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Recent advances in computational mechanics have opened the potential of carrying
out the analysis and design of concrete structures in a realistic manner with the use of
nonlinear concrete models. This encourages the development of more capable and realistic
constitutive models, based on a rigorous approach, for the analysis and design of concrete
structures. This research focuses on the development of a thermodynamic approach to
constitutive modelling of concrete, with emphasis on the rigour and consistency both in the
formulation of constitutive models, and in the identification of model parameters based on
experimental tests.

The key feature of the thermodynamic framework used in this study is that all
behaviour of the defined model can be derived from two specified energy potentials. In
addition, the derivation of a constitutive model within this framework merely follows
procedures established beforehand. The proposed constitutive model here is based on
continuum damage mechanics, in combination with plasticity theory, hence enabling the
macroscopic material behaviour observed in experiments to be appropriately modelled.

Damage-induced softening is the cause of many problems in numerical failure
simulations based on conventional continuum mechanics. The resolution of these problems
requires an appropriate special treatment for the constitutive modelling which, in this study,
is based on nonlocal theory, and realized through the nonlocality of energy terms in the
damage loading functions. For practical applications in structural analysis, the model
requires a minimum number of parameters, which can be identified from experimental
tests. All the above features of the model have been incorporated in a unified and consistent
thermodynamic approach, which also distinguish the approach from existing ones.

Numerical implementation and application are important parts of the study. A suitable
implicit scheme is adapted here for the integration of the nonlocal rate constitutive
equations. For the solution of systems of nonlinear algebraic equations in finite element
analysis, the arc-length method in combination with local constraint equations employing
dominant displacements is implemented, and proves its reliability in this study. Application
of the proposed constitutive models in the analysis and design of concrete structures is
straightforward, with several numerical examples showing the practical aspects of the
proposed modelling.
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Chapter 1: Introduction

1.1 Aims and scope of the study

Constitutive modelling of concrete materials has been a theme of research for
some decades. Nevertheless, the complex behaviour of concrete, due to its composite
nature, cannot always be faithfully reflected in any models dedicated to the constitutive
modelling of the material. This study centres on the development of a thermodynamic
approach to constitutive modelling of concrete, with emphasis on the rigour and
consistency both in the formulation of constitutive models, and in the identification of
model parameters based on experimental tests. Only isotropic damage is considered in
this study. The constitutive model formulated within this approach can, to some extent,
capture the main macroscopic features in the behaviour of the material, while still
maintaining its applicability through the use of few model parameters, each identifiable
from standard tests. This model is of macroscopic nature, with the underlying
micromechanical processes being characterized by a few representative macroscopic
quantities. Therefore, it can only capture the macroscopically observed behaviour of
concrete materials in an approximate manner. In addition, as the nonlinearity in the
material behaviour normally takes place under very small strain, continuum mechanics

with the small strain assumption is used throughout the study.

Thermodynamics plays an important role in the formulation and development of
constitutive models. To avoid thermodynamically unrealistic results, the first and
second laws of thermodynamics should be the basis for any approach to constitutive
modelling. Although the requirements for the thermodynamic admissibility of a
constitutive model can be applied retrospectively, it is more rigorous and consistent to
build a constitutive model within a well-established thermomechanical framework. This
way of developing constitutive models helps avoid introducing any further ad hoc
assumptions during the model formulation. Therefore it is pursued in this study, with an
existing thermomechanical framework (Houlsby and Puzrin, 2000) being extensively
used as a basis for the construction of constitutive models. The formulation and

development of a model within this framework then follows procedures established
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beforehand, reducing the possibilities of introducing more assumptions during the
model formulation. However, thermodynamics in this case only provides a general
framework, as well as restrictions on the development of constitutive models. Details of
the models must be based on experiments and/or the micromechanical analysis of the

behaviour and interaction of all the material constituents.

Continuum damage mechanics has been used extensively for the constitutive
modelling of concrete. Prior to the establishment of damage theories with a
thermodynamic and micromechanics basis in the 1970s, the nonlinear response of
concrete could only be captured using plasticity theory, nonlinear elasticity theory or,
more recently, fracturing theory (Dougill, 1976). Although on their own those theories
can yield adequate results, which match those of experiments in some cases (e.g. in
monotonic loading), a combination of them would be a better choice in the constitutive
modelling of concrete. A coupled damage-plasticity approach is therefore adopted in
this study. In the combined approach, the strain softening and stiffness degradation can
be modelled by damage mechanics, while the residual strains and some other
macroscopic features are seen to be related to and captured by plasticity theory. In
relation to the micromechanical processes, the representative macroscopic variables
characterizing the material behaviour at microscopic level are the damage indicators and
plastic strains. In thermodynamic terminology, those quantities are considered as
internal variables of the dissipation processes taking place in the material. However, the
combination of damage and plasticity theories should only be regarded here as one of
the possible ways of constitutive modelling. It has the advantage of using well
established theories, but still needs more experimental evidence for the identification of

model parameters as well as validation of numerical simulation results.

Softening-related problems should always be considered in constitutive modelling
of quasi-brittle materials based on continuum mechanics. These problems are direct
consequences of the failure of conventional continuum mechanics in capturing the
material behaviour at a scale below a certain level. From the mathematical point of
view, softening leads to the loss of ellipticity of the governing partial differential
equations in static analysis and results in ill-posed boundary problems. The solution of
the boundary value problem therefore loses its uniqueness, with several pathological

features [e.g. infinitely small softening zone and mesh-dependent solutions in finite
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element analysis (Jirasek and Bazant, 2002)]. In the numerical simulation, localization
of deformation takes place in the smallest softening zone that can be captured by the
numerical disretization. In structural analysis, this zone is termed the fracture process
zone for cohesive materials such as rocks and concrete or the shear band for frictional
materials like soils. As a consequence of this localization, the numerical solution
becomes mesh-dependent and the energy dissipation in the softening zone may
approach zero upon mesh refinement. Use of classical continuum mechanics in this case
has been proved to be inadequate (Peerlings, 1999; Comi, 2001; Jirasek and Bazant,
2002). Therefore, special treatments, termed regularization techniques, are required for
the resolution of the problem. In general, the aim of these techniques is to prevent the
localization of deformation into a zero volume zone and therefore remedy the
pathological problems (e.g. mesh-dependent numerical solutions, infinitely small

softening zone) encountered in the analysis using conventional continuum mechanics.

Various forms of regularization techniques have been proposed, encompassing
both the simple and more mathematically complicated types of regularization. The term
simple here refers to techniques such as fracture energy regularizations (e.g. use of
smeared crack or crack band models) applied at structural level, which can help remove
the mesh dependence of the numerical solutions but preserves the ill-posedness of the
boundary problem. In other words, loss of ellipticity of the governing partial differential
equations in this case still accompanies softening. In contrast with this is the fully
mathematical regularization (e.g. nonlocal and gradient approaches, rate-dependent
regularization), which aims at preserving the ellipticity of the governing partial
differential equations throughout the analysis and hence automatically removes all
softening-related problems in the numerical simulation. The nonlocal treatment is used
in this study. With the introduction of spatial terms in the nonlocal constitutive
relations, the ellipticity of the governing partial differential equations (in rate-
independent material models) is kept unchanged throughout the analysis. This helps to
avoid the pathological aspects encountered with the use of classical continuum

mechanics.

The constitutive models in this study are constructed within a well-established
thermodynamic framework, and can accommodate both damage and plastic dissipation

mechanisms. Many of the important macroscopic behavioural features of concrete,
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which will be briefly presented in the next chapter, can be captured and characterized by
the proposed constitutive models. It should be mentioned here that for the continuum
mechanics approach adopted in this study, the material behaviour to be modelled should
be interpreted as the averaged response over a certain volume element, governed by
several underlying microstructural phenomena. To deal with softening-related
problems, a nonlocal regularization technique is employed and realized through the
nonlocality of energy terms in the tensile and compressive damage loading functions.
This nonlocal feature of the constitutive modelling can be readily incorporated in the
thermodynamic approach used in this study, although the physical interpretation is not
very clear. Therefore, it can be considered as a pure mathematical method used to

remedy the problems of continuum mechanics in dealing with softening.

Numerical aspects are also important in the constitutive modelling, with the
proposal of an appropriate integration scheme for the constitutive relations and the
employment of relevant numerical algorithms for the nonlinear finite element analysis.
However, the aim of this research is not to carry out exact numerical simulations of
structural problems, but to propose and develop a consistent and rigorous approach with
promising potential of application in the constitutive modelling of concrete materials.

Further investigation and research are still required to work out the proposed modelling.

1.2 Outline of the thesis

The starting point of this study is a brief review on the behaviour of concrete and
the constitutive modelling of that material, all of which are presented in Chapter 2.
Emphasis here is placed on capturing faithfully important features of the material
behaviour in the constitutive modelling, and the identification of model parameters
based on standard experiments. This results in the advocacy of combined approaches
employing both damage mechanics and plasticity theory, with a tight connection

between the model parameters and the experimentally-measured material properties.

Chapter 3 of this thesis addresses the thermodynamic aspects of the constitutive
modelling and presents a general formulation for constitutive models based on an
established thermodynamic framework. Constitutive models with both damage and

plastic dissipation mechanisms are constructed and discussed. It is also shown in this
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Chapter that both stress- and strain-based damage-plasticity formulations can readily be

accommodated in the existing framework.

Chapter 4 of the thesis is concerned with the combined damage-plasticity approach
for two-dimensional applications. To capture the different responses in tension and
compression, the approach makes use of the separation of tensile and compressive
behaviour, achieved through the decomposition of stress tensor and integrated in the
thermomechanical framework. The dissipation process therefore consists of three
separate dissipation mechanisms: tensile and compressive damage coupled with
plasticity. Schematic presentation of the failure surfaces in biaxial loading shows the
combined behaviour of the proposed constitutive model. The identification of model
parameters from simplest (pure tensile damage) to most complicated cases (tensile and
compressive damage coupled with plasticity) is also carried out. Some numerical
examples are used at the end of the Chapter to show the capability of the proposed

model.

In Chapter 5, we focus on softening-related problems and regularization
techniques employed for the treatment of the above-mentioned pathological problems
encountered in classical continuum mechanics when dealing with softening materials.
Various types of regularization, with the key feature of introducing additional material
characteristics, are briefly reviewed and advantages and disadvantages of those
techniques in practical applications are pointed out. The nonlocal regularization method
for strain softening material models is introduced to the constitutive modelling in this
Chapter. The thermomechanical aspects of nonlocality are briefly presented, followed
by the incorporation of nonlocality into the thermodynamic framework used in this
study. Various ways of integrating nonlocality into the modelling are presented and
discussed. The connection between parameters of the nonlocal model and
experimentally-provided material properties is established at the end of this Chapter.
This connection furnishes a consistent way of identifying parameters for nonlocal
models, which is not carefully considered in many nonlocal damage models proposed

by several researchers.

Numerical implementation plays an important role in the model development and
is discussed in Chapter 6. An implicit integration scheme (Crisfield, 1997) for the rate

constitutive equations is adopted, and modified in this Chapter for the nonlocal rate
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constitutive equations. Because of the material nonlinearity, the system of algebraic
equations in finite element analysis is nonlinear and its solution requires a reliable
numerical algorithm. The arc-length incremental control with local constraint equations
(May and Duan, 1997), in combination with Newton-Raphson iteration techniques, is
adopted for the nonlinear finite element analysis. This helps to overcome limit points

and snap back behaviour possibly encountered in the equilibrium paths.

In the last two Chapters, various structural problems showing the behaviour of the
material from simple to combined loading cases are numerically simulated to show the
performance of the developed models. Conclusions are withdrawn and further studies

are proposed.
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Chapter 2: Constitutive Modelling of Concrete,

A Brief Review

2.1 Introduction

The complex behaviour of concrete, which comes from the composite nature of the
material, necessitates the development of appropriate constitutive models. Although
recently there have been a large number of noteworthy contributions, with different
levels of complexity and applicability, the complete features of the material behaviour
have not always been acknowledged and reflected in the modelling. Further
development in the constitutive modelling of concrete materials is therefore needed,
with the motivation of incorporating important experimentally-observed features of the

material behaviour in the macroscopic constitutive modelling.

A brief review on the material behaviour and then an overview on the constitutive
modelling of concrete along with a critical discussion are presented in this chapter. For
the constitutive modelling, the focus here is mainly on continuum theories such as
plasticity theory, continuum damage mechanics and damage coupled with plasticity. For
the sake of simplicity, only the constitutive aspects are considered in this chapter.
Softening and its related problems in the constitutive modelling and numerical
simulation are included in the discussion in chapter 5. The main features, and
advantages as well as shortcomings of constitutive models will be examined in this
chapter to provide a general background and motivation for this study. Further details
on the models and their applicability to concrete modelling can be found in the

references.

2.2 Mechanical behaviour of concrete

Some important mechanical features of concrete are summarized in this section,
mainly based on research available in the literature (Chen, 1982; Chen and Han, 1988).
This furnishes a background for the review and further study on the constitutive
modelling of concrete in the following sections. The macroscopic features of the

material behaviour will only be briefly presented, with references to sources where
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detailed information can be obtained. The structure of concrete such as the ratio of
water to cement, the shape and size of aggregate, the kind of cement used, and other
factors all have effects on the mechanical behaviour of the material. However, these are
not mentioned here and the material is considered as a continuum with initial isotropic

behaviour.

2.2.1 Uniaxial behaviour

1.2

Strazs Ratio

Figure 2.1: Behaviour of concrete under monotonic and cyclic compressive loading

(after Bahn and Hsu, 1998)

The mechanical behaviour of concrete is highly nonlinear in both tension and
compression. In uniaxial compression, three different deformational stages (figure 2.1)
can be observed (Kotsovos and Newman, 1977; Chen and Han 1988). For axial stresses
up to about 30% of the maximum compressive stress f, the uniaxial compressive
behaviour of concrete can be considered linear, with existing micro-cracks in the
material remaining nearly unchanged. The second stage is between 0.3 f. and 0.75f,
in which cracks develop due to the breakage of bonds (among constituents), and cracks
at nearby aggregate surfaces start to bridge. However, the crack propagation is still
stable until the stress reaches about 0.75f,, which is generally termed the onset of
unstable fracture propagation. Beyond this stress level is the third stage of deformation

in which the mortar cracks join bond cracks at the surface of nearby aggregates and
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form a fracture zone. Further deformation may be localized, followed by major cracks

parallel to the direction of applied load, resulting in failure of the specimen.

~N

Axial Stress (MPa)

0 0 & ¢ d w0 o o
Axial Deformation (um)

Figure 2.2: Stress-deformation curve of concrete subjected to

uniaxial cyclic tensile loading (Reinhardt et al., 1986)
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Figure 2.3: Stress-deformation curve of concrete subjected to

reversed cyclic tensile loading (Reinhardt et al., 1986)

However, in uniaxial tension, the experimentally observed deformation process is
different from that in compression. The low tensile strength of concrete is primarily due
to the low tensile strength of the aggregate-mortar interface, which has a significantly
lower strength than the mortar. This interface is known to be the weakest link in this
composite material, with cracks usually occurring at the interface. Since the existing
microcracks remain nearly unchanged under a stress less than 60% to 80% of the
ultimate tensile strength £, this stress level can be regarded as the limit of elasticity in

tension. However, the stress-deformation curve of the material in tension is almost
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linear until the peak stress is reached (figures 2.2 and 2.3). Hence, the uniaxial tensile

strength of the material is usually adopted as the elastic limit in constitutive modelling.

— R T
N— --'__.;"_'.l.:_f___; T fe—
(a) Sfer et al. (2002) (b) Jansen and Shah (1997)

Figure 2.4: Failure of concrete in uniaxial compression

with cracks parallel to the loads applied
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Figure 2.5: Uniaxial behaviour of concrete under cyclic loading

(Ramtani, 1990; as presented by Nechnech, 2000)

Unlike in a compressive test, where splitting cracks are parallel to the direction of
the compressive stress (figure 2.4) or in the form of a zig-zag band depending on the
specimen height (figure 2.6a), the direction of crack propagation in a tensile test is
transverse to the stress direction (figure 2.5). This leads to a reduction of the load-
carrying area followed by an increase in the stress concentration at critical crack tips. In
addition, unstable crack propagation in tension starts very soon, resulting in the brittle

nature of concrete in tension (figures 2.2 and 2.3).
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Also experimentally observed in concrete under loading is the permanent
deformation, both in tension and compression (figures 2.1, 2.2 and 2.3). At the
macroscopic level, that permanent deformation can be considered as a result of
“yielding” taking place in the material under continuous loading. Although similarity
with metal plasticity is observed at the macroscopic level through the residual strains,
the actual dissipation mechanisms in the two materials are completely different. In
metallic materials, plastic deformation is the result of slips due to dislocations occurring
at the microscopic level. However, dissipations due to friction in pulling out of
aggregates and fragments, interfacial slips between mortar and aggregate when macro
cracks are formed and crushing of the mortar can be regarded as main causes of

irreversible strains in concrete.

l UNIAXIAL _[OMPRESSION TESTS

UNIAXIAL COMPRESSION TESTS
tross-section A= 100x 100 mm?2

H= 50 6,=-35 Nimm2
1o T -4

dimensionless stress 01!01,‘,

—— H =100 mm

0 ; ; , ; . y
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Figure 2.6: (a) Influence of specimen height on the uniaxial stress-strain curve in

compression; (b) corresponding stress-displacement diagrams (Van Mier, 1986)

Like other geomaterials such as soils and rocks, concrete also exhibits a significant
strain-softening behaviour beyond the peak stress, in both tension and compression (see
figures 2.1 and 2.2). The localization of deformations is a direct consequence of this
softening behaviour of the material, making the determination of the material stress-
strain curve impossible. In fact, there is no wunique stress-strain relationship
(Gopalaratnam and Shah, 1985) and the softening branch of a stress-strain curve is
generally considered as a mixed material-structural property (Chen and Han, 1988).
This is illustrated in the experiments by Van Mier (1986) with different average strains
obtained from compressive tests on specimens with different heights. In all three tests
(figure 2.6a), the post-peak strains are localized in small regions of the specimens, while

the average strain for each specimen is calculated by dividing the corresponding post-



Chapter 2 — Constitutive Modelling of Concrete — A Brief Review 2-6

peak deformation (or the localized deformation, in the form of the difference between
the total deformation u;,, and the deformation at peak u; ,1,), which have the same

value in this case (figure 2.6b), by the specimen height.

The stiffness degradation in concrete, both in tension and compression (figures 2.1
and 2.2), is mainly due to the material damage, especially in the post-peak range (Chen
and Han, 1988). The fact that concrete is a composite material made of aggregates and
cement paste makes its mechanical behaviour complex. The microcracks caused by
shrinkage, thermal expansion and other factors are initially invisible but will progress to
become visible cracks with the application of external loads. From the
thermomechanical point of view, the input energy is dissipated during the failure
process through microcracks formed due to the loss of cohesion between the mortar and
the aggregate, frictional slip at interface between the aggregate and the mortar, or

crushing of the mortar.

As mentioned above the mechanical behaviour of concrete is significantly
different in tension and compression, with the ultimate compressive stress being about
10 to 20 times as big as that in uniaxial tension (Chen, 1982; see also figure 2.5).
However, the intact elasticity modulus in both loading cases was experimentally shown
to be comparable, with that in uniaxial tension being somewhat higher (Chen, 1982).
Nevertheless, failure under compression, e.g. crushing and microcracks through the
mortar, is believed to have profound effects on the tensile behaviour of the material,
through the compression-induced stiffness degradation in tension. In other words, the
elasticity modulus changes during load reversal from compression to tension, of course
after a certain failure degree in compression. However, this stiffness reduction does not
happen in tension-compression load reversal. Physically, microcracks, which open
under tension loading, will close upon load reversal, resulting in the stiffness recovery

in compression (figures 2.3 and 2.5).

2.2.2 Multiaxial behaviour

The above experimental observations on uniaxial tensile and compressive
behaviour of the material are also applicable in general multi-axial stress states (Chen
and Han, 1988). The strength envelope of the material and the evolution of the envelope

are used to characterize the material behaviour in those stress states. However, two
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separate kinds of envelopes should be distinguished: the elastic-limit surface defining
the elastic region, and the failure surface characterizing the maximum-strength envelope

of the material (figure 2.7).
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Figure 2.7: Failure surface and elastic- Figure 2.8: Behaviour of concrete under
limit surface in principal stress space hydrostatic compression
(Chen, 1982) (after Burlion et al., 2000)

For the assumption of isotropic behaviour (Chen and Han, 1988), the equations for
both surfaces can be expressed in terms of the stress invariants /;, J, and J5, and/or
in terms of the three principal stresses o, o, and o5. The Haigh-Westergaard space is
used to define the failure surface in principal stress space, in which the position of a

stress point is determined by three coordinates &, p and 6:

1
ngl?,;Where 11:50-0'1]-:0114'0'224'033 (21)
. 1 ! ! ! 1
p =4/2J, ; where J, :Eaijal-j, and o;; =0 —§5U~O'kk (2.2)
J
cos36 =£ﬁ; where J; =%Gi’j0}k6;a- (2.3)
2

For reference, a comprehensive presentation of tensors and their invariants and the
Haigh-Westergaard stress space can be found in Chen and Han (1988). Although the
casting direction obviously has effects on the initial anisotropy of the material (Van

Mier, 1986), it is not discussed here. The above assumption on the initial isotropy of the
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material behaviour has been accepted and confirmed in several experiments (figure
2.10), indicating that concrete has a fairly consistent failure surface in three-dimensional
principal stress space (Chen, 1982).

I i 't
Compressiva Meridion £

Shear Meridian g

Tensile Meridian a

(a). Meridian sections (b). Deviatoric sections
Figure 2.9: Failure surface in the meridian and deviatoric planes (Chen and Han, 1988)

From experimental studies (see figure 2.10), it can be seen that the failure surface
is of open shape, while the elastic-limit surface (or the initial yield surface) is believed
to exhibit “cap behaviour” (figure 2.12), confirmed through the nonlinear behaviour of
concrete under hydrostatic compression (figure 2.8). Under pure hydrostatic
compression, the elastic-limit surface expands and gradually opens towards the negative
hydrostatic axis (figure 2.12; see also figure 2.17b) and finally coincides with the failure
surface. This is illustrated in figure (2.8) where there is no strength reduction observed
on the mean stress—volumetric strain curve of concrete material under very high

hydrostatic pressure (about 10 times the normal uniaxial compressive strength).

The shapes of the failure surface in the meridian and deviatoric planes are shown
in figure (2.9). As can be seen in the figure, the deviatoric sections of the failure surface
are different in both shape and size, depending on the value of the hydrostatic pressure.
The meridian p,=p, (6,0,0), where o, =1,/3 is the mean stress and @ the Lode
angle, defines the failure envelope on the deviatoric planes and can be experimentally
determined (figure 2.10). In figure (2.9), the meridians p,, p,, and p,. correspond to
the values of the Lode angle & of 0°, 30° and 60°, respectively. On the deviatoric
planes, the ratio p./p, is about 0.5 near the 7 -plane (the deviatoric plane passing
through the origin) and increases to about 0.8 for £ ~—7 f.! (Chen and Han, 1988; figure
2.9).
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Figure 2.10: Tensile and compressive meridians of
the failure envelope (data from Ansari and Li, 1998;
Imran and Pantazopoulou, 1996; Ottosen, 1977; and

Mills et al., 1970; as presented by Chen and Han,
1988 and Imran and Pantazopoulou, 2001)
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Figure 2.11: Biaxial compressive
failure surface for concrete under
low confining pressure (data from
Kupfer et al., 1969; Yin et al.,
1989; and Van Mier, 1986; as
presented by Lowes, 1999)

Failure Surface

Loading Surface

Figure 2.12: Evolution of the yield surface (Chen and Han, 1988)

The gradual change of the deviatoric sections with respect to hydrostatic pressure was

also confirmed by Van Mier (1986) in biaxial loading tests, in which rather small

confining pressures in the out-of-plane direction can significantly increase the material

strength in the plane of primary loading (figure 2.11).
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Figure 2.14: Volumetric expansion under biaxial compression

(data from Kupfer et al., 1969; as presented by Chen and Han, 1988)

Experiments (Kupfer, 1969; Palaniswamy and Shah, 1974) have also shown that
the deformational behaviour of a concrete specimen is significantly affected by the
confining pressure. As can be seen in figure (2.13), the axial and lateral strains at failure
increase with increasing confining pressure. However, at a certain level, further increase
of lateral stress results in the decrease in the values of axial strains at failure (figure
2.13). In addition, under confining pressure the axial and lateral strains at failure are
much larger that those in uniaxial compression. This shows that concrete in

compression exhibits a certain degree of ductility before failure.
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It was found experimentally (Shah and Chandra, 1968) that in concrete the cement
paste itself does not expand under compressive loading. However, the composite nature
of concrete, which is a mixture of cement paste and aggregates, results in its dilation at
a certain level of stress. That stress level is also found to be related to the onset of a
considerable increase of microcracks through the mortar. This is illustrated in figure
(2.14), showing the expansion of concrete under biaxial compression through the

increase of the volumetric strain near peak loads.

2.3 Constitutive modelling of concrete materials

In principle, it is desired that the above-mentioned macroscopic features of the
material behaviour be reflected in any constitutive models dedicated to concrete
modelling. However, it is quite difficult to incorporate all of these aspects of material
behaviour in a constitutive model. Those experimentally observed features are all of
macroscopic nature, which can only be characterized through some material and
structural quantities and cannot always represent what truly happens at the microscopic
level. This is the disadvantage of the macroscopic approach to constitutive modelling.
In another aspect, the applicability of the proposed constitutive models is also of
importance. Simple models with pure damage dissipation, i.e. models employing scalar
damage variables, can be used in relevant cases thanks to their simplicity in the
formulation, implementation and parameter identification. Complicated constitutive
models should only be adopted with much care applied to the physical interpretation
and identification of model parameters, which can only be done in combination with

experimental work.

Constitutive models proposed and used so far (Willam and Warnke, 1975; Simo
and Ju, 1987; Mazars and Pijaudier-Cabot, 1989; Yazdani and Schreyer, 1990; Feenstra
and de Borst, 1995; Lee and Fenves, 1998; Imran and Pantazopoulou, 2001; Grassl et
al., 2002; Addessi et al., 2002; Jirasek et al., 2004; Salari et al., 2004), although having
achieved great success in the numerical simulations of concrete structures, all have their
own limitations and cannot always be universally used without much care. A brief
review will follow, in which main features as well as limitations of models are pointed
out. The focus here is only the behavioural features of the constitutive models based on
continuum mechanics in capturing the macroscopic responses observed in experiments.

From the point of view of continuum mechanics, these responses can be characterized
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through the evolution laws of the failure envelope of the material behaviour in multi-
axial loading. Details of the constitutive models with appropriate treatments for

softening-related problems will be presented in chapter 5.

2.3.1 Plasticity theory

In summary, any model based on conventional plasticity always requires an elastic
constitutive relationship, the assumption of total strain decomposition, the definition of
a yield surface with an evolution rule, and a flow rule. For plasticity models with a
linear stress-strain relationship in the elastic region, the first two requirements are the

same but the last two differ.

Regarding the distinction of the yield surface and the failure surface (figures 2.7
and 2.12), we can see that these two surfaces coincide in plasticity theory. In other
words, a single loading surface acts as a yield-failure surface in plasticity theory. This
combined surface is often a scaled down version of the failure envelope of the material.
Numerous forms of yield surfaces have been proposed and can be classified based on
either the number of model parameters (Chen and Han, 1988) or on the shape of the
surface in principal stress space. The Von Mises and Tresca criteria are two typical
examples of one-parameter pressure-independent yield surfaces, which were initially
intended for metallic materials and are incapable of modelling the different responses in
tension and compression. For the constitutive modelling of concrete, they can be
augmented by tensile cut-off surfaces and should be used in combination with a non-
associated flow rule to reflect the plastic volumetric expansion observed in experiments
(figure 2.14). An example of the augmentation using Rankine’s criterion was given by
Feenstra and de Borst (1995), in which the failure of the material model is governed by

a composite failure surface of the form

ycz'\l3‘]2 _EC(KC):O (24)

v, =01-5,(x;)=0 (2.5)

where o, is the major principal stress; &,.(x.) and &,(x,) are two equivalent stress
functions governing the size of the yield/failure surfaces in compression and tension
respectively; and x,. and x, are two internal parameters. This augmentation for Von

Mises and Tresca criteria is however only adequate in biaxial loading, as these criteria
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are pressure-independent and therefore cannot reflect faithfully the behaviour of the

material under compression.

Among the two-parameter models, the Mohr-Coulomb and Drucker-Prager
surfaces (figure 2.15) are probably the simplest types of pressure-dependent criteria
(Chen and Han, 1988). However the shortcoming of these surfaces is that they assume a
linear relationship between \/Z and [, (\/E =p and [, / V3 =¢ in the meridian
plane), although this relationship has been experimentally shown to be nonlinear (see
figure 2.10). Moreover the lack of dependence of the deviatoric section on the Lode
angle @ is another shortcoming of the Drucker-Prager surface, even though it can be
modified to have nonlinear relationships between \/Z and /;, 1.e. the parabolic

Drucker-Prager presented in the next chapter.
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(a). Drucker-Prager (b). Mohr-Coulomb
Figure 2.15: Drucker-Prager and Mohr-Coulomb failure surfaces

Other failure criteria with nonlinear relationship between \/Z and /; and the
dependence on the Lode angle € have been proposed: Hsieh-Ting-Chen (see Chen and
Han, 1988), Ottosen (1977), Willam and Warnke (1975), Kang and Willam (1999),
Imran and Pantazopoulou (2001), Grassl et al. (2002). Details on these models can be
found in the relevant papers (Kang and Willam, 1999; Imran and Pantazopoulou, 2001;
Grassl et al. 2002) and books by Chen (1982) and Chen and Han (1988). The typical

deviatoric and meridian sections of those failure surfaces are shown in figure (2.16).
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Figure 2.16: Deviatoric and meridian sections of two typical failure surfaces

The above is a brief presentation of some typical failure criteria in the literature,
aiming at setting a general background for the discussion on the use of plasticity theory
for the constitutive modelling. In plasticity theory, the definition of a yield surface, the
shape of which is usually similar to that of the failure surface (i.e. the yield surface by
Grassl et al., 2002), is required. However, as pointed out by Chen and Han (1988), yield
surfaces as scaled down versions of failure surfaces at maximum loading are inadequate
for concrete modelling. The open shape of such yield surfaces does not reflect the true
behaviour of concrete under hydrostatic loading. A solution for this is the use of an
additional “cap surface” for the behaviour of the model under hydrostatic compressive
pressure (Simo and Ju, 1987; Sfer et al., 2002). Slightly different from the use of “cap
surface” is the direct modification of the equation of the open-shape yield surface so
that plastic deformation under hydrostatic loading can be captured. Following the
modification, the initial yield surface has a closed shape and, under loading, eventually
opens towards the negative hydrostatic axis. This is the approach adopted by Kang and
Willam (1999) and Imran and Pantazopoulou (2001), and illustrated in figure (2.17).
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Figure 2.17: Modification of the yield surface to account for the nonlinear behaviour of

the material under hydrostatic pressure

In addition to the disadvantage described in the preceding paragraph, the similar
shape of the yield surface with respect to the failure surface results in uniform
distribution of the elasto-plastic zone between the yield surface and the failure surface.
As a consequence, the plastic strains can be overestimated in tension while being
underestimated in compression (Chen and Han, 1988). One of the solutions to overcome
these shortcomings is to use models with a yield surface of variable shape (or
nonuniform hardening plasticity model; Han and Chen, 1987). In this model the yield
surface consists of several parts representing different responses in tensile and
compressive loading of concrete. Based on the independent hardening rule, Ohtani and
Chen (1988) also proposed a model called multiple hardening plasticity. The key feature
of this model is that the yield surface is allowed to expand independently in different

directions due to the independent hardening parameters.

The volumetric expansion of concrete under compression makes the application of
the associated flow rule for concrete inappropriate. In addition, to avoid excessive
inelastic dilatancy when using pressure-dependent yield criteria, a non-associated flow
rule, which is defined by the plastic potential other than the yield function, should be
used instead. Models which employ this feature include that of Chen and Han (1988),
Lee and Fenves (1998a, 1998b), Kang and Willam (1999), and Grassl ef al. (2002).

In concrete both the proliferation and coalescence of microcracks, which exist

within concrete even before loading, are believed to have an impact on the integrity of
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the material at a macroscopic scale. The nonlinear behaviour of concrete is therefore
partially or fully caused by the propagation and coalescence of these existing
microcracks as well as the initiation of new microcracks. This leads inevitably to a
progressive modification in the mechanical properties of concrete. Such aspects should
be included in any theory designed to predict failures in concrete. Unfortunately, they
cannot be modelled using conventional plasticity theory, which was originally
developed for metallic materials and then modified to fit the experimental data of
concrete without accounting for the underlying microscopic failure mechanisms of the

material.

To overcome this shortcoming, Bazant and Kim (1979), and Chen and Han (1988)
have proposed a combination of plasticity theory and progressive fracturing theory
(Dougill, 1976). The fundamental assumption of progressive fracturing theory is the
loss of material stiffness due to progressive fracturing during the deformation process.
This is characterized through the evolution of the constitutive tensor under loading, and
resembles the loss of stiffness in the modelling using continuum damage theory. In fact
the fracturing theory can be formulated in the context of continuum damage theory with
the constitutive tensor being considered as internal damage variable (Kratzig and
Polling, 1998). A brief presentation of the fracturing theory and its comparison with
damage theory can be found in Kratzig and Polling (1998). However, upon unloading,
no permanent plastic strain remains and the material returns to its zero-strain and stress-
free state. Combination of plasticity theory and progressive fracturing theory resolves
their corresponding deficiencies in each individually attempting to model the behaviour
of the material. However, without a consistent thermomechanical and micromechanical
basis, this can be regarded as an ad hoc treatment in remedying approaches based on

plasticity theory.

2.3.2 Models based on damage mechanics

The basic concepts of damage-based models are outlined in this part of the
chapter. By the term “damage-based”, we also include a class of smeared crack models,
1.e. fixed crack models, multiple fixed crack models, rotating crack models and, the
closely related microplane models (see Carol and Bazant, 1997; Weihe et al., 1998;
Ohmenhauser et al., 1999; and de Borst, 2002 for a brief review on those models). The

appealing feature of this class of smeared crack models models is the introduction of the
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failure plane (or plane of degradation, POD) in a reduced space, from which a
constitutive law is postulated. The complex constitutive behaviour of the material is
then obtained by transforming the constitutive relations in the reduced space (2-D plane
of degradation) to the 3-D continuum level. This transformation can be of geometric
nature (fixed crack models) or based on the principle of virtual work (microplane
models). As can be seen, the anisotropic nature of damage is implicitly taken into
account in smeared crack models. Nevertheless, more formal treatment of these models
can be conceived within the framework of continuum damage mechanics, as illustrated
by de Borst (2002). In this study, as only scalar damage models are considered, the

above-mentioned smeared crack models will not be further discussed.

The definition of damage indicator, following Lemaitre (1992), can be seen as the
most widely used, as it covers the micromechanical, thermodynamic and geometrical
aspects of the macroscopic representation of the material deterioration. It is therefore
adopted here and briefly presented to furnish a basis for the review in this chapter. More
details can be found in the books by Lemaitre and Chaboche (1990); and Lemaitre
(1992).

2.3.2.1 Concepts of damage mechanics

Figure 2.18: Definition of damage variable (after Lemaitre, 1992)

The idea of continuously representing material damage was first proposed by
Kachanov (Lemaitre and Chaboche 1990; Lemaitre, 1992) and then a further
contribution was given by Rabotnov (Lemaitre, 1992) with the concept of effective
stress. However the basic development of Continuum Damage Mechanics only began in

the 1970s and then in the 1980s with a more rigorous basis, based on thermodynamics
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and micromechanics. Since then there have been numerous Continuum Damage
Mechanics models proposed for the constitutive modelling of materials in general and

concrete in particular.

The quantities of continuum mechanics are defined at a mathematical point.
However, from the physical point of view, and accounting for the heterogeneity of the
material in reality, these quantities should be considered to have been averaged over a
certain volume called a “Representative Volume Element” whose size depends on each
material (Lemaitre, 1992). As a consequence, the stress and strain in continuum
mechanics should be physically interpreted as mean quantities over this volume
element. In a similar way, to define the material damage at a mathematical point M, let
us consider a Representative Volume Element (RVE) oriented by a plane defined by its
normal 7 and its abscissa x along the direction 7. The damage value D(M,i,x) at
point M in the direction 7 and at abscissa x is defined as:
68p,

oS

D(M,ii,x)= (2.6)
in which 6§ is the area of intersection of the considered plane and the RVE; and6 S,
is the effective area of intersections of all microcracks and microcavities in 0§ (see
figure 2.18). It can readily be seen that the value of damage D(M ,ﬁ,x) ranges from
zero (undamaged) to unity (totally damaged). The failure of the RVE in direction 7 is

defined at the most damaged intersection area.

_ _ oS
D(M,ii)=max D(M ,ii,x) = —L£ (2.7)

x oS
where 0 Sp is the most damaged intersection area. Since the damage of the RVE
depends on the direction 7, the anisotropic nature of damage is also enclosed in that
definition. Damage theories provide us with an effective means to characterize the
material deterioration at microscopic level by quantities at the macroscopic level. If
microcracks and cavities are uniformly distributed in the RVE, it is adequate to assume
the isotropy of damage, as the damage variable D(M N1 ,x) in this case does not depend

on the direction. We restrict ourselves to the case of scalar damage variable in this

study.

The concept of “effective stress”, which is used here in a different sense from that

used in metal plasticity and in geotechnical engineering, can be derived directly from
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the above definition. For the sake of simplicity let us consider the case of uniaxial
tension with scalar damage variable. Due to damage the cross sectional area is reduced
and becomes the effective cross sectional area S — S, in which § is the original cross
sectional area and S, is the total area of microcracks. The stress is no longer o = F/S
but replaced by the effective stress & = F/(S— S, )=0/(1-D)> o . The extension of
the concept to multi-axial stress state with scalar damage variable is straightforward
since damage in this case does not depend on the direction 7. Therefore we still have

G, =0y /(I—D) where o, and &, are now the stress and effective stress tensors
respectively. In unloading from tension to compression, due to the crack closure effect,
the effective cross sectional area is larger than S-S, . In particular, if all the defects
close (Sp =0), it is equal to S and the stress o and effective stress & are now equal.
This unilateral behaviour should always be accounted for in the constitutive modelling

of concrete materials.

The principle of strain equivalence (Lemaitre, 1971; see figure 2.19) follows
directly the effective stress concept and helps us to avoid a micromechanical analysis
for each type of defect and each type of damage mechanism (Lemaitre, 1992). It is
stated: “Any strain constitutive equation for a damaged material may be derived in the
same way as for a virgin material except that the usual stress is replaced by the

effective stress”
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Figure 2.19: Schematic representation of the hypothesis of strain equivalence

Application of the strain equivalence hypothesis results in the state coupling between
damage and elasticity (Lemaitre, 1992). This coupling comes from the physical
observation that damage due to the breakage of bonds in the material directly results in
changes in the elastic properties of the material. In the constitutive modelling, this
coupling can be written for uniaxial case as: o = (1 - D)E ¢ . This expression is in fact in
accordance with that observed in experiments (Lemaitre, 1992), with the effective

elasticity modulus E being dependent on the damage measure: E = (1 - D)E .
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Continuum damage models, like models based on conventional plasticity theory,
can also be developed within two alternative frameworks. In the strain-based
formulation, damage is characterized through the effective stress concept along with the
hypothesis of strain equivalence. Dual with this, in a stress-based formulation, the
hypothesis of stress equivalence is proposed (Simo and Ju, 1987; see figure 2.20) and
damage is presented through the effective strain concept, in which the effective strain
tensor in the case of isotropic damage is: &; :(I—D)gl-j. The hypothesis of stress
equivalence (Simo and Ju, 1987) states: “The stress associated with a damaged state
under the applied strain is equivalent to the stress associated with its undamaged state

under the effective strain”
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Figure 2.20: Schematic representation of the hypothesis of stress equivalence

Application of these two principles (of strain and stress equivalence) to the constitutive

modelling based on damage mechanics and plasticity theory will be presented later.

Models based on continuum damage mechanics are usually formulated within a
thermodynamic framework, though in principle damage theory can be developed by
simply stating a damage-related stress-strain law and a yield/damage criterion (Lee and
Fenves, 1998; Addessi et al., 2002; see section 2.3.3 for details). This way of
developing a constitutive model, however, is like using arbitrary assumptions in
progressive fracturing theory (Kratzig and Polling, 1998). Although the thermodynamic
admissibility of such models can be verified later using the Clausius-Duhem inequality,
those kinds of approaches are not advocated in this study. For the discussion here, only
constitutive aspects of damage-based approaches are considered; the thermodynamic

issues will be presented in the next chapter.

In principle, the choice of the damage variable D is arbitrary, provided that the
laws of thermodynamics are strictly obeyed. In addition to the above presented
definition of damage (Lemaitre, 1992), there have been several ways of representing the

damage measure D, which can be a single scalar for isotropic damage and a tensor for
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anisotropic damage. It can be represented as a variable characterizing the material
deterioration with the concepts of effective stress or effective strain (Simo and Ju, 1987;
Mazars and Pijaudier-Cabot, 1989; Lemaitre and Chaboche, 1990; Lemaitre, 1992; Lee
and Fenves, 1998; Peerlings, 1999; Jirasek et al., 2004); or as a function in terms of the
position of the loading surface in stress space between the initial and bounding surfaces
(L1 and Ansari, 1999); or even it can be a decreasing function (Addessi et al., 2002)
representing the damage experienced by the material and can hardly be directly related
to the geometrical definition of damage in (2.2). In fact, in macroscopic constitutive
modelling, physical interpretation of damage variables is not always straightforward.
However, the convincing physical interpretation of the damage variable D depends on
the identification of the microscopic mechanism underlying the observed macroscopic
response (DeSimone et al, 2001). The definition of damage variable D following the
concepts of effective stress and effective strain, which has been presented above, is

probably the most well-known and widely used in literature.

2.3.2.2 Damage mechanics in constitutive modelling of concrete

The continuum Damage Mechanics approach has been shown and proved by many
authors to be appropriate for constitutive models of concrete (Krajcinovic and Fonseka,
1981; Simo and Ju, 1987; Mazars and Pijaudier-Cabot, 1989; Peerlings, 1999; Geers et
al., 2000; Jirasek et al., 2004). Due to the anisotropic nature of damage, even for
initially isotropic materials, the damage measure D requires a tensorial representation.
However damage models employing scalar damage variables are still preferred because
of their simplicity in the formulation, numerical implementation and parameter
identification (Burlion et al., 2000). We restrict ourselves to the case of scalar damage

in this study.

From the point of view of constitutive modelling, continuum damage mechanics
alone can be used exclusively in the case that the structures analyzed are under
monotonic loading, as it can reproduce the softening response of the material without
necessarily paying attention to capturing the permanent deformation. In addition, the
stiffness degradation, although overestimated in pure damage models, can also be seen
as an important feature to be reflected in the constitute modelling of concrete materials.

These features confirm the applicability of pure damage models in the constitutive
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modelling of concrete materials, with promising results obtained in the literature

(Peerlings, 1999; Comi, 2001; Comi and Perego, 2001; Jirasek et al., 2004).

A constitutive model based on damage theory is usually formulated based on a
stress-strain law with the presence of a damage variable to characterize the material
deterioration, and a damage criterion and/or an evolution law for damage. The evolution
law of damage, which plays a very important role in any damage-based model, is
different for many Continuum Damage Mechanics models. However it is possible to
group almost all existing approaches into three categories: one with imposed damage
evolution laws (e.g. Faria et al., 1998; Peerlings, 1999; Jirasek and Patzak, 2002; Jirasek
et al., 2004); one in which damage evolution laws are obtained from a dissipation
potential, of which the existence is postulated (Lemaitre and Chaboche, 1990; Lemaitre,
1992) and one using implicitly defined damage evolution laws (Luccioni et al., 1996;
Comi, 2001; Comi and Perego, 2001; Nguyen, 2002; Nguyen and Houlsby, 2004; Salari
et al., 2004). Besides the simple bilinear softening laws, explicit nonlinear softening
laws have been used by several researchers (Peerlings, 1999; Jirasek and Patzak, 2002;
Jirasek et al., 2004; Comi and Perego, 2001), with their parameters being related to

relevant experimental tensile tests for the material properties.

In Jirasek and Patzak (2002) and Jirasek et al. (2004), an exponential curve was
proposed and can be calibrated based on the uniaxial behaviour of the material, with the
area under the uniaxial stress-strain curve representing the local (or specific) fracture

energy g (see chapter 4 for details). The damage evolution is of the form:

0 if Kk <g,

D=glk)= l—g—oexp - X% if k> ¢, (2.8)
K Ef — &y

where &, = f//E is the strain at peak stress and &  a model parameter controlling the
initial slope of the softening curve (figure 2.21). This evolution law is in fact associated
with a damage criterion: y, (g, x)=Z(g)—x = 0. The history variable x here represents
the maximum previously reached value of the equivalent strain &, which is defined as
(Jirasek et al., 2004):

Aoy 2.9)
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where G =a:¢ is the effective stress tensor (a is the elastic stiffness tensor), and ¢

denotes the positive part of the effective stress tensor.

Figure 2.21: Exponential softening law (after Jirasek et al., 2004)

As can be seen, the decomposition of the effective stress tensor 6 (see chapter 4
for details) is used in this model to properly capture the tensile behaviour of the
material. In addition, the damage loading function is only used to define a failure
criterion and does not play any role in the evolution law of damage. Although using
arbitrary assumptions in the formulation, the model here was shown to be adequate in
capturing the behaviour of the material in tensile-dominated stress states (Jirasek et al.,
2004). However, it was also admitted (Jirasek et al., 2004) that the model parameters
cannot be uniquely evaluated based solely on the input fracture energy gr. This is
because there are several stress-strain curves producing the same g, and the problem
of evaluating model parameters becomes ill-conditioned unless additional constraints
are introduced. This non-uniqueness of the model parameters can also be observed in
several damage-based models (Comi, 2001; Comi and Perego, 2001; Borino et al.,
2003). Details on this and simple remedies will be presented in chapters 4 and 5 of this

thesis.

Alternatively, implicitly defined damage evolution laws have also been used
(Luccioni et al., 1996; Comi, 2001; Comi and Perego, 2001; Nguyen, 2002; Nguyen
and Houlsby, 2004; Salari et al., 2004), in which the damage growth and the plastic
strain evolution are implicitly embedded in the coupling yield and/or damage loading
functions. The evolution laws of damage in this case are derived using the consistency
conditions of the loading functions. This is in fact a special form of deriving the damage
evolution law from a damage-dissipation potential, which coincides with the damage
loading function in this case. For example, in Comi (2001), the increments of tensile

and compressive damage are determined from the consistency conditions of the damage
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functions y4(D,,D,,e)=0 and y5(D,,D,,e)=0, in which D, and D, are two

separate damage variables in tension and compression, respectively:

t t t
y=Pap  Vip  Vig_g (2.10)
oD, ' oD, ¢ o
Cc c c
o =Dap  Pap  Va g @.11)
oD, ' oD, ¢ o

(a) Comi and Perego (2001) (b) Mazars and Pijaudier-Cabot (1989); as
presented by Chaboche (1992)

Figure 2.22: Composite failure surfaces in biaxial stress states

Different responses of concrete under tension and compression (see section 2.2)
require special treatment in the constitutive modelling. This feature can be modelled
mainly through two different ways, both of which use two separate damage variables
(see 2.10 and 2.11 as an example) to capture the stiffness degradations in tension and
compression. The first way is to use separate damage criteria for compressive and
tensile response (Comi, 2001; Comi and Perego, 2001; see figure 2.22a). In this case the
two damage criteria can be expressed (Comi and Perego, 2001) in the following form in

stress space:
yi(D,,D,.,6)=J, —a,1,* +bh1, —(1—aD, )kh> =0 (2.12)

y5(D,,6)=Jy +a I,* +b,h. 1, —k.h> =0 (2.13)
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In the above expressions, a;, b;, k; (i stands for 7 or ¢) and o are non-negative model
parameters determined based on the experimental failure envelope and properties of the
material. The effect of compressive damage on the tensile strength of the material is
also accounted for through the presence of the compressive damage variable D, in the
tensile damage criteria. The evolutions of the two failure surfaces are governed by two
isotropic hardening-softening functions ht(Dt) and £, (DC) (see Comi and Perego,
2001 for details).

Alternatively, based on the decomposition of stress/strain into positive and
negative parts (Ladeveze, 1983; Ortiz, 1985; Simo and Ju, 1987; Mazars and Pijaudier-
Cabot, 1989), two separate damage loading surfaces can also be defined. In Mazars and
Pijaudier-Cabot (1989), the composite damage surface is expressed as a double-criterion
using two thermodynamic forces associated with the tensile and compressive damage
variables. The Gibbs free energy function in this case is decomposed into two parts
corresponding to the tensile and compressive behaviour of the material (see chapter 4
for details on the decomposition):

;)[(1 +v)et ot - V[(Tf0)+ ]Z}

E(1-D,

1
2 _,_;)[(l-i-v)s_ 6~ —V[(Tr“)_]z}

E(1-D,

g= (2.14)

The resulting thermodynamic forces associated with damage are:

% 1 2{(1+V)0+ 30+—V[(Tf0)+ﬂ (2.15)
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The damage criteria are defined as:
va=Y,-K,(D;)=0 (2.17)

vi=Y.-K.D.)=0 (2.18)

where K,(D,) and K.(D,) are two hardening-softening functions. The combination of
these two damage criteria creates a composite failure surface in multi-axial loading (see
figure 2.22b). However, in the case that the compressive behaviour of the material can

be neglected (i.e. in tensile-dominated stress states) and no unloading-reloading cycle is
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considered, the compressive damage criterion can be disabled and the constitutive
model reduces to a much simpler form (see Jirasek and Patzak, 2002; Jirasek et al.,

2004).

Different responses of concrete under arbitrary loadings should be reflected in the
non-uniform expansion/contraction of the failure surface, through the use of a multiple
or tensorial form of damage indicator. This is, however, difficult to achieve in
constitutive modelling using only two scalar damage indicators for tensile and
compressive behaviour, due to the lack of experimental data. Instead, the two
independent hardening/softening processes (in tension and compression) are always
assumed to be isotropic, resulting in the uniform expansion/contraction of the
tensile/compressive failure surface. This evolution of the failure surfaces has been
adopted by several researchers (Jirasek and Patzak, 2002; Jirasek et al., 2004; Comi and
Perego, 2001) and is usually based on the uniaxial behaviour of the material, with the
areas under the uniaxial stress-strain curves in tension and compression representing the
local fracture energies of the material. For the restriction to isotropic damage and

proportional loading in this study, this adoption of evolution law is acceptable.

From the point of view of continuum mechanics, the multi-axial behaviour of
concrete should be carefully taken into account in the constitutive modelling. In other
words, the initial shape of the damage criteria in stress/strain space should be in
accordance with experiments. This was, however, not always respected (e.g. in
Peerlings, 1999; Jirasek and Patzak, 2002; Addessi et al., 2002). In those models, it is
simple for the model formulation to declare a stress-strain relationship with scalar
damage variables, along with a damage criterion and an evolution law for the damage
indicator. No special attention has been paid to the macroscopic material behaviour in
multi-axial loading, e.g. calibrating the failure envelope of the model against that of the
material behaviour (see figure 2.28 in section 2.3.3). This inevitably restricts the

capability of the models in capturing the material behaviour faithfully.

The above-mentioned pure damage models, although applicable in several cases,
are just attempts to capture the tensile and compressive behaviour of the material
without paying careful attention to all the observed macroscopic features of the material
behaviour. In addition, assigning all the dissipation energy only to damage mechanisms

results in the inability of the model to capture the irreversible strains of the material
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under loading. Fortunately, this deficiency of the model becomes serious only when an
unloading-reloading cycle is to be considered. However, the inability to capture the
permanent deformation of the material is in fact contrary to experimental observations,
even in pure tension. Coupling between damage and plasticity is therefore an essential
way to take into account the important macroscopic features of the material behaviour,

which have been briefly presented at the start of this chapter.

2.3.3 Coupling between damage and plasticity

From the aspects of constitutive modelling, the changes of the internal variables
(i.e. damage variable and/or plastic strains) used in a constitutive model characterize the
micro-structural phenomena of the material. For concrete, these microstructural changes
are the decohesion in aggregate and mortar, or between them, slips along the surface of
decohesion, and crushing of the mortar. These phenomena lead to irreversible strains
and material deterioration observed at the macro scale. Two kinds of coupling can be
distinguished in the constitutive modelling (Lemaitre, 1992): state coupling between
damage and elasticity, and indirect coupling (or kinetic coupling) between damage and
plasticity. This comes from the physical observations that damage due to the breakage
of bonds in the material directly results in changes in the elastic properties of the
material (state coupling). On the other hand, it is also observed that the material
deterioration leads to a decrease in the elementary area of resistance and hence the
reduction of the material strength, resulting in the indirect coupling between damage

and plasticity.

In the constitutive modelling of concrete using damage mechanics, the concept of
effective stress (section 2.3.2.1) furnishes a way to introduce coupling between damage
and elasticity. However, coupling between damage and plasticity can be implicitly
embedded in the yield and damage criteria (Luccioni et al., 1996; Nguyen, 2002;
Nguyen and Houlsby, 2004; Salari et al, 2004), with the material strength being a
decreasing function with respect to the damage variable D. This implicit coupling
characterizes the strength reduction due to the material deterioration and is equivalent to
introducing effective instead of nominal stress into the yield function (Lemaitre and
Chaboche, 1990; Lemaitre, 1992). Therefore, the concept of effective stress is still
applicable in this case. This way of introducing coupling enables the constitutive

modelling to use separate yield and failure criteria, helping to remedy the problems
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encountered in using only one combined yield-failure criterion for the dissipation
process (see section 2.3.1). The corresponding internal variables (damage variable and
plastic strains for the coupled model) of the model do not explicitly depend on each
other. Nevertheless, the parameter identification becomes more difficult as the model
responses in this case are governed by all the internal variables used in the coupled

model.

An alternative type of coupling has been used by some other researchers
(Lemaitre, 1992; Lee and Fenves, 1998; Faria ef al., 1998; Lemaitre, 2000), in which
only one loading function is specified and used to control the dissipation process. This
function can be a damage loading function (Faria et al., 1998) or a yield function
(Lemaitre, 1992; Lee and Fenves, 1998; Lemaitre, 2000). In the first case with a
damage loading function governing the dissipation process, an evolution law for the
plastic strain is required (Faria et al., 1998). For the use of a yield function, the damage
measures, activated based on a simple damage criterion [i.e. a threshold based on the
equivalent plastic strain in Lemaitre (1992)], are expressed in terms of other internal
variables controlling the plastic flow process. Despite the restrictions in modelling the
material behaviour using only one loading surface, this is obviously much simpler than
the coupling using two separate damage and yield surfaces. Nevertheless, many ad hoc
assumptions are usually used during the formulation of constitutive models (see Lee and

Fenves, 1998; Faria et al., 1998).

Yo | Yo Ao
1 1 1
E E \ E Er<E
1
E E,
> C > & > &
& &
Damage Plasticity Coupled Damage-Plasticity

Figure 2.23: Uniaxial stress-strain behaviour of constitutive models

Use of coupling between damage and plasticity in theoretical modelling is an
essential way to capture the observed phenomenological behaviour of concrete. In this
study, true coupling is used instead of ad hoc modification of a pure damage model to

capture the permanent strains in cyclic loading (i.e. in models by Hordijk, 1992; and
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Hatzigeorgiou and Beskos, 2002). In the combined approach, damage theory is used to
model the material deterioration, while the permanent deformation, as well as the
volumetric expansion under compression and some other features (section 2.2), can be
captured using plasticity theory (see figure 2.23). All features of the two theories can be
incorporated in this combined approach, making it very promising for use in the
constitutive modelling. Despite the complexity, this approach to the constitutive
modelling of concrete has been widely adopted by several researchers, e.g. Simo and Ju
(1987), Yazdani and Schreyer (1990), Luccioni et al. (1996), Lee and Fenves (1998a,
1998b), Hansen et al. (2001), Addessi et al. (2002), Ung-Quoc (2003), Jefferson (2003),
Salari et al. (2004). Reviews on some selected coupled damage-plasticity models are

presented hereafter.

2.3.3.1 Model of Yazdani and Schreyer (1990)
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Figure 2.24: Separation of total strain in uniaxial case

(after Yazdani and Schreyer, 1990)

In the approach by Yazdani and Schreyer (1990), the pressure-dependent damage
surface is used as a failure surface, and enhanced with a Von Mises yield surface. In
principal stress space, this yield surface covers the damage surface in the positive
hydrostatic axis, and lies almost entirely inside the damage surface in the opposite
direction (figure 2.25). Attention was also paid to the multi-axial behaviour of the
model, with the failure surface being calibrated to account for the strength enhancement

and ductility under increasing lateral confinement (figure 2.25).

Bypassing intermediate details on the model derivation, the constitutive relations

of the model can be rewritten as follows. The stress-strain relationship is

£=C’:6+C°(D):o+& =" +&P +¢ (2.19)
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¢ =¢'(D)+%(s,) (2.20)

in which C° denotes the compliance tensor for the uncracked material; C¢(D) is the

0 is the elastic strain tensor and £ 2 the

added flexibility tensor due to damage; &
additional recoverable strain due to elastic damage. The inelastic strain tensor is denoted
as € and arises from two irreversible sources: inelastic damage (€") and plastic flow
(e?) (see figure 2.24).
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Figure 2.25: Schematic view of coupled damage-plasticity model by
Yazdani and Schreyer (1990)

The yield criterion is defined as:

3 1/2
yp(c,gp):(—c:c) —r(gp)zo (2.21)

2
where ¢, = _[ (a’sp - dg? )]/ is defined as the plastic strain path invariant (or the
equivalent plastic strain), and function T(é‘ p) defines the hardening rule. The associated

flow rule is assumed here.

The damage surface of the model is of the form:

yd(G’D):%G+ ot +%6 - X6

—— 0 +a)(S_ +ﬁS+):0
6-0 (2.22)

+§CK,UH(—/T)GZG—90)TOCH(—Z)p2 —%tZ(D)=0

In the above expression, the positive part of the stress tensor ¢ is denoted as 6 and is

obtained by removing the eigen vectors associated with negative eigen values of ¢ (see
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chapter 4 for details); p=Tro/3 is the mean pressure; @, a, B and u are model
parameters; S an’d S are respectively positive part and negative part of the deviatoric
stress tensor (G_) (the deviatoric stress of 6 ); 6 is the stress tensor defined by
6=6 —/Ai with i denoting the second-order identity tensor and A the maximum
eigenvalue of ¢ ; A and H are the minimum eigen value of ¢ and the Heaviside

function, respectively; t(D) is the function controlling the damage process.

The evolution of the flexibility tensor C¢(D) in the model is defined as

C‘(D)=DRy(0)+ DRy (o) (2.23)

where R; and Ry; are two fourth-order tensors determining the direction of incurring
damage in mode I (opening) and mode II (shearing) cracking respectively (see Yazdani
and Schreyer, 1988; and Yazdani and Schreyer, 1990). It can be noted that the

anisotropic nature of damage is accounted for using these two stress-dependent tensors.

Compared to other coupled damage-plasticity models, this model is able to capture
the irrecoverable strains using inelastic damage mechanism to account for the misfit of
crack surfaces. The evolution equation for the strain rate due to inelastic damage is

postulated as follows:

¢ (D)=DwS™ +DwpS” (2.24)
Nevertheless, this capability is restricted to compressive mode of cracking only
(Yazdani and Schreyer, 1990). As a consequence, with a pure damage mechanism

activated in tension, the model exhibits an inability to capture the observed permanent

deformation in tensile loading.

2.3.3.2 Model of Lee and Fenves (1998a, 1998b)

Lee and Fenves (1998a) developed their coupling damage-plasticity model for the
numerical analysis of concrete dam. The stress ¢ and effective stress ¢ in this model

are given by
cz(l—D)a:(a—sp) (2.25)
E:a:(a—ap) (2.26)

where a denotes the rank-four elasticity stiffness tensor; € and €7 are the elastic part

and plastic part of the total strain tensor €, respectively; and D represents the damage
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measure. In this model, a combined yield-failure surface is defined and evolves with
damage variables, for which the evolution laws are postulated. This yield-failure surface

is of the form (see figure 2.26):
1 N
v, = E[0511 #4375 + BN G ). (6) =0 2.27)

In this yield function, &, is the maximum principal stress; « is a constant parameter

and S a function of the damage variable k, defined by

BlK)= ZE:)) (1-a)-(1+a) (2.28)

where c¢,(k) and c,(k) are the tensile and compressive cohesions respectively. The

Macaulay bracket < > is used in the expression of the yield function to create the

desired shape of the yield surface in two-dimensional principal stress space (figure
2.26).

e, + T +B3)) = <,
i'fl,'E(ml + 37 +B8) = ¢ ?Lz
/’\L—jq’ '
- al

v

ﬁ(arﬁ J7p = e
Figure 2.26: Yield surface in plane stress space (Lee and Fenves, 1998b)

The opening/closing of microcracks also features in the model, using two
independent scalar damage variables x, and x, in tension and compression
respectively. The vector k in (2.28) is defined as: k = [K, K, ]T . The damage measure
D in (2.25) is a function expressed in term of x, and x . as

D=1-(1-D,(x))1-sD,(x)) (2.29)
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with parameter s = s(E) representing the stiffness recovery, and D, and D, denoting
the tensile and compressive damage measures. D, and D, in this case are defined as

functions of the damage variables x, and «_..

The flow rule in the model is governed by a Drucker-Prager type plastic potential

where parameter «, is used to control the dilatancy of the material model. Therefore

p
the plastic strain rate is

0 = ;02 (2.31)
06

Coupling in the model is realized through the dependence of the yield threshold on
the damage variables (see 2.27 and 2.28), the evolutions of which are expressed as (Lee

and Fenves, 1998a)
k= 1H(%, ) (2.32)

The forms of functions H(c, k) as well as D, (k) and D, (k) can be found in Lee and

Fenves (1998a, 1998D).

The model of Lee and Fenves (1998a, 1998b) has no damage loading function.
The evolution of the yield surface (2.27) is governed by the damage variables x, and
K., which in turn depend on the equivalent plastic strain & (see Lee and Fenves,
1998b). Although the whole model is defined from several “pieces”, its thermodynamic
consistency can be readily ensured. However, the Drucker-Prager type yield criterion in
this approach, although having been modified and calibrated for the biaxial test, cannot
be considered appropriate for concrete modelling due to its lack of dependency on the

Lode angle in the deviatoric plane.

2.3.3.3 Model of Faria et al. (1998)

Neglecting intermediate details in the thermodynamics-based formulation, we

rewrite here the stress-strain law of the model
6=(1-D,)6" +(1-D,)6~ (2.33)

In this expression, 6~ and 6 are the positive and negative parts of the effective stress

tensor ¢ defined by
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E(ae)za:(a—ap):a:ae (2.34)

with a being the fourth order elastic stiffness tensor.

) Kupfer et 31(1969) 63/ f
o
—— present model

G,/f,

Figure 2.27: Initial 2D elastic domain (after Faria et al., 1998)

Similarly to the coupled damage-plasticity of Lee and Fenves (1998a, 1998b), this
model possesses only one loading surface. However, in contrast with that by Lee and
Fenves (1998a, 1998b), a composite damage loading surface, instead of a yield surface,
is used to govern the constitutive behaviour of the model. The two separated damage

surfaces forming this composite loading surface are of the form
yy=7"-r"=0 (2.35)
vg=7 -r =0 (2.36)
where " and r~ are two damage thresholds controlling the size of the damage

surfaces; 7~ and 7~ are two functions of the effective stress. The initial values 7, and

1, of r™ and r~, respectively, along with 7" and 7~ are all expressed as follows

ry = S _://_35 Jo (2.38)
(2.39)

(2.40)
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In the above expressions, f,  and f, are defined as the uniaxial tensile and
compressive stresses beyond which non-linearity becomes visible under 1D tests (Faria
et al., 1998). The decomposition of the effective stress tensor 6 is used here to
distinguish the tensile and compressive responses of the model. In equation (2.40), &,.,
and 7, are the octahedral normal stress and octahedral shear stress obtained from ¢ .
The model parameter K in (2.38) and (2.40) is introduced to govern the ratio [about
1.16 — 1.2 based on the experimental tests by Kupfer et al. (1969)] between the biaxial

compressive strength and its uniaxial counterpart (figure 2.27).

For the plasticity part of the coupled model, an evolution law was proposed for the
plastic strain rate to capture the permanent deformations observed in experiments (Faria

et al., 1998):

ql

£> _1

a_ ¢ (2.41)

&7 = ﬂEH(DC)<

al
al

where £ is a model parameter used to control the rate of plastic deformation. The
appearance of the Heaviside step function H (Dc) here implies that permanent
deformations occur in compression only. The Macaulay bracket in (2.41) is used to
assure the non-negative value for the product o:€, which is required for the

thermodynamic admissibility of the model (Faria ef al., 1998).

In this model the damage loading functions (2.35) and (2.36) are only used to
define a strength envelope in the general loading cases. For the evolution of damage

variables, the following laws are used

+ +
D, =1 —’%exp[f (1 —”—J] if > (2.42)
r )
D, = —FL_<1—A_)— A exp{B_(l —r—_ﬂ ifr>ry (2.43)
r "o

where 47, A~ and B~ are all model parameters determined experimentally.

Use of two separate damage variables and damage surface in this model help to
capture the unilateral behaviour of concrete, as numerically illustrated by Faria et al.
(1998). The biaxial behaviour of the model is also calibrated against experimental data
(figure 2.27). However, the introduction of plastic dissipation mechanism through the

plastic strain defined in (2.41) is arbitrary. As explained by the Faria et al. (1998), this
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is to gain algorithmic efficiency in large time consuming seismic analysis. The resulting

inability of the model to capture permanent deformation in tension is obvious.

2.3.3.4 Model of Salari ez al. (2004)

In Salari et al. (2004), coupling between damage and plasticity results from the
decrement of plasticity threshold with respect to change of a scalar damage variable,
which is equivalent to the use of effective stress in the yield function. The stress-strain

relationship with a single scalar damage variable is
o=(1-Da:(e-z”) (2.44)

where a denotes the elasticity stiffness tensor. The plastic behaviour of the coupled
damage-plasticity model is controlled by the following pressure-dependent Drucker-

Prager yield criterion
yp,=al +4JJ, ~(1-D)k =0 (2.45)

where o and k are two functions of the equivalent deviatoric plastic strain 51’0 , which

are expressed as follows

’
gl)

o = [de, (2.46)
0

de' = |2dePde? - P —gp _Ls op 247

Ep =\F965 ey s &y =8 308k (2.47)

a=aq,, _(am —Q )exp(— blglp) (248)

k= kyy = (kyy =g Jexpl=b,7, ) (&4

In the above expressions glfjp denotes the deviatoric plastic strain; b; and b, are two
model parameters; «,, «, and k;, k, are the initial and maximum values of the
frictional and cohesive parameters « and k, respectively, in which ¢, and k, can be
determined directly from the uniaxial tensile and compressive strengths of the material

(see Salari et al., 2004).

Use of a non-associated flow rule in the model requires the definition of a plastic

potential ¢, which is of the form:



Chapter 2 — Constitutive Modelling of Concrete — A Brief Review 2-37

The dilatation parameter £ is used here to control the inelastic volume expansion.

For the damage loading function, the following thermodynamic force (following

the proposal by Shao et al., 1998) is used to drive the damage evolution.
I 2 &
Y, :—Ko<gf> +CJ.|Gm|<dé‘f> (2.51)
2 0
c=c, for g, >0
c=c, for g5 <0

in which K is the bulk modulus of the intact material; gy and & are the volumetric
parts of the elastic strain and plastic strain, respectively; o, is the mean nominal stress;
¢, and ¢, are two model parameters termed plastic participation factors in damage
force; and < > denotes the Macaulay bracket. The damage loading function is defined as

y; =Y, -r(D)=0 (2.52)

with r(D) being the energy resistance function (Salari ef al., 2004). The evolutions of
damage variable and plastic strain are obtained from the two consistency conditions of

the yield and damage functions, which are expressed as follows:

b, Y, Wy
) =5 e Prp_g 2.53
Y56 T 0e, P o 239
. _Day Wy
_Day Ddp_ 2.54
Y=oy e (234)

v

The model presented above can capture the tensile and compressive behaviour of
quasi-brittle materials separately, thanks to the use of different parameters in tension
and compression (¢, and c,) for the damage function. However, with only a single
scalar damage indicator, this model cannot be used to model the unilateral behaviour of
the material when load reversal takes place. In addition, the identification and
determination of model parameters have not carefully been addressed in the
development of the model, resulting in somewhat arbitrary choices of model

parameters.
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2.3.3.5 Model of Addessi et al. (2002)

The plastic nonlocal damage model proposed by Addessi ef al. (2002) is like that
of Salari et al. (2004) in the sense that only a single scalar damage parameter is used.
For the constitutive aspects, only the local version of the model is considered here. The

stress-strain law with damage is
cz(l—D)za:(s—sp) (2.55)

This is somewhat different from the previously reviewed models with (1 —D)2 , instead
of (1-D), appearing in the stress-strain law. The definition of damage variable of
Lemaitre (2.2) is therefore not applicable. However, the effective stress tensor in this

case is the same as that defined in previously reviewed models (2.26 and 2.34):

G=— "2 =a:(a—ap) (2.56)

Figure 2.28: Evolution of the damage surface in 2D principal stress space

(Addessi et al., 2002)

For the coupling between damage and plasticity, two loading functions are defined;
these being a damage function and a yield function. The damage limit function of this

model is of the form

yg =¥ =1)=(a¥ +K)D=0 (2.57)

In this function, K and a are two functions expressed in terms of other model

parameters K,, K., a, and a,, which in turn are strain-based functions (see Addessi et
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al., 2002 for details). The variable Y, termed equivalent deformation, in (2.57) is

defined by

Y-t le (2.58)
Yo, Yo

with Y, and Y. being the damage thresholds in tension and compression respectively.

The equivalent tensile and compressive deformation ¥, and Y, are functions of the

equivalent elastic and total strains ef and e;, all of which are defined as:

3 3
Y, = /;@;f Y, - ;<_ )’ (2.59)

3 3
ef =(1-2v)ef +ng]e- e =(1-2v)g +VZ€]- (2.60)
j=1 J=1

in which & and ¢; are the elastic and total principal strains; and v is Poisson’s ratio.

For the plasticity part of the coupled model, an associated flow rule is assumed.

The following yield function is used
vp(@.a)=3T, +(fl = S = fif/ +q=0 (2:61)

where I, denotes the first invariant of the effective stress tensor and J, the second
invariant of the deviatoric part of the effective stress tensor; ¢ is termed the
thermodynamic force associated with the internal variable « by the relation g =—ya ,
with y being the hardening parameter of the model. This leads to the following
evolution laws (Addessi et al., 2002)

8
Nyl (2.62)
06
oy,
a=iZe_j (2.63)
dq

As can be seen, the above model uses the concept of effective stress to couple
damage and plasticity. What is different from other reviewed models here is the flow
rule (2.62), in which the differentiation of the yield function is taken with respect to the
effective stress o, instead of the true stress tensor ¢ (Lemaitre, 1992). The
thermodynamic admissibility of the coupled model was not addressed during the model

formulation. The use of a single scalar damage variable here also restricts the model
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capability to capture the experimentally observed stiffness recovery in unloading from
tension to compression. In addition, the true multi-axial response of the model is also
not accounted for in the damage criterion (see figure 2.28), and the ductility of the
material in compression under confined pressure therefore cannot be faithfully captured

by the model.

2.4 Discussion

The proper choice of constitutive models for an engineering application depends
on the actual need and the loading circumstances. Simple models can give satisfactory
results in relevant cases, e.g. pure damage or softening plasticity models if only
monotonic loading is considered. Nevertheless, this is not always the case and advanced
constitutive models being able to capture faithfully the observed macroscopic behaviour
of the material are often needed. In this case, coupling between damage and plasticity is

advocated.

In constitutive modelling based on continuum mechanics, it is essential that the
model capture faithfully the multi-axial behaviour of the material during the failure
process. For isotropic damage models, at least the initial shape of the failure surface
should be in accordance with the experimental failure envelope. For the macroscopic
constitutive modelling pursued in this study, a yield surface and/or a failure surface with
evolution laws governing the expansion/contraction of those surfaces are needed. These
surfaces should account for the responses of the model in multi-axial loading. This,
however, is not always respected in the modelling, e.g. models proposed by Addessi et

al., 2002; Jirasek and Patzak, 2002; Ung-Quoc, 2003.

Other aspects that should be mentioned are the identification and determination of
model parameters. While there is no universally accepted and recommended test for the
fracture properties of the material other than the standard three-point bending test of
notched beam (Petersson, 1981; RILEM, 1985), for practical purpose, the identification
of model parameters should be based on the recommended tests. Otherwise, new tests
should be devised for the identification of model parameters. In this study,
modifications of the standard three-point bending test (by Bazant, 1996) are adopted for

the determination of parameters of a coupled damage-plasticity model (see chapter 4).
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Along with the identification of model parameters, the evolution of the scalar
damage variable is usually based on the uniaxial behaviour of the material, with the area
under the stress-separation curve in a cohesive crack model (or equivalently the stress-
strain curve in continuum models) representing the fracture energy in pure mode I
(opening) cracking. This stress-separation curve can be in fact obtained from the
standard three-point bending test of a notched beam, or possibly a direct tension test.
Although it is not universal in the general loading case, this way of obtaining damage
evolution laws and identifying model parameters has been widely adopted in the
research community (Petersson, 1981; Saleh and Aliabadi, 1995; Meschke et al., 1998;
Comi and Perego, 2001; Jirasek and Patzak, 2002; Jirasek et al. 2004; Salari et al.,
2004). We will adopt it in this study without going into a debate on the importance of
mode II fracture energy in the modelling. However, one important thing that should be
mentioned here is that a process based solely on one experimentally-given fracture
energy (mode I as adopted here) cannot give a unique response to the material model. In
other words, several different stress-separation curves can produce the same given
fracture energy. Furthermore, the nonlinear softening laws used in some models (Comi,
2001; Comi and Perego, 2001; Jirasek et al. 2004) cannot be guaranteed to give the
model responses in accordance with the material behaviour in all cases with different
material properties. This observation has not always been addressed in the constitutive
modelling of concrete materials. Without proper care of the parameter identification,
numerical simulation based on a constitutive model seems to be an ad hoc fitting of the
responses of the numerical model to those of the real structure. We will return to this
issue in chapters 4 and 5 and propose a simple but useful way, based on experimental

observation, for the parameter identification of the proposed models.

Although several coupling models of damage and plasticity have been proposed
and studied, there is always space for new development. This observation comes from
the deficiency of current coupled damage-plasticity models in macroscopically
modelling the material behaviour in a convincing manner, in which the observed
material behaviour is faithfully reflected, and close connections between the proposal of
the models and the identification of parameters based on experiments should be
established. In addition, the complication and use of ad hoc assumptions in models
reviewed in the preceding sections should be avoided by formulating them within a

rigorously and consistently built framework. However, the development of combined
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damage-plasticity models is not an easy task, as it concerns the macroscopic modelling
of the complex underlying microscopic phenomena, which are difficult or even
impossible to be measured experimentally. Numerical microscopic analysis of the
material behaviour is an alternative way to obtain some understanding on the underlying
micro-structural phenomena. This, however, makes very high computational demands,

and is outside the scope of the study.

In macroscopic modelling, one possible and essential way of determining
parameters for coupled damage-plasticity models is to base these on the separation of
the total energy dissipated due to different dissipation mechanisms, e.g. due to
microcracking processes in concrete. Those underlying microscopic processes can be
observed as crack opening (mode I), sliding (mode II) or tearing (mode III) at
macroscopic level. It should be noted that, the above distinction of macro cracking
modes only has a relative meaning and is in the context of the macroscopic modelling,
as the energy can be dissipated by several different underlying microstructural
mechanisms even in pure mode I, mode II or mode III macro-cracking. For example,
frictional slips at the interface between aggregate and mortar or due to aggregate
interlocking can result in permanent deformations even in pure mode I cracking. As a
consequence, the separation of dissipated energy should be appropriately performed,
with relevant experimental tests on concrete needed to be carried out. For mode I
cracking, Bazant (1996) suggested measuring the unloading slopes at sufficient number
of points on the load-deflection curve in the standard three-point bending test for the
separation of energies dissipated due to microcracking and frictional slips. This,
however, is one simple demonstration of the suggested separation of dissipated energy,
only for pure mode I cracking, which is believed to prevail in concrete even in mixed-
mode cracking (Di Prisco et al., 2000). The need for fracture energy in the shearing

mode of cracking is still a controversial issue and therefore not considered in this study.

The brief review in the preceding sections and the above discussion have shown
the need to combine damage mechanics and plasticity theory in a rigorous way without
introducing any ad hoc assumptions during the model formulation. The combination of
damage mechanics and plasticity theory within a thermodynamic framework will be
focused on in the next Chapters. Thermodynamic principles will serve as a basis for the

approach to constitutive modelling of the material, helping to produce



Chapter 2 — Constitutive Modelling of Concrete — A Brief Review 2-43

thermodynamically reasonable results in the numerical analysis. The coupled damage-
plasticity model in this study is intended to capture important features of the material
behaviour such as the strength reduction, stiffness degradation, and permanent
deformation; all of which occurs in both tension and compression. In addition, the
multi-axial behaviour along with simple mechanisms to capture the multiple hardening
and the unilateral behaviour of the material will be featured in the modelling. The
identification and determination of model parameters will also be addressed and

discussed at length.
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Chapter 3:
Thermodynamic Aspects — A Formulation of Elasto-

plastic-damageable Models

3.1 Introduction

The constitutive models for concrete in this study are developed based on the
thermodynamic framework proposed by Houlsby and Puzrin (2000). Modifications of
the original thermodynamic framework (by Houlsby and Puzrin, 2000) to accommodate
an additional internal variable for the microcracking process will be presented in this
chapter, followed by the formulation of stress- and strain-based damage models. A
comparison between the framework used in this study and that by Lemaitre (1992) is

carried out at the end of this Chapter.

3.2 Thermodynamic aspects

This section presents a simple formulation of elasto-plastic damage models based
on the thermodynamic framework for plasticity proposed by Houlsby and Puzrin
(2000). Similarities, as well as differences, between this framework and the others,
mainly those by Lemaitre and Chaboche (1990) and Lemaitre (1992) will also be
addressed. In addition to a single internal variable of tensorial form ¢;; in the original
framework, which is identified with the plastic strain (Collins and Houlsby, 1997), a
new internal variable, termed «; instead of D to be in accordance with the
terminology used in the adopted framework, is introduced to model the material
deterioration. In this study, we restrict ourselves to the case of isotropic damage, so that
o, 1is simply a scalar internal variable. The incorporation of tensorial form of damage

is in principle possible but for simplicity is left here as a future development of the

proposed approach.
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3.2.1 Dissipation function

The definition of internal variable here is in agreement with that of Lemaitre and
Chaboche (1990), in which state variables comprising observable and internal variables
define the thermodynamic state at a given point and instant of a medium. Temperature
@ and total strain € are considered as observable variables while other state variables,
such as those representing the plasticity and damage processes, are regarded as internal
variables. In fact these internal variables are macro variables characterizing micro-
structural processes (density of dislocations, crystalline microstructure, configuration of
microcracks and cavities, etc) and there are no means of measuring them by direct
observation (Lemaitre and Chaboche, 1990). However, the treatment to these two kinds

of variables is the same.

As mentioned in the original framework (by Houlsby and Puzrin, 2000), the
generalization of the framework either to other forms of internal variable, or to multiple
internal variables, is straightforward. The specific internal energy function in this case is
of the form u = u( i Qij» Ay s s), from which the generalized stress corresponding to the
newly introduced internal kinematic variable «, is also identified as a scalar, termed
Za4» and is defined by (Houlsby and Puzrin, 2000): 7, =—0u/da, . In this case the
derivation of a model entirely follows the procedures in the original work by Houlsby

and Puzrin (2000) and is represented here, along with some minor modifications to

integrate damage-related terms into the model, merely for the sake of illustration.

Following the original work, we restate the local forms of the First and Second

Laws of Thermodynamics, respectively

W+0=u (3.1)
s> 9k (3.2)
0 ) i
in which W = 0;;€;; 1s the mechanical work input; 0= —qj x 1s the heat supply to a

volume element, s is the entropy and g, /6 is denoted as the entropy flux. It should
also be noted here that the above rate equations are of local form and can generally be
written for any given point of the whole continuum. The accommodation of nonlocality

to the framework, for the treatment of softening-related problems, will be presented in
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the chapter 6. We also exclude internal heat production, although some authors include

it, as it is in fact contrary to the First law. Expansion of expression (3.2) then gives us

0
9$+qhk—qi{k20 (3.3)

The dissipation here comprises two parts corresponding to the mechanical
dissipation 65+ g; ; and thermal dissipation —gq;6 / 6. As mentioned in the original
framework, a more stringent law than the Second Law of Thermodynamics, can be
assumed here by assuming that 05 + g; ; >0, using the fact that the thermal dissipation
is always non-negative and small compared to the mechanical one for small thermal
gradients. However, for the sake of illustration we make use of this assumption in the
finally derived expression. Therefore the dissipation function, which is actually the rate

of dissipation function, can be rewritten

91k

d=6’$‘+qk’k— >0 (34)

from which and the First Law of Thermodynamics, it follows that

lek

In fact, this is the fundamental inequality combining the First and Second Law of
Thermodynamics, which directly leads to the Clausius-Duhem inequality through the
use of the Helmholtz specific free energy f, defined by

f=u—s0 (3.6)

Differentiation of f with respect to time results in
f=i—-s0-05 (3.7)

from which and (3.5) we obtain the inequality

. ) 0

>0 (3.8)

This expression embodies both the First and Second Laws of Thermodynamics and
i1s called the Clausius-Duhem inequality. Processes satisfying the Clausius-Duhem
inequality are said to be thermodynamically admissible. What is obtained here is similar
to that in Lemaitre and Chaboche (1990) or Lemaitre (1992), with the only difference

lying in the absence of the mass density p, as all the expressions here are written for a
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unit volume. The Clausius-Duhem inequality here implies the thermodynamic
admissibility of any non-dissipative as well as dissipative processes. Making use of the
assumption that the thermal dissipation — ¢, / € is positive and small compared to
the mechanical one for slow processes, and hence it can be neglected, the Clausius-

Duhem inequality now reduces to a more stringent form (Houlsby and Puzrin, 2000)

d=cyé;—f-s620 (3.9)

or in a similar form using the internal energy u

3.2.2 Fundamental relations

Fundamental relations or state laws, which define links between the state variables
and their associated variables, are derived in this section. The relations can be obtained
either by making use of the Clausius-Duhem inequality in specific physical cases
(Lemaitre and Chaboche, 1990) or, mathematically, just by comparing the expressions
of u derived in two different ways (Houlsby and Puzrin, 2000). The Clausius-Duhem
inequality (3.9) in this case can be interpreted as a mathematical expression for any
physical processes. It can now be used with the time differentiation of the Helmholtz

free energy f, which is

P A Sy (3.11)
Ogjj 06 o oay,
to obtain
d= af—i g,.‘—(ﬁij '—ia,.,_iadzo (3.12)
Toog; ) 00 oa; " Oa,

Physical interpretations of dissipation processes here lead to the independent
cancellation of some terms in this inequality. For example, for an isothermal elastic
deformation with no change in the internal variables, the dissipation is zero and hence

the equality in the Clausius-Duhem inequality holds. It directly results in

oy =L (3.13)
v ogj;

In a similar way to this, for a reversible thermal process, the equality also holds,

resulting in
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o
=—— 3.14
S=="5 (3.14)
Finally, we have
d=- 2 ai 2 a,; 20 (3.15)

V-
o Oay

The same results can be found using some mathematical manipulations and
comparisons (Houlsby and Puzrin, 2000), in which the time differentiation of the
internal energy u :u(gij,aij,ad,s) can be compared with (3.10), giving us similar
state laws as obtained above. It can also be seen here that the associated variables with
strain &;; and temperature € are stress o; and entropy s respectively. Therefore, in an

analogous manner, the thermodynamic forces associated with the internal variables «;;

and o, can be defined to be

_ 0

Zi e (3.16)
é’aij

_ 0

7, =2 (3.17)
aad

They are called generalized stresses (Houlsby and Puzrin, 2000) and, in connection with
the dissipative generalized stress defined later, are the key features for obtaining the
yield and damage loading functions in this framework. Although the above laws are
formulated based on the employment of the Helmholtz free energy function f, similar
results for the relationships between internal and associated variables can also be
obtained for any energy function through the use of the Legendre transformations. A
Legendre transformation in this case involves a change in the choice of internal
variables and a corresponding change in the choice of the energy function. Those
energy functions can be any of the internal energy u, enthalpy %, Helmholtz free
energy [ or Gibbs free energy g, the use of which is interchangeable in the framework
and all fundamental relations derived from which can be found in Collins and Houlsby

(1997), and Houlsby and Puzrin (2000).

3.2.3 Loading functions and evolution laws

The dissipation now contains the mechanical dissipation (intrinsic dissipation)

only and therefore is different from that in Lemaitre and Chaboche (1990).
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d =6+ Tty 20 (3.18)

The positiveness of the thermal dissipation —¢q; 6, / 0, is automatically satisfied based
on the fact that the heat flow is always in the direction of the negative thermal gradient.
Moreover, this dissipation is also small compared to the mechanical ones for small
thermal gradient. Neglecting the thermal dissipation hence results in a slightly more
stringent condition than the Second Law of Thermodynamics but can be widely
accepted (Houlsby and Puzrin, 2000). In this case, the separation of the thermal and
mechanical dissipations and enforcement of the positiveness of the mechanical
dissipation should only be considered as a restriction on the field of continua treated in

this study.

Houlsby and Puzrin (2000) again made use of the Legendre transformation here,
making this framework different from those having been developed. The evolution
laws, following several thermomechanical frameworks (Lemaitre and Chaboche, 1990;
Maugin, 1992; Lemaitre, 1992), are derived by differentiating the dissipation potential,
which is postulated to exist. The whole problem of specifying a constitutive law is now
reduced to specifying two potentials: the free energy and the dissipation potential.
However, things are different here. Instead of postulating the existence of a pseudo
dissipation potential, the dissipation in the original framework is assumed to be a
function of the thermodynamics state of the material and the rate of change of state. It

can be expressed variously as:

d =d"(s5.05,24,5,0,,64)2 0 (3.19)
d=d"(z;,05,04,5,6;.04)20 (3.19b)
d=d"(s;,0;,04,5,6;,64)2 0 (3.19¢)
d =d%(s;,0,04,5,Gy1,0 )2 0 (3.19d)

depending on the energy function used. Using the fact that the dissipation of a rate-

independent material must be a homogeneous first order function in the rate ¢«;;, and

ij 5
¢, (Houlsby and Puzrin, 2000), we have (Euler’s theorem):

od . od . . .
d= Qj+ 0y =X + Xqaq (3.20)
d
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with the definition of the dissipative generalized stresses: :8a’/8dij and
Xq =0d/0c, . The consequences of keeping Xy and y; as well as 7, and g,

separate directly follow this definition. Comparing (3.15) and (3.20), one obtains
(Z = 23 )y =0 (3.21)

(Za = 24 )ota =0 (3.22)

As y; may be a function of ¢, it can be concluded here that ¥ -y, is always

i
orthogonal to ;. However, as argued by Ziegler (1983) and presented by Houlsby and
Puzrin (2000) and Walsh and Tordesillas (2004), a rather wide range of classes of
materials can be described by enforcement of the stronger condition ;; = y;; . This
condition is equivalent to Ziegler’s orthogonality condition and was adopted in the
framework by Houlsby and Puzrin (2000). For the equality (3.22), with the scalar ¢, it

is readily seen that ¥, = y, for a,; #0.

The Legendre transformation is used for interchanging internal variables and their
corresponding dissipative generalized stresses. In the original framework, since the
dissipation function is homogeneous first order, the Legendre transformation is
degenerate (Collins and Houlsby, 1997) and the yield function, as the transform of the
dissipation function, is the result of this. However things are different here as there are
two separate internal variables representing the two dissipation processes due to damage
and plasticity respectively. In a similar way, we have

Zl]'dlj'+ded_dp_dd:0 (323)

in which the dissipation d has been assumed to be decomposed into two parts,
corresponding to the energies dissipated due to plasticity and damage mechanisms. No
generality is lost here, as damage and plastic flow can be considered as independent
processes and can occur alone (Lemaitre and Chaboche, 1990). This decomposition of
energy dissipation has been adopted by several researchers (Simo and Ju, 1987; Ju,

1989; Lemaitre and Chaboche, 1990; Lemaitre, 1992; Walsh and Tordesillas, 2004).

For rate-independent materials, the Legendre transformation of d, and d,; gives
us the yield and damage functions (see Houlsby and Puzrin, 2000)

Ay, = by —d, =0 (3.25)



Chapter 3 — Thermodynamic Aspects —A Formulation of Elasto-plastic-damageable Models 3-8

or, using the fact that 4, and d,; are homogeneous first order, we have

od |.
ij
od .
AiVa = (Zd —gJad =0 (3.27)
d

where 4, and 4, are non-negative scalar multipliers playing the same role as that of
the plasticity multiplier in conventional plasticity. Therefore, we obtain two “yield”

functions, one of which is that concerned with the internal variable «;; and, as in the

i
original framework, is denoted here as the yield function. The new function here is of
similar form and related to the damage process. Unlike the yield function, which can
only be obtained by eliminating ¢, from equations y,; —dd / oa;; =0 (Houlsby and
Puzrin, 2000), the damage function in this case can directly be obtained from (3.27).

Using the fact that ¢, is non-zero during the damage process, we have the expression

of the damage function

od
Ya =Xd =5 = 0 (3.28)
d
The flow rules can be adopted here
0
a; =24, ;—p (3.29)
Zij
and
ay =y ?7" (3.30)
d

The above is merely a brief illustration of the adopted thermodynamic approach of
the study. More details can be found in relevant papers (Collins and Houlsby, 1997;
Houlsby and Puzrin, 2000; Houlsby and Puzrin, 2002). In the approach, the yield and
damage functions occur naturally from the degenerate Legendre transformation of the
dissipation function. This distinguishes the adopted thermodynamic approach from
existing ones. The key difference, in comparison with some other thermodynamics
approaches (Simo and Ju, 1987; Lemaitre and Chaboche, 1990; Lemaitre, 1992;
Maugin, 1992), is the use of the fundamental constitutive assumptions ( 7; = x; and/or

X, =X,) equivalent to Ziegler’s orthogonality conditions. Those assumptions, when
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combined with the Legendre transformation, help to avoid specifying an expression for
the dissipation potential and then create ways for the derivation of the yield and damage
loading functions. In addition, unlike conventional plasticity, where the flow rule is
obtained from the differentiation of the plastic potential (or the yield surface for
associated flow rule) with respect to the stresses, in expression (3.29) the plastic strain
rates are obtained by differentiating the yield surface with respect to the dissipative
generalized stresses y;;. This results in the possibility of deriving non-associated
plasticity within this framework (Collins and Houlsby, 1997). An illustration of this will

be shown in the next section.

3.3 Formulation of elasto-plastic-damageable models

This section presents a simple formulation for continuum elasto-plastic-
damageable models based on the above thermodynamic approach (by Houlsby and
Puzrin, 2000). The parabolic Drucker-Prager yield criterion (Hansen et al., 2001) is
adopted and its derivation incorporated in the formulation. This yield criterion in this
case is coupled with a damage criterion, which is based on the damage energy release
rate. An isotropic hardening rule with a non-associated flow rule is assumed, thus
making the stress and generalized stress in the original framework coincide. The
derivation of a constitutive model here can be based on either strain- or stress-based
formulation, which employs the Helmholtz or Gibbs free energy potentials respectively.

They are all presented in the following sub-sections.

3.3.1 Strain-based formulation

For the strain-based formulation, the following Helmholtz energy is used

S 2%{(8,7 @y Xgij _aij)"'ﬁ(gkk —ay Nen —ay )} (3.31)

in which ¢;; and a, are internal variables characterizing the plasticity and damage
processes; a;;y, is the elasticity stiffness tensor expressed in terms of elasticity modulus

E and Poisson’s ratio v
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E[ZV

0;;0k + 030y +0;0;
1+V) 1-2v ij “kl ik jl il ]k:|

Ajjkl = 2(

Use of loading functions (yield and damage functions) or dissipation function is
interchangeable in the framework. Here, a dissipation function, which is in fact worked
out from an energy-based damage function and a parabolic Drucker-Prager yield
function (see section 3.3.1.2 for details), is used and takes the form

. k a
= ey +| A =1 [ S P

3pralal;
pre 7+ AC (3.33)

where Fi(a, ) is a positive and increasing function associated with the damage process;
this function in fact decides the rate of damage dissipation; C is a constraint defining
the accumulated plastic strain; A is the Lagrangean multiplier associated with the
constraint C (see Houlsby and Puzrin, 2000 for the introduction of a constraint into the
modelling); 0 <7 <1 is a factor related to the deviation of the plastic strain rate vector
a;; from the normal vector to the yield surface in true stress space; f and k are

parameters of the parabolic Drucker-Prager yield criterion

_ fcy(ad’K)_ft)/(ad’K)

Bla, k)= 3 (3.34)
[{CIRIE fo (ad’Klf’y (@y.%) (3.35)

In the above expression, f., and f, denote the yield stresses in uniaxial compression
and uniaxial tension respectively. As the material undergoes two dissipation processes
due to damage and plasticity, f., and f,, depend on both a hardening parameter x and
damage indicator «,. The hardening parameter x in turn can be determined either
from the accumulated plastic strain &, (strain hardening) or the plastic work W, (work

hardening).

In the expression of the dissipation function (3.33), it should be noted that ¢,
must be non-negative to assure the non-negativeness of the damage dissipation
d; = F(ay)a, . This can be enforced using the Macaulay bracket < > for the rate of
damage «,. Alternatively, a more mathematically rigorous form of the dissipation
function d,; can be used here, employing the indicator function &, (c;) which
vanishes if «&; 20 and goes to infinity for any physically impossible value of ¢,

(Nguyen, 2002). The damage function d; in that case is of the form:
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d;=F(a,)a,; +3y,(c¢,). For the sake of simplicity in the formulation, those

mathematical treatments are not used here.

The strain hardening hypothesis is adopted in this study, although the formulation
can also be adapted to employing work hardening plasticity without any difficulty. For

strain hardening plasticity we have x =& ,, with the constraint C being defined

where ¢=,/2/3 is a constant aiming at making the definition of & p agree with the
uniaxial plastic strain in uniaxial test. This agreement is in fact valid only for pressure-
independent yield criteria (e.g. Von Mises and Tresca criteria), which is unfortunately
not the case in this study. However, for simplicity, c= \/2/_3 , as in pressure-
independent plasticity, is adopted here. The resulting unwanted effects of choosing this

value in the model responses will be mentioned in the next chapter.

The derivation of the constitutive models here follows standard procedures
established beforehand in the original framework (Houlsby and Puzrin, 2000), and
partly illustrated in the preceding sections. The stress and generalized stresses are

derived from the energy function:

of
o =——=(-ay)ay, ey —ay) (3.37)
65,-1-
"
Xij ooy (3.38)
1
Xd Z—@Zgaw(‘?ij —aij)(gkz ~ay) (3.39)
7y __9 (3.40)
65p

In (3.39), the thermodynamic force y,; conjugate to the damage indicator «,; can be
identified as the strain energy release rate with respect to «; under constant stress
(Lemaitre, 1992). The dissipative generalized stresses in this case can be obtained from
the dissipation function in a way similar to the above derivation of the stress and

generalized stresses:



Chapter 3 — Thermodynamic Aspects —A Formulation of Elasto-plastic-damageable Models 3-12

5. 3Brdl Va8 cAd;

Zl.._ : . . . .
7 oa; | B Qg 2 Ay A ayay
Zd:aa—.d:Fl(ad)
Xd (3.42)
od
=— =A
TS

(3.43)

The application of the fundamental hypothesis , =y, (Houlsby and Puzrin, 2000)
directly leads to A =0. The yield criterion in this case is derived by eliminating ¢
from equation (3.41). It is a result of the degenerate Legendre transformation of the
dissipation function, in which the true stress o; appearing in the square bracket of
(3.41) is considered as a passive variable in the transformation (see Collins and

Houlsby, 1997). From the expression of y;; , the following can be obtained

1— 9praa;;
e =| U= | OB (3.44)
ﬂr r 2ammann
3pra;;
) — (3.45)
X ke
From (3.45), we obtain
L, XpXi%uay
EpnEmn = 9ﬂ2 }’2 (346)
Substitution of (3.46) into (3.44) results in
1- "ol
=] Frlow | 2y (3.47)
pr r 20r

Finally, after rearranging the above expression, we obtain the yield surface in

dissipative generalized stress space

! !
Xij Xij

J’p:ﬁ[rlkka(l—r)‘fkk]Jr -k=0 (3.48)

This yield function can be rewritten in terms of the true stress o ;;, using the condition

ij )
Xij = ;?ij =0 (Houlsby and Puzrin, 2000):

* Oij0j
Yp=Bou + 5 -k=0 (3.49)
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The above expression resembles the linear Drucker-Prager yield criterion. However,
compared to the linear Drucker-Prager criterion, there is no square root in the second

invariant of the deviatoric stress tensor in (3.49).

As mentioned in the preceding section and can be seen in (3.48), the normality of
the flow rule here applies to the yield function y, in generalized stress space y;
(Collins and Houlsby, 1997), not in true stress space o;. This turns the flow rule into a
non-associated flow rule in true stress space, with the parameter » governing the

deviation of the plastic strain rate from the normal vector to the yield surface y; .

d
ayj =4y %:ﬂp(ﬁré‘ij +z£j)=/1p (ﬂrc?,-j +a;j) (3.50)

y

The damage criterion is derived in a way similar to the derivation of the yield
function, and also as a result of the singular Legendre transformation of the dissipation

function.

va=xa-Fila;)=0 (3.51)
Since «,; is only a scalar variable, there is actually no “flow rule” for the damage
process, and the damage multiplier, which resembles that in plasticity, coincides with
the scalar damage increment ¢,

a, =zd2y7d=zd (3.52)
d

The assumption on the equality of ¥, and y, also holds, turning the above damage
loading function to
1
Ya :Eaijkl(gij —%'Xf?kz —ay)-Fila,)=0 (3.53)
The obtained system of constitutive relations governing the behaviour of the proposed

model can be rewritten as follows

_ T

% =3 =(1-a, )aijkl(gkl —ay) (3.54)
Eij

’ ’
Xij Xij

v, =Blrau +U-r)ow ]+ —k=0 (3.55)

! !

yp:IBO-kk+ ) _k:() (356)
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Vd :aijkl(gij —ay ngz —ay)-Filag)=0 (3.57)

with two evolution rules:

. y , ,
a; = pa—p=/1p(ﬁr5ij+7(y):/1p( r5,-j+0,~j) (3.58)
Aij
Gy = A, Va4 Y (3.59)
0xa

3.3.1.1 Evolution rules of internal variables, and tangent stiffness tensor

The evolution rules of internal variables are obtained in this section. Here the
difference from some other continuum damage mechanics approaches (Lee and Fenves,
1998; Peerlings, 1999; Jirasek and Patzak, 2002) lies in the fact that the evolutions of
the damage indicator «; and of plastic strain ¢;; are implicitly defined through the
relations (3.54-3.59). The procedures used here resemble those for the derivation of

plastic strain increment ¢; in conventional plasticity. Following those procedures, the

system (3.54-3.59) is rewritten in general incremental form as follows

O =(1-a, )aijkl(ékl _dkl)_aijkl (e — g Jorg (3.60)
. o, o) v,
V=G Ly L =0 (3.61)
P ooy V day os,
) ) . oF;, .
Va :aijkl(gij _aijxgkl _akl)_ﬁad =0 (3.62)
d

The damage increment ¢, can be directly obtained from equation (3.62):

g &) — e Néw — an)
Q= o (3.63)

aad

It is noted that for pure damage processes, the plastic strain increments vanish and the
damage evolution can be directly obtained from the above expression. Substituting

(3.63), along with the stress increment (3.60), into (3.61) one gets
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N
(1 —ay )aijkl(gkl - akl)+a_pgp
Ep

s 0y
I 80‘17

(3.64)

oy, oy, a (& — )(g -a )
+ ﬁ‘gﬁ;azﬂd(ﬂz _akl)} N a;lln H__Pr-0
8ad

Using the flow rule (3.58) and the constraint (3.36), we obtain the increment of the

. — loy, oy,
é‘p =c‘¢aijaij :C/’lp %% (365)

The second term in (3.64) becomes

oy, o, 0
ﬁépzczp Yo |Xp O (3.66)
o) 08y \ %y 0%y

Again, using (3.58), and substituting it into (3.64), we obtain an equation containing

accumulated plastic strain

only 4, as a variable to be determined. Solution of that equation gives

P My ey (3.67)

p *
M Wy _cayp Vp Wp
! oe, \Oy:: Oy
X mn P ;(z] ZU

o, o, oy, i (g-- —a--)
M, =(0-a,)—La, p _ ijki \Eij — Xjj '
w=(-ay)- ya”kl+[8ad o — ozpq)]—aF1 (3.68)

8ad

in which

Using the computed plasticity multiplier, the evolutions of damage indicator «; and

plastic strain ¢;; are derived as follows

W .
BV
_ ajjkl (gl] —O(U) i kal e (3 69)
d OF, H 5 o' [oy. o '
oF v, O, [, o,

80{d
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oy .
P Myéy
G = i
ij *
v W) _ Wy |, O,
" 0 06, \OX py OX py

The tangent stiffness relation follows straightforwardly. We substitute (3.63) into the

expression of the stress increment to obtain

Oj = (1-ay )aijkl ~ijpq (gpq ~%pq)

After substituting (3.70) into the above expression and rearranging the obtained

expression, we have

\amnkl (gmn ~ %n )

(En — )

OF,

aad

(3.72)

0
ﬁ Mrs
OX 1

M

. t .
O-ij = Cijrsgrs
where Cjj,, is the tangent stiffness tensor defined by
(1 Qg )aijkl -
i Ayt (Epn —
Cijrs = aiqu (gpq _apq) mnkl( mn mn) 5kr5ls _
oF,
aad

8yp

8yp

; —
! altu

(3.70)

3.71)

. /(?yp b,
08, \ 0w O ]

3.3.1.2 On the thermodynamic admissibility of the derived model

A2J,

™~

Figure 3.1: Parabolic Drucker-Prager yield surface in the meridian plane

At this point, it is necessary and worthwhile to consider the thermodynamic
admissibility of the proposed model. As mentioned in the preceding section, for a

thermodynamically admissible process, the Clausius-Duhem inequality, represented

(3.73)
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here by the positiveness of the dissipation function d , must be satisfied. To simplify the
condition, the thermal term can be neglected and it can be stated that the dissipations
due to damage and plasticity processes (d,; and d,, respectively) are all non-negative,

which is in fact more stringent than the Second Law of Thermodynamics.

The first part of the dissipation (3.33) is that of damage process, and can be
assured to be non-negative by considering the fact that damage is unrecoverable:
¢, 20, and choosing the appropriate non-negative function F;. The dissipation due to
plastic deformation consists of the second and third terms of (3.33). As can be readily
seen from (3.50) and depicted in figure (3.1), ¢, is always positive for any plastic
deformation process, provided that values of » are always in the range 0 <r <1, which
decides the deviation of plastic strain increment ¢;; from the vector normal to the yield
surface in true stress space. Therefore, the sign of plastic dissipation only partly depends

upon the expression in the square bracket of the second term of (3.33).

From the yield functiony, (see 3.48), which never admits a positive value for any

plastically admissible process, one can obtain:

k

E_(l_r)o-kk Zrﬂtkk+M

25 (3.74)

This, in combination with the condition y, =7, =0, shows that k/j —(1=7)oy is
always positive, thus fulfilling the thermodynamic requirement on the positiveness of

the dissipation function.

The inverse process, from the yield and damage functions (3.48 and 3.51) to the
dissipation function (3.33), is also in principle derivable, following the procedures in
Houlsby and Puzrin (2000). For the damage loading function y,; =y, — F; (ad)=0
(3.51), it is easy to obtain y, in term of &, and then substitute it into the dissipation
expression d,; = y 0, to obtain the damage dissipation function d,; = F) (ad )dd. A
similar process can be carried out for the transformation from the yield function y, =0
to the dissipation function d, of the plastic flow. For that, we rewrite the yield function
(3.48) as

Xi Xij
2

yp:/g[r;(kk+(l_r)o-kk]+ —k=0 (3.75)

The flow rule is
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Yy

Gy = Ay —L-= 2 (Bro; + x5) (3.76)

y p OZU

Separating the deviatoric and volumetric components of the plastic strain rate tensor
alj , we have

dkk :3ﬂl"/1p (377)

and U ﬂ,p;(lj (3.78)

It follows from (3.75), (3.77) and (3.78) that

3pra);
xi= ﬂ z (3.79)
Xk
98%r2alal
and Tk = L B-r)oy — b aydy (3.80)
Br 2ap.ay
The expression of the dissipation d, is
. | .
dp =;(Uay =lealj +§;{kkakk (381)
Substitution of (3.79) and (3.80) into (3.81) gives us the dissipation function d,
3pra.al; ;
:—ﬂ A A i—(l—r)a” 2 (3.82)
2akk ﬂ 3r

Additional conditions, which are that defined in (3.74) and ¢, >0, are needed
here to make (3.82) meaningful. This is due to the fact that the mathematical
preservation of the conditions (3.74) and ¢;;, >0 cannot be strictly assured during the
transformation. In other words, it cannot be assured that those conditions are
appropriately transformed following the procedures in the original framework. This
motivates the use of more mathematically rigorous treatments based on convex analysis
for the existing framework (Houlsby, 2004). Work on a more rigid formulation is still

required, but unfortunately cannot be covered by the scope of this study.

3.3.2 Stress-based formulation

Stress-based damage-plasticity models can be derived in much the same way as
that presented in the preceding section. A stress-based model here is based on the Gibbs

free energy function.



Chapter 3 — Thermodynamic Aspects —A Formulation of Elasto-plastic-damageable Models 3-19

Dy, 0,0
_ M GT R oy (3.83)
2(1-ay)
where
1+v 2v
ikl = E(—m%ﬁk} +049 1 +5il§jk]

Compared to (3.33), the dissipation and its constraint in this case remain unchanged and

are rewritten as follows

; 3prajo;;
d=F(ay,)a, + ﬁ—(l—r)akk Vi i Y L AC (3.84)
,B 3r 2akk

Following the same procedures (Houlsby and Puzrin, 2000) demonstrated in the
preceding section on strain-based formulation, we end up here with the stress-elastic
strain relationship and two loading functions, in which the yield function is exactly the

same as that obtained in the strain-based formulation.

Doy
Eij :—l—ad ta (3.85)
Z;Z’
v, =Blrru +U-r)oy ]+ fz” —k=0 (3.86)
. ool

y,=Boy + ”2” —k=0 (3.87)
Ya=— - Filag)=0 (3.88)

20-ay)

The normality rules for damage and yielding processes also hold in this case, in
which that for a yielding process only holds in generalized stress space. In a similar way
to that in the previous section, the incremental stress-strain relationship can be derived
from the above system (3.85, 3.87, and 3.88), all of which are written in incremental

forms as follows

Do Dijwou

. ' G+ (3.89)
Tol-ag (1-a,) !
b8 P 6.+ Dy Gy + Dp & =0 (3.90)
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D00 D 0.0 oF
Ja =T T G~y =0 (3.91)
(1-ay) (1-ay) oay
The plasticity multiplier 4,, as a function of the stress increment &, damage
increment ¢, and some other quantities, can be obtained from (3.90)
ay, ay,
“p S + 2 d,
GO'U 8ad
Ay == S (3.92)
. Wy |0, Oy
0¢, \Oxu Oxu
The plastic strain increment then follows
ay* c?y*
oy b0 O " e, 4 oy
dy =A, L= 4 ! (3.93)
Xy D | Dy Dy 0xy
| 08p \OXpg OXpg |

Substitution of the above expression into (3.89) results in the expression relating the

stress, strain and damage increments

s G +—8y P g
Dy Dyuon o, M e, oy,
i + 5 Cd ~ . 5 (3.94)
Oy (l—ad) c@yp >, Xij
| 08, \ O pq OXpq |

The stress increment can be obtained from the above expression

5} ﬁy;
D o 1
mnpq I;q 3 fﬂ( mn 004 : [D}ifnle (3.95)
(l_ad) cayp ayp ayp
0p \ O pq OX pq |

Okl =Y¢mn —

N

where DU

', is the compliance tensor which is secant with respect to damage and

tangent with respect to plasticity.
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W, Wy
D, Oy, 00
Dy = LN (3.96)
—qy . Wy |y
0¢p \ 0% pg % pg
Substitute (3.95) into (3.91), we obtain an equation for the damage increment ¢,
| Wy 8y;
) dp —
Dijkl OijEmn [leml;d ] Dijkl Ojj Dmnpq O pq 8;(,,,,, aad [Dst ]—1 g
- - * mnkl d
(1-aq) (I-ag)| (1-a,) o |y Dy (3.97)
I 06, \OZrs OXrs |
ST Ly -y, =0
(l —Qy ) aad
The damage evolution is directly obtained from the above equation
: Nmn émn
o, =—" 3.98
d P (3.98)
where N, and P are defined as follows
1
Djjyo;; [Drffnkl T
o = 5 (3.99)
(1-ay)
Wy p
P= Dijklaijz Dmnp "U‘;q - fz’”” Oc [Difnkzr - Dljklaija_f ! + o, (3.100)
(1-a;)| (1-a,) C@yp o, o, (1-a;) Oag
] 08, \ Ot rs Otys |
The damage evolution can then be substituted into (3.94) to obtain the expression
Wy W,
D o Oy, o :
£y = Dikycy +| —0aZre Xij 9% NoinEmn (3.101)

(1-a,) cay; v, o, P
0y \ O pq O pg |

from which the stress increment ¢; can be obtained
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W, 8y;
) 1 D, .o Oy, 0oy N )
Gy = [DUS.ZJ Sy —| L - — ]'j" Enn (3.102)
(l_ad) cayp 6yp 6yp
L 88;7 azrs a)(rs |
The tangent stiffness tensor follows straightforwardly
W, Wy
1 Do Oy Oc
Crtnnkl = [Dz;;d]> §im§jn - S ZU d Nmn (3103)

(-aqf o, [, &, | P
os p aZ rs 6}( rs
3.4 A comparison of two thermodynamic approaches

In this section a comparison between the thermodynamic framework by Houlsby
and Puzrin (2000) and that proposed by Lemaitre (Lemaitre, 1992; Lemaitre and
Chaboche, 1990) is carried out. The differences between the thermodynamic framework
by Houlsby and Puzrin (2000) and the reference one by Lemaitre will be pointed out
and discussed. To be convenient, the same terminology (Houlsby and Puzrin, 2000), as
adopted and used in sections (3.2) and (3.3), is used here for both approaches. In
addition, for the sake of simplicity, only a simple plasticity model based on these two
frameworks is considered. In particular, the dissipation process here is assumed to be
purely due to the plastic deformation process, with the Von Mises yield criterion and
isotropic linear hardening. The flow rule is assumed to be associated, making the
dissipation potential in the reference approach (Lemaitre, 1992) coincide with the yield

function.

For the derivation of a Von Mises plasticity model based the adopted
thermodynamic framework (by Houlsby and Puzrin, 2000), we omit the intermediate
details and only present the necessary expressions. The two energy functions needed for
the derivation of the model are

1

1 = aule; —ay ey ~ay) (3.104)

2.,
d=(o,+He, )Jgak,ak, +ALCy+ALCy (3.105)
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where o, is defined as the initial yield threshold; the first constraint,
Ci=¢, —\/W =0, for the equivalent plastic strain has been defined in section
(3.3); the second constraint, C, = ¢, =0, is the plastic incompressibility condition for
the derived Von Mises yield criterion; and A; and A, are simply two Lagrangian
multipliers for the constraints C; and C, (see Houlsby and Puzrin, 2000). This simple
model was in fact used as a typical example for the derivation of plasticity model from

the thermodynamic framework presented in this study (Puzrin and Houlsby, 2001). The

obtained relations governing the stress-strain behaviour of the model are

o =g (en —ay) (3.106)
3 ! ’
yp =5 2 Loy +He, )=0 (3.107)

. B
V= X/Eaija,.j (o, +Hs,)=0 (3.108)

For Lemaitre’s approach (Lemaitre and Chaboche, 1990; Lemaitre, 1992), without

thermal effects, the dissipation expression (the Clausius-Duhem inequality) reads:

which is exactly same in the two approaches compared here. The Helmholtz free energy

function, following Lemaitre, is of the form
1 1. 5
f:za,.jk,(g,.j —a; New ~ay )+ Hr (3.110)

In the expression above, the first energy term is related to the elastic strain energy of the
material while the second term is the energy associated with the plastic dissipation
process. This decomposition of energy is in fact very common and has been adopted by
several researchers in their thermodynamic approaches (Simo and Ju, 1987; Meschke et
al., 1998; Borino et al, 1999; Salari et al, 2004; Kratzig and Polling, 2004).
Substituting the rate form of f* into (3.109), after rearranging the obtained expression,

one gets:

.o,
d =06, —a—CrZO (3.111)

The stress and thermodynamic forces associated with the internal variables are derived

as follows
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o

Uy':—ezazjkz(gkl—akz) (3.112)
8gl-j
;7;—%:—1# (3.113)

A loading function y,, along with a potential of dissipation ¢, is needed to define the
plastic flow process. For the Von Mises yield criterion with associated flow rule, the

following function was adopted (Lemaitre, 1992):

3, , _

where ¥, =—Hr is the hardening part of the evolving yield threshold o, —%,. The
above function is similar to that in (3.108), with 7 in place of ¢, . It can readily be seen
here that ¢ in fact acts as a plastic potential governing the plastic flow after yielding.
Lemaitre and Chaboche (1990) also showed that ¢ must be convex, and contain the
origin for any thermodynamically admissible process. The evolutions of internal

variables (a;; and r) are as follows:

3,

: op P

’ do; \NOkiOCh
r=222 _ 4 (3.116)

X

Using (3.115) and the definition of the equivalent plastic strain: &, = \/W , We
obtain A =¢,, resulting in the coincidence of 7 and &, . The incremental stress-strain
relationship can readily be derived following procedures illustrated in the preceding
sections. However, that is not the purpose as the attention here is the difference of the
two compared thermodynamic approaches rather than the computational aspects of the

derived constitutive models.

The difference in the two energy functions (3.104) and (3.110) in the compared
approaches results in two different dissipation functions. In Lemaitre’s approach, the
dissipation function can be obtained from the adopted yield function y, and the
dissipation potential ¢. This process is in fact similar to that used by Houlsby and
Puzrin (2000) based on the Legendre transformation of the yield and dissipation

functions (Collins and Houlsby, 1998). From (3.115), it can be seen that ¢;; = o'clfj and
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ay, =0, showing the incompressibility of the plastic deformation. The plasticity
multiplier 4 is obtained in terms of ¢;; either from (3.116), or by “squaring” both sides

of (3.115), yielding:

A= éajaj (3.117)

Therefore, the dissipation (3.111) turns out to be:

O' O' a 0{
d =0, - a_ = T UNTHTH “"”‘Z—H,/ alycry (3.118)

a

After some mathematical manipulations, using the yield function (3.114), we obtain the

d:O'y1 %a,'da,'d (3119)

The table overleaf summarizes the above comparisons

dissipation function d :

At the first glance, the two approaches are slightly different from each other in the
choice of the Helmholtz free energy function f. In Lemaitre’s approach, part of the
energy which should have dissipated during the plastic flow process goes to the second
term of the energy function (the term Hr? /2 ). This results in the difference in the
derived dissipation function (3.119), compared to that in the approach by Houlsby and
Puzrin (2000). However, the main distinction of the adopted approach with respect to
that of Lemaitre is the use of standard procedures within a well-defined thermodynamic
framework (Houlsby and Puzrin, 2000) to formulate a constitutive model. The Legendre
transformation to interchange the yield function and the dissipation function is used in
these standard procedures. In addition, for the use of the Legendre transformation, the
generalized stress y; and the dissipative generalized stress y; are kept as separate
variables. Enforcement of the condition 7; = y;; (and/or %, =y, ) is made later in the
formulation, and is part of the standard procedures for the derivation of a constitutive

model.
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Lemaitre’s approach

Present approach

Energy function and dissipation expression/function

| 1,
S :Eaijkl(gij — ngz —ak1)+§HF
) of .

1

f= 5 ikl (517 —Q; ngl —ay)

d=(o,+He, ),/%a,;,oz,;, +ALCy+ALCy

C1=8p—,]20£,j0{y/3=0, C2=dkk=0

Thermodynamic forces

of o
ij :6_e:aijkl(8k1 _akl) O-U :F:aijkl(gkl _akl)
&5 &ij
_ of od _ of
= =0 Yy =——— =0 Aij =7 ~0j
g 8 i y y a i y aalj
B od of _ a;
r:_i:_Ha r:;:_al: g Zl'j:i:(o-y-i_[_]gp _+
r 12 r 80:,-]- 3 Jayey
Yield function
3 o 3 iz | )
Yp =5 %0% Y Xr =0y =0 Yo S\ Hiky T\ T HE =0
Xij = Xij =0
Flow rule
0
iy =20 oy =220
oleg i

Rate of dissipation (dissipation function)

/2 o
d=o, Eaklakl

) ’2 P
d :(O'y +Hr5'p gaklakl

Table 3.1: Comparison of two thermodynamic approaches
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In contrast with this, Lemaitre’s approach provides thermodynamic restrictions on
the proposed constitutive models through the non-negativeness of the dissipation
expression (or the Clausius-Duhem inequality). In other words, the dissipation
inequality (3.111) is used as a condition for the thermodynamic admissibility of a
constitutive model, rather than being explicitly specified as one of the two energy
functions needed for the model formulation. As illustrated through the above
comparison, the conditions J; =y; and Y, =y, are automatically satisfied in
Lemaitre’s framework. The yield function y, and dissipation potential ¢ are
necessarily specified for the definition of a plasticity-based constitutive model within
Lemaitre’s thermodynamic framework. Restrictions on the shape of the dissipation
potential are also required for the thermodynamic admissibility of the defined

constitutive model.

3.5 Summary

In this chapter, the extension of the thermodynamic framework proposed by
Houlsby and Puzrin (2000) has been completed. This includes the introduction of a new
internal variable representing the material deterioration, along with the modification of
the energy and dissipation functions for the accommodation of damage dissipation
processes. A simple formulation for coupled damage-plasticity constitutive models has
also been presented. The whole formulation is based on the above-mentioned
thermodynamic framework and therefore inherits advantages of the approach, realized
through the simplicity and rigorousness of the derivation procedures and the resulting
thermodynamic admissibility of the obtained constitutive models. Both strain- and
stress-based models can be accommodated in this framework and formulated following
established procedures. The computational aspect of the proposed damage-plasticity
models has also been preliminarily addressed, with the derivation of the tangent

stiffness tensors for both stress- and strain-based constitutive models.

The adopted approach makes use of the Legendre transformation of the dissipation
function and, in a more rigorous way, leads to a natural occurrence of the yield and
damage loading functions. There is no need to have any assumption on the form of a
dissipation potential, as usually encountered in several thermomechanical approaches
(Lemaitre and Chaboche, 1990; Lemaitre, 1992; Maugin, 1992). Coupling between

damage and non-associated plasticity in both stress- and strain-based models is
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implicitly embedded in the governing constitutive relations; and the evolution laws of
internal variables can be straightforwardly derived from those relations. In particular, in
the proposed damage-plasticity models, the parameters £ (3.34) and £ (3.35) of the
yield function are decreasing functions with respect to the damage indicator «,,
characterizing the reduction of the plasticity threshold due to microcracking processes
(Nguyen, 2002; Nguyen and Houlsby, 2004; Salari et al, 2004). This is equivalent to
introducing effective instead of nominal stress to the yield function (e.g. in Lemaitre

and Chaboche, 1990; Lemaitre, 1992).

This chapter merely addresses the thermodynamic aspects of the proposed
constitutive models. Without experimental- and micromechanical-based details, the
simple models described in this chapter are not yet ready for use in the constitutive
modelling of cement-based materials. This specification of the proposed models will
therefore be carried out and presented in the subsequent chapter. The stress-based model
described in section 3.3.2, enhanced by the decomposition of the total stress tensor to

capture the different responses of the concrete in tension and compression, will be used.



Chapter 4:

Constitutive Models of Concrete for 2D Applications

4.1 Introduction

It has been experimentally found that the response of concrete is different in
tension and in compression, primarily due to the much lower tensile strength of the
aggregate-mortar interface compared to that of the mortar. The mechanism of stiffness
degradation, which is experimentally observed in both compressive and tensile loading,
becomes more complicated during elastic unloading from a tensile state to a

compressive state, and vice versa, because of the opening and closing of microcracks.

Many attempts have been paid to model this phenomenon (Mazars and Pijaudier-
Cabot, 1989; Fremond and Nejdar, 1995; Murakami and Kamiya, 1997; Lee and
Fenves, 1998; Ragueneau et al., 2000). As has been addressed in the literature, the
anisotropic nature of damage, even for initially isotropic materials, requires a tensorial
representation of the damage variable. Generally this unilateral character of damage can
be integrated in the modelling using damage variable as a tensor (Murakami and
Kamiya, 1996; Ju, 1989). However, in a much simplified way, this can also be done
with isotropic damage models by using two separate scalar damage variables for tensile
and compressive loadings (Mazars and Pijaudier-Cabot, 1989; Fremond and Nejdar,
1995; Lee and Fenves, 1998). In such cases, in order to distinguish the damage due to
tension from that due to compression, the decomposition of stress and strain tensors into
positive and negative parts is necessary (Mazars and Pijaudier-Cabot, 1989; Ju, 1989;

Fremond and Nejdar, 1995).

The detailed specification of the models proposed in the previous chapter is
conducted in this section. However, only the stress-based model is considered, due to
the difficulties in dealing with the decomposition of both total and plastic strains in
strain-based elasto-plastic damage models. For the use of the Drucker-Prager yield
criterion, with the lack of dependence on the Lode angle @, application of the proposed
models is appropriate to two-dimensional problems only. Further extension of the

approach to general stress states is therefore still needed.
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4.2 Constitutive model for concrete in 2D

4.2.1 Stress decomposition

In uniaxial cases, the crack closing/opening takes place during unloading/reloading
when o =0. However, for multi-axial stress states the mechanism of crack
closing/opening is much more complex and an appropriate criterion must be used to
distinguish the tensile and compressive stress states inside the material body. The
eigenvalue decomposition method, which is in accordance with the basic features of
damage mechanics (Lemaitre, 1992), is used here to decompose the stress/strain tensor
into positive and negative parts. Following the method, the positive stress tensor o;; is

ij
expressed as (Ortiz, 1985)
3
0';7 =Z<O'm>plmp7 4.1)

where p” is the unit vector of the m™ principal direction, o™ is the m™ principal stress,

and < > denotes the Macaulay bracket. The negative stress tensor o; is then

o, =0, —0 4.2)

As the decomposition here is based on the eigenvalue decomposition, the following
properties are needed and have been analytically proved by Ladeveze (1983) (care with

the order of operations is needed in the following):

O';O'l-; =0 (4.3)
o =(ow )" +(ow ) (4.4)
0,0 =00, +0,;0; (4.52)
owon =(ow) (o) +(ow) (o) (4.5b)
0 1 0 1
o |1
s 3w ) |-l s, @
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In addition, it can be readily proved that o-; and o;; are piecewise continuous and first
order homogeneous functions of o;;. These two functions are discontinuous only at
specific points where the principal stresses change signs. As a consequence, Euler’s

theorem of homogeneous function gives.

oo
+ ij
o= o 4.8
i =50, M (4.8)
oo
and c;,=—>'¢o 4.9
i = o, M (4.9)

4.2.2 Choice of energy function

Making use of the tensor decomposition, the energy potential can be considered to
consist of two parts, representing the energies due to negative and positive stress tensors
respectively. For linear elasticity without damage and plasticity, the Gibbs free energy

function reads
1
g=g(6ij)=ﬁ[—(l+‘/)0ij% +V<7kkfflz] (4.10)

Using the above stress decomposition, noting that (o, )" = <O'kk> # 0y, (where < > is

the Macaulay bracket), we can rewrite g as

g=eloy )= |1+ vIojo; +viow) (on)'] -

1 _ - -
+—[— (1""/)0';']'0'1']' +V(O'kk) (0'11) ]
2F
After introducing the internal variables characterizing the plasticity and damage
processes, one gets
g:g(%'a%v“}“é:)
1 [ + _+ + +]
= -U+v)o;o; +vio o (4.12)
m( )yy (kk)(ll)

1

+m[— (1+V)O-lj_o-lj_ +V(O'kk )_(O-ll )_]_ Gljalj

where a/; and aj are respectively the scalar damage indicator for tensile and

compressive damage mechanisms. In the absence of damage, the above function
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reduces to the usual form of the elastic Gibbs free energy function, thus fulfilling basic

thermodynamic requirements.

Important remarks should be made here on the above energy function. Separation
of energy terms in the energy potential leads to the separation of the elastic strain into
two corresponding parts expressed in terms of positive and negative stress tensors

respectively.

8,-j=5ij—“ij:___ M[Hv i —viow) 511] @13)
+E(m[(l+v) 7 —v(ow ) ]
—qq

As a consequence, using the properties (4.8) and (4.9), the secant compliance tensor can
be proved to be symmetric and stress-dependent. The model in this case exhibits stress-

induced anisotropy.

1 I 60‘+
C.. 1+v —VvH o )0;:0
ijk Ell—d ( )50'k1 ( kk) ki
- (4.14)
+ 1 (1+v\aaij_- —VvH (-0 )5 0,
E(l iy )_ /ao-kl ke ki

in which H(x) is the Heaviside function equal to unity if x >0 and zero otherwise. As
can be seen, the tensor differential in (4.14) requires a reliable algorithm for the
numerical differentiation. Moreover, it has been experienced in this study that this
stress-induced anisotropy can introduce instability to the numerical analysis. In the 2D
tension-compression quadrant with dominating tensile stress, the instability comes from
the scaling of the compliance tensor (4.14) only in the direction of the principal tensile
stress, as the material is deteriorated in tension only. Inversion of the compliance tensor
for the formulation of the stiffness matrix in finite element analysis will result in a
“poor” stiffness tensor once tensile damage measure reaches values in the range of
0.7~0.8. The term “poor” here refers to increasingly stiff response of the material model
after this value of damage has been reached, while the material is expected to soften

continuously due to damage.

In the following alternative formulation, isotropic damage is adopted for the

constitutive model. The stress decomposition is used in the dissipation function and
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does not have any effect on the isotropic response of the constitutive model. The energy
function is of the form

—(1+V)O'UUU +V_.6kko-ll

g=gloj; )= -0 (4.15)
( U) 2E[1—H(Ukk)aéll—a§) vy
with the corresponding elastic strain
1+v)o; —vo o
ch=&;—a; =— 24 (1+v) / s’ (4.16)

=g, — —2 A =—F
v v v 60—;] v E[I—H(Gkk)aékl—agl)

The Heaviside step function H is used in the expression of the energy function to take
into account the unilateral behaviour of the material, in which compressive damage
results in the stiffness reduction in tension while its tensile counterpart can be
considered to have no effect on the compressive behaviour of the material. This
phenomenological feature has been confirmed by several experiments on concrete (e.g.
in Reinhardt ef al., 1986; see also Chapter 2) and widely accepted in the research
community (Lemaitre, 1992; Lee and Fenves, 1998; Ung-Quoc, 2003).
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Figure 4.1: Schematic view of the desired damage surface in 2D principal stress space

Tensile damage in this case can only have an impact on the constitutive behaviour if the
stress state is tensile-dominant, represented by the positiveness of the first invariant of
the stress tensor: /; = oy, > 0. In a uniaxial test this type of tension switch works fairly
well as the energy potential takes zero value when the uniaxial stress vanishes, followed

by the stiffness recovery from tension to compression, thus making the energy change
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not abrupt. Nevertheless, the switch is rather crude as it does not guarantee the smooth
transition in the tension-compression regions in multi-axial stress states. In other words,
a discontinuity occurs in the energy function when the stress state passes through the

plane o, =0 in the principal stress space (see figure 4.1).

F3A O_A
e e fe
! 1 : t
i | E
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1

Figure 4.2: Function Fy(o, ) and its corresponding effect on the unilateral behaviour

Full remedy of the above-discussed problems is in principle straightforward, but is
left to future work. It is only briefly discussed here. This treatment can make the
formulation unnecessarily cumbersome and much more complicated, as the above
problem of state transition just occurs during load reversal from tension to compression,
and vice versa, e.g. in cyclic loading or non-proportional loading. As an example, one
possible way to remedy the problem is to use, instead of the Heaviside step function, a
continuous stress-dependent function being able to smooth out this transition (figure
4.2). In this case, the energy function reads

~(1+v)o;o

g=gloy)=— ht

B TVO Oy
2E|1-Fy(oy )b [1-af)

(4.17)

The elastic strain derived from this energy function is

oF
[(1+v)oyow —vouo ]673517052 (4.18)

- pp

_ (1 + v)0~- - va_kkéij
Ei-Alowkifi-as) 28 Fiog )l Fi-as)
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Compared to (4.16), the model can be seen to exhibit stress-induced anisotropy property
due to the appearance of the second term in the expression of elastic strain. However,
with relevant choices of function F3(o; ), the effect of this extra term can be limited to
cases in which the material is first loaded in tension and then unloaded to the
compression regime. This is simply depicted for uniaxial case in figure (4.2). In that
figure, function Fj(o,, ) has a non-zero derivative only in the range [-s f;', 0] where
s <1 can be considered as a material parameter, determined from a cyclic uniaxial test.
As a consequence, the effect on the constitutive behaviour of the model only takes place
in the specified range, thus rendering the possibility of simplifying the formulation by
use of the Heaviside function H (O'kk) in place of function F3 (O'kk). However, in
nonlinear numerical analysis, the stress state of a certain point can change from tension-
dominance (above the plane o, =0) to compressive-dominance (just below the plane
o =0) and vice versa, resulting in sudden change in the stiffness matrix of that point,
which is the source of numerical instability. To avoid this, the trace of tensile stress
tensor, denoted here as o, will be used in the Heaviside step function. A change in the
stress-strain relationship only takes place when crossing the planes o =0 or o, =0 to

compression-compression quadrant.

4.2.3 Formulation

Neglecting the discontinuity of the energy function, we can use its simple form
with the Heaviside step function employed to model the stiffness recovery in tensile
loading — compressive unloading.

_ _ —(1_+V)(7ij0ij tVOOon
Sl v ey v ey )

The parabolic Drucker-Prager yield criterion is used here along with two damage
criteria for tensile and compressive behaviour. The corresponding dissipation function,

which is homogeneous first order in the rate of internal variables, reads

d=F (ay,aé,a;’})d; + Ff (O'I-j,ag)dg
; 3Bralal (4.20)
+ ﬁ—(l—r)akk ay 3P TITH LALC +ALC,
3}" 2akk

* *
It can be seen that functions F| and F° are stress-dependent, and this feature is

different from that in chapter 3. The two damage-related functions are modified here to
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account for the ductility of the material behaviour under confining pressure (see figure

4.1). The forms of the two functions will be specified later during the model derivation.

For the independence of the model in separately capturing the permanent
deformations in tension and compression, two constraints for the accumulated plastic

strains are required, resembling (3.36) in the preceding chapter:

C, =&}, —cFi(oy \a,a; =0 (4.21)
C.=£5 —cFf (o Waa; =0 (4.22)

in which c¢ is a constant usually taken as \/2/_3 . As mentioned in chapter 3, this value is
in fact only suitable for the use of pressure-independent material with plastic
incompressibility condition. In such cases the definitions (4.21) and (4.22) agree for the
uniaxial case. For the parabolic Drucker-Prager criterion used here, other choices of ¢
are not straightforward. For the sake of simplicity, ¢ = \/2/_3 is used throughout this

study.

Figure 4.3: Definitions of function Fj (o, ) and Fy (o)

Functions F, and Fj in (4.21) and (4.22) are dependent on the first invariant of
the stress tensor, aiming at producing a smooth transition between tension and
compression in tension-compression quadrants in 2D principal stress space. In a similar

way to the definition of function Fj (O'kk ), they are defined
O +
F! =min| 1, Tk ey (4.23)

e N Sy \ |
Fy —m1n(1,<fcy+fty>J—l Fy (4.24)



Chapter 4—Constitutive Models of Concrete for 2D Applications 4-9

where < > is the Macaulay bracket and f,, and f,, are the ultimate stresses in uniaxial
compression and tension respectively. They are dependent on both hardening and
damage dissipation processes, and their forms will be specified later. It can be noted
that this is only a simple way to decompose the incremental accumulated plastic strain
¢, defined in (3.36) into tensile and compressive parts, by making use of the property
Fj + F{ =1. Nonlinear forms of F, and F; are of course applicable but intentionally

not pursued here in order to preserve the simplicity of the proposed formulation.

From the Gibbs free energy function, the total strain is

_ og _(1+v)a,~j—vqkk5,~j )
v 80',7 - Ell—H(J;k)aﬁl Kl—a:j)-'_al] (+:23)

The generalised stresses are derived following procedures established in the original

framework (by Houlsby and Puzrin, 2000) and illustrated in Chapter 3.

P S (4.26)

g [(1 + V)O'l-jO'ij — Vo0 ]H(O';{k)

P e NS g WY 42D
S = A
Z,=- aai =0 (4.29)

Zo=- jgg; -0 (4.30)

In the same way, we derive the dissipative generalized stresses from the dissipation

function as:

o, 3pra; v q O
Zl.j:i:{k_(l_r)o—kk}_l_i_ 'B Y _3/Bramnamn - 1'
ooy | P Qe 2 Ay

t . C .
cAFha ~ cA Fy oy

) \/ dkl dkl \/ dkl dkl

(4.31)
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od * .
Ya=——7=F (a,.j,a;,ad) (4.32)
8ad
C ad C* C
Xd = =F (Gij,ad) (4.33)
8ad
od
Xp=—r=A, (4.34)
aep
5= a_d =A, (4.35)
0¢,,

Using the conditions ;7; = ;(; and 7, =y, it can be immediately deduced that
A, =A_, =0, thus making the formulation much simpler. The derivation of yield and
damage loading functions follows procedures established in the original framework and
illustrated in chapter 3. Therefore, all unnecessary intermediate details are omitted here.

The yield function still has the same form in generalized and true stress spaces

Zf.zf.
vp =Bl +(1=rlog ]+ U2y k=0 (4.36)
. ool
v, =Boy + ”2 Y k=0 (4.37)
However, their parameters £ and £ are now
k(afl,ag,gp)= % (4.38)
ﬁ(aé,aé,ep)=—fcy ;f‘y (4.39)

For the sake of simplicity, a linear hardening law in both tension and compression is

assumed. We then have f., and f,, as

S =fro+H 26 J1-a5) (4.40)

o =0+ Het i-al Ji-a5) (4.41)

In the above expressions, the two initial yield thresholds are denoted as f,., and f;, for
uniaxial compression and tension respectively. Figure (4.4) depicts the parabolic
Drucker-Prager yield surface in 2D principal stress space. As yielding in uniaxial

compression takes place at a stress level much lower than the ultimate compressive
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strength f, f.o can be taken as only 30% of this ultimate compressive strength (Chen
and Han, 1988). However, this is not the case in tension, when the material behaviour is
almost linear before peak stress f;. The initial value f., = f, is therefore adopted
here. As can be seen in (4.41), compressive damage in this case has the effect on the
tensile strength of the material. This is realized through the presence of the compressive

damage indicator aj in the expression of the tensile yield threshold.

AC2

Juy

) fcy / \ »Gl

Jy

_fcy

Figure 4.4: The parabolic Drucker-Prager yield criterion in 2D principal stress space

The procedures demonstrated in chapter 3 leads to two separate tensile and

compressive damage criteria.

L [(1 + V)O'j o — VOO ]H(a,';k)

= 2 — t* .. 4 =
Vg = 2E[1— (akk)afijz (l—ac‘j) F (O'U,ad,ag,) 0 (4.42)
* (l+v)a, O;; —VO .0y *
¢ = Sy —Ff lo;,a5)=0 (4.43)
. 2E[1—H(akk)ad](1—a§)2 1 (UU ad)
in which, functions F ( lj,ad,ad) and F *( U,ad) take the following forms
(1 + V)O'U o= I{O'kkO'll
F o). 2E[l- H(akk)a 20-af) (. .
F (O'Z-j,ad,ad)— ( " F (ad,ad) (4.44)

1+Pz)0 o ~pilow) (o)

2E(1 o f

and
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(1 + V)O'UO'U —VO 1.0

¢’ )= ZE[I—H(G;]C}(E{.KI—O{(?)Z cl,c
i (Uy’ad) 1+ pojo; —a.low) (oy) +r.fld-ag)ow) i (ad) ()
2E(1—05§)2

The decomposition of total stress tensor into tensile and compression parts is applied in
the above expression to distinguish the failure in tension and compression. As the
numerators in the above expressions are non-negative and immediately become positive
when loading takes place, their elimination in (4.42) and (4.43) is straightforward. We
can now rewrite the damage criteria in their final forms, which bear a resemblance to

the damage criterion in the preceding chapter.

1+ pJoj o5 = plow ) (o)
215(1—045,)2

Vi = H (Gzik )— F (aé,a§)= 0 (4.46)

(1+ p ooy — e (o) (on) +(1=as o filon )
2E(1 —a )2

in which p,, p., g, and r, are model parameters, the roles of which will be discussed

Felas)=0  @a7)

Vg =

in the next section.

With stress-strain relationship (4.25), yield criterion (4.37) and damage criteria
(4.46, 4.47) available, the constitutive behaviour of the proposed concrete model is now
ready. A closer look at the behaviour of the model will be made in the following

section.

4.2.4 Composite loading-failure surface

There have been several damage models developed for the analysis of concrete
structures, and many of them (Yazdani and Schreyer, 1990; Lee and Fenves, 1998;
Meschke et al., 1998; Comi, 2001; Comi and Perego, 2001; Salari et al., 2004) carefully
took into account both the tensile and compressive behaviour of the material. In fact, the
neglect of compressive response in the modelling is acceptable only in direct or indirect
tensile tests, where the material shows its brittle behaviour beyond the peak stress.
However, this is not the case in compressive tests, especially under confining pressure,
where ductility is observed. All the above features have been mentioned in chapter 1.

They will be illustrated here using the proposed coupled damage-plasticity models.
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The damage criteria (4.46) and (4.47) will be explored in detail hereafter. It is
noted that both the initial damage and yield surfaces, which can all be expressed in
terms of stress, can be plotted in the same graph, thus making it easy for interpretation.
The damage and yield criteria here are coupled with each other, and hence can also be
regarded as an integrated yield-failure criterion characterizing the behaviour of the
material. The term failure surface (Chen and Han, 1988) here should be distinguished
with the concept of yield surface widely used in literature, as it refers to the failure stage
of the material, at which softening begins to occur.

Uniaxial Compressive
Loading Path

. |

Failure Surface

Loading Surface

e ————

-

”’ T .
- -
-

g f’—’--‘-‘s
- -

i) s o= ~

Figure 4.5: Evolution of loading surface (after Chen and Han, 1988)

The explicit expressions for initial damage surfaces in principal stress space can be
derived here, noting that «) =aj =0 at the beginning of the damage process.
Experiments (Kotsovos and Newman, 1977; Chen and Han 1988) have shown that bond
cracks start to develop very early at a stress level just above the elastic limit of about
0.3f in uniaxial compression. This can be captured by choosing an appropriate
expression for function F}°, with an initial threshold below the ultimate stress f; in
uniaxial compression. The so-called cap behaviour in compression, as depicted in
Figure (4.5), can also be modelled using capped damage surface. During the pre-peak
stage, the initial capped damage surface gradually evolves to become an open-shaped
failure surface (figure 4.5). For a capped damage loading function in compression,

modification must be taken in the expression of the compressive damage criterion
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(1+p, iiOij _qC(aéxakk)_(o-ll)_ +rc(a§)fé(0kk)_
2E(-off

in which ¢, and 7, now turn out to be functions of the compressive damage indicator

Ya = ~Ff (af,): 0 (448

aj . Along with function F|, they must be also chosen to account for the fact that in
3D principal stress space, the initial damage ellipsoid transforms to a paraboloid when
peak stress is reached, and then gradually contracts with progressive loading. The
failure surface finally reduces to a single straight line, coinciding with the hydrostatic
axis, when the material is totally damaged, represented by a; =1. Although the above-
mentioned approach significantly improves the performance of the proposed model in
hydrostatic compression (e.g. in the model by Comi and Perego, 2001), it is left here as
further extension to the 3D formulation, in which further modifications are also needed
to take into account the different responses of the material in the deviatoric plane. In
particular, lack of Lode angle dependency in the deviatoric section will also need to be

remedied in the future by adding the third stress invariant to the damage functions.

In the present study, the initial values of F{ and F" are taken such that damage in
uniaxial tension and compression test take place at oy = f; and o, = f/ respectively.
The damage surfaces therefore act as failure surfaces. For the open shape of the
compressive damage loading surface, only one parameter is needed, and the function

can be rewritten as
1+ pJojo; —pelow) (o))
2E (1 —ayg )2

which resembles that in tension. The resulting damage thresholds in tension and

—Felag)=0 (4.49)

V=

COIan'CSSiOIl arc:

12

F{(0,0)= j;f—E (4.50)
2
Ff (0):/2% (4.51)

As a consequence, below the ultimate stress in compression, it has been assumed here
that plastic deformation is the only dissipation mechanism governing the constitutive
behaviour of the model. Therefore, the failure surface opens towards the negative

direction of the hydrostatic axis, and it only undergoes contraction during the
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deformation process, resulting in pure elastic behaviour in hydrostatic compression.
This is accepted as a deficiency of the present model in capturing the ductility of the

material in hydrostatic compression.

In 2D principal stress space, the composite failure surface consists of four parts
corresponding to four quadrants of the space. However, further divisions of the surface
are also encountered in tension-compression and compression-tension quadrants, as the
first invariant of stress tensor changes sign in crossing the plane /, =0, =0, which

divides those quadrants. The equations can be derived as shown below:

For 0, 20, 0, 20:

2 2 2 2
t_(1+Pz)(01 +0, )—Pt(01+02) _Ji ~0 4
Ya = = (4.52)
2F 2F
2
e Je
Ay (4.53)
For 0,20, 0, <0, 0y +0, 20:
2 2 2
y2=(1+pt)o-l —pt(O'1+O'2) _ft -0 (454)
2F 2E
2 2
c (l+pc)o-2 c
= - =0 4.55
Ya 2E 2E (4.55)
For 0,20, 0, <0, 0y+0,<0:
2 2
t (1+pt)0'1 Ji
= - =0 4.56
Ya 2E 2B (4.56)
2 2 12
y§:(1+pC)O-2 —pc((71+(72) _fc =0 (457)
2F 2F
For 0, <0, 0,20, 0y +0, 20:
2 2 2
y2:(1+pt)o-2 —pt(O'1+O'2) _ft =0 (458)
2F 2F
2 2
c (1+pc)61 c
= - =0 4.59
Ya 2E 2E (4.59)

For 0,<0, 0,20, 0/ +0,<0:
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2 12
. _(+p)or” 1
= — =0 4.60
YOTTTE T 2E (+:60)
2 2 2
yg — (1+pc)o-1 pc(o_l+o-2) fc =0 (461)
2E 2F
For 0, <0, 0, <0:
v =—f*<0 (4.62)
( 2) 2 2
c_(l+pc)o-1 +0, _pc(01+o-2) _fc _ 4.63
Ya = = (4.63)
2F 2E

It is worth noting here that using the concept of effective stress, the composite

failure surface can be always proved to expand in the effective stress space during the

deformation process. The contraction of the yield surface in this case is due to the effect

of damage, through the progressive reduction of the yield thresholds during the fracture

process.

Numerical

Experimental

Figure 4.6: Damage failure surface in 2D principal stress space

Figure (4.6) shows the numerical and experimental failure surfaces of the material

in biaxial test. Solid lines in the figure represent the composite failure surface generated

by the tension and compression damage loading functions, with f :311kp/cm2,

£/ =0.643 c'2 (Kupfer and Gerstle, 1973), p, =0.33, p. =0.62. Experimental points

in this case are taken from the biaxial tests on concrete by Kupfer and Gerstle (1973).
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A detail of the graph showing the tensile behaviour is depicted in figure (4.7). This
clearly shows the C; continuity (continuous up to the first derivative) of the damage
loading functions in the transition across the plane /; =0, which can also be proved
analytically. Similarly to this, the composite failure surface can also be proved to be C;
continuous at its intersection points with the coordinate axes oy =0 and o, =0, while
discontinuities in the first derivatives are encountered only at the intersections between

the two damage surfaces.
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Figure 4.7: Damage failure surface, tensile behaviour

The effect of the parameter p, on the shape of the failure surface in tension
quadrant can also be seen in figure (4.7). For smaller values of p,, the constitutive
model tends to underestimate the material strength in biaxial tension, and vice versa.
However, for p, >0.5, we obtain a damage surface opening to the positive side of the
hydrostatic axis, which is unacceptable. By varying p,, it can be concluded that its
appropriate values should be in the range 0< p, <0.4, where p, =v is the special case

with the energy term in y coinciding with the damage energy release rate 7

Obviously, a set of parameters which yields a better fit can be obtained using least-
square fitting. However, this identification of parameters should be carried out based on
a sufficient number of experimental sets of data to give convincing results. This model
calibration is unfortunately out of the scope of the study. Therefore, for the sake of

simplicity only an estimate ( p, =0.33, p,. =0.62) is used here to obtain the parameters
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governing the shape of the damage surfaces. From the graphs (figures 4.6 and 4.7), the
experimental and numerical curves match rather well in pure tension (o, 20, o, 20)
or pure compression (o, <0, o, <0), while this is not the case in tension/compression
quadrants. However, neglecting those slight differences, it can be preliminarily
concluded that the overall behaviour of the material at failure in biaxial test can be well
represented by the proposed unilateral damage model. The ductility of the material in
biaxial loading (o =0, <0) has been accounted for, with compressive damage only

being activated at stress level higher than the uniaxial compressive strength f .

o2(kplcn?)
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Figure 4.8: Yield and failure surfaces in principal stress space o -0,

As the failure surface here comprises several segments in four quadrants of the
plane o3 =0, convexity of the damage loading surfaces in stress space is not preserved
in this case. Although this concavity of the failure surface in stress space is
unacceptable in conventional plasticity, here it does not violate any thermodynamic
restrictions. Unlike the thermodynamic requirements for the yield surface, one
consequence of which is the convexity of the yield surface, though not necessarily to be
strictly satisfied (Houlsby and Puzrin, 2000), it is however not the case for damage
processes with scalar damage variables. In such cases, the damage indicators and their
associated variables are all scalars, automatically satisfying the thermodynamic

restrictions as long as the products y’a’ and yc are non-negative.
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Figure (4.8) plots both the composite failure surface and the yield surface in the
coordinate plane o3 =0, with f/ and 0.3f, being used as initial yield thresholds in
uniaxial tension and compression respectively. For the comparison, the linear Drucker-
Prager yield surface is also plotted, using f; and 0.3f,. It is clearly seen from the
figure that use of this linear Drucker-Prager surface is not appropriate for the
constitutive modelling of concrete material, as it obviously does not produce plastic

strains in the neighbourhood of the straight line o = o, in biaxial tests.

From the figures (4.6, 4.7 and 4.8), the behaviour of the constitutive model can be
observed. In the tension/tension quadrant the inner surface is the yield surface, but there
1s not much difference between yield and failure surface. In other words, plasticity is
activated first but only little plastic strain occurs up to failure. However, both
dissipation mechanisms are activated at the same time in uniaxial tension. The material
behaviour beyond peak stress is governed by both tensile damage and plastic

deformational mechanisms, which agrees well with experimental observation.
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Figure 4.9: Yield and failure surfaces in the meridian plane

In tension/compression regions, tensile damage is the governing dissipation
mechanism as far as the intersection of the yield surface and tensile damage surface
(point Y, figure 4.8), where coupling behaviour occurs. Beyond this intersection point,
from Y to X (figure 4.8), plasticity is the first dissipation mechanism to take place,
followed by the coupling between damage and plasticity when the yield surface expands

and hits the failure surface. A similar kind of response happens in the
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compression/compression quadrant where plasticity first controls the deformation

process, and then the yield surface expands until the failure surface is reached.

Use of a yield surface in conjunction with a composite failure surface also brings
here some advantages of nonuniform hardening plasticity (Chen and Han, 1988) in
constitutive modelling of concrete. As it is bounded by the failure surface, the yield
surface cannot uniformly expand in any direction. All expansions in the tension/tension
and tension/compression regions are strictly restrained by the failure surface. The yield
surface can expand mostly in the compression/compression quadrant. Therefore,
overestimation of plastic deformations in tension and underestimation in confined

compression loading can be avoided.
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Figure 4.10: A close-up view of the yield and damage surfaces in the meridian plane

In figures (4.9) and (4.10), the yield and failure surfaces are also shown in the
meridian plane. Again, the parabolic Drucker-Prager yield surface is plotted using
0.3f, as the initial yield stress in uniaxial compression. In pure tension and pure
compression, the adopted yield surface represents the elastic region of the material. As
can be seen, the model also exhibits “cap-behaviour” in hydrostatic tensile loading,

which is physically reasonable.
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4.3 Parameter identification

4.3.1 Background information

The identification and calibration of model parameters plays a crucial part in the
development of constitutive models for concrete. The identification of model
parameters is carried out based on either one or a series of standard experimental tests,
while the calibration can be performed on a specific simulation. In other words, the
parameter identification process provides us with relationships from which values of the
model parameters can be obtained from input material properties and then used in the
numerical analyses. This helps to relate model parameters with the material properties
measured in experiments. Based on the established relationships between experimental
data and model parameters, the optimal calibration can then be performed on a series of

similar experimental tests to yield the best set of model parameters.

However, in practice, parameter identification is not an easy and straightforward
process, especially for complicated constitutive models such as the nonlocal or gradient
enhanced damage models. In particular, for smeared crack models the material data
provided by experimental standard tests do not always suffice to identify all model
parameters. In the case of concrete in tension, besides some properties for the elastic
behaviour of the material, the additional data should include the fracture energy G,
with the physical meaning of energy dissipated per unit cracked area, a length related to
the width of the damage zone, and data on the unloading responses of the material.
Difficulties in carrying out experimental tests to measure those properties, especially the
material characteristic length, make the identification extremely difficult, even
impossible. In addition, data on the unloading paths are not always available from
standard tests. All these cause the difficulties in parameter identification, especially for

complicated models with multiple dissipation mechanisms.

In this section, the identification of model parameters will be carried out
independently in tension and compression, thanks to the capability of the proposed
coupled damage-plasticity model (represented by equations 4.25, 4.37, 4.46 and 4.49) in
distinguishing tensile and compressive responses. Some model parameters (p; and p.)
have been directly determined from biaxial tests and presented in preceding section.

However, they are only used to determine the initial shape of the failure envelope and
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have no relation with the evolution of the yield and damage surfaces. The contraction of
the composite failure surface in stress space is in fact governed by functions F| and
F{°, the forms and parameter identification of which will be detailed in this section. The
whole process is based on uniaxial tensile and compressive tests. As a consequence, the
evolution patterns of internal variables in dissipation processes are only relevant to the
uniaxial behaviour of the material; however they can also be tentatively generalised to
mutiaxial loading cases for practical purposes. Of course, this generalization cannot
always be appropriate, but is still widely accepted and adopted in the research
community for its simplicity (Meschke et al., 1998; Comi, 2001; Comi and Perego,
2001; Jirasek and Patzak, 2002; Jirasek ef al., 2004; Salari et al., 2004).

For softening materials, the explicit uniaxial stress-strain relationship cannot be
obtained from experiments, causing difficulties for the identification. Therefore, to
define the stress-strain law, an approximation based on quantities related to the fracture
process is used. Besides the elastic properties of the material, standard tests (e.g. the
three-point bending test; see section 5.2.4, Chapter 5) normally provide the fracture
energy G in tension and possibly G, in compression, which is insufficient for the
identification. Other vital properties such as the characteristic lengths /, and /. in
tension and compression, which are believed to be related and proportional to the

widths w, and w, of the localization zones, are not always available from those tests.

For simple isotropic pure damage models dedicated to tensile behaviour, at least
two additional material properties related to the damage process are required: the tensile
fracture energy G and the width w, of the fracture process zone (or alternatively the
characteristic length /, along with the ratio between w, and /,). The width w, here is
defined as that of an imaginary and uniformly damaged crack band (Ferrara and di
Prisco, 2001; see figure 4.11). Details on w, and the relationship between w, and /,
will be presented in the next Chapter. The fracture energy G here is associated with
the cohesive crack model, the correspondence of which with smeared crack model is
shown in figure (4.11). It should be noted here that G, as the area under the stress —
opening displacement curve in cohesive crack model (see section 5.2.1, Chapter 5), is
not the only fracture property needed. Ideally, the stress — opening displacement curve
(or stress — separation law) in cohesive crack model should be provided from

experiments for the determination of model parameters. This stress-separation law can
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be in principle obtained based on either fully experimental method (e.g. work of fracture
method by Petersson, 1981; Bazant, 1996) or indirect method (Tin-Loi and Que, 2001;
Que and Tin-Loi, 2002) using both numerical procedures and experimental data.
Correspondence between the stress-separation law and stress-strain relation in
continuum model is depicted in figure (4.11). As this stress-separation law is not always
available from experiments, used of the fracture energy G along with a bilinear stress-
separation law (proposed by Bazant and Becq-Giraudon, 2002; Bazant et al., 2002) is
adopted in this study. Similar fracture properties of the material, e.g. the compressive
fracture energy G, and the width w,, for concrete under compression are also needed
for compressive damage models. Although there have been research works on the
compressive fracture energy G, (Vonk, 1992; Jansen and Shah, 1997), the lack of

experimental results still limits its frequent use in practice.
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Figure 4.11: Correspondence between stress-separation law in cohesive crack model
(right) and stress-strain relation in continuum model (left);

after Bazant (2002); and Elices et al., 2002.
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To avoid any possible confusion at this stage, it is wise just to consider the point-
wise behaviour of the model. Anything related to the treatment of softening and
localization will be left to Chapter 5, after sufficient details on the aspects of softening
have been discussed. Therefore, from standard tests, what is vitally needed for a pure
damage model in this study is the local (or specific) fracture energies g and g,
represented by the area under the stress-strain curve and obtained from Gp, G., w,
and w, by

G
gr :—GF and g, =—*% (4.64)
w

Wt c

In tension, the shape of the stress-separation curve can be determined based on
experimental observation (Bazant, 2002), in which the fracture energy G can be
considered to consist of two parts corresponding to the peak and tail responses of the
material (Bazant, 2002). This in fact stems from a rough estimation of the initial
fracture energy G,, which is represented by the area under the initial tangent of the

stress-separation curve in the cohesive crack model (figure 4.12, right).
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Figure 4.12: Fracture energies in cohesive crack model (right; after Bazant, 2002)

and corresponding local fracture energies in continuum models (left)

Unlike G, which is associated with the cohesive crack model, the size-independent
fracture energy G, is determined by the size effect method (SEM, Bazant, 2002) and is
related to the fracture toughness of the material. A detailed discussion on the
relationship between the two fracture energies and the methods of obtaining them would
give an insight into the size effect in quasi-brittle materials, but falls beyond the scope
of this study. For our application, it is practical to adopt the estimation G / Gp=25

proposed and confirmed by several researchers (Planas and Elices, 1990; Bazant and
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Becq-Giraudon, 2002; Bazant et al., 2002). Although rather scattered data on this
relationship have been reported (Bazant and Becq-Giraudon, 2002), it can be used here

with success in the numerical simulation, which will be shown in the coming chapters.

The above is only what has been generally observed experimentally on the
behaviour of concrete and characterized in theory using a simple stress-separation law
of cohesive crack models (see section 5.2.1, Chapter 5). In practice, with only G and
G, supplied and calculated from standard tests (e.g. the three-point bending test), the
stress-separation law is usually assumed to be bilinear. As a consequence, the
experimental stress-strain curve therefore can only be derived in bilinear form, with
slope change at 0.15f/ to 0.33f/ (CEB-FIB code, 1993; Bazant, 2002). The
correspondence of this curve with the stress-separation curve has been given in the
literature (figure 4.11) and will be used here in this study. Following this, the stress-
strain curve of the proposed model should be calibrated so as to be in accordance with

this bilinear stress-strain law.

CEB-FIB model code (1993) also provided a bilinear stress-separation law for
concrete, the form of which is determined based on G, f/ and the maximum

aggregate size d However, compared to the relation G /Gf =2.5 (Bazant and

max
Becqg-Giraudon, 2002, Bazant et al., 2002), the CEB-FIB law looks very different:
GF/Gf =1.36-2.13 for d,,, =8—-32mm. Justifying those relations is not an easy
task and requires further research on the fracture properties of the material, which is
obviously outside the scope of this study. Meanwhile, we use here that having been
proposed and recently confirmed by several authors: Gp / Gy =25, although the
maximum aggregate size in the determination of G, is only implicitly present in G .
Therefore the behaviour of the proposed models in this study only shows a weak link to

d

relationship between the model parameters and material properties will be presented in

max through the determination of model parameters based on Gr. More on the

the coming Chapter on nonlocal regularization.

In compression, in a similar way, we also assume here that the local fracture
energy g. and the stress-strain curve can be derived from the experimentally-provided
fracture energy G, (see 4.64). However, due to the lack of experimental evidence no
further assumption on the stress-strain curve can be made, resulting in a rather arbitrary

way of choosing model parameters for compressive behaviour. This is obviously a
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deficiency of the proposed model, which can only be resolved in combination with

further experimental research on the compression behaviour of the material.

4.3.2 Coupling between damage and plasticity

The above issues are only applicable to pure damage models. To take into account
the combined effects of both damage and plasticity dissipation mechanisms on the
model behaviour, additional information on the loading-unloading cycles is needed.
Those experimental data unfortunately cannot be obtained from standard tests. In this
section, we address the coupling between damage and plasticity, and its realization in

the parameter identification.

There have been several coupled damage-plasticity models proposed in the
literature (see chapter 2). While most of them are truly coupled models, the some are
merely pure damage models with ad hoc modifications on the unloading behaviour of
the models (Reinhardt et al., 1986; Hordijk, 1992; Hatzigeorgiou and Beskos, 2002).
Although these modified damage models can produce residual strains upon unloading,
which fit fairly well the experimental unloading paths in some cases, the dissipation
energy in the model is solely due to damage mechanisms. Despite the simplicity and
success in some cases, those ad hoc approaches exhibit inconsistency in the modelling

and should be avoided.

In this study, coupling between damage and plasticity is implicitly contained in the
system defined by (4.25), (4.37), (4.46) and (4.49), which governs the behaviour of the
model. In this case, the energy dissipated per unit volume g, represented by the area
under the stress-strain curve, is contributed from both failure mechanisms: damage and
plasticity. On the other hand, it has also been shown (Bazant, 1996) that the fracture
energy G determined by the work-of-fracture method (RILEM, 1985), assuming that
the material behaviour follows that of cohesive crack model, always contains plastic-
frictional energy dissipation. This evidence can be confirmed by cyclic tests on tensile-
dominant behaviour of concrete (Reinhardt ez al., 1986; Hordijk, 1992; Perdikaris and
Romeo, 1995). However, the fact that G is not a pure damage fracture energy has
been sometimes disregarded in continuum damage models developed for the

constitutive modelling of concrete.
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In those pure damage models, the fracture energy G was used as a material
property governing the post-peak behaviour of the material, regardless of the fact that a
significant part of G is contributed from plastic-frictional dissipation mechanisms,
e.g. aggregate interlock or interfacial frictions between the constituents. This is in fact
acceptable, as the sole damage dissipation mechanism in such cases must produce same
dissipation energy at a structural level. However, it is not the case in which a plastic
deformation mechanism and damage mechanism are present in the constitutive model.
The correct fracture energy that should be used for damage law in this case must be the

pure fracture energy denoted here as G, , which in principle can be determined if the

pr>
unloading stiffness is known for a sufficient number of points on the softening load-
deflection curve (Bazant, 1996). It is also worth making clear here that G, should also
be used in case where the damage evolution law is explicitly defined in a coupled

model, which is not the case with the models proposed in this study.

For the coupled damage-plasticity models in this study, the evolution laws of
damage indicators and plastic strains as well as the coupling between the two
dissipation mechanisms are implicitly defined through the constitutive relations (4.25),
(4.37), (4.46) and (4.49). The stress-strain curve and hence the fracture energy are
governed by all the parameters of the coupled model. As a consequence, the fracture
energy G along with some other material properties in unloading should be used for
the determination of model parameters. Separation of the energy dissipated during the
failure process is needed, which is in fact based on the assumption that unloading data
can be obtained from standard experiments (Bazant, 1996), e.g. the three-point bending
test for fracture energy recommended by RILEM (1985). The adoption and realization

of this assumption in testing practice are, however, still far from reality.

4.3.3 Tensile behaviour, identification of model parameters

The process here is based on a one-dimensional model and for coupled damage-
plasticity models (represented by equations 4.25, 4.37, 4.46 and 4.49). In one-
dimensional tension, functions F' and F/ coincide, the energy function and

dissipation function are of simplified forms:

T - wste
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d = Filabas by +(1—at N fi+ Ha, e, (4.64b)

and the governing constitutive relations (4.25, 4.37, 4.46) reduce to

az(l—a;,)E(g—ap) (4.65)

v, =o—(l-at \fi+ Ha,)=0 (4.66)
2

v :M‘Flt (afvag)=0 (4.67)

in which the accumulated plastic strain g;, in (4.21) has been assumed to reduce to «,,
in uniaxial tension. As mentioned in the model formulation (section 4.2.3), this
assumption is in fact valid only in case where a pressure-independent yield function is
used. It is adopted here only for simplicity. A strain-based damage model is used in this
case; but in uniaxial tension, switching between strain- and stress-based models is
straightforward. As the material behaviour is only in the tensile regime, the compressive

damage indicator «; is zero throughout the dissipation process and can be considered

as a parameter of the function F'.

N |

O Ete

Figure 4.13: Local fracture energy g in uniaxial tension

The determination of the local (or specific, or volumetric) fracture energy gp is
the backbone of this parameter identification. From its definition (figure 4.13), g5 can

be written

gr=|ods (4.68)

0
In principle, the stress o, tensile damage indicator « and plastic strain @, can be
obtained analytically from the system (4.65-4.67), and can all be expressed in terms of
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the total strain & . Unfortunately, this is not always the case in practice as the solution of
the system (4.65-4.67) strongly depends on the type of function F|. As a remedy for
the problem, it is much easier to perform all necessary mathematical manipulations with
respect to the damage indicator a;, as the only variable. As a consequence, in the
integral (4.68), a change of variable is needed, with the damage indicator «; replacing
the total strain &. Bypassing intermediate details of mathematical manipulations, we
can obtain from (4.65-4.67) the stress o, plastic strain «, and total strain ¢, all in

P
terms of the damage indicator ¢, as follows

= (1 —a L/zEF{iaj, a5 ) (4.69)

1 it e\ [
a,=—a~2EF \a,;,a,; |- 4.70
P H, 1\d>™d H, (4.70)

_E+H, /2F1r(a§,,a§i_ig @71
H, E H,

Noting that &, =0 at £ < f{/E , the integral (4.68) becomes

!

Lo+ foa
6a %
0 ¢ (4.72)

t

1 E+Hj1- E t
d
t 0

It is interesting to note here that the above local fracture energy can also be obtained
from direct integration of the dissipation function d in (4.64b) (d is actually the rate of
dissipation) in one dimensional tension. This is one of the advantages, although not very
apparent here, of building constitutive models based on thermodynamic principles.
From (4.72), it is essential that the integral in the second term is bounded, which can for

instance be satisfied with the following choice of function F' :

2
2 E+E \l-a’)'
F=(1-a )?E pli-ai (4.73)
E(l —a;)+ Ept(l a;T
with initial values
12 t 2
K| = JiZ and aFlt __ S (4.74)
;=0 2F aad 120 E+Ept
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in which £, and n, are two model parameters controlling the damage process. In a
pure damage model, — £, is exactly the initial tangent modulus at peak stress and », is
used to control the rate of change of this modulus during the deformation process. The
above choice of function F| also guarantees the asymptotic vanishing of stress o for
strain &€ — o, avoiding ad hoc procedures for the treatment of zero strength finite

elements in the numerical implementation.
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Figure 4.14: Effect of parameters on the model response in tension

The effect of model parameters on the stress-strain response is shown in figure
(4.14), using the following material properties and model parameters: £ =31700Mpa ,
fi=3.48Mpa, E, =15000MPa, n,=0.2 and H,=30000MPa. The stress-strain
curve corresponding to the above properties is plotted in figure (4.14a). In figures
(4.14Db), (4.14c) and (4.14d) each model parameter in turn is varied, while others are
kept fixed, to show corresponding effect on the stress-strain curve. It can be clearly seen
in these figures that the plastic strain «,, is governed solely by the hardening modulus

H,, while the stress-strain curve is controlled by all the parameters of the model.
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In a similar way, for a pure damage model, we obtain, either from (4.69 and 4.71)
or from direct integration of the dissipation function d with respect to the only active

internal variable o

21
oF
gp = jFl da); = f’ j(l ad L a;, (4.75)
0
The only difference compared to (4.72) is the factor in front of the integral in g,
which indicates that the pure damage model is an extreme case of a coupled one when

H; —> .

All model parameters governing the evolution of the dissipation processes are to
be determined based on equation (4.72). This is obviously impossible as in general,
besides the hardening parameter H, there are also other parameters appearing in
function F|' and controlling the damage dissipation. The expression above can only be
considered as a relationship between model parameters rather than an equation helping
to explicitly determine those parameters. The proposed parameter identification

therefore becomes ill-posed unless some constraints are imposed.
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Figure 4.15: Nonlinear stress-strain curve based on the experimentally derived

bilinear stress-strain relation

Ideally, the nonlinear softening curve used in this study should be calibrated based
on a nonlinear stress-separation curve in cohesive crack model, which in turn is
obtained from indirect experimental methods (see Tin-Loi and Que, 2001; Que and Tin-
Loi, 2002). However, a stopgap based on the fracture energies G and G, and a
bilinear softening law (see section 4.3.1), is used here due to the lack of experimental

data on the nonlinear softening behaviour of the material. From the observation on the
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shape of the softening curve (figure 4.15), the nonlinear stress-strain relation in the
proposed model should yield a close fit to at least the first part of the bilinear softening
law (see figure 4.15), determined by the local specific fracture energy g, and realized
through the initial tangent modulus E, at peak stress. This modulus in turn is related to

the slope D, at peak stress in the cohesive crack model, through the relation

EE.
D, =——¢ (4.76)
w,(E+E.)
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Figure 4.16: Definition of the local fracture energy g 4, for

nonlinear softening behaviour

Those slopes (£, and D, ) decide the ultimate load of the analyzed structure (Bazant,
2002). Therefore, if one does not care about the tail response of the structure, the initial
softening modulus E,, (see figure 4.15) of the nonlinear stress-strain relation of the
proposed model here can be taken as E_., and directly derived from the input material
properties (G, f; and the width w, of the localization band). In such cases n, should
be kept small enough (less than 0.1 for function F| in (4.73)) so as to minimize the
effect of the gradual slope change in the stress-strain curve (see figure 4.14b) on the
structural peak load. However, this neglect of tail response is not the case here and, to
some extent, we will consider both peak and, though only roughly, tail responses of the
overall load-displacement curve. If this is the case, optimal fitting for the proposed
nonlinear stress-strain relation and the experimentally derived counterpart could be
useful in the parameter identification. In this study, only simple fitting based on the

ratio 1 =g 4, / gr between the facture energies g 4, and gy (figure 4.16) is adopted.
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Figure 4.17: Determining the nonlinear stress-strain relation from the experimentally

derived bilinear softening law

As can be seen in (4.76), the width w, of the localization band also plays an
important role in the derivation of the bilinear stress-strain relation from the
corresponding stress-separation law. In other words, this width has a crucial effect on
the initial softening modulus E;, of the uniaxial bilinear stress-strain relation. As a
consequence, the curve fitting heavily depends on w, (see figure 4.17), and in turn on
the element size (crack band models) or the nonlocal interaction radius R (for nonlocal
models). The determination of w,, which, in this study, is related to the nonlocal
behaviour of the model adopted, will be presented in the next Chapter. Therefore, for

the sake of simplicity, it is wise to assume here that w, is known in advance.
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From the suggested curve fitting (figures 4.15, 4.16 and 4.17), it is seen that the
ratio gp / gr =25 (or Gp / G, =2.5), which applies to the bilinear softening law, has
to be appropriately adapted to the nonlinear softening law adopted here. In particular,
the shaded area in figure (4.16), determined from the tangent of the nonlinear stress-
strain curve at peak stress, should be smaller than g (striped area in figure 4.16) to
yield a good fit. This shaded area is denoted here as g g, and for simplicity will be
taken as 7 gy in this study, where ¢ has value from 0.1 to 0.3, depending on the tensile
strength f/, fracture energy G of the material and width w, of an imaginary and
uniformly damaged crack band. This is only a rough estimation for practical
application, as a better fit can generally be achieved by use of more advanced
mathematical procedures. However, use of those advanced fitting techniques would
become unnecessary on the basis of the rather crude bilinear approximation of the
material behaviour. They are therefore not pursued here. In practice, it has been
experienced in this study that 1 =0.2 ~ 0.3 is adequate for nonlocal models, whereas in
some cases ¢ =0.1~0.2 must be adopted for some rather small value of width w, (see
figure 4.17). However, this is only a rough estimation based on only very few
experimental data and used here with some success in the numerical analysis. Choice of

this ratio should therefore be further confirmed.

With an additional property (gs;) in hand, we can now derive another
relationship between the model parameters and material properties. An explicit
expression for the initial tangent modulus in uniaxial tension is required for this
relationship, which can be obtained using the rate form of the system (4.65-4.67) or
directly from (4.69 and 4.71). From (4.69) and (4.71), the tangent modulus E, is

derived as

t
—2EF/ ‘a;,ag i+(1—a§ )SFlt JE
ad 2Ft [, c
E =49 _ e (4.77)

de E+H, oF} 1
Hy  day \/2EFfiaf1,a§ ’

Substitution of the initial values of function F| and its derivative into (4.77) yields the

initial tangent modulus E,, (figure 4.15)

E, H
E,p=——2"1 4.78
" E+H, (4.78)
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It is readily seen from (4.78) that E,y =—E,, when H, — o, which is the case of a

pure damage model. The initial local fracture energy g g,; is now

2 2 2
Joo ST _ i [1+E+Hf] (4.79)

SMT0F 2B, 2 \E EjH,

Using (4.72) and (4.79), two parameters E,, and n, in a pure damage model are
now ready to be determined. However, for coupled damage-plasticity models, more
material properties are still needed, which should be based on the unloading paths at

several points on the stress-strain relationship (see figure 4.18).
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Figure 4.18: Assumed uniaxial stress-strain relationship with an unloading path

Those data can be obtained from the standard three-point bending test by measuring the
unloading slopes at a sufficient number of points on the load-separation curve. These
slopes are then transformed to unloading slopes in the stress-strain relationship.
Alternatively, experiments on cyclic loading of a double edge notched specimen can be
proposed to obtain the load-displacement response, through which the fracture energy
G as well as unloading slopes can be derived. This proposal is based on the separation
of energy dissipated during the deformation process (Bazant, 1996), in which energy
dissipated through the damage and plasticity dissipation processes can be obtained and
assigned to the corresponding mechanisms in the constitutive modelling. As it concerns
both theoretical and experimental studies, the realization of this proposal is, however,
left here for the future research. Therefore it can be simplified here assuming that
unloading slopes at several points on the stress-strain curve have been obtained from

experiments. In particular, the uniaxial strain &, at which load reversal takes place and
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the corresponding unloading modulus E,, are assumed to be available (figure 4.18).
Only one pair of ¢,, and E,, is needed for the proposed model, as there is only one
hardening parameter associated with the plasticity part of the model. Adoption of more
advanced plasticity models, such as the continuous kinematic hardening hyperplasticity
(Puzrin and Houlsby, 2001) is in principle possible, but obviously requires more data on

the unloading paths.

All the model parameters are now ready to be derived, with the following

nonlinear system of equations having to be solved for #,, E,, and n,:

!2 1 t
E+H OF;
g&r =" /. j( ) ! d ' (4.80)
H,
21 E+H,
0] = —+ 4.81
8hl =57 £, H, (4.81)
t t
gtu:E+H’ 2k \@au0) _ Ji ; with ), = Eu (4.82)
H, E H,’

The input material properties are: elasticity modulus E'; ultimate tensile stress f;;
strain &,, at which unloading takes place and its corresponding unloading stiffness

modulus E and the specific fracture energies g, and gg,, where

>
g = (0.1— 0.3)g . Although the integration in (4.80) cannot be computed
analytically, it can be shown to be bounded. A simplified version of the model with only
damage mechanism activated can be directly derived from the above system by
dropping out the last equation (4.82) and setting H, = o in equations (4.80) and (4.81).

A Matlab code has been written to solve the above system of nonlinear equations.

4.3.4 Compressive behaviour, identification of model parameters

In a similar way, based on the specific fracture energy g. (see figure 4.20) and
unloading data at points on the stress-strain curve, we can also obtain the relationships
between parameters of the proposed model (represented by equations 4.25, 4.37, 4.46
and 4.49) and the experimentally-provided material properties in compression. The
governing constitutive relationships in uniaxial compression are:

In the pre-peak hardening region

oc=Elg-a,) (4.83)
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v,=0—(fuo+Hea,)=0 (4.84)

In the post-peak softening region

0=(1—06§)E(€—a,,) (4.85)
Yp :O-_(l_aochfCO +Hcap)=0 (4.86)
Va =—E(g _2%)2 ~Fflag)=0 (4.87)

in which the equations have been simplified here because the stress o and total strain

¢ are always positive. The accumulated plastic strain 5; is always positive and

assumed to reduce to the uniaxial plastic strain ¢, which also takes positive value. No

p
loss of generality occurs from the above simplification on the signs of stress and strain,
as g, is the product of stress and strain and is always non-negative, making it useful to

consider both stress o and strain ¢ either positive or negative.

°A
f c’ _________ —— E=0
/|
Eol/ |
f cO[™~ i 5
| 1 I
E E E., E
1 | :
Y %, Ecu &cc &

Figure 4.19: Assumed stress-strain relationship in uniaxial compression

Depicted in figure (4.19) is the constitutive behaviour of the model in uniaxial
compression, in which plasticity is supposed to take place at o= f,,. From
experiments, f,, is found to be about 30% of the ultimate compressive stress f,. (Chen
and Han, 1988). For the adopted linear hardening plasticity in compression, only one
hardening parameter ( H ) is needed, and can be directly determined from f,,, f, and
E . However, H . also takes part in the post-peak behaviour of the model, along with
other parameters of function F,°, and can also be determined based on the fracture
energy g. and unloading properties in figure (4.19). The contradiction can be avoided

if more than one hardening parameter is used, for example one hardening parameter for
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the ascending part and another for the descending branch of the stress-strain curve.
Here, for simplicity, f,., and H_. are treated as two dependent model parameters to be
determined, provided that they satisfy the condition 0< f,., < f.. This simplification is
acceptable because of the path-independent nature of the plastic dissipation. The
relationship between f,, and /. can be derived from figure (4.19)

JAE+H,)

chz E

“H.s, (4.88)

with E,, in the figure being the elasto-plastic tangent stiffness, defined by

1 1.1 (4.89)

E, E H,

For the stress o, from (4.85-4.87), we obtain
o= (1 —ay %/2EFIC iaé} ) (4.90)

Similarly to (4.70), and (4.71), we have the total strain ¢ and plastic strain «,,

o = 2EF aj _Je0
H H

p
c c

C C
L _E+H, 12F iadi_ f. 4.92)
H, E  H,

(4.91)
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Figure 4.20: Local (specific or volumetric) fracture energy g, in compression

The local fracture energy g. in compression also resembles its tensile counterpart
gr 1n (4.72). One should note here that the local dissipation energy in compression

comprises two parts corresponding to the pre-peak hardening and post-peak softening
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regimes on the stress-strain curve. However, because of its localization nature only the
second part (g, in figure 4.20) is present in the measured fracture energy G, provided
by experiment (Kritzig and Poling, 2004). This feature has in fact been proven and
adopted for tensile softening with some hardening behaviour before peak load (Bazant,
1982; Bazant and Pijaudier-Cabot, 1989). We simply adopt it here without further

discussion. Therefore, we have:

® i lo(at) 2 aae = Jo y EXHe (1 _ ) OB 4
gCZ§E+-£G(ad)a;;dad:§E+ ]_'-_I .([(1_%)6_1;‘1’% (4.93)

c

in which function F}° is of the form

N RN ) 1) (O
2 E(l—af, )+ Epc(l—af, T [1n(1+af, )]m .
with initial values
e
|, =% (4.95)

In (4.94), there are three parameters controlling the damage process in compression: m,,
controlling the ductility of the stress-strain curve, n, governing the tail response of the
model, and £, deciding the descending slope of the stress-strain curve. Like F{, the
similar function F° also guarantees the asymptotic vanishing of stress o for strain
& — o . Moreover, the properties in (4.95-4.96) also result in zero tangent stiffness at

peak stress ( £,y =0). In addition, for relevant values of E,., m, and n,, the local

pe>
compressive fracture energy g., represented by the striped area under the stress-strain

curve in figure (4.20) and calculated using (4.93), can also be found to be bounded.

To illustrate the effect of the model parameters on the behaviour of the model, a
simple uniaxial stress-strain curve in compression is used, with the following material
properties and model parameters: £ =30000Mpa, f.=27.6Mpa, E pe =45000MPa,
n.,=0.15, m,=3, H, =15000MPa and &.,=2f//E. The stress-strain curve using

the above properties and parameters are the solid lines in figure (4.21), in which the
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results obtained from varying each parameter while keeping others fixed are also

shown.
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Figure 4.21: Effect of parameters on the model response in compression

From (4.88), (4.93) and the unloading expression similar to (4.82), we have a set

of equations established for the determination of model parameters in compression:

E+H
fa= ) g @97)
12 1 c
go =L EHe (- g )L g (4.98)
26 H, ot

. :E+Hc\/m_fco - with &€ =1_Ecu (4.99)
cu HC E Hc B du E

It is noted here that equation (4.99) does not enter the calculation of model parameters,

as H_ is directly obtained from (4.97), based on pre-assigned value of f,, and &,,.
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This equation (4.99) is only used to compute the permanent strain produced by the
model in uniaxial compression. In a similar way to then tension case, a simplified model
with only damage mechanism can be derived from the above system by dropping out

equations (4.97) and (4.99), and setting H . = oo in equation (4.98).

The input material properties in this case are the elasticity modulus E'; initial yield
stress f,o, which, in practice, can be chosen in the range 0< f,, < f,; uniaxial
compressive strength f. and its corresponding strain &,,; and the local fracture energy
g.. With two equations (4.97 and 4.98) for four parameters to be determined, which are

the hardening parameter H_, and three parameters E,., m, and n, of function F°,

pc>
the system (4.97-4.98) is only solvable if there are two parameters being pre-assigned
relevant values. The other parameters are then computed from the system (4.97-4.98).

Normally, £,. and either m. or n., which control the shape of the post-peak uniaxial

c
stress-strain curve, is chosen for this purpose. This is because (4.97) and (4.98) are
independent and H_ can be directly obtained from (4.97). The residual strain at a given
point on the stress-strain curve can then be computed (using 4.99) and compared with
experimental value. As the values of H_ are bounded in the range H, <H,.<H,,,
with H ., corresponding to f.,=0 and H., to f.,=f. (see 4.97), a compromised

choice of H_ can be made in the specified range (0< f., < f.) so as to yield closest fit

to the given unloading path.

4.4 Numerical examples

v

82.6mm

Figure 4.22: Single finite element used in the numerical examples

Simple numerical examples are provided in this section to demonstrate the
capability of the proposed model (equations 4.25, 4.37, 4.46 and 4.49) in capturing the
material behaviour in both tension and compression. These numerical examples are
carried out based on the nonlocal damage-plasticity model described in Chapters 4 and

5, and implemented in Chapter 6. For a local numerical analysis in this section, the



Chapter 4—Constitutive Models of Concrete for 2D Applications 4-42

nonlocal radius (see Chapter 5 for details) is simply set to zero. The examples were
taken from the papers by Lee and Fenves (1998), with corresponding experimental data
provided by Kupfer et al. (1969), Karsan and Jirsa (1969), and Gopalaratnam and Shah
(1985). They will be carried out using a single quadrilateral finite element shown in
figure 4.22. In some cases, one-dimensional results will also be illustrated for

comparison purpose.

4.4.1 Cyclic uniaxial loading

In the first example of cyclic tension loading, the following material properties are
used (Gopalaratnam and Shah, 1985): E=31700MPa, v=0.18, f/=3.48MPa,
Gr =0.04N/mm. The stress-strain curve is obtained from the test by simply dividing
the measured displacement in the stress-displacement curve by the gauge length
(l; =82.6mm). This is obviously erroncous as there is no unique stress-strain
relationship in the post-peak softening region (Gopalaratnam and Shah, 1985).
However, in this section, it can be accepted (Lee and Fenves, 1998) just to transform the
stress-displacement curve to a stress-strain curve for illustrating the capability of the
proposed model. In a similar way, the specific fracture energy g is calculated by
assuming that the localization bandwidth is w, =45mm, resulting in
gr = 8.89*10™* N/mm? . Obviously this choice of w;, is arbitrary, and different values
of w, will result in different responses of the model. However, it is left for detailed
physical interpretation in the coming chapters; and this choice of w, is used here only

for the purpose of demonstrating the adopted identification procedure.
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Figure 4.23: Behaviour of the proposed model in cyclic uniaxial tension (a)

and cyclic uniaxial compression (b)
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From the experimental stress-strain curve, we can obtain the properties of the
material in unloading, which are: ¢,, =1.89 f//E and E,, =0.37E . An associated flow
rule, with the dilation factor » =1, is assumed. The following model parameters are then
obtained as solutions of the system (4.80-4.82): £, = 1.0767*106Mpa, n, =0.52 and
H,=1.1218* 10°MPa . The stress-strain response is plotted in figure (4.23a).

The same assumption is applied to the case of cyclic compressive loading, with
experimental data taken from Karsan and Jirsa (1969): E =31000MPa, v=0.18,
fo=27.6MPa. The required fracture energy G, =5.69N/mm is in fact taken from the
same example in a paper by Lee and Fenves (1998). As in that paper the authors did not
mention about how G, was obtained, its value can only be used here for the sake of
illustration only. In a similar way to the example on cyclic tension above, with the width
of the localization zone in compression being assumed to be w, =54mm, the following
specific fracture energy is derived: g, =0.11N/mm?. We use here feo =031 as
initial yield stress in compression, &., =2.05f,/E as the strain at peak stress, and get
the value of H, of 20743MPa from (4.97). Assuming that £, =90000MPa and
n, =0.3, the value of m_ is derived from equation (4.98): m, =2.68. The obtained

stress-strain curve in compression is shown in figure (4.23b).

It can be clearly seen in the figures that the numerical responses using one- and
two-dimension models are not identical, especially in compression. This is a predicted
consequence of using the arbitrarily-chosen constant ¢ to compute the accumulated
plastic strain, using a pressure-dependent yield criterion. Use of deviatoric plastic strain
increments instead of those of the total plastic strain helps to reduce this gap and also to
avoid the dependency of the hardening process on the dilation factor ». However, the
effect on reducing the difference is not significant for the adoption of deviatoric plastic
strain in (4.21) and (4.22). In addition, for the pressure-dependent yield criterion, use of
both types of plastic strain results in a nonlinear stress-strain relationship in the
ascending part of the stress-strain curve (although not very apparent in figure 4.23b), as
in both cases ¢, # @, in uniaxial loading. Smaller values of ¢ in (4.21) and (4.22) can
yield a better fit, but so far no basis for the determination of those values has been

derived in this study.
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4.4.2 Unilateral behaviour

The unilateral behaviour of the proposed model is illustrated in this example, with
the following material properties being used: FE =31000MPa, v=0.18,
f;=3.48MPa, f/=27.6MPa, G =0.04N/mm, G,=5.69N/mm. For illustration
purpose, all the model parameters from in the previous example are reused here,
neglecting the slight difference in the elasticity modulus in tension and compression.
The loading cycle is shown in figure (4.24). The stiffness recovery from tension to
compression can be clearly seen in paths BCD and 1JK, and the effect of compressive

damage on tensile behaviour in path FGH.

-0.004 -0.0035 -0.003 -0.0025 -0.002

Figure 4.24: Cyclic loading under large tension and compression strains

Damage in compression results in the reduction of strength in tension, represented
by lower tensile strength of the material at H, compared to the strength at B before load
reversal takes place. In addition, compressive damage also makes a difference in yield
and damage thresholds in tension, leading to plasticity taking place alone on path HI
and the unloading slope 1J being parallel to GH. Tensile damage can possibly follow
plasticity on path HI if a higher hardening parameter H, is used. However, this is not
very important here as the example only aims at demonstrating the model capability in
capturing behaviour in cyclic loading under large tension and compression strains; this

loading scheme rarely happens in practical situations.
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4.4.3 Biaxial loading

This series of tests is to show the multiaxial behaviour of the proposed model in
combined loadings. Comparison with experimental results (Kupfer et al., 1969) was
also made. We use here the following material properties: £ =35000MPa, v =0.18,
fo=24MPa and f/=32MPa. No other needed material properties can be obtained
from the test, and it is therefore adopted here that f., =0.3f] =9.6MPa. In addition,
with the experimental results available only in pre-peak regime, other model parameters
can be assumed, to yield good fit in uniaxial compression: H, =18968MPa,
E,. =42000MPa, n,=0.2, and m, =1.0. Again, the flow rule is assumed to be

associated, with the dilation factor » =1.
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Figure 4.25: Biaxial compression-compression test

The numerical stress-strain curves shown in figures (4.25a) above, in both
compression-compression and compression-tension biaxial loading, do not fit well the
experimental ones (from Kupfer et al, 1969). Only the peak stresses in uniaxial
compression and biaxial compression-compression match their experimental
counterparts well. It can be observed that the hardening law in this case is responsible
for the mismatches, in which much stiffer numerical responses of the model come from
the use of the adopted accumulated plastic strain in (4.22) in combination with a

pressure-dependent yield criterion.

The volumetric behaviour of the material under compression can also be seen in

figure (4.25b), in which the constitutive model overestimates the volumetric expansion
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of the material in uniaxial compression, while that of the model prediction in biaxial
compression does not exist. Clearly, this shows that a non-associated flow rule with
r<1 and a better hardening rule should be adopted to capture this feature of the

material behaviour.
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Figure 4.26: Biaxial compression-tension test

The model response in compression-tension loading (figure 4.26) shows another
aspect of the proposed composite yield/failure surface in combined loading, with the
overestimation of the material strength in the region far enough from the axis oy =0
(see figure 4.6) in the compression-tension quadrant (or far from o, =0 in tension-

compression quadrant)

4.5 Summary and discussion

A combined damage-plasticity model (represented by equations 4.25, 4.37, 4.46
and 4.49) is presented in this chapter, aiming to apply to the numerical simulation of
concrete structures under loading. However, attention at this stage is only paid to two-
dimensional applications. Separate tensile and compressive responses of the material are
fully captured using two separate damage criteria, along with a simple multiple
hardening rule for the plasticity criterion. Calibration for the behaviour of the proposed
model to real material behaviour in 2D was carried out, both in the shapes of the yield
and failure envelopes, and the evolution rules of the composite damage-plasticity
surfaces. A crucial part of this chapter was devoted to the identification of model
parameters. Following the proposed identification procedures, all the model parameters

have been shown to be identifiable and computable based on some standard tests on
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concrete. Derivation of simpler pure damage models and their relations to the present
coupled damage-plasticity model can also be clearly seen in the identification of

parameters of the model.

Some drawbacks of the composite damage-plasticity loading surfaces can also be
pointed out. In the meridian plane, the shape of the failure surface is in fact not very
well in accordance with experimental observation (see Launay and Gachon, 1972). On
the other hand, the deviatoric sections of both the yield and failure surfaces are
independent of the Lode angle €. Therefore, the model responses at tensile meridian
6 =0°, compressive meridian § =60° and shear meridian & =30° are identical, which
is contrary to experimental observation. This independence of the model behaviour
from @ can be neglected in 2D applications, but should be accounted for when moving

to 3D.

Despite the enhancement by use of damage surfaces in combination with a
plasticity yield surface, which helps to restrain the overestimation of plastic strain in
tension, as encountered in plasticity models (Chen and Han, 1988), the hardening rule
for the yield surface still requires further modification. Isotropic strain hardening cannot
always appropriately reflect the anisotropic behaviour of the material. As a remedy, use
of multiple hardening rules has been suggested (Ohtani and Chen, 1988) and is simply
adopted in this study with the equivalent plastic strain increment &, being decomposed
into two parts corresponding to tensile and compressive responses respectively. The
resulting hardening behaviour is therefore different in every direction, depending on the
value of the first invariant of the stress tensor. However, full incorporation of this
multiple hardening feature into the constitutive modelling is not straightforward as it
also concerns with the new model parameters, which can only be identified based on
experimental observations. Moreover, on the thermodynamic aspects, convexity of the
yield surface should be accounted for when it expands anisotropically under control of
different evolving parameters. Separation of £, is only one simple way to deal with the

different behaviour in tension and compression of the material.

An assumption on the maximum size of the failure envelope was made in the
proposed model, with the initial damage threshold in compression being set to its
maximum value corresponding to the ultimate compressive strength of the material.

This helps simplify the coupling behaviour of the proposed model, but results in the
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opening shape of the failure surface in triaxial compression. Nonlinear behaviour
therefore cannot be encountered in hydrostatic loading. Modification to take into

account this feature in hydrostatic loading has been briefly discussed in section 4.2.4.

In addition to the above shortcomings, the identification of model parameters
should be studied further. The separation of energy dissipated during the failure process
to parts due to damage and plasticity is only preliminarily proposed and no further
details are presented in section 4.3 of this chapter. Therefore the material properties
necessary for identifying parameters related to the unloading behaviour of the model
have merely been assumed to exist, without any connection to the acquired standard
tests. Proposal for the modification of standard concrete tests (e.g. the three-point
bending test for G ) and study on the separation of dissipated energy are necessary in

future work.

The constitutive model (represented by equations 4.25, 4.37, 4.46 and 4.49)
described in this chapter is only a local model and therefore cannot be used to capture
properly the softening behaviour of concrete. In the next chapter, softening-related
problems and the corresponding resolutions of those problems will be briefly discussed,
followed by the modification of the local coupled damage-plasticity model proposed in
this chapter. Enhancement of this local model using the nonlocal regularization

technique will be adopted and presented.
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Chapter 5: Nonlocal damage modelling

5.1 Introduction

Dealing with softening-related problems plays a crucial role in the development of
constitutive models for strain softening materials in general and for concrete in
particular. In the analysis of structures made of these materials, the strain localization
can be triggered not only by strong local inhomogeneity such as cracks or flaws, which
in some cases are large enough to have significant impact on the overall behaviour of
the structures (Rice, 1976), but also by the softening behaviour of the constitutive
models. However, from the aspect of constitutive laws, localization can be encountered
even in case the materials feature a hardening behaviour, e.g. necking of a metallic bar
in tension (geometric nonlinearity), or localization into a shear band due to nonassociate

flow in frictional materials (Bazant and Cedolin, 1991).

In the constitutive modeling of concrete, localization due to softening is of great
importance because strain softening and strength reduction are two of the most
important features of the material behaviour. The use of damage mechanics, in
combination with plasticity theory, enables us to derive appropriate models for the
material. However, as the material exhibits significant post-peak softening, appropriate
treatments, called regularization techniques, need to be applied to the constitutive
modelling as well as the structural analysis. This is because conventional continuum

mechanics is inadequate to capture correctly the softening behaviour of the material.

Mathematically speaking, quasi-static analysis of boundary value problems
involving strain-softening material becomes ill-posed beyond a certain level of
accumulated damage (Jirasek and Bazant, 2002). This is due to the local loss of
ellipticity of the governing partial differential equations, if these are derived in the
context of conventional continuum mechanics. From the numerical point of view, the
strain in the damaged region tends to localize in a very narrow zone, called the fracture
process zone (FPZ), which eventually leads to the formation of macro cracks. In the
finite element analysis, this fracture process zone tends to narrow upon mesh
refinement. As a consequence, the dissipation can asymptotically approach zero when

the finite element mesh size is refined to zero, resulting in physically unreasonable
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numerical solutions. The problem is similar in many numerical methods (e.g. finite
element, boundary element, finite difference) employed for the solutions of the

governing partial differential equations in continuum mechanics.

In fact, experimental work has proved that the strain softening zone in real tests
does not vanish but concentrates in a very narrow zone, whose size is proportional to
the so-called characteristic length of the material (Bazant and Oh, 1983; Bazant and
Cedolin, 1991). In numerical analysis, the fact that this zone tends to vanish when
refining the discretization is hence due to the inadequacy of conventional continuum
mechanics to deal with such a kind of problems. Several remedies have been proposed,
which range from the early work of Eringen (1972, 1981, 1983) on nonlocal elasticity

and nonlocal plasticity, to recent work on nonlocal, gradient and rate-dependent models.

In this chapter, a brief introduction to regularization methods is represented in the
first half in order to lay a background for the development of constitutive models based
on nonlocal theory in the coming part of the chapter. This is then followed by the
nonlocal thermodynamic formulation applied to the proposed damage-plasticity models
in chapter 4. Connections between the parameters of nonlocal models and the material
properties are also established. Simple numerical examples will be provided to show the

consistency and effectiveness of the proposed approach.

5.2 A brief review on regularization methods

Obviously, the inadequacy of conventional continuum mechanics in modelling the
behaviour of softening materials results in some unwanted aspects in the solutions of the
boundary value problems. Details on those numerical and structural aspects can be
found in several studies (Bazant and Cedolin, 1991; Peerlings, 1999; Jirasek and
Bazant, 2002); and we only briefly present here the treatments for softening-related
problems, which are vital in the constitutive modelling of softening materials. However,
the remedies do not always necessarily lie directly in the governing partial differential
equations but can be at a higher level, i.e. in the numerical discretization, such as crack
band models with fixed localization bandwidth. In other words, it is desired but not
necessary that the type of the governing partial differential equations be always
unchanged and that the boundary value problem maintain the well-posedness during the

deformation and damage processes. Physically reasonable solutions can be obtained
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through various ways, with the key point being properly taking into account the

necessary fracture properties of the materials in the constitutive modelling.

In the case of concrete constitutive modelling, besides the elastic properties
including the Young modulus, Poisson’s ratio and ultimate stresses, the material
properties additionally needed are generally the characteristic lengths and fracture
energies of the material in both tension and compression. Although the physical
meanings and identification of those quantities, such as the existence of a material
characteristic length and the use of the fracture energy as a material property, is
sometimes controversial, they are generally and widely accepted in the research
community. Therefore, properly taking into account the material micro-structural details
characterized through the above-mentioned quantities can somehow ensure the success
in the material modelling and numerical analysis of structures made of those materials.
In the constitutive modelling of softening materials, the prevention of the localization of
strains onto a surface through the introduction of the material characteristic lengths and
fracture energies in the constitutive models is exploited. Different types of constitutive
models, from simple (cohesive crack models, crack band models) to more advanced
(nonlocal and gradient models, rate-dependent models), can be classified based on the

way the characteristic length is introduced.

In this section, we will briefly examine some treatments applied to continuum
mechanics in order to resolve the numerical difficulties in the constitutive modelling of
strain softening materials. How the quantities characterizing the microstructural
behaviour of the materials are taken into account in the theoretical and numerical
analyses will also be presented. Here, by “treatment”, we refer to a wide range of
techniques applied to numerical analyses of structures made of strain softening
materials. Those techniques help remove the mesh-dependency of the numerical
solutions. Hence they enable the proper capturing of the softening behaviour of the
materials and produce physically reasonable solutions, regardless of whether the well-

posedness of the boundary value problem is strictly maintained.
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Figure 5.1: Displacement and strain fields in regularization methods
(after Jirasek and Patzak, 2001)

The classification of regularization methods by Jirasek and Patzak (2001) is
adopted here. Based on the kinematic descriptions, which describe the one-dimensional
displacement field across the boundary of the fracture process zone as strong
discontinuity, weak discontinuity or continuity, three corresponding types of
localization modelling can be classified. They are cohesive crack models, softening
continuum models with partial regularization and fully regularized continuum models,
the displacement and strain fields of which are depicted in one-dimensional case in
figure 5.1. The above is only one typical classification for theoretical approaches to the
solution of softening-related problems. Existing approaches, however, can also be
classified in other ways, based on the constitutive models or numerical approximation

techniques (Jirasek, 2001).

5.2.1 Cohesive crack models

In the first class of regularization methods, as can be seen in the figure (5.1a), the
displacement field exhibits a jump across the surface of discontinuity, which is depicted
as a single point in the one-dimensional case. In fact, the cohesive crack model, or
fictitious crack model, here is a fracture model. It was first developed and applied to
concrete modelling by Hillerborg ef al. (1976) from a simpler model by Barenblatt
(1962). To illustrate the idea, let us take an example of a structure with a stress free

crack, shown in figure (5.2) below.
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Cohesive crack length /,

Figure 5.2: Cohesive crack zone

It is expected that the initiation and coalescence of new micro-cracks takes place in a
small zone in front of the crack tip, determined by the cohesive crack length /,. The
relative size /, of this FPZ with respect to that of the structure can be reflected through
the appropriate numerical modelling of this zone. Linear elastic fracture mechanics can
still be applied if this fracture process zone is sufficiently small compared to the
dimensions of the structure. In such cases, the zone lumps into a single crack tip point,
resulting in models without a material length. In contrast, a material length, defined by
l, =EGp / ft’2 , appears in the cohesive crack models and is proportional to the length
L, of the zero-thickness fracture process zone (Bazant and Pijaudier-Cabot, 1989). In
several research papers (Petersson, 1981; Rocco et al., 2001; Guinea et al., 2002), the
term ‘“‘characteristic length” used for /., can be confused with that used in nonlocal or
gradient models in the following section. In fact, they are entirely different in concept
with /., defining the length of the fracture process zone and the characteristic length in
nonlocal models being related to the minimum possible width of the softening zone in

continuum models (Bazant and Pijaudier-Cabot, 1989).

In cohesive crack models, the softening behaviour is characterized through the
stress-separation law of the cohesive crack line, in which the stress gradually decreases
with increasing separation, and finally vanishes upon the crack opening exceeding a
certain limit, resulting in a stress free crack. The dissipation energy in this case is
guaranteed not to vanish and is always equal to the area under the stress-separation law,
regardless of the mesh refinement, thus making the solutions physically acceptable.
Obviously, a macro crack is formed, when the energy driving the development of this

crack reaches the fracture energy G of the material:

ul
0
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in which o and u are respectively the stress and displacement jump across the
cohesive crack line; and u, in this case is the critical crack opening at which the normal
stress is zero (see figure 4.11 in the previous chapter). The above definition was the
basis for the method of measuring the fracture energy G, recommended by RILEM
(1985). However, to avoid any possible confusion about the model classification here,
more details on the determination of G as well as its connections with regularization

methods will be presented later in section 5.2.4.

Interface finite elements can be appropriate to model the cohesive crack line, with
lines or surfaces of interface elements being inserted between continuum elements
(Bocca et al., 1991; Hordijk, 1992; Tijssens et al., 2000; Galvez et al., 2002; Yang and
Chen, 2004). However, the requirement for the coincidence between the cohesive crack
line and the element boundaries results in some problems and restrictions on the
numerical discretization. On the other hand, the finite element mesh needs to be
extremely fine in the region near crack tips in order to capture properly the crack
propagation. Nevertheless, in some cases (e.g. mixed mode cracking with curved crack
path) the orientation of the cracks is difficult to capture appropriately, even using a very
fine mesh. Besides, as the crack trajectory is not known in advance, the same mesh
density should be applied over the whole structure. Consequently, this makes the
numerical analysis computationally costly. As a remedy, frequent remeshing during the
nonlinear analysis can be used in the process zone in front of the crack tip of a coarse
mesh (Bocca ef al., 1991; Yang and Chen, 2004). Alternatively, another promising
approach is the use of finite elements with embedded discontinuities. These are special
elements, in which the standard displacement interpolation functions are enriched so as
to capture the jumps in the displacement field. This hence removes the need of
continuous remeshing, which is encountered in the standard cohesive crack models.
Reviews and details on this method are, however, beyond the scope of this study and
can be found in several papers (Jirasek, 2000; Jirasek and Patzak, 2001; de Borst, 2001;
de Borst, 2002; Alfaiate et al., 2002; Alfaiate et al., 2003).

5.2.2 Partially regularized continuum models

In softening continuum models with partial regularization, the displacement field
is continuous, whereas the strain field is discontinuous across the boundary of the

fracture process zone (figure 5.1). Unlike in models of the first class, this zone is no
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longer lumped into a curve in two-dimensional cases (or a surface in three-dimensions)
but smeared over a band with finite thickness. The condition on the smearing out
process is that the energy dissipation produced by the two models of the first and second
classes must have the same value. This can be maintained by either fixing the width of
the localization band (Bazant, 1976) or adjusting the softening modulus of the material
models used for finite elements in the FPZ, so that equal energy dissipation can be

produced (Bazant, 1982; Bazant and Oh, 1983; Bazant and Cedolin 1991).

The softening region in this case extends over the smallest numerically resolved
band, which is exactly over only one element in the one-dimensional case (for use of
constant strain elements). However, fixing the thickness of the localization band to a
prescribed value in the two-dimensional case is much more complicated and difficult.
Indeed, the width of the numerically resolved band depends not only on the size, shape
of the finite elements but also on the orientation of the band with respect to the mesh
lines. In the simplest case, with structured finite element meshes aligned with the crack
path (e.g. use of four-node quadrilateral elements above the notch in the three-point
bending test), the strain localizes in a single layer of elements with the width w, of the
FPZ coinciding with or proportional to the element width. However, this is not always
the case and in general the numerical discretization is subjected to some restrictions on
the element size and mesh density, because the crack trajectory cannot be known in
advance. In order to remedy this, finite elements with an embedded softening band have
been proposed and employed (Larsson and Runesson, 1996; Jirasek, 2000). A more
complete review on finite elements with embedded displacement and strain
discontinuities can be found in some papers by Jirasek (2000), and de Borst (2001,
2002)

In this second kind of models of this class, the energy dissipation always takes a
certain finite value through adjusting the softening modulus upon mesh refinement. In
the literature, this is referred to as models with mesh-adjusted softening modulus (Simo,
1989). In addition, as it is aimed at properly reproducing the energy dissipation in the
localization band, the approach is also called the fracture energy approach (Comi and
Perego, 2001). Interestingly, this approach has a close relation with the cohesive crack
models presented in the preceding section. In fact, the fracture energy approach has

come from the idea of the cohesive crack model and was designated as the crack band
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models by Bazant (Bazant, 1982; Bazant and Oh, 1983). The fracture energy Gp,
which is equal to the area under the stress-separation curve in cohesive crack models, is

now smeared out over the width of the localization band. We then have
u[
G = [o&(x)dx (5.2)
0

where x is the coordinate in the direction normal to the localization band. In a similar
way to this, the displacement discontinuity is also smeared out over this width and
transformed into inelastic strain. In addition, it is usually assumed in numerical analyses
that the strains are constant over the band width w, (Bazant and Oh, 1983; de Borst,

2002), thus making the following expression hold
Gr=wgr (5.3)

in which the energy dissipated per unit area of totally damaged material (or local

fracture energy) g is defined as
&,
gr = Iadg (5.4)
0

where &, =u,/w, is the critical strain normal to the crack direction (see figure 4.11 in

chapter 4)

As the numerical resolved softening band always localizes in one layer of
elements, from (5.3) and (5.4) it can readily be seen that if one adjusts the stress-strain
curve so that the area under the curve is always equal to G /w, with w, in this case
identical or proportional to the element size, the dissipated energy is then independent
of the discretization and physically meaningful solutions can be obtained. This idea has
been exploited by several researchers (Bazant and Oh, 1983; Meschke et al., 1998;
Comi and Perego, 2001; Feenstra and de Borst, 1996) in the context of both damage and
softening plasticity. The partial regularization here is revealed through the asymptotic
vanishing of the fracture process zone upon mesh refinement although the global
response of the structure can be captured correctly and the dissipation energy converges
to a finite value. It is also worth noting that the cohesive crack model can be interpreted
as a simple version of the crack band model as the finite element mesh is refined

(Bazant and Jirasek, 2002). Details and some relating aspects on the application of the
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method can also be found in Comi and Perego (2001); de Borst (2001, 2002); Jirasek
and Patzak (2001); Jirasek and Bazant (2002).

5.2.3 Fully regularized continuum models

The aim of the regularization techniques is to produce meaningful solutions, which
are mesh-independent, with a physically reasonable amount of dissipated energy upon
mesh refinement. For the first two classes of models, this is quite satisfactory from an
engineering point of view. However, the fundamental difficulty encountered in the use
of constitutive models for strain-softening materials cannot be completely resolved
since the ill-posedness of the boundary value problem still exists, as a consequence of
the local loss of ellipticity of the governing partial equations in the analysis using rate
independent softening models. On the other hand, the beauty and simplicity of the ideas
(5.2.1 and 5.2.2) introduced to the modelling of softening and localization are lost due
to some limitations and constraints on the numerical discretization schemes as

mentioned above.

Stronger regularization methods have been introduced based on the enrichment of
conventional continuum mechanics using temporal or spatial terms. Models belonging
to this third class are typically nonlocal, gradient, and rate-dependent models.
Continuum damage mechanics, with nonlocal (Pijaudier-Cabot and Bazant, 1987,
Bazant and Pijaudier-Cabot, 1988) or gradient enhancements (de Borst and Muhlhaus,
1992; Peerlings et al., 1996) or rate-dependent regularization (Simo and Ju, 1987; Dube
et al., 1996), falls into the third type of this classification (see figure 5.1). Besides the
main difference compared to other approaches, lying in the continuity of the
displacement and strain fields (figure 5.1), the boundary value problem in this case
always maintains its well-posedness because the governing partial differential equations
do not locally change type during the deformation process (Bazant and Cedolin, 1991;
Peerlings, 1999; Dube et al., 1996). Mathematically, this is thanks to the introduction of
temporal (rate-dependent models) or spatial terms (nonlocal and gradient models) to the

governing partial differential equations.

From a physical point of view, a proper modelling of concrete fracture also
requires the inclusion of rate effects (Sluys, 1992). This important feature seems to be

natural under transient dynamics with high strain rates. In addition, high strain rates also
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accompany final failure under quasi-static conditions (Sluys, 1992), showing the
necessity of taking into account the rate-dependent properties of the materials.
Moreover, a rate-dependent formulation can be interpreted as a numerical regularization
technique employed in order to limit localization in quasi-static problems. However, as
the rate of loading decreases, the regularizing effect also fades away (Jirasek and
Bazant, 2002). For nonlocal and gradient models, from the physical point of view, the
interpretation of the constitutive models can be based on the micromechanical analysis
of microcrack interaction (Bazant, 1991; Bazant, 1994). In constitutive modelling the
microcrack interactions are realized through the dependence of the constitutive
behaviour of a material point not only on the state of the material at that point, but also
on the state of the whole material body, or at least on a finite neighbourhood of that

point.

In the rate-dependent case, the wave equation can be proved to be unconditionally
hyperbolic (Sluys, 1992; Dube et al., 1996), resulting in stable and well-posed wave
problem. In addition, based on the work of Valanis (1985) the uniqueness of solutions
in the rate-dependent case can also be obtained, as has been shown by Ju (1989), and
Simo and Ju (1987). In the gradient and nonlocal models, spatial terms introduced to the
partial differential equations can also regularize the boundary value problem. The
proofs for the well-posedness of the boundary value problem have been given by
several researchers, for a variety of nonlocal and gradient models (Peerlings, 1999;
Comi, 2001; Borino et al., 2003). In fact, a gradient formulation can be derived from
nonlocal formulation (Bazant and Cedolin, 1991; Peerlings, 1999) and consists of two
kinds of models: implicit and explicit gradient models, which are also respectively
categorized as weakly and strongly nonlocal models. The term “weakly” here refers to
the fact that the constitutive response of each material point depends only on an
infinitesimal neighbourhood of that point (Jirasek and Bazant, 2002), which comes from
the calculation of the gradients from the distribution of the function in an arbitrarily
small neighbourhood. However, this is not the case in strongly nonlocal models, which
consist of integral type and implicit gradient models, and in which the constitutive
response of a material point is dependent on the whole material body or at least a finite
neighbourhood within a certain interaction radius. The interaction radius here is in fact
proportional to the characteristic length of the material (Bazant and Pijaudier-Cabot,

1989; Bazant and Cedolin, 1991) and controls the size of the softening zone.
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Taking into account the nonlocality of the material behaviour through the
introduction of the characteristic length of the material, we have regularized the
conventional continuum models and prevented the energy dissipation from vanishing
upon mesh refinement. However, this kind of “continuum regularization” also has a
restriction on the finite element mesh. The width of the localization zone is in general
small compared to the dimension of the structure. Moreover, in order to capture
properly the structural behaviour and the fracture process zone, the size of finite
elements in that zone must be considerably smaller than the width of the localization
zone. This hence requires fine mesh density inside the fracture process zone, thus

significantly increasing the computational cost.

5.2.4 Regularization methods and the fracture properties of the

material
lp Crack path
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Figure 5.3: Three-point bending test

As has been briefly discussed in the previous chapters and preceding sections, the
softening behaviour of concrete makes it impossible to properly determine the uniaxial
stress-strain behaviour of the material from experiments. Therefore, the fracture energy,
defined by the energy dissipated during the crack formation and propagation, must be
used as a material property characterizing the material behaviour. The three-point
bending test is usually recommended and adopted (RILEM, 1985) for this purpose, in
conjunction with the cohesive crack model. Following the test, the apparent fracture
energy G, (Bazant, 1996) can be measured through the area under the load-deflection

curves.

Gpy=2—— (5.5)
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where b and D are respectively the beam thickness and depth, a, is the length of
initial traction-free crack at mid-span; b(D — a, ) is the total cracked area; P and & are
respectively the load and deflection at the load point; and the integral in the numerator
is the energy required to completely break the specimen. The definition of the fracture

energy in cohesive crack models (Hillerborg et al., 1976) is rewritten here as
ul
Gp = Iadu (5.6)
0

in which o and u are respectively the stress and displacement jump across the
cohesive crack line; and u, in this case is the critical crack opening, at which the
normal stress is zero. If the fracture energy Gp, is totally dissipated by the cohesive

crack, we have the equality between (5.6) and (5.7):
GF = GFa (57)

As can be seen, the above definition of G is most relevant to the cohesive crack
model, with all dissipated energy lumped onto a fracture surface of zero thickness. To
avoid confusion, from now on we use G to refer to the fracture energy of the material,
regardless of the fact that G should be thought of being in association with the
cohesive crack model. Using the equality (5.7), the stress-separation relationship o —u
in cohesive crack models can be determined from the experimental P—o curve.
However, the above definition of the material fracture energy obviously contains errors
due to the simplification in the assumption G =G, and the averaging of G, over

the crack length (Bazant, 1996; Hu and Duan, 2004).

The first source of error is that a considerable part (up to 50~80% of G after
Bazant, 2002) of the work done by the external load is in fact dissipated through a
plastic-frictional mechanism (Bazant, 1996). In the experiment, it is due to pulling out
of aggregates and fragments in the fracture process zone and is realized through the

residual strains at zero stress state upon unloading.

The second source of error comes from the averaging of G over the length of the
crack path, assuming that its distribution over the entire crack length is uniform. This
assumption is in fact only relevant at the beginning of the fracture process, with the
crack front far enough from the upper boundary of the specimen, due to the boundary

effect (Hu and Wittman, 2000; Karihaloo et a/., 2003; Hu and Duan, 2004). Figure (5.4)
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schematically shows the difference between the averaged fracture energy G (RILEM,

1985) and that being experimentally observed.

{Fracture energy Specimen boundary
Observed
Gr (RILEM)
_ Inner zone | Boundary zone
< > -
a |, D-ay .
-l >

Figure 5.4: Boundary effect on the distribution of the fracture energy G

(after Karihaloo ef al., 2003; Hu and Duan, 2004)

A unique stress-separation relationship in cohesive crack model does not exist due
to the specimen-dependent property of the defined fracture energy (Bazant, 1996). In
addition, the actual fracture process zone, where the dissipation process takes place, in
fact has a finite width, which gradually changes when the crack front moves towards the
specimen boundary. This width reaches its maximum value when the crack tip is in the
middle of the specimen and gradually reduces to nearly zero when the crack tip is close
to the specimen boundary (Hu and Duan, 2004). However, in cohesive crack models, as
it does not enter the calculation, this width is simply assumed to be zero. Neglect of
changes in the width of the fracture process zone during the crack propagation therefore
results in the error in the averaged fracture energy G (Bazant, 1996; Hu and Duan,

2004).

The above is merely a brief presentation of the definition of the fracture energy
Gr used in the constitutive modelling of concrete. In conjunction with the
regularization methods briefly presented in the preceding sections, it serves as a basis
for the development of constitutive models for quasi-brittle materials. A closer look at
the mentioned issues in the definition and measurement of G is, however, beyond the
scope of this study, but can be found in several papers (Bazant, 1996; Bazant, 2002;
Bazant and Becq-Giraudon, 2002; Karihaloo ef al., 2003; Hu and Duan, 2004).
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A similar concept of characteristic length and fracture energy in compression will
also be applied to the constitutive modelling in this study. The experimental test for the
compressive fracture energy G, was of course performed on totally different specimens
(e.g. cylinder specimens under uniaxial compression in Jansen and Shah, 1997).
However, lack of experimental research on this still prevents the wide use of G, in
practice. For that reason, we will have to tentatively apply the same concept of fracture
energy in both tension and compression to the nonlocal regularization in this study.
Further research on the compressive fracture energy and its corresponding characteristic

length is hence worth pursuing.

5.3 Nonlocal damage modelling

Continuum mechanics and thermodynamics form the basis for the development of
models for the analysis of deformation and fracture of structures. In these standard
continuum theories, which can be regarded as local continuum theories, the physical
state at a given point in the body is assumed to be completely determined by the
material state at that mathematical point, where the quantities of these continuum
theories are defined. In other words, it is assumed that there is no interaction between
the material points of the structure. However from the physical point of view these
continuum quantities should be thought of being averaged over a certain volume called
a “representative volume element” whose size depends on every material and is
proportional to the characteristic length of the material (Bazant and Oh, 1983). This
volume must be of size large enough compared to the sizes of the material constituents
(e.g. maximum aggregate size in concrete) so that continuum theories are still
applicable and the material can be treated as being homogeneous. Details of the orders
of magnitude of representative volume elements can be found in the book by Lemaitre
and Chaboche (1990). The application of these continuum theories, which are based on
the assumption of homogeneous materials, to heterogeneous media is only meaningful
at the level of the size of the representative volume element. In this case, the stresses,
strains and other internal variables are interpreted as the mean values averaged over this

volume element.

The fact that all materials are generally heterogeneous requires some special
treatments or assumptions in order to make use of the non-standard nonlocal continuum

theories. Moreover from the micromechanical point of view, the interactions of a point
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with other material points should be accounted for. This means that the state at a given
point depends on the material state of the whole body. This is the basic assumption of
nonlocal theories. In fact such concept of nonlocality has been developed for elasticity
and then plasticity theory by Eringen (1972, 1981, 1983). This helps to explain some
critical phenomena (e.g. the non-existence of a stress singularity at crack tip), which
cannot be explained and predicted by local theories. The predictions by nonlocal
theories in such cases are in accordance with the results from experiments (Eringen,
1983). However in practice, models based on standard continuum theories have been
very successful in describing the macroscopic stress and strain fields in many
engineering problems. In those models, the influence of the material substructures such
as pre-existing microcracks, molecules, grains, or pores is totally neglected. This
neglect can be appropriate in some cases, e.g. in elasticity or hardening plasticity
materials with associative flow rules, where softening and localization do not occur. In
the case of softening-induced localization, this leads to stability problems and to the
discretization-dependency in the numerical analysis, which are (for rate-independent
material model) the results of the loss of ellipticity of the governing differential
equations. In order to remedy these deficiencies, the details of the heterogeneity of the
materials should be taken into account. However, direct consideration of those details
will inevitably lead to considerable amount of computational cost. This is the case of
microscopic approaches. Besides, one of the great difficulties of microscopic
approaches is that the microscopic variables are very difficult to measure and moreover

difficult to use in practical computations (Lemaitre and Chaboche, 1990).

In the so-called nonlocal macroscopic approach, the state variables are defined as
the mean over the representative volume element, and treated as nonlocal quantities. In
other words, the effects of the whole body on a material point are taken into account. In
a similar way to this, the enrichment of the constitutive relations with higher order
deformation gradients results in the so-called gradient dependent models (Peerlings et
al., 1996; Peerlings, 1999). In fact gradient dependent models are strongly related to the
nonlocal models since the gradients of the variable can be calculated from the
distribution of the variable in a neighbourhood of the point under consideration (Bazant
and Cedolin, 1991; Jirasek and Bazant, 2002). These models are also considered as
special cases of the nonlocal formulation by a Taylor series expansion of the nonlocal

spatial integral (Bazant and Cedolin, 1991; Peerling, 1999). However, as argued by
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Bazant (1994), the physical explanation of gradient models from micromechanics is still

lacking or unconvincing.

In earlier work (Eringen, 1981; Eringen, 1983; Bazant, 1984; Bazant et al., 1984)
on nonlocal approaches, the nonlocal treatments are generally applied to all variables,
including stress and total strain. This results in the appearance of the spatial integrals in
the equilibrium equations and the boundary conditions. Therefore, the governing partial
differential equations along with the boundary conditions and constitutive equations all
must be rewritten in nonlocal forms. As a consequence, both the formulation and the
numerical implementation become difficult and cumbersome (Bazant, 1991). To
overcome this shortcoming, it has been found that it is necessary to apply nonlocal
treatment only to variables controlling the softening process (Pijaudier-Cabot and
Bazant, 1987). In concrete, a quasi-brittle material, the softening behaviour is the result
of damage in the material and hence requires appropriate nonlocal treatment for the
damage variable, damage energy or strain, which directly or indirectly governs the

softening behaviour of the constitutive models.

A simple modification of the thermodynamic formulation for coupled damage-
plasticity will be carried out in the following section, backed by some preliminary
micromechanical analyses of concrete material by Bazant (1991, 1994). The nonlocal
nature of damage in this case is mostly due to the interactions of microcracks within a
certain volume element, whose size is proportional to the characteristic length of the
material (Bazant, 1991, 1994). As a result of this nonlocal nature, the spatial integral of
some variables controlling the strain softening must appear in the constitutive equations.
However, in this study, we do not go further into details of the micromechanical
analysis of crack interactions, which can be found in some relevant research papers
(Bazant, 1991; Bazant and Tabbara, 1992; Bazant, 1994). Instead, the concept of
nonlocality will be used for the thermodynamic approach, which places much emphasis
on the energy exchange in the material due to the nonlocality of damage. This just gives
a physical background for the nonlocal approach, instead of thinking of it as a pure
mathematical way to regularize the ill-posed boundary problem due to softening. The

force of the argument is unfortunately still, however, far from being widely accepted.
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5.3.1 Nonlocal thermodynamic approach

In the case of damage-induced softening, the damage variables or the associated
damage energies should be treated as nonlocal quantities (Bazant, 1991). Of course,
generally one can choose other variables, which are indirectly related to the strain
softening behaviour of the materials (e.g. the elastic strain, which is in fact related to the
damage energy) for nonlocal treatment. However, these treatments can lead to models
producing high residual stresses even at very late stages of the deformation process
(Jirasek, 1998). These models are hence not capable of modelling the macroscopic
cracks, which are widely open in a complete separation mode. Therefore the choice of
nonlocal internal variables and the corresponding nonlocal models should be carefully
considered and examined in order to avoid these pathologies. Among nonlocal damage
approaches, that are based on the nonlocality of the damage energy has been proved to
be appropriate and can give reasonably low residual stress when the damage measure is
close to unity (Jirasek, 1998). We adopt this kind of damage energy nonlocality in this
study.

Since our attempt in this study is to formulate models based on thermodynamics,
the problem here is the possibility of adapting the adopted thermodynamic framework
to a nonlocal approach. The energy potential can be modified by introducing the
damage gradient as a new internal variable (Maugin, 1990; Santaoja, 2000; Nedjar,
2001) in order to account for the energy exchange due to nonlocality. An alternative to
introduce nonlocality is to express the first law of thermodynamics in a more general
form in order to account for the energy redistribution in a certain volume element,
where damage occurs, due to the microcrack interactions. The size of this volume
element, where the energy redistribution takes place, is proportional to the material
characteristic length. Originally proposed by Edelen and Law (1971) with the concept
of the nonlocality residual, this is the approach adopted by several Italian researchers
(Polizzotto et al., 1998; Polizzotto and Borino, 1998; Borino ef al., 1999; Benvenuti et
al., 2002).

This approach is based on the assumption that there is energy exchange between
points within a certain volume element, whose size is proportional to the material
internal length scale. In this case, the nonlocality of damage, which can be explained

through micromechanics analysis of microcrack interactions in a volume element
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(Bazant, 1994), is accounted for based on the thermodynamic analysis of that volume.
The interactions of microcracks are represented through the energy exchange at points
inside that volume element. Following the approach, the first law of thermodynamics,
which is usually derived in its local form, is now stated in the nonlocal form over that
volume of the material.

deV + jQ‘dV = jadV (5.8)
V V V

P P P

where V), is any region where the dissipation processes takes place. However, the size
of this region cannot be infinitesimal but is restricted by the material characteristic
length (Polizzottto ez al., 1998). As V,, is of finite size and cannot be arbitrarily small,
the local form of energy balance can only be withdrawn from (5.8) by using a

nonlocality residual P accounting for the energy exchange in the region V), .

W+Q+P=u (5.9)

In this case, the insulation condition (Polizzottto and Borino, 1998)

[Pdv=0 (5.10)
V

p

must be satisfied, restricting the energy exchange only within the volume 7, . It should
also be noted here that P is non zero at points inside the volume V,, and equal to zero
everywhere outside V,, where there are no irreversible processes. The insulation

condition therefore also holds in the whole material body.

The assumption on the nonlocality of energy exchange seems reasonable as
damage in this case produces effects not only where it occurs but also at neighbouring
points within the defined volume element. As a result of this, the energy redistribution
of points inside that volume results in the global satisfaction of the first law of
thermodynamics in this volume element (Polizzotto et al., 1998). The second law of
thermodynamics in this case is still cast in its local form (3.2), but the dissipation (we
consider here isothermal processes only) turns out to be nonlocal due to the appearance

of the nonlocality residual P .

d=c;é;—f+P20 (5.11)
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In this case, the Clausius-Duhem inequality does not hold pointwise, as it does in the
local approach (see 3.9, chapter 3). Instead, due to the insulation condition (5.10), the
Clausius-Duhem inequality now takes the following nonlocal form

[(oy; -7y =0 (5.12)

v

P

This means local violation of the inequality is allowed to occur during the irreversible
processes. Nevertheless, the local dissipation (5.11) is always non-zero though in this
case of nonlocality it does not coincide with the local form (3.9) of the Clausius-Duhem

inequality.

In a similar way, one can also introduce nonlocality into the existing
thermodynamic approach by casting the second law in a nonlocal form, while retaining
the local form (3.1) of the first law of thermodynamics. The nonlocal second law now

reads

0
j[w+qkk—q" k gy >0 (5.13)
V , 0

Using the nonlocality residual P, we can transform the above law to a local form.

le,k

0S+qk,k_ +P=>0 (514)

Neglecting the thermal term (see chapter 3), the mechanical dissipation now becomes

d:HS"Fqk,k +P>0 (515)

which, after being substituted into the expression of the local first law of
thermodynamics, turns out to be exactly same as (5.11) in the previous case (for
isothermal processes). As a result, the Clausius-Duhem inequality in this case is also

satisfied in a global sense (see 5.12).

As can be seen from (5.13), the global satisfaction of the second law of
thermodynamics can lead to processes in which (5.13) are satisfied as an equality at
global level. These processes are therefore interpreted as reversible at global level.
Since the inequality (5.13) does not guarantee the pointwise satisfaction of (5.13),
Polizzotto (2003) argued that these processes could be physically meaningless.
However, in both cases of nonlocality (nonlocality introduced to the first and the second

laws of thermodynamics), that mentioned problem also occurs with the Clausius-Duhem
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inequality (5.12), which is generally used as a condition for any thermodynamically
admissible processes. The physical interpretation here could be the exchange of
energies, which must have been dissipated by heat, at points in the defined
representative volume element. In other words, in the irreversible processes, energy at
point-wise level within each volume element can be either dissipated by heat or
transferred to neighbouring points within that volume element. The latter case here
represents the local violation of the second law of thermodynamics (or violation of the
local Clausius-Duhem inequality), which can be directly predicted as a consequence of
the global satisfaction of the second law. Therefore, in the author’s view, the
introductions of nonlocality to the first and the second law of thermodynamics have

equal physical meaning and can be treated as equivalent.

The above-presented approaches have introduced a way of incorporating
nonlocality into an existing thermodynamic framework, based on the concept of
nonlocality residual. The idea can be adapted to any existing thermodynamic approach
without any difficulty. However, the main difficulty and drawback of that kind of
approach lies in the choice of an appropriate expression for the nonlicality residual P,
which helps to bring the dissipation function (3.20) to its usual form but with the
dissipative generalized stresses being replaced with their nonlocal counterparts. Various
choices have been adopted (Polizzotto and Borino, 1998; Polizzotto et al., 1998) based
on the introduction of the regularization operator R and its adjoint R~ defined on the

internal variables to be made nonlocal.

For concrete damage, there should be two different internal variables to be treated
as nonlocal quantities, which are the tensile and compressive damage measures afl and
ay respectively. In addition to the tensile characteristic length, the same concept of
compressive fracture energy and material characteristic length should also be applied to
the modelling of the material compressive behaviour (Feenstra and de Borst, 1996;
Jansen and Shah, 1997). However, the characteristic length related to the compressive
fracture energy is in general different from its tensile counterpart (Comi, 2001), due to
different failure mechanisms in tension and compression. For that reason, the volume
V, must be defined so as to take into account two possible dissipation processes due to
damage in tension and compression respectively. The elegance and physical

significance of the theory is lost. More physical interpretation for the material nonlocal
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responses in both tensile and compressive softening should therefore be provided. This,

however, is left to future study.

A simple nonlocal thermodynamic approach is proposed in this section based on
the framework (by Houlsby and Puzrin, 2000) presented in chapter 3. Using the
advantages and consistency of the adopted framework in linking the specified energy
functions with the derived constitutive models, nonlocality can be incorporated in the
approach by simply introducing nonlocal terms into the expression of the dissipation
functions. For the coupled damage-plasticity models presented in chapter 4, the
incorporation of nonlocal regularization into the proposed approach and the derived
constitutive model, the local version of which is represented by equations (4.25), (4.37),
(4.46) and (4.49), is rather straightforward. The procedures in section 4.3 of the
previous chapter can be repeated here, with some minor modifications to introduce

k *
nonlocality to the dissipation function, through two component functions F{ and F° .

In this case, nonlocality occurs in both the tensile and compressive damage
criteria. The dissipation function (4.20) now takes the following nonlocal form:

AN

d=F (oy.alyaf )iy + B (oy.05 Jas {%—(l—r)akk}d"" + (5.16)

3r 2dkk
Referring to Chapter 4 on the local approach, we see that functions F}’ (O'ij,a; , aé) and
Ff ( i af,) have been defined in local forms as

(1_+ V)O'UO' —VO 1.0
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* *
For a nonlocal approach here, ;' and F are now of nonlocal forms

(1+V)GUO-U ‘{Gkkall

e 2£[1- Hlof i Pli-f) Rlehas)  5170)
lj'g(“y—x”\(“pz)ajg ~pilow) (o) v
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and

(1+V)O'J0'j I{O'kkO'”

Flc* _ 2E1—H(O'kk hd (l—adc )2 Flc(ag) (5.18b)
1 j- (“ _X”\(“Pc)%_'%_'—Pc(Ukk)_(Uu)_ v
Gc(x)V[g Y= 2E(1-af ) Y

As can be seen, nonlocality is introduced directly to the dissipation function (5.16). The
above expressions (5.17b and 5.18b) only differ from their counterparts (5.17a and
5.18a) in the appearance of spatial integrals in the denominators. In a similar way to the
derivation of the damage loading functions (4.46) and (4.49) in Chapter 4, we obtain

here two nonlocal damage loading functions

yé’ ( )J‘ | _ ”\ 1+pt l]o-lj pt(o-kk) ( ll) dV — F1 (ad’ad) 0 (5 19)
2E(1 ad)z
and
c_ 1 _ \(1+Pc)%_'%_'—Pc(akk)_(azz)_dV_FC Voo (520
g e flag)=0 620

In the above expressions, V; and V. respectively represent the volume elements where
the dissipation processes due to tensile and compressive damage take place. These
volumes should be distinguished due to different natures of the two failure mechanisms,
characterized through two different characteristic lengths and two different fracture
energies in tension and compression. This difference unfortunately can cause difficulties
in the numerical implementation, and therefore will be overcome by the proposal of
appropriate procedures for the determination of model parameters. Those procedures are

the main subject of the next sections.
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The use of spatial integrals for energy-like terms in the denominators of (5.17b)
and (5.18b) results in two energy-based nonlocal damage criteria (5.19 and 5.20). As
mentioned at the beginning of section 5.3.1, in the numerical failure simulations these
energy-based damage functions help avoid the unrealistically high residual stresses at
very late stages of the damage process, when macro cracks begin to occur (Jirasek,
1998). The integrals in the denominators of (5.19) and (5.20) represent the nonlocality

of energy-like quantities, which can in general be expressed as

a;(x)= %M J&illy = (v v (5.21)

in which @; (i stands for ¢ or ¢) is the nonlocal counterpart of the energy-like quantity
®;; x and y are coordinate vectors of points within the defined volume element V; ;
g (“y —x||) is the weighting function; and G; (x) is the weight associated with point x,

aiming to normalize the weighting scheme applied to ;.

G;(x)= [ g (ly—x[)av (522)
v
Therefore the normalization condition of the weighting scheme is satisfied:

G-(x)

1

L P 529
4

The weighting function g can be in the form of either a Gauss weight function
7’2
gi(r)=g;(ly —x|)=exp T (5.24)
i

or a bell-shaped function

0 if >R,

gi(r)=g:ly-x|)= (1—i]2 o (5.25)
R’ :

1

where r = ||y —x|| is the distance between the considered points; /; and R; are the length
parameters of nonlocal continuum, governing the nonlocal spread of the damage. These
lengths (/; and R;) in nonlocal models defines a finite volume characterizing the
constitutive behaviour of the material (Ferrara and di Prisco, 2001). They are

parameters associated with nonlocal model and their relationships with the width w; of
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the fracture process zone are dependent on the material properties and the constitutive
behaviour of the nonlocal model. These relationships will be explored in the next
section. In the literature (Jirasek, 1998a; Ferrara and di Prisco, 2001), the term internal
length is usually used to refer to the length parameter /; in the Gauss weight function
(5.24). For an arbitrary weighting function g(r) , a definition of the internal length /; is
(Jirasek, 1998a):

(5.252)

For the bell-shaped function in (5.25), the above equation gives /; = R; / V7. It is also
noted here that the term “characteristic length” in the literature can be used to refer to a
length parameter in nonlocal continuum (Bazant and Pijaudier-Cabot, 1989; Bazant and
Cedolin, 1991), or the width w; of an imaginary and uniformly damaged crack band
(Ferrara and di Prisco, 2001). In this study, we use both terms “characteristic length”
and “internal length” for a length parameter of the nonlocal continuum, and refer to w;

as the width of an imaginary and uniformly damaged crack band.

Use of the above nonlocal averaging leads to a non-symmetric structural stiffness
matrix in the finite element analysis, due to the effect of the boundary of the analyzed
structure on the weighting scheme (Jirasek and Patzak, 2002; Bazant and Jirasek, 2002;
Borino et al., 2003). This effect, however, merely matters at the structure boundary,
where G,(x) varies at points within a certain distance (less than the nonlocal interaction
radius R;) from the boundary and is different from its maximum value obtained when
the structure is unbounded. A modified weighting scheme was also proposed by Borino
et al. (2003) to remedy the problems of a non-symmetric stiffness matrix. It is, however,

not yet adopted in this study.

The advantage of this proposed introduction of nonlocality is the simplicity over
the approach adopted by the Italian researchers (Polizzotto et al., 1998; Polizzotto and
Borino, 1998; Borino et al., 1999; Benvenuti et al., 2002). Nonlocality occurs in the
dissipation function and helps redistribute the dissipated energy over the regions where
the irreversible processes take place. The nonlocal rates of dissipation are therefore

significantly controlled by the two expressions under the spatial integrals and obviously
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affect the damage process. On the other hand, the connection between the dissipation
function and the obtained yield/damage criteria has been examined in chapter 3, and
here helps obtain the physical interpretation of the proposed nonlocal regularization.
This connection, through the use of the Legendre transformation, guarantees the
consistency of the adopted thermodynamic approach, represented through the
possibility of obtaining the total dissipated energy directly from the specified dissipation
function. As a consequence, casting the dissipation function in nonlocal form directly
results in the regularization effects on the derived constitutive model, realized through
the nonlocal damage criteria (5.19) and (5.20). This is one of the great advantages of the

thermodynamic framework adopted in this study.
5.3.2 Parameter identification for nonlocal damage models

5.3.2.1 Background and a brief review

The relationship between the width of the fracture process zone w, and the tensile
internal length /, was established by Bazant and Pijaudier-Cabot (1989), in which

w, =1, was found along with the relationship /, =3d ,,, between /, and the maximum

max

aggregate size d In addition, w, =3d was also found by Bazant and Oh (1983)

max °* max

as an optimal fit for various experimental tests, based on their proposed crack band
model. However, those relationships cannot be generalized as their derivations were
carried out merely based on specific conditions of the adopted experimental test (Bazant
and Pijaudier-Cabot, 1989) and assumptions on the adopted constitutive models [e.g.
linear softening with constant strain across the width in crack band model (in Bazant
and Oh, 1983), and use of a specific expression for the damage evolution (in Bazant and
Cedolin, 1991 and Bazant and Pijaudier-Cabot, 1988)]. Moreover, w, in continuum
models does not mean the actual width of the micro-cracked zone, but the minimum
admissible dimension of the representative volume element (Bazant and Oh, 1983).

From that viewpoint, w, =3d is merely an approximation and can vary with the

max

material properties, e.g. smaller ratio w,/d for high strength concrete with less

max

difference between the elastic modulus of mortar and aggregate (Bazant and Oh, 1983).

Therefore, from the viewpoint of data fitting, a different ratio, e.g. w, =1.5d could

max >
be acceptable, provided that the tensile fracture energy G of the material is invariant

with respect to any change of w, (Bazant and Oh, 1983).
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The above is merely a very brief review on the relationship between the width of
the tensile fracture process zone w,, the tensile internal length /,, and the maximum

aggregate size d which will serve as a basis for the identification of parameters of

max »
the proposed nonlocal model in this study. However, that is not enough for our
proposed model with two separate modes of tensile and compressive damage-induced
softening. Relationships between w,., /. and d,, in compression are additionally
needed for the compressive behaviour of the model. Unfortunately they cannot be
obtained from available experimental research, which mostly deal with the tensile

fracture properties of the material. Besides, the ratio w,/d is also expected to differ

max
significantly from that in tension, due to different mechanisms of failure in tension and
compression. As a consequence, the nonlocal interaction radiuses R, and R, should be
different in tension and compression respectively. This causes difficulties in the
implementation of the proposed models as well as the numerical analysis, especially in
the case that two modes of damage are activated in the same part of the analyzed
structure (e.g. in the splitting test of a concrete prism). Comi (2001) also addressed the
necessity of adopting different tensile and compressive internal lengths in the nonlocal

constitutive modelling of concrete, but still used the same value for both lengths in her

relevant numerical example.

Bearing in mind the mentioned problems, we should seek an alternative way to
determine the relationships between the nonlocal interaction radiuses R, and R_. (or
alternatively between the internal lengths /, and /) used in the numerical analysis and
the corresponding widths w, and w, of the fracture process zones. In this study, the
balance of the dissipated energy in an equivalent crack band model and our adopted
nonlocal model is used as a basis for determining the mentioned relationships. To lessen
the difficulties and complication in the numerical implementation, R, and R, are taken
identical in this study; and we use R as the nonlocal interaction radius in both tension
and compression. This simplification, however, causes almost no loss of generality
thanks to the adoption of an appropriate procedure for the parameter identification. The
procedure is, however, presented for tensile behaviour only. Its adaptation to

compression is straightforward.

Mathematically, the incorporation of nonlocality into the model will prevent the

governing differential equations changing type at the onset of damage and help to
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maintain the well-posedness of the boundary value problem. From the structural point
of view, nonlocal regularization will prevent the dependence of the solutions on the
discretization in the finite element analysis. The dissipation in nonlocal analysis in fact
spreads over a band with a finite thickness dependent on the nonlocal interaction radius
R and other parameters of the model. This bandwidth, denoted here as z,, is different
from the width w, (w;, is also termed the dissipation length in Jirasek (1998a); and
Bazant and Jirasek (2002)) of the fracture process zone in an equivalent crack band
model (see figure 5.4a). In addition, due to the averaging process in nonlocal models,
the stress-strain relations are not the same for all material points in the FPZ. This is
totally different from those in crack band models, where a unique stress-strain relation
is maintained at every material point undergoing damage. As a consequence, in the
structural analysis with nonlocal softening models, the local dissipation is different at
every material point in the FPZ. Nevertheless, the total energy dissipated in the zone z,
in the nonlocal model should be equal to that within the width w, in the equivalent
crack band model. Therefore, the parameters of the local stress-strain relations in
nonlocal models should be determined so as to guarantee the right amount of total

dissipated energy per unit area imposed by the fracture energy G .

Damage indicator

Figure 5.4a: Damage profile in uniaxial test using nonlocal model,

and definition of w;, and z; (adapted from Bazant and Pijaudier-Cabot, 1989)

The above observation is the basis for the determination of parameters for nonlocal
damage models. Based on the equivalence of dissipated energy, a relationship between

the internal length /, and the width w, of an imaginary and uniformly damaged crack
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band is needed for the determination of parameters for nonlocal models. However, the
condition of preserving the right amount of dissipated energy has rarely been addressed
or inappropriately used in numerical studies using nonlocal (or gradient) damage
models [e.g. in de Borst and Pamin (1996), Meftah and Reynouard (1998); Di Prisco et
al. (2000)]. De Borst and Pamin (1996) and Di Prisco et al. (2000) used the constant
ratios z,/w, =2 and z,/l, =27 to yield a linear relationship between w, and /,. The
choice of the ratio z,/w, =2 was in fact rather arbitrary as it was not accompanied by
any theoretical or experimental basis. In addition, the ratio z,//, =2z was obtained by
de Borst and Muhlhaus (1992) based on a simple uniaxial model with linear softening
law and therefore cannot be applied to models with nonlinear softening law. Similarities
are also observed in Meftah and Reynouard (1998), with the use of z,//, =2z, which is
derived from a gradient model with linear softening law, for a nonlinear softening

constitutive equation.

Ferrara and di Prisco (2001) carried out numerical analyses for different types of
concrete structures in mode I fracture to establish relationships between [, (or
alternatively the radius R ) and w;,. In their analyses, all the parameters controlling the
local behaviour of the model are kept fixed, realized through the constant value of the
specific fracture energy g, while the internal length /, is varied. Numerical failure
analysis of the considered structure is carried out for each given value of /,. The
calculated dissipated energy, as the area under the load-displacement curve, is then
divided by the fracture area to yield the fracture energy Gr. The width w,
corresponding to the given value of /, is obtained as w, =Gy /gy . It was shown
(Ferrara and di Prisco, 2001) that for each type of nonlinear softening curve, w, was
linearly dependent on /,, which means k =w, /I, is a constant. However, this numerical
observation came from the use of parameters of the local constitutive model
independent from the internal length /, and hence also independent from the width w,
(see Ferrara and di Prisco, 2001). In other words, the correspondence between the
stress-separation law in cohesive crack model and stress-strain relation in continuum
model (see figure 4.11, Chapter 4) is not respected. Therefore, the obtained linear
relationship between /, and w, cannot be considered appropriate for nonlocal

constitutive model.
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In fact, the parameters which govern the local behaviour of the continuum model
should be related to the width w, of the fracture process zone. In the crack band model
of Bazant and Oh (1983), it is the dependence of the softening modulus of the post-peak
uniaxial stress-strain curve on the crack bandwidth w,. In research on gradient
plasticity, Vardoulakis (1999) also pointed out the nonlinear dependence of the
maximum shear band thickness on the internal length /,, as a result of the determination
of the softening rate of the model through inverse analysis of the shear band thickness.
Similar relationship was also obtained in recent study by Zhao et al. (2005) on shear
banding in geomaterials using gradient damage model. The authors (Zhao et al., 2005)
arrived at a ratio w, /I , expressed in terms of the Poisson’s ratio and a parameter
representing the shape of uniaxial stress-strain curve. Nevertheless, these analytical
expressions describing the nonlinear relationship between /, and w, are obtained from
specific models with simplifications, e.g. linear softening law (Zhao et al., 2005), and
therefore cannot be universally applicable in practice. A general numerical procedure
for the establishment of a relationship between /, and w, accounting for the influence

of other parameters of an arbitrary local constitutive model is hence needed.

Jirasek (1998a) addressed the nonlinear relationship between /, and w,, and
proposed a simple iterative procedure for the determination of parameters of
constitutive models based on nonlocal damage theory. In his research, different types of
softening law (linear or nonlinear), nonlocal weight function (using Gauss function or
bell-shaped function) and nonlocal formulation (using the nonlocality of damage
energy, strain or damage variable) were used to derive different nonlinear relationships
between k =w,/l, and the ductility parameter 7= gp / g, with g, being the elastic
energy density at uniaxial peak stress (g, = f,’2 /2E ; see figure 5.5). The established
graphs are exploited for the selection of model parameters in an iterative manner (see
Jirasek, 1998a). Despite the slight variation of £ (for highly ductile softening law) with
respect to the local constitutive law and the type of nonlocal formulation, use of pre-
established graphs for the determination of model parameters is not always appropriate,
as these graphs are implicitly dependent on the material properties used. In other words,
these graphs should be established for every set of experimentally given material
properties, softening curve and nonlocal weight function, instead of using pre-built
graphs for all cases. In addition, a more effective procedure should be sought to replace

the iterative procedure proposed by the author (Jirasek, 1998a).
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5.3.2.2 A procedure for the determination of parameters for nonlocal models

In this section, a procedure to deal with the determination of parameters for
nonlocal damage models is proposed. The method takes into account the dependence of
the local constitutive equations and the length parameter R of the nonlocal model on
the width w, of the fracture zone. The key idea of the procedure is to assure the right
amount of dissipation of a nonlocal damage model at the end of the damage process. In
other words, the model should behave so that the damage process results in the averaged
dissipated energy per unit area identical with that imposed by the material fracture
energy Gp. For the sake of simplicity, only pure damage models and a uniaxial
problem are considered. The proposed procedure is, however, also applicable to the
general elasto-plastic-damageable models and not restricted by the uniaxial problems

studied in this Chapter.

)
S 8
Er=nEgp

O L
&

]?/E Ete

Figure 5.5: Definition of the ductility parameter 7

From the specified nonlocal interaction radius R, the parameters to be determined
is the width w, of the FPZ in an equivalent crack band model, or alternatively the ratio
k =w,/R . They are related to the fracture energy G through the relationship

Gr=w,8r=kRgp (5.26)

in which g is termed the specific fracture energy (or local fracture energy), which has
been essentially used for the determination of other model parameters in the previous
chapter. As can be seen, all parameters of the nonlocal model (R and those in functions
F') are strongly dependent on each other and need to be appropriately determined. For
this reason, in a study by Jirasek (1998a), a simple iterative process based on a one-
dimensional numerical analysis of a tensile bar was used. Following this process (in

Jirasek, 1998a), the nonlocal interaction radius R need to be specified first based on the
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maximum aggregate size of aggregate or the dimension of the structural members, while
iterations are needed for the determination on of the ratio £ between the width w, of

the equivalent FPZ and the nonlocal radius R .

The initial value of £ can be chosen in the range k£ =1~ 3, depending on the type
of nonlocality (e.g. nonlocal strain, or nonlocal damage energy). For an assumed value
of k, the specific fracture energy g can be determined from the relation (5.26),
followed by the determination of all parameters of the model, as illustrated in Chapter 4.
With all parameters in hand, we can then carry out the numerical failure analysis for a
one-dimensional bar with a defect at its middle length to trigger damage (see figure
5.6), and obtain the total dissipation as the area under the load-displacement curve. In
principle, the averaged dissipated energy obtained, after having been divided by the
cross sectional area of the bar and denoted as G}, should coincide with G,
representing the right amount of energy dissipated per unit area during the fracture
process. However, this is not always the case and the procedure should be repeated

several times until the balance of dissipated energy is established.

k kA

k Correct value of &

k’

o) >/

Figure 5.5a: Determination of the ratio k = w; /R

Relationships between non-dimensional quantities can be made use of for higher
efficiency in the process of determining the ratio & . Jirasek (1998a) suggested using the
relationships between the ductility parameter 77, defined as the ratio of the local specific
fracture energy g to the elastic energy density at peak stress (denoted here as
gy = ft'2 / 2E, figure 5.5), and the relative dissipation length as the ratio between w,
and the length parameter /, used in the Gauss weight function. However, for use of the
bell-shaped function in this study, k=w,/R is adopted as the relative dissipation
length. The procedures proposed here, which help avoid the above iterative process, can

be summarized as follow (see also figure 5.5a):

+ Assume values of k;’s: k; =1.0,...,k, =3.0
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+ Calculate the fracture energies g = Gr /(k;R), ductility parameters 7, = g / g,
and determine the corresponding sets of model parameters based on the procedures

proposed in chapter 4

+ Carry out the numerical analyses of a one-dimensional bar and calculate the
corresponding total dissipated energies D; as the areas under the load-displacement

curves.

+ From the dissipated energies obtained, calculate the corresponding fracture energies

Gy =D;/A, where A is the cross-sectional area of the bar, and derive the ratios
ki =Gr; /RgF;
+ The correct value of &£ will be found by plotting k; and &/ against 7; = gp; / g, and

determining the intersection point of the two plotted curves (see figure 5.5a).

5.3.3 Numerical examples

The following examples demonstrate the above procedure. We use in the examples

the following sets of material properties:

Set 1 (Perdikaris and Romeo, 1995) Set 2 (Petersson, 1981)
E = 43600N/mm* E =30000N/mm?
v=02 v=0.2
£/ =4.77N/mm? £/ =3.33N/mm?
Gr =0.08917N/mm Gr =0.124N/mm
d nax = 6Mm d ax = 8mm
A Strength-reduced element
1
TA¥ >
Smmgy A
>
Z
7

\

A

Figure 5.6: Finite element model used for the determination of parameter &

In the first material set, the nonlocal interaction radii are assumed to be:

R, =2.5d ,x =15mm, R, =2.0d,,, =12mm and R;=1.5d,,, =9mm. For the
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second material set, we use: R; =2.5d =16mm and

Ry=15d

* max

max =20mm, R, =2.0d .,

=12mm.

A simple test (figure 5.6) is set up for the parameter identification. Because of
symmetry, only half of the bar is modelled. To trigger damage, a one-percent reduction
of the uniaxial tensile strength f; is applied to the blackened element in figure (5.6). As
the energy dissipation is only affected by the area under the stress-strain curve
regardless of the unloading path, a pure damage model can be adopted for simplicity.
Choice of the parameter 7 =g 4, / gr (section 4.3.3, chapter 4) may have effects on the

procedures here. These effects are illustrated in figure (5.7).

k ——Kk(REB) —O—K (REB) k —8—k(REB) —O—K (REB)
2.4 - —a—k(R=1) —O—K (R=10) 2.4 - —#—k(R=1) —D—k: (R=1)
03 | a— k (R2=9) A—K (R2=9) 03 | —A—k(R=9) —A—K (R2=9)
2.2 1 2.2 1
2.1 2.1
24 24
1.9 - 1.9
1.8 + 1.8 4
1.7 4 1.7
1.6 ‘ A 4 1.6 ‘ AT
5 10 15 20 25 5 10 15 20 25

(a) Material set No. 1; t = gsi/gr = 0.4

kp =1.86; kg =1.92; kp =2.04

K —o—K(RE2) —O—K (RE20)
v —B—K(R=B) —O—K (R=8)
bs ] —A—k(RE=D) —A—K (R3=D)
22
21
2 i
19 |
18 |
17
16 : A
10 15 20 25 30 35

(c) Material set No. 2; t = gsi/gr = 0.4

kp =1.86; kg =191; kp =1.99

(b) Material set No. 1; = gni/gr= 0.25
le =1.93; kR2 =1.98; kR"’ =2.06

k —8—k (RE20) —O—K (RE20)
—B—k(R=B) —O—K (R=9)
—A—k(R3=0) —A—K (R3=1)

3
10 15 20 25 30 35

(d) Material set No. 2; t = gni/gr = 0.25

kp =1.93; kg =1.96; ky =2.02

Figure 5.7: Determination of parameter &
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In addition, for the calculation of dissipated energy, one has to require the numerical
analyses be carried out until failure (complete separation of the numerically-tested
specimen in two pieces), characterized by damage measure « reaching unity.
However, with the proposed nonlinear softening law, this is hardly achieved because the
above-defined failure only happens at infinite strain. Therefore in the numerical
example, the term failure refers to the states when 1-a); < 10~ and the uniaxial stress
is normally below 10°N/mm”. Linear interpolation is used to calculate the dissipated

energy below this stress level.

The results are shown in figure (5.7), with the obtained values of £ corresponding
to the assumed values of the nonlocal interaction radius R . It can be seen that £ tends
to increase for decreasing value of R. In the above example, k£ can take values of
1.9~1.95 for R;/=2.5dyx or 2.0~2.1 for R;=1.5d,,4c. This, however, is only a very rough
suggestion and its effects on the results of the numerical simulations can be considered
negligible taking into account many assumptions and simplifications of the adopted

constitutive models.

Nonlocal Set 1 Set 2
radius k E,, (MPa) n, k E,, (MPa) n,
Ry =2.5d 0« 1.93 22345.90 0.38 1.93 8967.34 0.34
R,=2.0d,,, | 198 16800.07 0.36 1.96 6898.61 0.32
Ry=1.5d,,, | 2.06 12083.68 0.34 2.02 5067.76 0.30

Table 5.1: Model parameters corresponding to the choice of nonlocal interaction radius

The above calculation of £ can be readily confirmed by carrying out the numerical
analysis of the corresponding three point bending tests (Perdikaris and Romeo, 1995;
Petersson, 1981) corresponding to the material set numbers 1 and 2. Three different

choices of nonlocal interaction radiuses: R; =2.5d Ry =2.0d ,,x and R; =1.5d

max ? max max

are used in both tests, resulting in the corresponding values of £ of 1.93, 1.98 and 2.06
(Perdikaris and Romeo, 1995), and 1.93, 1.96 and 2.02 (Petersson, 1981). The
corresponding model parameters (£, and n,) are obtained from equations (4.80) and

(4.81) in Chapter 4 (with H, = for pure damage behaviour). Their values are shown
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in table (5.1). More details on the tests will come in Chapter 7 and only brief results are

presented here to illustrate the effectiveness of the proposed parameter identification.

From the numerical results obtained (figure 5.8), it is seen that the numerical load-
deflection curves match rather well the experimental ones, verifying the total dissipated
energy in mode I fracture. The slight differences in the numerical responses come from
the use of only one fitting parameter ¢ =g 5, / gr =0.25 for all three cases of different
nonlocal radii. Nevertheless, all three different radii in the same bending test give very

close numerical responses to the experimental load-deflection curves.

900 Load (N) Loa (KN)
800 - 129 o
700 + 10 4
600 + —&— Experimental
8
500 - Numerical, R=16mm
400 | 6 —O— Numerical, R=2mm
—O— Numerical, R=9mm
300 4 —— EXp., GF=1B5Nm 4
—&— Exp., GF=1837Nim 9 3 i
2004 A —o—Num,, R=mm, GF=24Nn o
100 {@® —2&—Num., R=6mm, GF=24Nm :
oA ‘ Num., Rf20mm, GE=Q4Nkn ‘ ‘ 0 a1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
Deflection (mm) Deflection (mm)
(a) Test of Petersson (1981) (b) Test of Perdikaris and Romeo (1995)

Figure 5.8: Verification of the choice of model parameters in three point bending test

In both numerical bending problems, the dissipated energies from the very long
tail responses compensate for the difference in the dissipation over the range of
deflections shown in the figures. Nevertheless, the tail behaviour of the numerical load-
deflection curves can be improved by setting smaller value (e.g. 1.0-107) for the
numerically-used critical damage (1.0-10™" in the examples here) in the evaluation of
the local fracture energy g, (see 4.72). In addition, better numerical responses can in
principle be achieved through optimization procedures combined with size effect tests
on specimens of different sizes, giving a better combination of fitting parameter ¢,
nonlocal interaction radius R, and ratio k& between R and the width w; of the fracture

process zone. This is, however, outside the scope of this study.
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5.4 Summary and Discussion

The introduction of nonlocality to the proposed local constitutive model (equations
4.25, 4.37, 4.46 and 4.49) in the previous chapter has been presented in this chapter,
backed by a brief review on regularization methods. Comparisons between the proposed
approach and other nonlocal thermodynamic approaches have also been made, showing
the simplicity yet the advantages and consistency of the developed approach. Although
some physical interpretations for the nonlocal nature of concrete damage have been
provided (Bazant, 1991, 1994) and realized in this study through the nonlocality of the
energy of dissipation, generally they still need to be enriched with more evidence based
on experiments and micromechanics. The proposed nonlocal damage-plasticity model
(equations 4.25, 4.37, 5.19 and 5.20) therefore can only be considered as a mathematical
approach towards the regularization of softening effects in the numerical modelling of
concrete materials. This model and its derivatives (e.g. nonlocal tensile damage model,
or nonlocal tensile damage-plasticity model,...) will be implemented into a finite
element code (Chapter 6) and used for the numerical failure simulations of concrete

structures (Chapter 7).

The connection between the parameters of the nonlocal model and the
experimentally provided material properties has been established, through the
identification of the parameter k£ relating the nonlocal interaction radius R with the
width w, of the fracture process zone in tension. In conjunction with the determination
of model parameters in chapter 4, this newly-established connection helps provide a
consistent and rigorous way of deriving the stress-strain behaviour in the proposed
constitutive models from the stress-separation curve given by standard experiments. To
some extent, in the numerical examples the structural responses can be seen to be
unique regardless of the choice of different nonlocal interaction radiuses. This is an
important point, which has rarely been discussed in the literature, about the nonlocal

modelling of the materials.

The same procedures for the determination of nonlocal model parameters can be
applied to the modelling of the compressive behaviour of the material, giving relevant
value of the width w, of the fracture process zone in compression, which in general
differs from that in tension. However, those procedures can only be tentatively adopted

here due to the lack of experimental data of concrete in compression, as well as the
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requirements for more physical interpretation of the compressive fracture energy G,
and compressive internal length /.. Much of research work is therefore still required to

capture faithfully the complex behaviour of this quasi-brittle material.



6-1

Chapter 6: Numerical Implementation

6.1 Introduction

Numerical implementation plays an important part in the development of
constitutive models for engineering materials. The implementation here comprises a
method for the solutions of partial differential equations in solid mechanics, and the
incorporation of the constitutive models into this system of governing differential
equations. In our study, the finite element method is employed for solving the boundary
value problems in continuum mechanics. However, as concrete exhibits highly
nonlinear behaviour after peak stress, the incorporation of the nonlocal constitutive
relationships into the system of governing differential equations in solid mechanics is
not very easy. A suitable numerical scheme is needed for the integration of the
nonlinear rate constitutive equations. For stability, implicit integration schemes like the
backward and midpoint Euler schemes are preferred. In addition, due to the material
nonlinearity, the system of linear algebraic equations arising from the finite element
discretization also turns out to be nonlinear, with the stiffness matrix being dependent
on the nodal displacements. Therefore, numerical solution methods, in which, the

Newton methods are normally suitable and adequate for this purpose, will be used.

However, softening makes things complicated here, as the system of algebraic
equations becomes singular at peak load and negative-definite beyond peak load. Snap-
through and snap-back responses (see figure 6.1) on the equilibrium path represented by
the load-displacement curves are typical when tracing the equilibrium paths in analysing
structures made of softening materials. Displacement controlled Newton methods can
handle snap-through behaviour, but fail when the equilibrium path exhibits snap-back.
In the past, various arc-length control procedures have been proposed to deal with
softening-related problems (Riks, 1979; de Borst, 1986; Crisfield and Wills, 1988;
Crisfield, 1997; May and Duan, 1997). The key idea of the methods is the use of an
additional constraint to the load and displacement vectors. The load multiplier in this
case is not a constant, but acts as an additional variable to the unknown displacement
vector. The new system of equations, augmented by this constraint, is always well-

conditioned, even when the stiffness matrix is singular (Crisfield, 1997), enabling the
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method to be used to tackle structural problems with an equilibrium path exhibiting

snap-through and snap-back responses.

This chapter centres around the finite element implementation of the proposed
nonlocal constitutive model, in which the nonlocal constitutive equations (4.25, 4.37,
5.19 and 5.20) in the previous chapters and an arc-length solution procedure are
presented and implemented. A modified backward integration scheme, based on the
algorithm proposed by Crisfield (1997, Vol. 1, Chap. 6) is employed for the integration
of the rate constitutive equations. The arc-length control here is based on that proposed
by May and Duan (1997), with a local, instead of global, constraint equation, and can be
used in combination with either direct or indirect displacement controlled Newton
methods. In addition, the indirect displacement controlled method can be seen to
resemble this local arc-length procedure and can readily be incorporated into the
existing finite element code OXFEM used in this study. Numerical examples showing
the capability of the adopted arc-length control procedure in handling strong snap back

behaviour will be presented in the next chapter.
6.2 Solution strategy

Load4 Limit point Load4

Turning point

O

Disp. Disp.

Figure 6.1: Snap-though (left) and snap-back (right)

The numerical techniques used in nonlinear finite element analysis are briefly
introduced here, with the objective being tracing the nonlinear equilibrium paths of
structures subjected to quasi-static loading. For this purpose, an incremental-iterative
solution procedure is usually employed. The load is increased step by step, and within
each step iterations are required to get to the equilibrium state. Therefore, two separate
incremental and iterative procedures should be distinguished. Load control,

displacement control and arc-length control are usually used for the incremental
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analysis while Newton-like methods are the basis for iterative techniques. However,
among the incremental procedures, only the arc-length control can tackle high
nonlinearity, in which the equilibrium path usually represented by the load-
displacement curves may show snap-though and snap-back responses (figure 6.1). Use
of load control or displacement control in such cases is not appropriate as the former is
not able to handle both snap-though and snap-back responses and the latter can merely

overcome snap-though behaviour.

All the above numerical techniques have been well documented in text books
(Chen and Han, 1988; Crisfield, 1997; Jirasek and Bazant, 2002). Therefore, they are
not presented here. This section only concentrates on the presentation of relevant
techniques for the nonlinear analysis of structures made of softening materials, in which
snap-though and snap-back responses are often encountered. The arc-length control in
combination with the Newton-Raphson iterative techniques is the basis for the
implementation and will be briefly introduced hereafter. The presentation of the
solution methods in this part of the chapter is merely a reproduction of the research
work by several researchers (mainly that of de Borst, 1986; and May and Duan, 1997),
aiming at setting a background for the implementation of the proposed constitutive
models. Background and more details on the arc-length methods can be found in the

cited references.

6.2.1 Arc-length methods

Arc-length methods are perhaps the most powerful and reliable control procedures
to deal with softening-related problems in the finite element analysis. The methods
originally stemmed from the proposal by Riks (1979) and have been adapted and
developed by several researchers (de Borst, 1986; Crisfield and Wills, 1988; Crisfield,
1997; May and Duan, 1997). It has also been shown and proved by several researchers
(de Borst, 1986; May and Duan, 1997; Yang and Proverbs, 2004) that the methods,
especially when combined with the use of local or relative displacements in the

constraint equation, can effectively handle snap back response in the equilibrium path.

The key idea of the method is the use of an additional constraint equation for the
incremental load multiplier A4, which plays the role of an extra degree of freedom in

the global linearized equilibrium equations. Although several types of constraints have
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been proposed and employed, not all of them are able to deal with highly nonlinear
behaviour of the material (e.g. strong snap-back behaviour). It has been documented
(Yang and Proverbs, 2004; Yang and Chen, 2004) that the normal-plane and spherical
arc-length methods may fail when encountering snap-back behaviour in dealing with
problems involving softening materials. In addition, the spherical form of the method
was also found to be more stable than the normal-plane arc-length (Crisfield, 1997),
which has poor convergence or even divergence near a limit point. However, despite
some enhancements to the choice of the appropriate root in the spherical arc-length (e.g.
based on the minimum residual in Hellweg and Crisfield, 1998), that kind of arc-length
control still suffers from the drawback of the parabolic constraint equation in having no

real root in highly nonlinear cases (May and Duan, 1997; Yang and Proverbs, 2004).

A more rigorous form of arc-length control and its derivatives, which removes the
drawback encountered in the spherical arc-length method, has been employed with
success by several researchers (de Borst, 1986; May and Duan, 1997; Yang and
Proverbs, 2004; Yang and Chen, 2004). That approach, termed updated normal plane
control by De Borst (1986) and Yang and Proverbs (2004), is adopted in this study. The

constraint equation in this case takes the modified form of the spherical arc-length

AU,TAU, =A% (i=1,2,3,...) (6.1)

in which AL is the arc-length; and the incremental displacement vector AU; at the i"

iteration is accumulated from the iterative ones as follows:

AUi:lede (i=12,3,...) (6.2)
j=1

Use of the above linearized constraints has been found to be superior to that used in the
spherical arc-length as it yields a linear equation for the incremental load factor A4, .
Therefore, it is not necessary here to have any criterion for the choice of the appropriate
root of the constraint equation, as required in the spherical arc-length method. In
addition, May and Duan (1997) argued that the adopted constraint equation (6.1) also
limits the iteration trajectory on a spherical surface, thus always yielding an intersection

with the equilibrium path.

The iterative displacement vector oU ; in this case is split into two parts and can

be expressed as (Crisfield, 1997)
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sU, =6UF +ApUT (6.3)

where SUZ is the displacement vector resulted from the out of balance force F,_; at
the end of the last iteration; and U iP is that from the total fixed load vector P . They are

expressed as follows:

sul =—K,7'F, | (6.4)
Ul =K, 'p (6.5)

In the above expressions, the residual force vector F, needed at the first iteration is
calculated from the last equilibrated state of the structure and the magnitude of its
components normally depend on the convergence tolerance 5,. As K, is not
accumulated during the incremental analysis, for small enough &/, the effects of K,

can be negligible and F, is always assumed to be zero (Alfano and Crisfield, 2003).

During the iteration process, the global stiffness matrix K; can be either
sequentially updated or kept unchanged throughout the load increment, depending on
the employed iterative techniques. However, the residual force F; and the load applied
on the structure 4;P must be updated after every iteration to be in accordance with the
updated load factor A; and updated displacement vector U; of the iterative process.

Therefore, we have here:

A=A +AL (i=1,2,3,...) (6.6)

where /4, is the load factor at the last converged increment; U, is the displacement
vector corresponding to A,; and R; is the internal force vector corresponding to the

stresses at the end of the i iteration.

By substituting (6.2) and (6.3) into (6.1), after some mathematical manipulations
we obtain the incremental load factor A4; as follows:

AL

Ay == (6.9)
Jur uf
a2 -au/ (av, , +ouf)

Al = L il L) fori=2,3,4,... (6.10)

AU,T U
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In (6.9), the first iterative load factor A4; always takes positive value as the sign of the
loading factor can be automatically changed during the iterative process (May and
Duan, 1997; Yang and Proverbs, 2004). In addition, if the stiffness matrix K; is kept
unchanged within the load increment (for modified Newton-Raphson method), Uf-D will

be constant during the iterations and (6.10) becomes

UfT(AUi_l +5U,.F)

A/li = A/ll -
T
U Uy

for i=2,3,4,... (6.11)

6.2.2 Local arc-length methods

In fact, for softening problems, the strains are highly localized in a narrow part of
the structure and the arc-length controls using global constraint equations may fail in
tracing the equilibrium paths. In such cases, only dominant degrees of freedom of nodes
in or around the fracture process zone play an important role in the constraint equations.
Therefore, some amendments on the constraint equations have been proposed (de Borst,
1986; Alfano and Crisfield, 2003). Instead of a global norm of displacements which
contains all degrees of freedom of the analysed structure, only few degrees of freedom
in the failure parts of the structure are taken into account. In particular, the crack mouth
opening displacements (CMOD), crack mouth sliding displacements (CMSD) (de Borst,
1986) or relative displacements of the pairs of nodes of interface elements in cohesive
crack models (Yang and Proverbs, 2004) can be directly chosen for this purpose.
Alternatively, a weighting scheme can also be applied to bring only dominant degrees
of freedom to the constraint equations (de Borst, 1986). However, those ways of
choosing dominant degrees of freedom for the constraint equation can be readily seen to
be problem-dependent and cannot be applied universally. The method therefore cannot

preserve its elegance and generality.

Another way of choosing dominant degrees of freedom for the constraint equations
has also been devised, which has also been proved to be very successful in the
numerical simulations of structures made of softening materials (May and Duan, 1997;
Yang and Proverbs, 2004; Yang and Chen, 2004). Following the approach, the
dominant degrees of freedom in or surrounding the fracture process zone are picked up
and updated sequentially during the numerical analysis. To remove the effect of rigid

body movements on the success of the method, further enhancement to the constraint
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equation can also be made (May and Duan, 1997), following which only relative
displacements of nodal points of elements in the fracture process zone are taken in to
account. In the numerical implementation, a selection criterion based on the
positiveness of the damage variables and their increments at element Gauss points is
used to select dominant elements in the fracture process zone. The degrees of freedom
of nodal points of these elements, called dominant degrees of freedom, are then used in
the constraint equations. Therefore, the whole process of choosing dominant degrees of
freedom and relative nodal displacements can be carried out independently of the
problems under consideration and therefore can be employed as a general method for
the numerical simulations of softening processes in structural analysis. The advantage
of this way of choosing dominant displacements is that very strong snap back behaviour
can be captured successfully, even in cases where the incremental control using CMOD
or CMSD fails. In other words, the local control using relative displacements does not
suffer from the drawback that the CMODs or CMSDs must be always increasing

through out the analysis, as a result of using the updated normal constraints (6.1).

The constraint equation (6.1) now takes its local form as

S V(AU V(AU )= A2 (i=1,2,3....) 6.12)

where e is the element considered and the symbol V is used to denote the relative

displacement vector of an n-node dominant element:
v(U)=[U,-U, U,-U, Us-U, .. Uy =U,, U,=U, I (6.13)

The incremental load factors (6.9) and (6.10) turn out to be (May and Duan, 1997)
AL

[X[vtorfoler

e

A/Il =

(6.14)

A -3 (v Y vsu, )+ vlsuf )}
A

" e Z[V(AUI)T viu? )J

fori=2,3,4,... (6.15)
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6.3 Integrating the rate constitutive equations

This is a vital part in the numerical implementation, as it is directly concerned with
the stability of the numerical solutions. For that reason, the implicit integration method
is adopted in this study, based on the integration scheme proposed by several
researchers (de Borst, 1986; Crisfield, 1997). The system of relations (4.25, 4.37, 5.19,
5.20) governing the constitutive behaviour of the model is rewritten here, with
nonlocality incorporated in the two damage criteria.

(1 + V)Cf - Vo:kké‘ij

ij

g e fimag) (6.16)

vy =Bou +0’3'20i;' —k=0 6.17)

e e e R
—&d

=gy AR g )eo

In the nonlocal damage criteria above, we have replaced the two different volumes
V, and V. with V' as the volume where both mechanisms of damage take place. This
replacement is possible thanks to the introduction of the procedures for the
determination of parameters of nonlocal models in chapter 5. In the above system, it is
readily seen that the responses of every material point in the structure must satisfy
entirely the system of equations (6.16-6.19), which in general can only be solved using
numerical methods. The analysis is, however, more complex than in models where the
evolution laws of damage are explicitly enforced (Peerlings et al., 1998; Peerlings,
1999; Jirasek and Patzak, 2002; Jirasek et al., 2004). Because of the appearance of the
spatial integral in equations (6.18 and 6.19), two spatial discretization schemes are
necessary for solving the boundary value problem. The first discretization is required
for the numerical solution of the partial differential equations. The second is an inner
discretization, which deals with the integration of the rate constitutive equations along a
loading path. Normally, for models based on local theory, only the outer discretization
scheme is needed, as the integration of the rate constitutive equations can be carried out

pointwise. In practice, the same discretization scheme can be used, resulting in the
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nonlocal evaluation of energy-like quantities in the two damage criteria over the Gauss

points used in the finite element discretization.

For the numerical analysis using finite elements, the integrals in (6.18) and (6.19)
can be transformed to summations over Gauss points. Denoting by @ the energy-like
quantity to be averaged, we can express its corresponding nonlocal counterpart as (see

also section 5.1, Chapter 5):

a(x)= @ £ glly —xJeoly)v (6.20)

where

G(x)= [ g(ly-x|)ar (6.21)

The discretization using the finite element method leads to

()Y [elly-xav = 3. [ elly ~x]oly)ar (6.22)
e=1y. e=1y,
in which e denotes the element index and » the total number of elements inside the
interaction volume bounded by a sphere at centre x and of radius R; V, is the
corresponding volume of the finite element e. Numerical integration of both sides of the
above equation results in

n

5(,()2":%%? gmy;’ —xH)detJf = Z%wie gq

e=li=1 e=li=1

y§ —xH)detJfa)(yf) (6.23)

where i is the i’th Gauss point of element e, and m, is the number of Gauss points of
this element inside the interaction volume; w; and J{ are respectively the weight and
Jacobian matrix at Gauss point i of element e. The expression of the nonlocal energy-

like quantities in the damage criteria can now be rewritten in the following form

n m,
Zzwl.engie —xH)detJfa)(yf) n,

a(x)=e=li=l =>w.wo (6.24)

n m, a4
Zwangf —x”)detJf Y

e=1li=1

where n, is the total number of Gauss points inside the interaction volume at point x;

w, and @, are respectively the weight and energy-like quantity associated with the i°th

Gauss point of element e, in which w, is defined by
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yi —x )detJl-e

ngq

:i%ﬁﬂ

e=li=1

w (6.25)

y
yi - xH)det Jf

As mentioned in the introduction of this Chapter, an implicit Euler integration
scheme is adopted for the integration of the rate constitutive equations. However, due to
the presence of the spatial integrals in the damage criteria, the stress update procedure
cannot be carried out point-wise as normally done in local models. Nonlocality in this
case turns the pointwise-defined stress-strain constitutive equations to a system of
nonlocal coupled equations, relating the stresses, strains and internal variables at several
integration points in the failure region. This coupling makes the stress update routine
more complicated, requiring considerable effort in the formulation and implementation

as well as time cost in the numerical computation.

------ -, B (Elastic trial point)

\y=yc>0
y =0 (elastic limit)

Figure 6.2: Pictorial presentation of the integration scheme
(after de Borst, 1986; and Crisfield, 1997)

As the constitutive relationships in this case contain coupled equations relating the
stress and strain increments at several integration points, finding the intersection points
between the stress path and the yield/damage surface is almost impossible. Instead, an
elastic predictor — damage-plastic corrector integrating scheme is adopted here for the
integration of the rate equations. This is based on the algorithm proposed by Crisfield
(1997) and can be considered as a form of the backward Euler integration scheme
(Crisfield, 1997). This algorithm makes use of the normal at the elastic trial point and
hence avoids the necessity of computing the intersection between the elastically-
assumed incremental stress vector (using secant elastic-damage behaviour) and the

yield/damage surfaces. Furthermore, the method enforces the satisfaction of the yield
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and damage criteria (6.17-6.19) at any stage of the loading process, thus removing the
inaccuracies encountered when the consistency conditions of the yield and damage

functions are used (de Borst, 1986).

At the starting point, the system of relations governing the constitutive behaviour
of the material are rewritten in rate form by taking the first-order Taylor expansion of
the yield and damage functions about the elastic trial point B (figure 6.2, with y
representing either the yield or compressive/tensile damage surface). In this coupling
case, it is assumed here that yielding and both mechanisms of damage take place at the
same instant. Therefore, treatment for sharp corner (point X in figure 4.8, Chapter 4) on
the composite damage surface is automatically accounted for. By dropping out
appropriate terms we can straightforwardly work out simpler situations, in which only
one or two failure mechanisms are activated. From (6.16 — 6.19), a system of rate

equations governing the constitutive behaviour of the model can be written:

(1+v)da vdakké'
dej ey
(1+V) VO'kké' N ; (1+v) vakké'l . '
(O'kklladﬁ' dad
E[l H(Ukk)a ]2(1 “d) E[I_H(O-kk)adkl_ad)z
.« 0 0 o oy o
yp=yy| + )y doy +—2-daly +—Lda +—Lds' + —Lds  (6.27)
B 0oy day day £y b
(1+pt)o- doy -p(ow )’ 5z‘jdo'ij+
Ell-«a oF! OF}
J’d‘ ZJ’d‘ +H(0;?k)Zwy . +( d)z + N lt ag - 1c
y (1+Pt)%"7ij—l7r(0kk) (o) Jo! day day
d
L E(l—aé,)3 ]
(6.28)
(l+pc)o-i]_'do-ij _pc(o-kk )_5l'jdo-ij n
E\l-af c
Ya =y§\ +>w, ) _( ad)z o —aFlcda§:0 (6.29)
c B (1+p.)ojo; —pelow) (o) Jat day
22
i E(l—ozg)3 |

The spatial integrals in the two damage criteria (6.28 and 6.29) have been replaced with

the summations over integration points. The terms y;

t c .
, d ‘ 6.27).
5 yd‘B and yq| in (6.27)

C

0
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(6.28) and (6.29) are the values of the loading functions at the elastic trial point B.
Furthermore, it is implied here that all the derivatives and terms in equations (6.27),
(6.28) and (6.29) are evaluated at this stress point. Due to the appearance of the
summations in (6.28) and (6.29), it should also be noted that B denotes several elastic
trial points, from which y’, and y§ are evaluated, rather than a single point in the

original scheme.

As mentioned above, the stresses at the elastic trial point B (figure 6.2) are
obtained by adding elastically-assumed incremental stresses to the stresses at point X.
Our aim is to compute the stress i

to C (figure 6.2), from the system (6.26) — (6.29). At first, from (6.27), using the flow

o which is needed in going from B

rule

9
day =2, 2L

(6.30)
8;@

and two constraints C; and C, on the accumulated plastic strains (4.21 and 4.22 in

chapter 4), the plastic strain rate de; is obtained:

o, o, G
Yy +ﬁd0'kl+ﬁda§ + = yp daj
! 0
day =2 Dp __ ? _%%u Oayq oay v (631
Xij oy, Oy oy oy Xij
P Fiog) 4 Fi (o) 2
a)(mn a}{mn 5€p aé'p

Secondly, back substituting the above plastic strain increment into (6.26), some
mathematical manipulations lead to the relationship between the stress, strain and

internal variables, written in incremental form as follows:

Lo, v, 5
Yy +Ldad Pl da§ Yp
B da Oary i
dgl-j + ” ”
Y, 0y Ay Oy 1
Ao, = N I e R s [Dme (6.32)
O x| Os, ¢,
[(1+V) l] Vo_kk51] ]H( p 1+V U Vo_kk51] kad
E[I—H(Ukk)“d]Z( 5) E[l H(Ukk)a Il “d)z
where D;! is the constitutive matrix which is tangent with respect to plasticity and

ijmn

secant with respect to damage (see section 6.4 for details):
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Ny Wy
D-S-t _ Dijmn a)(ij aO-mn

ijmn =T 1 -\ * *
-nloi ki hi-as) (e, @, (o, o

C az az F4 a p + F4 a .

K OXw &) £p

in the above expression is the elastic compliance matrix (see section 3.3.2).

(6.33)

D ijmn
Finally, substituting (6.32) into (6.28) and (6.29), we obtain a system of linear equations
in dal; and daj . This system is written for all integration points in the fracture process

zone, each pair (tension and compression) of which has the following form:

OF! OF!
yh = H(a;p)Zwat -—Lday-—Ldaj+y;| =0 (6.34)
y 6ad 60{d B
OF¢
y§ = ZW},QC ——LdaS+y5 =0 (6.35)
p ooy B

where O, and Q, are defined as follows:

I [ o o, |
+ . (yp + y’; da, + y’: docj;}} p
(1+pt)0kl _pt(o-qq) 5/(1 [DS[ :I»l B Gad Gad a/’{l]

jkl * *

E(l—af{)z ! ayp ayp tayp 8yp

C F4 +F4c
0 0 t c
Xmn OXmn 88p aé'p

(1+pt )O-l:—l _pt(o-qq )+5k1

0 -|- Tl [(1+V)O'l-j —Vv0 4,05 ]H(O';;m )daf,
t Efl-af Eli-mlot, ot Pli- o)
_ (1+pt )O-l_c‘—l — P (qu )+ 5kl [Dqt ]‘1 [(1+V)Gij _Vaqq5U ]daé
E(l—a;)z " E 1—H(a;n )a;, Il—ag)z

(1+p)ojof —pilow) (o) da)

Eft-a)) _

[ (6.36)

and
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yol o+ I ot + 0 gas |20
_ _ p B t d c d a
(1+pc )O-kl ~—Pc (O-pp) O [l)st ]‘1 day dag Xij
c M T, o v o
E(l—ad)z c yp yp F‘f yp +F4C yp
8;(mn a;(mn 85; 65;
(1 TP )O-kl pc( pp §kl [ ]‘ [ 1+ V)O-ij - Vo-pp51j (O-;zm yactz’
Q.= Diiki (6.37)

A s

(1 + P )o-l;l —Pc (O-pp 5k1

£l b - )

C
o vapp5l] ]dad

[ ysz [1+v

Ell-asf

EN-H

o i Ji e}

+

(1+p.Jojo

U__pc(o-kk)_(o-ll)

E(l—a§)3

da

c

d

As can be seen, the strain increments disappear in (6.36) and (6.37) when substituting
(6.32) into those equations, as they have been applied in moving from point X to the
elastic trial point B (Crisfield, 1997). Solving the above system of equations will give
the damage increments at all points in the damaged zone of the structure. Back
substituting the damage increments into (6.32), noting that the strain increments have

been applied in the predictor step (from X to B) and now must be removed from that

c in going from B to C. Finally, the
stress at point C (see figure 6.2) is updated using (Crisfield, 1997)

O

UC=G“

y

+ Aoy (6.38)

B

c is computed by

ﬁyz 6y Db py Wy
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B oy
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oy, 0 oy’
c/ Yp Dy Fj yf+F4
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[(l + v — VO 14.0; ]H(O'” )Aad
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ijmn
p

1+V lj Vakk5y ]Aad
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[ 639)

In the above expression, all damage increments have been computed by solving
the systems (6.34) and (6.35), and all derivatives are evaluated at the elastic trial point
B. Normally, due to the linearization, the updated stress points do not lie on the

yield/damage surfaces (they can be either above or below these surfaces) and relevant
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techniques should be applied to return them to the loading surfaces. Repetition of the
same process but with point B replaced with C, noting that there are no elastic stress
increments in the subsequent steps, would be an appropriate and simple way to bring the
stresses back to the loading surfaces. This simple but rather efficient stress returning
algorithm is advocated here due to the complexity of the system of rate constitutive
equations (6.26—6.29). Alternatively, further enhancement to the exactness of the
integration scheme can also be obtained through the combination of sub-incrementation
and the repetition of the above predictor-corrector processes, all of which have been
implemented in the finite element code OXFEM used in this study. Furthermore, to
reduce the errors in updating the stresses, in this study the integration scheme above will
be carried out based on the incremental instead of iterative strains [see Crisfield (1997)

for details].

6.4 Tangent and secant stiffness matrix

In finite element analysis using the Newton-Raphson iterative techniques, the
employment of a consistent tangent stiffness matrix, which relates the forces and
displacements at nodal points of a finite element, is an efficient way to achieve true
quadratic convergence, although sometimes at high computational cost. In the
numerical analysis with local constitutive models, this matrix can readily and explicitly
be computed from the tangent moduli tensor Cz;kl (constitutive tensor relating the
incremental stresses and incremental strains, see chapter 3) at integration points. In the
case of nonlocal models, it is not always possible to explicitly derive the nonlocal
tangent stiffness matrix as there is no local incremental stress-strain relationship and the

moduli tensor C,;k, can no longer be defined (Comi, 2001).

Jirdsek and Patzék (2002) proposed a very sound procedure for the formulation of
consistent tangent stiffness matrix for nonlocal models. However, they only illustrated
the proposed procedure in a simple case with a nonlocal isotropic damage model and
explicitly defined damage evolution rule. In practice it is difficult to apply that
procedure to the general nonlocal damage-coupled-with-plasticity model (represented
by equations 6.16-6.19) to derive the explicit nonlocal tangent stiffness matrix,
especially in case the damage evolutions are governed by a system of differential
equations (6.26—6.29) (see also Addessi et al., 2002). Due to the complexity of the

nonlocal model in this study, a nonlocal tangent stiffness matrix is difficult, even
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impossible to be derived explicitly. Although numerical techniques using the above-
proposed stress update scheme in combination with numerical perturbation techniques
can also be employed as an alternative way to overcome the difficulty, the expected
high computational cost in the numerical derivation of the tangent stiffness matrix
prevents its wide use in practice. Therefore, use of a nonlocal tangent stiffness matrix is

not pursued in this study.

Although there is no local stress-strain relationship in the nonlocal damage-
plasticity model, the tangent moduli tensor of an equivalent local model can be
employed for the calculation of the local tangent stiffness matrix in the numerical
analysis using the nonlocal models developed in this study. The derivation of this
tangent moduli tensor is similar to that for the stress-based damage-plasticity models in
chapter 3. Even so, the expression of this local tensor is still too cumbersome (see that
of stress-based model in chapter 3 as a simple example) to be straightforwardly
implemented in the computer code OXFEM. In this study, the stiffness matrix used in
the numerical analysis is computed based on the local constitutive moduli tensor, which
is tangent with respect to plasticity and secant with respect to damage (see also the
stress-based model in chapter 3). Although not as efficient as use of tangent stiffness
matrix, the employment of the adopted stiffness matrix is preferred in this study due to

its simplicity of implementation.

The derivation of this kind of constitutive moduli tensor is quite straightforward
and is similar to that in plasticity models, with the damage indicators being kept frozen:
¢y = a5 =0. In this case, from the stress-strain relationship (6.16) we have

. DG .
gj = ll - H(O',}Lk )aﬁ, Kl g ) +a; (6.40)

The consistency condition of the yield function without damage increments reads

. o o o
ypzypdy+yfé;+yfé;:o (6.41)
00 s, s,

from which the plastic strain increment can be obtained
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From (6.40) and (6.42) one gets

mn

S =30 [ (6.43)

ijmn

with D;f,m being the compliance moduli tensor which is tangent with respect to
plasticity and secant with respect to damage:

*

8yp Gyp

D ijmn aZ ij 8O-mn
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6.5 Summary and discussion

DSt —

ijmn

(6.44)

The numerical implementation of the nonlocal constitutive model (represented by
equations 6.16 — 6.19) proposed in chapters 4 and 5 has been presented in this chapter.
A local arc-length control for the solution of nonlinear algebraic equations in finite
element analysis and an implicit integration scheme for the rate constitutive equations
have been adopted and detailed. For simplicity in the implementation, it has been
proposed that the local stiffness matrix based on the constitutive moduli tensor which is
secant with respect to damage and tangent with respect to plasticity would be used in

the numerical solution.

The combination of local arc-length control and implicit integration scheme is
expected to assure the stability of the incremental analysis based on the finite element
method. Limit points and turning points on the equilibrium paths (figure 6.1), as results
of the strain softening and localization, can now be overcome with ease using the local
arc-length control in combination with relative nodal displacements, all of which will be
numerically illustrated in the next chapter. Nevertheless, the convergence rate during
iterative process within a load increment is expected to be very slow due to the use of

the local stiffness matrix adopted and presented in section 6.4 above. Unfortunately, due
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to time constraints, remedies for this drawback cannot be carried out at the present.

Further research work is needed to improve the convergence rate.



7-1

Chapter 7: Numerical Examples

7.1 Introduction

This chapter is dedicated to the numerical validation of the model (represented by
equations 4.25, 4.37, 5.19, and 5.20) proposed in the previous chapters. Analysis of real
structures will be carried out to show the potential features and weaknesses of the
proposed model. These tests range from simple to complex loading cases and hence
require appropriate choice of constitutive models. The most complicated model in this
study is the one with unilaterial damage coupled with plasticity (represented by
equations 4.25, 4.37, 5.19, and 5.20), which can be used in most cases. However, this is
not always necessary, as simple models (e.g. tensile damage model using equations 4.25
and 5.19; or tensile-compressive damage model using equations 4.25, 5.19 and 5.20; see
table 7.1 for details) can also be employed in relevant cases, reducing the complication

in the choice of model parameters while still being able to produce acceptable results.

The structural tests used here comprise those exhibiting important features in the
behaviour of quasi-brittle materials in general and concrete materials in particular,
which have been presented in chapter 2. They can be classified into groups of tension
tests, bending tests, shear tests and compression-related tests, under monotonic or cyclic
loading. The material models used can be pure tensile damage or tensile-compressive
damage with plastic deformation being accounted for whenever the experimental cyclic
loading data are available. A summary of the choice and determination of parameters
corresponding to a variation of nonlocal models is provided at the end of this Chapter,

with cross-references to procedures for the parameter identification in Chapters 4 and 5.

All the numerical tests in this section are carried out using the arc-length control
for the incremental analysis and Newton-Raphson method for the iterative technique.
The convergence tolerance parameter is 10™ for the norm of the out of balance force
vector in the Newton-Raphson iterative process. The same tolerance value is also used
in the stress update routine to gauge the errors occurring in returning the stresses to the
loading surfaces. In addition, automatic increments (see May and Duan, 1997; Crisfield,

1997, Chap. 9, Vol. 1), controlled by the number of iterations required for each load
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increment, are used throughout the examples. A loading scheme consisting of three load
stages (1% fully elastic behaviour, 2" and 3": peak and post-peak stages) is used, in
which the controlling minimum and maximum numbers of iterations for the last two

stages are normally 12-18 and 18-27, respectively.

To achieve convergence in severe cases with snap-back observed in the
equilibrium paths, the constraint equation of the arc-length control is based on relative
nodal displacements in the fracture process zone (FPZ), though crack mouth opening
displacements (CMODs) or crack mouth sliding displacements (CMSDs) can also be
used without any difficulty. The local stiffness matrix, which is tangent with respect to
plasticity and secant with respect to damage (local secant stiffness matrix is used in case
the dissipation is totally due to damage), will be used throughout the numerical
examples in this chapter. For the adopted Newton-Raphson iterative method, the
stiffness matrix is only recomputed at the beginning of the load increment and kept
unchanged throughout the iterations. Furthermore, as mentioned in the previous chapter
on the numerical implementation, the stress update here will be based on the
incremental instead of iterative strains. This was strongly recommended by Crisfield
(1997) for several numerical reasons, all of which can be found in the relevant books

(Crisfield, 1997, Vol. 1 and 2).

7.2 Tensile test

7.2.1 Double-edge notched specimen under tension

ﬂk
60
v__.:.‘!‘.:.‘f*?‘._-‘?: — )
Y U P
W —T_z
| | 5
60 10

(a) (b) (©)

Figure 7.1: Double edge notched specimen (10mm thick) — geometry (a), experimental crack

pattern (b) (Shi et al., 2000) and FE meshes (c)
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In this numerical example, the numerical simulations of a double edge notched
specimen under tension (Shi et al., 2000) are presented. In the numerical models, the
specimen is fixed in both directions at the bottom edge, and in horizontal direction at
the top edge. The numerical analyses were carried out using three meshes of 6-node
triangular finite elements, with prescribed vertical displacements on the top edge of the

specimen.

The constitutive model used in this example is that presented in chapter 4, with
only tensile damage mechanism being activated. In fact, it is also satisfactory to use an
isotropic damage model with a single scalar damage variable for the analysis, as has
been done in Nguyen and Houlsby (2004). The material properties used are: Young’s
modulus E =24GPa, Possion’s ratio v =0.2, tensile strength f, =2.0 or 2.86MPa,

fracture energy G, =0.059N/mm, nonlocal interaction radius R =1.5d,,, =12mm.

Darnage measute
Load (KN) 13 1
S 085853
1.2 8 v 077778
i Voo : 0 66666
LBl B 0.55555
' ! 0.7
: A : 044444
0818 | o5t/ : : : 033333
\“ X 3 fl\_/ 0.005 0.01 0.015 0.02 0.025 022001
0637 &Y —A— Experimental ' orm
' —O— Numerical, mesh 1, ft=2.0MPa 0
0.4 1 —A— Numerical, mesh 2, ft=2.0MPa
Numerical, mesh 3, ft=2.0MPa
0.2 1 —x— Numerical, mesh 1, ft=2.86MPa
0® < =t )
0 0.05 0.1 0.15 0.2
Prescribed displacement (mm)
(a) Load-displacement curves (b) Damage measure (mesh 3,

prescribed displacement of 0.19mm)
Figure 7.2: Double edge notched specimen - Numerical results

There was no exact value for the ultimate tensile stress, and the tensile strengths above
were obtained from two sources (Alfaiate et al., 2002; and Shi, 2004), in which the
higher one was in fact denoted as the peak stress in the report on the test (Shi, 2004).
They are used in the numerical simulation here. The ratio kX =w,/R=2.02 (1.98 for
f{ =2.86MPa ) was calculated using t=g ful / gr =0.25 and following the procedures

in Chapter 5. The following model parameters were obtained based on the system (4.80-
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4.81) in Chapter 4: £,, =3090MPa and n, =0.26 (£, =9081MPa and n, =0.36 for
f{=2.86MPa).

The numerical results are depicted in figure (7.2), showing the agreement in the
load-displacement curves obtained from different finite element meshes, thus proving
the lack of mesh dependence of the proposed model. The experimental peak load
(1.13KN) in the figure can be seen to be bounded by its two numerical counterparts
(0.94KN and 1.26KN) corresponding to two used values of the tensile strength. In
addition, the overall shape of the numerical load-displacement curves is consistent with
the experimental one. The failure of the specimen can be seen in figure (7.2b). No clear
macro crack can be observed, as attention here is paid to the structural response of the
specimen under loading, rather than the crack propagation and interaction. A finer mesh
and smaller nonlocal interaction radius can be used, of course at much higher

computational cost, if the observation of crack propagation is interested (see figure 7.3).

Diarnage measure
1
0.83889
077778
0.866665
0.55555
' 0.44444
0.33333
022221

01111
0

Figure 7.3: Crack pattern obtained with very fine FE mesh
(5541 nodes, 2746 six-node triangular elements, nonlocal radius R = 1mm )

The numerical crack pattern in figure (7.3), however, does not agree well with its
experimental counterpart (figure 7.1b, which was in fact redrawn based on the
experimental crack pattern in the paper by Shi et al. (2000)), due to the use of an
isotropic damage model and not-small-enough nonlocal radius. These issues will be
discussed further in section (7.4.2). In figures (7.2b), due to the inadequacy of the
procedures (of the commercial pre- and post-processor package GiD) used to
extrapolate damage indicators from integration points to nodal points, some part of the

damage zone in the figure may have damage indicators exceeding 1.0 or below 0.0,
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which is not in fact allowed at Gauss points. Those parts are simply blackened in the

figure.

7.3 Bending tests

7.3.1 Three-point bending test — notched beam
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Figure 7.4: Geometrical data and half beam model used in the numerical analysis

The numerical simulations here are carried out on a notched beam in a three point
bending test, aiming at investigating mode I fracture and crack propagation. The
geometrical data and material properties are taken from the experimental test of
Petersson  (1981): L=2000mm, D =200mm, b=50mm, a,=100mm,
E =30000MPa, v=0.2, f/=3.33MPa, G =0.124N/mm, with the fracture energy

being measured eliminating the effect of the beam’s self weight (see Petersson, 1981).

Figure 7.5: Finite element meshes: coarser (a), and denser (b)
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The nonlocal interaction radius was taken as 2.0 times the maximum aggregate size
(dphax =8mm, Petersson (1981)), resulting in R=16mm followed by the ratio
k=w,/R=196 (using t=g,/gr =0.25; see also the example in Chapter 5). As
there was no experimental data on the unloading path, the constitutive model was
assumed to be pure damage, with separation of tension and compression behaviour
based on the decomposition of the stress tensor. Therefore, only two model parameters
were derived from the system (4.80-4.81): £, =6899MPa and n, =0.32 (see section
5.3.3 in Chapter 5 for details).

Load (N)
800 -
700 -
600 -
500 -
400 -
300 -
200 -

—e—Exp., GF=115N/m
—A&—Exp., GF=137N/m
—a—Num., mesh a, GF=124N/m

—0O— Num., mesh b, GF=124N/m
T T T T 1 Da.mage measure
] 1

" ectongem T -

Deflection (mm)

100 -

Figure 7.6: Load-deflection curve and damage pattern at very late stage of the

numerical analysis (mesh b, zoomed-in at centre part of the half-beam)

The numerical analyses were carried out using two different finite element meshes
of six-node triangular elements, with different mesh densities. Because of symmetry,
only half of the beam was modelled (figure 7.5). Numerical results, in the form of load-
deflection curve and damaged pattern, are shown in figure (7.6). The damage process
zone can be clearly seen in the figure and the numerical crack path agrees well with the
experimental one in figure (7.4). It is noted here that the crack paths in bending tests of
notched beams are usually straight lines above the notch, running from the notch tip to
the upper side of the beam (see figure 7.4). They were not included in research papers
from which the experimental data and results on bending tests are extracted. This is the
reason why the crack patterns in the numerical examples in this section (7.3) are drawn
in the figures (7.4, 7.7 and 7.11) describing the geometry of the beams, instead of being

scanned from the papers referred to.
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The numerical load-deflection curves obtained from different meshes are almost
identical, again demonstrating the lack of mesh-dependency of the proposed model. In
addition, they also match quite well the experimental curves. In the model, the choice of
the nonlocal radius obviously has some effect on the response of the model, but this
influence has been considerably removed using the proposed procedures for the

parameter identification (see Chapter 5).

7.3.2 Three-point bending test — un-notched beam

P2

Crack path |
\ I +

i L
g sl

i E -z
b2 o> L RA 32

Figure 7.7: Geometrical data and half beam model used in the numerical analysis

This example is to test the response of an un-notched beam under three-point
bending (figure 7.7). The experimental data in this case is extracted from Carpinteri’s
experiments (Carpinteri, 1989). The geometrical and mechanical data are: D =100mm,
b=150mm, E=34300MPa, v=0.2, f/=53MPa, G =0.09N/mm. Compared to
the material properties (smaller f; but higher G ) in example 7.3.1 (Petersson, 1981),
more brittle behaviour is expected in the load-deflection response of the beam. Because
there was no experimental unloading data, the dissipation mechanism was again
assumed to be due to damage only. Based on the proposed procedures in chapters 4 and
5 (using 1=g 4y, / gr =0.3 and the assumed nonlocal radius R =7.5mm), we obtain
here the necessary model parameters: E, =10756MPa and n,=0.32
(k=w,/R=2.10 obtained from the procedure described in section 5.3.2, Chapter 5).

The numerical results are shown in figure (7.8).

It can obviously be seen in figure (7.8) that the numerical and experimental results
are greatly different from each other. A slight snap-back response can be observed on
the numerical load-deflection curve, while the experimental softening curve is much

less brittle. Nevertheless, the experimental fracture energy is appropriately reproduced
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by the numerical model (through the area under the load-deflection curve); and the
numerical and experimental peak loads are comparable: 11.02kN (numerical) and
11.38kN (experimental). This pattern was similar in several numerical models used for
the simulation of this real test (Hawkins and Hjorteset, 1992). For comparison, the
numerical result using Petersson’s bilinear softening model (Hawkins and Hjorteset,

1992) is also shown in the same figure.

Load (KN)
12 4 o

Numerical, this study, GF=90N/m
- - = -Numerical, this study, GF=185N/m

O Z\ T T
0 0.2 0.4 0.6 0.8 g [umeemeswe
Mid-span deflection (mm) _
Figure 7.8: Finite element mesh, load-deflection curve and damage

pattern (at deflection of 0.8mm)

The difference here possibly comes from different testing conditions and
localization problems in the notched beam for measuring the fracture energy G, and
the un-notched beam examined in this example. In the notched beam, the failure is
strongly forced to localize in a narrow area above the notch, while due to the mild stress
distribution and the heterogeneity of the material, that in un-notched beam can spread
out in a wider zone at the beginning of the analysis (pre-peak part in the load-deflection
curve). In other words, the pre-peak behaviour of an un-notched beam is much more
affected by the heterogeneity of the material than that of notched beam, where the
artificial flaw dominates the material imperfection. Therefore the experimental load
deflection curve of notched beam can be much more brittle than that of un-notched
beam. As a consequence, the calculated fracture energy G can be different if one

adopts the un-notched beam for the calculation of the fracture energy.

For illustration, the dissipated energy under the experimental load-deflection curve
of the tested un-notched beam was used here to calculate the fracture energy G, by

simply dividing the area under the curve by the fracture surface (150*100mm?),
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yielding G| ~0.185N/mm. This is approximately double the experimentally provided
fracture energy. The dashed curve in figure (7.8) shows the corresponding numerical

response using Gy = 0.185N/mm, which is closer to the experimental one.

7.3.3 Three-point bending test — notched beam - cyclic loading

This test was experimentally carried out by Perdikaris and Romeo (1995) and has
also been used by several researchers (Meschke et al., 1998; Hatzigeorgiou and Beskos,
2002) for the validation of their damage-plasticity constitutive models. The beam
geometry is similar to that in section 7.3.1, with the following geometrical data (see
figure 7.4) and material properties: L=1016mm, D=254mm, b=130mm,
ag=78mm, E=43600MPa, v=02, f/=477MPa, f.=63.4N/mm’,
foo=03f!= 19.02N/mm?, Gr =89.17N/m and d,,, =6mm. The finite element

meshes used are depicted in figure (7.9).

(a), (b): for nonlocal approach

| [ [ /]

(c): for fracture energy approach
Figure 7.9: Finite element meshes

It should be noted here that an experimental test for the measurement of the tensile
strength was not carried out and the tensile strength used here was in fact calculated

from the compressive strength using the following empirical formula (Eurocode 2, ENV

1992-1-3)
f1=03(r )"

where f = 63.4N/mm? is the cylinder compressive strength obtained from experiment.

In addition, since the self weight of the beam is not taken into account in the numerical
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analysis, the experimentally-provided fracture energy (Gr =119.5N/m) should be
adjusted using the experimental data provided, giving Gr =89.17N/m (see also
Petersson, 1981). This choice of material properties however was not clarified in the
research work by the above-mentioned researchers, in which Gr =119.5N/m and

f{ =4.0MPa were used rather arbitrarily in their numerical examples.

Load (KN)_

~
-

(

0 0.05 0.1 0.5 0.2 0.25

——e—— Experimental
Numerical, mesh a
——0O——Numerical, mesh b
— — =Numerical, mesh ¢

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Deflection (mm)

Figure 7.10a: Load-deflection curves

The numerical results using pure damage dissipation mechanism have been
presented in Chapter 5 for the illustration of the proposed procedure used for the
identification of parameters of nonlocal models. The obtained results, using three
different nonlocal interaction radiuses, match rather well the observed experimental
load-deflection curve. Here, a coupled damage-plasticity model was used, with the
following assumptions on the unloading path (see Chapter 4 for details): ¢,, =1.1f//E
and E,, =0.91F . The nonlocal interaction radius was taken as 2.0 times the maximum
aggregate size, giving R =12mm, with the corresponding ratio k =w, /R =1.98 (using
1=g f / gr =0.25) taken from the numerical example in Chapter 5. From the input
data, we obtain the following model parameters from the system (4.80-4.82):
H,=59045MPa, E, =29610MPa and n, =0.39. The nonlocal numerical analyses
were carried out on two different finite element meshes to illustrate the mesh-

independency of the proposed approach.
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In a similar way, the nonlinear finite element analysis using the fracture energy
regularization (or crack band approach) was also carried out for comparison with the
nonlocal analysis. For that, the nonlocal interaction radius was set to zero in the
implemented finite element code, restricting the localization to the band of elements at
mid-span above the crack tip. The crack band width [equal to the width of the blackened
4-node quadrilateral elements in mesh (7.9¢)] in this case is w, =5mm. This rather
small width of the FPZ (compared to its nonlocal counterpart) requires another set of
parameters for the constitutive model (see section 4.3.3, chapter 4). Using
1=8 p / gr=0.17 and w, =5mm (R =0 for crack band model), from the system
(4.80-4.82), we obtain: H, =347789MPa, E ,, =4620MPa and n, =0.32.

The numerically-obtained load-deflection curves are shown in figure (7.10a).
There is almost no difference between results from the two meshes using the nonlocal
approach, though their difference in tail behaviour from that of the fracture energy
approach can be seen. In all cases, a good match between numerical and experimental
peak-load can be observed. However, for deflections greater than about 0.13mm the
descending part of the numerical curves underestimates the measured one. The
unloading slopes on the numerical curves are also not close to the experimental ones,

although the numerical models obviously produce residual deflections at zero-load state.

Acenrmulated plastic strain

0027643
0024572
00215

0018429
0015357
0012286

o S— 00092142
D 1 0.0061427

_— 00030712

u]

(b) Damage pattern (c) Accumulated plastic strain at deflection of 0.9mm

(mesh a)
Figure 7.10: Failure patterns

Those mismatches can be due to the following reasons. Firstly, fitting of the
proposed stress-strain curve to the experimental one (based on the bilinear stress-
separation curve in cohesive crack model) is particularly considered in the descending
part just after peak stress (see section 4.3.3, Chapter 4). This is to assure the matching

between the numerical peak load and its experimental counterpart. However, as there is
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not enough experimental data, no attention has been paid to the tail of this stress-
separation curve, which is controlled by the nonlinear function F{ in the proposed
model. Secondly, the input parameters for the unloading slopes are possibly not
relevant, resulting in damage-dominated dissipation in the failure of the structure. This
is represented in the figure by very small residual deflections at zero-load state,
compared to the measured ones. Choice of better sets of input parameters is in principle
possible, but requires further studies on the relations between the unloading slopes of
the stress-separation curve and stress-strain curve in continuum model. Last but not
least, using nonlocal damage mechanisms and local plasticity mechanism also leads to
damage-dominated dissipation in the failure process. This can be confirmed through
examining the output results and through the distribution of the accumulated plastic

strains and damage variable at the end of the numerical analysis (see figure 7.10c).

In figure (7.10b), loss of most of load carrying capacity at the centre cross-section
of the beam is represented by damage reaching a critical value along the crack line.
However, the accumulated plastic strains are not very high in the upper part of the crack
line, compared to those in the lower part. Therefore, there must have been a
considerable number of material points in the upper part undergoing pure damage
dissipation while their parameters are in fact determined for coupled damage-plasticity
model. This results in the underestimation of the experimental tail response (see Chapter
4 for more details on the effect of model parameters on the behaviour of the model).
Use of crack band approach can remedy the mentioned problem (mesh c, figure 7.10 a),
as both plasticity and damage in this case are local processes and forced to take place in

the band of elements above the notch (figure 7.9¢).

7.3.4 Four-point bending test — notched beam — cyclic loading

In this example, the four-point bending test experimentally performed by Hordijk
(1991) is simulated using the coupled damage-plasticity model. The geometry of the
specimen and finite element mesh of a half-beam model are depicted in figure (7.11).
The following material properties were given (Hordijk, 1992): E =38000MPa,
v=02, f/=3.0MPa, Gp =125N/m, with the assumed maximum aggregate size
dpax =5mMm  and  assumed initial yield stress (in uniaxial compression)

f.o =11N/mm?.
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Figure 7.11: Four point bending test — Geometry and finite element mesh

Choice of the nonlocal interaction radius can be somewhat arbitrary without
knowing the relevant maximum aggregate size, but the effect of this choice on the
response of the model can be eliminated using the proposed procedure in chapter 5. For
that reason, we take here R =6mm, which is large enough for the adopted finite
element mesh density in the critical zone. Using ¢, =1.2 f//E and E,, =0.9E, the
following model parameters were obtained (using =g 4, / gr =0.2, based on rough
fitting of nonlinear stress-strain curve to the bilinear curve derived from given
experimental data): H,=33800MPa, E, =6381MPa and n,=033 (with
k=w,/R=232).

3 Load (kN) 3 Load (kN)
— - — Numerical 1
2.5 Numerical 2 2.5
——0—— Experimental =— = — Numerical 1
2 | 2 Numerical 2

——0—— Experimental

—_—
W — e

7 0 T
0 0.05 0.1 0.15 0.2 0.25 0 0.2 0.4 0.6 0.8
Mid-span deflection (mm) Mid-span deflection (mm)

Figure 7.12: Four-point bending test - Load-deflection curves

The numerically obtained load-deflection curve (dashed-dot curve named
“numerical 1” in figure 7.12) overestimates the experimental one in the post-peak
region near peak load, while it underestimates the tail behaviour of the measured one

(figure 7.12b). However, the numerical peak load (~2.7kN) in this case is rather close to
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the value given by experiment (~2.55kN). A slight modification of the adopted
procedures for the identification of model parameters can lead to better model response
(solid curve named “numerical 2” in figure 7.12). This modification is based on the fact
that the fracture energy in experiment can only be computed up to a certain stage in the
very long tail of the experimental load-deflection curve. This has been mentioned in
chapter 5 on the determination of the localization bandwidth. Following the
modification, the critical damage used in the evaluation of local fracture energy g
(see 4.80, chapter 4) is set to lower value, e.g. 0.999 instead of ~1.0 in theory. For this,
only the tail behaviour of the model is significantly affected, represented by slight
changes on H, and E, (H,=33840MPa; E,, =6377MPa) and bigger change on
n,: n, =0.37 (see chapter 4 for the effect of parameters on the model behaviour). A

slightly better model response can be clearly seen in the presented figure.

7.4 Mixed mode cracking

7.4.1 Four-point shear test

P Observed crack path
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Figure 7.13: Four-point shear test — geometrical data

The four-point shear test of Arrea and Ingraffea (1982) is selected here to
demonstrate the model capability in capturing the structural responses in shear loading.
Partly, the snap back of the load point displacement curve helps to show the stability of
the proposed numerical integration scheme and solution methods in dealing with highly
nonlinear structural response. All the geometrical data of the analyzed structure are
shown in figure (7.13) above. As the original report on the experimental test could not

be obtained, all the above geometrical data are extracted from other sources (Saleh and
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Aliabadi, 1995; Galvez et al., 2002; Jefferson, 2003), which also show some negligible
variations in the beam dimensions. The experimentally observed crack path is redrawn

in figure (7.13) based on the crack pattern shown in the paper by Rots et al. (1985).

Figure 7.14: Finite element meshes

Most controversial is the choice of the tensile strength and fracture energy of the
material, which have been rather arbitrarily adopted in different research work dealing
with this shear test (Rots et al., 1985; Saleh and Aliabadi, 1995; Jirasek and Patzak,
2002; Jefferson, 2003). For only compressive strength, Young modulus and Poisson’s
ratio having been experimentally provided, the tensile strength and fracture energy of
the material can hardly be appropriately obtained, and therefore should be determined
based on some code on concrete. In that way, we adopt here the following material
properties as an averaging set between data on two test series B and C (Galvez et al.,
2002; CEB-FIP model code 1990): E =24800MPa, v=0.18, f/=3.55MPa, and
Gr =108.5N/m. Assuming the nonlocal interaction radius to be R =25mm, the
material properties result in the following model parameters for pure damage behaviour
(k=w,/R=186 in this case): E,=14129MPa and 17,=0.37, with
1= f / gr =0.3 having been adopted based on rough calibration of the nonlinear

stress-strain curve to its experimentally derived bilinear counterpart.

The choice of nonlocal interaction radius in this case has little effect on the
structural responses, illustrated hereafter with the use of two other different nonlocal
radiuses (R=22mm and R =20mm) in the numerical analyses. This proves the

effectiveness of the proposed procedure in identifying parameters for nonlocal models.
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Again two finite element meshes with different mesh densities were used in the
numerical simulations (figure 7.14). To avoid local failure, the load distributors were
also modelled in the two finite element meshes, and assumed to be made of steel
(£ =210000MPa, v =0.3). The numerical analyses were carried out with the applied
load under indirect control of the relative displacements between nodal points of
element in the fracture zone (local control). As mentioned in the introduction, the arc-
length method was used for the incremental analysis and Newton-Raphson method for
the iterative equilibrium. This helps to capture effectively the snap back on the load-

displacement curve.

Load P —n— Experimental, lower Load P
60 - (kN) ——0—— Experimental, upper
Mesh 1, R=25mm 100 | KN) y
140 - — — -Mesh 2, R=25mm #
S Mesh 1, R=22mm / (i
1204 o AW Neeeeees Mesh 1, R=20mm 80 / p
100 4 / /‘
60 - / !
80 | / I Mesh 1, R=25mm
— — =Mesh 2, R=25mm
60 | 40 - / lf —.—.—. Mesh 1, R=22mm
Y/ S Mesh 1, R=20mm
40 -
20, 4 \
20
O CA : . ) 0 T T T 1
0 0.05 0.1 0.15 0 0.05 0.1 0.15 0.2
CMSD (mm) Displacement at load point A (mm)

Figure 7.15: Load-CMSD responses (a) and Load-displacement curves (b)

Snap-back behaviour can be clearly seen on the load-displacement curves in the
above figure, with the vertical displacement taken at point A on the upper side of the
beam and under the steel load distributor (see figure 7.13). The difference in the load-
displacement curves obtained from the analyses using two meshes mainly comes from
the difference in size of the modelled load distributor. This is only a local effect, and the
overall structural responses in figure (7.15a) are not significantly affected by the size of

the load distributors and are almost identical.

Figures (7.15a) and (7.15b) also show very slight difference in the peak loads
corresponding to different nonlocal interaction radii. This, however, can be in principle
further reduced using appropriate calibration for the nonlinear stress-strain curves in all
cases of nonlocal radii. On the other hand, there is also no match between the
experimental and numerical load-CMSD curves; and this trend has also been found in

some other research papers dealing with this mixed-mode test (Alfaiate et al., 1992;
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Jefferson, 2003). It can be supposed here that the observed numerical and experimental
mismatch comes from the irrelevant use of pure mode I fracture energy in mixed-mode
analysis. However, lack of relevant material properties from the real test means this

mismatch cannot be fully explained.

A /

' T
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Figure 7.16: Deformed structure at CMSD of 0.26mm (mesh 2, magnification of 100)

The numerical crack pattern can be seen in figures (7.16) and (7.17), and
compared with the experimentally-observed crack path in figure (7.13). The numerical

crack path seems to be less curved than its experimental counterpart.
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Figure 7.17: Four point shear test — Crack pattern at CMSD of 0.26mm (mesh 2)
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7.4.2 Mixed-mode cracking test of Nooru-Mohamed

Stiff steel frame glued to the specimen
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Figure 7.18: Double-edge notched specimen,

Geometrical data and finite element meshes

To examine further the responses of the proposed model in the numerical
simulations of concrete structures, the mixed mode cracking of a double edge notched
(DEN) specimen is numerically simulated in this example. The experimental tests of the
DEN specimens examined were carried out by Nooru-Mohamed et al. (1993) and the
corresponding data are extracted here. The geometrical data of the specimen along with
the boundary conditions and finite element meshes are shown in figure (7.18) above.
Only one loading path was considered in this example: biaxial loading (path 2a, Nooru-
Mohamed et al. (1993)), in which the axial tensile P and lateral compressive shear load
P were applied to the specimen so as to keep the ratio §/8, unchanged throughout the
test (6/8, equals to 1.0 in load path 2a). The average deformations used to control the
loading process are calculated as follows (Nooru-Mohamed et al., 1993; di Prisco et al.,
2000): ¢ = (5M —sM 45N —5N')/2, and o =5SP —5SP’. However in the numerical
test, incorporation of the above deformation controls is difficult and an alternative way

(Jefferson, 2003) has been adopted in this study with rigid movements of the upper left
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edge and top edge of the specimen being prescribed, and the lower right edge and
bottom edge being kept fixed in both directions.

P (kN 5
l v Ps (kN)
’/ 16 4
15 4 15
o % 4 3
1277
13 2 /
9 2 %1 0 0.01 0.02
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Figure 7.19: Load — deformation curves

The material properties provided by experiments (£ =32000MPa, v=0.2,
f;=3.0MPa; f!=384MPa and G =0.11N/mm) require the following model
parameters for nonlocal model: R=7mm; ¢=gg, /gF =0.2; k=w,/R=224;
E, =3565MPa and n, =0.31 (see Chapters 4 and 5 for the procedures to determine
these parameters). The simulations were carried out based on the nonlocal approach
(case 1 and 2, using mesh (a) of 6-node triangular element) and fracture energy
regularization (case 3, using mesh (b) of 3-node triangular element). For the sake of
simplicity in the fracture energy regularization, a constant mesh density was adopted in
the region near the notches of mesh (b), thus enabling us to use the same model
parameters (t:gfnl/gF =0.15; w, =24 =1.4mm; E, =378MPa and n, =0.25;
where A is the area of the element in the fracture zone) for all elements. In addition,
premature cracking at the boundary was also prevented by introducing linear elastic
behaviour to elements near the boundary (see also Nooru-Mohamed et al., 1993; and Di

Prisco et al., 2000).
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Figure 7.20: Experimental and numerical crack patterns

The first numerical simulation (case 1) shows different responses of the simulated
specimen compared to those obtained from experiments (figures 7.19 and 7.20b). Only
the tensile peak load P matches the experimental one (figure 7.19a). In this numerical
analysis, cracks occur first at two crack tips and propagate along the horizontal line
connecting two notches. No curved or inclined macroscopic crack can be seen. This
numerical response of the simulated specimen, as a result of the isotropic behaviour of
the damage model used, directly results in decreasing shear resistance of the specimen

after peak (figure 7.19b), which is contrary to experimental observations.

Two types of remedy have been examined (case 2 and 3, figure 7.20). In the first
remedy (case 2), a slight modification of the failure envelope was done by setting
p; =0 (see figure 4.7, chapter 4), along with forcing cracking process not to take place

at the upper right and lower left edges (by introducing elastic behaviour to elements
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near the boundaries). By setting p, =0, the shear strength of the material model (in
compression-tension and tension-compression quadrants) is increased while the strength
in the tension-tension quadrant is decreased (see figure 4.7, chapter 4). However, only
limited success was achieved, with inclined cracks first occurring at the two crack tips

but finally joining when propagating towards the centre of the specimen (figure 7.20c).

For the second remedy with a very fine finite element mesh, we used a local
damage approach with fracture energy regularization. It can be seen in figure 7.20d that
at early stages (pre peak response), the failure process begins with inclined macro
cracks propagating from the two notches of the specimen. However, with increasing
loads, secondary cracks occur and soon dominate the failure process (figure 7.20d)

while the first two inclined cracks stop propagating.

Through the above numerical example, the isotropic damage model has been seen
to show its weakness in capturing the real behaviour of the concrete specimen in mixed
mode cracking. Mesh bias can be readily observed, which can only be partly remedied
by modifying the failure envelope of the material model. Nevertheless, this modification
leads to an unrealistic strength envelope of the material and hence should not be
advocated in future research. Alternatively, refining the finite element mesh has also
been shown to have effect on reducing the sensitivity of the model response to the mesh
orientation but this simple method cannot be considered as a universal remedy (see also
Grassl and Jirasek, 2004). On the other hand, it can readily be concluded that
anisotropic behaviour of the model is the key to the enhancement of the numerical
responses, and can be incorporated in the proposed constitutive model using the energy
function (4.12) or (4.17) (see chapter 4). However, the realization of this enhancement

is left here as future work on the model development.

7.5 Compression-related test

7.5.1 Splitting test on a concrete prism

This is the only structural problem in this chapter related to the compressive
softening behaviour of the model. The splitting test (Brazilian test) here serves as an
indirect testing method to measure the tensile strength of the material, helping to resolve

disadvantages in the implementation of direct tensile test (Rocco et al., 1995). The
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resulting splitting strength can then be used to calculate the uniaxial tensile strength of
the material (CEB-FIB, Rocco ef al., 2001). The testing arrangement was quite simple,
as shown in figure (7.21), and test on the prism specimen was adopted for the numerical
simulation, with D =75mm, B =50mm and the following widths of the load bearing
strip: b; =0.08D = 6mm (numerical test 1; named STP75-8 in Rocco ef al., 1995) and
by, =0.16D =12mm (numerical test 2; STP75-16 in Rocco et al., 1995).

g
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Figure 7.21: Splitting test — Geometry and finite element model

The following mechanical properties of the material are directly obtained from the
test (Rocco et al., 1995): E=31000MPa, f!=38MPa, G =0.072N/mm, and

d. ... =5mm; the Poisson’s ratio can be assumed to be v =0.2. In addition, for the

max
numerical simulations using constitutive model with two separate damage modes, more
material properties are needed. The compressive fracture energy can be adopted here
based on the experimental research by Jansen and Shah (1997): G, =18N/mm. This is
the post-peak fracture energy, the derived local counterpart (g_.) of which has been
illustrated in figure 4.20. However, the uniaxial tensile strength was not provided by the
experiment and must be obtained from the splitting tensile strength f;,, based on CEB-
FIP code or recent research by Rocco et al. (2001). Since tensile damage is the
dominating mode of failure in the second numerical test (Comi and Perego, 2001), we
have (from STP75-16; Rocco et al., 1995): f,, =4.53MPa, from which the uniaxial
tensile strength can be derived: f/=0.9f, =4.08MPa (CEB-FIB code) or
f;=0.95f, =4.31MPa (Rocco et al., 2001). The CEB-FIB value was adopted in this

study.
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No permanent deformation is considered in this numerical example and the
constitutive model used here is isotropic damage, with two separate failure mechanisms
in tension and compression. The procedure developed in chapters 4 and 5 for the
determination of model parameters were applied in this case to both tensile and
compressive damage mechanisms, giving the following ratios between the widths of the
fracture process zones and the adopted nonlocal interaction radius (R =2mm):
k,=w,/R=2.0 and k.=w./R=2.2. In the determination of k, and k., we have
adopted the following values of parameters (see chapter 4 for details):
t:gfnl/gF =0.25 (for tensile damage); and E,. =6000.0MPa and m,=6.0 (for
compressive damage). The following sets of model parameters were obtained:

E,, =1988MPa, n, =028, and n, =0.24.

Load (kN) 50 Load (kN) M
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Figure 7.22: Load-displacement curves

The obtained peak loads in both numerical tests can be observed not to agree well
with the experimental ones. In addition, only the numerical load-displacement curve of
the first test (5/D =0.08) show some resemblance with the numerical reference curve
(Comi and Perego, 2001). Numerical analysis has also been carried out using a lower
value of the compressive fracture energy (dashed dot curve, figure 7.22a). However,
only the tail response is affected and the obtained numerical peak load only changes
insignificantly. For the second test (5/D =0.16), oscillation in the load-displacement
response can be observed, which has also been found in the numerical results by other
researchers dealing with this kind of splitting test (Feenstra and de Borst, 1996; Comi
and Perego, 2001).
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Figure 7.23: Tensile damage (left) and compressive damage (right) for 5/D=0.08
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Figure 7.24: Tensile damage (left) and compressive damage (right) for 5/D=0.16

In both tests, the results obtained from two finite element meshes are almost
identical. Departure of two equilibrium paths obtained from two meshes is only found at
late stage (point E, figure 7.22b) of the failure process in the second numerical test.
Nevertheless, it is believed that this departure point is linked with the numerical
instabilities instead of the capability of the proposed model in objectively capturing
strain-softening behaviour. Full examination and explanation for this divergence
requires further investigation and therefore cannot be covered by the scope of this study.

The paper by Rocco et al. (1995) does not provide any results on the load-

displacement curves as well as crack pattern of the specimen. In this thesis, the damage
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contours obtained from numerical analysis are presented to illustrate the failure
processes in the specimen at different loading stages. This presentation is important as it
helps to show the complicated failure process involving both tensile and compressive
damage mechanisms, which are coupled in this example. The damage zones in both
tests are depicted in the figures (7.23) and (7.24), where splitting effect can be clearly
seen in figure (7.24) for 5/D=0.16. Tensile damage in this case (5/D=0.16) occurs at the
centre of the specimen and quickly develops through its height while failure due to
compressive damage just happens at the corner of the load bearing strip. This is
different from the first test (b/D=0.08) where failure due to both mechanisms of damage
localizes underneath the load bearing strip (figure 7.23).

7.6 On the choice of model parameters

A summary of the models and parameters used in the numerical examples above is
provided in this section. The aim is to show the whole picture of parameters of the
constitutive model proposed in this study, and through that picture, indicate cases in
which simplified versions of the full model can be appropriately used. We start here
with the full version of the nonlocal model, which incorporates both dissipation
mechanisms (damage and plasticity) and the capability to capture tensile and
compressive behaviour separately. For the full version of the model, the necessary

model parameters are:

a. Parameters defining the elastic behaviour of the material: Young’s modulus £, and

Poisson’s ratio v .

b. Parameters defining the initial loading surfaces: stress parameters f;', f., and f.,;
and scalar parameters p, and p,. The initial shape of the parabolic Drucker-Prager
yield surface used in the modelling is dependent on the uniaxial compressive yield
stress f,.o and the uniaxial tensile strength f;. On the other hand, the uniaxial
tensile and compressive strengths f;' and f, along with two scalar parameters p,
and p, are required to define the initial shape of the composite damage surface
(section 4.2.3, Chapter 4). The stress parameters f,, f. and f,, are obtained
directly from tensile and compressive tests on concrete, while the scalar parameters
p, and p_. are determined to yield best fit to the experimental biaxial strength

envelope of the material. As such experimental data are not always available,
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p;=0.33 and p,.=0.62 [obtained based on the data from Kupfer and Gerstle
(1973); see section 4.2.4, Chapter 4] are kept unchanged in all the numerical

examples in this Chapter.

¢. Nonlocal interaction radius R: this length parameter of nonlocal model is in
principle obtained based on the procedure proposed in section 5.3.2, Chapter 5.
Nonlinear relationships between R and the minimum widths w, and w, (in tension
and compression) of the fracture process zones can be determined based on that
procedure. From these nonlinear relationships, R 1is then chosen so that the
corresponding widths w, and w, match their experimentally observed values [e.g.
w, =3d ., following Bazant and Pijaudier-Cabot (1989)]. However, for the absence
of an experimental value of w, in compression and a possible wide range of w;,
depending on the type of concrete (Bazant and Oh, 1983), the mentioned method is
not worth pursuing. Therefore, in practice, the nonlocal radius R is assumed
(R=0.5d ., to 2d,,) and used, along with the procedure proposed in section
5.3.2, to calculate w, and w,. These widths are then used for the determination of
other parameters of the model (see sections 4.3.3 and 4.3.4 in Chapter 4), provided
that w, and w, lie in the experimentally observed ranges. Research in this study has
shown that the ratio & =w,/R is not very sensitive with change on the nonlocal
radius R (see the numerical examples for values of k), and usually lies in the range
of 1.8 to 2.4. These values of R lead to the values of w, in the range w, =1.0d .«

to 5.0d which is practically reasonable.

max >

d. Parameters governing the tensile behaviour of the model: E n, and H,.

pt>
Parameter H, here controls the permanent deformations produced by the model.
Two material properties (¢g,, and E,,, see section 4.3.3, Chapter 4), which are
respectively the strain and unloading slope at a point on the uniaxial stress-strain
curve, are needed for the determination of this parameter. These properties (¢&,, and
E,,) are obtained from their relationships with the experimentally derived unloading
slopes at points on the load-separation curves in cohesive crack model. As these
relationships have not been worked out in this study, &, and E,, have been chosen
rather arbitrarily in all the numerical examples. The values of ¢,, and E,, can be (as
experimented in this study): &, =1.1f//E to 12f//E, corresponding to

E,, =09E . All three parameters (£ ,, n, and H,) are determined from the system

pt>
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(4.80 — 4.82), using the fracture energy G and the width w, of the fracture process
zone. In addition, the ratio =gz, / gr 1s also needed and can be chosen in the
range ¢ = 0.1 to 0.3 so that the nonlinear softening curve yields close fit to the first
part of the experimentally derived bilinear softening curve (see section 4.3.3, Chapter

4).

e. Parameters governing the compressive behaviour of the model: E m,, n,. and

pc>
H,. Similarly to the tensile case, H_ is used to control the residual strains in
uniaxial compression. Its value is directly obtained from equation (4.97) and can be
adjusted (based on the condition that 0< f,., < f/; see section 4.3.4, Chapter 4) to
yield an appropriate value of the residual strain ¢, in uniaxial compression (see

4.99, Chapter 4). Another three parameters (E,., m,, n,) are determined from the

pe>
condition that the model produces the same specific fracture energy g. as provided
by experiments (g, =G./w, ). Equation (4.98) is used for this purpose, with E e
and either m, or n. being assumed. As this choice of parameters is arbitrary, the
parameter identification in compression is obviously not objective but simply

adopted here for practical purpose. Experimental research on the compressive

behaviour of the material is needed to cover this gap.

All the parameter sets above are not independent, but have tight relationships. They can
be classified as local sets of parameters [sets (a), (b), (d) and (e)], and spatial set of
parameter (c). The local parameters govern the pointwise behaviour of the model and
are determined based on the procedures in sections 4.3.3 and 4.3.4 (Chapter 4), and
5.3.2 (Chapter 5), in which the widths w, and w, of the fracture process zones are
obtained and then used to compute these local parameters. In that procedure, mutual
effects of all parameters of the model (spatial set and local sets of parameters) on each
other are accounted for. Table (7.1) overleaf summarizes important parameter sets
needed for nonlocal models in this study. The physical meanings and dimensions of

those parameters are summarized in table (7.2).

As can be seen in table (7.1), different simplified constitutive models can be
derived from the full version by dropping out appropriate terms in the constitutive
equations and setting appropriate values for some model parameters, e.g. setting

H,=0w, H.=0w and f., = to exclude plasticity from the full model (see sections
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4.3.3 and 4.3.4 in Chapter 4 for details). This feature has been incorporated into the

finite element code OXFEM used in this study.

Parameter sets — Sets (a) Set (c) Set (d) Set (e)
Types of models ¥ and (b)
(1) Full version, using E,v, R E,.,n and H, E,.,m., n, and
equations (4.25), 5 o H,
t c? cl»
(4.37), (5.19) and
and
(5.20) P SRS Pe
(2) Tensile Damage, E,v, R E,, and n,
using equations (4.25), £ and p,
and (5.19)
(3) Tensile Damage & E,v, R E,, n,and H,
Plasticity, using foos 17
cO> Jt
equations (4.25),
and p;
(4.37), and (5.19)
(4) Compressive E,v, R E,.,m.and n,
Damage, using £ and p,
equations (4.25), and
(5.20)
(5) Compressive E,v, R E pes Mes Mg and
Damage & Plasticity, £ f H,
t> Je> Jc0
using equations (4.25), and p
C
(4.37), and (5.20)
(6) Tensile Damage & E,v, R E, and n, E,., m. and n,
Compressive Damage, £
t c
using equations (4.25),
and
(5.19) and (5.20) P 808 Pe

Table 7.1: Parameters used for different nonlocal models
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Parameters | Dimension Physical meaning

E N/mm® Elasticity modulus

1% Poisson’s ratio

fi N/mm’ Uniaxial tensile strength

f! N/mm? Uniaxial compressive strength

fe0 N/mm* Initial yield stress in uniaxial compression

)2 Parameters governing the initial shapes of the damage

and p, loading surfaces

R mm Nonlocal interaction radius

E, N/mm?® Parameter governing the descending slope of the stress-strain
curve in uniaxial tension

n; Parameter governing the rate of change of the softening
tangent modulus in uniaxial tension

H, N/mm?® Tensile hardening modulus, controlling the amount of plastic
strain and the descending slope of the stress-strain curve in
uniaxial tension

E,. N/mm* Parameter governing the descending slope of stress-strain
curve in uniaxial compression

m, Parameter governing the ductile behaviour of the model in
uniaxial compression

n, Parameter governing the rate of change of the tangent
modulus in uniaxial compression

H, N/mm? Compressive hardening modulus, controlling the amount of

plastic strain and the descending slope of the stress-strain

curve in uniaxial compression

Table 7.2: Model parameters — Dimensions and physical meanings
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Chapter 8: Conclusions and Further Work

8.1 Summary and Conclusions

An approach to the constitutive modelling of concrete has been presented in this
study. A continuum approach based on damage mechanics and plasticity theory is
adopted. Emphasis here is placed on the consistency and rigour of the approach,
realized from the model formulation based on a thermodynamic framework to the
specifications of the derived constitutive models and applications to real structural tests.

The main contributions of this research are:

+ The extension of an existing thermodynamic framework to incorporate both damage

mechanics and plasticity theory (see section 8.1.1).

+ The use of this framework to develop constitutive models for concrete. Different
responses of concrete in tension and compression are appropriately modelled using

damage mechanics and plasticity theory (see section 8.1.2).

+ The incorporation of nonlocal regularization technique in a consistent way into the

thermodynamic framework and the constitutive modelling (see section 8.1.3).

+ The identification and determination of parameters of the nonlocal coupled damage-
plasticity model: both set of local parameters controlling the pointwise behaviour of
the model and set of spatial parameter (nonlocal radius) governing the spatial
interaction of material points are determined in a rigorous manner (see section

8.1.4).

+ The implementation of the nonlocal coupled damage-plasticity model into a finite

element code (see section 8.1.5).

The main goals, contributions and weaknesses of the research in this thesis are

summarized in the following sub-sections.

8.1.1 Thermodynamic aspects

It is desirable in this study to build constitutive models on a well established

thermodynamic framework which can accommodate various forms of dissipation
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mechanisms. This is to reduce the need for additional ad hoc assumptions during the
model formulation. An existing thermodynamic framework (Houlsby and Puzrin, 2000)
has been adopted for this purpose. To capture important features in the behaviour of
concrete, it is essential to accommodate both continuum damage mechanics and
plasticity theory in the adopted thermodynamic framework. For that, some slight
modifications of the framework have been presented in Chapter 3. The derivation of
constitutive models in this study follows procedures established beforehand in the
adopted thermodynamic framework. Only two energy functions are needed for the
derivation of a constitutive model, without introducing any further ad hoc assumption
about the behaviour of the derived model. The evolutions of internal variables in this
case are implicitly embedded in the derived constitutive relationships. Connections
between the energy functions and the derived constitutive model have been well
established (Houlsby and Puzrin, 2000) with the key feature being the use of the
Legendre transformation, helping to exchange the dissipation function and the yield and
damage functions. These connections are also illustrated in Chapter 3 of the thesis. In
addition, research in this study (Chapter 3) has shown that both stress- and strain-based

formulations can be described within the modified thermodynamic framework.

8.1.2 Constitutive modelling of concrete using damage mechanics

and plasticity theory

To apply the adopted approach to the constitutive modelling of concrete, the
specification and calibration of the proposed models have been carried out and
presented in Chapter 4, based on micromechanical and experimental research. A stress-
based model accommodating plasticity and two separate modes of damage is developed.
The model utilizes the decomposition of the stress tensor into positive and negative
parts, in combination with two scalar damage variables, to distinguish the damage
dissipations in tension and compression respectively. However, this is only a simple and
rather arbitrary way of modelling anisotropic behaviour at this stage of the model
development, instead of using a more systematic approach with a tensorial form of
damage, to capture the different material responses in tension and compression. In
addition to the yield function, two separate damage loading functions naturally emerge

from the thermodynamic-based formulation. Three dissipation mechanisms (plasticity,
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tensile and compressive damage) are present in the specified dissipation function and

control the dissipation process of the material model.

In addition, based on physical observations, the mutual effects of the three
dissipation mechanisms on each other are also accounted for in the modelling. In this
study, they are the reduction of tensile strength due to compressive damage, stiffness
recovery as a result of closing of microcracks under load reversal from tension to
compression, and a simple stress-induced linear hardening law of plasticity. The
dissipation mechanisms and their coupling can be considered satisfactory at this early
stage of the model development to capture the strain softening and stiffness degradation,
as well as to model the different responses in tension and compression and the
permanent deformations of the material in a simple manner. However, with two-
dimensional material behaviour under consideration in this study, only the biaxial
failure envelope is considered and calibrated from available experimental data. The
present constitutive model in this case cannot take into account dissipation processes
occurring in pure hydrostatic loading. In addition, no attention has been paid to the
dilation of the material under loading, though this feature is also incorporated in the
constitutive modelling through the use of a non-associated flow rule. Other
shortcomings of the developed constitutive model, such as the abrupt transition of the
energy function in switching between tension-dominant and compression-dominant
stress states (see section 4.2.2, Chapter 4), the unrealistic shapes of the yield and failure
surfaces in 3D principal stress space, the disagreement of the accumulated plastic strains
in uniaxial and multiaxial cases, the lack of dependency of the hardening processes on
direction and the isotropic behaviour of the damage model are acknowledged and will

require a considerable amount of future work.

8.1.3 Nonlocal regularization technique

Properly and objectively capturing the strain softening behaviour of the material in
structural tests is an important issue in the development of constitutive models. Due to
the deficiency of conventional continuum mechanics in dealing with strain softening
problems, regularization techniques are essential in the numerical analysis. The
nonlocal approach is adopted and incorporated in the thermodynamic framework used
in this study. This integration of a regularization technique into the thermodynamic

framework and the constitutive modelling, however, does not require huge effort thanks
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to the consistency of the established procedures for the derivation of constitutive
models. In short, only slight modifications to the dissipation function are necessary, in
which nonlocality is introduced through applying spatial integrals to terms related to the
damage dissipation processes. The nonlocal regularization effect then occurs naturally

in the derived damage loading functions.

8.1.4 ldentification and determination of model parameters

The identification and determination of model parameters have been carefully
taken into account during the model development. This process is considered very
important for a consistent and rigorous approach towards the constitutive modelling of
concrete materials. Relationships between the material properties and model parameters
for a local constitutive model have been established in Chapter 4, helping to identify
properly those parameters based on standard experiments. The parameter identification,
however, requires slight modifications of standard experimental tests to separate the
total dissipated energy into parts due to damage and plasticity. In particular, the
unloading slopes on the load-deflection curves in the standard three-point bending test
need to be measured for this purpose. The separation of the total dissipated energy,
represented in the modelling through the fracture energy G in mode I cracking, helps
us determine model parameters related to the macroscopic permanent deformations of
the material. Therefore details on the test modifications and their connections to the
constitutive modelling using coupled damage-plasticity models should obviously be

accounted for in future research.

In addition to the elastic material properties (Young’s modulus £, Poisson’s ratio
v, uniaxial tensile and compressive strengths f; and f, respectively, and uniaxial
yield stress f,q), the full version of the proposed local constitutive model with the
presence of plasticity deformation and two mechanisms of damage uses 9 parameters

(p, and p. to define the composite failure surface; E n, and H, for tensile

pt>

softening; E,., m., n, and H_, for compressive softening; see section 7.6, Chapter 7

pc>
for details), all of which can be directly determined from modified standard tests.
However, this number is only the minimum number of parameters required for the
present model and can increase significantly depending upon the required accuracy in
the constitutive modelling and the numerical simulation. Simpler constitutive models

can be readily derived from the full version of the presented model and, of course, use
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fewer parameters (i.e. p,, E,, and n, for models with tensile damage as the only

p
dissipation mechanism).

The employment of a nonlocal constitutive model requires relevant procedures for
the identification and determination of model parameters. In addition to parameters for
the local constitutive model, the identification of which is described in Chapter 4, the
relationship between the nonlocal interaction radius R and other model parameters is
also needed. This relationship, based on energy equivalence, helps derive the
parameters of a nonlocal coupled damage-plasticity model in a consistent manner and
significantly reduces the effects of change of nonlocal radius on the responses of the
nonlocal model. This is an important feature which has not received much consideration
in the literature. Furthermore, due to the different nature of failure in tension and
compression, it is realistic and essential in modelling both tensile softening and
compressive softening that the widths w, and w, of the fracture process zones in
tension and compression be kept separate. This requirement is met using a single
nonlocal interaction radius, based on the developed procedures for the determination of
the two separate ratios w,/R and w,/R. This helps reduce the complication
encountered when using two different nonlocal radii in the implementation and the
numerical simulation. Nevertheless the consistency yet simplicity of the procedures for
the identification of parameters of a nonlocal coupled damage-plasticity model are still

preserved.

8.1.5 Implementation issues

For practical application with the use of nonlinear finite element analysis, the
incremental form of the constitutive equations is usually required. However, with the
use of a nonlocal constitutive relationship, no closed-form incremental relationship
between the stresses and strains can be derived. As a consequence, the tangent moduli
tensor C,;-kl can no longer be defined. Although it is possible to derive a nonlocal
tangent stiffness matrix in some simple cases, i.e. strain-based isotropic damage without
plasticity, the derivation procedure cannot be readily applied to the general coupled
damage-plasticity in this study. Use of the constitutive matrix of an equivalent local
model is an alternative way to cope with the difficulty, despite the fact that it is
computationally inefficient. This is admitted as a weakness of the implementation for

the nonlocal model developed in this study.
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On the other hand, much care has been paid to the stress update routine. The
implementation here uses a simple form of the backward Euler integration scheme.
However, with the presence of nonlocal terms in the expressions of the damage
functions, the single linearized constitutive equation normally encountered in local
models is converted to a system of linearized equations relating all the damage
increments in the fracture process zone (equations 6.34 and 6.35). The size of this
system of algebraic equations depends upon the number of Gauss points undergoing
damage in the whole structure. Moreover, although the accumulated errors due to the
linearization are significantly eliminated by enforcing the yield and damage criteria in
every iterative step, instead of using the consistency conditions, sub-incrementation is
always required to reduce the drift of the stress points from the loading surfaces. This
markedly increases the computer time spent on updating the stress, especially with the
enlargement of the fracture process zone at late stages of the failure process. In
combination with the use of local constitutive matrix and in “large scale” problems (i.e.
the mixed mode cracking and splitting tests in Chapter 7), the stress update process
turns out to be the slowest part of the numerical analysis. This deficiency obviously

needs remedying in further work on the constitutive modelling pursued in this study.

Despite the very high computational cost due to the weakness of the model
implementation, the adopted implicit integration for nonlocal rate constitutive equations
has been shown to be stable through the simulation of structural real tests in Chapter 7.
This stability is also thanks to the use of a local arc-length control (May and Duan,
1997) in the incremental analysis. On the other hand, the structural responses are
objectively captured using the proposed nonlocal approach, proving the lack of mesh
dependency of the nonlocal constitutive model. In addition, different nonlocal
constitutive models can be derived from the full version of the model proposed, and this
feature has been incorporated into the finite element code OXFEM used throughout this
study. From the aspect of constitutive modelling, the model in this study shows its
potential features in dealing with mode I cracking problems, such as the direct tensile
tests or the standard three-point bending tests. In those circumstances, the constitutive
modelling using G as mode I fracture energy furnishes a good way to describe the
post-peak behaviour of the material. The permanent deformations in cyclic loading can
also be accounted for thanks to the “yield” behaviour of the coupled damage-plasticity

model.
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Nevertheless, the proposed constitutive model also shows its deficiencies when the
anisotropy in the material behaviour prevails and governs the structural responses to
load excitations (i.e. in the mixed mode cracking test in Chapter 7). This is a direct
result of using an isotropic form of damage in the constitutive modelling. In addition, it
is also expected that damage-induced anisotropy is of particular importance when non-
proportional loading 1is considered. This motivates further development of the

constitutive model presented.

8.2 Further Work

The main goal of developing a consistent and rigorous approach to the constitutive
modelling of concrete has only been partly achieved in this study. This is realized
through the adoption and further development of a thermodynamic framework
integrating nonlocal regularization technique, based on which nonlocal coupled
damage-plasticity models can be derived. In parallel, the identification and
determination of model parameters are conducted. However, the main weaknesses of
the proposed approach have also been pointed out, lying in the incorporation of only
two scalar damage variables in the thermodynamic framework used. In addition, the
constitutive model described in this thesis and aiming at demonstrating the potential
features of the proposed approach is a very simple one. Further research towards a more
powerful approach and better responses of the derived constitutive model is hence

ncecessary.

8.2.1 Damage-induced anisotropy

The incorporation of anisotropy features into the thermodynamic approach is of
priority. This is required to faithfully capture the directional-induced responses of the
material after the appearance of microcracks. In particular, both damage and plasticity
parts of the model should account for the anisotropy in the post-peak behaviour. The
introduction of damage variable as a tensor will require several modifications of the
thermodynamic framework used in this study. To maintain the consistency and rigour of
the framework, careful and critical review on the use of tensorial form of damage will

need to be carried out (Cormery and Welemane, 2002; Challamel et al., 2004).
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Although it is essential to use the tensorial form of damage in this case, for
practical purposes the stress-induced anisotropy can be incorporated in the modelling
with much ease (e.g. using the energy functions 4.12 and 4.17, Chapter 4).
Alternatively, the use of multiple scalar variables for the measurement of damage in
different directions is also a simple and practical way to take into account the material
anisotropy (di Prisco and Mazars, 1996). The incorporation of the scalar damage
variables into the thermodynamic framework should be carefully considered to avoid
the discontinuity of the energy function during the transition of stress states (see section
4.2.2, Chapter 4). In a similar way, the adoption of more hardening modes (other than 2
modes in the present model) for the multiple hardening behaviour of the plasticity part

in the coupled damage-plasticity model also deserves examination.

8.2.2 Enhancements in the model behaviour

In addition, further work on the constitutive modelling in this study is also related
to the enhancements in the model behaviour. The failure envelope and yield surface
should be reconstructed so as to account for the dependence of the deviatoric sections
on the Lode angle. In tandem with this modification, it is also necessary to include the
“cap behaviour” in the responses of the model to pure hydrostatic compressive loading.
To be in accordance with these changes, the evolution of the failure surface in
compression should also be modified (see section 4.2.4, Chapter 4). More numerical
examples on the compressive behaviour of the material are therefore needed to validate

the model.

Other important features such as the nonlinear hardening law and the hysteresis in
cyclic loading will also be expected to be captured through the employment of
continuous kinematic hardening (Puzrin and Houlsby, 2001; Nguyen, 2002).
Improvements in the hardening behaviour of the model will require further work on the
identification of model parameters, which for plasticity can be based on the unloading

slopes on the load-deflection curve in the standard three-point bending test.

8.2.3 Implementation issues

The stress update process has been shown to be the slowest part of the incremental
analysis. To speed up the numerical analysis, further work should be spent on the model

implementation, in particular the development of algorithms to compute the nonlocal
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consistent tangent stiffness of the constitutive model. In addition, nonlocal constitutive
equations which allow the stress update to be carried out pointwise [e.g. the strain-based
isotropic damage model without plasticity in Chapter 3; or those of Comi (2001),
Nguyen and Houlsby (2004)] are preferred in this case. The incorporation such kinds of
constitutive equations in the present thermodynamic approach, while still maintaining

the consistency and rigorousness of the approach, is expected to be a hard task.

8.2.4 Parameter identification

It can be predicted that the inclusion of many new behavioural features in the
constitutive modelling will remarkably increase the number of parameters of the model
under development. Consequently, more experimental research is required for the
identification and determination of new model parameters. This is very time- and cost-
demanding but seems to be inevitable in the macroscopic constitutive modelling of
engineering materials. In addition, it is difficult, even impossible, to experimentally
observe the underlying micro-structural phenomena of the material. Numerical
microscopic analysis of the material behaviour is an alternative way to obtain some
understanding on the underlying micro-structural phenomena, although at extremely
high computational cost. In combination with experimental research, it is expected to
help provide the closed-form constitutive modelling with sufficient data for the
identification and determination of model parameters. Alternatively, the multi-scale
modelling (Smit et al., 1998; Kouznetsova, 2002; Massart, 2003), which loosely
speaking is in between the full microscopic modelling and the macroscopic one, can
bridge the gap between the macroscopic and microscopic modelling and bring in a
fruitful way to capture the real behaviour of the material faithfully. This is however a

totally new area of future research.
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