

( ) ddd Fd αα &1= . This can be enforced using the Macaulay bracket  for the rate of 

damage dα& . Alternatively, a more mathematically rigorous form of the dissipation 

function dd  can be used here, employing the indicator function ( )dαδ &+0  which 

vanishes if 0≥dα&  and goes to infinity for any physically impossible value of dα&  

(Nguyen, 2002). The damage function dd  in that case is of the form: 
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( ) ( )dddd Fd αδαα && ++= 01 . For the sake of simplicity in the formulation, those 

mathematical treatments are not used here. 

The strain hardening hypothesis is adopted in this study, although the formulation 

can also be adapted to employing work hardening plasticity without any difficulty. For 

strain hardening plasticity we have pεκ = , with the constraint C  being defined 

 0=−= ijijp cC ααε &&&  (3.36) 

where 32=c  is a constant aiming at making the definition of pε&  agree with the 

uniaxial plastic strain in uniaxial test. This agreement is in fact valid only for pressure-

independent yield criteria (e.g. Von Mises and Tresca criteria), which is unfortunately 

not the case in this study. However, for simplicity, 32=c , as in pressure-

independent plasticity, is adopted here. The resulting unwanted effects of choosing this 

value in the model responses will be mentioned in the next chapter. 

The derivation of the constitutive models here follows standard procedures 

established beforehand in the original framework (Houlsby and Puzrin, 2000), and 

partly illustrated in the preceding sections. The stress and generalized stresses are 

derived from the energy function: 

 ( ) ( )klklijkld
ij

ij af αεα
ε

σ −−=
∂
∂

= 1  (3.37) 

 ij
ij

ij
f σ
α

χ =
∂
∂

−=  (3.38) 

 ( )( )klklijijijkl
d

d af αεαε
α

χ −−=
∂
∂

−=
2
1  (3.39) 

 0=
∂
∂

−=
p

p
f
ε

χ  (3.40) 

In (3.39), the thermodynamic force dχ  conjugate to the damage indicator dα  can be 

identified as the strain energy release rate with respect to dα  under constant stress 

(Lemaitre, 1992). The dissipative generalized stresses in this case can be obtained from 

the dissipation function in a way similar to the above derivation of the stress and 

generalized stresses: 
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 ( )
klkl

ij

llkk

ijmnmn

kk

ijij
kk

ij
ij

crr
r

rkd
αα

α
αα

δααβ
α
αβδ

σ
βα

χ
&&

&

&&

&&

&

&

&

Λ
−

′′
−

′
+








−−=

∂
∂

=
2

33
3

1  (3.41) 

 
( )d

d
d Fd α

α
χ 1=

∂
∂

=
&  (3.42) 

 
Λ=

∂
∂

=
p

p
d
ε

χ
&

 (3.43) 

The application of the fundamental hypothesis pp χχ =  (Houlsby and Puzrin, 2000) 

directly leads to 0=Λ . The yield criterion in this case is derived by eliminating ijα&  

from equation (3.41). It is a result of the degenerate Legendre transformation of the 

dissipation function, in which the true stress ijσ  appearing in the square bracket of 

(3.41) is considered as a passive variable in the transformation (see Collins and 

Houlsby, 1997). From the expression of ijχ , the following can be obtained  

 ( )
nnmm

ijijkk
kk

r
r
r

r
k

αα
ααβσ

β
χ

&&

&&

2
91 ′′

−






 −
−=  (3.44) 

 
kk

ij
ij

r
α

αβ
χ

&

& ′
=′

3
 (3.45) 

From (3.45), we obtain 

 
229 r

llkkijij
mnmn

β

ααχχ
αα

&&
&&

′′
=′′  (3.46) 

Substitution of (3.46) into (3.44) results in 

 
( )

rr
r

r
k ijijkk

kk β
χχσ

β
χ

2
1 ′′

−






 −
−=  (3.47) 

Finally, after rearranging the above expression, we obtain the yield surface in 

dissipative generalized stress space 

 ( )[ ] 0
2

1 =−
′′

+−+= krry ijij
kkkkp

χχ
σχβ  (3.48) 

This yield function can be rewritten in terms of the true stress ijσ , using the condition 

ijijij σχχ ==  (Houlsby and Puzrin, 2000): 

 0
2

* =−
′′

+= ky ijij
kkp

σσ
σβ  (3.49) 
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The above expression resembles the linear Drucker-Prager yield criterion. However, 

compared to the linear Drucker-Prager criterion, there is no square root in the second 

invariant of the deviatoric stress tensor in (3.49).  

 As mentioned in the preceding section and can be seen in (3.48), the normality of 

the flow rule here applies to the yield function py  in generalized stress space ijχ  

(Collins and Houlsby, 1997), not in true stress space ijσ . This turns the flow rule into a 

non-associated flow rule in true stress space, with the parameter r  governing the 

deviation of the plastic strain rate from the normal vector to the yield surface *
py . 

 ( ) ( )ijijpijijp
ij

p
pij rr

y
σδβλχδβλ

χ
λα ′+=′+=

∂

∂
=&  (3.50) 

The damage criterion is derived in a way similar to the derivation of the yield 

function, and also as a result of the singular Legendre transformation of the dissipation 

function. 

 ( ) 01 =−= ddd Fy αχ  (3.51) 

Since dα  is only a scalar variable, there is actually no “flow rule” for the damage 

process, and the damage multiplier, which resembles that in plasticity, coincides with 

the scalar damage increment dα&  

 d
d

d
dd

y λ
χ

λα =
∂
∂

=&   (3.52) 

The assumption on the equality of dχ  and dχ  also holds, turning the above damage 

loading function to 

 ( )( ) ( ) 0
2
1

1 =−−−= dklklijijijkld Fay ααεαε  (3.53) 

The obtained system of constitutive relations governing the behaviour of the proposed 

model can be rewritten as follows 

 ( ) ( )klklijkld
ij

ij af αεα
ε

σ −−=
∂
∂

= 1  (3.54) 

 ( )[ ] 0
2

1 =−
′′

+−+= krry ijij
kkkkp

χχ
σχβ  (3.55) 

 0
2

* =−
′′

+= ky ijij
kkp

σσ
σβ  (3.56) 
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 ( )( ) ( ) 01 =−−−= dklklijijijkld Fay ααεαε  (3.57) 

with two evolution rules: 

 ( ) ( )ijijpijijp
ij

p
pij rr

y
σδβλχδβλ

χ
λα ′+=′+=

∂

∂
=&  (3.58) 

 d
d

d
dd

y λ
χ

λα =
∂

=&   (3.59) 

3.3.1.1 Evolution rules of internal variables, and tangent stiffness tensor 

The evolution rules of internal variables are obtained in this section. Here the 

difference from some other continuum damage mechanics approaches (Lee and Fenves, 

1998; Peerlings, 1999; Jirasek and Patzak, 2002) lies in the fact that the evolutions of 

the damage indicator dα  and of plastic strain ijα  are implicitly defined through the 

relations (3.54-3.59). The procedures used here resemble those for the derivation of 

plastic strain increment ijα&  in conventional plasticity. Following those procedures, the 

system (3.54-3.59) is rewritten in general incremental form as follows 

 ( ) ( ) ( ) dklklijklklklijkldij aa ααεαεασ &&&& −−−−= 1  (3.60) 
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 ( )( ) 01 =
∂
∂

−−−= d
d

klklijijijkld
F

ay α
α

αεαε &&&&  (3.62) 

The damage increment dα&  can be directly obtained from equation (3.62): 

 
( )( )

d

klklijijijkl
d F

a

α

αεαε
α

∂
∂

−−
=

1

&&
&  (3.63) 

It is noted that for pure damage processes, the plastic strain increments vanish and the 

damage evolution can be directly obtained from the above expression. Substituting 

(3.63), along with the stress increment (3.60), into (3.61) one gets 
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 (3.64) 

Using the flow rule (3.58) and the constraint (3.36), we obtain the increment of the 

accumulated plastic strain 
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== &&&  (3.65) 

The second term in (3.64) becomes 
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Again, using (3.58), and substituting it into (3.64), we obtain an equation containing 

only pλ  as a variable to be determined. Solution of that equation gives 
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in which 
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Using the computed plasticity multiplier, the evolutions of damage indicator dα  and 

plastic strain ijα  are derived as follows 
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The tangent stiffness relation follows straightforwardly. We substitute (3.63) into the 

expression of the stress increment to obtain 
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After substituting (3.70) into the above expression and rearranging the obtained 

expression, we have 
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where t
ijrsC  is the tangent stiffness tensor defined by 
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3.3.1.2 On the thermodynamic admissibility of the derived model 

 
Figure 3.1: Parabolic Drucker-Prager yield surface in the meridian plane 

At this point, it is necessary and worthwhile to consider the thermodynamic 

admissibility of the proposed model. As mentioned in the preceding section, for a 

thermodynamically admissible process, the Clausius-Duhem inequality, represented 
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here by the positiveness of the dissipation function d , must be satisfied. To simplify the 

condition, the thermal term can be neglected and it can be stated that the dissipations 

due to damage and plasticity processes ( dd  and pd , respectively) are all non-negative, 

which is in fact more stringent than the Second Law of Thermodynamics. 

The first part of the dissipation (3.33) is that of damage process, and can be 

assured to be non-negative by considering the fact that damage is unrecoverable: 

0≥dα& , and choosing the appropriate non-negative function 1F . The dissipation due to 

plastic deformation consists of the second and third terms of (3.33). As can be readily 

seen from (3.50) and depicted in figure (3.1), kkα&  is always positive for any plastic 

deformation process, provided that values of r  are always in the range 10 ≤< r , which 

decides the deviation of plastic strain increment ijα&  from the vector normal to the yield 

surface in true stress space. Therefore, the sign of plastic dissipation only partly depends 

upon the expression in the square bracket of the second term of (3.33). 

From the yield function py  (see 3.48), which never admits a positive value for any 

plastically admissible process, one can obtain: 

 ( )
β
χχ

χσ
β 2

1 ijij
kkkk rrk ′′
+≥−−  (3.74) 

This, in combination with the condition ijijij σχχ == , shows that ( ) kkrk σβ −− 1  is 

always positive, thus fulfilling the thermodynamic requirement on the positiveness of 

the dissipation function. 

The inverse process, from the yield and damage functions (3.48 and 3.51) to the 

dissipation function (3.33), is also in principle derivable, following the procedures in 

Houlsby and Puzrin (2000). For the damage loading function ( ) 01 =−= ddd Fy αχ  

(3.51), it is easy to obtain dχ  in term of dα  and then substitute it into the dissipation 

expression dddd αχ &=  to obtain the damage dissipation function ( ) ddd Fd αα &1= . A 

similar process can be carried out for the transformation from the yield function 0=py  

to the dissipation function pd  of the plastic flow. For that, we rewrite the yield function 

(3.48) as 

 ( )[ ] 0
2

1 =−
′′

+−+= krry ijij
kkkkp

χχ
σχβ  (3.75) 

The flow rule is 
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Separating the deviatoric and volumetric components of the plastic strain rate tensor 

ijα& , we have 

 pkk rλβα 3=&  (3.77) 

and  ijpij χλα ′=′&  (3.78) 

It follows from (3.75), (3.77) and (3.78) that 
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The expression of the dissipation pd  is 

 kkkkijijijijpd αχαχαχ &&&
3
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+′′==  (3.81) 

Substitution of (3.79) and (3.80) into (3.81) gives us the dissipation function pd  
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Additional conditions, which are that defined in (3.74) and 0>kkα& , are needed 

here to make  (3.82) meaningful. This is due to the fact that the mathematical 

preservation of the conditions (3.74) and 0>kkα&  cannot be strictly assured during the 

transformation. In other words, it cannot be assured that those conditions are 

appropriately transformed following the procedures in the original framework. This 

motivates the use of more mathematically rigorous treatments based on convex analysis 

for the existing framework (Houlsby, 2004). Work on a more rigid formulation is still 

required, but unfortunately cannot be covered by the scope of this study. 

3.3.2 Stress-based formulation 

Stress-based damage-plasticity models can be derived in much the same way as 

that presented in the preceding section. A stress-based model here is based on the Gibbs 

free energy function.  
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Compared to (3.33), the dissipation and its constraint in this case remain unchanged and 

are rewritten as follows 
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Following the same procedures (Houlsby and Puzrin, 2000) demonstrated in the 

preceding section on strain-based formulation, we end up here with the stress-elastic 

strain relationship and two loading functions, in which the yield function is exactly the 

same as that obtained in the strain-based formulation. 
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The normality rules for damage and yielding processes also hold in this case, in 

which that for a yielding process only holds in generalized stress space. In a similar way 

to that in the previous section, the incremental stress-strain relationship can be derived 

from the above system (3.85, 3.87, and 3.88), all of which are written in incremental 

forms as follows 
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The plasticity multiplier pλ , as a function of the stress increment ijσ& , damage 

increment dα&  and some other quantities, can be obtained from (3.90) 
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The plastic strain increment then follows 
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Substitution of the above expression into (3.89) results in the expression relating the 

stress, strain and damage increments 
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The stress increment can be obtained from the above expression 
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where st
ijklD  is the compliance tensor which is secant with respect to damage and 

tangent with respect to plasticity. 
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Substitute (3.95) into (3.91), we obtain an equation for the damage increment dα&  
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The damage evolution is directly obtained from the above equation 
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where mnN  and P  are defined as follows 
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The damage evolution can then be substituted into (3.94) to obtain the expression 
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from which the stress increment klσ&  can be obtained 
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The tangent stiffness tensor follows straightforwardly 
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3.4 A comparison of two thermodynamic approaches 

In this section a comparison between the thermodynamic framework by Houlsby 

and Puzrin (2000) and that proposed by Lemaitre (Lemaitre, 1992; Lemaitre and 

Chaboche, 1990) is carried out. The differences between the thermodynamic framework 

by Houlsby and Puzrin (2000) and the reference one by Lemaitre will be pointed out 

and discussed. To be convenient, the same terminology (Houlsby and Puzrin, 2000), as 

adopted and used in sections (3.2) and (3.3), is used here for both approaches. In 

addition, for the sake of simplicity, only a simple plasticity model based on these two 

frameworks is considered. In particular, the dissipation process here is assumed to be 

purely due to the plastic deformation process, with the Von Mises yield criterion and 

isotropic linear hardening. The flow rule is assumed to be associated, making the 

dissipation potential in the reference approach (Lemaitre, 1992) coincide with the yield 

function. 

For the derivation of a Von Mises plasticity model based the adopted 

thermodynamic framework (by Houlsby and Puzrin, 2000), we omit the intermediate 

details and only present the necessary expressions. The two energy functions needed for 

the derivation of the model are 

 ( )( )klklijijijklaf αεαε −−=
2
1  (3.104) 

 ( ) 22113
2 CCHd klklpy Λ+Λ+′′+= ααεσ &&  (3.105) 
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where yσ  is defined as the initial yield threshold; the first constraint, 

0321 =−= ijijpC ααε &&& , for the equivalent plastic strain has been defined in section 

(3.3); the second constraint, 02 == kkC α& , is the plastic incompressibility condition for 

the derived Von Mises yield criterion; and 1Λ  and 2Λ  are simply two Lagrangian 

multipliers for the constraints 1C  and 2C  (see Houlsby and Puzrin, 2000). This simple 

model was in fact used as a typical example for the derivation of plasticity model from 

the thermodynamic framework presented in this study (Puzrin and Houlsby, 2001). The 

obtained relations governing the stress-strain behaviour of the model are 

 ( )klklijklij a αεσ −=  (3.106) 

 ( ) 0
2
3

=+−′′= pyijijp Hy εσχχ  (3.107) 

 ( ) 0
2
3* =+−′′= pyijijp Hy εσσσ  (3.108) 

For Lemaitre’s approach (Lemaitre and Chaboche, 1990; Lemaitre, 1992), without 

thermal effects, the dissipation expression (the Clausius-Duhem inequality) reads: 

 0≥−= fd ijij
&&εσ  (3.109) 

which is exactly same in the two approaches compared here. The Helmholtz free energy 

function, following Lemaitre, is of the form 

 ( )( ) 2
2
1

2
1 Hraf klklijijijkl +−−= αεαε  (3.110) 

In the expression above, the first energy term is related to the elastic strain energy of the 

material while the second term is the energy associated with the plastic dissipation 

process. This decomposition of energy is in fact very common and has been adopted by 

several researchers in their thermodynamic approaches (Simo and Ju, 1987; Meschke et 

al., 1998; Borino et al., 1999; Salari et al., 2004; Kratzig and Polling, 2004). 

Substituting the rate form of f  into (3.109), after rearranging the obtained expression, 

one gets: 

 0≥
∂
∂

−= r
r
fd ijij &&ασ  (3.111) 

The stress and thermodynamic forces associated with the internal variables are derived 

as follows  
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A loading function py , along with a potential of dissipation ϕ , is needed to define the 

plastic flow process. For the Von Mises yield criterion with associated flow rule, the 

following function was adopted (Lemaitre, 1992): 

 0
2
3

=−+′′== yrijijpy σχσσϕ  (3.114) 

where Hrr −=χ  is the hardening part of the evolving yield threshold ry χσ − . The 

above function is similar to that in (3.108), with r  in place of pε . It can readily be seen 

here that ϕ  in fact acts as a plastic potential governing the plastic flow after yielding. 

Lemaitre and Chaboche (1990) also showed that ϕ  must be convex, and contain the 

origin for any thermodynamically admissible process. The evolutions of internal 

variables ( ijα  and r ) are as follows: 
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χ
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r
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Using (3.115) and the definition of the equivalent plastic strain: 32 ijijp ααε &&& = , we 

obtain pελ &= , resulting in the coincidence of r&  and pε& . The incremental stress-strain 

relationship can readily be derived following procedures illustrated in the preceding 

sections. However, that is not the purpose as the attention here is the difference of the 

two compared thermodynamic approaches rather than the computational aspects of the 

derived constitutive models.  

The difference in the two energy functions (3.104) and (3.110) in the compared 

approaches results in two different dissipation functions. In Lemaitre’s approach, the 

dissipation function can be obtained from the adopted yield function py  and the 

dissipation potential ϕ . This process is in fact similar to that used by Houlsby and 

Puzrin (2000) based on the Legendre transformation of the yield and dissipation 

functions (Collins and Houlsby, 1998). From (3.115), it can be seen that ijij αα ′= &&  and 
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0=kkα& , showing the incompressibility of the plastic deformation. The plasticity 

multiplier λ  is obtained in terms of ijα&  either from (3.116), or by “squaring” both sides 

of (3.115), yielding: 

 ijijααλ ′′= &&
3
2  (3.117) 

Therefore, the dissipation (3.111) turns out to be: 

 klkl
mnmn

klklijij
ijij Hrr

r
fd αα

σσ

αασσ
ασ &&

&&
&& ′′−

′′

′′′′
=

∂
∂

−=
3
2  (3.118) 

After some mathematical manipulations, using the yield function (3.114), we obtain the 

dissipation function d : 

 klklyd αασ && ′′=
3
2  (3.119) 

The table overleaf summarizes the above comparisons 

At the first glance, the two approaches are slightly different from each other in the 

choice of the Helmholtz free energy function f . In Lemaitre’s approach, part of the 

energy which should have dissipated during the plastic flow process goes to the second 

term of the energy function (the term 22Hr ). This results in the difference in the 

derived dissipation function (3.119), compared to that in the approach by Houlsby and 

Puzrin (2000). However, the main distinction of the adopted approach with respect to 

that of Lemaitre is the use of standard procedures within a well-defined thermodynamic 

framework (Houlsby and Puzrin, 2000) to formulate a constitutive model. The Legendre 

transformation to interchange the yield function and the dissipation function is used in 

these standard procedures. In addition, for the use of the Legendre transformation, the 

generalized stress ijχ  and the dissipative generalized stress ijχ  are kept as separate 

variables. Enforcement of the condition ijij χχ =  (and/or rr χχ = ) is made later in the 

formulation, and is part of the standard procedures for the derivation of a constitutive 

model. 
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Lemaitre’s approach Present approach 

Energy function and dissipation expression/function 
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Rate of dissipation (dissipation function) 
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2  ( ) klklpy Hd ααεσ && ′′+=
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Table 3.1: Comparison of two thermodynamic approaches 
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In contrast with this, Lemaitre’s approach provides thermodynamic restrictions on 

the proposed constitutive models through the non-negativeness of the dissipation 

expression (or the Clausius-Duhem inequality). In other words, the dissipation 

inequality (3.111) is used as a condition for the thermodynamic admissibility of a 

constitutive model, rather than being explicitly specified as one of the two energy 

functions needed for the model formulation. As illustrated through the above 

comparison, the conditions ijij χχ =  and rr χχ =  are automatically satisfied in 

Lemaitre’s framework. The yield function py  and dissipation potential ϕ  are 

necessarily specified for the definition of a plasticity-based constitutive model within 

Lemaitre’s thermodynamic framework. Restrictions on the shape of the dissipation 

potential are also required for the thermodynamic admissibility of the defined 

constitutive model.  

3.5 Summary 

In this chapter, the extension of the thermodynamic framework proposed by 

Houlsby and Puzrin (2000) has been completed. This includes the introduction of a new 

internal variable representing the material deterioration, along with the modification of 

the energy and dissipation functions for the accommodation of damage dissipation 

processes. A simple formulation for coupled damage-plasticity constitutive models has 

also been presented. The whole formulation is based on the above-mentioned 

thermodynamic framework and therefore inherits advantages of the approach, realized 

through the simplicity and rigorousness of the derivation procedures and the resulting 

thermodynamic admissibility of the obtained constitutive models. Both strain- and 

stress-based models can be accommodated in this framework and formulated following 

established procedures. The computational aspect of the proposed damage-plasticity 

models has also been preliminarily addressed, with the derivation of the tangent 

stiffness tensors for both stress- and strain-based constitutive models.  

The adopted approach makes use of the Legendre transformation of the dissipation 

function and, in a more rigorous way, leads to a natural occurrence of the yield and 

damage loading functions. There is no need to have any assumption on the form of a 

dissipation potential, as usually encountered in several thermomechanical approaches 

(Lemaitre and Chaboche, 1990; Lemaitre, 1992; Maugin, 1992). Coupling between 

damage and non-associated plasticity in both stress- and strain-based models is 
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implicitly embedded in the governing constitutive relations; and the evolution laws of 

internal variables can be straightforwardly derived from those relations. In particular, in 

the proposed damage-plasticity models, the parameters k  (3.34) and β  (3.35) of the 

yield function are decreasing functions with respect to the damage indicator dα , 

characterizing the reduction of the plasticity threshold due to microcracking processes 

(Nguyen, 2002; Nguyen and Houlsby, 2004; Salari et al, 2004). This is equivalent to 

introducing effective instead of nominal stress to the yield function (e.g. in Lemaitre 

and Chaboche, 1990; Lemaitre, 1992). 

This chapter merely addresses the thermodynamic aspects of the proposed 

constitutive models. Without experimental- and micromechanical-based details, the 

simple models described in this chapter are not yet ready for use in the constitutive 

modelling of cement-based materials. This specification of the proposed models will 

therefore be carried out and presented in the subsequent chapter. The stress-based model 

described in section 3.3.2, enhanced by the decomposition of the total stress tensor to 

capture the different responses of the concrete in tension and compression, will be used. 



4-1 

 

2 Chapter 4:  

Constitutive Models of Concrete for 2D Applications 

4.1 Introduction 

It has been experimentally found that the response of concrete is different in 

tension and in compression, primarily due to the much lower tensile strength of the 

aggregate-mortar interface compared to that of the mortar. The mechanism of stiffness 

degradation, which is experimentally observed in both compressive and tensile loading, 

becomes more complicated during elastic unloading from a tensile state to a 

compressive state, and vice versa, because of the opening and closing of microcracks.  

Many attempts have been paid to model this phenomenon (Mazars and Pijaudier-

Cabot, 1989; Fremond and Nejdar, 1995; Murakami and Kamiya, 1997; Lee and 

Fenves, 1998; Ragueneau et al., 2000). As has been addressed in the literature, the 

anisotropic nature of damage, even for initially isotropic materials, requires a tensorial 

representation of the damage variable. Generally this unilateral character of damage can 

be integrated in the modelling using damage variable as a tensor (Murakami and 

Kamiya, 1996; Ju, 1989). However, in a much simplified way, this can also be done 

with isotropic damage models by using two separate scalar damage variables for tensile 

and compressive loadings (Mazars and Pijaudier-Cabot, 1989; Fremond and Nejdar, 

1995; Lee and Fenves, 1998). In such cases, in order to distinguish the damage due to 

tension from that due to compression, the decomposition of stress and strain tensors into 

positive and negative parts is necessary (Mazars and Pijaudier-Cabot, 1989; Ju, 1989; 

Fremond and Nejdar, 1995). 

The detailed specification of the models proposed in the previous chapter is 

conducted in this section. However, only the stress-based model is considered, due to 

the difficulties in dealing with the decomposition of both total and plastic strains in 

strain-based elasto-plastic damage models. For the use of the Drucker-Prager yield 

criterion, with the lack of dependence on the Lode angle θ , application of the proposed 

models is appropriate to two-dimensional problems only. Further extension of the 

approach to general stress states is therefore still needed. 
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4.2 Constitutive model for concrete in 2D 

4.2.1 Stress decomposition 

In uniaxial cases, the crack closing/opening takes place during unloading/reloading 

when 0=σ . However, for multi-axial stress states the mechanism of crack 

closing/opening is much more complex and an appropriate criterion must be used to 

distinguish the tensile and compressive stress states inside the material body. The 

eigenvalue decomposition method, which is in accordance with the basic features of 

damage mechanics (Lemaitre, 1992), is used here to decompose the stress/strain tensor 

into positive and negative parts. Following the method, the positive stress tensor +
ijσ  is 

expressed as (Ortiz, 1985) 

 ∑
=

+ =
3

1m

m
j

m
i

m
ij ppσσ  (4.1) 

where mp  is the unit vector of the mth principal direction, mσ  is the mth principal stress, 

and  denotes the Macaulay bracket. The negative stress tensor −
ijσ  is then 

 +− −= ijijij σσσ  (4.2) 

As the decomposition here is based on the eigenvalue decomposition, the following 

properties are needed and have been analytically proved by Ladeveze (1983) (care with 

the order of operations is needed in the following): 

 0=−+
ijij σσ  (4.3) 

 ( ) ( )−+ += kkkkkk σσσ  (4.4) 

 −−++ += ijijijijijij σσσσσσ  (4.5a) 

 ( ) ( ) ( ) ( )−−++ += llkkllkkllkk σσσσσσ  (4.5b) 
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2
1  (4.7) 
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In addition, it can be readily proved that +
ijσ  and −

ijσ  are piecewise continuous and first 

order homogeneous functions of ijσ . These two functions are discontinuous only at 

specific points where the principal stresses change signs. As a consequence, Euler’s 

theorem of homogeneous function gives. 

 kl
kl

ij
ij σ

σ

σ
σ

∂

∂
=

+
+  (4.8) 

and kl
kl

ij
ij σ

σ

σ
σ

∂

∂
=

−
−  (4.9) 

4.2.2 Choice of energy function 

Making use of the tensor decomposition, the energy potential can be considered to 

consist of two parts, representing the energies due to negative and positive stress tensors 

respectively. For linear elasticity without damage and plasticity, the Gibbs free energy 

function reads 

 ( ) ( )[ ]llkkijijij E
gg σνσσσνσ ++−== 1

2
1  (4.10) 

Using the above stress decomposition, noting that ( ) ++ ≠= kkkkkk σσσ  (where  is 

the Macaulay bracket), we can rewrite g  as 
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After introducing the internal variables characterizing the plasticity and damage 

processes, one gets 
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 (4.12) 

where t
dα  and c

dα  are respectively the scalar damage indicator for tensile and 

compressive damage mechanisms. In the absence of damage, the above function 
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reduces to the usual form of the elastic Gibbs free energy function, thus fulfilling basic 

thermodynamic requirements. 

 Important remarks should be made here on the above energy function. Separation 

of energy terms in the energy potential leads to the separation of the elastic strain into 

two corresponding parts expressed in terms of positive and negative stress tensors 

respectively. 
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 (4.13) 

As a consequence, using the properties (4.8) and (4.9), the secant compliance tensor can 

be proved to be symmetric and stress-dependent. The model in this case exhibits stress-

induced anisotropy. 
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 (4.14) 

in which ( )xH  is the Heaviside function equal to unity if 0>x  and zero otherwise. As 

can be seen, the tensor differential in (4.14) requires a reliable algorithm for the 

numerical differentiation. Moreover, it has been experienced in this study that this 

stress-induced anisotropy can introduce instability to the numerical analysis. In the 2D 

tension-compression quadrant with dominating tensile stress, the instability comes from 

the scaling of the compliance tensor (4.14) only in the direction of the principal tensile 

stress, as the material is deteriorated in tension only. Inversion of the compliance tensor 

for the formulation of the stiffness matrix in finite element analysis will result in a 

“poor” stiffness tensor once tensile damage measure reaches values in the range of 

0.7~0.8. The term “poor” here refers to increasingly stiff response of the material model 

after this value of damage has been reached, while the material is expected to soften 

continuously due to damage.  

In the following alternative formulation, isotropic damage is adopted for the 

constitutive model. The stress decomposition is used in the dissipation function and 



Chapter 4–Constitutive Models of Concrete for 2D Applications  4-5 

does not have any effect on the isotropic response of the constitutive model. The energy 

function is of the form 

 ( ) ( )
( )[ ]( ) ijijc

d
t
dkk

llkkijij
ij HE

gg ασ
αασ

σνσσσν
σ −

−−

++−
==

112
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with the corresponding elastic strain 
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The Heaviside step function H  is used in the expression of the energy function to take 

into account the unilateral behaviour of the material, in which compressive damage 

results in the stiffness reduction in tension while its tensile counterpart can be 

considered to have no effect on the compressive behaviour of the material. This 

phenomenological feature has been confirmed by several experiments on concrete (e.g. 

in Reinhardt et al., 1986; see also Chapter 2) and widely accepted in the research 

community (Lemaitre, 1992; Lee and Fenves, 1998; Ung-Quoc, 2003). 

 

Figure 4.1: Schematic view of the desired damage surface in 2D principal stress space 

Tensile damage in this case can only have an impact on the constitutive behaviour if the 

stress state is tensile-dominant, represented by the positiveness of the first invariant of 

the stress tensor: 01 >= kkI σ . In a uniaxial test this type of tension switch works fairly 

well as the energy potential takes zero value when the uniaxial stress vanishes, followed 

by the stiffness recovery from tension to compression, thus making the energy change 

cf ′−  

tf ′  

cf ′−  

tf ′  1σ  

2σ  

ckk f ′−=σ  

0=kkσ  

tkk f ′=σ  
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not abrupt. Nevertheless, the switch is rather crude as it does not guarantee the smooth 

transition in the tension-compression regions in multi-axial stress states. In other words, 

a discontinuity occurs in the energy function when the stress state passes through the 

plane 0=kkσ  in the principal stress space (see figure 4.1).  

 

Figure 4.2: Function ( )kkF σ3  and its corresponding effect on the unilateral behaviour 

Full remedy of the above-discussed problems is in principle straightforward, but is 

left to future work. It is only briefly discussed here. This treatment can make the 

formulation unnecessarily cumbersome and much more complicated, as the above 

problem of state transition just occurs during load reversal from tension to compression, 

and vice versa, e.g. in cyclic loading or non-proportional loading. As an example, one 

possible way to remedy the problem is to use, instead of the Heaviside step function, a 

continuous stress-dependent function being able to smooth out this transition (figure 

4.2). In this case, the energy function reads 
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The elastic strain derived from this energy function is 
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Compared to (4.16), the model can be seen to exhibit stress-induced anisotropy property 

due to the appearance of the second term in the expression of elastic strain. However, 

with relevant choices of function ( )kkF σ3 , the effect of this extra term can be limited to 

cases in which the material is first loaded in tension and then unloaded to the 

compression regime. This is simply depicted for uniaxial case in figure (4.2). In that 

figure, function ( )kkF σ3  has a non-zero derivative only in the range [ ]0,tfs ′−  where 

1<s  can be considered as a material parameter, determined from a cyclic uniaxial test. 

As a consequence, the effect on the constitutive behaviour of the model only takes place 

in the specified range, thus rendering the possibility of simplifying the formulation by 

use of the Heaviside function ( )kkH σ  in place of function ( )kkF σ3 . However, in 

nonlinear numerical analysis, the stress state of a certain point can change from tension-

dominance (above the plane 0=kkσ ) to compressive-dominance (just below the plane 

0=kkσ ) and vice versa, resulting in sudden change in the stiffness matrix of that point, 

which is the source of numerical instability. To avoid this, the trace of tensile stress 

tensor, denoted here as +
kkσ  will be used in the Heaviside step function. A change in the 

stress-strain relationship only takes place when crossing the planes 01 =σ  or 02 =σ  to 

compression-compression quadrant. 

4.2.3 Formulation 

Neglecting the discontinuity of the energy function, we can use its simple form 

with the Heaviside step function employed to model the stiffness recovery in tensile 

loading – compressive unloading. 
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The parabolic Drucker-Prager yield criterion is used here along with two damage 

criteria for tensile and compressive behaviour. The corresponding dissipation function, 

which is homogeneous first order in the rate of internal variables, reads 
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It can be seen that functions 
*

1
tF  and 

*
1
cF  are stress-dependent, and this feature is 

different from that in chapter 3. The two damage-related functions are modified here to 
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account for the ductility of the material behaviour under confining pressure (see figure 

4.1). The forms of the two functions will be specified later during the model derivation. 

For the independence of the model in separately capturing the permanent 

deformations in tension and compression, two constraints for the accumulated plastic 

strains are required, resembling (3.36) in the preceding chapter: 

 ( ) 04 =−= ijijkk
tt

pt cFC αασε &&&  (4.21) 

 ( ) 04 =−= ijijkk
cc

pc cFC αασε &&&  (4.22) 

in which c  is a constant usually taken as 32 . As mentioned in chapter 3, this value is 

in fact only suitable for the use of pressure-independent material with plastic 

incompressibility condition. In such cases the definitions (4.21) and (4.22) agree for the 

uniaxial case. For the parabolic Drucker-Prager criterion used here, other choices of c  

are not straightforward. For the sake of simplicity, 32=c  is used throughout this 

study.  

 

Figure 4.3: Definitions of function ( )kk
tF σ4  and ( )kk

cF σ4  

Functions tF4  and cF4  in (4.21) and (4.22) are dependent on the first invariant of 

the stress tensor, aiming at producing a smooth transition between tension and 

compression in tension-compression quadrants in 2D principal stress space. In a similar 

way to the definition of function ( )kkF σ3 , they are defined 
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where  is the Macaulay bracket and cyf  and tyf  are the ultimate stresses in uniaxial 

compression and tension respectively. They are dependent on both hardening and 

damage dissipation processes, and their forms will be specified later. It can be noted 

that this is only a simple way to decompose the incremental accumulated plastic strain 

pε&  defined in (3.36) into tensile and compressive parts, by making use of the property 

144 =+ ct FF . Nonlinear forms of tF4  and cF4  are of course applicable but intentionally 

not pursued here in order to preserve the simplicity of the proposed formulation. 

From the Gibbs free energy function, the total strain is 
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The generalised stresses are derived following procedures established in the original 

framework (by Houlsby and Puzrin, 2000) and illustrated in Chapter 3. 
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In the same way, we derive the dissipative generalized stresses from the dissipation 

function as: 
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Using the conditions t
p

t
p χχ =  and c

p
c
p χχ =  it can be immediately deduced that 

0=Λ=Λ ct , thus making the formulation much simpler. The derivation of yield and 

damage loading functions follows procedures established in the original framework and 

illustrated in chapter 3. Therefore, all unnecessary intermediate details are omitted here. 

The yield function still has the same form in generalized and true stress spaces  

 ( )[ ] 0
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1 =−
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+−+= krry ijij
kkkkp
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σχβ  (4.36) 
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However, their parameters k  and β  are now 
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,, tycy
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d

t
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ff −
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For the sake of simplicity, a linear hardening law in both tension and compression is 

assumed. We then have cyf  and tyf  as 

 ( )( )c
d

c
pcccy Hff αε −+= 10  (4.40) 

 ( )( )( )c
d

t
d

t
pttty Hff ααε −−+= 110  (4.41) 

In the above expressions, the two initial yield thresholds are denoted as 0cf  and 0tf  for 

uniaxial compression and tension respectively. Figure (4.4) depicts the parabolic 

Drucker-Prager yield surface in 2D principal stress space. As yielding in uniaxial 

compression takes place at a stress level much lower than the ultimate compressive 
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strength cf ′ , 0cf  can be taken as only 30% of this ultimate compressive strength (Chen 

and Han, 1988). However, this is not the case in tension, when the material behaviour is 

almost linear before peak stress tf ′ . The initial value tc ff ′=0  is therefore adopted 

here. As can be seen in (4.41), compressive damage in this case has the effect on the 

tensile strength of the material. This is realized through the presence of the compressive 

damage indicator c
dα  in the expression of the tensile yield threshold. 

 

Figure 4.4: The parabolic Drucker-Prager yield criterion in 2D principal stress space 

The procedures demonstrated in chapter 3 leads to two separate tensile and 

compressive damage criteria. 
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in which, functions ( )c
d

t
dij

tF αασ ,,
*

1  and ( )c
dij
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*

1  take the following forms 
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The decomposition of total stress tensor into tensile and compression parts is applied in 

the above expression to distinguish the failure in tension and compression. As the 

numerators in the above expressions are non-negative and immediately become positive 

when loading takes place, their elimination in (4.42) and (4.43) is straightforward. We 

can now rewrite the damage criteria in their final forms, which bear a resemblance to 

the damage criterion in the preceding chapter. 
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in which tp , cp , cq  and cr  are model parameters, the roles of which will be discussed 

in the next section.  

With stress-strain relationship (4.25), yield criterion (4.37) and damage criteria 

(4.46, 4.47) available, the constitutive behaviour of the proposed concrete model is now 

ready. A closer look at the behaviour of the model will be made in the following 

section. 

4.2.4 Composite loading-failure surface 

There have been several damage models developed for the analysis of concrete 

structures, and many of them (Yazdani and Schreyer, 1990; Lee and Fenves, 1998; 

Meschke et al., 1998; Comi, 2001; Comi and Perego, 2001; Salari et al., 2004) carefully 

took into account both the tensile and compressive behaviour of the material. In fact, the 

neglect of compressive response in the modelling is acceptable only in direct or indirect 

tensile tests, where the material shows its brittle behaviour beyond the peak stress. 

However, this is not the case in compressive tests, especially under confining pressure, 

where ductility is observed. All the above features have been mentioned in chapter 1. 

They will be illustrated here using the proposed coupled damage-plasticity models. 
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The damage criteria (4.46) and (4.47) will be explored in detail hereafter. It is 

noted that both the initial damage and yield surfaces, which can all be expressed in 

terms of stress, can be plotted in the same graph, thus making it easy for interpretation. 

The damage and yield criteria here are coupled with each other, and hence can also be 

regarded as an integrated yield-failure criterion characterizing the behaviour of the 

material. The term failure surface (Chen and Han, 1988) here should be distinguished 

with the concept of yield surface widely used in literature, as it refers to the failure stage 

of the material, at which softening begins to occur. 

 

Figure 4.5: Evolution of loading surface (after Chen and Han, 1988) 

The explicit expressions for initial damage surfaces in principal stress space can be 

derived here, noting that 0== c
d

t
d αα  at the beginning of the damage process. 

Experiments (Kotsovos and Newman, 1977; Chen and Han 1988) have shown that bond 

cracks start to develop very early at a stress level just above the elastic limit of about 

cf ′3.0  in uniaxial compression. This can be captured by choosing an appropriate 

expression for function cF1 , with an initial threshold below the ultimate stress cf ′  in 

uniaxial compression. The so-called cap behaviour in compression, as depicted in 

Figure (4.5), can also be modelled using capped damage surface. During the pre-peak 

stage, the initial capped damage surface gradually evolves to become an open-shaped 

failure surface (figure 4.5). For a capped damage loading function in compression, 

modification must be taken in the expression of the compressive damage criterion 
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in which cq  and cr  now turn out to be functions of the compressive damage indicator 
c
dα . Along with function cF1 , they must be also chosen to account for the fact that in 

3D principal stress space, the initial damage ellipsoid transforms to a paraboloid when 

peak stress is reached, and then gradually contracts with progressive loading. The 

failure surface finally reduces to a single straight line, coinciding with the hydrostatic 

axis, when the material is totally damaged, represented by 1=c
dα . Although the above-

mentioned approach significantly improves the performance of the proposed model in 

hydrostatic compression (e.g. in the model by Comi and Perego, 2001), it is left here as 

further extension to the 3D formulation, in which further modifications are also needed 

to take into account the different responses of the material in the deviatoric plane. In 

particular, lack of Lode angle dependency in the deviatoric section will also need to be 

remedied in the future by adding the third stress invariant to the damage functions. 

In the present study, the initial values of tF1  and cF1  are taken such that damage in 

uniaxial tension and compression test take place at tf ′=1σ  and cf ′=1σ  respectively. 

The damage surfaces therefore act as failure surfaces. For the open shape of the 

compressive damage loading surface, only one parameter is needed, and the function 

can be rewritten as 
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which resembles that in tension. The resulting damage thresholds in tension and 

compression are:  

 ( )
E

fF tt
2

0,0
2

1
′

=  (4.50) 

 ( )
E

fF cc
2

0
2

1
′

=  (4.51) 

As a consequence, below the ultimate stress in compression, it has been assumed here 

that plastic deformation is the only dissipation mechanism governing the constitutive 

behaviour of the model. Therefore, the failure surface opens towards the negative 

direction of the hydrostatic axis, and it only undergoes contraction during the 



Chapter 4–Constitutive Models of Concrete for 2D Applications  4-15 

deformation process, resulting in pure elastic behaviour in hydrostatic compression. 

This is accepted as a deficiency of the present model in capturing the ductility of the 

material in hydrostatic compression. 

In 2D principal stress space, the composite failure surface consists of four parts 

corresponding to four quadrants of the space. However, further divisions of the surface 

are also encountered in tension-compression and compression-tension quadrants, as the 

first invariant of stress tensor changes sign in crossing the plane 1 0kkI σ= = , which 

divides those quadrants. The equations can be derived as shown below: 

For 01 ≥σ , 02 ≥σ : 
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For 01 ≥σ , 02 <σ , 021 ≥+σσ : 
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For 01 ≥σ , 02 <σ , 021 <+σσ : 
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For 01 <σ , 02 ≥σ , 021 ≥+σσ : 
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For 01 <σ , 02 ≥σ , 021 <+σσ : 
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For 01 <σ , 02 <σ : 
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It is worth noting here that using the concept of effective stress, the composite 

failure surface can be always proved to expand in the effective stress space during the 

deformation process. The contraction of the yield surface in this case is due to the effect 

of damage, through the progressive reduction of the yield thresholds during the fracture 

process.  
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Figure 4.6: Damage failure surface in 2D principal stress space 

Figure (4.6) shows the numerical and experimental failure surfaces of the material 

in biaxial test. Solid lines in the figure represent the composite failure surface generated 

by the tension and compression damage loading functions, with 2kp/cm311=′cf , 
3 264.0 ct ff ′=′  (Kupfer and Gerstle, 1973), 33.0=tp , 62.0=cp . Experimental points 

in this case are taken from the biaxial tests on concrete by Kupfer and Gerstle (1973). 
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A detail of the graph showing the tensile behaviour is depicted in figure (4.7). This 

clearly shows the 1C  continuity (continuous up to the first derivative) of the damage 

loading functions in the transition across the plane 01 =I , which can also be proved 

analytically. Similarly to this, the composite failure surface can also be proved to be 1C  

continuous at its intersection points with the coordinate axes 01 =σ  and 02 =σ , while 

discontinuities in the first derivatives are encountered only at the intersections between 

the two damage surfaces. 
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Figure 4.7: Damage failure surface, tensile behaviour 

The effect of the parameter tp  on the shape of the failure surface in tension 

quadrant can also be seen in figure (4.7). For smaller values of tp , the constitutive 

model tends to underestimate the material strength in biaxial tension, and vice versa. 

However, for 5.0≥tp , we obtain a damage surface opening to the positive side of the 

hydrostatic axis, which is unacceptable. By varying tp , it can be concluded that its 

appropriate values should be in the range 4.00 ≤≤ tp , where ν=tp  is the special case 

with the energy term in t
dy  coinciding with the damage energy release rate t

dχ  

Obviously, a set of parameters which yields a better fit can be obtained using least-

square fitting. However, this identification of parameters should be carried out based on 

a sufficient number of experimental sets of data to give convincing results. This model 

calibration is unfortunately out of the scope of the study. Therefore, for the sake of 

simplicity only an estimate ( 33.0=tp , 62.0=cp ) is used here to obtain the parameters 
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governing the shape of the damage surfaces. From the graphs (figures 4.6 and 4.7), the 

experimental and numerical curves match rather well in pure tension ( 01 ≥σ , 02 ≥σ ) 

or pure compression ( 01 <σ , 02 <σ ), while this is not the case in tension/compression 

quadrants. However, neglecting those slight differences, it can be preliminarily 

concluded that the overall behaviour of the material at failure in biaxial test can be well 

represented by the proposed unilateral damage model. The ductility of the material in 

biaxial loading ( 021 <= σσ ) has been accounted for, with compressive damage only 

being activated at stress level higher than the uniaxial compressive strength cf ′ .  
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Figure 4.8: Yield and failure surfaces in principal stress space 1σ - 2σ  

As the failure surface here comprises several segments in four quadrants of the 

plane 03 =σ , convexity of the damage loading surfaces in stress space is not preserved 

in this case. Although this concavity of the failure surface in stress space is 

unacceptable in conventional plasticity, here it does not violate any thermodynamic 

restrictions. Unlike the thermodynamic requirements for the yield surface, one 

consequence of which is the convexity of the yield surface, though not necessarily to be 

strictly satisfied (Houlsby and Puzrin, 2000), it is however not the case for damage 

processes with scalar damage variables. In such cases, the damage indicators and their 

associated variables are all scalars, automatically satisfying the thermodynamic 

restrictions as long as the products t
d

t
dαχ &  and c

d
c
dαχ &  are non-negative.  



Chapter 4–Constitutive Models of Concrete for 2D Applications  4-19 

Figure (4.8) plots both the composite failure surface and the yield surface in the 

coordinate plane 03 =σ , with tf ′  and cf ′3.0  being used as initial yield thresholds in 

uniaxial tension and compression respectively. For the comparison, the linear Drucker-

Prager yield surface is also plotted, using tf ′  and cf ′3.0 . It is clearly seen from the 

figure that use of this linear Drucker-Prager surface is not appropriate for the 

constitutive modelling of concrete material, as it obviously does not produce plastic 

strains in the neighbourhood of the straight line 21 σσ =  in biaxial tests. 

From the figures (4.6, 4.7 and 4.8), the behaviour of the constitutive model can be 

observed. In the tension/tension quadrant the inner surface is the yield surface, but there 

is not much difference between yield and failure surface. In other words, plasticity is 

activated first but only little plastic strain occurs up to failure. However, both 

dissipation mechanisms are activated at the same time in uniaxial tension. The material 

behaviour beyond peak stress is governed by both tensile damage and plastic 

deformational mechanisms, which agrees well with experimental observation. 
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Figure 4.9: Yield and failure surfaces in the meridian plane 

In tension/compression regions, tensile damage is the governing dissipation 

mechanism as far as the intersection of the yield surface and tensile damage surface 

(point Y, figure 4.8), where coupling behaviour occurs. Beyond this intersection point, 

from Y to X (figure 4.8), plasticity is the first dissipation mechanism to take place, 

followed by the coupling between damage and plasticity when the yield surface expands 

and hits the failure surface. A similar kind of response happens in the 
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compression/compression quadrant where plasticity first controls the deformation 

process, and then the yield surface expands until the failure surface is reached. 

Use of a yield surface in conjunction with a composite failure surface also brings 

here some advantages of nonuniform hardening plasticity (Chen and Han, 1988) in 

constitutive modelling of concrete. As it is bounded by the failure surface, the yield 

surface cannot uniformly expand in any direction. All expansions in the tension/tension 

and tension/compression regions are strictly restrained by the failure surface. The yield 

surface can expand mostly in the compression/compression quadrant. Therefore, 

overestimation of plastic deformations in tension and underestimation in confined 

compression loading can be avoided. 
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Figure 4.10: A close-up view of the yield and damage surfaces in the meridian plane 

In figures (4.9) and (4.10), the yield and failure surfaces are also shown in the 

meridian plane. Again, the parabolic Drucker-Prager yield surface is plotted using 

cf ′3.0  as the initial yield stress in uniaxial compression. In pure tension and pure 

compression, the adopted yield surface represents the elastic region of the material. As 

can be seen, the model also exhibits “cap-behaviour” in hydrostatic tensile loading, 

which is physically reasonable.  
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4.3 Parameter identification 

4.3.1 Background information 

The identification and calibration of model parameters plays a crucial part in the 

development of constitutive models for concrete. The identification of model 

parameters is carried out based on either one or a series of standard experimental tests, 

while the calibration can be performed on a specific simulation. In other words, the 

parameter identification process provides us with relationships from which values of the 

model parameters can be obtained from input material properties and then used in the 

numerical analyses. This helps to relate model parameters with the material properties 

measured in experiments. Based on the established relationships between experimental 

data and model parameters, the optimal calibration can then be performed on a series of 

similar experimental tests to yield the best set of model parameters. 

However, in practice, parameter identification is not an easy and straightforward 

process, especially for complicated constitutive models such as the nonlocal or gradient 

enhanced damage models. In particular, for smeared crack models the material data 

provided by experimental standard tests do not always suffice to identify all model 

parameters. In the case of concrete in tension, besides some properties for the elastic 

behaviour of the material, the additional data should include the fracture energy FG , 

with the physical meaning of energy dissipated per unit cracked area, a length related to 

the width of the damage zone, and data on the unloading responses of the material. 

Difficulties in carrying out experimental tests to measure those properties, especially the 

material characteristic length, make the identification extremely difficult, even 

impossible. In addition, data on the unloading paths are not always available from 

standard tests. All these cause the difficulties in parameter identification, especially for 

complicated models with multiple dissipation mechanisms. 

In this section, the identification of model parameters will be carried out 

independently in tension and compression, thanks to the capability of the proposed 

coupled damage-plasticity model (represented by equations 4.25, 4.37, 4.46 and 4.49) in 

distinguishing tensile and compressive responses. Some model parameters (pt and pc) 

have been directly determined from biaxial tests and presented in preceding section. 

However, they are only used to determine the initial shape of the failure envelope and 
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have no relation with the evolution of the yield and damage surfaces. The contraction of 

the composite failure surface in stress space is in fact governed by functions tF1  and 
cF1 , the forms and parameter identification of which will be detailed in this section. The 

whole process is based on uniaxial tensile and compressive tests. As a consequence, the 

evolution patterns of internal variables in dissipation processes are only relevant to the 

uniaxial behaviour of the material; however they can also be tentatively generalised to 

mutiaxial loading cases for practical purposes. Of course, this generalization cannot 

always be appropriate, but is still widely accepted and adopted in the research 

community for its simplicity (Meschke et al., 1998; Comi, 2001; Comi and Perego, 

2001; Jirasek and Patzak, 2002; Jirasek et al., 2004; Salari et al., 2004). 

For softening materials, the explicit uniaxial stress-strain relationship cannot be 

obtained from experiments, causing difficulties for the identification. Therefore, to 

define the stress-strain law, an approximation based on quantities related to the fracture 

process is used. Besides the elastic properties of the material, standard tests (e.g. the 

three-point bending test; see section 5.2.4, Chapter 5) normally provide the fracture 

energy FG  in tension and possibly cG  in compression, which is insufficient for the 

identification. Other vital properties such as the characteristic lengths tl  and cl  in 

tension and compression, which are believed to be related and proportional to the 

widths tw  and cw  of the localization zones, are not always available from those tests.  

For simple isotropic pure damage models dedicated to tensile behaviour, at least 

two additional material properties related to the damage process are required: the tensile 

fracture energy FG  and the width tw  of the fracture process zone (or alternatively the 

characteristic length tl  along with the ratio between tw  and tl ). The width tw  here is 

defined as that of an imaginary and uniformly damaged crack band (Ferrara and di 

Prisco, 2001; see figure 4.11). Details on tw  and the relationship between tw  and tl  

will be presented in the next Chapter. The fracture energy FG  here is associated with 

the cohesive crack model, the correspondence of which with smeared crack model is 

shown in figure (4.11). It should be noted here that FG , as the area under the stress – 

opening displacement curve in cohesive crack model (see section 5.2.1, Chapter 5), is 

not the only fracture property needed. Ideally, the stress – opening displacement curve 

(or stress – separation law) in cohesive crack model should be provided from 

experiments for the determination of model parameters. This stress-separation law can 
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be in principle obtained based on either fully experimental method (e.g. work of fracture 

method by Petersson, 1981; Bazant, 1996) or indirect method (Tin-Loi and Que, 2001; 

Que and Tin-Loi, 2002) using both numerical procedures and experimental data. 

Correspondence between the stress-separation law and stress-strain relation in 

continuum model is depicted in figure (4.11). As this stress-separation law is not always 

available from experiments, used of the fracture energy FG  along with a bilinear stress-

separation law (proposed by Bazant and Becq-Giraudon, 2002; Bazant et al., 2002) is 

adopted in this study. Similar fracture properties of the material, e.g. the compressive 

fracture energy cG  and the width cw , for concrete under compression are also needed 

for compressive damage models. Although there have been research works on the 

compressive fracture energy cG  (Vonk, 1992; Jansen and Shah, 1997), the lack of 

experimental results still limits its frequent use in practice.  

Figure 4.11: Correspondence between stress-separation law in cohesive crack model 

(right) and stress-strain relation in continuum model (left);                                         

after Bazant (2002); and Elices et al., 2002. 
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To avoid any possible confusion at this stage, it is wise just to consider the point-

wise behaviour of the model. Anything related to the treatment of softening and 

localization will be left to Chapter 5, after sufficient details on the aspects of softening 

have been discussed. Therefore, from standard tests, what is vitally needed for a pure 

damage model in this study is the local (or specific) fracture energies Fg  and cg , 

represented by the area under the stress-strain curve and obtained from FG , cG , tw  

and cw  by 

 
t

F
F w

Gg =  and 
c

c
c w

G
g =  (4.64) 

In tension, the shape of the stress-separation curve can be determined based on 

experimental observation (Bazant, 2002), in which the fracture energy FG  can be 

considered to consist of two parts corresponding to the peak and tail responses of the 

material (Bazant, 2002). This in fact stems from a rough estimation of the initial 

fracture energy fG , which is represented by the area under the initial tangent of the 

stress-separation curve in the cohesive crack model (figure 4.12, right).  

 

Figure 4.12: Fracture energies in cohesive crack model (right; after Bazant, 2002)      

and corresponding local fracture energies in continuum models (left) 

Unlike FG , which is associated with the cohesive crack model, the size-independent 

fracture energy fG  is determined by the size effect method (SEM, Bazant, 2002) and is 

related to the fracture toughness of the material. A detailed discussion on the 

relationship between the two fracture energies and the methods of obtaining them would 

give an insight into the size effect in quasi-brittle materials, but falls beyond the scope 

of this study. For our application, it is practical to adopt the estimation 5.2=fF GG  

proposed and confirmed by several researchers (Planas and Elices, 1990; Bazant and 
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Becq-Giraudon, 2002; Bazant et al., 2002). Although rather scattered data on this 

relationship have been reported (Bazant and Becq-Giraudon, 2002), it can be used here 

with success in the numerical simulation, which will be shown in the coming chapters. 

The above is only what has been generally observed experimentally on the 

behaviour of concrete and characterized in theory using a simple stress-separation law 

of cohesive crack models (see section 5.2.1, Chapter 5). In practice, with only FG  and 

fG  supplied and calculated from standard tests (e.g. the three-point bending test), the 

stress-separation law is usually assumed to be bilinear. As a consequence, the 

experimental stress-strain curve therefore can only be derived in bilinear form, with 

slope change at tf ′15.0  to tf ′33.0  (CEB-FIB code, 1993; Bazant, 2002). The 

correspondence of this curve with the stress-separation curve has been given in the 

literature (figure 4.11) and will be used here in this study. Following this, the stress-

strain curve of the proposed model should be calibrated so as to be in accordance with 

this bilinear stress-strain law. 

 CEB-FIB model code (1993) also provided a bilinear stress-separation law for 

concrete, the form of which is determined based on FG , tf ′  and the maximum 

aggregate size maxd . However, compared to the relation 5.2=fF GG  (Bazant and 

Becq-Giraudon, 2002, Bazant et al., 2002), the CEB-FIB law looks very different: 

13.236.1 −=fF GG  for mm328max −=d . Justifying those relations is not an easy 

task and requires further research on the fracture properties of the material, which is 

obviously outside the scope of this study. Meanwhile, we use here that having been 

proposed and recently confirmed by several authors: 5.2=fF GG , although the 

maximum aggregate size in the determination of fG  is only implicitly present in FG . 

Therefore the behaviour of the proposed models in this study only shows a weak link to 

maxd  through the determination of model parameters based on FG . More on the 

relationship between the model parameters and material properties will be presented in 

the coming Chapter on nonlocal regularization. 

In compression, in a similar way, we also assume here that the local fracture 

energy cg  and the stress-strain curve can be derived from the experimentally-provided 

fracture energy cG  (see 4.64). However, due to the lack of experimental evidence no 

further assumption on the stress-strain curve can be made, resulting in a rather arbitrary 

way of choosing model parameters for compressive behaviour. This is obviously a 
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deficiency of the proposed model, which can only be resolved in combination with 

further experimental research on the compression behaviour of the material. 

4.3.2 Coupling between damage and plasticity 

The above issues are only applicable to pure damage models. To take into account 

the combined effects of both damage and plasticity dissipation mechanisms on the 

model behaviour, additional information on the loading-unloading cycles is needed. 

Those experimental data unfortunately cannot be obtained from standard tests. In this 

section, we address the coupling between damage and plasticity, and its realization in 

the parameter identification. 

There have been several coupled damage-plasticity models proposed in the 

literature (see chapter 2). While most of them are truly coupled models, the some are 

merely pure damage models with ad hoc modifications on the unloading behaviour of 

the models (Reinhardt et al., 1986; Hordijk, 1992; Hatzigeorgiou and Beskos, 2002). 

Although these modified damage models can produce residual strains upon unloading, 

which fit fairly well the experimental unloading paths in some cases, the dissipation 

energy in the model is solely due to damage mechanisms. Despite the simplicity and 

success in some cases, those ad hoc approaches exhibit inconsistency in the modelling 

and should be avoided. 

In this study, coupling between damage and plasticity is implicitly contained in the 

system defined by (4.25), (4.37), (4.46) and (4.49), which governs the behaviour of the 

model. In this case, the energy dissipated per unit volume Fg , represented by the area 

under the stress-strain curve, is contributed from both failure mechanisms: damage and 

plasticity. On the other hand, it has also been shown (Bazant, 1996) that the fracture 

energy FG  determined by the work-of-fracture method (RILEM, 1985), assuming that 

the material behaviour follows that of cohesive crack model, always contains plastic-

frictional energy dissipation. This evidence can be confirmed by cyclic tests on tensile-

dominant behaviour of concrete (Reinhardt et al., 1986; Hordijk, 1992; Perdikaris and 

Romeo, 1995). However, the fact that FG  is not a pure damage fracture energy has 

been sometimes disregarded in continuum damage models developed for the 

constitutive modelling of concrete. 
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In those pure damage models, the fracture energy FG  was used as a material 

property governing the post-peak behaviour of the material, regardless of the fact that a 

significant part of FG  is contributed from plastic-frictional dissipation mechanisms, 

e.g. aggregate interlock or interfacial frictions between the constituents. This is in fact 

acceptable, as the sole damage dissipation mechanism in such cases must produce same 

dissipation energy at a structural level. However, it is not the case in which a plastic 

deformation mechanism and damage mechanism are present in the constitutive model. 

The correct fracture energy that should be used for damage law in this case must be the 

pure fracture energy denoted here as pFG , which in principle can be determined if the 

unloading stiffness is known for a sufficient number of points on the softening load-

deflection curve (Bazant, 1996). It is also worth making clear here that pFG  should also 

be used in case where the damage evolution law is explicitly defined in a coupled 

model, which is not the case with the models proposed in this study. 

 For the coupled damage-plasticity models in this study, the evolution laws of 

damage indicators and plastic strains as well as the coupling between the two 

dissipation mechanisms are implicitly defined through the constitutive relations (4.25), 

(4.37), (4.46) and (4.49). The stress-strain curve and hence the fracture energy are 

governed by all the parameters of the coupled model. As a consequence, the fracture 

energy FG  along with some other material properties in unloading should be used for 

the determination of model parameters. Separation of the energy dissipated during the 

failure process is needed, which is in fact based on the assumption that unloading data 

can be obtained from standard experiments (Bazant, 1996), e.g. the three-point bending 

test for fracture energy recommended by RILEM (1985). The adoption and realization 

of this assumption in testing practice are, however, still far from reality. 

4.3.3 Tensile behaviour, identification of model parameters 

The process here is based on a one-dimensional model and for coupled damage-

plasticity models (represented by equations 4.25, 4.37, 4.46 and 4.49). In one-

dimensional tension, functions 
*

1
tF  and tF1  coincide, the energy function and 

dissipation function are of simplified forms: 

 ( ) ( )21
2
1

p
t
d Ef αεα −−=  (4.64a) 
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and the governing constitutive relations (4.25, 4.37, 4.46) reduce to 

 ( ) ( )p
t
d E αεασ −−= 1  (4.65) 

 ( )( ) 01 =+′−−= ptt
t
dp Hfy αασ  (4.66) 

 
( ) ( ) 0,

2 1

2

=−
−

= c
d

t
d

tpt
d F

E
y αα

αε
 (4.67) 

in which the accumulated plastic strain t
pε  in (4.21) has been assumed to reduce to pα  

in uniaxial tension. As mentioned in the model formulation (section 4.2.3), this 

assumption is in fact valid only in case where a pressure-independent yield function is 

used. It is adopted here only for simplicity. A strain-based damage model is used in this 

case; but in uniaxial tension, switching between strain- and stress-based models is 

straightforward. As the material behaviour is only in the tensile regime, the compressive 

damage indicator c
dα  is zero throughout the dissipation process and can be considered 

as a parameter of the function tF1 .  

 

Figure 4.13: Local fracture energy Fg  in uniaxial tension 

The determination of the local (or specific, or volumetric) fracture energy Fg  is 

the backbone of this parameter identification. From its definition (figure 4.13), Fg  can 

be written 

 ∫
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In principle, the stress σ , tensile damage indicator t
dα  and plastic strain pα  can be 

obtained analytically from the system (4.65-4.67), and can all be expressed in terms of 
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the total strain ε . Unfortunately, this is not always the case in practice as the solution of 

the system (4.65-4.67) strongly depends on the type of function tF1 . As a remedy for 

the problem, it is much easier to perform all necessary mathematical manipulations with 

respect to the damage indicator t
dα , as the only variable. As a consequence, in the 

integral (4.68), a change of variable is needed, with the damage indicator t
dα  replacing 

the total strain ε . Bypassing intermediate details of mathematical manipulations, we 

can obtain from (4.65-4.67) the stress σ , plastic strain pα  and total strain ε , all in 

terms of the damage indicator t
dα  as follows 

 ( ) ( )c
d

t
d

tt
d EF ααασ ,21 1−=  (4.69) 
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Noting that 0=t
dα  at Eft′≤ε , the integral (4.68) becomes 
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It is interesting to note here that the above local fracture energy can also be obtained 

from direct integration of the dissipation function d  in (4.64b) ( d  is actually the rate of 

dissipation) in one dimensional tension. This is one of the advantages, although not very 

apparent here, of building constitutive models based on thermodynamic principles. 

From (4.72), it is essential that the integral in the second term is bounded, which can for 

instance be satisfied with the following choice of function tF1 :  
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in which ptE  and tn  are two model parameters controlling the damage process. In a 

pure damage model, ptE−  is exactly the initial tangent modulus at peak stress and tn  is 

used to control the rate of change of this modulus during the deformation process. The 

above choice of function tF1  also guarantees the asymptotic vanishing of stress σ  for 

strain ∞→ε , avoiding ad hoc procedures for the treatment of zero strength finite 

elements in the numerical implementation. 
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Figure 4.14: Effect of parameters on the model response in tension 

The effect of model parameters on the stress-strain response is shown in figure 

(4.14), using the following material properties and model parameters: Mpa31700=E , 

Mpa48.3=′tf , MPa15000=ptE , 2.0=tn  and MPa30000=tH . The stress-strain 

curve corresponding to the above properties is plotted in figure (4.14a). In figures 

(4.14b), (4.14c) and (4.14d) each model parameter in turn is varied, while others are 

kept fixed, to show corresponding effect on the stress-strain curve. It can be clearly seen 

in these figures that the plastic strain pα  is governed solely by the hardening modulus 

tH , while the stress-strain curve is controlled by all the parameters of the model. 



Chapter 4–Constitutive Models of Concrete for 2D Applications  4-31 

In a similar way, for a pure damage model, we obtain, either from (4.69 and 4.71) 

or from direct integration of the dissipation function d  with respect to the only active 

internal variable t
dα  

 ( )∫∫ ∂

∂
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The only difference compared to (4.72) is the factor in front of the integral in Fg , 

which indicates that the pure damage model is an extreme case of a coupled one when 

∞→tH . 

All model parameters governing the evolution of the dissipation processes are to 

be determined based on equation (4.72). This is obviously impossible as in general, 

besides the hardening parameter tH  there are also other parameters appearing in 

function tF1  and controlling the damage dissipation. The expression above can only be 

considered as a relationship between model parameters rather than an equation helping 

to explicitly determine those parameters. The proposed parameter identification 

therefore becomes ill-posed unless some constraints are imposed. 

 

Figure 4.15: Nonlinear stress-strain curve based on the experimentally derived     

bilinear stress-strain relation 

Ideally, the nonlinear softening curve used in this study should be calibrated based 

on a nonlinear stress-separation curve in cohesive crack model, which in turn is 

obtained from indirect experimental methods (see Tin-Loi and Que, 2001; Que and Tin-

Loi, 2002). However, a stopgap based on the fracture energies FG  and fG , and a 

bilinear softening law (see section 4.3.1), is used here due to the lack of experimental 

data on the nonlinear softening behaviour of the material. From the observation on the 
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shape of the softening curve (figure 4.15), the nonlinear stress-strain relation in the 

proposed model should yield a close fit to at least the first part of the bilinear softening 

law (see figure 4.15), determined by the local specific fracture energy fg  and realized 

through the initial tangent modulus cE  at peak stress. This modulus in turn is related to 

the slope cD  at peak stress in the cohesive crack model, through the relation 

 ( )ct

c
c EEw

EE
D

+
=  (4.76) 

 

Figure 4.16: Definition of the local fracture energy fnlg  for                                

nonlinear softening behaviour 

Those slopes ( cE  and cD ) decide the ultimate load of the analyzed structure (Bazant, 

2002). Therefore, if one does not care about the tail response of the structure, the initial 

softening modulus 0tE  (see figure 4.15) of the nonlinear stress-strain relation of the 

proposed model here can be taken as cE , and directly derived from the input material 

properties ( FG , tf ′  and the width tw  of the localization band). In such cases tn  should 

be kept small enough (less than 0.1 for function tF1  in (4.73)) so as to minimize the 

effect of the gradual slope change in the stress-strain curve (see figure 4.14b) on the 

structural peak load. However, this neglect of tail response is not the case here and, to 

some extent, we will consider both peak and, though only roughly, tail responses of the 

overall load-displacement curve. If this is the case, optimal fitting for the proposed 

nonlinear stress-strain relation and the experimentally derived counterpart could be 

useful in the parameter identification. In this study, only simple fitting based on the 

ratio Ffnl ggt =  between the facture energies fnlg  and Fg  (figure 4.16) is adopted. 
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Figure 4.17: Determining the nonlinear stress-strain relation from the experimentally 

derived bilinear softening law 

As can be seen in (4.76), the width tw  of the localization band also plays an 

important role in the derivation of the bilinear stress-strain relation from the 

corresponding stress-separation law. In other words, this width has a crucial effect on 

the initial softening modulus 0tE  of the uniaxial bilinear stress-strain relation. As a 

consequence, the curve fitting heavily depends on tw  (see figure 4.17), and in turn on 

the element size (crack band models) or the nonlocal interaction radius R (for nonlocal 

models). The determination of tw , which, in this study, is related to the nonlocal 

behaviour of the model adopted, will be presented in the next Chapter. Therefore, for 

the sake of simplicity, it is wise to assume here that tw  is known in advance.  
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From the suggested curve fitting (figures 4.15, 4.16 and 4.17), it is seen that the 

ratio 5.2=fF gg  (or 5.2=fF GG ), which applies to the bilinear softening law, has 

to be appropriately adapted to the nonlinear softening law adopted here. In particular, 

the shaded area in figure (4.16), determined from the tangent of the nonlinear stress-

strain curve at peak stress, should be smaller than fg  (striped area in figure 4.16) to 

yield a good fit. This shaded area is denoted here as fnlg  and for simplicity will be 

taken as Fgt  in this study, where t  has value from 0.1 to 0.3, depending on the tensile 

strength tf ′ , fracture energy FG  of the material and width tw  of an imaginary and 

uniformly damaged crack band. This is only a rough estimation for practical 

application, as a better fit can generally be achieved by use of more advanced 

mathematical procedures. However, use of those advanced fitting techniques would 

become unnecessary on the basis of the rather crude bilinear approximation of the 

material behaviour. They are therefore not pursued here. In practice, it has been 

experienced in this study that 3.0~2.0=t  is adequate for nonlocal models, whereas in 

some cases 2.0~1.0=t  must be adopted for some rather small value of width tw  (see 

figure 4.17). However, this is only a rough estimation based on only very few 

experimental data and used here with some success in the numerical analysis. Choice of 

this ratio should therefore be further confirmed. 

With an additional property ( fnlg ) in hand, we can now derive another 

relationship between the model parameters and material properties. An explicit 

expression for the initial tangent modulus in uniaxial tension is required for this 

relationship, which can be obtained using the rate form of the system (4.65-4.67) or 

directly from (4.69 and 4.71). From (4.69) and (4.71), the tangent modulus tE  is 

derived as 
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Substitution of the initial values of function tF1  and its derivative into (4.77) yields the 

initial tangent modulus 0tE  (figure 4.15) 
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It is readily seen from (4.78) that ptt EE −=0  when ∞→tH , which is the case of a 

pure damage model. The initial local fracture energy fnlg  is now 
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Using (4.72) and (4.79), two parameters ptE  and tn  in a pure damage model are 

now ready to be determined. However, for coupled damage-plasticity models, more 

material properties are still needed, which should be based on the unloading paths at 

several points on the stress-strain relationship (see figure 4.18).  

 

Figure 4.18: Assumed uniaxial stress-strain relationship with an unloading path 

Those data can be obtained from the standard three-point bending test by measuring the 

unloading slopes at a sufficient number of points on the load-separation curve. These 

slopes are then transformed to unloading slopes in the stress-strain relationship. 

Alternatively, experiments on cyclic loading of a double edge notched specimen can be 

proposed to obtain the load-displacement response, through which the fracture energy 

FG  as well as unloading slopes can be derived. This proposal is based on the separation 

of energy dissipated during the deformation process (Bazant, 1996), in which energy 

dissipated through the damage and plasticity dissipation processes can be obtained and 

assigned to the corresponding mechanisms in the constitutive modelling. As it concerns 

both theoretical and experimental studies, the realization of this proposal is, however, 

left here for the future research. Therefore it can be simplified here assuming that 

unloading slopes at several points on the stress-strain curve have been obtained from 

experiments. In particular, the uniaxial strain tuε  at which load reversal takes place and 
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the corresponding unloading modulus tuE  are assumed to be available (figure 4.18). 

Only one pair of tuε  and tuE  is needed for the proposed model, as there is only one 

hardening parameter associated with the plasticity part of the model. Adoption of more 

advanced plasticity models, such as the continuous kinematic hardening hyperplasticity 

(Puzrin and Houlsby, 2001) is in principle possible, but obviously requires more data on 

the unloading paths. 

All the model parameters are now ready to be derived, with the following 

nonlinear system of equations having to be solved for tH , ptE  and tn : 

 ( )∫ ∂

∂
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The input material properties are: elasticity modulus E ; ultimate tensile stress tf ′ ; 

strain tuε  at which unloading takes place and its corresponding unloading stiffness 

modulus tuE ; and the specific fracture energies Fg  and fnlg , where 

( ) Ffnl gg 3.01.0 −= . Although the integration in (4.80) cannot be computed 

analytically, it can be shown to be bounded. A simplified version of the model with only 

damage mechanism activated can be directly derived from the above system by 

dropping out the last equation (4.82) and setting ∞=tH  in equations (4.80) and (4.81). 

A Matlab code has been written to solve the above system of nonlinear equations. 

4.3.4 Compressive behaviour, identification of model parameters 

 In a similar way, based on the specific fracture energy cg  (see figure 4.20) and 

unloading data at points on the stress-strain curve, we can also obtain the relationships 

between parameters of the proposed model (represented by equations 4.25, 4.37, 4.46 

and 4.49) and the experimentally-provided material properties in compression. The 

governing constitutive relationships in uniaxial compression are: 

In the pre-peak hardening region 

 ( )pE αεσ −=  (4.83) 
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 ( ) 00 =+−= pccp Hfy ασ  (4.84) 

In the post-peak softening region 

 ( ) ( )p
c
d E αεασ −−= 1  (4.85) 

 ( )( ) 01 0 =+−−= pcc
c
dp Hfy αασ  (4.86) 
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d F

E
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in which the equations have been simplified here because the stress σ  and total strain 

ε  are always positive. The accumulated plastic strain c
pε  is always positive and 

assumed to reduce to the uniaxial plastic strain pα  which also takes positive value. No 

loss of generality occurs from the above simplification on the signs of stress and strain, 

as cg  is the product of stress and strain and is always non-negative, making it useful to 

consider both stress σ  and strain ε  either positive or negative.  

 

Figure 4.19: Assumed stress-strain relationship in uniaxial compression 

Depicted in figure (4.19) is the constitutive behaviour of the model in uniaxial 

compression, in which plasticity is supposed to take place at 0cf=σ . From 

experiments, 0cf  is found to be about 30% of the ultimate compressive stress cf ′  (Chen 

and Han, 1988). For the adopted linear hardening plasticity in compression, only one 

hardening parameter ( cH ) is needed, and can be directly determined from 0cf , cf ′  and 

E . However, cH  also takes part in the post-peak behaviour of the model, along with 

other parameters of function cF1 , and can also be determined based on the fracture 

energy cg  and unloading properties in figure (4.19). The contradiction can be avoided 

if more than one hardening parameter is used, for example one hardening parameter for 
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the ascending part and another for the descending branch of the stress-strain curve. 

Here, for simplicity, 0cf  and cH  are treated as two dependent model parameters to be 

determined, provided that they satisfy the condition cc ff ′<< 00 . This simplification is 

acceptable because of the path-independent nature of the plastic dissipation. The 

relationship between 0cf  and cH  can be derived from figure (4.19) 

 ( )
00 cc

cc
c H

E
HEff ε−

+′
=  (4.88) 

with epE  in the figure being the elasto-plastic tangent stiffness, defined by 

 
cep HEE

111
+=  (4.89) 

For the stress σ , from (4.85-4.87), we obtain 

 ( ) ( )c
d

cc
d EF αασ 121−=  (4.90) 

Similarly to (4.70), and (4.71), we have the total strain ε  and plastic strain pα  
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Figure 4.20: Local (specific or volumetric) fracture energy cg  in compression 

The local fracture energy cg  in compression also resembles its tensile counterpart 

Fg  in (4.72). One should note here that the local dissipation energy in compression 

comprises two parts corresponding to the pre-peak hardening and post-peak softening 
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regimes on the stress-strain curve. However, because of its localization nature only the 

second part ( cg  in figure 4.20) is present in the measured fracture energy cG  provided 

by experiment (Krätzig and Pöling, 2004). This feature has in fact been proven and 

adopted for tensile softening with some hardening behaviour before peak load (Bazant, 

1982; Bazant and Pijaudier-Cabot, 1989). We simply adopt it here without further 

discussion. Therefore, we have: 

 ( ) ( )
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in which function cF1  is of the form 
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with initial values 
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In (4.94), there are three parameters controlling the damage process in compression: cm  

controlling the ductility of the stress-strain curve, cn  governing the tail response of the 

model, and pcE  deciding the descending slope of the stress-strain curve. Like tF1 , the 

similar function cF1  also guarantees the asymptotic vanishing of stress σ  for strain 

∞→ε . Moreover, the properties in (4.95-4.96) also result in zero tangent stiffness at 

peak stress ( 00 =cE ). In addition, for relevant values of pcE , cm  and cn , the local 

compressive fracture energy cg , represented by the striped area under the stress-strain 

curve in figure (4.20) and calculated using (4.93), can also be found to be bounded. 

To illustrate the effect of the model parameters on the behaviour of the model, a 

simple uniaxial stress-strain curve in compression is used, with the following material 

properties and model parameters: Mpa30000=E , Mpa6.27=′cf , MPa45000=pcE , 

15.0=cn , 3=cm , MPa15000=cH  and Efcc ′= 20ε . The stress-strain curve using 

the above properties and parameters are the solid lines in figure (4.21), in which the 
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results obtained from varying each parameter while keeping others fixed are also 

shown. 

0

5

10

15

20

25

30

0 0.005 0.01 0.015 0.02 0.025

ε

σ

Hc=9000
Hc=15000
Hc=25000

0

5

10

15

20

25

30

0 0.005 0.01 0.015 0.02 0.025

ε

σ

Epc=30000
Epc=45000
Epc=60000

(a) Effect of cH  (b) Effect of pcE  

0

5

10

15

20

25

30

0 0.005 0.01 0.015 0.02 0.025

ε

σ

nc=0.06
nc=0.15
nc=0.25

0

5

10

15

20

25

30

0 0.005 0.01 0.015 0.02 0.025

ε

σ

mc=1
mc=3
mc=5

(c) Effect of cn  (d) Effect of cm  

Figure 4.21: Effect of parameters on the model response in compression 

From (4.88), (4.93) and the unloading expression similar to (4.82), we have a set 

of equations established for the determination of model parameters in compression: 
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It is noted here that equation (4.99) does not enter the calculation of model parameters, 

as cH  is directly obtained from (4.97), based on pre-assigned value of 0cf  and 0cε . 
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This equation (4.99) is only used to compute the permanent strain produced by the 

model in uniaxial compression. In a similar way to then tension case, a simplified model 

with only damage mechanism can be derived from the above system by dropping out 

equations (4.97) and (4.99), and setting ∞=cH  in equation (4.98). 

The input material properties in this case are the elasticity modulus E ; initial yield 

stress 0cf , which, in practice, can be chosen in the range cc ff ′<< 00 ; uniaxial 

compressive strength cf ′  and its corresponding strain 0cε ; and the local fracture energy 

cg . With two equations (4.97 and 4.98) for four parameters to be determined, which are 

the hardening parameter cH , and three parameters pcE , cm  and cn  of function cF1 , 

the system (4.97-4.98) is only solvable if there are two parameters being pre-assigned 

relevant values. The other parameters are then computed from the system (4.97-4.98). 

Normally, pcE  and either cm  or cn , which control the shape of the post-peak uniaxial 

stress-strain curve, is chosen for this purpose. This is because (4.97) and (4.98) are 

independent and cH  can be directly obtained from (4.97). The residual strain at a given 

point on the stress-strain curve can then be computed (using 4.99) and compared with 

experimental value. As the values of cH  are bounded in the range 21 ccc HHH << , 

with 1cH  corresponding to 00 =cf  and 2cH  to cc ff ′=0  (see 4.97), a compromised 

choice of cH  can be made in the specified range ( cc ff ′<< 00 ) so as to yield closest fit 

to the given unloading path. 

4.4 Numerical examples 

 

Figure 4.22: Single finite element used in the numerical examples 

Simple numerical examples are provided in this section to demonstrate the 

capability of the proposed model (equations 4.25, 4.37, 4.46 and 4.49) in capturing the 

material behaviour in both tension and compression. These numerical examples are 

carried out based on the nonlocal damage-plasticity model described in Chapters 4 and 

5, and implemented in Chapter 6. For a local numerical analysis in this section, the 
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nonlocal radius (see Chapter 5 for details) is simply set to zero. The examples were 

taken from the papers by Lee and Fenves (1998), with corresponding experimental data 

provided by Kupfer et al. (1969), Karsan and Jirsa (1969), and Gopalaratnam and Shah 

(1985). They will be carried out using a single quadrilateral finite element shown in 

figure 4.22. In some cases, one-dimensional results will also be illustrated for 

comparison purpose. 

4.4.1 Cyclic uniaxial loading 

In the first example of cyclic tension loading, the following material properties are 

used (Gopalaratnam and Shah, 1985): MPa31700=E , 18.0=ν , MPa48.3=′tf , 

N/mm04.0=FG . The stress-strain curve is obtained from the test by simply dividing 

the measured displacement in the stress-displacement curve by the gauge length 

( mm6.82=gl ). This is obviously erroneous as there is no unique stress-strain 

relationship in the post-peak softening region (Gopalaratnam and Shah, 1985). 

However, in this section, it can be accepted (Lee and Fenves, 1998) just to transform the 

stress-displacement curve to a stress-strain curve for illustrating the capability of the 

proposed model. In a similar way, the specific fracture energy Fg  is calculated by 

assuming that the localization bandwidth is mm45=tw , resulting in 
24 N/mm10*89.8 −=Fg . Obviously this choice of tw  is arbitrary, and different values 

of tw  will result in different responses of the model. However, it is left for detailed 

physical interpretation in the coming chapters; and this choice of tw  is used here only 

for the purpose of demonstrating the adopted identification procedure. 
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Figure 4.23: Behaviour of the proposed model in cyclic uniaxial tension (a)  

and cyclic uniaxial compression (b) 
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From the experimental stress-strain curve, we can obtain the properties of the 

material in unloading, which are: Efttu ′= 89.1ε  and EEtu 37.0= . An associated flow 

rule, with the dilation factor 1=r , is assumed. The following model parameters are then 

obtained as solutions of the system (4.80-4.82): Mpa10*1.0767 6=ptE , 52.0=tn  and  

MPa10*1218.1 3=tH . The stress-strain response is plotted in figure (4.23a). 

The same assumption is applied to the case of cyclic compressive loading, with 

experimental data taken from Karsan and Jirsa (1969): MPa31000=E , 18.0=ν , 

MPa6.27=′cf . The required fracture energy N/mm69.5=cG  is in fact taken from the 

same example in a paper by Lee and Fenves (1998). As in that paper the authors did not 

mention about how cG  was obtained, its value can only be used here for the sake of 

illustration only. In a similar way to the example on cyclic tension above, with the width 

of the localization zone in compression being assumed to be mm54=cw , the following 

specific fracture energy is derived: 2N/mm11.0=cg . We use here cc ff ′= 3.00  as 

initial yield stress in compression, Efcc ′= 05.20ε  as the strain at peak stress, and get 

the value of cH  of 20743MPa from (4.97). Assuming that MPa90000=pcE  and 

3.0=cn , the value of cm  is derived from equation (4.98): 68.2=cm . The obtained 

stress-strain curve in compression is shown in figure (4.23b). 

It can be clearly seen in the figures that the numerical responses using one- and 

two-dimension models are not identical, especially in compression. This is a predicted 

consequence of using the arbitrarily-chosen constant c  to compute the accumulated 

plastic strain, using a pressure-dependent yield criterion. Use of deviatoric plastic strain 

increments instead of those of the total plastic strain helps to reduce this gap and also to 

avoid the dependency of the hardening process on the dilation factor r . However, the 

effect on reducing the difference is not significant for the adoption of deviatoric plastic 

strain in (4.21) and (4.22). In addition, for the pressure-dependent yield criterion, use of 

both types of plastic strain results in a nonlinear stress-strain relationship in the 

ascending part of the stress-strain curve (although not very apparent in figure 4.23b), as 

in both cases pp αε && ≠  in uniaxial loading. Smaller values of c  in (4.21) and (4.22) can 

yield a better fit, but so far no basis for the determination of those values has been 

derived in this study. 
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4.4.2 Unilateral behaviour 

The unilateral behaviour of the proposed model is illustrated in this example, with 

the following material properties being used: MPa31000=E , 18.0=ν , 

MPa48.3=′tf , MPa6.27=′cf , N/mm04.0=FG , N/mm69.5=cG . For illustration 

purpose, all the model parameters from in the previous example are reused here, 

neglecting the slight difference in the elasticity modulus in tension and compression. 

The loading cycle is shown in figure (4.24). The stiffness recovery from tension to 

compression can be clearly seen in paths BCD and IJK, and the effect of compressive 

damage on tensile behaviour in path FGH. 
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Figure 4.24: Cyclic loading under large tension and compression strains 

Damage in compression results in the reduction of strength in tension, represented 

by lower tensile strength of the material at H, compared to the strength at B before load 

reversal takes place. In addition, compressive damage also makes a difference in yield 

and damage thresholds in tension, leading to plasticity taking place alone on path HI 

and the unloading slope IJ being parallel to GH. Tensile damage can possibly follow 

plasticity on path HI if a higher hardening parameter tH  is used. However, this is not 

very important here as the example only aims at demonstrating the model capability in 

capturing behaviour in cyclic loading under large tension and compression strains; this 

loading scheme rarely happens in practical situations. 
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4.4.3 Biaxial loading 

This series of tests is to show the multiaxial behaviour of the proposed model in 

combined loadings. Comparison with experimental results (Kupfer et al., 1969) was 

also made. We use here the following material properties: MPa35000=E , 18.0=ν , 

MPa4.2=′cf  and MPa32=′cf . No other needed material properties can be obtained 

from the test, and it is therefore adopted here that MPa6.93.00 =′= cc ff . In addition, 

with the experimental results available only in pre-peak regime, other model parameters 

can be assumed, to yield good fit in uniaxial compression: MPa18968=cH , 

MPa42000=pcE , 2.0=cn , and 0.1=cm . Again, the flow rule is assumed to be 

associated, with the dilation factor 1=r . 
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Figure 4.25: Biaxial compression-compression test 

The numerical stress-strain curves shown in figures (4.25a) above, in both 

compression-compression and compression-tension biaxial loading, do not fit well the 

experimental ones (from Kupfer et al., 1969). Only the peak stresses in uniaxial 

compression and biaxial compression-compression match their experimental 

counterparts well. It can be observed that the hardening law in this case is responsible 

for the mismatches, in which much stiffer numerical responses of the model come from 

the use of the adopted accumulated plastic strain in (4.22) in combination with a 

pressure-dependent yield criterion. 

The volumetric behaviour of the material under compression can also be seen in 

figure (4.25b), in which the constitutive model overestimates the volumetric expansion 
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of the material in uniaxial compression, while that of the model prediction in biaxial 

compression does not exist. Clearly, this shows that a non-associated flow rule with 

1<r  and a better hardening rule should be adopted to capture this feature of the 

material behaviour.  
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Figure 4.26: Biaxial compression-tension test 

The model response in compression-tension loading (figure 4.26) shows another 

aspect of the proposed composite yield/failure surface in combined loading, with the 

overestimation of the material strength in the region far enough from the axis 01 =σ  

(see figure 4.6) in the compression-tension quadrant (or far from 02 =σ  in tension-

compression quadrant) 

4.5 Summary and discussion 

A combined damage-plasticity model (represented by equations 4.25, 4.37, 4.46 

and 4.49) is presented in this chapter, aiming to apply to the numerical simulation of 

concrete structures under loading. However, attention at this stage is only paid to two-

dimensional applications. Separate tensile and compressive responses of the material are 

fully captured using two separate damage criteria, along with a simple multiple 

hardening rule for the plasticity criterion. Calibration for the behaviour of the proposed 

model to real material behaviour in 2D was carried out, both in the shapes of the yield 

and failure envelopes, and the evolution rules of the composite damage-plasticity 

surfaces. A crucial part of this chapter was devoted to the identification of model 

parameters. Following the proposed identification procedures, all the model parameters 

have been shown to be identifiable and computable based on some standard tests on 
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concrete. Derivation of simpler pure damage models and their relations to the present 

coupled damage-plasticity model can also be clearly seen in the identification of 

parameters of the model. 

Some drawbacks of the composite damage-plasticity loading surfaces can also be 

pointed out. In the meridian plane, the shape of the failure surface is in fact not very 

well in accordance with experimental observation (see Launay and Gachon, 1972). On 

the other hand, the deviatoric sections of both the yield and failure surfaces are 

independent of the Lode angle θ . Therefore, the model responses at tensile meridian 
o0=θ , compressive meridian o60=θ  and shear meridian o30=θ  are identical, which 

is contrary to experimental observation. This independence of the model behaviour 

from θ  can be neglected in 2D applications, but should be accounted for when moving 

to 3D.  

Despite the enhancement by use of damage surfaces in combination with a 

plasticity yield surface, which helps to restrain the overestimation of plastic strain in 

tension, as encountered in plasticity models (Chen and Han, 1988), the hardening rule 

for the yield surface still requires further modification. Isotropic strain hardening cannot 

always appropriately reflect the anisotropic behaviour of the material. As a remedy, use 

of multiple hardening rules has been suggested (Ohtani and Chen, 1988) and is simply 

adopted in this study with the equivalent plastic strain increment pε&  being decomposed 

into two parts corresponding to tensile and compressive responses respectively. The 

resulting hardening behaviour is therefore different in every direction, depending on the 

value of the first invariant of the stress tensor. However, full incorporation of this 

multiple hardening feature into the constitutive modelling is not straightforward as it 

also concerns with the new model parameters, which can only be identified based on 

experimental observations. Moreover, on the thermodynamic aspects, convexity of the 

yield surface should be accounted for when it expands anisotropically under control of 

different evolving parameters. Separation of pε&  is only one simple way to deal with the 

different behaviour in tension and compression of the material.  

An assumption on the maximum size of the failure envelope was made in the 

proposed model, with the initial damage threshold in compression being set to its 

maximum value corresponding to the ultimate compressive strength of the material. 

This helps simplify the coupling behaviour of the proposed model, but results in the 



Chapter 4–Constitutive Models of Concrete for 2D Applications  4-48 

opening shape of the failure surface in triaxial compression. Nonlinear behaviour 

therefore cannot be encountered in hydrostatic loading. Modification to take into 

account this feature in hydrostatic loading has been briefly discussed in section 4.2.4. 

In addition to the above shortcomings, the identification of model parameters 

should be studied further. The separation of energy dissipated during the failure process 

to parts due to damage and plasticity is only preliminarily proposed and no further 

details are presented in section 4.3 of this chapter. Therefore the material properties 

necessary for identifying parameters related to the unloading behaviour of the model 

have merely been assumed to exist, without any connection to the acquired standard 

tests. Proposal for the modification of standard concrete tests (e.g. the three-point 

bending test for FG ) and study on the separation of dissipated energy are necessary in 

future work. 

The constitutive model (represented by equations 4.25, 4.37, 4.46 and 4.49) 

described in this chapter is only a local model and therefore cannot be used to capture 

properly the softening behaviour of concrete. In the next chapter, softening-related 

problems and the corresponding resolutions of those problems will be briefly discussed, 

followed by the modification of the local coupled damage-plasticity model proposed in 

this chapter. Enhancement of this local model using the nonlocal regularization 

technique will be adopted and presented. 



5-1 

5 Chapter 5: Nonlocal damage modelling 

5.1 Introduction 

Dealing with softening-related problems plays a crucial role in the development of 

constitutive models for strain softening materials in general and for concrete in 

particular. In the analysis of structures made of these materials, the strain localization 

can be triggered not only by strong local inhomogeneity such as cracks or flaws, which 

in some cases are large enough to have significant impact on the overall behaviour of 

the structures (Rice, 1976), but also by the softening behaviour of the constitutive 

models. However, from the aspect of constitutive laws, localization can be encountered 

even in case the materials feature a hardening behaviour, e.g. necking of a metallic bar 

in tension (geometric nonlinearity), or localization into a shear band due to nonassociate 

flow in frictional materials (Bazant and Cedolin, 1991). 

In the constitutive modeling of concrete, localization due to softening is of great 

importance because strain softening and strength reduction are two of the most 

important features of the material behaviour. The use of damage mechanics, in 

combination with plasticity theory, enables us to derive appropriate models for the 

material. However, as the material exhibits significant post-peak softening, appropriate 

treatments, called regularization techniques, need to be applied to the constitutive 

modelling as well as the structural analysis. This is because conventional continuum 

mechanics is inadequate to capture correctly the softening behaviour of the material. 

Mathematically speaking, quasi-static analysis of boundary value problems 

involving strain-softening material becomes ill-posed beyond a certain level of 

accumulated damage (Jirasek and Bazant, 2002). This is due to the local loss of 

ellipticity of the governing partial differential equations, if these are derived in the 

context of conventional continuum mechanics. From the numerical point of view, the 

strain in the damaged region tends to localize in a very narrow zone, called the fracture 

process zone (FPZ), which eventually leads to the formation of macro cracks. In the 

finite element analysis, this fracture process zone tends to narrow upon mesh 

refinement. As a consequence, the dissipation can asymptotically approach zero when 

the finite element mesh size is refined to zero, resulting in physically unreasonable 



Chapter 5 - Nonlocal Damage Modelling  5-2 

 

numerical solutions. The problem is similar in many numerical methods (e.g. finite 

element, boundary element, finite difference) employed for the solutions of the 

governing partial differential equations in continuum mechanics. 

In fact, experimental work has proved that the strain softening zone in real tests 

does not vanish but concentrates in a very narrow zone, whose size is proportional to 

the so-called characteristic length of the material (Bazant and Oh, 1983; Bazant and 

Cedolin, 1991). In numerical analysis, the fact that this zone tends to vanish when 

refining the discretization is hence due to the inadequacy of conventional continuum 

mechanics to deal with such a kind of problems. Several remedies have been proposed, 

which range from the early work of Eringen (1972, 1981, 1983) on nonlocal elasticity 

and nonlocal plasticity, to recent work on nonlocal, gradient and rate-dependent models.  

In this chapter, a brief introduction to regularization methods is represented in the 

first half in order to lay a background for the development of constitutive models based 

on nonlocal theory in the coming part of the chapter. This is then followed by the 

nonlocal thermodynamic formulation applied to the proposed damage-plasticity models 

in chapter 4. Connections between the parameters of nonlocal models and the material 

properties are also established. Simple numerical examples will be provided to show the 

consistency and effectiveness of the proposed approach. 

5.2 A brief review on regularization methods 

Obviously, the inadequacy of conventional continuum mechanics in modelling the 

behaviour of softening materials results in some unwanted aspects in the solutions of the 

boundary value problems. Details on those numerical and structural aspects can be 

found in several studies (Bazant and Cedolin, 1991; Peerlings, 1999; Jirasek and 

Bazant, 2002); and we only briefly present here the treatments for softening-related 

problems, which are vital in the constitutive modelling of softening materials. However, 

the remedies do not always necessarily lie directly in the governing partial differential 

equations but can be at a higher level, i.e. in the numerical discretization, such as crack 

band models with fixed localization bandwidth. In other words, it is desired but not 

necessary that the type of the governing partial differential equations be always 

unchanged and that the boundary value problem maintain the well-posedness during the 

deformation and damage processes. Physically reasonable solutions can be obtained 
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through various ways, with the key point being properly taking into account the 

necessary fracture properties of the materials in the constitutive modelling. 

In the case of concrete constitutive modelling, besides the elastic properties 

including the Young modulus, Poisson’s ratio and ultimate stresses, the material 

properties additionally needed are generally the characteristic lengths and fracture 

energies of the material in both tension and compression. Although the physical 

meanings and identification of those quantities, such as the existence of a material 

characteristic length and the use of the fracture energy as a material property, is 

sometimes controversial, they are generally and widely accepted in the research 

community. Therefore, properly taking into account the material micro-structural details 

characterized through the above-mentioned quantities can somehow ensure the success 

in the material modelling and numerical analysis of structures made of those materials. 

In the constitutive modelling of softening materials, the prevention of the localization of 

strains onto a surface through the introduction of the material characteristic lengths and 

fracture energies in the constitutive models is exploited. Different types of constitutive 

models, from simple (cohesive crack models, crack band models) to more advanced 

(nonlocal and gradient models, rate-dependent models), can be classified based on the 

way the characteristic length is introduced. 

In this section, we will briefly examine some treatments applied to continuum 

mechanics in order to resolve the numerical difficulties in the constitutive modelling of 

strain softening materials. How the quantities characterizing the microstructural 

behaviour of the materials are taken into account in the theoretical and numerical 

analyses will also be presented. Here, by “treatment”, we refer to a wide range of 

techniques applied to numerical analyses of structures made of strain softening 

materials. Those techniques help remove the mesh-dependency of the numerical 

solutions. Hence they enable the proper capturing of the softening behaviour of the 

materials and produce physically reasonable solutions, regardless of whether the well-

posedness of the boundary value problem is strictly maintained. 
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Strong discontinuity (a) Weak discontinuity (b) Continuity (c) 

Figure 5.1: Displacement and strain fields in regularization methods 

(after Jirasek and Patzak, 2001) 

The classification of regularization methods by Jirasek and Patzak (2001) is 

adopted here. Based on the kinematic descriptions, which describe the one-dimensional 

displacement field across the boundary of the fracture process zone as strong 

discontinuity, weak discontinuity or continuity, three corresponding types of 

localization modelling can be classified. They are cohesive crack models, softening 

continuum models with partial regularization and fully regularized continuum models, 

the displacement and strain fields of which are depicted in one-dimensional case in 

figure 5.1. The above is only one typical classification for theoretical approaches to the 

solution of softening-related problems. Existing approaches, however, can also be 

classified in other ways, based on the constitutive models or numerical approximation 

techniques (Jirasek, 2001). 

5.2.1 Cohesive crack models 

In the first class of regularization methods, as can be seen in the figure (5.1a), the 

displacement field exhibits a jump across the surface of discontinuity, which is depicted 

as a single point in the one-dimensional case. In fact, the cohesive crack model, or 

fictitious crack model, here is a fracture model. It was first developed and applied to 

concrete modelling by Hillerborg et al. (1976) from a simpler model by Barenblatt 

(1962). To illustrate the idea, let us take an example of a structure with a stress free 

crack, shown in figure (5.2) below. 
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Figure 5.2: Cohesive crack zone 

It is expected that the initiation and coalescence of new micro-cracks takes place in a 

small zone in front of the crack tip, determined by the cohesive crack length lp. The 

relative size lp of this FPZ with respect to that of the structure can be reflected through 

the appropriate numerical modelling of this zone. Linear elastic fracture mechanics can 

still be applied if this fracture process zone is sufficiently small compared to the 

dimensions of the structure. In such cases, the zone lumps into a single crack tip point, 

resulting in models without a material length. In contrast, a material length, defined by 
2

tFch fEGl ′= , appears in the cohesive crack models and is proportional to the length 

lp of the zero-thickness fracture process zone (Bazant and Pijaudier-Cabot, 1989). In 

several research papers (Petersson, 1981; Rocco et al., 2001; Guinea et al., 2002), the 

term “characteristic length” used for lch can be confused with that used in nonlocal or 

gradient models in the following section. In fact, they are entirely different in concept 

with lch defining the length of the fracture process zone and the characteristic length in 

nonlocal models being related to the minimum possible width of the softening zone in 

continuum models (Bazant and Pijaudier-Cabot, 1989). 

In cohesive crack models, the softening behaviour is characterized through the 

stress-separation law of the cohesive crack line, in which the stress gradually decreases 

with increasing separation, and finally vanishes upon the crack opening exceeding a 

certain limit, resulting in a stress free crack. The dissipation energy in this case is 

guaranteed not to vanish and is always equal to the area under the stress-separation law, 

regardless of the mesh refinement, thus making the solutions physically acceptable. 

Obviously, a macro crack is formed, when the energy driving the development of this 

crack reaches the fracture energy FG  of the material: 

 ∫=
tu

F duG
0

σ  (5.1) 

Cohesive crack length lp 
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in which σ  and u  are respectively the stress and displacement jump across the 

cohesive crack line; and tu  in this case is the critical crack opening at which the normal 

stress is zero (see figure 4.11 in the previous chapter). The above definition was the 

basis for the method of measuring the fracture energy FG , recommended by RILEM 

(1985). However, to avoid any possible confusion about the model classification here, 

more details on the determination of FG  as well as its connections with regularization 

methods will be presented later in section 5.2.4. 

Interface finite elements can be appropriate to model the cohesive crack line, with 

lines or surfaces of interface elements being inserted between continuum elements 

(Bocca et al., 1991; Hordijk, 1992; Tijssens et al., 2000; Galvez et al., 2002; Yang and 

Chen, 2004). However, the requirement for the coincidence between the cohesive crack 

line and the element boundaries results in some problems and restrictions on the 

numerical discretization. On the other hand, the finite element mesh needs to be 

extremely fine in the region near crack tips in order to capture properly the crack 

propagation. Nevertheless, in some cases (e.g. mixed mode cracking with curved crack 

path) the orientation of the cracks is difficult to capture appropriately, even using a very 

fine mesh. Besides, as the crack trajectory is not known in advance, the same mesh 

density should be applied over the whole structure. Consequently, this makes the 

numerical analysis computationally costly. As a remedy, frequent remeshing during the 

nonlinear analysis can be used in the process zone in front of the crack tip of a coarse 

mesh (Bocca et al., 1991; Yang and Chen, 2004). Alternatively, another promising 

approach is the use of finite elements with embedded discontinuities. These are special 

elements, in which the standard displacement interpolation functions are enriched so as 

to capture the jumps in the displacement field. This hence removes the need of 

continuous remeshing, which is encountered in the standard cohesive crack models. 

Reviews and details on this method are, however, beyond the scope of this study and 

can be found in several papers (Jirasek, 2000; Jirasek and Patzak, 2001; de Borst, 2001; 

de Borst, 2002; Alfaiate et al., 2002; Alfaiate et al., 2003). 

5.2.2 Partially regularized continuum models 

In softening continuum models with partial regularization, the displacement field 

is continuous, whereas the strain field is discontinuous across the boundary of the 

fracture process zone (figure 5.1). Unlike in models of the first class, this zone is no 
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longer lumped into a curve in two-dimensional cases (or a surface in three-dimensions) 

but smeared over a band with finite thickness. The condition on the smearing out 

process is that the energy dissipation produced by the two models of the first and second 

classes must have the same value. This can be maintained by either fixing the width of 

the localization band (Bazant, 1976) or adjusting the softening modulus of the material 

models used for finite elements in the FPZ, so that equal energy dissipation can be 

produced (Bazant, 1982; Bazant and Oh, 1983; Bazant and Cedolin 1991).  

The softening region in this case extends over the smallest numerically resolved 

band, which is exactly over only one element in the one-dimensional case (for use of 

constant strain elements). However, fixing the thickness of the localization band to a 

prescribed value in the two-dimensional case is much more complicated and difficult. 

Indeed, the width of the numerically resolved band depends not only on the size, shape 

of the finite elements but also on the orientation of the band with respect to the mesh 

lines. In the simplest case, with structured finite element meshes aligned with the crack 

path (e.g. use of four-node quadrilateral elements above the notch in the three-point 

bending test), the strain localizes in a single layer of elements with the width tw  of the 

FPZ coinciding with or proportional to the element width. However, this is not always 

the case and in general the numerical discretization is subjected to some restrictions on 

the element size and mesh density, because the crack trajectory cannot be known in 

advance. In order to remedy this, finite elements with an embedded softening band have 

been proposed and employed (Larsson and Runesson, 1996; Jirasek, 2000). A more 

complete review on finite elements with embedded displacement and strain 

discontinuities can be found in some papers by Jirasek (2000), and de Borst (2001, 

2002) 

In this second kind of models of this class, the energy dissipation always takes a 

certain finite value through adjusting the softening modulus upon mesh refinement. In 

the literature, this is referred to as models with mesh-adjusted softening modulus (Simo, 

1989). In addition, as it is aimed at properly reproducing the energy dissipation in the 

localization band, the approach is also called the fracture energy approach (Comi and 

Perego, 2001). Interestingly, this approach has a close relation with the cohesive crack 

models presented in the preceding section. In fact, the fracture energy approach has 

come from the idea of the cohesive crack model and was designated as the crack band 
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models by Bazant (Bazant, 1982; Bazant and Oh, 1983). The fracture energy FG , 

which is equal to the area under the stress-separation curve in cohesive crack models, is 

now smeared out over the width of the localization band. We then have 

 ( )∫=
tu

F dxxG
0

εσ  (5.2) 

where x  is the coordinate in the direction normal to the localization band. In a similar 

way to this, the displacement discontinuity is also smeared out over this width and 

transformed into inelastic strain. In addition, it is usually assumed in numerical analyses 

that the strains are constant over the band width tw  (Bazant and Oh, 1983; de Borst, 

2002), thus making the following expression hold 

 FtF gwG =  (5.3) 

in which the energy dissipated per unit area of totally damaged material (or local 

fracture energy) Fg  is defined as 

 ∫=
tc

dgF

ε

εσ
0

 (5.4) 

where tttc wu /=ε  is the critical strain normal to the crack direction (see figure 4.11 in 

chapter 4) 

As the numerical resolved softening band always localizes in one layer of 

elements, from (5.3) and (5.4) it can readily be seen that if one adjusts the stress-strain 

curve so that the area under the curve is always equal to tF wG  with tw  in this case 

identical or proportional to the element size, the dissipated energy is then independent 

of the discretization and physically meaningful solutions can be obtained. This idea has 

been exploited by several researchers (Bazant and Oh, 1983; Meschke et al., 1998; 

Comi and Perego, 2001; Feenstra and de Borst, 1996) in the context of both damage and 

softening plasticity. The partial regularization here is revealed through the asymptotic 

vanishing of the fracture process zone upon mesh refinement although the global 

response of the structure can be captured correctly and the dissipation energy converges 

to a finite value. It is also worth noting that the cohesive crack model can be interpreted 

as a simple version of the crack band model as the finite element mesh is refined 

(Bazant and Jirasek, 2002). Details and some relating aspects on the application of the 
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method can also be found in Comi and Perego (2001); de Borst (2001, 2002); Jirasek 

and Patzak (2001); Jirasek and Bazant (2002). 

5.2.3 Fully regularized continuum models 

The aim of the regularization techniques is to produce meaningful solutions, which 

are mesh-independent, with a physically reasonable amount of dissipated energy upon 

mesh refinement. For the first two classes of models, this is quite satisfactory from an 

engineering point of view. However, the fundamental difficulty encountered in the use 

of constitutive models for strain-softening materials cannot be completely resolved 

since the ill-posedness of the boundary value problem still exists, as a consequence of 

the local loss of ellipticity of the governing partial equations in the analysis using rate 

independent softening models. On the other hand, the beauty and simplicity of the ideas 

(5.2.1 and 5.2.2) introduced to the modelling of softening and localization are lost due 

to some limitations and constraints on the numerical discretization schemes as 

mentioned above. 

Stronger regularization methods have been introduced based on the enrichment of 

conventional continuum mechanics using temporal or spatial terms. Models belonging 

to this third class are typically nonlocal, gradient, and rate-dependent models. 

Continuum damage mechanics, with nonlocal (Pijaudier-Cabot and Bazant, 1987;  

Bazant and Pijaudier-Cabot, 1988) or gradient enhancements (de Borst and Muhlhaus, 

1992; Peerlings et al., 1996) or rate-dependent regularization (Simo and Ju, 1987; Dube 

et al., 1996), falls into the third type of this classification (see figure 5.1). Besides the 

main difference compared to other approaches, lying in the continuity of the 

displacement and strain fields (figure 5.1), the boundary value problem in this case 

always maintains its well-posedness because the governing partial differential equations 

do not locally change type during the deformation process (Bazant and Cedolin, 1991; 

Peerlings, 1999; Dube et al., 1996). Mathematically, this is thanks to the introduction of 

temporal (rate-dependent models) or spatial terms (nonlocal and gradient models) to the 

governing partial differential equations. 

From a physical point of view, a proper modelling of concrete fracture also 

requires the inclusion of rate effects (Sluys, 1992). This important feature seems to be 

natural under transient dynamics with high strain rates. In addition, high strain rates also 
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accompany final failure under quasi-static conditions (Sluys, 1992), showing the 

necessity of taking into account the rate-dependent properties of the materials. 

Moreover, a rate-dependent formulation can be interpreted as a numerical regularization 

technique employed in order to limit localization in quasi-static problems. However, as 

the rate of loading decreases, the regularizing effect also fades away (Jirasek and 

Bazant, 2002). For nonlocal and gradient models, from the physical point of view, the 

interpretation of the constitutive models can be based on the micromechanical analysis 

of microcrack interaction (Bazant, 1991; Bazant, 1994). In constitutive modelling the 

microcrack interactions are realized through the dependence of the constitutive 

behaviour of a material point not only on the state of the material at that point, but also 

on the state of the whole material body, or at least on a finite neighbourhood of that 

point. 

In the rate-dependent case, the wave equation can be proved to be unconditionally 

hyperbolic (Sluys, 1992; Dube et al., 1996), resulting in stable and well-posed wave 

problem. In addition, based on the work of Valanis (1985) the uniqueness of solutions 

in the rate-dependent case can also be obtained, as has been shown by Ju (1989), and 

Simo and Ju (1987). In the gradient and nonlocal models, spatial terms introduced to the 

partial differential equations can also regularize the boundary value problem. The 

proofs for the well-posedness of the boundary value problem have been given by 

several researchers, for a variety of nonlocal and gradient models (Peerlings, 1999; 

Comi, 2001; Borino et al., 2003). In fact, a gradient formulation can be derived from 

nonlocal formulation (Bazant and Cedolin, 1991; Peerlings, 1999) and consists of two 

kinds of models: implicit and explicit gradient models, which are also respectively 

categorized as weakly and strongly nonlocal models. The term “weakly” here refers to 

the fact that the constitutive response of each material point depends only on an 

infinitesimal neighbourhood of that point (Jirasek and Bazant, 2002), which comes from 

the calculation of the gradients from the distribution of the function in an arbitrarily 

small neighbourhood. However, this is not the case in strongly nonlocal models, which 

consist of integral type and implicit gradient models, and in which the constitutive 

response of a material point is dependent on the whole material body or at least a finite 

neighbourhood within a certain interaction radius. The interaction radius here is in fact 

proportional to the characteristic length of the material (Bazant and Pijaudier-Cabot, 

1989; Bazant and Cedolin, 1991) and controls the size of the softening zone. 
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Taking into account the nonlocality of the material behaviour through the 

introduction of the characteristic length of the material, we have regularized the 

conventional continuum models and prevented the energy dissipation from vanishing 

upon mesh refinement. However, this kind of “continuum regularization” also has a 

restriction on the finite element mesh. The width of the localization zone is in general 

small compared to the dimension of the structure. Moreover, in order to capture 

properly the structural behaviour and the fracture process zone, the size of finite 

elements in that zone must be considerably smaller than the width of the localization 

zone. This hence requires fine mesh density inside the fracture process zone, thus 

significantly increasing the computational cost.  

5.2.4 Regularization methods and the fracture properties of the 
material 

 

Figure 5.3: Three-point bending test 

As has been briefly discussed in the previous chapters and preceding sections, the 

softening behaviour of concrete makes it impossible to properly determine the uniaxial 

stress-strain behaviour of the material from experiments. Therefore, the fracture energy, 

defined by the energy dissipated during the crack formation and propagation, must be 

used as a material property characterizing the material behaviour. The three-point 

bending test is usually recommended and adopted (RILEM, 1985) for this purpose, in 

conjunction with the cohesive crack model. Following the test, the apparent fracture 

energy FaG  (Bazant, 1996) can be measured through the area under the load-deflection 

curves.  
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where b  and D  are respectively the beam thickness and depth, 0a  is the length of 

initial traction-free crack at mid-span; ( )0aDb −  is the total cracked area; P  and δ  are 

respectively the load and deflection at the load point; and the integral in the numerator 

is the energy required to completely break the specimen. The definition of the fracture 

energy in cohesive crack models (Hillerborg et al., 1976) is rewritten here as 

 ∫=
tu

F duG
0

σ  (5.6) 

in which σ  and u  are respectively the stress and displacement jump across the 

cohesive crack line; and tu  in this case is the critical crack opening, at which the 

normal stress is zero. If the fracture energy FaG  is totally dissipated by the cohesive 

crack, we have the equality between (5.6) and (5.7): 

 FaF GG =  (5.7) 

As can be seen, the above definition of FG  is most relevant to the cohesive crack 

model, with all dissipated energy lumped onto a fracture surface of zero thickness. To 

avoid confusion, from now on we use FG  to refer to the fracture energy of the material, 

regardless of the fact that FG  should be thought of being in association with the 

cohesive crack model. Using the equality (5.7), the stress-separation relationship u−σ  

in cohesive crack models can be determined from the experimental δ−P  curve. 

However, the above definition of the material fracture energy obviously contains errors 

due to the simplification in the assumption FaF GG =  and the averaging of FaG  over 

the crack length (Bazant, 1996; Hu and Duan, 2004). 

The first source of error is that a considerable part (up to 50~80% of FG ; after 

Bazant, 2002) of the work done by the external load is in fact dissipated through a 

plastic-frictional mechanism (Bazant, 1996). In the experiment, it is due to pulling out 

of aggregates and fragments in the fracture process zone and is realized through the 

residual strains at zero stress state upon unloading.  

The second source of error comes from the averaging of FG  over the length of the 

crack path, assuming that its distribution over the entire crack length is uniform. This 

assumption is in fact only relevant at the beginning of the fracture process, with the 

crack front far enough from the upper boundary of the specimen, due to the boundary 

effect (Hu and Wittman, 2000; Karihaloo et al., 2003; Hu and Duan, 2004). Figure (5.4) 
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schematically shows the difference between the averaged fracture energy FG  (RILEM, 

1985) and that being experimentally observed. 

 
Figure 5.4: Boundary effect on the distribution of the fracture energy FG  

(after Karihaloo et al., 2003; Hu and Duan, 2004) 

A unique stress-separation relationship in cohesive crack model does not exist due 

to the specimen-dependent property of the defined fracture energy (Bazant, 1996). In 

addition, the actual fracture process zone, where the dissipation process takes place, in 

fact has a finite width, which gradually changes when the crack front moves towards the 

specimen boundary. This width reaches its maximum value when the crack tip is in the 

middle of the specimen and gradually reduces to nearly zero when the crack tip is close 

to the specimen boundary (Hu and Duan, 2004). However, in cohesive crack models, as 

it does not enter the calculation, this width is simply assumed to be zero. Neglect of 

changes in the width of the fracture process zone during the crack propagation therefore 

results in the error in the averaged fracture energy FG  (Bazant, 1996; Hu and Duan, 

2004). 

The above is merely a brief presentation of the definition of the fracture energy 

FG  used in the constitutive modelling of concrete. In conjunction with the 

regularization methods briefly presented in the preceding sections, it serves as a basis 

for the development of constitutive models for quasi-brittle materials. A closer look at 

the mentioned issues in the definition and measurement of FG  is, however, beyond the 

scope of this study, but can be found in several papers (Bazant, 1996; Bazant, 2002; 

Bazant and Becq-Giraudon, 2002; Karihaloo et al., 2003; Hu and Duan, 2004). 
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A similar concept of characteristic length and fracture energy in compression will 

also be applied to the constitutive modelling in this study. The experimental test for the 

compressive fracture energy cG  was of course performed on totally different specimens 

(e.g. cylinder specimens under uniaxial compression in Jansen and Shah, 1997). 

However, lack of experimental research on this still prevents the wide use of cG  in 

practice. For that reason, we will have to tentatively apply the same concept of fracture 

energy in both tension and compression to the nonlocal regularization in this study. 

Further research on the compressive fracture energy and its corresponding characteristic 

length is hence worth pursuing. 

5.3 Nonlocal damage modelling 

Continuum mechanics and thermodynamics form the basis for the development of 

models for the analysis of deformation and fracture of structures. In these standard 

continuum theories, which can be regarded as local continuum theories, the physical 

state at a given point in the body is assumed to be completely determined by the 

material state at that mathematical point, where the quantities of these continuum 

theories are defined. In other words, it is assumed that there is no interaction between 

the material points of the structure. However from the physical point of view these 

continuum quantities should be thought of being averaged over a certain volume called 

a “representative volume element” whose size depends on every material and is 

proportional to the characteristic length of the material (Bazant and Oh, 1983). This 

volume must be of size large enough compared to the sizes of the material constituents 

(e.g. maximum aggregate size in concrete) so that continuum theories are still 

applicable and the material can be treated as being homogeneous. Details of the orders 

of magnitude of representative volume elements can be found in the book by Lemaitre 

and Chaboche (1990). The application of these continuum theories, which are based on 

the assumption of homogeneous materials, to heterogeneous media is only meaningful 

at the level of the size of the representative volume element. In this case, the stresses, 

strains and other internal variables are interpreted as the mean values averaged over this 

volume element. 

The fact that all materials are generally heterogeneous requires some special 

treatments or assumptions in order to make use of the non-standard nonlocal continuum 

theories. Moreover from the micromechanical point of view, the interactions of a point 
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with other material points should be accounted for. This means that the state at a given 

point depends on the material state of the whole body. This is the basic assumption of 

nonlocal theories. In fact such concept of nonlocality has been developed for elasticity 

and then plasticity theory by Eringen (1972, 1981, 1983). This helps to explain some 

critical phenomena (e.g. the non-existence of a stress singularity at crack tip), which 

cannot be explained and predicted by local theories. The predictions by nonlocal 

theories in such cases are in accordance with the results from experiments (Eringen, 

1983). However in practice, models based on standard continuum theories have been 

very successful in describing the macroscopic stress and strain fields in many 

engineering problems. In those models, the influence of the material substructures such 

as pre-existing microcracks, molecules, grains, or pores is totally neglected. This 

neglect can be appropriate in some cases, e.g. in elasticity or hardening plasticity 

materials with associative flow rules, where softening and localization do not occur. In 

the case of softening-induced localization, this leads to stability problems and to the 

discretization-dependency in the numerical analysis, which are (for rate-independent 

material model) the results of the loss of ellipticity of the governing differential 

equations. In order to remedy these deficiencies, the details of the heterogeneity of the 

materials should be taken into account. However, direct consideration of those details 

will inevitably lead to considerable amount of computational cost. This is the case of 

microscopic approaches. Besides, one of the great difficulties of microscopic 

approaches is that the microscopic variables are very difficult to measure and moreover 

difficult to use in practical computations (Lemaitre and Chaboche, 1990). 

In the so-called nonlocal macroscopic approach, the state variables are defined as 

the mean over the representative volume element, and treated as nonlocal quantities. In 

other words, the effects of the whole body on a material point are taken into account. In 

a similar way to this, the enrichment of the constitutive relations with higher order 

deformation gradients results in the so-called gradient dependent models (Peerlings et 

al., 1996; Peerlings, 1999). In fact gradient dependent models are strongly related to the 

nonlocal models since the gradients of the variable can be calculated from the 

distribution of the variable in a neighbourhood of the point under consideration (Bazant 

and Cedolin, 1991; Jirasek and Bazant, 2002). These models are also considered as 

special cases of the nonlocal formulation by a Taylor series expansion of the nonlocal 

spatial integral (Bazant and Cedolin, 1991; Peerling, 1999). However, as argued by 
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Bazant (1994), the physical explanation of gradient models from micromechanics is still 

lacking or unconvincing. 

In earlier work (Eringen, 1981; Eringen, 1983; Bazant, 1984; Bazant et al., 1984) 

on nonlocal approaches, the nonlocal treatments are generally applied to all variables, 

including stress and total strain. This results in the appearance of the spatial integrals in 

the equilibrium equations and the boundary conditions. Therefore, the governing partial 

differential equations along with the boundary conditions and constitutive equations all 

must be rewritten in nonlocal forms. As a consequence, both the formulation and the 

numerical implementation become difficult and cumbersome (Bazant, 1991). To 

overcome this shortcoming, it has been found that it is necessary to apply nonlocal 

treatment only to variables controlling the softening process (Pijaudier-Cabot and 

Bazant, 1987). In concrete, a quasi-brittle material, the softening behaviour is the result 

of damage in the material and hence requires appropriate nonlocal treatment for the 

damage variable, damage energy or strain, which directly or indirectly governs the 

softening behaviour of the constitutive models.  

A simple modification of the thermodynamic formulation for coupled damage-

plasticity will be carried out in the following section, backed by some preliminary 

micromechanical analyses of concrete material by Bazant (1991, 1994). The nonlocal 

nature of damage in this case is mostly due to the interactions of microcracks within a 

certain volume element, whose size is proportional to the characteristic length of the 

material (Bazant, 1991, 1994). As a result of this nonlocal nature, the spatial integral of 

some variables controlling the strain softening must appear in the constitutive equations. 

However, in this study, we do not go further into details of the micromechanical 

analysis of crack interactions, which can be found in some relevant research papers 

(Bazant, 1991; Bazant and Tabbara, 1992; Bazant, 1994). Instead, the concept of 

nonlocality will be used for the thermodynamic approach, which places much emphasis 

on the energy exchange in the material due to the nonlocality of damage. This just gives 

a physical background for the nonlocal approach, instead of thinking of it as a pure 

mathematical way to regularize the ill-posed boundary problem due to softening. The 

force of the argument is unfortunately still, however, far from being widely accepted. 
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5.3.1 Nonlocal thermodynamic approach 

In the case of damage-induced softening, the damage variables or the associated 

damage energies should be treated as nonlocal quantities (Bazant, 1991). Of course, 

generally one can choose other variables, which are indirectly related to the strain 

softening behaviour of the materials (e.g. the elastic strain, which is in fact related to the 

damage energy) for nonlocal treatment. However, these treatments can lead to models 

producing high residual stresses even at very late stages of the deformation process 

(Jirasek, 1998). These models are hence not capable of modelling the macroscopic 

cracks, which are widely open in a complete separation mode. Therefore the choice of 

nonlocal internal variables and the corresponding nonlocal models should be carefully 

considered and examined in order to avoid these pathologies. Among nonlocal damage 

approaches, that are based on the nonlocality of the damage energy has been proved to 

be appropriate and can give reasonably low residual stress when the damage measure is 

close to unity (Jirasek, 1998). We adopt this kind of damage energy nonlocality in this 

study.  

Since our attempt in this study is to formulate models based on thermodynamics, 

the problem here is the possibility of adapting the adopted thermodynamic framework 

to a nonlocal approach. The energy potential can be modified by introducing the 

damage gradient as a new internal variable (Maugin, 1990; Santaoja, 2000; Nedjar, 

2001) in order to account for the energy exchange due to nonlocality. An alternative to 

introduce nonlocality is to express the first law of thermodynamics in a more general 

form in order to account for the energy redistribution in a certain volume element, 

where damage occurs, due to the microcrack interactions. The size of this volume 

element, where the energy redistribution takes place, is proportional to the material 

characteristic length. Originally proposed by Edelen and Law (1971) with the concept 

of the nonlocality residual, this is the approach adopted by several Italian researchers 

(Polizzotto et al., 1998; Polizzotto and Borino, 1998; Borino et al., 1999; Benvenuti et 

al., 2002). 

This approach is based on the assumption that there is energy exchange between 

points within a certain volume element, whose size is proportional to the material 

internal length scale. In this case, the nonlocality of damage, which can be explained 

through micromechanics analysis of microcrack interactions in a volume element 
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(Bazant, 1994), is accounted for based on the thermodynamic analysis of that volume. 

The interactions of microcracks are represented through the energy exchange at points 

inside that volume element. Following the approach, the first law of thermodynamics, 

which is usually derived in its local form, is now stated in the nonlocal form over that 

volume of the material. 

 ∫∫∫ =+
ppp VVV

dVudVQdVW &&&  (5.8) 

where pV  is any region where the dissipation processes takes place. However, the size 

of this region cannot be infinitesimal but is restricted by the material characteristic 

length (Polizzottto et al., 1998). As pV  is of finite size and cannot be arbitrarily small, 

the local form of energy balance can only be withdrawn from (5.8) by using a 

nonlocality residual P  accounting for the energy exchange in the region pV . 

 uPQW &&& =++  (5.9) 

In this case, the insulation condition (Polizzottto and Borino, 1998) 

 0=∫
pV

PdV  (5.10) 

must be satisfied, restricting the energy exchange only within the volume pV . It should 

also be noted here that P  is non zero at points inside the volume pV  and equal to zero 

everywhere outside pV , where there are no irreversible processes. The insulation 

condition therefore also holds in the whole material body. 

The assumption on the nonlocality of energy exchange seems reasonable as 

damage in this case produces effects not only where it occurs but also at neighbouring 

points within the defined volume element. As a result of this, the energy redistribution 

of points inside that volume results in the global satisfaction of the first law of 

thermodynamics in this volume element (Polizzotto et al., 1998). The second law of 

thermodynamics in this case is still cast in its local form (3.2), but the dissipation (we 

consider here isothermal processes only) turns out to be nonlocal due to the appearance 

of the nonlocality residual P . 

 0≥+−= Pfd ijij
&&εσ  (5.11) 
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In this case, the Clausius-Duhem inequality does not hold pointwise, as it does in the 

local approach (see 3.9, chapter 3). Instead, due to the insulation condition (5.10), the 

Clausius-Duhem inequality now takes the following nonlocal form 

 ( ) 0≥−∫
pV

ijij dVf&&εσ  (5.12) 

This means local violation of the inequality is allowed to occur during the irreversible 

processes. Nevertheless, the local dissipation (5.11) is always non-zero though in this 

case of nonlocality it does not coincide with the local form (3.9) of the Clausius-Duhem 

inequality. 

In a similar way, one can also introduce nonlocality into the existing 

thermodynamic approach by casting the second law in a nonlocal form, while retaining 

the local form (3.1) of the first law of thermodynamics. The nonlocal second law now 

reads 

 0,
, ≥
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Using the nonlocality residual P , we can transform the above law to a local form. 

 0,
, ≥+−+ P

q
qs kk

kk θ
θ

θ &  (5.14) 

Neglecting the thermal term (see chapter 3), the mechanical dissipation now becomes  

 0, ≥++= Pqsd kk&θ  (5.15) 

which, after being substituted into the expression of the local first law of 

thermodynamics, turns out to be exactly same as (5.11) in the previous case (for 

isothermal processes). As a result, the Clausius-Duhem inequality in this case is also 

satisfied in a global sense (see 5.12). 

As can be seen from (5.13), the global satisfaction of the second law of 

thermodynamics can lead to processes in which (5.13) are satisfied as an equality at 

global level. These processes are therefore interpreted as reversible at global level. 

Since the inequality (5.13) does not guarantee the pointwise satisfaction of (5.13), 

Polizzotto (2003) argued that these processes could be physically meaningless. 

However, in both cases of nonlocality (nonlocality introduced to the first and the second 

laws of thermodynamics), that mentioned problem also occurs with the Clausius-Duhem 
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inequality (5.12), which is generally used as a condition for any thermodynamically 

admissible processes. The physical interpretation here could be the exchange of 

energies, which must have been dissipated by heat, at points in the defined 

representative volume element. In other words, in the irreversible processes, energy at 

point-wise level within each volume element can be either dissipated by heat or 

transferred to neighbouring points within that volume element. The latter case here 

represents the local violation of the second law of thermodynamics (or violation of the 

local Clausius-Duhem inequality), which can be directly predicted as a consequence of 

the global satisfaction of the second law. Therefore, in the author’s view, the 

introductions of nonlocality to the first and the second law of thermodynamics have 

equal physical meaning and can be treated as equivalent. 

The above-presented approaches have introduced a way of incorporating 

nonlocality into an existing thermodynamic framework, based on the concept of 

nonlocality residual. The idea can be adapted to any existing thermodynamic approach 

without any difficulty. However, the main difficulty and drawback of that kind of 

approach lies in the choice of an appropriate expression for the nonlicality residual P , 

which helps to bring the dissipation function (3.20) to its usual form but with the 

dissipative generalized stresses being replaced with their nonlocal counterparts. Various 

choices have been adopted (Polizzotto and Borino, 1998; Polizzotto et al., 1998) based 

on the introduction of the regularization operator R  and its adjoint *R  defined on the 

internal variables to be made nonlocal. 

For concrete damage, there should be two different internal variables to be treated 

as nonlocal quantities, which are the tensile and compressive damage measures t
dα  and 

c
dα  respectively. In addition to the tensile characteristic length, the same concept of 

compressive fracture energy and material characteristic length should also be applied to 

the modelling of the material compressive behaviour (Feenstra and de Borst, 1996; 

Jansen and Shah, 1997). However, the characteristic length related to the compressive 

fracture energy is in general different from its tensile counterpart (Comi, 2001), due to 

different failure mechanisms in tension and compression. For that reason, the volume 

pV  must be defined so as to take into account two possible dissipation processes due to 

damage in tension and compression respectively. The elegance and physical 

significance of the theory is lost. More physical interpretation for the material nonlocal 
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responses in both tensile and compressive softening should therefore be provided. This, 

however, is left to future study. 

A simple nonlocal thermodynamic approach is proposed in this section based on 

the framework (by Houlsby and Puzrin, 2000) presented in chapter 3. Using the 

advantages and consistency of the adopted framework in linking the specified energy 

functions with the derived constitutive models, nonlocality can be incorporated in the 

approach by simply introducing nonlocal terms into the expression of the dissipation 

functions. For the coupled damage-plasticity models presented in chapter 4, the 

incorporation of nonlocal regularization into the proposed approach and the derived 

constitutive model, the local version of which is represented by equations (4.25), (4.37), 

(4.46) and (4.49), is rather straightforward. The procedures in section 4.3 of the 

previous chapter can be repeated here, with some minor modifications to introduce 

nonlocality to the dissipation function, through two component functions 
*

1
tF  and 

*
1
cF . 

In this case, nonlocality occurs in both the tensile and compressive damage 

criteria. The dissipation function (4.20) now takes the following nonlocal form: 
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Referring to Chapter 4 on the local approach, we see that functions ( )c
d

t
dij

tF αασ ,,
*

1  and 

( )c
dij

cF ασ ,
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For a nonlocal approach here, 
*

1
tF  and 

*
1
cF  are now of nonlocal forms 
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and 
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As can be seen, nonlocality is introduced directly to the dissipation function (5.16). The 

above expressions (5.17b and 5.18b) only differ from their counterparts (5.17a and 

5.18a) in the appearance of spatial integrals in the denominators. In a similar way to the 

derivation of the damage loading functions (4.46) and (4.49) in Chapter 4, we obtain 

here two nonlocal damage loading functions 
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and 
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In the above expressions, tV  and cV  respectively represent the volume elements where 

the dissipation processes due to tensile and compressive damage take place. These 

volumes should be distinguished due to different natures of the two failure mechanisms, 

characterized through two different characteristic lengths and two different fracture 

energies in tension and compression. This difference unfortunately can cause difficulties 

in the numerical implementation, and therefore will be overcome by the proposal of 

appropriate procedures for the determination of model parameters. Those procedures are 

the main subject of the next sections. 



Chapter 5 - Nonlocal Damage Modelling  5-23 

 

The use of spatial integrals for energy-like terms in the denominators of (5.17b) 

and (5.18b) results in two energy-based nonlocal damage criteria (5.19 and 5.20). As 

mentioned at the beginning of section 5.3.1, in the numerical failure simulations these 

energy-based damage functions help avoid the unrealistically high residual stresses at 

very late stages of the damage process, when macro cracks begin to occur (Jirasek, 

1998). The integrals in the denominators of (5.19) and (5.20) represent the nonlocality 

of energy-like quantities, which can in general be expressed as 

 ( ) ( ) ( ) ( )dVg
G

iV
ii

i
i ∫ −= yxy

x
x ωω 1~  (5.21) 

in which iω~  (i stands for t or c) is the nonlocal counterpart of the energy-like quantity 

iω ; x  and y  are coordinate vectors of points within the defined volume element iV ; 

( )xy −ig  is the weighting function; and ( )xiG  is the weight associated with point x, 

aiming to normalize the weighting scheme applied to iω . 
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Therefore the normalization condition of the weighting scheme is satisfied: 
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The weighting function g  can be in the form of either a Gauss weight function 
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or a bell-shaped function 
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where xy −=r  is the distance between the considered points; il  and iR  are the length 

parameters of nonlocal continuum, governing the nonlocal spread of the damage. These 

lengths ( il  and iR ) in nonlocal models defines a finite volume characterizing the 

constitutive behaviour of the material (Ferrara and di Prisco, 2001). They are 

parameters associated with nonlocal model and their relationships with the width iw  of 
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the fracture process zone are dependent on the material properties and the constitutive 

behaviour of the nonlocal model. These relationships will be explored in the next 

section. In the literature (Jirasek, 1998a; Ferrara and di Prisco, 2001), the term internal 

length is usually used to refer to the length parameter il  in the Gauss weight function 

(5.24). For an arbitrary weighting function ( )rg , a definition of the internal length il  is 

(Jirasek, 1998a): 
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For the bell-shaped function in (5.25), the above equation gives 7ii Rl = . It is also 

noted here that the term “characteristic length” in the literature can be used to refer to a 

length parameter in nonlocal continuum (Bazant and Pijaudier-Cabot, 1989; Bazant and 

Cedolin, 1991), or the width iw  of an imaginary and uniformly damaged crack band 

(Ferrara and di Prisco, 2001). In this study, we use both terms “characteristic length” 

and “internal length” for a length parameter of the nonlocal continuum, and refer to iw  

as the width of an imaginary and uniformly damaged crack band. 

Use of the above nonlocal averaging leads to a non-symmetric structural stiffness 

matrix in the finite element analysis, due to the effect of the boundary of the analyzed 

structure on the weighting scheme (Jirasek and Patzak, 2002; Bazant and Jirasek, 2002; 

Borino et al., 2003). This effect, however, merely matters at the structure boundary, 

where ( )xiG  varies at points within a certain distance (less than the nonlocal interaction 

radius iR ) from the boundary and is different from its maximum value obtained when 

the structure is unbounded. A modified weighting scheme was also proposed by Borino 

et al. (2003) to remedy the problems of a non-symmetric stiffness matrix. It is, however, 

not yet adopted in this study. 

The advantage of this proposed introduction of nonlocality is the simplicity over 

the approach adopted by the Italian researchers (Polizzotto et al., 1998; Polizzotto and 

Borino, 1998; Borino et al., 1999; Benvenuti et al., 2002). Nonlocality occurs in the 

dissipation function and helps redistribute the dissipated energy over the regions where 

the irreversible processes take place. The nonlocal rates of dissipation are therefore 

significantly controlled by the two expressions under the spatial integrals and obviously 
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affect the damage process. On the other hand, the connection between the dissipation 

function and the obtained yield/damage criteria has been examined in chapter 3, and 

here helps obtain the physical interpretation of the proposed nonlocal regularization. 

This connection, through the use of the Legendre transformation, guarantees the 

consistency of the adopted thermodynamic approach, represented through the 

possibility of obtaining the total dissipated energy directly from the specified dissipation 

function. As a consequence, casting the dissipation function in nonlocal form directly 

results in the regularization effects on the derived constitutive model, realized through 

the nonlocal damage criteria (5.19) and (5.20). This is one of the great advantages of the 

thermodynamic framework adopted in this study. 

5.3.2 Parameter identification for nonlocal damage models 

5.3.2.1 Background and a brief review 

 The relationship between the width of the fracture process zone tw  and the tensile 

internal length tl  was established by Bazant and Pijaudier-Cabot (1989), in which 

tt lw ≈  was found along with the relationship max3dlt =  between tl  and the maximum 

aggregate size maxd . In addition, max3dwt =  was also found by Bazant and Oh (1983) 

as an optimal fit for various experimental tests, based on their proposed crack band 

model. However, those relationships cannot be generalized as their derivations were 

carried out merely based on specific conditions of the adopted experimental test (Bazant 

and Pijaudier-Cabot, 1989) and assumptions on the adopted constitutive models [e.g. 

linear softening with constant strain across the width in crack band model (in Bazant 

and Oh, 1983), and use of a specific expression for the damage evolution (in Bazant and 

Cedolin, 1991 and Bazant and Pijaudier-Cabot, 1988)]. Moreover, tw  in continuum 

models does not mean the actual width of the micro-cracked zone, but the minimum 

admissible dimension of the representative volume element (Bazant and Oh, 1983). 

From that viewpoint, max3dwt =  is merely an approximation and can vary with the 

material properties, e.g. smaller ratio maxdwt  for high strength concrete with less 

difference between the elastic modulus of mortar and aggregate (Bazant and Oh, 1983). 

Therefore, from the viewpoint of data fitting, a different ratio, e.g. max5.1 dwt = , could 

be acceptable, provided that the tensile fracture energy FG  of the material is invariant 

with respect to any change of tw  (Bazant and Oh, 1983). 
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The above is merely a very brief review on the relationship between the width of 

the tensile fracture process zone tw , the tensile internal length tl , and the maximum 

aggregate size maxd , which will serve as a basis for the identification of parameters of 

the proposed nonlocal model in this study. However, that is not enough for our 

proposed model with two separate modes of tensile and compressive damage-induced 

softening. Relationships between cw , cl  and maxd  in compression are additionally 

needed for the compressive behaviour of the model. Unfortunately they cannot be 

obtained from available experimental research, which mostly deal with the tensile 

fracture properties of the material. Besides, the ratio maxdwc  is also expected to differ 

significantly from that in tension, due to different mechanisms of failure in tension and 

compression. As a consequence, the nonlocal interaction radiuses tR  and cR  should be 

different in tension and compression respectively. This causes difficulties in the 

implementation of the proposed models as well as the numerical analysis, especially in 

the case that two modes of damage are activated in the same part of the analyzed 

structure (e.g. in the splitting test of a concrete prism). Comi (2001) also addressed the 

necessity of adopting different tensile and compressive internal lengths in the nonlocal 

constitutive modelling of concrete, but still used the same value for both lengths in her 

relevant numerical example. 

Bearing in mind the mentioned problems, we should seek an alternative way to 

determine the relationships between the nonlocal interaction radiuses tR  and cR  (or 

alternatively between the internal lengths  tl  and cl ) used in the numerical analysis and 

the corresponding widths tw  and cw  of the fracture process zones. In this study, the 

balance of the dissipated energy in an equivalent crack band model and our adopted 

nonlocal model is used as a basis for determining the mentioned relationships. To lessen 

the difficulties and complication in the numerical implementation, tR  and cR  are taken 

identical in this study; and we use R  as the nonlocal interaction radius in both tension 

and compression. This simplification, however, causes almost no loss of generality 

thanks to the adoption of an appropriate procedure for the parameter identification. The 

procedure is, however, presented for tensile behaviour only. Its adaptation to 

compression is straightforward. 

Mathematically, the incorporation of nonlocality into the model will prevent the 

governing differential equations changing type at the onset of damage and help to 
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maintain the well-posedness of the boundary value problem. From the structural point 

of view, nonlocal regularization will prevent the dependence of the solutions on the 

discretization in the finite element analysis. The dissipation in nonlocal analysis in fact 

spreads over a band with a finite thickness dependent on the nonlocal interaction radius 

R  and other parameters of the model. This bandwidth, denoted here as tz , is different 

from the width tw  ( tw  is also termed the dissipation length in Jirasek (1998a); and 

Bazant and Jirasek (2002)) of the fracture process zone in an equivalent crack band 

model (see figure 5.4a). In addition, due to the averaging process in nonlocal models, 

the stress-strain relations are not the same for all material points in the FPZ. This is 

totally different from those in crack band models, where a unique stress-strain relation 

is maintained at every material point undergoing damage. As a consequence, in the 

structural analysis with nonlocal softening models, the local dissipation is different at 

every material point in the FPZ. Nevertheless, the total energy dissipated in the zone tz  

in the nonlocal model should be equal to that within the width tw  in the equivalent 

crack band model. Therefore, the parameters of the local stress-strain relations in 

nonlocal models should be determined so as to guarantee the right amount of total 

dissipated energy per unit area imposed by the fracture energy FG . 

 
Figure 5.4a: Damage profile in uniaxial test using nonlocal model,                                   

and definition of tw  and tz  (adapted from Bazant and Pijaudier-Cabot, 1989) 

The above observation is the basis for the determination of parameters for nonlocal 

damage models. Based on the equivalence of dissipated energy, a relationship between 

the internal length tl  and the width tw  of an imaginary and uniformly damaged crack 
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band is needed for the determination of parameters for nonlocal models. However, the 

condition of preserving the right amount of dissipated energy has rarely been addressed 

or inappropriately used in numerical studies using nonlocal (or gradient) damage 

models [e.g. in de Borst and Pamin (1996), Meftah and Reynouard (1998); Di Prisco et 

al. (2000)]. De Borst and Pamin (1996) and Di Prisco et al. (2000) used the constant 

ratios 2=tt wz  and π2=tt lz  to yield a linear relationship between tw  and tl . The 

choice of the ratio 2=tt wz  was in fact rather arbitrary as it was not accompanied by 

any theoretical or experimental basis. In addition, the ratio π2=tt lz  was obtained by 

de Borst and Muhlhaus (1992) based on a simple uniaxial model with linear softening 

law and therefore cannot be applied to models with nonlinear softening law. Similarities 

are also observed in Meftah and Reynouard (1998), with the use of π2=tt lz , which is 

derived from a gradient model with linear softening law, for a nonlinear softening 

constitutive equation. 

Ferrara and di Prisco (2001) carried out numerical analyses for different types of 

concrete structures in mode I fracture to establish relationships between tl  (or 

alternatively the radius R ) and tw . In their analyses, all the parameters controlling the 

local behaviour of the model are kept fixed, realized through the constant value of the 

specific fracture energy Fg , while the internal length tl  is varied. Numerical failure 

analysis of the considered structure is carried out for each given value of tl . The 

calculated dissipated energy, as the area under the load-displacement curve, is then 

divided by the fracture area to yield the fracture energy FG . The width tw  

corresponding to the given value of tl  is obtained as FFt gGw = . It was shown 

(Ferrara and di Prisco, 2001) that for each type of nonlinear softening curve, tw  was 

linearly dependent on tl , which means tt lwk =  is a constant. However, this numerical 

observation came from the use of parameters of the local constitutive model 

independent from the internal length tl  and hence also independent from the width tw  

(see Ferrara and di Prisco, 2001). In other words, the correspondence between the 

stress-separation law in cohesive crack model and stress-strain relation in continuum 

model (see figure 4.11, Chapter 4) is not respected. Therefore, the obtained linear 

relationship between tl  and tw  cannot be considered appropriate for nonlocal 

constitutive model. 
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In fact, the parameters which govern the local behaviour of the continuum model 

should be related to the width tw  of the fracture process zone. In the crack band model 

of Bazant and Oh (1983), it is the dependence of the softening modulus of the post-peak 

uniaxial stress-strain curve on the crack bandwidth tw . In research on gradient 

plasticity, Vardoulakis (1999) also pointed out the nonlinear dependence of the 

maximum shear band thickness on the internal length tl , as a result of the determination 

of the softening rate of the model through inverse analysis of the shear band thickness. 

Similar relationship was also obtained in recent study by Zhao et al. (2005) on shear 

banding in geomaterials using gradient damage model. The authors (Zhao et al., 2005) 

arrived at a ratio tt lw  expressed in terms of the Poisson’s ratio and a parameter 

representing the shape of uniaxial stress-strain curve. Nevertheless, these analytical 

expressions describing the nonlinear relationship between tl  and tw  are obtained from 

specific models with simplifications, e.g. linear softening law (Zhao et al., 2005), and 

therefore cannot be universally applicable in practice. A general numerical procedure 

for the establishment of a relationship between tl  and tw  accounting for the influence 

of other parameters of an arbitrary local constitutive model is hence needed.  

Jirasek (1998a) addressed the nonlinear relationship between tl  and tw , and 

proposed a simple iterative procedure for the determination of parameters of 

constitutive models based on nonlocal damage theory. In his research, different types of 

softening law (linear or nonlinear), nonlocal weight function (using Gauss function or 

bell-shaped function) and nonlocal formulation (using the nonlocality of damage 

energy, strain or damage variable) were used to derive different nonlinear relationships 

between tt lwk =  and the ductility parameter pF gg=η , with pg  being the elastic 

energy density at uniaxial peak stress ( Efg tp 22′= ; see figure 5.5). The established 

graphs are exploited for the selection of model parameters in an iterative manner (see 

Jirasek, 1998a). Despite the slight variation of k  (for highly ductile softening law) with 

respect to the local constitutive law and the type of nonlocal formulation, use of pre-

established graphs for the determination of model parameters is not always appropriate, 

as these graphs are implicitly dependent on the material properties used. In other words, 

these graphs should be established for every set of experimentally given material 

properties, softening curve and nonlocal weight function, instead of using pre-built 

graphs for all cases. In addition, a more effective procedure should be sought to replace 

the iterative procedure proposed by the author (Jirasek, 1998a). 
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5.3.2.2 A procedure for the determination of parameters for nonlocal models 

In this section, a procedure to deal with the determination of parameters for 

nonlocal damage models is proposed. The method takes into account the dependence of 

the local constitutive equations and the length parameter R  of the nonlocal model on 

the width tw  of the fracture zone. The key idea of the procedure is to assure the right 

amount of dissipation of a nonlocal damage model at the end of the damage process. In 

other words, the model should behave so that the damage process results in the averaged 

dissipated energy per unit area identical with that imposed by the material fracture 

energy FG . For the sake of simplicity, only pure damage models and a uniaxial 

problem are considered. The proposed procedure is, however, also applicable to the 

general elasto-plastic-damageable models and not restricted by the uniaxial problems 

studied in this Chapter. 

 

Figure 5.5: Definition of the ductility parameter η  

From the specified nonlocal interaction radius R , the parameters to be determined 

is the width tw  of the FPZ in an equivalent crack band model, or alternatively the ratio 

Rwk t= . They are related to the fracture energy FG  through the relationship 

 FFtF gRkgwG ==  (5.26) 

in which Fg  is termed the specific fracture energy (or local fracture energy), which has 

been essentially used for the determination of other model parameters in the previous 

chapter. As can be seen, all parameters of the nonlocal model ( R  and those in functions 
tF1 ) are strongly dependent on each other and need to be appropriately determined. For 

this reason, in a study by Jirasek (1998a), a simple iterative process based on a one-

dimensional numerical analysis of a tensile bar was used. Following this process (in 

Jirasek, 1998a), the nonlocal interaction radius R  need to be specified first based on the 
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maximum aggregate size of aggregate or the dimension of the structural members, while 

iterations are needed for the determination on of the ratio k  between the width tw  of 

the equivalent FPZ and the nonlocal radius R . 

The initial value of k  can be chosen in the range 3~1=k , depending on the type 

of nonlocality (e.g. nonlocal strain, or nonlocal damage energy). For an assumed value 

of k , the specific fracture energy Fg  can be determined from the relation (5.26), 

followed by the determination of all parameters of the model, as illustrated in Chapter 4. 

With all parameters in hand, we can then carry out the numerical failure analysis for a 

one-dimensional bar with a defect at its middle length to trigger damage (see figure 

5.6), and obtain the total dissipation as the area under the load-displacement curve. In 

principle, the averaged dissipated energy obtained, after having been divided by the 

cross sectional area of the bar and denoted as FG′ , should coincide with FG , 

representing the right amount of energy dissipated per unit area during the fracture 

process. However, this is not always the case and the procedure should be repeated 

several times until the balance of dissipated energy is established. 

 

Figure 5.5a: Determination of the ratio Rwk t′=  

Relationships between non-dimensional quantities can be made use of for higher 

efficiency in the process of determining the ratio k . Jirasek (1998a) suggested using the 

relationships between the ductility parameter η , defined as the ratio of the local specific 

fracture energy Fg  to the elastic energy density at peak stress (denoted here as 

Efg tp 22′= , figure 5.5), and the relative dissipation length as the ratio between tw  

and the length parameter tl  used in the Gauss weight function. However, for use of the 

bell-shaped function in this study, Rwk t=  is adopted as the relative dissipation 

length. The procedures proposed here, which help avoid the above iterative process, can 

be summarized as follow (see also figure 5.5a): 

♦ Assume values of ik ’s: 0.11 =k , …, 0.3=nk  
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♦ Calculate the fracture energies ( )RkGg iFFi = , ductility parameters pFii gg=η  

and determine the corresponding sets of model parameters based on the procedures 

proposed in chapter 4 

♦ Carry out the numerical analyses of a one-dimensional bar and calculate the 

corresponding total dissipated energies iD  as the areas under the load-displacement 

curves. 

♦ From the dissipated energies obtained, calculate the corresponding fracture energies 

ADG iFi =′ , where A  is the cross-sectional area of the bar, and derive the ratios 

FiFii RgGk ′=′  

♦ The correct value of k  will be found by plotting ik  and ik ′  against pFii gg=η  and 

determining the intersection point of the two plotted curves (see figure 5.5a). 

5.3.3 Numerical examples 

The following examples demonstrate the above procedure. We use in the examples 

the following sets of material properties: 

Set 1 (Perdikaris and Romeo, 1995) Set 2 (Petersson, 1981) 

2N/mm43600=E  

2.0=ν  

2N/mm77.4=′tf  

N/mm08917.0=FG  

mm6max =d  

2N/mm30000=E  

2.0=ν  

2N/mm33.3=′tf  

N/mm124.0=FG  

mm8max =d  

 

Figure 5.6: Finite element model used for the determination of parameter k  

In the first material set, the nonlocal interaction radii are assumed to be: 

mm155.2 max1 == dR , mm120.2 max2 == dR  and mm95.1 max3 == dR . For the 

Strength-reduced element 

5mm 

 



Chapter 5 - Nonlocal Damage Modelling  5-33 

 

second material set, we use: mm205.2 max1 == dR , mm160.2 max2 == dR  and 

mm125.1 max3 == dR .  

A simple test (figure 5.6) is set up for the parameter identification. Because of 

symmetry, only half of the bar is modelled. To trigger damage, a one-percent reduction 

of the uniaxial tensile strength tf ′  is applied to the blackened element in figure (5.6). As 

the energy dissipation is only affected by the area under the stress-strain curve 

regardless of the unloading path, a pure damage model can be adopted for simplicity. 

Choice of the parameter Ffnl ggt =  (section 4.3.3, chapter 4) may have effects on the 

procedures here. These effects are illustrated in figure (5.7).  
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Figure 5.7: Determination of parameter k 
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In addition, for the calculation of dissipated energy, one has to require the numerical 

analyses be carried out until failure (complete separation of the numerically-tested 

specimen in two pieces), characterized by damage measure t
dα  reaching unity. 

However, with the proposed nonlinear softening law, this is hardly achieved because the 

above-defined failure only happens at infinite strain. Therefore in the numerical 

example, the term failure refers to the states when 9101 −≤− t
dα  and the uniaxial stress 

is normally below 10-5N/mm2. Linear interpolation is used to calculate the dissipated 

energy below this stress level. 

The results are shown in figure (5.7), with the obtained values of k  corresponding 

to the assumed values of the nonlocal interaction radius R . It can be seen that k  tends 

to increase for decreasing value of R . In the above example, k  can take values of 

1.9~1.95 for R1=2.5dmax or 2.0~2.1 for R2=1.5dmax. This, however, is only a very rough 

suggestion and its effects on the results of the numerical simulations can be considered 

negligible taking into account many assumptions and simplifications of the adopted 

constitutive models. 

Set 1 Set 2 Nonlocal 

radius k  ptE  (MPa) tn  k  ptE  (MPa) tn  

max1 5.2 dR =  1.93 22345.90 0.38 1.93 8967.34 0.34 

max2 0.2 dR =  1.98 16800.07 0.36 1.96 6898.61 0.32 

max3 5.1 dR =  2.06 12083.68 0.34 2.02 5067.76 0.30 

Table 5.1: Model parameters corresponding to the choice of nonlocal interaction radius 

The above calculation of k  can be readily confirmed by carrying out the numerical 

analysis of the corresponding three point bending tests (Perdikaris and Romeo, 1995; 

Petersson, 1981) corresponding to the material set numbers 1 and 2. Three different 

choices of nonlocal interaction radiuses: max1 5.2 dR = , max2 0.2 dR =  and max3 5.1 dR =  

are used in both tests, resulting in the corresponding values of k  of 1.93, 1.98 and 2.06 

(Perdikaris and Romeo, 1995), and 1.93, 1.96 and 2.02 (Petersson, 1981). The 

corresponding model parameters ( ptE  and tn ) are obtained from equations (4.80) and 

(4.81) in Chapter 4 (with ∞=tH  for pure damage behaviour). Their values are shown 
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in table (5.1). More details on the tests will come in Chapter 7 and only brief results are 

presented here to illustrate the effectiveness of the proposed parameter identification. 

From the numerical results obtained (figure 5.8), it is seen that the numerical load-

deflection curves match rather well the experimental ones, verifying the total dissipated 

energy in mode I fracture. The slight differences in the numerical responses come from 

the use of only one fitting parameter 25.0== Ffnl ggt  for all three cases of different 

nonlocal radii. Nevertheless, all three different radii in the same bending test give very 

close numerical responses to the experimental load-deflection curves.  
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Figure 5.8: Verification of the choice of model parameters in three point bending test 

In both numerical bending problems, the dissipated energies from the very long 

tail responses compensate for the difference in the dissipation over the range of 

deflections shown in the figures. Nevertheless, the tail behaviour of the numerical load-

deflection curves can be improved by setting smaller value (e.g. 1.0-10-3) for the 

numerically-used critical damage (1.0-10-13 in the examples here) in the evaluation of 

the local fracture energy Fg  (see 4.72). In addition, better numerical responses can in 

principle be achieved through optimization procedures combined with size effect tests 

on specimens of different sizes, giving a better combination of fitting parameter t, 

nonlocal interaction radius R, and ratio k between R and the width wt of the fracture 

process zone. This is, however, outside the scope of this study. 
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5.4 Summary and Discussion 

The introduction of nonlocality to the proposed local constitutive model (equations 

4.25, 4.37, 4.46 and 4.49) in the previous chapter has been presented in this chapter, 

backed by a brief review on regularization methods. Comparisons between the proposed 

approach and other nonlocal thermodynamic approaches have also been made, showing 

the simplicity yet the advantages and consistency of the developed approach. Although 

some physical interpretations for the nonlocal nature of concrete damage have been 

provided (Bazant, 1991, 1994) and realized in this study through the nonlocality of the 

energy of dissipation, generally they still need to be enriched with more evidence based 

on experiments and micromechanics. The proposed nonlocal damage-plasticity model 

(equations 4.25, 4.37, 5.19 and 5.20) therefore can only be considered as a mathematical 

approach towards the regularization of softening effects in the numerical modelling of 

concrete materials. This model and its derivatives (e.g. nonlocal tensile damage model, 

or nonlocal tensile damage-plasticity model,…) will be implemented into a finite 

element code (Chapter 6) and used for the numerical failure simulations of concrete 

structures (Chapter 7). 

The connection between the parameters of the nonlocal model and the 

experimentally provided material properties has been established, through the 

identification of the parameter k  relating the nonlocal interaction radius R  with the 

width tw  of the fracture process zone in tension. In conjunction with the determination 

of model parameters in chapter 4, this newly-established connection helps provide a 

consistent and rigorous way of deriving the stress-strain behaviour in the proposed 

constitutive models from the stress-separation curve given by standard experiments. To 

some extent, in the numerical examples the structural responses can be seen to be 

unique regardless of the choice of different nonlocal interaction radiuses. This is an 

important point, which has rarely been discussed in the literature, about the nonlocal 

modelling of the materials. 

The same procedures for the determination of nonlocal model parameters can be 

applied to the modelling of the compressive behaviour of the material, giving relevant 

value of the width cw  of the fracture process zone in compression, which in general 

differs from that in tension. However, those procedures can only be tentatively adopted 

here due to the lack of experimental data of concrete in compression, as well as the 
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requirements for more physical interpretation of the compressive fracture energy cG  

and compressive internal length cl . Much of research work is therefore still required to 

capture faithfully the complex behaviour of this quasi-brittle material. 



6-1 

 

6 Chapter 6: Numerical Implementation 

6.1 Introduction 

Numerical implementation plays an important part in the development of 

constitutive models for engineering materials. The implementation here comprises a 

method for the solutions of partial differential equations in solid mechanics, and the 

incorporation of the constitutive models into this system of governing differential 

equations. In our study, the finite element method is employed for solving the boundary 

value problems in continuum mechanics. However, as concrete exhibits highly 

nonlinear behaviour after peak stress, the incorporation of the nonlocal constitutive 

relationships into the system of governing differential equations in solid mechanics is 

not very easy. A suitable numerical scheme is needed for the integration of the 

nonlinear rate constitutive equations. For stability, implicit integration schemes like the 

backward and midpoint Euler schemes are preferred. In addition, due to the material 

nonlinearity, the system of linear algebraic equations arising from the finite element 

discretization also turns out to be nonlinear, with the stiffness matrix being dependent 

on the nodal displacements. Therefore, numerical solution methods, in which, the 

Newton methods are normally suitable and adequate for this purpose, will be used. 

However, softening makes things complicated here, as the system of algebraic 

equations becomes singular at peak load and negative-definite beyond peak load. Snap-

through and snap-back responses (see figure 6.1) on the equilibrium path represented by 

the load-displacement curves are typical when tracing the equilibrium paths in analysing 

structures made of softening materials. Displacement controlled Newton methods can 

handle snap-through behaviour, but fail when the equilibrium path exhibits snap-back. 

In the past, various arc-length control procedures have been proposed to deal with 

softening-related problems (Riks, 1979; de Borst, 1986; Crisfield and Wills, 1988; 

Crisfield, 1997; May and Duan, 1997). The key idea of the methods is the use of an 

additional constraint to the load and displacement vectors. The load multiplier in this 

case is not a constant, but acts as an additional variable to the unknown displacement 

vector. The new system of equations, augmented by this constraint, is always well-

conditioned, even when the stiffness matrix is singular (Crisfield, 1997), enabling the 
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method to be used to tackle structural problems with an equilibrium path exhibiting 

snap-through and snap-back responses. 

This chapter centres around the finite element implementation of the proposed 

nonlocal constitutive model, in which the nonlocal constitutive equations (4.25, 4.37, 

5.19 and 5.20) in the previous chapters and an arc-length solution procedure are 

presented and implemented. A modified backward integration scheme, based on the 

algorithm proposed by Crisfield (1997, Vol. 1, Chap. 6) is employed for the integration 

of the rate constitutive equations. The arc-length control here is based on that proposed 

by May and Duan (1997), with a local, instead of global, constraint equation, and can be 

used in combination with either direct or indirect displacement controlled Newton 

methods. In addition, the indirect displacement controlled method can be seen to 

resemble this local arc-length procedure and can readily be incorporated into the 

existing finite element code OXFEM used in this study. Numerical examples showing 

the capability of the adopted arc-length control procedure in handling strong snap back 

behaviour will be presented in the next chapter. 

6.2 Solution strategy 

  

Figure 6.1: Snap-though (left) and snap-back (right) 

The numerical techniques used in nonlinear finite element analysis are briefly 

introduced here, with the objective being tracing the nonlinear equilibrium paths of 

structures subjected to quasi-static loading. For this purpose, an incremental-iterative 

solution procedure is usually employed. The load is increased step by step, and within 

each step iterations are required to get to the equilibrium state. Therefore, two separate 

incremental and iterative procedures should be distinguished. Load control, 

displacement control and arc-length control are usually used for the incremental 
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analysis while Newton-like methods are the basis for iterative techniques. However, 

among the incremental procedures, only the arc-length control can tackle high 

nonlinearity, in which the equilibrium path usually represented by the load-

displacement curves may show snap-though and snap-back responses (figure 6.1). Use 

of load control or displacement control in such cases is not appropriate as the former is 

not able to handle both snap-though and snap-back responses and the latter can merely 

overcome snap-though behaviour. 

All the above numerical techniques have been well documented in text books 

(Chen and Han, 1988; Crisfield, 1997; Jirásek and Bazant, 2002). Therefore, they are 

not presented here. This section only concentrates on the presentation of relevant 

techniques for the nonlinear analysis of structures made of softening materials, in which 

snap-though and snap-back responses are often encountered. The arc-length control in 

combination with the Newton-Raphson iterative techniques is the basis for the 

implementation and will be briefly introduced hereafter. The presentation of the 

solution methods in this part of the chapter is merely a reproduction of the research 

work by several researchers (mainly that of de Borst, 1986; and May and Duan, 1997), 

aiming at setting a background for the implementation of the proposed constitutive 

models. Background and more details on the arc-length methods can be found in the 

cited references. 

6.2.1 Arc-length methods 

Arc-length methods are perhaps the most powerful and reliable control procedures 

to deal with softening-related problems in the finite element analysis. The methods 

originally stemmed from the proposal by Riks (1979) and have been adapted and 

developed by several researchers (de Borst, 1986; Crisfield and Wills, 1988; Crisfield, 

1997; May and Duan, 1997). It has also been shown and proved by several researchers 

(de Borst, 1986; May and Duan, 1997; Yang and Proverbs, 2004) that the methods, 

especially when combined with the use of local or relative displacements in the 

constraint equation, can effectively handle snap back response in the equilibrium path. 

The key idea of the method is the use of an additional constraint equation for the 

incremental load multiplier λ∆ , which plays the role of an extra degree of freedom in 

the global linearized equilibrium equations. Although several types of constraints have 
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been proposed and employed, not all of them are able to deal with highly nonlinear 

behaviour of the material (e.g. strong snap-back behaviour). It has been documented 

(Yang and Proverbs, 2004; Yang and Chen, 2004) that the normal-plane and spherical 

arc-length methods may fail when encountering snap-back behaviour in dealing with 

problems involving softening materials. In addition, the spherical form of the method 

was also found to be more stable than the normal-plane arc-length (Crisfield, 1997), 

which has poor convergence or even divergence near a limit point. However, despite 

some enhancements to the choice of the appropriate root in the spherical arc-length (e.g. 

based on the minimum residual in Hellweg and Crisfield, 1998), that kind of arc-length 

control still suffers from the drawback of the parabolic constraint equation in having no 

real root in highly nonlinear cases (May and Duan, 1997; Yang and Proverbs, 2004).  

A more rigorous form of arc-length control and its derivatives, which removes the 

drawback encountered in the spherical arc-length method, has been employed with 

success by several researchers (de Borst, 1986; May and Duan, 1997; Yang and 

Proverbs, 2004; Yang and Chen, 2004). That approach, termed updated normal plane 

control by De Borst (1986) and Yang and Proverbs (2004), is adopted in this study. The 

constraint equation in this case takes the modified form of the spherical arc-length 

 2
1 Li
T ∆=∆∆ UU  ( K,3,2,1=i ) (6.1) 

in which L∆  is the arc-length; and the incremental displacement vector iU∆  at the ith 

iteration is accumulated from the iterative ones as follows: 

 ∑
=

=∆
i

j
ji

1
UU δ  ( K,3,2,1=i ) (6.2) 

Use of the above linearized constraints has been found to be superior to that used in the 

spherical arc-length as it yields a linear equation for the incremental load factor iλ∆ . 

Therefore, it is not necessary here to have any criterion for the choice of the appropriate 

root of the constraint equation, as required in the spherical arc-length method. In 

addition, May and Duan (1997) argued that the adopted constraint equation (6.1) also 

limits the iteration trajectory on a spherical surface, thus always yielding an intersection 

with the equilibrium path. 

The iterative displacement vector jUδ  in this case is split into two parts and can 

be expressed as (Crisfield, 1997) 
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 P
ii

F
ii UUU λδδ ∆+=  (6.3) 

where F
iUδ  is the displacement vector resulted from the out of balance force 1−iF  at 

the end of the last iteration; and P
iU  is that from the total fixed load vector P . They are 

expressed as follows: 

 1
1

−
−−= ii

F
i FKUδ   (6.4) 

 PKU 1−= i
P
i  (6.5) 

In the above expressions, the residual force vector 0F  needed at the first iteration is 

calculated from the last equilibrated state of the structure and the magnitude of its 

components normally depend on the convergence tolerance fδ . As 0F  is not 

accumulated during the incremental analysis, for small enough fδ , the effects of 0F  

can be negligible and 0F  is always assumed to be zero (Alfano and Crisfield, 2003). 

During the iteration process, the global stiffness matrix iK  can be either 

sequentially updated or kept unchanged throughout the load increment, depending on 

the employed iterative techniques. However, the residual force iF  and the load applied 

on the structure Piλ  must be updated after every iteration to be in accordance with the 

updated load factor iλ  and updated displacement vector iU  of the iterative process. 

Therefore, we have here: 

 iii λλλ ∆+= −1  ( K,3,2,1=i ) (6.6) 

 iii UUU δ+= −1  (6.7) 

 PRF iii λ−=  (6.8) 

where 0λ  is the load factor at the last converged increment; 0U  is the displacement 

vector corresponding to 0λ ; and iR  is the internal force vector corresponding to the 

stresses at the end of the ith iteration.  

 By substituting (6.2) and (6.3) into (6.1), after some mathematical manipulations 

we obtain the incremental load factor iλ∆  as follows: 

 
PTP

L

11

1
UU

∆
=∆λ  (6.9) 

 ( )
P
i

T

F
ii

T

i
L

UU
UUU

1

11
2

∆

+∆∆−∆
=∆ − δλ  for K,4,3,2=i  (6.10) 
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In (6.9), the first iterative load factor 1λ∆  always takes positive value as the sign of the 

loading factor can be automatically changed during the iterative process (May and 

Duan, 1997; Yang and Proverbs, 2004). In addition, if the stiffness matrix iK  is kept 

unchanged within the load increment (for modified Newton-Raphson method), P
iU  will 

be constant during the iterations and (6.10) becomes 

 ( )
PTP

F
ii

TP

i
11

11
1

UU

UUU δλλ +∆
−∆=∆ −  for K,4,3,2=i  (6.11) 

6.2.2 Local arc-length methods 

In fact, for softening problems, the strains are highly localized in a narrow part of 

the structure and the arc-length controls using global constraint equations may fail in 

tracing the equilibrium paths. In such cases, only dominant degrees of freedom of nodes 

in or around the fracture process zone play an important role in the constraint equations. 

Therefore, some amendments on the constraint equations have been proposed (de Borst, 

1986; Alfano and Crisfield, 2003). Instead of a global norm of displacements which 

contains all degrees of freedom of the analysed structure, only few degrees of freedom 

in the failure parts of the structure are taken into account. In particular, the crack mouth 

opening displacements (CMOD), crack mouth sliding displacements (CMSD) (de Borst, 

1986) or relative displacements of the pairs of nodes of interface elements in cohesive 

crack models (Yang and Proverbs, 2004) can be directly chosen for this purpose. 

Alternatively, a weighting scheme can also be applied to bring only dominant degrees 

of freedom to the constraint equations (de Borst, 1986). However, those ways of 

choosing dominant degrees of freedom for the constraint equation can be readily seen to 

be problem-dependent and cannot be applied universally. The method therefore cannot 

preserve its elegance and generality. 

Another way of choosing dominant degrees of freedom for the constraint equations 

has also been devised, which has also been proved to be very successful in the 

numerical simulations of structures made of softening materials (May and Duan, 1997; 

Yang and Proverbs, 2004; Yang and Chen, 2004). Following the approach, the 

dominant degrees of freedom in or surrounding the fracture process zone are picked up 

and updated sequentially during the numerical analysis. To remove the effect of rigid 

body movements on the success of the method, further enhancement to the constraint 
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equation can also be made (May and Duan, 1997), following which only relative 

displacements of nodal points of elements in the fracture process zone are taken in to 

account. In the numerical implementation, a selection criterion based on the 

positiveness of the damage variables and their increments at element Gauss points is 

used to select dominant elements in the fracture process zone. The degrees of freedom 

of nodal points of these elements, called dominant degrees of freedom, are then used in 

the constraint equations. Therefore, the whole process of choosing dominant degrees of 

freedom and relative nodal displacements can be carried out independently of the 

problems under consideration and therefore can be employed as a general method for 

the numerical simulations of softening processes in structural analysis. The advantage 

of this way of choosing dominant displacements is that very strong snap back behaviour 

can be captured successfully, even in cases where the incremental control using CMOD 

or CMSD fails. In other words, the local control using relative displacements does not 

suffer from the drawback that the CMODs or CMSDs must be always increasing 

through out the analysis, as a result of using the updated normal constraints (6.1). 

The constraint equation (6.1) now takes its local form as 

 ( ) ( )[ ] 2
1 L

e
i

T ∆=∆∇∆∇∑ UU  ( K,3,2,1=i ) (6.12) 

where e is the element considered and the symbol ∇  is used to denote the relative 

displacement vector of an n-node dominant element: 

 ( ) [ ]Tnnnnn UUUUUUUUUU 12123121 ... −−− −−−−−=∇ U  (6.13) 

The incremental load factors (6.9) and (6.10) turn out to be (May and Duan, 1997) 

 
( ) ( )∑ 



 ∇∇

∆
=∆

e

PTP

L

11

1
UU

λ  (6.14) 

 
( ) ( ) ( )[ ]{ }

( ) ( )[ ]∑

∑
∇∆∇

∇+∆∇∆∇−∆
=∆

−

e

P
i

T
e

F
ii

T

i

L

UU

UUU

1

11
2 δ

λ  for K,4,3,2=i  (6.15) 
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6.3 Integrating the rate constitutive equations 

This is a vital part in the numerical implementation, as it is directly concerned with 

the stability of the numerical solutions. For that reason, the implicit integration method 

is adopted in this study, based on the integration scheme proposed by several 

researchers (de Borst, 1986; Crisfield, 1997). The system of relations (4.25, 4.37, 5.19, 

5.20) governing the constitutive behaviour of the model is rewritten here, with 

nonlocality incorporated in the two damage criteria. 

 
( )
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ij
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 (6.16) 

 0
2

* =−
′′

+= ky ijij
kkp

σσ
σβ  (6.17) 
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 ( ) ( ) ( ) ( ) ( )
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 (6.19) 

In the nonlocal damage criteria above, we have replaced the two different volumes 

tV  and cV  with V  as the volume where both mechanisms of damage take place. This 

replacement is possible thanks to the introduction of the procedures for the 

determination of parameters of nonlocal models in chapter 5. In the above system, it is 

readily seen that the responses of every material point in the structure must satisfy 

entirely the system of equations (6.16-6.19), which in general can only be solved using 

numerical methods. The analysis is, however, more complex than in models where the 

evolution laws of damage are explicitly enforced (Peerlings et al., 1998; Peerlings, 

1999; Jirasek and Patzak, 2002; Jirasek et al., 2004). Because of the appearance of the 

spatial integral in equations (6.18 and 6.19), two spatial discretization schemes are 

necessary for solving the boundary value problem. The first discretization is required 

for the numerical solution of the partial differential equations. The second is an inner 

discretization, which deals with the integration of the rate constitutive equations along a 

loading path. Normally, for models based on local theory, only the outer discretization 

scheme is needed, as the integration of the rate constitutive equations can be carried out 

pointwise. In practice, the same discretization scheme can be used, resulting in the 
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nonlocal evaluation of energy-like quantities in the two damage criteria over the Gauss 

points used in the finite element discretization. 

For the numerical analysis using finite elements, the integrals in (6.18) and (6.19) 

can be transformed to summations over Gauss points. Denoting by ω  the energy-like 

quantity to be averaged, we can express its corresponding nonlocal counterpart as (see 

also section 5.1, Chapter 5): 

 ( ) ( ) ( ) ( )dVg
G V

∫ −= yxy
x

x ωω 1~  (6.20) 

where 

 ( ) ( )dVgG
V
∫ −= xyx  (6.21) 

The discretization using the finite element method leads to 

 ( ) ( ) ( ) ( )∑ ∫∑ ∫
==

−=−
n

e V

n

e V ee

dVgdVg
11

~ yxyxyx ωω  (6.22) 

in which e denotes the element index and n the total number of elements inside the 

interaction volume bounded by a sphere at centre x  and of radius R ; eV  is the 

corresponding volume of the finite element e. Numerical integration of both sides of the 

above equation results in 

 ( ) ( ) ( ) ( )∑∑∑∑
= == =

−=−
n

e

m

i

e
i

e
i

e
i

e
i

n

e

m

i

e
i

e
i

e
i

ee

JgwJgw
1 11 1

detdet~ yxyxyx ωω  (6.23) 

where i is the i’th Gauss point of element e, and me  is the number of Gauss points of 

this element inside the interaction volume; e
iw  and e

iJ  are respectively the weight and 

Jacobian matrix at Gauss point i of element e. The expression of the nonlocal energy-

like quantities in the damage criteria can now be rewritten in the following form 

 ( )
( ) ( )
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∑
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∑∑
=

−

−
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= =

= =
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γ
γγω

ω
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n
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e
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e
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e
i

e
i

e
i

e
i
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Jgw

Jgw

e

e

1 1

1 1

det

det
~

xy

yxy
x  (6.24) 

where γn  is the total number of Gauss points inside the interaction volume at point x ; 

γw  and γω  are respectively the weight and energy-like quantity associated with the i’th 

Gauss point of element e, in which γw  is defined by 
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 As mentioned in the introduction of this Chapter, an implicit Euler integration 

scheme is adopted for the integration of the rate constitutive equations. However, due to 

the presence of the spatial integrals in the damage criteria, the stress update procedure 

cannot be carried out point-wise as normally done in local models. Nonlocality in this 

case turns the pointwise-defined stress-strain constitutive equations to a system of 

nonlocal coupled equations, relating the stresses, strains and internal variables at several 

integration points in the failure region. This coupling makes the stress update routine 

more complicated, requiring considerable effort in the formulation and implementation 

as well as time cost in the numerical computation.  

 

Figure 6.2: Pictorial presentation of the integration scheme  

(after de Borst, 1986; and Crisfield, 1997) 

As the constitutive relationships in this case contain coupled equations relating the 

stress and strain increments at several integration points, finding the intersection points 

between the stress path and the yield/damage surface is almost impossible. Instead, an 

elastic predictor – damage-plastic corrector integrating scheme is adopted here for the 

integration of the rate equations. This is based on the algorithm proposed by Crisfield 

(1997) and can be considered as a form of the backward Euler integration scheme 

(Crisfield, 1997). This algorithm makes use of the normal at the elastic trial point and 

hence avoids the necessity of computing the intersection between the elastically-

assumed incremental stress vector (using secant elastic-damage behaviour) and the 

yield/damage surfaces. Furthermore, the method enforces the satisfaction of the yield 

X 

B (Elastic trial point) 

C

y = 0 (elastic limit) 

 y = yB > 0

 y = yC > 0 
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and damage criteria (6.17-6.19) at any stage of the loading process, thus removing the 

inaccuracies encountered when the consistency conditions of the yield and damage 

functions are used (de Borst, 1986). 

At the starting point, the system of relations governing the constitutive behaviour 

of the material are rewritten in rate form by taking the first-order Taylor expansion of 

the yield and damage functions about the elastic trial point B (figure 6.2, with y 

representing either the yield or compressive/tensile damage surface). In this coupling 

case, it is assumed here that yielding and both mechanisms of damage take place at the 

same instant. Therefore, treatment for sharp corner (point X in figure 4.8, Chapter 4) on 

the composite damage surface is automatically accounted for. By dropping out 

appropriate terms we can straightforwardly work out simpler situations, in which only 

one or two failure mechanisms are activated. From (6.16 – 6.19), a system of rate 

equations governing the constitutive behaviour of the model can be written: 
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The spatial integrals in the two damage criteria (6.28 and 6.29) have been replaced with 

the summations over integration points. The terms 
Bpy* , 

B
t
dy  and 

B
c
dy  in (6.27), 
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(6.28) and (6.29) are the values of the loading functions at the elastic trial point B. 

Furthermore, it is implied here that all the derivatives and terms in equations (6.27), 

(6.28) and (6.29) are evaluated at this stress point. Due to the appearance of the 

summations in (6.28) and (6.29), it should also be noted that B denotes several elastic 

trial points, from which t
dy  and c

dy  are evaluated, rather than a single point in the 

original scheme. 

As mentioned above, the stresses at the elastic trial point B (figure 6.2) are 

obtained by adding elastically-assumed incremental stresses to the stresses at point X. 

Our aim is to compute the stress increments 
BCijσ∆ , which is needed in going from B 

to C (figure 6.2), from the system (6.26) – (6.29). At first, from (6.27), using the flow 

rule  

 
ij

p
pij

y
d

χ
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∂

∂
=  (6.30) 

and two constraints 1C  and 2C  on the accumulated plastic strains (4.21 and 4.22 in 

chapter 4), the plastic strain rate ijdα  is obtained: 
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Secondly, back substituting the above plastic strain increment into (6.26), some 

mathematical manipulations lead to the relationship between the stress, strain and 

internal variables, written in incremental form as follows: 
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where st
ijmnD  is the constitutive matrix which is tangent with respect to plasticity and 

secant with respect to damage (see section 6.4 for details): 
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ijmnD  in the above expression is the elastic compliance matrix (see section 3.3.2). 

Finally, substituting (6.32) into (6.28) and (6.29), we obtain a system of linear equations 

in t
ddα  and c

ddα . This system is written for all integration points in the fracture process 

zone, each pair (tension and compression) of which has the following form: 
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where tQ  and cQ  are defined as follows: 
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 (6.36) 

and 
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As can be seen, the strain increments disappear in (6.36) and (6.37) when substituting 

(6.32) into those equations, as they have been applied in moving from point X to the 

elastic trial point B (Crisfield, 1997). Solving the above system of equations will give 

the damage increments at all points in the damaged zone of the structure. Back 

substituting the damage increments into (6.32), noting that the strain increments have 

been applied in the predictor step (from X to B) and now must be removed from that 

expression, we obtain the stress increment 
BCijσ∆  in going from B to C. Finally, the 

stress at point C (see figure 6.2) is updated using (Crisfield, 1997) 

 
BCijBijCij σσσ ∆+=  (6.38) 

in which 
BCijσ∆  is computed by 
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In the above expression, all damage increments have been computed by solving 

the systems (6.34) and (6.35), and all derivatives are evaluated at the elastic trial point 

B. Normally, due to the linearization, the updated stress points do not lie on the 

yield/damage surfaces (they can be either above or below these surfaces) and relevant 
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techniques should be applied to return them to the loading surfaces. Repetition of the 

same process but with point B replaced with C, noting that there are no elastic stress 

increments in the subsequent steps, would be an appropriate and simple way to bring the 

stresses back to the loading surfaces. This simple but rather efficient stress returning 

algorithm is advocated here due to the complexity of the system of rate constitutive 

equations (6.26–6.29). Alternatively, further enhancement to the exactness of the 

integration scheme can also be obtained through the combination of sub-incrementation 

and the repetition of the above predictor-corrector processes, all of which have been 

implemented in the finite element code OXFEM used in this study. Furthermore, to 

reduce the errors in updating the stresses, in this study the integration scheme above will 

be carried out based on the incremental instead of iterative strains [see Crisfield (1997) 

for details]. 

6.4 Tangent and secant stiffness matrix 

In finite element analysis using the Newton-Raphson iterative techniques, the 

employment of a consistent tangent stiffness matrix, which relates the forces and 

displacements at nodal points of a finite element, is an efficient way to achieve true 

quadratic convergence, although sometimes at high computational cost. In the 

numerical analysis with local constitutive models, this matrix can readily and explicitly 

be computed from the tangent moduli tensor t
ijklC  (constitutive tensor relating the 

incremental stresses and incremental strains, see chapter 3) at integration points. In the 

case of nonlocal models, it is not always possible to explicitly derive the nonlocal 

tangent stiffness matrix as there is no local incremental stress-strain relationship and the 

moduli tensor t
ijklC  can no longer be defined (Comi, 2001).  

Jirásek and Patzák (2002) proposed a very sound procedure for the formulation of 

consistent tangent stiffness matrix for nonlocal models. However, they only illustrated 

the proposed procedure in a simple case with a nonlocal isotropic damage model and 

explicitly defined damage evolution rule. In practice it is difficult to apply that 

procedure to the general nonlocal damage-coupled-with-plasticity model (represented 

by equations 6.16–6.19) to derive the explicit nonlocal tangent stiffness matrix, 

especially in case the damage evolutions are governed by a system of differential 

equations (6.26–6.29) (see also Addessi et al., 2002). Due to the complexity of the 

nonlocal model in this study, a nonlocal tangent stiffness matrix is difficult, even 
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impossible to be derived explicitly. Although numerical techniques using the above-

proposed stress update scheme in combination with numerical perturbation techniques 

can also be employed as an alternative way to overcome the difficulty, the expected 

high computational cost in the numerical derivation of the tangent stiffness matrix 

prevents its wide use in practice. Therefore, use of a nonlocal tangent stiffness matrix is 

not pursued in this study. 

Although there is no local stress-strain relationship in the nonlocal damage-

plasticity model, the tangent moduli tensor of an equivalent local model can be 

employed for the calculation of the local tangent stiffness matrix in the numerical 

analysis using the nonlocal models developed in this study. The derivation of this 

tangent moduli tensor is similar to that for the stress-based damage-plasticity models in 

chapter 3. Even so, the expression of this local tensor is still too cumbersome (see that 

of stress-based model in chapter 3 as a simple example) to be straightforwardly 

implemented in the computer code OXFEM. In this study, the stiffness matrix used in 

the numerical analysis is computed based on the local constitutive moduli tensor, which 

is tangent with respect to plasticity and secant with respect to damage (see also the 

stress-based model in chapter 3). Although not as efficient as use of tangent stiffness 

matrix, the employment of the adopted stiffness matrix is preferred in this study due to 

its simplicity of implementation.  

The derivation of this kind of constitutive moduli tensor is quite straightforward 

and is similar to that in plasticity models, with the damage indicators being kept frozen: 

0== c
d

t
d αα && . In this case, from the stress-strain relationship (6.16) we have 
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The consistency condition of the yield function without damage increments reads 
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from which the plastic strain increment can be obtained 
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From (6.40) and (6.42) one gets 

 [ ] ij
st
ijmnmn D εσ &&
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=  (6.43) 

with st
ijmnD  being the compliance moduli tensor which is tangent with respect to 

plasticity and secant with respect to damage: 
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6.5 Summary and discussion 

The numerical implementation of the nonlocal constitutive model (represented by 

equations 6.16 – 6.19) proposed in chapters 4 and 5 has been presented in this chapter. 

A local arc-length control for the solution of nonlinear algebraic equations in finite 

element analysis and an implicit integration scheme for the rate constitutive equations 

have been adopted and detailed. For simplicity in the implementation, it has been 

proposed that the local stiffness matrix based on the constitutive moduli tensor which is 

secant with respect to damage and tangent with respect to plasticity would be used in 

the numerical solution. 

The combination of local arc-length control and implicit integration scheme is 

expected to assure the stability of the incremental analysis based on the finite element 

method. Limit points and turning points on the equilibrium paths (figure 6.1), as results 

of the strain softening and localization, can now be overcome with ease using the local 

arc-length control in combination with relative nodal displacements, all of which will be 

numerically illustrated in the next chapter. Nevertheless, the convergence rate during 

iterative process within a load increment is expected to be very slow due to the use of 

the local stiffness matrix adopted and presented in section 6.4 above. Unfortunately, due 
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to time constraints, remedies for this drawback cannot be carried out at the present. 

Further research work is needed to improve the convergence rate. 
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7 Chapter 7: Numerical Examples 

7.1 Introduction 

This chapter is dedicated to the numerical validation of the model (represented by 

equations 4.25, 4.37, 5.19, and 5.20) proposed in the previous chapters. Analysis of real 

structures will be carried out to show the potential features and weaknesses of the 

proposed model. These tests range from simple to complex loading cases and hence 

require appropriate choice of constitutive models. The most complicated model in this 

study is the one with unilaterial damage coupled with plasticity (represented by 

equations 4.25, 4.37, 5.19, and 5.20), which can be used in most cases. However, this is 

not always necessary, as simple models (e.g. tensile damage model using equations 4.25 

and 5.19; or tensile-compressive damage model using equations 4.25, 5.19 and 5.20; see 

table 7.1 for details) can also be employed in relevant cases, reducing the complication 

in the choice of model parameters while still being able to produce acceptable results. 

The structural tests used here comprise those exhibiting important features in the 

behaviour of quasi-brittle materials in general and concrete materials in particular, 

which have been presented in chapter 2. They can be classified into groups of tension 

tests, bending tests, shear tests and compression-related tests, under monotonic or cyclic 

loading. The material models used can be pure tensile damage or tensile-compressive 

damage with plastic deformation being accounted for whenever the experimental cyclic 

loading data are available. A summary of the choice and determination of parameters 

corresponding to a variation of nonlocal models is provided at the end of this Chapter, 

with cross-references to procedures for the parameter identification in Chapters 4 and 5. 

All the numerical tests in this section are carried out using the arc-length control 

for the incremental analysis and Newton-Raphson method for the iterative technique. 

The convergence tolerance parameter is 10-4 for the norm of the out of balance force 

vector in the Newton-Raphson iterative process. The same tolerance value is also used 

in the stress update routine to gauge the errors occurring in returning the stresses to the 

loading surfaces. In addition, automatic increments (see May and Duan, 1997; Crisfield, 

1997, Chap. 9, Vol. 1), controlled by the number of iterations required for each load 
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increment, are used throughout the examples. A loading scheme consisting of three load 

stages (1st: fully elastic behaviour, 2nd and 3rd: peak and post-peak stages) is used, in 

which the controlling minimum and maximum numbers of iterations for the last two 

stages are normally 12-18 and 18-27, respectively. 

To achieve convergence in severe cases with snap-back observed in the 

equilibrium paths, the constraint equation of the arc-length control is based on relative 

nodal displacements in the fracture process zone (FPZ), though crack mouth opening 

displacements (CMODs) or crack mouth sliding displacements (CMSDs) can also be 

used without any difficulty. The local stiffness matrix, which is tangent with respect to 

plasticity and secant with respect to damage (local secant stiffness matrix is used in case 

the dissipation is totally due to damage), will be used throughout the numerical 

examples in this chapter. For the adopted Newton-Raphson iterative method, the 

stiffness matrix is only recomputed at the beginning of the load increment and kept 

unchanged throughout the iterations. Furthermore, as mentioned in the previous chapter 

on the numerical implementation, the stress update here will be based on the 

incremental instead of iterative strains. This was strongly recommended by Crisfield 

(1997) for several numerical reasons, all of which can be found in the relevant books 

(Crisfield, 1997, Vol. 1 and 2).  

7.2 Tensile test 

7.2.1 Double-edge notched specimen under tension 

 

        

(a) (b) (c) 

Figure 7.1: Double edge notched specimen (10mm thick) – geometry (a), experimental crack 

pattern (b) (Shi et al., 2000) and FE meshes (c) 
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In this numerical example, the numerical simulations of a double edge notched 

specimen under tension (Shi et al., 2000) are presented. In the numerical models, the 

specimen is fixed in both directions at the bottom edge, and in horizontal direction at 

the top edge. The numerical analyses were carried out using three meshes of 6-node 

triangular finite elements, with prescribed vertical displacements on the top edge of the 

specimen.  

The constitutive model used in this example is that presented in chapter 4, with 

only tensile damage mechanism being activated. In fact, it is also satisfactory to use an 

isotropic damage model with a single scalar damage variable for the analysis, as has 

been done in Nguyen and Houlsby (2004). The material properties used are: Young’s 

modulus GPa24=E , Possion’s ratio 2.0=ν , tensile strength MPa86.2or0.2=tf , 

fracture energy N/mm059.0=fG , nonlocal interaction radius mm125.1 max == dR .  

 

 

(a) Load-displacement curves (b) Damage measure (mesh 3, 

prescribed displacement of 0.19mm) 

Figure 7.2: Double edge notched specimen - Numerical results 

There was no exact value for the ultimate tensile stress, and the tensile strengths above 

were obtained from two sources (Alfaiate et al., 2002; and Shi, 2004), in which the 

higher one was in fact denoted as the peak stress in the report on the test (Shi, 2004). 

They are used in the numerical simulation here. The ratio 02.2== Rwk t  (1.98 for 

MPa86.2=′tf ) was calculated using 25.0== Ffnl ggt  and following the procedures 

in Chapter 5. The following model parameters were obtained based on the system (4.80-
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4.81) in Chapter 4: MPa3090=ptE  and 26.0=tn  ( MPa9081=ptE  and 36.0=tn  for 

MPa86.2=′tf ). 

The numerical results are depicted in figure (7.2), showing the agreement in the 

load-displacement curves obtained from different finite element meshes, thus proving 

the lack of mesh dependence of the proposed model. The experimental peak load 

(1.13KN) in the figure can be seen to be bounded by its two numerical counterparts 

(0.94KN and 1.26KN) corresponding to two used values of the tensile strength. In 

addition, the overall shape of the numerical load-displacement curves is consistent with 

the experimental one. The failure of the specimen can be seen in figure (7.2b). No clear 

macro crack can be observed, as attention here is paid to the structural response of the 

specimen under loading, rather than the crack propagation and interaction. A finer mesh 

and smaller nonlocal interaction radius can be used, of course at much higher 

computational cost, if the observation of crack propagation is interested (see figure 7.3).  

  

 

Figure 7.3: Crack pattern obtained with very fine FE mesh  

(5541 nodes, 2746 six-node triangular elements, nonlocal radius mmR 1= ) 

The numerical crack pattern in figure (7.3), however, does not agree well with its 

experimental counterpart (figure 7.1b, which was in fact redrawn based on the 

experimental crack pattern in the paper by Shi et al. (2000)), due to the use of an 

isotropic damage model and not-small-enough nonlocal radius. These issues will be 

discussed further in section (7.4.2). In figures (7.2b), due to the inadequacy of the 

procedures (of the commercial pre- and post-processor package GiD) used to 

extrapolate damage indicators from integration points to nodal points, some part of the 

damage zone in the figure may have damage indicators exceeding 1.0 or below 0.0, 



Chapter 7 – Numerical Examples  7-5 

which is not in fact allowed at Gauss points. Those parts are simply blackened in the 

figure. 

7.3 Bending tests 

7.3.1 Three-point bending test – notched beam 

Figure 7.4: Geometrical data and half beam model used in the numerical analysis 

The numerical simulations here are carried out on a notched beam in a three point 

bending test, aiming at investigating mode I fracture and crack propagation. The 

geometrical data and material properties are taken from the experimental test of 

Petersson (1981): mm2000=L , mm200=D , mm50=b , mm1000 =a , 

MPa30000=E , 2.0=ν , MPa33.3=′tf , N/mm124.0=FG , with the fracture energy 

being measured eliminating the effect of the beam’s self weight (see Petersson, 1981).  

 

 

 

Figure 7.5: Finite element meshes: coarser (a), and denser (b) 
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The nonlocal interaction radius was taken as 2.0 times the maximum aggregate size 

( 8mmmax =d , Petersson (1981)), resulting in mm16=R  followed by the ratio 

96.1== Rwk t  (using 25.0== Ffnl ggt ; see also the example in Chapter 5). As 

there was no experimental data on the unloading path, the constitutive model was 

assumed to be pure damage, with separation of tension and compression behaviour 

based on the decomposition of the stress tensor. Therefore, only two model parameters 

were derived from the system (4.80-4.81): MPa6899=ptE  and 32.0=tn  (see section 

5.3.3 in Chapter 5 for details). 
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Figure 7.6: Load-deflection curve and damage pattern at very late stage of the 

numerical analysis (mesh b, zoomed-in at centre part of the half-beam) 

The numerical analyses were carried out using two different finite element meshes 

of six-node triangular elements, with different mesh densities. Because of symmetry, 

only half of the beam was modelled (figure 7.5). Numerical results, in the form of load-

deflection curve and damaged pattern, are shown in figure (7.6). The damage process 

zone can be clearly seen in the figure and the numerical crack path agrees well with the 

experimental one in figure (7.4). It is noted here that the crack paths in bending tests of 

notched beams are usually straight lines above the notch, running from the notch tip to 

the upper side of the beam (see figure 7.4). They were not included in research papers 

from which the experimental data and results on bending tests are extracted. This is the 

reason why the crack patterns in the numerical examples in this section (7.3) are drawn 

in the figures (7.4, 7.7 and 7.11) describing the geometry of the beams, instead of being 

scanned from the papers referred to.  
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The numerical load-deflection curves obtained from different meshes are almost 

identical, again demonstrating the lack of mesh-dependency of the proposed model. In 

addition, they also match quite well the experimental curves. In the model, the choice of 

the nonlocal radius obviously has some effect on the response of the model, but this 

influence has been considerably removed using the proposed procedures for the 

parameter identification (see Chapter 5). 

7.3.2 Three-point bending test – un-notched beam 

Figure 7.7: Geometrical data and half beam model used in the numerical analysis 

This example is to test the response of an un-notched beam under three-point 

bending (figure 7.7). The experimental data in this case is extracted from Carpinteri’s 

experiments (Carpinteri, 1989). The geometrical and mechanical data are: mm100=D , 

mm150=b , MPa34300=E , 2.0=ν , MPa3.5=′tf , N/mm09.0=FG . Compared to 

the material properties (smaller tf ′  but higher FG ) in example 7.3.1 (Petersson, 1981), 

more brittle behaviour is expected in the load-deflection response of the beam. Because 

there was no experimental unloading data, the dissipation mechanism was again 

assumed to be due to damage only. Based on the proposed procedures in chapters 4 and 

5 (using 3.0== Ffnl ggt  and the assumed nonlocal radius mm5.7=R ), we obtain 

here the necessary model parameters: MPa10756=ptE  and 32.0=tn  

( 10.2== Rwk t  obtained from the procedure described in section 5.3.2, Chapter 5). 

The numerical results are shown in figure (7.8). 

It can obviously be seen in figure (7.8) that the numerical and experimental results 

are greatly different from each other. A slight snap-back response can be observed on 

the numerical load-deflection curve, while the experimental softening curve is much 

less brittle. Nevertheless, the experimental fracture energy is appropriately reproduced 
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by the numerical model (through the area under the load-deflection curve); and the 

numerical and experimental peak loads are comparable: 11.02kN (numerical) and 

11.38kN (experimental). This pattern was similar in several numerical models used for 

the simulation of this real test (Hawkins and Hjorteset, 1992). For comparison, the 

numerical result using Petersson’s bilinear softening model (Hawkins and Hjorteset, 

1992) is also shown in the same figure. 
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Figure 7.8: Finite element mesh, load-deflection curve and             damage 

pattern (at deflection of 0.8mm)  

The difference here possibly comes from different testing conditions and 

localization problems in the notched beam for measuring the fracture energy FG  and 

the un-notched beam examined in this example. In the notched beam, the failure is 

strongly forced to localize in a narrow area above the notch, while due to the mild stress 

distribution and the heterogeneity of the material, that in un-notched beam can spread 

out in a wider zone at the beginning of the analysis (pre-peak part in the load-deflection 

curve). In other words, the pre-peak behaviour of an un-notched beam is much more 

affected by the heterogeneity of the material than that of notched beam, where the 

artificial flaw dominates the material imperfection. Therefore the experimental load 

deflection curve of notched beam can be much more brittle than that of un-notched 

beam. As a consequence, the calculated fracture energy FG  can be different if one 

adopts the un-notched beam for the calculation of the fracture energy. 

For illustration, the dissipated energy under the experimental load-deflection curve 

of the tested un-notched beam was used here to calculate the fracture energy 1FG , by 

simply dividing the area under the curve by the fracture surface (150*100mm2), 
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yielding N/mm185.01 ≈FG . This is approximately double the experimentally provided 

fracture energy. The dashed curve in figure (7.8) shows the corresponding numerical 

response using N/mm185.01 ≈FG , which is closer to the experimental one.  

7.3.3 Three-point bending test – notched beam – cyclic loading 

This test was experimentally carried out by Perdikaris and Romeo (1995) and has 

also been used by several researchers (Meschke et al., 1998; Hatzigeorgiou and Beskos, 

2002) for the validation of their damage-plasticity constitutive models. The beam 

geometry is similar to that in section 7.3.1, with the following geometrical data (see 

figure 7.4) and material properties: mm1016=L , mm254=D , mm130=b , 

mm780 =a , MPa43600=E , 2.0=ν , MPa77.4=′tf , 2N/mm4.63=′cf , 
2

0 19.02N/mm3.0 =′= cc ff , N/m17.89=FG  and mm6max =d . The finite element 

meshes used are depicted in figure (7.9). 

  

(a), (b): for nonlocal approach 

 

(c): for fracture energy approach  

Figure 7.9: Finite element meshes 

It should be noted here that an experimental test for the measurement of the tensile 

strength was not carried out and the tensile strength used here was in fact calculated 

from the compressive strength using the following empirical formula (Eurocode 2, ENV 

1992-1-3) 

 ( ) 3/23.0 ct ff ′=′  

where 2N/mm4.63=′cf  is the cylinder compressive strength obtained from experiment. 

In addition, since the self weight of the beam is not taken into account in the numerical 
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analysis, the experimentally-provided fracture energy ( N/m5.119=FG ) should be 

adjusted using the experimental data provided, giving N/m17.89=FG  (see also 

Petersson, 1981). This choice of material properties however was not clarified in the 

research work by the above-mentioned researchers, in which N/m5.119=FG  and 

MPa0.4=′tf  were used rather arbitrarily in their numerical examples. 

 
Figure 7.10a: Load-deflection curves 

 The numerical results using pure damage dissipation mechanism have been 

presented in Chapter 5 for the illustration of the proposed procedure used for the 

identification of parameters of nonlocal models. The obtained results, using three 

different nonlocal interaction radiuses, match rather well the observed experimental 

load-deflection curve. Here, a coupled damage-plasticity model was used, with the 

following assumptions on the unloading path (see Chapter 4 for details): Efttu ′= 1.1ε  

and EEtu 91.0= . The nonlocal interaction radius was taken as 2.0 times the maximum 

aggregate size, giving mm12=R , with the corresponding ratio 98.1== Rwk t  (using 

25.0== Ffnl ggt ) taken from the numerical example in Chapter 5. From the input 

data, we obtain the following model parameters from the system (4.80-4.82): 

MPa59045=tH , MPa29610=ptE  and 39.0=tn . The nonlocal numerical analyses 

were carried out on two different finite element meshes to illustrate the mesh-

independency of the proposed approach.  

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Deflection (mm)

Load (KN)

Experimental
Numerical, mesh a
Numerical, mesh b
Numerical, mesh c

3

5

7

9

11

13

0 0.05 0.1 0.15 0.2 0.25
 



Chapter 7 – Numerical Examples  7-11 

In a similar way, the nonlinear finite element analysis using the fracture energy 

regularization (or crack band approach) was also carried out for comparison with the 

nonlocal analysis. For that, the nonlocal interaction radius was set to zero in the 

implemented finite element code, restricting the localization to the band of elements at 

mid-span above the crack tip. The crack band width [equal to the width of the blackened 

4-node quadrilateral elements in mesh (7.9c)] in this case is mm5=tw . This rather 

small width of the FPZ (compared to its nonlocal counterpart) requires another set of 

parameters for the constitutive model (see section 4.3.3, chapter 4). Using 

17.0== Ffnl ggt  and mm5=tw  ( 0=R  for crack band model), from the system 

(4.80-4.82), we obtain: MPa347789=tH , MPa4620=ptE  and 32.0=tn . 

The numerically-obtained load-deflection curves are shown in figure (7.10a). 

There is almost no difference between results from the two meshes using the nonlocal 

approach, though their difference in tail behaviour from that of the fracture energy 

approach can be seen. In all cases, a good match between numerical and experimental 

peak-load can be observed. However, for deflections greater than about 0.13mm the 

descending part of the numerical curves underestimates the measured one. The 

unloading slopes on the numerical curves are also not close to the experimental ones, 

although the numerical models obviously produce residual deflections at zero-load state. 

 

 

 

 

(b) Damage pattern (c) Accumulated plastic strain at deflection of 0.9mm 

(mesh a) 

Figure 7.10: Failure patterns 

Those mismatches can be due to the following reasons. Firstly, fitting of the 

proposed stress-strain curve to the experimental one (based on the bilinear stress-

separation curve in cohesive crack model) is particularly considered in the descending 

part just after peak stress (see section 4.3.3, Chapter 4). This is to assure the matching 

between the numerical peak load and its experimental counterpart. However, as there is 
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not enough experimental data, no attention has been paid to the tail of this stress-

separation curve, which is controlled by the nonlinear function tF1  in the proposed 

model. Secondly, the input parameters for the unloading slopes are possibly not 

relevant, resulting in damage-dominated dissipation in the failure of the structure. This 

is represented in the figure by very small residual deflections at zero-load state, 

compared to the measured ones. Choice of better sets of input parameters is in principle 

possible, but requires further studies on the relations between the unloading slopes of 

the stress-separation curve and stress-strain curve in continuum model. Last but not 

least, using nonlocal damage mechanisms and local plasticity mechanism also leads to 

damage-dominated dissipation in the failure process. This can be confirmed through 

examining the output results and through the distribution of the accumulated plastic 

strains and damage variable at the end of the numerical analysis (see figure 7.10c). 

In figure (7.10b), loss of most of load carrying capacity at the centre cross-section 

of the beam is represented by damage reaching a critical value along the crack line. 

However, the accumulated plastic strains are not very high in the upper part of the crack 

line, compared to those in the lower part. Therefore, there must have been a 

considerable number of material points in the upper part undergoing pure damage 

dissipation while their parameters are in fact determined for coupled damage-plasticity 

model. This results in the underestimation of the experimental tail response (see Chapter 

4 for more details on the effect of model parameters on the behaviour of the model). 

Use of crack band approach can remedy the mentioned problem (mesh c, figure 7.10 a), 

as both plasticity and damage in this case are local processes and forced to take place in 

the band of elements above the notch (figure 7.9c). 

7.3.4 Four-point bending test – notched beam – cyclic loading 

In this example, the four-point bending test experimentally performed by Hordijk 

(1991) is simulated using the coupled damage-plasticity model. The geometry of the 

specimen and finite element mesh of a half-beam model are depicted in figure (7.11). 

The following material properties were given (Hordijk, 1992): MPa38000=E , 

2.0=ν , MPa0.3=′tf , N/m125=FG , with the assumed maximum aggregate size 

mm5max =d  and assumed initial yield stress (in uniaxial compression) 
2

0 11N/mm=cf . 
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Figure 7.11: Four point bending test – Geometry and finite element mesh 

Choice of the nonlocal interaction radius can be somewhat arbitrary without 

knowing the relevant maximum aggregate size, but the effect of this choice on the 

response of the model can be eliminated using the proposed procedure in chapter 5. For 

that reason, we take here mm6=R , which is large enough for the adopted finite 

element mesh density in the critical zone. Using Efttu ′= 2.1ε  and EEtu 9.0= , the 

following model parameters were obtained (using 2.0== Ffnl ggt , based on rough 

fitting of nonlinear stress-strain curve to the bilinear curve derived from given 

experimental data): MPa33800=tH , MPa6381=ptE  and 33.0=tn  (with 

32.2== Rwk t ). 
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Figure 7.12: Four-point bending test - Load-deflection curves 

The numerically obtained load-deflection curve (dashed-dot curve named 

“numerical 1” in figure 7.12) overestimates the experimental one in the post-peak 

region near peak load, while it underestimates the tail behaviour of the measured one 

(figure 7.12b). However, the numerical peak load (~2.7kN) in this case is rather close to 
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the value given by experiment (~2.55kN). A slight modification of the adopted 

procedures for the identification of model parameters can lead to better model response 

(solid curve named “numerical 2” in figure 7.12). This modification is based on the fact 

that the fracture energy in experiment can only be computed up to a certain stage in the 

very long tail of the experimental load-deflection curve. This has been mentioned in 

chapter 5 on the determination of the localization bandwidth. Following the 

modification, the critical damage used in the evaluation of local fracture energy Fg  

(see 4.80, chapter 4) is set to lower value, e.g. 0.999 instead of ~1.0 in theory. For this, 

only the tail behaviour of the model is significantly affected, represented by slight 

changes on tH  and ptE  ( MPa33840=tH ; MPa6377=ptE ) and bigger change on 

tn : 37.0=tn  (see chapter 4 for the effect of parameters on the model behaviour). A 

slightly better model response can be clearly seen in the presented figure. 

7.4 Mixed mode cracking 

7.4.1 Four-point shear test 

 
Figure 7.13: Four-point shear test – geometrical data 

The four-point shear test of Arrea and Ingraffea (1982) is selected here to 

demonstrate the model capability in capturing the structural responses in shear loading. 

Partly, the snap back of the load point displacement curve helps to show the stability of 

the proposed numerical integration scheme and solution methods in dealing with highly 

nonlinear structural response. All the geometrical data of the analyzed structure are 

shown in figure (7.13) above. As the original report on the experimental test could not 

be obtained, all the above geometrical data are extracted from other sources (Saleh and 
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Aliabadi, 1995; Galvez et al., 2002; Jefferson, 2003), which also show some negligible 

variations in the beam dimensions. The experimentally observed crack path is redrawn 

in figure (7.13) based on the crack pattern shown in the paper by Rots et al. (1985). 

 

 
Figure 7.14: Finite element meshes 

Most controversial is the choice of the tensile strength and fracture energy of the 

material, which have been rather arbitrarily adopted in different research work dealing 

with this shear test (Rots et al., 1985; Saleh and Aliabadi, 1995; Jirasek and Patzak, 

2002; Jefferson, 2003). For only compressive strength, Young modulus and Poisson’s 

ratio having been experimentally provided, the tensile strength and fracture energy of 

the material can hardly be appropriately obtained, and therefore should be determined 

based on some code on concrete. In that way, we adopt here the following material 

properties as an averaging set between data on two test series B and C (Galvez et al., 

2002; CEB-FIP model code 1990): MPa24800=E , 18.0=ν , MPa55.3=′tf , and 

N/m5.108=FG . Assuming the nonlocal interaction radius to be mm25=R , the 

material properties result in the following model parameters for pure damage behaviour 

( 86.1== Rwk t  in this case): MPa14129=ptE  and 37.0=tn , with 

3.0== Ffnl ggt  having been adopted based on rough calibration of the nonlinear 

stress-strain curve to its experimentally derived bilinear counterpart. 

The choice of nonlocal interaction radius in this case has little effect on the 

structural responses, illustrated hereafter with the use of two other different nonlocal 

radiuses ( mm22=R  and mm20=R ) in the numerical analyses. This proves the 

effectiveness of the proposed procedure in identifying parameters for nonlocal models. 
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Again two finite element meshes with different mesh densities were used in the 

numerical simulations (figure 7.14). To avoid local failure, the load distributors were 

also modelled in the two finite element meshes, and assumed to be made of steel 

( MPa210000=E , 3.0=ν ). The numerical analyses were carried out with the applied 

load under indirect control of the relative displacements between nodal points of 

element in the fracture zone (local control). As mentioned in the introduction, the arc-

length method was used for the incremental analysis and Newton-Raphson method for 

the iterative equilibrium. This helps to capture effectively the snap back on the load-

displacement curve. 
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Figure 7.15: Load-CMSD responses (a) and Load-displacement curves (b) 

Snap-back behaviour can be clearly seen on the load-displacement curves in the 

above figure, with the vertical displacement taken at point A on the upper side of the 

beam and under the steel load distributor (see figure 7.13). The difference in the load-

displacement curves obtained from the analyses using two meshes mainly comes from 

the difference in size of the modelled load distributor. This is only a local effect, and the 

overall structural responses in figure (7.15a) are not significantly affected by the size of 

the load distributors and are almost identical. 

Figures (7.15a) and (7.15b) also show very slight difference in the peak loads 

corresponding to different nonlocal interaction radii. This, however, can be in principle 

further reduced using appropriate calibration for the nonlinear stress-strain curves in all 

cases of nonlocal radii. On the other hand, there is also no match between the 

experimental and numerical load-CMSD curves; and this trend has also been found in 

some other research papers dealing with this mixed-mode test (Alfaiate et al., 1992; 
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Jefferson, 2003). It can be supposed here that the observed numerical and experimental 

mismatch comes from the irrelevant use of pure mode I fracture energy in mixed-mode 

analysis. However, lack of relevant material properties from the real test means this 

mismatch cannot be fully explained. 

 

Figure 7.16: Deformed structure at CMSD of 0.26mm (mesh 2, magnification of 100) 

The numerical crack pattern can be seen in figures (7.16) and (7.17), and 

compared with the experimentally-observed crack path in figure (7.13). The numerical 

crack path seems to be less curved than its experimental counterpart. 

 
 

Figure 7.17: Four point shear test – Crack pattern at CMSD of 0.26mm (mesh 2) 
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7.4.2 Mixed-mode cracking test of Nooru-Mohamed 

 

 

Mesh a 

 

Mesh b 

Figure 7.18: Double-edge notched specimen,                                                  

Geometrical data and finite element meshes 

To examine further the responses of the proposed model in the numerical 

simulations of concrete structures, the mixed mode cracking of a double edge notched 

(DEN) specimen is numerically simulated in this example. The experimental tests of the 

DEN specimens examined were carried out by Nooru-Mohamed et al. (1993) and the 

corresponding data are extracted here. The geometrical data of the specimen along with 

the boundary conditions and finite element meshes are shown in figure (7.18) above. 

Only one loading path was considered in this example: biaxial loading (path 2a, Nooru-

Mohamed et al. (1993)), in which the axial tensile P and lateral compressive shear load 

Ps were applied to the specimen so as to keep the ratio sδδ  unchanged throughout the 

test ( sδδ  equals to 1.0 in load path 2a). The average deformations used to control the 

loading process are calculated as follows (Nooru-Mohamed et al., 1993; di Prisco et al., 

2000): ( ) 2NNMM ′′ −+−= δδδδδ , and P
s

P
ss

′−= δδδ . However in the numerical 

test, incorporation of the above deformation controls is difficult and an alternative way 

(Jefferson, 2003) has been adopted in this study with rigid movements of the upper left 
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edge and top edge of the specimen being prescribed, and the lower right edge and 

bottom edge being kept fixed in both directions. 

(a) P – δ (b) PS – δS 

Figure 7.19: Load – deformation curves 

The material properties provided by experiments ( MPa32000=E , 2.0=ν , 

MPa0.3=′tf ; MPa4.38=′cf  and N/mm11.0=FG ) require the following model 

parameters for nonlocal model: mm7=R ; 2.0== Ffnl ggt ; 24.2== Rwk t ; 

MPa3565=ptE  and 31.0=tn  (see Chapters 4 and 5 for the procedures to determine 

these parameters). The simulations were carried out based on the nonlocal approach 

(case 1 and 2, using mesh (a) of 6-node triangular element) and fracture energy 

regularization (case 3, using mesh (b) of 3-node triangular element). For the sake of 

simplicity in the fracture energy regularization, a constant mesh density was adopted in 

the region near the notches of mesh (b), thus enabling us to use the same model 

parameters ( 15.0== Ffnl ggt ; mm4.12 == Awt ; MPa378=ptE  and 25.0=tn ; 

where A  is the area of the element in the fracture zone) for all elements. In addition, 

premature cracking at the boundary was also prevented by introducing linear elastic 

behaviour to elements near the boundary (see also Nooru-Mohamed et al., 1993; and Di 

Prisco et al., 2000). 
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(a) Experimental  (b) Numerical, case 1 

(δ=δS=0.15mm, mag.=100) 

(c) Numerical, case 2 

(δ=δS=0.02mm, mag.=500) 

   

   

(d) Numerical, case 3: crack pattern at pre peak stage (left & middle)                  

and peak load (right) (zoomed in at left notch) 

Figure 7.20: Experimental and numerical crack patterns 

The first numerical simulation (case 1) shows different responses of the simulated 

specimen compared to those obtained from experiments (figures 7.19 and 7.20b). Only 

the tensile peak load P matches the experimental one (figure 7.19a). In this numerical 

analysis, cracks occur first at two crack tips and propagate along the horizontal line 

connecting two notches. No curved or inclined macroscopic crack can be seen. This 

numerical response of the simulated specimen, as a result of the isotropic behaviour of 

the damage model used, directly results in decreasing shear resistance of the specimen 

after peak (figure 7.19b), which is contrary to experimental observations. 

Two types of remedy have been examined (case 2 and 3, figure 7.20). In the first 

remedy (case 2), a slight modification of the failure envelope was done by setting 

0=tp  (see figure 4.7, chapter 4), along with forcing cracking process not to take place 

at the upper right and lower left edges (by introducing elastic behaviour to elements 
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near the boundaries). By setting 0=tp , the shear strength of the material model (in 

compression-tension and tension-compression quadrants) is increased while the strength 

in the tension-tension quadrant is decreased (see figure 4.7, chapter 4). However, only 

limited success was achieved, with inclined cracks first occurring at the two crack tips 

but finally joining when propagating towards the centre of the specimen (figure 7.20c). 

For the second remedy with a very fine finite element mesh, we used a local 

damage approach with fracture energy regularization. It can be seen in figure 7.20d that 

at early stages (pre peak response), the failure process begins with inclined macro 

cracks propagating from the two notches of the specimen. However, with increasing 

loads, secondary cracks occur and soon dominate the failure process (figure 7.20d) 

while the first two inclined cracks stop propagating. 

Through the above numerical example, the isotropic damage model has been seen 

to show its weakness in capturing the real behaviour of the concrete specimen in mixed 

mode cracking. Mesh bias can be readily observed, which can only be partly remedied 

by modifying the failure envelope of the material model. Nevertheless, this modification 

leads to an unrealistic strength envelope of the material and hence should not be 

advocated in future research. Alternatively, refining the finite element mesh has also 

been shown to have effect on reducing the sensitivity of the model response to the mesh 

orientation but this simple method cannot be considered as a universal remedy (see also 

Grassl and Jirasek, 2004). On the other hand, it can readily be concluded that 

anisotropic behaviour of the model is the key to the enhancement of the numerical 

responses, and can be incorporated in the proposed constitutive model using the energy 

function (4.12) or (4.17) (see chapter 4). However, the realization of this enhancement 

is left here as future work on the model development. 

7.5 Compression-related test 

7.5.1 Splitting test on a concrete prism 

This is the only structural problem in this chapter related to the compressive 

softening behaviour of the model. The splitting test (Brazilian test) here serves as an 

indirect testing method to measure the tensile strength of the material, helping to resolve 

disadvantages in the implementation of direct tensile test (Rocco et al., 1995). The 
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resulting splitting strength can then be used to calculate the uniaxial tensile strength of 

the material (CEB-FIB, Rocco et al., 2001). The testing arrangement was quite simple, 

as shown in figure (7.21), and test on the prism specimen was adopted for the numerical 

simulation, with mm75=D , mm50=B  and the following widths of the load bearing 

strip: mm608.01 == Db  (numerical test 1; named STP75-8 in Rocco et al., 1995) and 

mm1216.02 == Db  (numerical test 2; STP75-16 in Rocco et al., 1995).  

 

   

Figure 7.21: Splitting test – Geometry and finite element model 

The following mechanical properties of the material are directly obtained from the 

test (Rocco et al., 1995): MPa31000=E , MPa38=′cf , N/mm072.0=FG , and 

mm5max =d ; the Poisson’s ratio can be assumed to be 2.0=ν . In addition, for the 

numerical simulations using constitutive model with two separate damage modes, more 

material properties are needed. The compressive fracture energy can be adopted here 

based on the experimental research by Jansen and Shah (1997): N/mm18=cG . This is 

the post-peak fracture energy, the derived local counterpart ( cg ) of which has been 

illustrated in figure 4.20. However, the uniaxial tensile strength was not provided by the 

experiment and must be obtained from the splitting tensile strength stf , based on CEB-

FIP code or recent research by Rocco et al. (2001). Since tensile damage is the 

dominating mode of failure in the second numerical test (Comi and Perego, 2001), we 

have (from STP75-16; Rocco et al., 1995): MPa53.4=stf , from which the uniaxial 

tensile strength can be derived: MPa08.49.0 ==′ stt ff  (CEB-FIB code) or 

MPa31.495.0 ==′ stt ff  (Rocco et al., 2001). The CEB-FIB value was adopted in this 

study. 
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No permanent deformation is considered in this numerical example and the 

constitutive model used here is isotropic damage, with two separate failure mechanisms 

in tension and compression. The procedure developed in chapters 4 and 5 for the 

determination of model parameters were applied in this case to both tensile and 

compressive damage mechanisms, giving the following ratios between the widths of the 

fracture process zones and the adopted nonlocal interaction radius ( mm2=R ): 

0.2== Rwk tt  and 2.2== Rwk cc . In the determination of tk  and ck , we have 

adopted the following values of parameters (see chapter 4 for details): 

25.0== Ffnl ggt  (for tensile damage); and MPa0.6000=pcE  and 0.6=cm  (for 

compressive damage). The following sets of model parameters were obtained: 

MPa1988=ptE , 28.0=tn , and 24.0=cn . 
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Figure 7.22: Load-displacement curves 

The obtained peak loads in both numerical tests can be observed not to agree well 

with the experimental ones. In addition, only the numerical load-displacement curve of 

the first test ( 08.0=Db ) show some resemblance with the numerical reference curve 

(Comi and Perego, 2001). Numerical analysis has also been carried out using a lower 

value of the compressive fracture energy (dashed dot curve, figure 7.22a). However, 

only the tail response is affected and the obtained numerical peak load only changes 

insignificantly. For the second test ( 16.0=Db ), oscillation in the load-displacement 

response can be observed, which has also been found in the numerical results by other 

researchers dealing with this kind of splitting test (Feenstra and de Borst, 1996; Comi 

and Perego, 2001).  
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At A (peak) At B 

 

Figure 7.23: Tensile damage (left) and compressive damage (right) for b/D=0.08 

    

At C (just after peak) At E 

    

At D At F 

 

Figure 7.24: Tensile damage (left) and compressive damage (right) for b/D=0.16 

In both tests, the results obtained from two finite element meshes are almost 

identical. Departure of two equilibrium paths obtained from two meshes is only found at 

late stage (point E, figure 7.22b) of the failure process in the second numerical test. 

Nevertheless, it is believed that this departure point is linked with the numerical 

instabilities instead of the capability of the proposed model in objectively capturing 

strain-softening behaviour. Full examination and explanation for this divergence 

requires further investigation and therefore cannot be covered by the scope of this study. 

The paper by Rocco et al. (1995) does not provide any results on the load-

displacement curves as well as crack pattern of the specimen. In this thesis, the damage 
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contours obtained from numerical analysis are presented to illustrate the failure 

processes in the specimen at different loading stages. This presentation is important as it 

helps to show the complicated failure process involving both tensile and compressive 

damage mechanisms, which are coupled in this example. The damage zones in both 

tests are depicted in the figures (7.23) and (7.24), where splitting effect can be clearly 

seen in figure (7.24) for b/D=0.16. Tensile damage in this case (b/D=0.16) occurs at the 

centre of the specimen and quickly develops through its height while failure due to 

compressive damage just happens at the corner of the load bearing strip. This is 

different from the first test (b/D=0.08) where failure due to both mechanisms of damage 

localizes underneath the load bearing strip (figure 7.23). 

7.6 On the choice of model parameters 

A summary of the models and parameters used in the numerical examples above is 

provided in this section. The aim is to show the whole picture of parameters of the 

constitutive model proposed in this study, and through that picture, indicate cases in 

which simplified versions of the full model can be appropriately used. We start here 

with the full version of the nonlocal model, which incorporates both dissipation 

mechanisms (damage and plasticity) and the capability to capture tensile and 

compressive behaviour separately. For the full version of the model, the necessary 

model parameters are: 

a. Parameters defining the elastic behaviour of the material: Young’s modulus E , and 

Poisson’s ratio ν . 

b. Parameters defining the initial loading surfaces: stress parameters tf ′ , cf ′ , and 0cf ; 

and scalar parameters tp  and cp . The initial shape of the parabolic Drucker-Prager 

yield surface used in the modelling is dependent on the uniaxial compressive yield 

stress 0cf  and the uniaxial tensile strength tf ′ . On the other hand, the uniaxial 

tensile and compressive strengths tf ′  and cf ′ , along with two scalar parameters tp  

and cp  are required to define the initial shape of the composite damage surface 

(section 4.2.3, Chapter 4). The stress parameters tf ′ , cf ′  and 0cf  are obtained 

directly from tensile and compressive tests on concrete, while the scalar parameters 

tp  and cp  are determined to yield best fit to the experimental biaxial strength 

envelope of the material. As such experimental data are not always available, 
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33.0=tp  and 62.0=cp  [obtained based on the data from Kupfer and Gerstle 

(1973); see section 4.2.4, Chapter 4] are kept unchanged in all the numerical 

examples in this Chapter. 

c. Nonlocal interaction radius R : this length parameter of nonlocal model is in 

principle obtained based on the procedure proposed in section 5.3.2, Chapter 5. 

Nonlinear relationships between R  and the minimum widths tw  and cw  (in tension 

and compression) of the fracture process zones can be determined based on that 

procedure. From these nonlinear relationships, R  is then chosen so that the 

corresponding widths tw  and cw  match their experimentally observed values [e.g. 

max3dwt ≈  following Bazant and Pijaudier-Cabot (1989)]. However, for the absence 

of an experimental value of cw  in compression and a possible wide range of tw  

depending on the type of concrete (Bazant and Oh, 1983), the mentioned method is 

not worth pursuing. Therefore, in practice, the nonlocal radius R  is assumed 

( max5.0 dR =  to max2d ) and used, along with the procedure proposed in section 

5.3.2, to calculate tw  and cw . These widths are then used for the determination of 

other parameters of the model (see sections 4.3.3 and 4.3.4 in Chapter 4), provided 

that tw  and cw  lie in the experimentally observed ranges. Research in this study has 

shown that the ratio Rwk t=  is not very sensitive with change on the nonlocal 

radius R  (see the numerical examples for values of k ), and usually lies in the range 

of 1.8 to 2.4. These values of R  lead to the values of tw  in the range max0.1 dwt =  

to max0.5 d , which is practically reasonable. 

d. Parameters governing the tensile behaviour of the model: ptE , tn  and tH . 

Parameter tH  here controls the permanent deformations produced by the model. 

Two material properties ( tuε  and tuE , see section 4.3.3, Chapter 4), which are 

respectively the strain and unloading slope at a point on the uniaxial stress-strain 

curve, are needed for the determination of this parameter. These properties ( tuε  and 

tuE ) are obtained from their relationships with the experimentally derived unloading 

slopes at points on the load-separation curves in cohesive crack model. As these 

relationships have not been worked out in this study, tuε  and tuE  have been chosen 

rather arbitrarily in all the numerical examples. The values of tuε  and tuE  can be (as 

experimented in this study): Efttu ′= 1.1ε  to Eft′2.1 , corresponding to 

EEtu 9.0= . All three parameters ( ptE , tn  and tH ) are determined from the system 



Chapter 7 – Numerical Examples  7-27 

(4.80 – 4.82), using the fracture energy FG  and the width tw  of the fracture process 

zone. In addition, the ratio Ffnl ggt =  is also needed and can be chosen in the 

range t = 0.1 to 0.3 so that the nonlinear softening curve yields close fit to the first 

part of the experimentally derived bilinear softening curve (see section 4.3.3, Chapter 

4). 

e. Parameters governing the compressive behaviour of the model: pcE , cm , cn  and 

cH . Similarly to the tensile case, cH  is used to control the residual strains in 

uniaxial compression. Its value is directly obtained from equation (4.97) and can be 

adjusted (based on the condition that cc ff ′<< 00 ; see section 4.3.4, Chapter 4) to 

yield an appropriate value of the residual strain cuε  in uniaxial compression (see 

4.99, Chapter 4). Another three parameters ( pcE , cm , cn ) are determined from the 

condition that the model produces the same specific fracture energy cg  as provided 

by experiments ( ccc wGg = ). Equation (4.98) is used for this purpose, with pcE  

and either cm  or cn  being assumed. As this choice of parameters is arbitrary, the 

parameter identification in compression is obviously not objective but simply 

adopted here for practical purpose. Experimental research on the compressive 

behaviour of the material is needed to cover this gap.  

All the parameter sets above are not independent, but have tight relationships. They can 

be classified as local sets of parameters [sets (a), (b), (d) and (e)], and spatial set of 

parameter (c). The local parameters govern the pointwise behaviour of the model and 

are determined based on the procedures in sections 4.3.3 and 4.3.4 (Chapter 4), and 

5.3.2 (Chapter 5), in which the widths tw  and cw  of the fracture process zones are 

obtained and then used to compute these local parameters. In that procedure, mutual 

effects of all parameters of the model (spatial set and local sets of parameters) on each 

other are accounted for. Table (7.1) overleaf summarizes important parameter sets 

needed for nonlocal models in this study. The physical meanings and dimensions of 

those parameters are summarized in table (7.2). 

As can be seen in table (7.1), different simplified constitutive models can be 

derived from the full version by dropping out appropriate terms in the constitutive 

equations and setting appropriate values for some model parameters, e.g. setting 

∞=tH , ∞=cH  and ∞=0cf  to exclude plasticity from the full model (see sections 
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4.3.3 and 4.3.4 in Chapter 4 for details). This feature has been incorporated into the 

finite element code OXFEM used in this study. 

Parameter sets → 

Types of models ↓ 

Sets (a)  

and (b) 

Set (c) Set (d) Set (e) 

(1) Full version, using 

equations (4.25), 

(4.37), (5.19) and 

(5.20) 

E , ν ,  

tf ′ , cf ′ , 0cf , 

tp  and cp  

R  ptE , tn  and tH  pcE , cm , cn  and 

cH  

(2) Tensile Damage, 

using equations (4.25), 

and (5.19) 

E , ν ,  

tf ′  and tp  

R  ptE  and tn    

(3) Tensile Damage & 

Plasticity, using 

equations (4.25), 

(4.37), and (5.19) 

E , ν ,  

0cf , tf ′  

and tp  

R  ptE , tn  and tH   

(4) Compressive 

Damage, using 

equations (4.25), and 

(5.20) 

E , ν ,  

cf ′  and cp  

R   pcE , cm  and  cn  

(5) Compressive 

Damage & Plasticity, 

using equations (4.25), 

(4.37), and (5.20) 

E , ν , 

tf ′ , cf ′ , 0cf  

and cp  

R   pcE , cm , cn  and 

cH  

(6) Tensile Damage & 

Compressive Damage, 

using equations (4.25), 

(5.19) and (5.20) 

E , ν ,  

tf ′ , cf ′ , 

tp  and cp  

R  ptE  and tn  pcE , cm  and cn  

Table 7.1: Parameters used for different nonlocal models 



Chapter 7 – Numerical Examples  7-29 

 

Parameters Dimension Physical meaning 

E  N/mm2 Elasticity modulus 

ν   Poisson’s ratio 

tf ′  N/mm2 Uniaxial tensile strength 

cf ′  N/mm2 Uniaxial compressive strength 

0cf  N/mm2 Initial yield stress in uniaxial compression 

tp   

and cp  

 Parameters governing the initial shapes of the damage 

loading surfaces 

R  mm Nonlocal interaction radius 

ptE  N/mm2 Parameter governing the descending slope of the stress-strain 

curve in uniaxial tension 

tn   Parameter governing the rate of change of the softening 

tangent modulus in uniaxial tension 

tH  N/mm2 Tensile hardening modulus, controlling the amount of plastic 

strain and the descending slope of the stress-strain curve in 

uniaxial tension 

pcE  N/mm2 Parameter governing the descending slope of stress-strain 

curve in uniaxial compression 

cm   Parameter governing the ductile behaviour of the model in 

uniaxial compression 

cn    Parameter governing the rate of change of the tangent 

modulus in uniaxial compression 

cH  N/mm2 Compressive hardening modulus, controlling the amount of 

plastic strain and the descending slope of the stress-strain 

curve in uniaxial compression 

Table 7.2: Model parameters – Dimensions and physical meanings 
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8 Chapter 8: Conclusions and Further Work 

8.1 Summary and Conclusions 

An approach to the constitutive modelling of concrete has been presented in this 

study. A continuum approach based on damage mechanics and plasticity theory is 

adopted. Emphasis here is placed on the consistency and rigour of the approach, 

realized from the model formulation based on a thermodynamic framework to the 

specifications of the derived constitutive models and applications to real structural tests. 

The main contributions of this research are: 

♦ The extension of an existing thermodynamic framework to incorporate both damage 

mechanics and plasticity theory (see section 8.1.1). 

♦ The use of this framework to develop constitutive models for concrete. Different 

responses of concrete in tension and compression are appropriately modelled using 

damage mechanics and plasticity theory (see section 8.1.2). 

♦ The incorporation of nonlocal regularization technique in a consistent way into the 

thermodynamic framework and the constitutive modelling (see section 8.1.3). 

♦ The identification and determination of parameters of the nonlocal coupled damage-

plasticity model: both set of local parameters controlling the pointwise behaviour of 

the model and set of spatial parameter (nonlocal radius) governing the spatial 

interaction of material points are determined in a rigorous manner (see section 

8.1.4). 

♦ The implementation of the nonlocal coupled damage-plasticity model into a finite 

element code (see section 8.1.5). 

The main goals, contributions and weaknesses of the research in this thesis are 

summarized in the following sub-sections.  

8.1.1 Thermodynamic aspects 

It is desirable in this study to build constitutive models on a well established 

thermodynamic framework which can accommodate various forms of dissipation 
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mechanisms. This is to reduce the need for additional ad hoc assumptions during the 

model formulation. An existing thermodynamic framework (Houlsby and Puzrin, 2000) 

has been adopted for this purpose. To capture important features in the behaviour of 

concrete, it is essential to accommodate both continuum damage mechanics and 

plasticity theory in the adopted thermodynamic framework. For that, some slight 

modifications of the framework have been presented in Chapter 3. The derivation of 

constitutive models in this study follows procedures established beforehand in the 

adopted thermodynamic framework. Only two energy functions are needed for the 

derivation of a constitutive model, without introducing any further ad hoc assumption 

about the behaviour of the derived model. The evolutions of internal variables in this 

case are implicitly embedded in the derived constitutive relationships. Connections 

between the energy functions and the derived constitutive model have been well 

established (Houlsby and Puzrin, 2000) with the key feature being the use of the 

Legendre transformation, helping to exchange the dissipation function and the yield and 

damage functions. These connections are also illustrated in Chapter 3 of the thesis. In 

addition, research in this study (Chapter 3) has shown that both stress- and strain-based 

formulations can be described within the modified thermodynamic framework. 

8.1.2 Constitutive modelling of concrete using damage mechanics 
and plasticity theory 

To apply the adopted approach to the constitutive modelling of concrete, the 

specification and calibration of the proposed models have been carried out and 

presented in Chapter 4, based on micromechanical and experimental research. A stress-

based model accommodating plasticity and two separate modes of damage is developed. 

The model utilizes the decomposition of the stress tensor into positive and negative 

parts, in combination with two scalar damage variables, to distinguish the damage 

dissipations in tension and compression respectively. However, this is only a simple and 

rather arbitrary way of modelling anisotropic behaviour at this stage of the model 

development, instead of using a more systematic approach with a tensorial form of 

damage, to capture the different material responses in tension and compression. In 

addition to the yield function, two separate damage loading functions naturally emerge 

from the thermodynamic-based formulation. Three dissipation mechanisms (plasticity, 
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tensile and compressive damage) are present in the specified dissipation function and 

control the dissipation process of the material model. 

In addition, based on physical observations, the mutual effects of the three 

dissipation mechanisms on each other are also accounted for in the modelling. In this 

study, they are the reduction of tensile strength due to compressive damage, stiffness 

recovery as a result of closing of microcracks under load reversal from tension to 

compression, and a simple stress-induced linear hardening law of plasticity. The 

dissipation mechanisms and their coupling can be considered satisfactory at this early 

stage of the model development to capture the strain softening and stiffness degradation, 

as well as to model the different responses in tension and compression and the 

permanent deformations of the material in a simple manner. However, with two-

dimensional material behaviour under consideration in this study, only the biaxial 

failure envelope is considered and calibrated from available experimental data. The 

present constitutive model in this case cannot take into account dissipation processes 

occurring in pure hydrostatic loading. In addition, no attention has been paid to the 

dilation of the material under loading, though this feature is also incorporated in the 

constitutive modelling through the use of a non-associated flow rule. Other 

shortcomings of the developed constitutive model, such as the abrupt transition of the 

energy function in switching between tension-dominant and compression-dominant 

stress states (see section 4.2.2, Chapter 4), the unrealistic shapes of the yield and failure 

surfaces in 3D principal stress space, the disagreement of the accumulated plastic strains 

in uniaxial and multiaxial cases, the lack of dependency of the hardening processes on 

direction and the isotropic behaviour of the damage model are acknowledged and will 

require a considerable amount of future work.  

8.1.3 Nonlocal regularization technique 

 Properly and objectively capturing the strain softening behaviour of the material in 

structural tests is an important issue in the development of constitutive models. Due to 

the deficiency of conventional continuum mechanics in dealing with strain softening 

problems, regularization techniques are essential in the numerical analysis. The 

nonlocal approach is adopted and incorporated in the thermodynamic framework used 

in this study. This integration of a regularization technique into the thermodynamic 

framework and the constitutive modelling, however, does not require huge effort thanks 
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to the consistency of the established procedures for the derivation of constitutive 

models. In short, only slight modifications to the dissipation function are necessary, in 

which nonlocality is introduced through applying spatial integrals to terms related to the 

damage dissipation processes. The nonlocal regularization effect then occurs naturally 

in the derived damage loading functions. 

8.1.4 Identification and determination of model parameters 

The identification and determination of model parameters have been carefully 

taken into account during the model development. This process is considered very 

important for a consistent and rigorous approach towards the constitutive modelling of 

concrete materials. Relationships between the material properties and model parameters 

for a local constitutive model have been established in Chapter 4, helping to identify 

properly those parameters based on standard experiments. The parameter identification, 

however, requires slight modifications of standard experimental tests to separate the 

total dissipated energy into parts due to damage and plasticity. In particular, the 

unloading slopes on the load-deflection curves in the standard three-point bending test 

need to be measured for this purpose. The separation of the total dissipated energy, 

represented in the modelling through the fracture energy FG  in mode I cracking, helps 

us determine model parameters related to the macroscopic permanent deformations of 

the material. Therefore details on the test modifications and their connections to the 

constitutive modelling using coupled damage-plasticity models should obviously be 

accounted for in future research. 

In addition to the elastic material properties (Young’s modulus E , Poisson’s ratio 

ν , uniaxial tensile and compressive strengths tf ′  and cf ′  respectively, and uniaxial 

yield stress 0cf ), the full version of the proposed local constitutive model with the 

presence of plasticity deformation and two mechanisms of damage uses 9 parameters 

( tp  and cp  to define the composite failure surface; ptE , tn  and tH  for tensile 

softening; pcE , cm , cn  and cH  for compressive softening; see section 7.6, Chapter 7 

for details), all of which can be directly determined from modified standard tests. 

However, this number is only the minimum number of parameters required for the 

present model and can increase significantly depending upon the required accuracy in 

the constitutive modelling and the numerical simulation. Simpler constitutive models 

can be readily derived from the full version of the presented model and, of course, use 
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fewer parameters (i.e. tp , ptE  and tn  for models with tensile damage as the only 

dissipation mechanism).  

 The employment of a nonlocal constitutive model requires relevant procedures for 

the identification and determination of model parameters. In addition to parameters for 

the local constitutive model, the identification of which is described in Chapter 4, the 

relationship between the nonlocal interaction radius R  and other model parameters is 

also needed. This relationship, based on energy equivalence, helps derive the 

parameters of a nonlocal coupled damage-plasticity model in a consistent manner and 

significantly reduces the effects of change of nonlocal radius on the responses of the 

nonlocal model. This is an important feature which has not received much consideration 

in the literature. Furthermore, due to the different nature of failure in tension and 

compression, it is realistic and essential in modelling both tensile softening and 

compressive softening that the widths tw  and cw  of the fracture process zones in 

tension and compression be kept separate. This requirement is met using a single 

nonlocal interaction radius, based on the developed procedures for the determination of 

the two separate ratios Rwt  and Rwc . This helps reduce the complication 

encountered when using two different nonlocal radii in the implementation and the 

numerical simulation. Nevertheless the consistency yet simplicity of the procedures for 

the identification of parameters of a nonlocal coupled damage-plasticity model are still 

preserved. 

8.1.5 Implementation issues 

For practical application with the use of nonlinear finite element analysis, the 

incremental form of the constitutive equations is usually required. However, with the 

use of a nonlocal constitutive relationship, no closed-form incremental relationship 

between the stresses and strains can be derived. As a consequence, the tangent moduli 

tensor t
ijklC  can no longer be defined. Although it is possible to derive a nonlocal 

tangent stiffness matrix in some simple cases, i.e. strain-based isotropic damage without 

plasticity, the derivation procedure cannot be readily applied to the general coupled 

damage-plasticity in this study. Use of the constitutive matrix of an equivalent local 

model is an alternative way to cope with the difficulty, despite the fact that it is 

computationally inefficient. This is admitted as a weakness of the implementation for 

the nonlocal model developed in this study. 
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On the other hand, much care has been paid to the stress update routine. The 

implementation here uses a simple form of the backward Euler integration scheme. 

However, with the presence of nonlocal terms in the expressions of the damage 

functions, the single linearized constitutive equation normally encountered in local 

models is converted to a system of linearized equations relating all the damage 

increments in the fracture process zone (equations 6.34 and 6.35). The size of this 

system of algebraic equations depends upon the number of Gauss points undergoing 

damage in the whole structure. Moreover, although the accumulated errors due to the 

linearization are significantly eliminated by enforcing the yield and damage criteria in 

every iterative step, instead of using the consistency conditions, sub-incrementation is 

always required to reduce the drift of the stress points from the loading surfaces. This 

markedly increases the computer time spent on updating the stress, especially with the 

enlargement of the fracture process zone at late stages of the failure process. In 

combination with the use of local constitutive matrix and in “large scale” problems (i.e. 

the mixed mode cracking and splitting tests in Chapter 7), the stress update process 

turns out to be the slowest part of the numerical analysis. This deficiency obviously 

needs remedying in further work on the constitutive modelling pursued in this study. 

Despite the very high computational cost due to the weakness of the model 

implementation, the adopted implicit integration for nonlocal rate constitutive equations 

has been shown to be stable through the simulation of structural real tests in Chapter 7. 

This stability is also thanks to the use of a local arc-length control (May and Duan, 

1997) in the incremental analysis. On the other hand, the structural responses are 

objectively captured using the proposed nonlocal approach, proving the lack of mesh 

dependency of the nonlocal constitutive model. In addition, different nonlocal 

constitutive models can be derived from the full version of the model proposed, and this 

feature has been incorporated into the finite element code OXFEM used throughout this 

study. From the aspect of constitutive modelling, the model in this study shows its 

potential features in dealing with mode I cracking problems, such as the direct tensile 

tests or the standard three-point bending tests. In those circumstances, the constitutive 

modelling using FG  as mode I fracture energy furnishes a good way to describe the 

post-peak behaviour of the material. The permanent deformations in cyclic loading can 

also be accounted for thanks to the “yield” behaviour of the coupled damage-plasticity 

model. 
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Nevertheless, the proposed constitutive model also shows its deficiencies when the 

anisotropy in the material behaviour prevails and governs the structural responses to 

load excitations (i.e. in the mixed mode cracking test in Chapter 7). This is a direct 

result of using an isotropic form of damage in the constitutive modelling. In addition, it 

is also expected that damage-induced anisotropy is of particular importance when non-

proportional loading is considered. This motivates further development of the 

constitutive model presented. 

8.2 Further Work 

The main goal of developing a consistent and rigorous approach to the constitutive 

modelling of concrete has only been partly achieved in this study. This is realized 

through the adoption and further development of a thermodynamic framework 

integrating nonlocal regularization technique, based on which nonlocal coupled 

damage-plasticity models can be derived. In parallel, the identification and 

determination of model parameters are conducted. However, the main weaknesses of 

the proposed approach have also been pointed out, lying in the incorporation of only 

two scalar damage variables in the thermodynamic framework used. In addition, the 

constitutive model described in this thesis and aiming at demonstrating the potential 

features of the proposed approach is a very simple one. Further research towards a more 

powerful approach and better responses of the derived constitutive model is hence 

necessary. 

8.2.1 Damage-induced anisotropy 

The incorporation of anisotropy features into the thermodynamic approach is of 

priority. This is required to faithfully capture the directional-induced responses of the 

material after the appearance of microcracks. In particular, both damage and plasticity 

parts of the model should account for the anisotropy in the post-peak behaviour. The 

introduction of damage variable as a tensor will require several modifications of the 

thermodynamic framework used in this study. To maintain the consistency and rigour of 

the framework, careful and critical review on the use of tensorial form of damage will 

need to be carried out (Cormery and Welemane, 2002; Challamel et al., 2004). 
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Although it is essential to use the tensorial form of damage in this case, for 

practical purposes the stress-induced anisotropy can be incorporated in the modelling 

with much ease (e.g. using the energy functions 4.12 and 4.17, Chapter 4). 

Alternatively, the use of multiple scalar variables for the measurement of damage in 

different directions is also a simple and practical way to take into account the material 

anisotropy (di Prisco and Mazars, 1996). The incorporation of the scalar damage 

variables into the thermodynamic framework should be carefully considered to avoid 

the discontinuity of the energy function during the transition of stress states (see section 

4.2.2, Chapter 4).  In a similar way, the adoption of more hardening modes (other than 2 

modes in the present model) for the multiple hardening behaviour of the plasticity part 

in the coupled damage-plasticity model also deserves examination. 

8.2.2 Enhancements in the model behaviour 

In addition, further work on the constitutive modelling in this study is also related 

to the enhancements in the model behaviour. The failure envelope and yield surface 

should be reconstructed so as to account for the dependence of the deviatoric sections 

on the Lode angle. In tandem with this modification, it is also necessary to include the 

“cap behaviour” in the responses of the model to pure hydrostatic compressive loading. 

To be in accordance with these changes, the evolution of the failure surface in 

compression should also be modified (see section 4.2.4, Chapter 4). More numerical 

examples on the compressive behaviour of the material are therefore needed to validate 

the model. 

Other important features such as the nonlinear hardening law and the hysteresis in 

cyclic loading will also be expected to be captured through the employment of 

continuous kinematic hardening (Puzrin and Houlsby, 2001; Nguyen, 2002). 

Improvements in the hardening behaviour of the model will require further work on the 

identification of model parameters, which for plasticity can be based on the unloading 

slopes on the load-deflection curve in the standard three-point bending test. 

8.2.3 Implementation issues 

The stress update process has been shown to be the slowest part of the incremental 

analysis. To speed up the numerical analysis, further work should be spent on the model 

implementation, in particular the development of algorithms to compute the nonlocal 
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consistent tangent stiffness of the constitutive model. In addition, nonlocal constitutive 

equations which allow the stress update to be carried out pointwise [e.g. the strain-based 

isotropic damage model without plasticity in Chapter 3; or those of Comi (2001), 

Nguyen and Houlsby (2004)] are preferred in this case. The incorporation such kinds of 

constitutive equations in the present thermodynamic approach, while still maintaining 

the consistency and rigorousness of the approach, is expected to be a hard task. 

8.2.4 Parameter identification 

It can be predicted that the inclusion of many new behavioural features in the 

constitutive modelling will remarkably increase the number of parameters of the model 

under development. Consequently, more experimental research is required for the 

identification and determination of new model parameters. This is very time- and cost-

demanding but seems to be inevitable in the macroscopic constitutive modelling of 

engineering materials. In addition, it is difficult, even impossible, to experimentally 

observe the underlying micro-structural phenomena of the material. Numerical 

microscopic analysis of the material behaviour is an alternative way to obtain some 

understanding on the underlying micro-structural phenomena, although at extremely 

high computational cost. In combination with experimental research, it is expected to 

help provide the closed-form constitutive modelling with sufficient data for the 

identification and determination of model parameters. Alternatively, the multi-scale 

modelling (Smit et al., 1998; Kouznetsova, 2002; Massart, 2003), which loosely 

speaking is in between the full microscopic modelling and the macroscopic one, can 

bridge the gap between the macroscopic and microscopic modelling and bring in a 

fruitful way to capture the real behaviour of the material faithfully. This is however a 

totally new area of future research. 
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