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ABSTRACT 

 

An understanding of extreme waves is important in the design and analysis of offshore 

structures, such as oil and gas platforms. With the increase of interest in the shipping of LNG, 

the design of import and export terminals in coastal water of slowly varying intermediate 

depth requires accurate analysis of steep wave shoaling. In this thesis, data from laboratory 

experiments involving random wave simulations on very gentle slopes have been analysed in 

terms of a model of large wave events, and the results interpreted by observation of the shape 

and magnitude of the large wave events. The auto-correlation function of the free surface 

elevation time histories, called NewWave, has been calculated from the wave spectrum and 

shown to fit very well up to the point where waves start to break (when compared to the 

‘linear’ surface elevation time history). It has been shown that NewWave is an appropriate 

model for the shape of the ‘linear’ part of large waves provided kd  0.5. A Stokes-like 

expansion for NewWave analysis has been demonstrated to match the average shape of the 

largest waves, accounting for the dominant vertical asymmetry. Furthermore, an appropriate 

local wave period derived from NewWave has been inserted into a Miche-based limiting 

criterion, using the linear dispersion equation, to obtain estimates for the limiting wave height. 

Overall, the analysis confirms the Miche-type criterion applies to limiting wave height for 

waves passing over very mild bed slopes.  

 

A derivation of general Green-Naghdi (GN) theory, which incorporates non-linear terms in its 

formulation, is also presented. This approach satisfies the boundary conditions exactly and 

approximates the field equations. The derived 2-dimensional vertical GN Level 1 model, 

capable of simulating steep waves on varying water depth, is validated against solitary waves 

and their interactions, and solitary waves on varying water depth and gives good qualitative 

agreement against the KdV equation. The developed and validated numerical model is used to 

simulate focussed wave groups on both constant depth and gentle slope. In general, the 

behaviour of waves simulated by the numerical model is very similar to that observed in the 

experimental data. There is evidence of vertical asymmetry as the water depth is reduced, 

owing to the non-linearity. Although the main physics is still controlled by linear dispersion, 

the higher order harmonics become increasingly important for shoaling waves. The numerical 

results also show a slope-induced wave set-up that keeps on increasing in amplitude as the 

wave group travels on the gentle slope.   
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1    Introduction and Literature Review 

 

 

1.1 Background 

The offshore oil and gas industry produces much of the energy required for industry, 

commerce, transport, and domestic consumption, worldwide. Offshore structures are designed 

to withstand the loadings from extreme waves and resist fatigue from typical operating wave 

conditions. Accurate prediction of ocean waves is very important in the design and safe 

operation of offshore structures, and can be a major factor in determining the economic 

viability of an offshore project.  

 

Most ocean waves are wind-generated waves. These result from wind blowing over a stretch 

of open water surface for a long period of time. The developed waves can travel large 

distances over the sea from their area of origin. As a wave travels, its properties (for example 

amplitude, period and spectrum) change due to a range of physical processes such as shoaling, 

diffraction, breaking and refraction. During a storm, irregular short-crested waves propagate 

away from the generation area with a range of different speeds and directions (Holthuijsen, 

2006). Low frequency long waves travel faster than the higher frequency shorter ones. This 

process is known as frequency-dispersion. The linear dispersion equation used to describe this 

is shown below:  

  

2 tanh( )gk kd   (1.1) 

 

where  is angular frequency, g is the acceleration due to gravity, k is wave number and d is 

water depth. 

 

Ocean waves are both essentially random in time and can be highly non-linear (e.g. large 

amplitude, with tall narrow crests and shallow troughs). Shoaling steepens the waves, 

increases their amplitudes due to non-linear interactions between wave components and 

ultimately leads to breaking. Wave breaking occurs when an individual wave crest is so steep 

that it can no longer hold its shape. Dissipation of wave energy through breaking produces 
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turbulent motion within the water and also changes the behaviour of waves. A useful but 

empirical criterion in estimating the maximum wave height achievable by waves is given by 

Miche (1944); 

 

Hmax = 0.142  tanh kd 

 

where H is wave height,  is wavelength, k is wave number and d is water depth. 

(1.2) 

 

In deep water, the equation reduces to a maximum wave steepness Hmax/ = 0.142, and in 

shallow water, it reduces to a maximum height-to-depth ratio Hmax /d = 0.89. This result is 

based on the structure of limiting regular waves on deep water and the highest possible 

solitary wave on very shallow water. 

 

Recently, there has been a growth in interest in the installation of large offshore structures for 

oil and gas recovery from sites where the water depth is relatively shallow. The design of 

these structures is particularly challenging, as they are subjected to waves that steepen non-

linearly as the water depth decreases. Moreover, there is a growing consensus among 

researchers that ocean waves occasionally occur with heights well in the excess of what is 

expected (Haver et al., 2004). Extreme wave events are highly non-linear and ongoing 

research is being undertaken to quantify high order wave harmonics and non-linearity. An 

example of an extreme or ‘freak’ wave event is the Draupner wave which occurred in the 

central North Sea at the Statoil’s Draupner platform in 1995. A single wave crest of 18.5 m 

was recorded in a 70 m water depth in a sea-state with a significant wave height, Hs of 

approximately 12 m (Walker et al., 2004 and Adcock et al., 2011).  

 

Improved understanding of the processes and behaviour of extreme waves is needed in order 

to have a good and sound design methodology for offshore structures in deep, intermediate 

and shallow water. Much physical experimentation and numerical modelling has been 

undertaken to study the behaviour of these extreme ocean waves. Advances in computer 

technology, such as fast computational speed, low cost and sophisticated symbolic and 

mathematical manipulations, have made numerical modelling an appealing approach by 

which to study the behaviour of ocean waves. 
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1.2 Linear Wave Theory 

Linear Wave Theory (also known as Airy Theory and small amplitude wave theory) (Sarpkaya 

and Isaacson, 1981; Dean and Dalrymple, 1984; and Billingham and King, 2000) is the 

simplest theory for surface gravity waves. Besides the assumption that the fluid is irrotational, 

inviscid and also incompressible, the non-linear terms in the free surface boundary conditions 

are also neglected. This theory gives a reasonably approximation of wave characteristics over 

a wide range of wave parameters. This linearization means that each wave component will not 

interact with any other, and each wave component will always maintain its sinusoidal form, as 

shown in Figure 1.1. But, care has to be taken as this wave theory is not suitable for the real 

open sea surface which includes random waves because of the local occurrence of much taller 

and steeper waves. 

 

 

Figure 1.1: 2-Dimensional linear wave characteristics 

 

1.3 Wave Spectrum 

In offshore engineering generally, knowledge of the wave spectrum is assumed to describe 

adequately the random nature of waves in the open sea, where the sea-state is assumed to be a 

mixture of components with different frequencies, phases and amplitudes (Holthuijsen, 2006). 

The wave spectrum gives the mean distribution of wave energy at different frequencies on the 

sea surface with the sea surface represented by an infinite series of sine and cosine functions 

of different wave-lengths moving in many directions (Stewart, 1997). The Pierson-Moskowitz 

(PM) spectrum (e.g. Sarpkaya and Isaacson, 1981) is a standard model for a fully developed 

sea (a sea produced by winds blowing steadily over hundreds of miles for several days). But 

observations from the Joint North Sea Wave Project (JONSWAP) found that the ocean waves 

Bed 

Water depth, d 

Wavelength,  

Wave height, H 

Mean sea water level 
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are not necessarily fully developed (Tucker and Pitt, 2001), and instead continue to develop in 

time and space.  In practice, most engineers use the JONSWAP spectrum, which represents 

the wave spectral energy Sj (f) empirically from: 
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where  is an empirical constant, g is the acceleration due to gravity, f is wave frequency, f p is 

peak frequency, σ is the standard deviation and  is peak enhancement factor. Figure 1.2 

compares the PM and JONSWAP spectra. 

 

 

Figure 1.2: Relationship between the PM (Sp) and JONSWAP (Sj) Spectrum. 

 

1.4 Extreme Waves 

There have been many sightings of very large waves by mariners, and evidence of damage on 

ships and offshore structures that can only be caused by high waves. The terms ‘white wall’ 

and ‘freak waves’ have been used to describe these large waves and have been cited as one of 

the factors for missing ships. Prior to the now famous and reliably measured Draupner wave 
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event in 1995, it was unclear whether such waves were real. Findings by The European Space 

Agency reported by BBC in 2004
1
 have proved the occurrence of these ‘freak waves’, which 

exist in higher numbers than anyone expected. Unlike idealised linear waves, real large ocean 

waves are vertically asymmetric and non-linear, due to the crests being larger and steeper 

compared to the troughs. A lot of research studies have been undertaken to understand aspects 

of these large, extreme waves. Here, the term ‘extreme waves’ is used to describe waves 

which are at least twice higher than the significant wave height, defined as the average height 

of the highest one-third of the surrounding waves. The occurrence of extreme waves can be 

due to many different processes, such as refraction of waves in varying bottom topography, 

wave-current interaction of opposite directions (e.g. the Agulhas current, (Smith, 1976)) and 

two wave groups crossing at sea (Adcock et al., 2011). The latter explains the unusual 

underlying wave set-up in the 1995 Draupner wave event discovered by Walker et al. (2004).  

 

One reason for the occurrence of locally higher waves is the dispersive focussing of waves; 

random waves combining at a point in time and space where the height of the resulting crest is 

higher than the linear combination of all crests. The act of waves coming together linearly to 

generate a large wave triggers the non-linearity. Non-linear interactions consist of quadruple 

and triad interactions. The former dominates the evolution of the spectrum in deep water by 

transferring energy from the spectral peak to lower frequencies (thus lowering the peak 

frequency) and to higher frequencies (where white capping dissipates the energy), whilst the 

latter occur in shallow water by transfer of energy from lower to higher frequencies resulting 

often in higher harmonics (Beji and Battjes, 1993). Research on this non-linear focussing 

phenomenon has been done by Baldock et al. (1996), Slunyaev et al. (2002), Gibson and 

Swan (2007), and many others with the objective of understanding large wave events. 

 

1.5 NewWave 

For design purposes, instead of random ocean waves, a focused wave group known as 

NewWave can be used as the design input wave condition in order to predict wave forces 

acting on a structure in the ocean. NewWave is the average shape of extreme events in a linear 

random Gaussian process (Tromans et al., 1991). Lindgren (1970) and Boccotti (1983) 

showed that the average shape of very large events in time is proportional to the auto-

correlation function of the time history, but only took into account the linear behaviour of the 

                                                        
1
 Freak Waves Spotted from Space, 2004, BBC News; http://news.bbc.co.uk/1/hi/3917539.stm 
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moving surface waves. Boccotti (1983) introduced the use of the auto-correlation function 

into offshore engineering using linear wave motion, which can be applied to a broad banded 

energy spectrum such as obtained for wind waves. Tromans et al. (1991) then used the 

NewWave model in the context of structural reliability analysis. One major advantage is that 

it can replace the computer-time demanding random wave analysis and, as stated before, can 

model broad banded sea-states. The theory provides a good basis for deriving models of 

extreme waves.  

 

Jonathan and Taylor (1997) investigated the expected form of a wave in time using the linear 

order theory by Lindgren (1970), which accurately gives the result for large sized crests when 

compared with measured field data. Taylor and Williams (2004) and Walker et al. (2004) have 

shown that NewWave fits well to the linear part of average shape of large waves of both the 

WACSIS and Draupner datasets for field data from the North Sea. Thus, NewWave can be 

used to predict the local wave structure of large events given a frequency spectrum at any 

spatial point. However, real ocean waves are random and non-linear. By adding non-linear 

components; correct to second order in Stokes theory, to the obtained linear profile, it is clear 

from observation that the crest slope steepens and height increases while the trough broadens. 

This result provides a further step in understanding the behaviour of extreme waves. 

 

1.6 Green-Naghdi Numerical Model 

The overall aim of the proposed DPhil research is to develop a numerical wave model to 

simulate the behaviour of free surface flow and to analyse the physics involved in extreme 

waves. The Navier-Stokes equations describe the motion of Newtonian fluid flow (Munson et 

al., 2006). If viscosity is neglected, the Navier-Stokes equations reduce to the Euler equations 

for inviscid, incompressible, and irrotational flow (Li and Lam, 1964). In turn, this leads to 

the governing Laplace equation normally used for free surface water flow, whereby a 

potential can represent the velocity vectors (Longuet-Higgins and Cokelet, 1976). Fully non-

linear potential theory (FNPT) is particularly useful for representing the interaction of water 

with large structures, where viscous effects can be ignored. In solving the governing 

equations, non-linearity exists explicitly in the boundary conditions of the free surface; 

involving fluid velocity, surface displacement, velocity potential and its normal derivative on 

the free surface. There are many numerical methods for solving the non-linear free surface 

motions of ocean waves such as the Finite Element Method (Ma and Yan, 2006; Yan and Ma, 
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2007) and the Spectral Method (Fenton and Rienecker, 1982; Craig and Sulem, 1993; 

Bateman et al., 2001 and 2003). Although these numerical schemes can model a wide range of 

water wave problems, there is still need for more accurate models of extreme wave 

interactions with structures.  

 

Various other alternative approaches are available to simulate free surface flows. A standard 

perturbation method such as Stokes’ wave theory assumes that the solution is a perturbation in 

a small parameter, the wave steepness, to describe weakly non-linear and dispersive waves. It 

is successful in deep water with relatively short wave lengths as compared to the water depth 

but is limited use for shallow water, because it needs many terms before convergence towards 

the solution. The Boussinesq equations are preferred in shallow water, where Taylor 

expansions are used for the flow field and applied to the boundary conditions. It is valid for 

weakly non-linear wave and incorporates frequency dispersion, unlike the shallow water 

equations. Both the derivations of Stokes perturbation method and the Boussinesq equations 

are given respectively in Part 1 and Part 2 of Dingemans (1997).  

 

The theory of fluid sheets, introduced by Green, Laws and Naghdi (1974), has been used in a 

variety of fluid flow problems; for example waves in shallow and deep water (Green and 

Naghdi, 1986; Shields and Webster, 1988), waves due to a moving pressure disturbance 

(Ertekin et al., 1986) and water wave evolution at a wave-absorbing beach (Xu et al., 1997). 

Green-Naghdi (GN) theory is a relatively recent invention which appears to be very effective 

as the kinematics become increasingly violent (steep waves). GN theory satisfies the 

boundary conditions exactly while approximating the field equation, incorporating the 

momentum equation. This is the opposite way around to the standard Stokes-type perturbation 

method. Prescribing the dependency of the kinematic structure in the vertical direction results 

in a two-dimensional equation that represents the three-dimensional problem. Demirbilek and 

Webster (1992) derived the general GN equations for inviscid and incompressible fluid, with 

GN Level I and Level II formulated to solve two-dimensional steady and unsteady flows over 

flat and uneven bottom topography.  

 

Shields and Webster (1988) demonstrated that there are advantages to this approach, by 

comparing predictions for steady, two-dimensional waves over a horizontal bed. Numerical 

solutions indicate that the GN theory converges more rapidly than the more standard 



 

 

8 

 

perturbation theories. Other works using GN are by Kim and Ertekin (2002), Chan and Swan 

(2003) and Zhao et al. (2009 and 2010). The latter have applied Level II and III GN theory to 

simulate earthquake induced tsunami and underwater landslides by varying the bottom 

topography with time, and also compare the dispersive relations between Level VII GN 

theory and linear Stokes theory. In contrast to the derivation of GN theory by a direct method, 

which uses fundamental principles of continuum mechanics, Kim et al. (2001 and 2003) 

derived the GN equations for irrotational flow using the principle of virtual work and 

performed numerical tests to show convergence of the theory as the level increases.  

 

1.7 Motivation of Research 

Industrial Motivation  

New sources of energy are always in demand. The increase of interest in the shipping of 

Liquefied Natural Gas (LNG) since the year 2000 has been dramatic. For countries such as 

Japan and Korea, without large energy resources, the importation of LNG has been essential 

in supplying energy. For the energy companies, LNG provides a method of producing from 

gas fields and then transporting the product to market. In the case of exporting countries like 

Australia and Brunei, the shipping of LNG allows them to benefit from their gas resources 

which otherwise would have no market. 

 

As LNG production plants and tankers are enormous, it has become increasingly desirable to 

establish LNG export and import terminals in intermediate water depth, particularly in areas 

where the slope of the continental shelf is very gradual. There is lack of research going on 

regarding this transition zone; where the waves are slowly affected by the water depth, as 

compared to both the deep and shallow water. Offshore engineers are mostly concerned with 

deep water waves which are little affected by the water depth while coastal engineers are 

mostly concerned with waves in the surf zone i.e. between the point of incipient wave 

breaking and the still water shoreline.  

 

Shell initiated a Joint Industry Project (JIP) under the Limits of Waves in Shallow Water 

(Lowish, Imperial College et al., 2007)
2
 project to address the uncertainties of waves 

propagating on these slowly varying water depths, particularly regarding the limiting wave 

                                                        
2
 The Lowish material was covered by confidentiality agreement but the material has been made available for 

this thesis. 
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heights. The Gulf of Mexico provides a very good example for this intermediate water depth 

on the continental shelf where the bathymetry includes slowly varying water depth from deep 

to shallow water. There is some evidence that the limiting wave height may be as low as 0.55 

times the water depth, much lower than that is used in engineering practice of 0.78 (Nelson, 

1994). This lower limit will have a huge impact in reducing the cost of design and 

construction of structures and ships. But before any new implementation, concrete evidence is 

needed. That is the aim of the project, to provide sound evidence of a better limiting wave 

height of waves propagating on gentle slopes through the analysis of experiments on a 

purpose-built wave flume, field measurements and also numerical modelling. 

 

Scientific Motivation 

Questions that can be answered through this research include determining the shape of the 

large wave events as the waves shoal on the continental shelf and also the local maximum 

wave height. The Miche limiting criteria is put to the test on waves interacting with the slowly 

varying water depth, as any strong evidence of a lower limiting criterion would be important 

in saving the cost by way of designing structures and ships using a lower and better 

approximation of the wave force. The analysis is done by statistical modelling using 

NewWave, a representation of the linear large wave event and can be applied at any spatial 

point (where the physics are dominated by linear dispersion), given the local input spectrum. 

In the absence of local spectral information, it is likely that deep water spectral information 

will be available even if this is simply the assumption of a standard JONSWAP form. In the 

absence of a computer package such as SWAN (a third-generation wave model that computes  

the spectra associated with random, short-crested wind-generated waves), a simple spectral 

modification method to account for shoaling is used as the waves advance into shallower 

water. The deep water spectrum can be modified to be a function of water depth by using the 

linear dispersion equation, resulting in the TMA (Texel, Marsen and Arsloe) spectrum. It 

should be stressed here that SWAN is not phase resolving, so the output is a local wave 

spectrum even if such a sophisticated code is available. 

 

Through the developed and validated GN model, which is able to simulate steep waves on 

varying water depth, the behaviour of focussed wave groups on gentle slopes can be examined 

and compared to the limited records from the Lowish experiments at Imperial College. 

Records of wave kinematics for any time and space can be extracted numerically, which could 
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be essential as the Lowish experiments have wave gauges which are 5 m (several 

wavelengths) apart from one another. NewWave-focussed wave groups from the experimental 

data of random waves are used as the initial conditions. The focussed wave groups are 

simulated from their dispersed conditions and made to focus at a particular point rather than 

by interpreting random waves as has been done in the Lowish experiments. Together with the 

data analysis work, this research aims to provide greater understanding of wave groups 

shoaling on continental shelf. 

 

1.8 Aim and Objectives 

The aim of the research being reported in this thesis is to develop a validated numerical wave 

model which is accurate, robust, and efficient for simulating propagating waves from deep to 

shallow water, taking into account steep slopes and extreme waves. What is new to this 

research is the combination of the GN model with the physical structure of the wave field 

gained from the data analysis work. Then, the behaviour of extreme waves which are highly 

non-linear can be modelled using the experimentally derived results as the initial conditions. 

This will then feed into the planning and design of offshore structures. 

 

The objectives are as follows:  

a) Interpretation of the physical structure of the wave field from measured data of waves 

propagating on a very mild bed slope representative of the continental shelf.  

b) Applying NewWave (NW) analysis to estimate the local properties of a large wave 

event. 

c) Extending NW from being a linear representation of large wave events to represent 

higher order harmonics. 

d) Validating the developed 2D GN Level 1 theory by simulations of solitary waves and 

comparing against the well-known KdV equation. 

e) Simulating NewWave-type focussed wave groups’ propagation on gentle slope, 

representing the behaviour of extreme waves to understand the physics of focussed 

wave groups’ interaction with varying water depth. 

 

1.9 Synopsis 

Chapters 2 and 3 deal with the interpretation of experimental data on the propagation of 

waves from deep to shallow water and the application of NewWave method and its Hilbert 
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transformation-based method to represent large wave events on the experimental data. Details 

of the experimental setup by Imperial College London are also described in Chapter 2.  

Chapter 4 deals with the mathematical derivation of the Green-Naghdi Level 1 equations, 

which include investigation of the derived GN equations’ dispersion and non-linearity 

properties and the numerical method for solving them. Chapter 5 proceeds with the validation 

of the developed GN model and also improvement in understanding the nature of the GN 

equations by simulation of solitary waves (which are inherently non-linear). These are then 

compared against solutions of the solitary waves for the KdV equation. Chapter 6 investigates 

the behaviour of focussed wave groups as representations of extreme waves; in particular the 

interaction of an extreme wave group with the mild sloping bed is studied in detail. Together 

with the data analysis in Chapter 2 and Chapter 3, the numerical results give insight on the 

behaviour of extreme waves. The final chapter summarises the main conclusions of this work, 

and makes several recommendations as to how the work could be extended. 
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2 Physics of Random Waves on Gentle Slopes 

 

 

2.1 Introduction 

Wind blowing on the surface of the ocean will create a random sea state composed of waves 

with variable heights, periods and wavelengths, depending on the fetch length, duration and 

also the wind speed. As the random waves propagate away from their source, their behaviour 

changes and they start to shoal on the continental shelf and enter progressively shallow water 

before reaching the coast line. A physical scale model of these processes can be established 

using a laboratory wave flume; with controlled conditions (use of input wave paddle signal 

and known bed topography) and precise measurements (see e.g. Hughes, 1993). 

 

This chapter describes the interpretation of laboratory data in order to understand better the 

mechanics of waves propagating from deep water to shallow water on a very mild bed slope 

representative of the continental shelf. The laboratory experiments were undertaken using a 

wave flume at Imperial College London in the first phase of the Limits on Waves in Shallow 

Water project (Lowish Report, Imperial College et al., 2007 and Katsardi et al., 2013), where 

the data obtained are of very high quality. Lowish was a joint project under the Joint Industry 

Project initiated by Shell International Exploration and Production aimed at addressing more 

precisely the uncertainties in waves propagating from deep water to shallow water, in 

particular for intermediate water depths where waves slowly evolve as the water depth 

reduces. In the present work, the wave profiles along the flume are examined by studying the 

change of shape, crest, trough and wave heights as the waves shoal. The effects of 

non-linearity are also investigated by separating the harmonics of the surface elevation time 

history, using Stokes water wave expansion theory to reveal the physical processes involved 

in the propagation of random waves from deep into shallow water. 
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2.2 Laboratory Flume 

Figure 2.1 shows the wave flume at Imperial College, which is 0.6 m wide and 60 m long. In 

the Lowish study, the water depth varied (based on bed slope) from 0.7 m at the wave paddle 

to 0 m at the beach.  

 

 

Up to eleven wave gauges were installed along the length of the wave flume. Each wave 

gauge consisted of two thin wires piercing the water surface. The wires were of diameter 1 

mm and spaced 10 mm apart so that they were hydrodynamically transparent and did not alter 

the water streamlines (Lowish Report, Imperial College et al., 2007). The wave gauges were 

used to measure the water surface elevation by producing a voltage output which depended on 

the length of the thin wires being immersed in water. An accuracy of better than  1 mm was 

expected after calibration. Figure 2.2 shows the position of the wave gauges. 

 

 

Figure 2.1: The wave flume (without the sloping bed). 
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Figure 2.2: Longitudinal layout of the wave flume with a) 1:100 and b) 1:250 bed slope, 

showing the position of the wave gauges. 

 

2.3 Wave Input Conditions and Tank Geometry 

The depth of water in the wave flume varied according to the bed slope. Three bed slopes 

were considered; namely 1:100, 1:250 and constant depth of 0.3 m. The wave spectrum input 

was chosen to simulate a realistic deep water ocean spectrum bearing in mind that wave 

breaking would be likely to occur throughout the wave flume. For the present analysis, there 

are three parameters of the spectrum input which are important; 

i) Peak period, Tp 

ii) JONSWAP peak enhancement factor,  

iii) Deep water significant wave height, Hso , recorded at the Front Gauge (1.5 m from the 

wave paddle) 
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Front 
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26 test cases with different values of the input parameters were configured to produce the 

different wave conditions. In each test case, 8 separate runs were undertaken with 256 s of 

data acquired during each run. The data sampling frequency was 128 Hz. This gave a total 

data series of 2048 s duration, containing between 1200 to 1700 wave cycles. The test cases 

were used to examine the effects on the wave field of varying water depth, peak period, 

spectral bandwidth (peak enhancement factor), wave steepness and bed slope. Tables 2.1 to 

2.7 summarise the test cases and the values of non-dimensional water depth (using 

wavenumber, k) with corresponding bed slopes and spectral periods. 

 

Table 2.1: Input wave conditions for cases involving a bed slope of 1:100 

 

Sea State Spectral Shape Tp (s)  Hso (mm) 

1a 
JONSWAP 1.2 2.5 

96.0  

1b 120.2  

2a 
JONSWAP 1.5 1.0 

88.5  

2b 126.8  

3a 

JONSWAP 1.5 2.5 

11.2  

3b 29.2  

3c 83.3  

3d 102.9  

3e 121.3  

4a 
JONSWAP 1.5 5.5 

106.7  

4b 120.8  

5 JONSWAP 1.8 2.5 174.7  

6a 
LOG-NORMAL 1.5 - 

74.2  

6b 101.3  
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Table 2.2: Input wave conditions for cases involving a bed slope of 1:250 

 

Sea State Spectral Shape Tp (s)  Hso (mm) 

1b JONSWAP 1.2 2.5 119.1  

2b JONSWAP 1.5 1.0  125.5  

3e JONSWAP 1.5 2.5 122.2  

4b JONSWAP 1.5 5.5 119.5  

5 JONSWAP 1.8 2.5 175.6  

6b LOG-NORMAL 1.5 - 100.0  

 

Table 2.3: Input wave conditions for cases involving a constant depth, d = 0.30m 

 

Sea State Spectral Shape Tp (s)  Hso (mm) 

1b JONSWAP 1.2 2.5 120.0  

2b JONSWAP 1.5 1.0  111.7  

3e JONSWAP 1.5 2.5 128.9  

4b JONSWAP 1.5 5.5 128.2  

5 JONSWAP 1.8 1.8 111.0  

6b LOG-NORMAL 1.5 - 101.8  

 

Table 2.4: Non-dimensional still water depths at wave gauges for random waves with spectral 

peak period of 1.2 s over 1:100 bed slope 

 

Gauge  FG    1    2     3     4     5     6     7    8 

d(m) 0.60  0.40  0.35  0.30  0.25  0.20  0.15  0.10  0.05  

k(m
-1

) 2.96  3.24  3.38  3.56  3.77  4.10  4.67  5.47  7.65  

kd 1.78  1.30  1.18  1.06  0.95  0.83  0.69  0.56  0.38  
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Table 2.5: Non-dimensional still water depths at wave gauges for random waves with spectral 

peak period of 1.5 s over 1:100 bed slope 

 

Gauge  FG     1    2     3     4     5    6     7     8 

d(m) 0.60 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 

k(m
-1

) 2.10 2.40 2.53 2.69 2.88 3.16 3.64 4.29 6.07 

kd 1.26 0.96 0.88 0.80 0.73 0.64 0.54 0.44 0.30 

 

Table 2.6: Non-dimensional still water depths at wave gauges for random waves with spectral 

peak period of 1.2 s over 1:250 bed slope 

 

Gauge  FG    1     2     3     4    5     6     7     8 

d(m) 0.60 0.29 0.27 0.25 0.23 0.21 0.19 0.17 0.15 

k(m
-1

) 2.96 3.58 3.67 3.77 3.90 4.02 4.18 4.39 4.60 

kd 1.78 1.05 1.00 0.95 0.90 0.86 0.81 0.75 0.71 

 

Table 2.7: Non-dimensional still water depths at wave gauges for random waves with spectral 

peak period of 1.5 s over 1:100 bed slope 

 

Gauge  FG    1     2     3     4     5    6     7     8 

d(m) 0.60 0.29 0.27 0.25 0.23 0.21 0.19 0.17 0.15 

k(m
-1

) 2.10 2.71 2.79 2.88 2.99 3.09 3.23 3.41 3.58 

kd 1.26 0.79 0.76 0.73 0.69 0.66 0.62 0.58 0.55 
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2.4 Surface Elevation Time History 

Figure 2.3 shows a typical series of time histories at different gauge locations. It can be seen 

that, as the wave shoals from deep water to shallow water, there is a reduction in crest height 

and trough height. Vertical wave asymmetry becomes more evident with the sharpening of 

crests and broadening of troughs as the waves shoal. In shallow water (Gauge 8 with kd of 

0.38), the number of crests decreases and each appears to behave more like a solitary or 

bore-like wave. From now on, examples will be shown for Case 1a1100 (Case 1a with 1:100 

slope), unless stated otherwise.  
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Figure 2.3: Surface elevation time history of Case 1a with 1:100 bed slope at different wave 

gauges (in progressively shallow depth from Gauge 1 to Gauge 8). 
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2.5 Detailed Analysis 

The averaged top 10 %, averaged top 2 % and the maximum of ‘crest’ surface elevation and 

‘trough’ surface elevation are now considered for further analysis. Only the top 10 % of Case 

1a1100 is examined in detail here, but all the different classifications will be discussed later in 

Section 2.6. 

 

2.5.1 ‘Crest’ and ‘Trough’ Surface Elevation 

The largest 10 % crest elevations are identified in the record, and in each case the portion of 

wave history 5 s before and after the peak is extracted in order to examine the average shape 

near the large crest. The time is then re-set for every case such that each large crest occurs at 

zero relative time (t-tc). All the crests are then aligned together and the profile averaged over 

the total number of cases. The same procedure is then repeated for the deepest troughs.  

 

Figure 2.4 shows that the shapes of all of the waves considered are almost the same during the 

time from 1 s before to 1 s after the crest. Further from the crest, the individual shapes are 

distributed randomly. Sharpening of crest and broadening of troughs can also be seen as the 

waves propagate into shallow water. At Gauge 8, there is a definite crest height limiting 

criterion and also a loss of symmetry in the horizontal direction. Figure 2.5 shows the 

averaged ‘crest’ surface elevation over time which also includes the time-reversed data series 

(used to examine temporal asymmetry). As the waves propagate from deep into shallow water, 

the horizontal asymmetries increase due to non-linear effects. Note the reduced troughs at 

Gauge 7 and the saw-tooth shaped crest with troughs virtually having disappeared at Gauge 8. 

The same processes are evident in the trough elevations shown in Figure 2.6 and Figure 2.7. 
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Figure 2.4: Top 10 % ‘crest’ surface elevation vs time (t - tc) for Case 1a1100 

d = 0.40 m d = 0.35 m 
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Figure 2.5: Top 10 % ‘crest’ averaged surface elevation vs time (t - tc) for Case 1a1100 

overlapped with reversed time
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Figure 2.6: Top 10 % ‘trough’ surface elevation vs time (t - tc) for Case 1a1100

Note saturation of crest elevation, 

troughs disappearing 
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Figure 2.7: Top 10 % ‘trough’ averaged surface elevation vs time (t - tc) for Case 1a1100 

overlapped with reversed time 
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2.5.2 Linear and Second Order Term Surface Elevation 

Applying Stokes water wave expansion theory to the combination of expansions centred at a 

crest and at a trough, the combination [c - t]/2 leaves only the odd harmonics (dominated by 

the linear term) whereas [c + t]/2 contains the even harmonics (dominated by the second 

order terms), as shown in Equations (2.1) to (2.4).  

 

2 2 3

0 2 3cos(0) cos( ) cos(2 ) cos(3 ) ... cos( )n

c nS A A t S A t S A t S A n t           (2.1) 

2 2 3

0 2 3cos(0) cos( ) cos(2 ) cos(3 ) ... cos( )n

t nS A A t S A t S A t S A n t           (2.2) 

3 1

3 1cos( ) cos(3 ) ... cos(( 1) )
2

nc t
nA t S A t S A n t

 
  




      (2.3) 

2 2

0 2cos(0) cos(2 ) ... cos( )
2

nc t
nS A S A t S A n t

 
 


     (2.4) 

 

where A is the wave amplitude,  is the wave angular frequency, n + 1 is the number of terms 

(counting from the difference term which for a regular wave has zero frequency) and the 

coefficients Sn determine the magnitude of the components. Notice that a zero frequency term 

(mean shift) is included, as this idea of combining crest and trough centred signals is in 

practice here applied to the broad banded signals i.e. random waves rather than regular waves. 

 

ηc is taken to be the average surface elevation time series for the largest crests (i.e. largest 

10 %) while ηt is the average surface elevation time history for the largest troughs, as 

explained in Section 2.5.1. The first combination of the average large crest and trough profile 

is shown in Figure 2.8. It can be seen that the odd harmonics separation (‘linear term’) works 

well up to Gauge 6 where the asymmetry starts to become apparent and increases in shallower 

water. It is important to look at the effect of the contribution from the even harmonics; 

dominated by second order terms. It can be seen in Figure 2.9 that the period taken from 

trough to trough along the crest is halved compared to the odd harmonics. Also seen is a 

set-down term in deeper water (the troughs either side of the crest are larger than the crest 

itself); a wave group rides in a hole of its own making (see Figure 3.4a of Section 3.3.2). Note 

also the loss of symmetry when breaking starts.  
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Further examination of Figure 2.9 shows that there is an increase in the peak values for the 

even harmonics from Gauge 2 to Gauge 7 (the gauge just before the waves are finally broken). 

The increment of the even harmonics between gauges demonstrates the increasing 

non-linearity as the wave group propagates to shallow water. The rate of increment of the 

even harmonics is the largest between Gauge 6 to Gauge 7 (about 5 x 10
-3

 m per gauge when 

compared to an average of 2 x 10
-3 

m per gauge for the previous gauges) as near-breaking 

waves are highly non-linear. Likewise, the ratio of second order terms to linear order terms 

increases when the waves propagate from deep water to shallow water, due to increasing 

non-linearity. 
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Figure 2.8: Top 10 % averaged [c - t]/2 surface elevation vs time (t - tc) for  

Case 1a1100 
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Figure 2.9: Top 10 % averaged [c + t]/2 surface elevation vs time (t - tc) for  

Case 1a1100 
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2.6 General Overview of the Results for the Largest Waves 

The maximum crests, troughs and wave heights have been extracted from all the test cases 

and plotted against the water depth, as have their non-dimensional counterparts. The results 

are compared for a few cases so that the overall behaviour of the waves can be seen clearly. 

Results for the largest individual crest anywhere in the record at each gauge, and the averages 

of the top 2 % largest (30 - 40 waves) and top 10 % largest (150 - 200 waves) will be 

presented. 

 

Figure 2.10 shows the variation of maximum crest elevations for Case 3a1100-3e1100 over 

water depth on the slope. Here, the variation in elevation with water depth remains small 

down to a water depth of 0.1 m. A sudden drop in values for Cases 3b and 3c from about 0.05 

m crest elevation to 0.017 m indicates that there is a limiting crest elevation criterion at a 

water depth of about 0.05 m. Furthermore, for all cases the values of the crest height at that 

water depth of about 0.05 m almost converge to a single value. This condition can be partly 

seen at Gauge 8 in Figure 2.4 where the wave height starts to saturate. Analysis from Section 

3.5 for Case 1bflat (constant water depth) provides evidence that friction does not play an 

important role in the limiting criteria of crest height. 

 

The reduction in crest elevation is also clear for the middle (top 2%) and bottom (top 10%) 

plots of Figure 2.10. As would be expected, the averaging reduces the point to point 

variability, making the overall downward trend of wave elevation with reducing water depth 

more evident. 
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Figure 2.10: Maximum crest elevations along the wave flume 
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Figure 2.11 shows the variation of the maximum magnitudes of trough elevations against 

water depth on the slope (and the averaged top 2 % and 10 %) where the trough elevation 

reduces linearly from deep water to shallow water. This suggests that the troughs reduce more 

smoothly than the crests in deeper water. This holds true as the wave moves from deep water 

to shallow water, owing to non-linearity which makes the wave asymmetric, with steeper 

crests and broader and smaller troughs. The same global behaviour is noted for the shallowest 

water depths, with the maximum elevation of the troughs approaching a common value in all 

cases. 

 

Figure 2.12 of maximum wave height against water depth shows that the trend in wave height 

is similar to that in crest elevation. This is because the troughs reduce over a wider range of 

depths compared to the crests as the waves shoal. Note that the maximum wave height here is 

the maximum height between the trough and corresponding following crest in a surface 

elevation time history (not by pairing the maximum crest in the record with the maximum 

trough at an entirely different time in the time series). 
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Figure 2.11: Maximum magnitudes of trough elevations along the wave flume 

 



 

 

33 

  

 

 

 

 

 

 

Figure 2.12: Maximum wave heights along the wave flume 
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Figure 2.14 and Figures 2.15a show plots of the non-dimensional maximum crest elevations 

(ηckp), and wave heights (Hkp) against non-dimensional water depth (kpd). Here, the values for 

both the non-dimensional maximum crest elevations (ηckp), and wave heights (Hkp) at each 

cases tend to approach one another as compared to the dimensional crest elevations and wave 

heights in the previous figures. This should hold true as most of the important factors (for 

example the water depths, wave numbers and wave periods) have been considered for a wave 

propagating from deep water to shallow water. However, the significant wave height (Hso) and 

the immediate change of slope were not taken into account in the non-dimensional form. This 

is the reason why the smallest amplitude Case 3a1100 has values far below that of the other 

cases. This sea-state simply is not energetic enough to produce depth limited individual 

waves. 

 

The sudden change in value for the peak crests in both Case 1b1250 (at kpd  1) and Case 

3e1250 (at kpd  0.8) at the second gauge signals that the sudden change from a 1:15 slope to 

the 1:250 slope (as shown in Figure 2.2b) affects the surface elevation values locally as a local 

overshoot in wave height. The effect is not visible in cases of 1:100 slope because the deepest 

water gauge used in the data analysis is 10 m inshore of the step change, so the wave field has 

apparently become adapted to the uniform shallow slope. Gauge 1 and Gauge 2 for case 1:250 

slope are only 2.5 and 7.5 m away from the step change. This suggests that there might be an 

overshoot also for case 1:100 bed slope before Gauge 1, but there are no data available to 

confirm this. 

 

In the field, waves are irregular and there is a distribution of wave heights and wave periods 

(Smith, 1999), instead of regular waves which form the basis for the Miche limiting criterion. 

Equation (2.5) gives a modified Miche limiting criterion as proposed in the Lowish study (see 

Katsardi et al., 2013 for further information on the Lowish experiment). A constant of 0.12 is 

applied instead of 0.142 for the Miche limiting criterion because it gives a better result when 

applied to the experimental data. As has been shown in Gauge 7 and Gauge 8 of Figure 2.4, 

there is a limiting wave height at these two spatial points and Figure 2.15 shows that the 
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modified limiting criteria gives a better representation of the wave height limit for these 

waves. In deep water, the equation reduces to a maximum wave steepness Hmax/ = 0.12, and 

in shallow water, it reduces to a maximum height-to-depth ratio Hmax/d = 0.76.  

 

Hmax = 0.12  tanh kd 

 

where H is wave height,  is wavelength, k is wave number and d is water depth. 

(2.5) 

 

Figure 2.15a is plotted by non-dimensionalising the maximum wave height and water depth 

using the wavenumber (kp) based on deep water spectral peak period Tp. Figure 2.15b is 

plotted by non-dimensionalising the maximum wave height and water depth using the 

wavenumber (kNW) based on zero down-crossing period of the local NewWave group (TNW), 

where NewWave (NW) is an analytical model which describes the profile of large wave 

events near a crest in a specified sea-state. NW is obtained by scaled auto-correlation function 

of the original time history. It has to be stressed that the local NewWave is based on the local 

spectrum at each water depth. The change in wavenumber from deep water spectral peak 

period to zero down-crossing period of NewWave stretches the lines upward and to the right, 

with no significant effect on the modified Miche limit. All results are within the limit except 

for the case where the bed slope is 1:250 (where the wave height overshoots for reasons 

which have been explained previously) and also for a single point at the shallowest water 

depth Case 3e1100. 

 

 

Figure 2.13: NewWave profile and the zero down-crossing period 
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Figure 2.14: Non-dimensional maximum crest elevation against non-dimensional water depth 
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Figure 2.15a: Non-dimensional maximum wave heights (using kp) against kpd 
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Figure 2.15b: Non-dimensional maximum wave heights (using kNW) against kNWd 
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2.7 Post-breaker Line (kd < 0.5) 

Waves before breaking are frequency dispersive, with complications arising from wave group 

non-linearity, quadruplet wave-wave interactions and triad interactions in shallow water. 

Post-breaking, the frequency dispersion changes to amplitude dispersion and involves mostly 

triad interactions between waves. Crests become dominant (cnoidal theory for regular waves) 

and involve close to solitary wave interactions (which may be modelled with Boussinesq or 

Korteweg-de Vries (KdV) type equations). The energy dissipation through the wave breaking 

process is considerable and the breaking itself can have various forms from spilling through to 

violent plunging. Overall, for positions inshore of the main-breaker line, it seems likely that 

the non-linear shallow water equations (NLSWE) may be valid, and, with a shock-capturing 

NLSWE solver, this zone might be amenable to detailed analysis. 

 

Figure 2.16 shows the surface elevation time history at 3 locations in the shallow water 

regime. There is a fast decay of wave height as the waves move inshore. Note also for the 

smallest depth the saw-tooth nature of the waves and how few crests there are. 

 

 

 

Figure 2.16: Surface elevation time history of Case 1a with 1:100 bed slope at shallow water. 
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The 20 largest crests and troughs (which is the top 10 % of the first run, as explained in 

Section 2.3) are superimposed at the midpoint of the time histories, as shown in Figure 2.17 

and Figure 2.18. From Figure 2.17, there is clearly a saturation of maximum crest height for 

all three depths, particularly for the smallest depth (the last one). The data indicate that there 

is a fixed upper limit on elevation. Note the time asymmetry of the data for Gauges 7 and 8 

(kd = 0.54 and 0.38) and also the vanishing of coherent wave troughs, which is shown clearly 

in Figure 2.18. 

 

 

 

 

 

 

Figure 2.17: Top 20 ‘crest’ surface elevation vs time (t - tc) for Case 1a1100 
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Figure 2.18: Top 20 ‘trough’ surface elevation vs time (t-tc) for Case 1a1100 

 

It should be noted that for kd < 0.5, the wave period becomes much less important as 

indicated by the shallow water limit of the modified Miche, H/d = 0.754 (independent of 

period). Note in passing that the shallow depth asymptotic form of the modified Miche 

criterion is: 

 
2

0.754 1 ...
3

kdH

d

 
   

 
 

, (2.6) 

so for kd sufficiently small, the criterion is independent of the local depth. 
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2.7.1 Waves in Shallow Limit as a Succession of Uncorrelated Solitary Waves 

Waves in the shallowest depths are fitted to individual solitary waves riding on a current. The 

simplest Korteweg-de Vries equation form for a solitary wave is  

 

𝜂 = 𝐻 ∗ sech2 [
√3

2
(
𝐻

𝑑3
)

1
2⁄

(𝑥 − 𝑐′𝑡)] (2.7) 

𝑐′ = 𝑐𝑠𝑜𝑙 + 𝑢𝑐 (2.8) 

𝑐𝑠𝑜𝑙 = √𝑔𝑑 (1 +
𝐻

𝑑
) (2.9) 

 

where H is the wave height, d is the water depth, csol is the solitary wave speed, and uc is the 

assumed local current. Given the height of peak and the shape, the idea is to match the 

effective speed of assumed solitary wave, c. Data from Case 3c1100 are considered here as 

an example. Figure 2.19 shows the solitary wave fit for the averaged shape of the top 20 ‘crest’ 

surface elevation while Figure 2.20 fits the largest individual wave elevation at each depth. It 

can be seen that the speed of the wave is larger than the solitary wave speed, and that this 

value varies. For kd below 0.3, the wave profiles take on a saw-toothed shape, and so the 

solitary wave model does not fit well in very shallow water situations. 
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Figure 2.19: Solitary wave fit to averaged top 20 of ‘crest’ surface elevation for Case 3c1100 
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Figure 2.20: Solitary wave fits to largest ‘crest’ surface elevation for Case 3c1100 
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Figure 2.21 shows the ratio of effective wave speed relative (c) to the solitary wave speed 

(csol) for Case 1 and Case 3 of both 1:100 and 1:250 slopes (Table 2.1 and Table 2.2). Only the 

gauges with a clear saturation of maximum crest surface elevations are chosen. The flat bed 

cases and Case 3a1100 are not included as the waves are still not broken when they reached 

Gauge 8. Only a few of the waves move at the undisturbed solitary wave speed, i.e. the 

relative speed of 1. All the other crests move faster by a factor up to 1.5. This result holds 

whether the analysis is based on the averaged time history of the top 10 % of all the waves 

(Figure 2.21a), or only the largest individual waves (Figure 2.21b). The mismatch in speed 

appears independent of water depth (kd), defined in terms of the deep water peak of the wave 

spectrum. 

 

 

  

 

 

 

Figure 2.21: Non-dimensional effective wave speed for a) top 10 % and b) largest individual 

waves assuming each wave crest can be modelled as a solitary wave 
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There are several possibilities for the poor fit of the solitary waves. Are the waves moving 

faster than solitary waves? 

 

If there is no active breaking, it is more plausible that the width of the assumed sech
2
 form is 

not appropriate. This would be compatible with the individual waves being convected past the 

wave gauge by a locally strong mean flows (current). On a wave-by-wave basis this current 

may be highly variable. The assumed shape fits well although with the wrong apparent width 

for kd > 0.3. 

 

If there is active breaking, the horizontal velocity is larger than the celerity. A hydraulic jump 

might be a better model.  

 

2.7.2 Waves in Shallow Limit as a Succession of Uncorrelated Hydraulic Jumps 

Waves in the shallowest depths are fitted to individual hydraulic jumps riding on a current. It 

is assumed that the height of the wave crest above still water is H and the undisturbed depth is 

d. Then, 

𝑐′ = 𝑐ℎ𝑗 + 𝑢𝑐 

𝑐ℎ𝑗 = √𝑔(𝑑 + 𝐻) (1 +
𝐻

2𝑑
) (2.10) 

 

For realistic hump heights, 0 < H/d < 0.75, the effective speed can be larger than the solitary 

wave speed by up to 20%. Figure 2.22 plots the effective wave speed relative to the hydraulic 

jump speed as the moving jump advances on still water for the same cases used for fitting the 

solitary wave. The present model then appears to work slightly better. However, there are 

insufficient wave data to proceed further (with wave information only available at two kd 

values). 1-D shock theory assumes a jump in depth across the front, whereas the available 

experimental data comprise signals in time at a point. 
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Figure 2.22: Non-dimensional effective wave speed for a) top 10 % and b) largest individual 

waves assuming each wave can be modelled as a hydraulic jump. 

 

2.8 Conclusion 

 Sharpening of crests and broadening of troughs can be seen as the waves propagate 

into shallow water.  

 The shapes of all the waves considered are almost the same during the time from 1 s 

before to 1 s after the maximum crest occurs, for random waves data with Tp of 1.2 s. 

Further from the crest, the individual shapes are distributed randomly. In shallow 
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asymmetry in shape with time starts to become apparent and increases in shallower 

water.  

 For even harmonics; dominated by second order terms, the period taken from trough 

to trough along the crest is halved compared to the odd harmonics.  

 Also seen is a set-down term in deeper water (the troughs either side of the crest are 

larger than the crest itself); a wave group rides in a depression of its own making.  

 Attempts have been made to model waves after the main breaker line, which appears 

to be at around kd  0.5 for sufficiently energetic wave fields. Two models have been 

used; a simple solitary wave form riding on an unknown local current, and a hydraulic 

jump. In both cases, the wave crests move faster than the assumed wave forms on 

shallow water, requiring that they ride on a significant and highly variable onshore 

current. Given the limited data available for the shallowest depths, the analysis cannot 

be taken further. 

 In terms of the modified Miche criterion, use of either the wavenumber (k = kp) based 

on the deep water wave spectral peak or a local NewWave type model with a 

zero-crossing based wavenumber (k = kNW) is appropriate, with the NewWave based 

model appearing to be a closer limit to the data. 
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3 NewWave Analysis of Experimental Data  

 

 

3.1 Introduction 

NewWave (NW) is an analytical model which describes the profile of large wave events near 

a crest in a specified sea-state. It has the same shape as the auto-correlation function of the 

original time history, and has been shown to be proportional to the average shape of the 

largest wave event in a linear random Gaussian process (Bocotti, 1983). The analysis is first 

applied to the experimental data as a validation process by comparing NewWave with large 

wave events identified in the surface elevation time history. Then, NewWave analysis is 

applied to the experimental data to understand further the mechanics of waves propagating 

from deep water to shallow water. In keeping with the aim of the present research to 

investigate the behaviour of very large waves which are highly non-linear, NewWave analysis 

is extended from being a model solely of the largest wave event to being able to determine the 

shape and magnitude of second and third order harmonics.  

 

NewWave can also be used to predict the wave forces acting on a structure in the ocean. This 

could greatly reduce the processing time of a simulation compared to running random waves 

in a laboratory to produce large waves. It is an appropriate approach by which to estimate the 

local properties of a large wave event in water where the dynamics are controlled by linear 

dispersion; different wavelength components travelling at different speeds. The global 

properties of the whole set of time histories can be transformed to the local properties of 

individual NewWaves using Fast Fourier Transforms (FFT). Thus, local properties of a large 

event wave (such as a local wave period) can be estimated and then used as to provide design 

criteria. A NewWave-based approach using spectral information is developed here, where the 

idea is to use the local wavenumber extracted from NewWave, without knowledge of the 

measured time histories. 
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3.2 NewWave Comparison with ‘Linear’ Surface Elevation  

Restated in Section 3.3, [ηc - ηt]/2 of the Stokes water wave expansion is the odd harmonics of 

the surface elevation time history, which is dominated by the linear order term. ‘Linear’ 

surface elevation will be used as shorthand. It has to be stressed that ηc is taken to be the 

average surface elevation time series for the largest crests (i.e. largest 10%) while ηt is the 

average surface elevation time history for the largest troughs, as explained in Section 2.5.1. 

This ‘linear’ surface elevation is compared with NewWave which can be obtained by a simple 

Fourier transform of the power spectrum S(), Mathematically, NewWave is defined as;  

 

𝜂𝑁𝑊(𝑡) = 𝐴
∫𝑆(𝜔) cos𝜔𝑡 𝑑𝜔

∫𝑆(𝜔) 𝑑𝜔
 (3.1) 

 

where A is the wave amplitude of  the ‘linear’ surface elevation used to scale NewWave, so 

the crest values match. The shape of NewWave is shown in Figure 3.1. 

 

 

Figure 3.1: Shape of NewWave 

 

Figure 3.2 compares the spectrally derived NewWave profile to the ‘linear’ surface elevations 

[c-t]/2. NewWave (𝜂𝑁𝑊(𝑡)) fits very well to the linear contribution of the surface elevation 

in deep water. However, the match is less good for Gauges 7 and 8; for these the horizontal 

asymmetry increases and NewWave fails to match the averaged profile in the shallower 

depths. When compared with the ‘linear’ surface elevation, it can be seen that NewWave is 

broader at the crest and deeper at the following troughs. This is due to the contribution of 

third order effects (triple frequency term) on the ‘linear’ surface elevation, as can be seen in 

the combination of Stokes expansions for [c-t]/2, restated in Section 3.3.  
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Figure 3.2: NewWave compared with top 10 % averaged [c-t]/2 for Case 1a1100 
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3.3 Extraction and Detailed Analysis of the Bound Sum Harmonics 

Large deep ocean waves are vertically asymmetric and non-linear, due to the crests being 

larger and steeper compared to the troughs. Thus, it is important to quantify the magnitude of 

the harmonics. From the Stokes water wave expansion, the magnitude of the linear and third 

order contribution for the odd harmonics, [ηc - ηt]/2 and second order contributions for the 

even harmonics, [ηc + ηt]/2 are now estimated. Stokes water wave expansion and its 

combinations are restated here. 

 

2 2 3

0 2 3cos(0) cos( ) cos(2 ) cos(3 ) ... cos( )n

c nS A A t S A t S A t S A n t           (2.1) 

2 2 3

0 2 3cos(0) cos( ) cos(2 ) cos(3 ) ... cos( )n

t nS A A t S A t S A t S A n t           (2.2) 

3 1

3 1cos( ) cos(3 ) ... cos(( 1) )
2

nc t
nA t S A t S A n t

 
  




      (2.3) 

2 2

0 2cos(0) cos(2 ) ... cos( )
2

nc t
nS A S A t S A n t

 
 


     (2.4) 

 

where A is the wave amplitude, ω is the wave angular frequency, n + 1 is the number of terms 

and the coefficients Sn determine the magnitude of the components. Note a zero frequency 

term (mean shift) is included, as this idea of combining crest- and trough- centered signals is 

in practice here applied to the broad-banded signals rather than regular waves. 

 

Case 3e1100 with peak period, Tp of 1.5 s and deep water significant wave height, Hso of 

121.3 mm is considered here, being the most extreme case of all (See Table 2.1 of Section 

2.3).  

 

3.3.1 Odd Harmonics 

The [ηc - ηt]/2 data have been averaged with the time reversed waveform (centred at the time 

when the maximum crest occurs) to reduce noise. Based on Equation (2.3), the linear term is 

simply NewWave (NW), the auto-correlation function of the overall time series whilst the 

third order term (NW3) can be approximated by using the Hilbert Transformation of 

NewWave (Walker et al. 2004). The approximation for the shape of the third order 

contribution to NewWave is based on the identity; 
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3 2cos(3 ) cos 3sin .cos      (3.2) 

 

giving an approximation for the local third harmonics as 

 

NW3 = NW
3 
- 3NWH

2
.NW (3.3) 

  

where NWH is the Hilbert transform of the NewWave signal, requiring simply the replacement 

of the cosine function in Equation (3.1) by the sine function. 

 

The magnitude of NW and NW3 contributions can be sought by fitting an equation of the 

form  

2

c t 
 = A1*NW + A3*NW3 (3.4) 

 

The coefficients A1 and A3 are determined using the equations below, with the assumption that 

the linear and third order terms are orthogonal to each other (which is very close to being 

exactly correct).  

 

21

2
c t NW dt

NW dt
A

  
 

 




 (3.5) 

 

 

 
23

3
2

3

c t NW dt

NW t
A

d

  
 

 




 (3.6) 

 

Figure 3.3 shows the odd harmonics: [ηc - ηt]/2 from the data and the sum of linear and third 

order fitted terms using NewWave, based on Equation (3.4). The sum contribution fits very 

well up to Gauge 6 where waves start to break. The [ηc - ηt]/2 - A1*NW - A3*NW3 is the 

difference between the data and sum of the linear and third order contributions and represents 

an error component, arising from the lack of perfect fit. Fortunately, this error is usually small. 

It can be clearly seen there is an increment in value for this difference (error) from Gauge 5 to 

Gauge 6, and it is a significant contribution to the odd harmonics at Gauge 7. The difference 

could represent the higher order odd harmonics terms (5
th

 and etc.), or could simply be noise; 
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a break-down of NewWave formulation. The magnitude of the coefficients A1 and A3 (in m) 

for every gauge are given in Table 3.1. 

 

Table 3.1: Values of coefficients A1 and A3 for Case 3e1100 

 

                 Case 3e1100  

Based on unit amplitude NewWave 

Gauge A1 (m) A3 (m) 

1 0.0606  0.0044  

2 0.0573  0.0051  

3 0.0546  0.0066  

4 0.0503  0.0077  

5 0.0449  0.0109  

6 0.0320  0.0116  

7 0.0223  0.0113  
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Figure 3.3: Top 10 % averaged odd harmonics vs time for Case 3e1100 
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3.3.2 Even Harmonics 

The [ηc + ηt]/2 data have also been averaged with the time reversed waveform to reduce noise. 

Then, the spectrum is obtained using FFT with peak frequency (fp) of 0.667 Hz (for the same 

case as in Section 3.3.1). The spectrum is filtered to obtain estimates for the second order sum 

and second order difference terms of the Stokes wave expansion. The cut off point for lower 

frequency (second order difference) is around 0.5 fp and the cut off point for higher frequency 

(second order sum) is around 1.5 fp. The filtered second order sum term is then compared with 

its equivalent Hilbert Transform based approximations of NewWave (NW2) using the 

identity; 

 

cos 2𝜃 = cos2 𝜃 − sin2 𝜃 (3.7) 

 

giving an approximation for the second harmonics as 

 

NW2 = NW
2 
- NWH

2
 (3.8) 

 

The upper plots of Figure 3.4a and Figure 3.4b show the even harmonics, [ηc + ηt]/2 from 

Case 3e1100 and its second order sum and second order difference contribution by spectral 

filtering for Gauge 1 and Gauge 7 respectively. Generally for all gauges, the second order sum 

contribution of NewWave (NW2) fits well with the filtered data as shown in the middle plot 

of both figures, with Gauge 7 being at the shallowest depth with broken waves. In these plots, 

the magnitude of NW2 is normalised with the crest height of the filtered data so that direct 

comparison of the shape can be observed. The reconstruction of the overall [ηc + ηt]/2 are 

shown in the third plots where the filtered second order difference is used. The reason for the 

use of a filtered spectrum is that there is no way to determine accurately the magnitude of the 

second order difference using the orthogonality principle, as applied in Section 3.3.1 for the 

magnitude of A1 and A3. It should be noted that the crest value of the reconstruction data 

should have the same value as [ηc + ηt]/2 because the same second order difference signal is 

used for the reconstruction. This discrepancy is due to information loss during the spectrum 

filtering to obtain the filtered second order difference signal. 

  

The magnitude of the second order sum, A2 is then calculated using the same principle as for 

the odd harmonics before, with the assumption that the linear and second order sum terms are 
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orthogonal to each other. Table 3.2 below shows the magnitude of the second order sum term 

for every gauge of Case 3e1100. 

 

 

 
2 2

2
2

2

c t NW dt

A
NW dt

  
 

 




 (3.9) 

 

 

Table 3.2: Values of coefficients A2 for Case 3e1100 and crest height of the filtered second 

order sum 

 

Gauge A2 (m) 
Crest height of the 

filtered 2
nd

 order sum 

  

filtered 2
nd

 order sum 

Percentage 

difference (%) 

1 0.0142 0.0170 16 

2 0.0159 0.0186 

 

 

 

15 

3 0.0186 0.0200 7 

4 0.0192 0.0203 5 

5 0.0218 0.0230 5 

6 0.0184 0.0193 5 

7 0.0153 0.0161 5 

 

 

Table 3.2 also shows the difference in magnitude between the filtered second order sum and 

the calculated value, A2, with the filtered spectrum giving higher magnitude. Presumably the 

small differences may be due to fourth order contributions embedded in the filtered spectrum. 

The small difference in shape (middle plot of Figure 3.4) may also be a result of the fourth 

order contributions as well as statistical noise. Together with Table 3.1, the contribution of 

both second and third order sum harmonics increases in magnitude as the waves shoal. 
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Figure 3.4a: Top 10 % averaged even harmonics vs time for Case 3e1100 at Gauge 1 
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Figure 3.4b: Top 10 % averaged even harmonics vs time for Case 3e1100 at Gauge 7 
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Based on the Stokes water wave expansion (Section 3.3), the S2 and S3 terms are related to the 

Stokes coefficient defined by Walker et al. (2004) as S2 = S22/d and S3 = S33/d
2
. The 

coefficients S22, S33 etc. are simply those given in a standard Stokes expansion rearranged to 

use the depth (d) explicitly rather than the wavenumber (k) i.e. the standard form 

  

2 2 3

22 33cos cos2 cos3 ...A B kA B k A        (3.10) 

 

is replaced by   

𝜂 = 𝐴 cos 𝜃 +
𝑆22
𝑑
𝐴2 cos 2𝜃 +

𝑆33
𝑑2

𝐴3 cos 3𝜃 (3.11) 

 

The standard coefficients Bij are related to the Walker-type ones by  

 

22
22.

S
B k

d
  etc. (3.12) 

 

The aim in doing this is to remove the requirement of estimating the local wavenumber, k. By 

comparing Equation (3.4) with Equation (3.11) and applying it to the double frequency term 

(A2*NW2), the Stokes coefficient for the experimental result can be given by 

 

𝑆22𝑁𝑊 =
𝐴2𝑑

𝐴2
 

𝑆33𝑁𝑊 =
𝐴3𝑑

2

𝐴3
 

(3.13) 

 

Figure 3.5 plots the variation of both the theoretical (Walker et al., 2004) and experimentally 

derived Stokes coefficient with kd. The experimental data show the same trend as the theory, 

with the rate of change of the coefficients decreasing with increasing kd. The rather large 

discrepancy especially for S33 at high kd could due to the fact that the amplitude, A in 

Equation (2.3) is the average of the cubes of amplitude for every large wave event considered 

and not the cube of the averaged amplitude, as used here. Given that double and triple 

frequency contributions to the wave are small, the level of agreement between the 

approximate NewWave coefficients and the exact (regular wave) Stokes values is satisfactory. 
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Figure 3.5: Stokes second and third order sum coefficients, S22 and S33 against kd  

 

In conclusion, the NewWave analysis can be extended from being solely a model of the 

average large wave event to being able to provide estimates of the shape and magnitude of 

second and third order sum contributions with reasonably good results by using a Hilbert 

Transformation-based method (Walker et al., 2004).  

 

3.4 Spectral Modification due to Shoaling 

NewWave can be used to predict the local wave structure of large events given a frequency 

spectrum at any spatial point. Unfortunately, spectral data at all points up a gentle slope may 

not be readily available, so the construction of the appropriate NewWave requires some more 

assumptions. In the absence of local spectral information, it is likely that deep water spectral 

information will be available even if this is simply the assumption of a standard JONSWAP 
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form. In the absence of a computer package such as SWAN (a third-generation wave model 

that computes random, short-crested wind-generated waves), a simple spectral modification 

method to account for shoaling is used as the waves advance into shallower water. The deep 

water spectrum, S(f;d) can be modified to be a function of water depth by using the linear 

dispersion equation, resulting in the TMA (Texel, Marsen and Arsloe) spectrum (Bouws et.al., 

1985); 

 

 
 
 

 1

1

;
; ;

;

f d
S f d S f d

f d



  (3.14) 

 

with the TMA factor, Φ(f,d) = 1/(2nr) (tanh (kd))
2
 and nr is the ratio of the group velocity to 

phase speed. This gives an estimation of the conservative and non-breaking wave spectrum at 

different locations as the waves slowly adapt to varying water depth.  

 

Figure 3.6a shows the wave spectrum based on gauge to gauge transformation for Case 

1a1100. The wave spectrum at Gauge 1 is multiplied by the TMA factor for Gauge 2 to 

produce a TMA spectrum at Gauge 2 and this is then compared with the measured wave 

spectrum of Gauge 2. Next, the measured wave spectrum at Gauge 2 is then multiplied by the 

TMA factor for Gauge 3 to produce a TMA spectrum at Gauge 3 and this is then compared 

with the measured spectrum of Gauge 3. This procedure is then continued for the other 

gauges. From Figure 3.6a, it is shown that the TMA spectra fit very well up to Gauge 6. 

Beyond that, vigorous wave breaking starts to take place and the TMA model starts to fail, as 

does NewWave representation for large waves (as evident in Figure 3.2). 

 

Also, the TMA spectrum at all gauges has been produced based on one single wave spectrum 

at Gauge 1. This is to assess the cumulative changes of the spectrum at different locations 

based on only one wave spectrum in deep water. This can be seen in Figure 3.6b. It shows 

similar results as the gauge to gauge transformation, failing to fit well with the measured 

spectrum at Gauge 7 and Gauge 8. However, there is some net loss of energy starting at 

Gauge 5 and Gauge 6 at a frequency range of 0.5 to 0.8 Hz compared to the gauge to gauge 

transformation spectrum. Overall, the TMA model for the spectral changes in a shoaling wave 

field appears to work quite well until the onset of strong breaking.  
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As well as the simple TMA model, the computationally intensive SWAN model (Booij et al., 

1999) could be used as an approach to spectral modifications in shallow water. The evolution 

of spectral action in SWAN includes shoaling and refraction, approximating diffraction, wind 

input, dissipation by white capping, bed friction, surf-breaking, four-wave and three-wave 

interactions, wave induced set up, etc. But, it should be stressed here that SWAN is not phase 

resolving, so the output is a local wave spectrum. Thus, it is also possible to use NewWave to 

convert SWAN spectral information into local wave structure. 

 

3.5 Effect of Friction 

Bouws et.al. (1985) stated that friction plays almost no part in the balance of energy in deep 

water. Figure 3.7 relates to Case 1bflat (constant water depth of 30 cm) and shows that at 

different gauges a distance of 10 m apart, the NewWave shape does not change but there is 

slow dissipation of amplitude through viscous damping by the side walls due to the narrow 

width of the wave flume. The reduction of wave height per wavelength for regular wave trains 

is less than 1 %, as stated in the Lowish Report (2007). This suggests that friction is not 

significant in the channel and that the wave heights are limited by non-linear dynamics as the 

waves shoal; more energy dissipation in breaking. This is presumably the reason for the same 

limiting values in crest amplitude of waves, as stated in Section 2.6. Comparing Figure 3.7 

and Figure 2.5 (of Section 2.5.1) for the case with sloping bed, note the difference between 

breaking as energy dissipation, a localised and violent process, compared to slow but 

cumulative dissipation due to bed and sidewall friction. 

 

 

 

 

 

 

 

 

 



 

65 

 

  

 

Figure 3.6a: Wave spectra based on gauge to gauge TMA transformation for Case 1a1100 
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Figure 3.6b: Wave spectra based on gauge 1 TMA transformation for Case 1a1100 
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Figure 3.7: Top 10 % crest averaged surface elevation vs time (t-tc) for Case 1bflat 

 (d = 0.3 m) overlapped with reversed time 

 

Gauge 1 

Gauge 3 

Gauge 5 

Gauge 7 



 

68 

 

3.6 Comparison with other Test Cases 

Based on the configuration of the test case undertaken, comparisons have been made to 

further characterise and understand the behaviour of waves; the influence of offshore 

significant wave height (Hso) and the effect of bed slope.  

 

3.6.1 Influence of Offshore Significant Wave Height (Hso) 

The wave field is influenced by the total energy content of the wave spectrum. Figure 3.8 

shows five cases of varying offshore significant wave height (Hso) at the same water depth 

(Gauge 7 in 10 cm depth). The wave height of linear response scales with the significant wave 

height. NewWave works well up to the point where the wave height starts to saturate in 

relatively shallow water depth, due to the Miche limiting criterion which is based on the 

height to depth ratio (H/d) for shallow water. 
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Figure 3.8: NewWave (dashed line) compared to top 10 % averaged [ηc - ηt]/2 (solid line) of 

Case 3a1100-3e1100 with the same water depth (d = 10 cm) 
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Hso = 121.3 mm 
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3.6.2 Effect of Bed Slope 

Tests with bed slopes of both 1:100 and 1:250 have been carried out to look at the effect on 

the propagation of deep water waves into shallow water. Figure 3.9 shows the NewWave and 

top 10% averaged profiles for Case 3e1100 and 3e1250 side by side for the same water 

depths. The behaviour of crests is similar except for the water depth, d = 30 cm where there is 

a slight overshoot (higher crest) due to sudden change of steep (1:15) slope to gentle (1:250) 

slope compared to the 1:100 case. It should be noted that water depth of 30 cm for case 1:100 

is 20 m away from the step change.  

  

Overall, the pairs of figures are sufficiently similar to imply that the local shapes of the largest 

values at various points on the slope are affected by the depth via the local kd value but hardly 

at all by the value of the bed slope. 
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          (a)                                                                     (b) 

Figure 3.9: NewWave (dashed line) compared with top 10 % averaged [ηc - ηt]/2 (solid line) of a) Case 3e1100 and b) Case 3e1250 
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3.7 Conclusion 

 The main finding of the NewWave analysis is that for non-breaking waves, both the 

TMA transformation and NewWave methodologies give very satisfactory 

representations of average large wave events. Once large-scale breaking occurs, both 

methods fail to match the measured data. NewWave appears to be a reasonable model 

for waves in deep and intermediate water depth.  

 In deeper water with kd > 0.5, 

o frequency dispersion is still significant and NewWave remains a reasonable 

model.  

o Detailed non-linear analysis has been performed and a Stokes-like expansion 

for NewWave shown to match the average shape of the largest waves.  

o Based on a given input spectrum (e.g. the TMA spectrum), NewWave can be 

used to find the local wave period of averaged large event waves from the 

random surface elevation time history.  

This value is then inserted in the modified Miche limiting wave height 

criterion by using the dispersion equation. 

 For kd < 0.5 and with strong breaking, 

o NewWave fails to work because shoreward of the breaker line, virtually all 

large crests are breaking. Possibly a solitary wave theory or a bore wave model 

ought to be applicable and a limiting wave height of Hmax/d = 0.76 appears to 

be appropriate. 

 NewWave analysis can be extended from being a model of the average large wave 

event  only to being able to provide estimates for the shape and magnitude of second 

and third order sum contributions by using a Hilbert Transformation-based method. 

o The contribution of both second and third order sum harmonics increases in 

magnitude as the waves shoal. 
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x 

4 Mathematical Formulation of the Green-Naghdi 

Equations 

 

4.1 Introduction 

The Green-Naghdi (GN) theory is a relatively new method in the field of ocean engineering 

when compared with other standard water wave theories, e.g. equations derived using 

perturbation methods such as Boussinesq and Stokes higher order equations. The GN 

approach assumes that the water is inviscid and incompressible, but not necessarily irrotational 

and satisfies the boundary conditions exactly and approximates the field equations. The 

velocity field is approximated by a finite sum of fundamental kinematic profiles. GN theory 

incorporates non-linear terms in its formulation, even at the lowest order. High level GN theory 

is capable of solving both shallow and deep water problems. Demirbilek and Webster (1992) 

derived the general GN equations for inviscid and incompressible fluid, with GN Level I and 

Level II formulated to solve two-dimensional steady and unsteady flows over flat and uneven 

bottom topography. 

 

The derivation starts from the 3-dimensional conservation equations before reducing to the 

2-dimensional vertical Green-Naghdi equations, using notation which is different from that 

used by Demirbilek and Webster (1992). Then, the derived 2-dimensional GN equations are 

investigated through their dispersion and non-linearity properties before a numerical method 

for solving them is presented. 

 

4.2 3-D Mass and Momentum Equations and Kinematic Boundary 

Conditions for Free Surface Flow of Inviscid, Incompressible Liquid 

 

 

Figure 4.1: 2-D Definition sketch of the physical domain 

 

 

Datum 

Seabed 

MSL 

z 
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It is assumed that the liquid (water) is inviscid and incompressible. With respect to the 

definition sketch in Figure 4.1, the dependent variables comprise the flow velocity vector,

( , , )u u v w ; the vector of gravitational acceleration, ( , , )x y zg g g g ; the elevation of the 

bottom surface boundary above a fixed datum, ( , , )x y t ; and the elevation of the top surface 

boundary above a fixed datum, ( , , )x y t . In vector notation, the 3-dimensional mass and 

momentum equations for inviscid, incompressible flow are 

 

(continuity)                     0 u


 , (4.1) 

 

(momentum)             .u u P g
t

 
 
     

 
 , (4.2) 

 

where P is pressure,  is density, and t is time. Writing these out in long hand, the continuity 

and conservative momentum component equations are as follows:     

   

(continuity)                     0
u v w

x y z

  
  

  
 , (4.3) 

              

(x-direction momentum)       
u uu uv uw P

t x y z x

       
    

    
 , (4.4a) 

                

(y-direction momentum)      
v vu vv vw P

t x y z y

       
    

    
 , (4.4b) 

and           

(z-direction momentum)      z

w wu wv ww P
g

t x y z z

   


    
     

    
 . (4.4c) 

   

The kinematic boundary conditions at the bed and free surface are 

  

(bottom surface)             
( )

0
D z

Dt


   or  w u v

t x y

    
  
  

 , (4.5a) 

and 
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(free surface)                
( )

0
D z

Dt


   or  w u v

t x y

    
  
  

 . (4.5b) 

 

4.3 3-D Green-Naghdi Continuity Equation for Free Surface Flow of 

Inviscid, Incompressible Liquid 

To derive the Green-Naghdi equations, the velocity field is first approximated using the 

following fundamental kinematic assumption, 

  

0

( , , , ) ( , , ) ( )
K

n n

n

u x y z t W x y t z


   , (4.6) 

 

where ( , , )n n n nW u v w  and n  are assumed shape functions, which depend only on z, and 

K is the level of approximation of the GN theory.  

 

Insertion of Equation (4.6) into the continuity equation [Equation (4.3)] gives 

 

    
0 0

( )
( ) 0

K K
n n n

n n

n m

u v z
z w

x y z




 

   
      

    . (4.7) 

 

Similarly, insertion of Equation (4.6) into the kinematic boundary conditions [Equation (4.5)], 

leads to  

            

(bottom surface)          
0 0 0

( )
K K K

n n n n n n

n n n

w u v
t x y

  
   

  

  
  
  

   , (4.8a) 

and 

(free surface)               
0 0 0

( )
K K K

n n n n n n

n n n

w u v
t x y

  
   

  

  
  
  

     . (4.8b) 
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4.4 2-D Green-Naghdi Momentum Equations for Free Surface Flow of 

Inviscid, Incompressible Liquid 

From now on, the derivation is given for 2-dimensional (x and z) vertical plane flow. 

Restating the momentum equations [Equation (4.4)] in conservation form gives, 

 

x-direction               
u uu uw P

t x z x

     
   

   
, (4.9a) 

and 

z-direction            z

w wu ww P
g

t x z z

  


   
    

   
  . (4.9b) 

 

To satisfy the momentum equation in a depth-averaged form for each fluid sheet, Equation 

(4.9) is multiplied by n and depth-integrated from the bottom surface, 𝛼(𝑥, 𝑡) to the free 

surface, 𝛽(𝑥, 𝑡) (Krylov-Kantorovich method [Demirbilek and Webster, 1992]). The 

x-direction momentum equation is considered first, before the z-direction momentum 

equation. 

 

4.4.1 x-direction Green-Naghdi Momentum Equation 

After integration, Equation (4.9a) becomes 

 

               
n n

z

u uu uw P
dz dz

t x z x

 

 

  
 



      
      

      
    . (4.10) 

 

Rewriting the left hand side (LHS) of Equation (4.10), 

 

               
n n n

z

u uu uw
dz

t x z





  
  



   
  

   
   ,  

 

and using the chain rule for the third term, gives  

 

                  n n
n n

z z z

u uu
dz dz uw uw dz

t x

  



  

   
   

  

          
    

     , (4.11) 
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where n
n

d

dz


   . Next, applying Leibnitz’ Rule to the RHS of Equation (4.10), gives 

 

               

 

    .

n

z

n

z

n nz z

P
dz

x

P dz

P P
x x x









 




 

 





 

 
  

 

 
         

  




    (4.12) 

 

Combining Equation (4.11) and Equation (4.12) gives, 

 

               

   

ˆ ,

n n
n nz

z z z

n
n nz z

u uu
dz dz uw uw dz

t x

P
p p

x x x

  



  

 

   
   

 
 


  

 

           
    

  
  
  

  
   (4.13) 

where 

 n n

z

P P dz








 
  
 
 , p̂  is pressure at the free surface and p  is pressure at the bottom 

surface. 

 

Inserting the kinematic assumptions [Equation (4.6)] into the LHS of Equation (4.13), gives 

 

   

0 0 0

0 0

0 0

0 0 0

K K K

m m n m m r r n K K
m m r

m m r r n

m rz z z

K K

m m r r n

m rz

K K K
m m r

m n m r n m

m m rz z

u u u

dz dz u w
t x

u w dz

u u u
dz dz u w

t x

 

  





 

 

      

   

   

       

  

   

 

   

   
    

    
    

   
   

   
 

 
  

 

  
  

 

    

 

 

0 0

0 0

0 0 0 0 0 0 0

,

K K

r m r n

m r z

K K

m r m r n

m r z

K K K K K K K
nm m r

mn mrn m r m r n m r mr

m m r m r m rz

u w dz

u u u
y y u w u w y

t x













  

   

      

  

  

      



 
   

 



 

   

 
(4.14) 

where 
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 mn m n

z

y dz





 


  ,  mrn m r n

z

y dz





  


  ,  n

mr m r n

z

y dz





  


   . 

 

Equation (4.13) can now be written as,  

 

 
 

0 0 0 0 0 0 0

.ˆ

K K K K K K K
nm m r

mn mrn m r m r n m r mr
m m r m r m rz

n
n nz z

u u u
y y u w u w y

t x

P
p p

x x x





 

      

 
 

      

 

 
   

 

  
  
  

     
(4.14) 

 

Equation (4.14) can be reduced further by applying the Krylov-Kantorovich method to the 

continuity equation [Equation (4.7)]. Changing the index m to r, Equation (4.7) becomes 

 

0 0

0
K K

r
r r r

r r

u
w

x
 

 

  


    . (4.15) 

 

Next, Equation (4.15) is multiplied with m and n (and summed over m). It is then depth 

integrated, giving    

 

0 0 0 0

0
K K K K

r
r m n r r m n

m r m rz z

u
dz w dz

x

 

 

     
    

  


     . (4.16) 

 

Interchanging the order of summation and integration, 

 

0 0 0 0

0 0 0 0

0

,
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mrn r mn

m r m r

K K K K
rr

mrn r mn
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   

   


 




 



 

 
 (4.17) 

where  r

mn m n r

z

y dz





  


  . 
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From the LHS of Equation (4.14), the second term can be expanded using the chain rule and 

then replaced by Equation (4.17),  
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 
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(4.18) 

 

where  r n

mn mry y can be determined using integration by parts as follows 
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Inserting this into Equation (4.18) to cancel the last term and combining with the RHS as in 

Equation (4.14), the x-direction momentum equation becomes, 
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4.4.2 z-direction Green-Naghdi Momentum Equation 

To obtain the z-momentum equation in a depth-averaged form for each fluid sheet, Equation 

(4.9b) is multiplied by n and depth-integrated from the bottom surface, ( , )x t to the free 

surface, ( , )x t following the Krylov-Kantorovich method.  
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Taking the left hand side (LHS) of Equation (4.21), 

 

               
n n n

z

w wu ww
dz

t x z





  
  



   
  

   
   . (4.22) 

 

Using the chain rule for the third term,  
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Taking the right hand side (RHS) of Equation (4.22) and again using the chain rule, 
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Combining Equation (4.23) and Equation (4.24), 
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After inserting the kinematic approximation, Equation (4.6), into the LHS of Equation (4.25), 
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(4.26) 

 

The equation now can be written as, 
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  .  Equation (4.27) can be reduced further by expanding the second term 

on the LHS of Equation (4.27) using the chain rule and replacing it by Equation (4.17) to give 
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Inserting Equation (4.19) into Equation (4.28) to cancel the last term and combining with the 

RHS as in Equation (4.27), the z-direction momentum equation is, 
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The governing equations, which comprise the kinematic assumption, continuity equation, top 

and bottom kinematic boundary conditions and momentum equations in 2-D are listed below. 

 

Kinematic assumption: 
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Bottom kinematic boundary condition 
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Free surface kinematic boundary condition 
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x-direction momentum equation: 
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for n = 0, 1, 2 … K. 
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z-direction momentum equation: 
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for n = 0, 1, 2 … K,  where p̂  and p  are pressures on the top and bottom surfaces 

respectively and; 
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4.5 Green-Naghdi (GN) Level 1 Equation for Shallow Water Flow over a  

Non-uniform Bed 

This section describes the derivation of the Green-Naghdi equations for a single sheet fluid 

model of shallow water flow over variable bed topography. It is assumed that the flow 

velocity profile over the water depth at any section is such that the horizontal component is 

uniform whereas the vertical velocity component varies linearly from zero at the bed to a 

maximum at the free surface. Thus, the number of sheets, K = 1, the second component of the 

horizontal velocity, u1 = 0, and the shape functions are 0 = 1 and 1 = z. 

 

 

                    

 

 

Figure 4.2: Definition sketch of flow in the vertical plane over a non-uniform bed  
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Figure 4.2 provides a definition sketch of the flow geometry. Here, the free surface elevation 

above a prescribed constant horizontal datum is defined as        , ,x t x t d x x     , 

where  ,x t  is the free surface elevation above mean sea level (MSL),  d x is the vertical 

elevation of MSL above the seabed, and  x is the bed elevation which does not change in 

time. h is the vertical elevation of the MSL above the datum. From Equation (4.6), Equation 

(4.7) and Equation (4.8), the Green-Naghdi kinematic assumption gives 
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where the free surface kinematic boundary condition (FSKBC) gives 
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the bottom kinematic boundary condition (BKBC) gives  
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and the continuity equation gives 
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Insertion of Equation (4.32c) into Equation (4.31b) at the bottom surface presents, 
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Then, inserting both Equation (4.32c) and Equation (4.33) into Equation (4.31a), the first GN 

equation is obtained as follows 
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and noting that        , ,x t x t d x x     , 
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The previously derived general GN x-momentum and z-momentum equations [Equation (4.20) 

and Equation (4.29)] are restated as  
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for n = 0, 1, 2 … K. 

 

z-direction 
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for n = 0, 1, 2 … K, where p̂  and p  are pressures on the top and bottom surfaces 

respectively and; 
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Inserting the given shape functions of
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(4.37) 

 

Expanding Equation (4.36) based on the given kinematic assumptions (for n = 0 and 1), gives 

the following. In the x-direction: 

 

n = 0    0 00 0 0
00 0 000 0 0 00 0 1 10 0 0ˆ

z z

u u P
y u y u w y u w y p p

t x x x x 

 
     

 

    
      

    
 , (4.38a) 
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And in the z-direction: 
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(4.39b) 

 

Insertion of Equation (4.37) into Equation (4.38) and Equation (4.39) gives the following. In 

the x-direction: 
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And in the z-direction 
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(4.40d) 
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Eliminating 0w and
1w from z-direction momentum equations [Equation (4.40c) and Equation 

(4.40d)] using Equation (4.32c) and Equation (4.33), gives the following: 
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(4.41a) 
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(4.41b) 

 

Differentiating Equation (4.41b) with respect to x and adding to Equation (4.40a) to eliminate 

the pressure term, leads to 
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Assuming the standard dynamic boundary condition on the free surface, then the pressure on 

the top surface is constant, so
ˆ

0
p

x





. Rearranging and dividing Equation (4.42) by  gives 
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(4.43) 
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Pressure at the bottom surface in Equation (4.43) is eliminated using the z-direction 

momentum equation [Equation (4.41a)]. By differentiating Equation (4.41a) by x, and 

dividing by , the following equation is obtained. 
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Rearranging Equation (4.44), the pressure at the bottom surface is given by, 
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(4.45) 

 

Inserting Equation (4.45) into Equation (4.43) and rearranging the terms will give the second 

GN equation, 
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(4.46) 

 

Noting (and restating) the first GN equation, 

  0u

t x

   


 
. (4.34) 

 

 

 

 

 



92 

 

The two GN equations can be written in terms of   and d as follows 

 

   

 

 

 

 

 

 

2

0
02

3 2
2

03 2

2

0

02

2

0

2 3

0

2

3
1

2

2

1
2

3

d ud d
u

x x x x

d d d
u

x x x
d ud d

u
dx x x t

x x
ud

d
x x x t

d u

x t

 

 











    
    

    

   
  

    
                      

     
             

   
  

     

 

 
    

 

 

2

2 2

0 0

2

2 2
2

0
0 2

2 3

0
0 3

,

3

3

d u u

x x

h d h ud
d u

x d x x

d u
u g

x x



 




 

 
 
 
 
 
 
 
  

  
  

    
   

    
 
          
     
   
 
    

      

 

(4.47) 
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4.6 Analytic Structure of Harmonic Solutions to GN Level 1 Equations 

In order to understand the capabilities/limitations involved in the GN equations derived in the 

previous section, the dispersion relationship and the non-linearity properties of the GN 

equations are investigated. The former is compared with the wave dispersion of the full water 

wave equations while the latter are examined through perturbation analysis and compared 

with Stokes regular wave expansion. 

  

4.6.1 GN Linear Wave Dispersion 

The linearized GN Level 1 equations on constant water depth are 
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(4.48b) 
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Assume the solution for the surface elevation has a sinusoidal profile, such that 

 

 cosA t kx   . (4.49a) 

 

Then, from Equation (4.48b), the horizontal velocity is given as 
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This expression for horizontal velocity satisfies the shallow water limit of the linear velocity 

(potential theory) 
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The above solutions for  and u0 are inserted into Equation (4.48a) to obtain the following 

dispersion relationship for the Linearized GN Level 1 equations, 
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(4.50) 

 

To examine the relationship given by Equation (4.50), it is worth noting that the exact linear 

wave dispersion equation is given by 
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The 2
nd

 order expansions of Equation (4.50) and Equation (4.51) both give, 
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Figure 4.4 shows the relative wave speed against kd for the above three equations. It can be 

seen that the dispersion characteristics of the full water wave equations and GN Level 1 

equations match well in shallow water (kd < 1.4). In contrast, the series expansion of both to 

O (k
2
d

2
) is much less satisfactory. Numerical simulations have been carried out by 

propagating single frequency regular waves over constant water depth, for a range of 

frequencies. The speed of the waves are measured and plotted in Figure 4.4. The numerical 

data matches very well with the GN analytical dispersion equation. 

 

 

 

Figure 4.4: Dispersion relationships given by the exact linear wave dispersion equation 

[Equation (4.51)], the series expansion approximation [Equation (4.52)], the linearized GN 

level 1 dispersion equation [Equation (4.50)] and the numerical data 

 

4.6.2 2
nd

 Order Perturbation Analysis 

The GN Level 1 Equations (retaining up to 2
nd

 order terms) on constant water depth are 
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Assume perturbation expansions for the solutions in the form of 
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Solving for the continuity equation, the perturbation expansions are inserted into Equation 

(4.53a) and the A terms collected together, giving 
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(4.55) 

From the linearized GN equations, the solution for the 1
st
 order perturbation is given as, 
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Solving Equation (4.55) for each order of A up to 2
nd

 order using the linearized solution 

above, 
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 O(A) :     1 1 0
u

t k x

  
 
 
 

 
  
 

, 

which gives 

                            sin sin 0t kx t kx       , 

 

 

and  

      O(A
2
)
 

:   2 1 2 1
1 1

1
0

u u
u

d t kd x kd x kd x

   
 
 
 
 

   
    

   
, 

which gives 

                        2 21
sin 2 0

u
t kx

d t kd x d

    
 
 

 
   

 
. 

 

(4.57) 

 

Solving for momentum equation, the perturbation expansions are inserted into Equation 

(4.53b) and the A terms collected together, giving 

 

2 2
1 2 1 2 1 2

2
3 31 2

1 2 1 2
1 22 2

2

3

u u u uA A A A AdA
t t x x x t x tkd d d kd d

Ad dA
d u u u uA A A A A Au u

x xkd d kd d kd dx t x t

  

 
  

    
    
      

     

  
          

        
             

 
 

     
    

       

 
   

   
    

2 2 3 32 2
1 2 1 2 1 2

1 22 2 3 3

1 2

3 3

0,

u u u u u ud A A A A d A A A Au u
x xkd d kd d kd d kd dx x x x

AgA
x xd

   

 



      
      
               

 
 
 
 



     
     

     

 
 

 

 

and     

    

2 3
2 1 1 2

2 2

23
1 1

1 13 2
21 1 1

22 22
1 1

2

2 32
1 2

1 3

1
3

2
3

3

3

1
3

u u u

t x x tk kkd x t

u u
u

xk kdu u x tdA g A
t xkd k x t u ud

xkd x

ud u g
xkd dx

  

 
 





 
 
 
 
  
         

          
  

  
  
   

   
  

     

 
 

    
  

    


 

 




   3 4... ... 0.A A








    

 

 

(4.58) 
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Solving Equation (4.58) for each order of A up to 2
nd

 order using the linearized solution of 

Equation (4.56), 

 

O(A)   :     
3

1 1 1
2

0
3

u ud
g

kd t k xx t

  
 
  
 

  
  

  
, 

which gives 

                              
2 2

sin sin sin 0
3
kd

t kx t kx gk t kx
kd
          , 

 

and rearranges to give  

                                   

 

2
2

2

1
3

gk d

kd
 



, 

and          

           O(A
2
)  :     

2 3 3
2 1 1 2 1

12 2 2

2 2 22 32 2
1 1 1 1 2

1 12 3

1 2
3 3

0
1

3 3

u u u u

t k x x t k kkd x t x t

u u u ud d
u u g

kd x kd x kd d xx x

   

  

 
 
 
 
      
      
       

    
   

       


    
  

   

, 

which gives 

                

   

       

       

3
22 2

2 2

2 2

2

2 2
2

1
sin cos

3

2
sin cos sin cos

3

1
sin cos sin cos 0,

3 3

u u
k t kx t kx

t kkd x t

k
t kx t kx t kx t kx

kd

k k
t kx t kx t kx t kx g

d x

   

    

    

 
    

  

     


      



 

 

 

 

                    

leading to 

            
3 2

22 2 2
2 2 2

1 1 5
sin 2 0

3 6 2

u u
g k t kx

t k d xkd x t kd

   
 

  
 

   
 

  
      

  
. (4.59) 

 

It can be seen that from the 2
nd

 order perturbation analysis, the resulting dispersion equation is 

the same as for the linearized GN equations shown earlier. This is in agreement with the 

Stokes expansion theory where the linear dispersion equation is still valid for second order 

solution. 
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Assuming a harmonic form, the solutions for the 2
nd

 order perturbation can be expressed as, 

 

 

 

2 2

2 2

,

,

cos 2

cos 2

e t kx

u v t kx

 



 
 
 

 
 
 

 

 
 (4.60) 

 

where e2 and v2 are non-dimensional constants. To find the value of these constants, insert 

Equation (4.60) into Equation (4.57) and Equation (4.59). 

 

From Equation (4.57), 

 2 21
sin 2 0

u
t kx

d t kd x d

    
 
 

 
   

 
, 

or      

        2

2

2
sin 2 2 sin 2 sin 2 0

e
t kx v t kx t kx

d d d

  
  


      , 

giving 

           
2 2

1
2

v e  . (4.61) 

 

From Equation (4.59), 

 
3 2

22 2 2
2 2 2

1 1 5
sin 2 0

3 6 2

u u
g k t kx

t k d xkd x t kd

   
 

  
 

   
 

  
      

  
, 

or 

     
     

 

2
22 2

22

2
2

2

2 28
sin 2 sin 2 sin 2

3

5
sin 2 0,

6 2

v gke
t kx k v t kx t kx

dkd

k t kx
kd


   

 

     
     
     

 
    

   
 

     

    

 

giving 

           
2 2

2 22 2
22 2

2 28 5
0

3 6 2

v gke
k v k

dkd kd

  
 
 
 
 

       . 

 

 

 

(4.62) 
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Insert Equation (4.61) into Equation (4.62) to solve for e2, then, 

 

2
2 2

2 22
22 2

12
2 28 1 5

0
3 2 6 2

e
gke

k e k
dkd kd


 

 
 
        

   
   



        , 

or        

                        
2 2

2 2
2 2 2

22 8 3 1
0

3 22

gk
e k k

dkd kd

  
 
 
 
 

      , 

giving                           

                               

2 2

2

2 2 2

2

3
22

22 8
3

k
kde

gkk
dkd

 

 




 

. 

 

 

(4.63) 

 

Replacing the  term in Equation (4.63) with the dispersion relationship for linear GN 

equations, 

   

   

2 2

2 2

2

2

2 2

2 2

2

3

1 1
3 3

22

2 8

1 1
23 3

3

gk d gk d
k

kd kd

kde

gk d gk d
k

kd kd

gk
dkd

   
   
   
   
   
   
      
   

   
   
   
   
   
   
      
   

 




 
 

 , 

or        

                           

   

   

3 2

2 2

2

3 2

2 2

9 3

3 3

2 2

6 8
2

3 3

gk gk d

kd kd

e

gk gk d
gk

kd kd

   
   
   
   
   
   

   
   
   
   
   
   

 




 
 

, 

giving 

           
2 2

2 2 2

3

4

k d
e

k d


 , 

 

(4.64) 

and 

           
2 2

2 2 2

3

4

k d
v

k d


 . 

 

(4.65) 
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Both the values of e2 and v2 can be compared with the Stokes regular wave expansion. The 

first two terms of a Stokes regular wave expansion can be written 

  

22
cos cos2

A
A S

d
  

 
 
 
 

  , 

 

where the Stokes 2
nd

 order coefficient, S22 is given by 

 

   
 22

1 2 coth

2 1

kd C kd
S

C





, 

and C = sech 2kd. 

 

The Stokes coefficient S22 is equivalent to GN e2. To compare the GN 2
nd

 order coefficient 

given by Equation (4.64) with the Stokes coefficient, Figure 4.5 plots e2 and S22 against kd. 

The coefficients match well for low values of kd. In fact, both have the same asymptotic form 

as kd reduces to zero, as shown here. 

2 2 2
0

3

4kd

e
k d

 . 

 

For S22, with
0 0

1coth , sech2 1
kd kd

kd kd
kd 

  ,and  

using a 2
nd

 order Taylor Expansion for the denominator;  
 

 
2

22
sech 2 1 1 2

2

kd
kd kd    .  

Hence,       

         
 

 
22

20

11 2(1)

2 1 1 2
kd

kd
kdS

kd
   

  
     




 

, 

or           

 
22 2

0

3

4kd

S
kd

 . 
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This prediction of 2
nd

 order coefficient is more stringent (lower kd required) than for linear 

dispersion, as shown earlier. 

 

 

 

Figure 4.5: Perturbation Expansion for 2
nd

 Order Coefficients e2 and S22 plotted against kd 

 

For the velocity, Fenton (1985) derived the Stokes regular wave expansion in terms of 

velocity potential. Differentiating the velocity potential expansion over x and using the exact 

linear wave dispersion to match the form of the above analysis, the velocity expansion can be 

written as, 

 

     
2 2

11 21 22

2 cos cos cos2 ...Ak Ak Ak
k

u u B B B   
 
 
 
 

     . 

 

Taking the double frequency term, cos 2, 

 

 
2

22 22

2

2

2 cos2 cos2
k

A wAk B A
kd

  
 

    
   
 

 , 

 

where  
2

22 22
2A kd B , and Stokes 2

nd
 order coefficient, B22 is given by 

 

2

222

3

2 1

C
B

C



, 

and C = sech 2kd. 

 

 

kd 
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The Stokes coefficient
22

A is equivalent to GN v2 of Equation (4.65). To compare the GN 2
nd

 

order coefficient with the Stokes coefficient, Figure 4.6 plots v2 and
22

A against kd. The 

coefficients match well up to kd of 1.6. The non-linearity due to the surface elevation 

expansion (referring to e2) limits the application of this theory, as compared to the linear 

dispersion equation and the velocity expansion. 

 

 

 

Figure 4.6: Perturbation Expansion for 2
nd

 Order Coefficients v2 and A22 plotted against kd 

 

4.7 Numerical Solver 

The GN equations for shallow water over a non-uniform bed are solved numerically using the 

finite difference method. Smooth solutions are obtained as long as the wave does not reach its 

breaking point (i.e. more than one water surface elevation value at a point in the spatial 

domain). The GN Level 1 equations for shallow water flow over a non-uniform bed are 

restated here. 

 

  0u

t x

   


 
, 

 

(4.34) 

kd 
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(4.46) 

 

4.7.1 Finite Difference Scheme 

A domain of length L with x as the spatial variable along the domain is discretised into N grid 

points. The spacing between any two adjacent points is given by 

 

Δ𝑥 =
𝐿

𝑁 − 1
. 

 

The distance of the grid points from the origin at the left boundary is given by 

 

 1ix i x                 for i =1…N. 

 

 

 

 

 

Figure 4.3: Definition sketch for the differencing domain  

 

The spatial derivatives in the GN equations are approximated using fourth order central 

differences, which leads to 5-point centred stencils for the first and second order derivatives, 

and 7-point centred stencils for the third order derivatives. The choice of fourth order 

accuracy for the first order derivatives is due to the principle stated by Wei and Kirby (1995) 

where the truncation error for a second order accuracy could be large enough to affect the 

Boundary Boundary 

i = 1 i = N 

L 

Δx 
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dispersive terms in the GN equations. Two extra grid points, named ghost points are included 

at both sides of the boundaries to deal with the near-boundary grid points (x2, x3, xN-2, and 

xN-1).  

 

Given a function f = f (x), the spatial derivatives are given as below; 

 

𝑑𝑓(𝑥𝑖)

𝑑𝑥
=

−𝑓𝑖+2 + 8𝑓𝑖+1 − 8𝑓𝑖−1 + 𝑓𝑖−2

12𝛥𝑥
, 

 

𝑑2𝑓(𝑥𝑖)

𝑑𝑥2
=

−𝑓𝑖+2 + 16𝑓𝑖+1 − 30𝑓𝑖 + 16𝑓𝑖−1 − 𝑓𝑖−2

12𝛥𝑥2
, 

 

𝑑3𝑓(𝑥𝑖)

𝑑𝑥3
=

−𝑓𝑖+3 + 8𝑓𝑖+2 − 13𝑓𝑖+1 + 13𝑓𝑖−1 − 8𝑓𝑖−2 − 𝑓𝑖−3

8𝛥𝑥3
. 

(4.66) 

 

 

4.7.2 Time Integration 

The variables β and u are updated in time by 

 

𝛽𝑛+1 = 𝛽𝑛 + Δ𝑡
𝑑𝛽

𝑑𝑡

𝑛

, 

𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡
𝑑𝑢

𝑑𝑡

𝑛

, 

 

(4.67) 

with the first order time derivative (the slope) solved using a fourth order Runge-Kutta 

method (RK4). RK 4 produces an effective slope which is derived from the weighted mean of 

slopes at four different points in the step interval, with the variables used at successive points 

being based on two different midpoint approximations. The algorithm for the time integration 

is as follows; 

 

 

 

 



105 

 

𝑑𝛽

𝑑𝑡

𝑛

=
1

6
(
𝑑𝛽

𝑑𝑡1
+ 2

𝑑𝛽

𝑑𝑡 2
+ 2

𝑑𝛽

𝑑𝑡 3
+

𝑑𝛽

𝑑𝑡 4
) 

𝑑𝛽

𝑑𝑡1
= 𝑎(𝑢𝑛, 𝛽𝑛) 

𝑑𝛽

𝑑𝑡 2
= 𝑎 (𝑢𝑛 +

1

2
Δ𝑡

𝑑𝑢

𝑑𝑡1
, 𝛽𝑛 +

1

2
Δ𝑡

𝑑𝛽

𝑑𝑡1
) 

𝑑𝛽

𝑑𝑡 3
= 𝑎 (𝑢𝑛 +

1

2
Δ𝑡

𝑑𝑢

𝑑𝑡2
, 𝛽𝑛 +

1

2
Δ𝑡

𝑑𝛽

𝑑𝑡 2
) 

𝑑𝛽

𝑑𝑡 4
= 𝑎 (𝑢𝑛 + Δ𝑡

𝑑𝑢

𝑑𝑡3
, 𝛽𝑛 + Δ𝑡

𝑑𝛽

𝑑𝑡 3
), 

𝑑𝑢

𝑑𝑡

𝑛

=
1

6
(
𝑑𝑢

𝑑𝑡1
+ 2

𝑑𝑢

𝑑𝑡2
+ 2

𝑑𝑢

𝑑𝑡3
+

𝑑𝑢

𝑑𝑡4
) 

𝑀
𝑑𝑢

𝑑𝑡1
= 𝑎(𝑢𝑛, 𝛽𝑛) 

𝑀
𝑑𝑢

𝑑𝑡2
= 𝑎 (𝑢𝑛 +

1

2
Δ𝑡

𝑑𝑢

𝑑𝑡1
, 𝛽𝑛 +

1

2
Δ𝑡

𝑑𝛽

𝑑𝑡1
) 

𝑀
𝑑𝑢

𝑑𝑡3
= 𝑎 (𝑢𝑛 +

1

2
Δ𝑡

𝑑𝑢

𝑑𝑡2
, 𝛽𝑛 +

1

2
Δ𝑡

𝑑𝛽

𝑑𝑡 2
) 

𝑀
𝑑𝑢

𝑑𝑡4
= 𝑎 (𝑢𝑛 + Δ𝑡

𝑑𝑢

𝑑𝑡3
, 𝛽𝑛 + Δ𝑡

𝑑𝛽

𝑑𝑡 3
) .

Equation (4.34) can be solved directly, given that the solution at the new time step involves 

only known solutions at previous time step. But Equation (4.46) involves mixed derivatives 

terms (i.e. both spatial and time derivatives), where the solution at the new time step for a grid 

point involves both known solutions at the previous time step and also solutions at the new 

time step of adjacent grid points, which are unknown. The mixed derivatives terms are treated 

by solving the variables for all grid points simultaneously. The spatially differenced Equation 

(4.46) can be rearranged to [M][
du

dt
] = f , as shown in Equation (4.68) where f contains all the 

known solutions (right hand side of Equation 4.46) while M is called the coefficients matrix. 

This leads to a pentadiagonal matrix due to the 5-point stencil used for the highest order of the 

spatial discretisation in the mixed derivatives. Both the GN equations are solved for the inner 

grid points (i = 2 to N - 1) at each RK4 intermediate step and then updated using Equation 

(4.67). Note that the matrix in Equation (4.68) is yet to be completed. The matrix equations 

need to have the boundary conditions included before they can be solved. The final matrix 

with the required boundary conditions is shown in Equation (4.69). The notation ut,i is used to 

represent
du

dt
at grid point i. 
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[
 
 
 
 
 
 

 𝑐2      𝑑2       𝑒2                                      0 
 𝑏3      𝑐3      𝑑3      𝑒3                               
  𝑎4      𝑏4      𝑐4      𝑑4       𝑒4                     

      𝑎5      𝑏5      𝑐5       𝑑5        .      
                            .          .          .          .      𝑒𝑁−3 
                                      .          .          .     𝑑𝑁−2

      0                                      𝑎𝑁−1 𝑏𝑁−1 𝑐𝑁−1 ]
 
 
 
 
 
 

[
 
 
 
 
 
 

𝑢𝑡,2

𝑢𝑡,3

𝑢𝑡,4

⋮

𝑢𝑡,𝑁−1]
 
 
 
 
 
 

=

[
 
 
 
 
 
 

𝑓2
𝑓3
𝑓4

⋮

𝑓𝑁−1]
 
 
 
 
 
 

, 

 

(4.68) 

where N is the total grid points, 

 

𝑎𝑖 =
(𝑃1𝑖 + 𝑃2𝑖)(𝛽𝑖 − 𝛼𝑖)

(144∆𝑥2)
,  𝑏𝑖 =

−(𝑃1𝑖 + 2𝑃2𝑖)(𝛽𝑖 − 𝛼𝑖)

(18∆𝑥2)
,  𝑐𝑖 = 𝑃3𝑖, 

 

 𝑑𝑖 =
(𝑃1𝑖 − 2𝑃2𝑖)(𝛽𝑖 − 𝛼𝑖)

(18∆𝑥2)
, 𝑒𝑖 =

−(𝑃1𝑖 − 𝑃2𝑖)(𝛽𝑖 − 𝛼𝑖)

(144∆𝑥2)
 , 

 

𝑃1𝑖 = −𝛼𝑖+2 + 8𝛼𝑖+1 − 8𝛼𝑖−1 + 𝛼𝑖−2 + 𝛽𝑖+2 − 8𝛽𝑖+1 + 8𝛽𝑖−1 − 𝛽𝑖−2, 

 2 4i i iP    , and 

 

𝑃3𝑖 = 1 + (
(−𝛼𝑖+2 + 8𝛼𝑖+1 − 8𝛼𝑖−1 + 𝛼𝑖−2)(−𝛽𝑖+2 + 8𝛽𝑖+1 − 8𝛽𝑖−1 + 𝛽𝑖−2)

144∆𝑥2
)

+
(𝛽𝑖 − 𝛼𝑖)

24∆𝑥2
(−𝛼𝑖+2 + 16𝛼𝑖+1 − 30𝛼𝑖 + 16𝛼𝑖−1 − 𝛼𝑖−2 + 20(𝛽𝑖 − 𝛼𝑖)). 

 

 

4.7.3 Boundary Conditions 

Solid walls are implemented for both the left and right boundaries. There will be no flux at the 

boundaries, and the surface elevations at the boundaries are estimated by cubic Lagrange 

interpolation. For the ghost points, a symmetric option is used for the surface elevation, while 

an anti-symmetric option is used for the velocity; each boundary acting as the axis of 

symmetry. The conditions are as follows; 
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At the boundaries, 

𝑢1 = 𝑢𝑁 = 0, 

𝛽1 = 4𝛽2 − 6𝛽3 + 4𝛽4 − 𝛽5, 

𝛽𝑁 = 4𝛽𝑁−1 − 6𝛽𝑁−2 + 4𝛽𝑁−3 − 𝛽𝑁−4, 

and at the ghost points, 

𝛽0 = 𝛽2, 𝛽𝑁+1 = 𝛽𝑁−1, 

𝑢0 = −𝑢2, 𝑢𝑁+1 = −𝑢𝑁−1, 

1 3 2 2, N Nu u u u        

 

The matrix shown in Equation (4.68) is then updated following the boundary conditions. 

 

𝑢𝑡,1 = 0, 𝑢𝑡,𝑁 = 0, 

𝑢𝑡,0 = −𝑢𝑡,2, 𝑢𝑡,𝑁+1 = −𝑢𝑡,𝑁−1. 

 

Thus,  

[
 
 
 
 
 
 

 𝑐2 − 𝑎2  𝑑2       𝑒2                                           0        
  𝑏3      𝑐3      𝑑3      𝑒3                                      
   𝑎4      𝑏4      𝑐4      𝑑4       𝑒4                            
           𝑎5      𝑏5      𝑐5       𝑑5        .                 

                           .          .          .          .           𝑒𝑁−3 
                                     .          .          .          𝑑𝑁−2

            0                                    𝑎𝑁−1 𝑏𝑁−1 𝑐𝑁−1 − 𝑒𝑁−1]
 
 
 
 
 
 

[
 
 
 
 
 
 

𝑢𝑡,2

𝑢𝑡,3

𝑢𝑡,4

⋮

𝑢𝑡,𝑁−1]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝑓2 − 𝑏2 𝑢𝑡,1 

𝑓3 − 𝑎3 𝑢𝑡,1 

𝑓4

⋮

𝑓𝑁−1 − 𝑑𝑁−1 𝑢𝑡,𝑁 ]
 
 
 
 
 
 
 

. 

 

(4.69) 

4.8 Conclusion 

 A numerical solver for the GN equations in shallow water over a non-uniform bed has 

been developed, with capability of simulating waves in intermediate water depth. 

 GN equations in shallow water are derived. 

o The GN equations are derived from the conservation of mass and momentum 

law together with the kinematic and dynamic boundary conditions for free 
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surface flow of inviscid and incompressible liquid. 

o The equations are depth-integrated. 

o The velocity field is approximated by using a single sheet fluid model and 

assuming velocity profile over the water depth of the horizontal component to 

be uniform while the vertical component varies linearly from zero at bed to a 

maximum at the free surface, corresponding to shallow water flow. 

 The velocity field is approximated by a finite sum of fundamental kinematic profiles, 

which leads to the approximation of the field equation but satisfies the boundary 

conditions exactly, which is in accordance with the research of simulating free surface 

flows. 

o Standard approach such as the Stokes-type perturbation method approximates 

the boundary condition. 

 GN theory incorporates non-linear terms in its formulation, even at the lowest order, 

which is essential in the analysis of extreme waves. 

 GN Level 1 equations developed here have dispersive characteristics which match 

well with the full water wave equations for kd < 1.4. 

 2
nd

 order perturbation analysis shows that the non-linearity (2
nd

 order coefficient of the 

perturbation expansions) is more stringent (lower kd required) than for linear 

dispersion. 

 A finite difference scheme is applied to solve the derived GN equations numerically. 

o A fourth order accuracy is implemented for both space and time derivatives; 

using fourth order central differences in space and the time is integrated using 

a fourth order Runge-Kutta method (RK4). 

 The mixed derivatives in the GN equations, together with the fourth order spatial 

discretisation applied for the finite difference scheme leads to a pentadiagonal matrix, 

which means that the variables at all grid points are solved simultaneously at each 

RK4 intermediate step. 



 109 

5 GN Numerical Simulation of Solitary Waves 

 

 

5.1 Introduction 

Unlike oscillatory waves, solitary waves have no trough and are of infinite wave length in 

shallow water. These non-linear waves propagate without loss of form or amplitude over a 

frictionless horizontal bed in the absence of viscosity. Solitary waves have been modelled 

numerically using a variety of governing equations by many researchers, including Peregrine 

(1966), Synolakis (1987), Kim et al. (2003), Borthwick et al. (2006), Metayer et al. (2010), 

etc., who have investigated solitary wave interaction with beaches and walls. In practice, 

solitary waves can be used as a simplified model of an individual wave in a tsunami.  

 

In order to validate that the GN equations can represent the behaviour of highly non-linear 

steep waves, the present numerical scheme is used to simulate solitary waves to check 

whether it is able to cope with the non-linearity. Furthermore, the results of this simulation 

will be compared against solutions of the Korteweg-de Vries (KdV) equation in order to 

improve our understanding of the nature of the GN equations when applied to solitary waves. 

In the governing mathematical equations, a solitary wave retains its shape and velocity by 

balancing the non-linear and dispersion terms. The KdV equation admits a solitary wave as 

one analytical solution (Drazin and Johnson, 1989). Craig (2006) has shown, using the full 

equations of motion for an inviscid and irrotational fluid, that the interaction between two 

solitary waves produces a small dispersive wave tail as part of the solution, and so is not a 

precisely clean process and reversible as predicted by the KdV equation. Other equations such 

as the Regularized Long Wave (RLW) equations show qualitatively the same behaviour as the 

KdV equation, but quantitatively there are small differences (Harland, 2010). This opens up 

the question as to which equation is more accurate, and also which one is more appropriate 

taking into account the accuracy of the solution, the complexity of the equation, or even in 

which domain (such as for small amplitude dispersive waves) the equations work best.  
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This chapter investigates solitary wave separation and solitary wave interactions using the GN 

equations. A solitary wave propagating in otherwise still water over a flat, horizontal, 

frictionless bed will retain its shape and speed as it moves, given the correct width and 

amplitude (i.e. a balance between non-linearity and dispersion). With an initial wave taller 

than the exact solitary wave but of the same width, the initial wave will evolve; splitting into 

two or more solitary waves and small dispersive waves. The overtaking of two solitary waves 

is another interesting case as it starts from two clean and well-separated individual waves 

which then interact, merge, and separate again; this is to be contrasted to the separation case 

above, in that the initial condition is forced to be a fully merged case. The results from the GN 

solver will then be compared with an analytical solution of the KdV equation based on the 

first three conserved quantities obtained by Curry (2008) and Harland (2010). The main 

section of this chapter involves solitary wave propagation over a sloping bed. During the 

simulation, the solitary wave is first generated in water of constant depth and then propagates 

up a slope. Due to the effect of the sloping bed, there is an increase in amplitude and decrease 

in wave speed compared to the initial solitary wave. This evolving profile then separates into 

at least two solitary waves once the single main input wave has reached the top of the shelf. 

The results are compared against experimental measurements obtained by Seabra-Santos et al. 

(1987) who examined the transformation of a solitary wave over a shelf. 

 

5.1.1 Solitary Wave Profile 

The assumed general form of the free surface elevation above still water level of a solitary 

wave propagating in water of constant depth is given by: 

 

 = a sech
2
(b(x-ct)) (5.1) 

 

where a = amplitude, 
1

2

3

1 3

2

a
b

d

 
 
 

  is the inverse ‘width’, d = water depth, 1
1

2

a
c gd

d

 
 
 

  is the 

solitary wave speed, x is horizontal distance, and t is time. Here it is assumed that the ratio of 

amplitude over water depth, a / d is small (Drazin and Johnson, 1989). From Equation (5.1), it 

can be seen that the wave speed increases linearly with amplitude above the linear shallow 
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water speed whereas the ‘width’ of the solitary wave b
-1

 is inversely proportional to a
1/2

. Taller 

solitary waves travel faster and are narrower than small-amplitude solitary waves. Equation 

(5.1) is the solution of the KdV equation. 

 

 

Figure 5.1: Solitary wave profile 

 

5.2 Simulation Setup 

From Metayer et al. (2010), the GN solitary wave form is slightly different to that for the KdV 

equation, having parameters 

 

1

2

2

1 3

2

a
b

d d a

 
 
 
 




and 

 c g d a  ; a

d
valid for all ranges.  

 

The spatial profile of Metayer et al. (2010) is taken as the initial condition for the numerical 

simulation, whereby the free surface is described by parameters as given above. Metayer et al. 

used a Godunov type scheme to solve the GN model describing dispersive shallow water 

waves numerically and also derived the analytical solitary wave solutions for their model. The 

horizontal fluid velocity term is given as 1
d

u c
d

 
 
 
 

 


. The difference in solitary wave 

profiles for both the KdV and GN equations can be seen clearly from Figure 5.2, where the 

GN solution is wider than that of the KdV equation. 

 

1/b a 
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Figure 5.2: Solitary wave profile for KdV and GN solutions 

 

A solitary wave propagating on a constant depth is first simulated to indicate that the GN 

numerical model is performing in a satisfactory manner. Figure 5.3 shows a distance-time (x,t) 

plot for solitary wave propagation with amplitude of 2 m on water depth of 10 m over time. It 

can be seen that the amplitude is constant in time and the shape of the wave is preserved. 

Figure 5.4 shows a zoom in on the same solitary wave after 480 s. There is a small dispersive 

wave of order 10
-6

 m produced behind the solitary wave. From an engineering point of view, 

this dispersive wave (which is from a numerical run of a 2 m solitary wave) is considered very 

small and will not affect the outcome. Therefore, this shows that the numerical scheme is able 

to produce solitary wave propagation with practically useful accuracy. 

 

 

Figure 5.3: Solitary wave propagation 

t 
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Figure 5.4: 2 m amplitude solitary wave propagation after 480 s 

 

5.3 GN Simulation of Solitary Wave Separation 

Solitary wave separation is interesting as a problem; a starting condition where a wave has 

higher amplitude compared to its width than a solitary wave. This initial condition will then 

evolve in time and separate into two or more solitary waves, most probably accompanied by 

small dispersive waves. The leading solitary wave will be higher than the initial wave, while 

the second and any subsequent waves will be much smaller. 

 

A distance-time plot for an initial wave of amplitude 7 m on water of depth 10 m, with the 

initial width taken corresponding to that of a 2 m solitary wave, is shown in Figure 5.5. In this 

case, the initial wave splits into 3 solitary waves with a dispersive tail at the back. Both the 

third solitary wave and dispersive tails are not clearly visible in the figure but there is another 

small wave emitted, propagating in the opposite direction and being reflected back from the 

left wall boundary. The leading solitary wave is higher than the initial wave, while the third 

solitary wave is very small and yet to separate itself from the dispersive wave behind it. Much 

computational time is needed for the third solitary wave to be fully developed. Qualitatively 

the behaviour is very similar to that well-known for other weakly non-linear shallow water 

equations. The weak dispersive wave train emitted backwards does not occur for solutions to 

the one-direction KdV or RLW equations. In the simulation, the boundary conditions are 

periodic, so the backwards moving dispersive train then reflects off the end wall of the 

computational domain. 
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Figure 5.5: Wave separation with amplitude of 7 m on a 2 m solitary wave width 

 

Wave initial amplitudes ranging from 2 m to 17 m and initial profile given by Equation (5.1), 

using the parameters stated in Section 5.2 have been simulated in 10 m water depth 

(obviously unphysical but a useful test case) with the initial wave widths corresponding to 

that of a solitary wave of amplitude of 2 m. This means that a wave of amplitude of 2 m will 

produce a solitary wave that propagates without any separation or change of amplitude, 

whereas a wave of amplitude higher than 2 m will result in at least two solitary waves with 

dispersive tails. Figure 5.6 plots the amplitude of the N-evolved solitary waves after 

separation against initial amplitude. Using Figure 5.5 as an example, a 7 m amplitude initial 

wave separates into 3 solitary waves and a dispersive tail (noting that the third-evolved 

solitary wave is not clearly visible). From Figure 5.6, this wave with initial amplitude of 7 m 

has separated into 3 solitary waves, with the leading solitary wave marked by squares 

indicating a height of about 9 m, followed by a 2 m and a smaller solitary wave, marked a2 

and a3 respectively. Qualitatively, the GN equations have the same properties as the KdV 

equation, where in the region of the release of new solitary waves, the amplitudes of the 

leading solitary waves increase linearly while the new solitary waves increase quadratically 

from zero above an amplitude threshold for the initial condition (Curry, 2008). 

 

It is to be expected that the splitting of an initial too-tall wave profile in the GN and KdV 

models would give similar results – given that both represent shallow water wave equations. 

But, the GN model will run without any failure even when the leading solitary wave, a1 has 

t 
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reached an amplitude larger than the water depth. In reality the wave amplitude is limited by 

wave breaking about 0.7 times the water depth. GN Level 1 does not incorporate this limit in 

its formulation. A higher Level GN is needed to introduce realistic breaking limits (Shields 

and Webster, 1988 and Kim et al., 2003). 

 

 

Figure 5.6: N-Solitary wave separation 

 

 

Figure 5.7: Zoomed in portion of Figure 5.6 - release of the 2
nd

 and 3
rd

 solitary waves 
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                   (a)                                   (b) 

Figure 5.8: a) The release of the 2
nd

 solitary wave, b) The release of the 3
rd

 solitary 

wave 

 

To further investigate the GN model for solitary wave separation as compared to KdV, the 

region where the release occurs for new solitary waves is investigated. Figure 5.7 shows the 

parabolic growth in amplitude of the second and third solitary waves, while Figure 5.8 is 

plotted to demonstrate the behaviour in the vicinity of the release, by means of fits to a2 

versus ai and a3 versus ai. It can be seen from Figure 5.8a that the resulting initial amplitude 

for the release of the second solitary wave i.e. at the point of intersection with the x axis is at 

ai about 1.9 m, which is less than the KdV prediction of the release of a new solitary wave of 

2 m amplitude (Johnson, 1997). Small solitary waves take time to distance themselves from 

the dispersive tails behind and reach an asymptotic form. The smaller the wave, the longer it 

takes for the wave to fully separate itself from the dispersive tail. This is clearly shown in 

Figure 5.8b where the amplitude for the third solitary wave for the case with initial wave 

amplitude, ai of 6.4 m does not fit in with the other three amplitudes. A much longer 

simulation time is needed for the amplitude of this solitary wave to reach its plateau, at 

smaller amplitude and hence be in more reasonable agreement with the KdV prediction. For 

KdV, the release of the 3
rd

 solitary wave occurs when the initial amplitude is 6 m. Therefore, it 

is not clear from the present analysis whether the GN approach gives exactly the same value 

as the KdV approach due to the limitation of numerical processing time. It takes weeks on a 

standard PC with Intel Core 2 Duo 2.93 GHz CPU of 4 GB RAM to achieve the result for the 

case with initial wave amplitude, ai of 6.4 m plotted in Figure 6.4b. But as has been 

mentioned earlier, the numerical value is likely to differ slightly due to the different form of 

the equations. 
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Solitary wave separation is particularly interesting in terms of a different problem; a solitary 

wave propagating across a sharp change in the bed elevation (water depth). Mei (1983) used a 

linear scattering approximation for long waves approaching a step change (i.e. where there is 

large change in water depth in a relatively short horizontal distance). Curry (2008) then 

extended the analysis to solitary waves by estimating the critical depth ratios at which perfect 

solitary wave separation occurs in the shallower region. Given the critical ratios, the present 

case of the solitary wave separation in water of constant depth could provide a useful 

indication as to what are the amplitudes of the resulting separated solitary waves due to the 

presence of a step change in water depth. 

 

5.3.1 Integrability of GN Equations 

It is known that KdV equation is a completely integrable equation (Johnson, 1997); having an 

infinite number of conserved quantities. As has been shown previously, waves of higher initial 

amplitude for a given solitary wave width will separate, producing a discrete number of 

solitary waves. Interestingly for KdV, different solitary waves will give the same 

non-dimensional wave amplitude for the separated solitary waves, given the same scalar 

multiplier (κ) for the initial amplitudes. This section investigates the scalability of the GN 

equations using the scalar multiplier. Figure 5.9 shows the concept of the scalar multiplier, 

where κ = 1 corresponds to a solitary wave profile. The other two wave profiles correspond to 

the same solitary wave width of κ = 1 but with different amplitude, as expressed by Equation 

(5.2). 

 

 

Figure 5.9: Scalar Multiplier for Wave Amplitude 

κ = 0.5 
κ = 1 
κ = 2 
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The KdV solitary wave depends only on the relative size of two input variables which are the 

input width, b
-1

 and amplitude, a over the water depth, d. But for the Regularized Long Wave 

(RLW) and GN equations, the absolute values of these variables are important. This is 

because the KdV equation is weakly non-linear, whereby the speed of the wave varies exactly 

linearly with the amplitude (see Section 5.1.1) whereas the wave speed for GN solution is 

slightly different (corrections beyond linear in amplitude) and is nominally valid for all range 

of a/d. Further analysis has been undertaken regarding solitary wave separation to investigate 

the scalability of the GN equations. Three series of solitary wave simulations have been 

undertaken with a solitary wave width corresponding to solitary wave amplitudes of 0.05 m, 

0.1 m and 0.2 m each in water of 1 m depth. In each simulation, the initial amplitude is 

determined using a scalar multiplier, κ of value between 0.5 and 4. Table 5.1 below lists the 

scalar multiplier and the initial amplitude values for each series respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 = κa sech
2
(b(x-ct)) (5.2) 
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Table 5.1: Scalar multiplier for the initial amplitudes with 3 different solitary wave widths 

 

 

κ 

Initial amplitude 

with solitary wave 

width 

corresponding to 

solitary waves of 

amplitude 0.05 m 

Initial amplitude 

with solitary wave 

width 

corresponding to 

solitary waves of 

amplitude 0.1 m 

Initial amplitude 

with solitary wave 

width 

corresponding to 

solitary waves of 

amplitude 0.2 m 

0.5 0.025 0.05 0.1 

0.75 0.0375 0.075 0.15 

0.9 0.045 0.09 0.18 

1 0.05 0.1 0.2 

1.5 0.075 0.15 0.3 

2 0.1 0.2 0.4 

3 0.15 0.3 0.6 

4 0.2 0.4 0.8 

 

 

 

Figure 5.10: Non-dimensional wave amplitude for three different solitary wave widths 

 

 

κ 
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Figure 5.10 plots the superimposed non-dimensional solitary wave amplitudes of the leading 

and second solitary waves. It can be seen that again, qualitatively the behaviour of the GN 

equations is similar to that of the KdV equation where the resulting non-dimensional 

amplitudes of the separated waves are almost the same for the three different cases. At κ = 1, 

the leading solitary waves for all 3 series have the same non-dimensional amplitude of 1. For 

κ < 1, the initial wave will evolve into a single solitary wave with a relatively large dispersive 

tail.  

 

A comparison is undertaken between the mass of the solitary waves after the separation with 

the initial waves. Figure 5.11 plots the ratio of the produced solitary wave mass at steady state 

(Ms) to the initial wave mass (Mi) against κ for κ < 1, where there is no separation of solitary 

waves. The mass of the resulting solitary wave is higher than that of the initial wave, 

indicating that each dispersive wave tail produced has a set-down; the average surface 

elevation of the tails is less than the mean water level of 1 m. As a result, the GN equations 

are not exactly scale-able, i.e. integrable unlike the KdV equation, in which the results for the 

different cases in each of the figures exactly overlap each other. 

 

 

Figure 5.11: Ratio of the produced solitary wave mass at steady state (Ms) to the initial wave 

mass (Mi) for three different solitary widths 

 

 

 

κ 
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5.4 GN Simulation of Solitary Wave Interaction 

Solitary waves can interact with each other at varying angle of incidence and amplitude, and 

are also not limited to only two solitary waves during an interaction. For a completely 

integrable equation such as the KdV equation, the interactions between solitary waves of 

different amplitude interact non-linearly and yet do not destroy each other (Johnson, 1997).  

 

The present section investigates two solitary waves in the GN equations interacting as they 

advance in the same direction; a large amplitude solitary wave overtaking a small one. As the 

two waves interact, the fully merged wave has peak amplitude in between the two initial 

solitary wave amplitudes. There are three cases that could crudely characterise the shape of 

the merged waves; a double peak, a stretched solitary wave and a thin peak on a wide base. 

The merged shape depends on the difference in initial amplitude between the two solitary 

waves. 

  

Figure 5.12 shows the profile-time plot for the interaction between two solitary waves of 

initial amplitude 6.5 m and 3.5 m, where the large solitary wave is released 500 m behind the 

lower amplitude solitary wave. The larger wave catches and interacts with the smaller solitary 

wave producing a double peak shape, whose amplitude is 4.7 m after which the waves change 

their identity; with the slower wave becoming taller and faster and accelerating ahead while 

the larger wave becomes smaller and is left behind. 

 

 

Figure 5.12: Two solitary waves interaction 

 

 

 

t 
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Clearly to a first approximation the two non-linear waves simply pass through each other. It 

should be noted that they never completely merge; this issue will be investigated next. 

 

Table 5.2 lists details of a parameter study considering different amplitudes of two solitary 

waves that have an average amplitude of 5 m in water of depth 10 m to produce the three fully 

merged wave shape considered above (‘fully’ corresponding to point of maximum interaction 

between the two solitary waves). Also listed are the corresponding inverse width, distance 

between peaks and the amplitude of the fully merged wave, as illustrated in the definition 

sketch of Figure 5.13. These values are obtained from a best-fit of the following equation to 

the numerical prediction of the profile of the merged pair of solitary waves at the point of 

maximum interaction: 

 

ηf  = 2 2sech ( - /2) sech ( + /2)a b x L b x L    
        

  (5.3) 

 

where ηf = surface elevation of the fitted function (m), 

   a = amplitude (m) 

  b = inverse width (m
-1

) 

  L = distance between the two peaks (m) 

 

 

Figure 5.13: Definition sketch for the double peak profile 

 

 

 

 

 

a 

L 

1/b 
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Table 5.2: Interaction of two solitary waves whose average amplitude is 5 m in water of depth 

10 m 

 

Initial condition Sech
2
 fit 

a1(m) a2(m) b (1/m) L (m) a (m)  

5.05 

5.1 

4.95 

4.9 

0.04999 

0.04997 

121.7 

107.90 

4.999 

4.996 
 

5.2 4.8 0.04988 94.01 4.988  

5.5 4.5 0.04944 75.57 4.944  

5.7 4.3 0.04906 68.67 4.904  

6 4 0.04842 61.14 4.834  

6.5 3.5 0.04722 51.94 4.695  

7 3 0.04584 44.49 4.527  

7.3 2.7 0.04489 40.28 4.411  

7.5 2.5 0.04419 37.43 4.326  

7.7 2.3 0.04342 34.46 4.232  

7.8 2.2 0.04300 32.90 4.181  

7.9 2.1 0.04243 31.23 4.116  

8 2 0.04208 29.49 4.071  

8.1 1.9 0.04158 27.59 4.011  

8.2 1.8 0.04102 25.49 3.947  

8.5 1.5 0.03895 16.58 3.712  

9 1 0.04168 0.00 3.821  

9.5 0.5 0.05028 0.00 4.352  

 

Figure 5.14 plots the fitted parameters in the double sech
2
 function given in Equation (5.3) for 

the case where the amplitude of the larger wave is less than 8 m, giving a double peak merged 

shape. The assumed fitted sech
2
 function gives a remarkably good approximation for the 

merged wave shapes, accurate to better than the thickness of the dashed lines on the plots. 
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Figure 5.14: Double peak merged shape for two solitary wave interactions, solid line is the 

result from the numerical simulation and dashed line is the fitted function  

 

Following Table 5.2, the simulated data are plotted systematically in Figure 5.15 to 

understand the behaviour of solitary wave-wave interactions. Figure 5.15a shows that as the 

difference in the initial amplitudes between the two solitary wave approaches zero, the inverse 

width of the fitted function for the resulting wave at maximum interaction between the two 

solitary waves approaches 0.05 m
-1

. Interestingly, the inverse width of 0.05 m
-1

 corresponds to 

a solitary wave of amplitude of 5 m, equal to the averaged amplitude of the pair of solitary 

waves. This is backed up by Figure 5.15b in which the amplitude of the merged pair of 

solitary waves at maximum interaction approaches 5 m as the amplitude difference at initial 
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condition decreases to zero. As the difference in amplitude between two initial solitary waves 

becomes small, the distance between the two peaks at maximum interaction becomes larger 

and would in principle approach infinity. Figure 5.15c shows the case where the distance 

between peaks at maximum interaction having an exponential increment as the difference 

between the initial amplitudes approaches zero. Simulations of two solitary waves with very 

small difference in amplitude are not worthwhile as it will take a very long time for the 

slightly larger wave to catch the smaller wave and produce the merged shape. This is 

obviously consistent with two solitary waves of same height 5 m not interacting with each 

other as they have the same speed, and thus the distance between them will stay arbitrarily 

large, i.e. 500 m apart for this simulation.  

  

Whilst the exactly symmetric form of the assumed fully merged shape would suggest exact 

reversibility of the interaction, with precisely the same two solitary waves emerging from the 

interaction as those that entered. This is not quite the case. Figure 5.15d shows the difference 

in amplitude for the larger wave before and after the interaction. It can be seen that it is a 

locally parabolic curve in which the peak is at 8 m amplitude of the initial condition. This is 

the case at which the two solitary waves interact and give a shape which matches a single 

vertically stretched-like solitary wave, which is considered the perfect merged wave shape. 

Referring back to the scalar multiplier in Section 5.3.1, this stretched-like solitary wave is the 

same as a solitary wave but with κ > 1, which will then separate into an integer number of 

solitary waves. These previous simulations of waves with κ > 1 provide a forced initial 

condition for a merged shape. But for the current sets of simulations, more interestingly, the 

two solitary waves are free to interact with one another and produce the stretched-like solitary 

wave.  

 

An initial amplitude for the larger solitary wave of higher than 8 m resulted in a wave with a 

thin peak on a wide-base. Referring back to Figure 5.15d, the occurrence of the maximum 

difference at 8 m initial amplitude of the larger wave is plausible because the most non-linear 

interaction occurs at a perfect merged wave shape, giving a higher difference in amplitude 

between the initial and end conditions of the larger wave. The inconsistency between the first 
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two data points could be noise, as it is down to the level 10
-5

 of difference in value over a 5 m 

averaged amplitude height.  

 

 

(a)          (b) 

 

(c)          (d) 

 

Figure 5.15: Sech
2
 function fitted parameters for two solitary wave interactions 

 

Overall, the interaction of two solitary waves in the GN model more closely matches those of 

the regularized long wave (or Peregrine) equation than those of the exactly integrable KdV 

equation. 

 

 

 

 

b 
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5.5 GN Simulation of Solitary Wave on a Sloping Bed 

Tsunami propagation from deep water to the coastal regions involves waves propagating on a 

decreasing water depth, a shelf. Although the seabed is irregular, and may include sudden 

drops and rises, a reasonable model has waves propagating on a uniformly decreasing water 

depth. The reduction in the water depth will result in reduced speed and increased amplitude. 

At the top of the shelf, these waves will have steeper fronts, which can separate into a number 

of solitary waves in the absence of wave breaking. This separation is a similar process as to 

what has been discussed in Section 5.3, in which a wave with higher amplitude than its 

equivalent solitary wave, given the same width, separates.  

  

The problem setup is shown in Figure 5.16a, with a cosh function chosen for the slope of the 

bed bathymetry. This is to enable a smooth transition around the points of intersections 

between the two constant depth regions and the sloping bed. The depth function,  is given in 

Equation 5.4 where m is the bed slope, kw controls the sharpness of the transition point at both 

ends of the sloping bed and xo is the length of the slope in the horizontal direction. Equation 

5.4 consists of two cosh functions summed to produce the bathymetry needed. Figure 5.16b 

shows both the function and also a zoomed-in of the transition point at xo, where kw ensures 

the smooth change between the two regions. 

 

 

Figure 5.16a: Simulation domain with varying bathymetry  

 

 

                  

Figure 5.16b: The two cosh functions; dashed line is the log[cosh[kwx]] and,  

solid line is the –log[cosh[kw[x- xo]]] 

 

 
xo 

a 

d 

x 
z 

d1 
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     

 
(5.4) 

 

A test of numerical accuracy has been carried out by propagating a solitary wave up a 1:30 

slope and taking the result at a given time t = 130 s as an initial condition for a reverse run 

back to the original position. The end result after the reverse run is then compared with the 

initial solitary wave in the deeper water. Figure 5.17a shows the setup of the test while Figure 

5.17b shows the result of the accuracy test. The numerical accuracy test involves a solitary 

wave of amplitude 0.097 m separating into 3 solitary waves on top of the shelf. Figure 5.17a 

also shows the separated two larger solitary waves at t = 130 s, while the third one is not 

visible due to the scale of the figure. Then, these 3 solitary waves were simulated back going 

down the slope and combined with each other to produce the initial solitary wave, with a 

slight numerical shift as seen in Figure 5.17b. There is a difference in amplitude of about 1 

percent of the initial solitary wave amplitude after a total of 260 s run, with most of the error 

arising from this very slight positional shift. This shows that the numerical simulation is able 

to handle this highly non-linear wave propagation problem on water of varying depth in an 

adequate manner. 

 

 

(a)                                   (b) 

Figure 5.17: Accuracy test for solitary wave propagating on a slope 
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The numerical model is now compared to the published experimental data of Seabra-Santos et 

al. (1987) who studied the transformation of a solitary wave over a shelf. The experiments 

were performed in a large channel 1.3 m deep, 36 m long and 0.55 m wide. A shelf of 18 m 

long and 10 cm high was inserted in the channel. Neither the length of the slope nor the 

steepness of the slope itself was specified in the paper. Thus, for the present numerical 

simulation, a slope of 1:30 is assumed so that a horizontal distance of 3 m will produce a 

depth change of 10 cm. The whole 18 m length of the shelf is required in the experimental 

condition for the waves to fully separate themselves from the others, produce the dispersive 

tail at the back and then to reach their asymptotic forms. This is clearly the case for the 

leading solitary wave. However, a much longer tank is in fact needed for the smaller solitary 

waves to reach their steady-state shape, as will be discussed later. Table 5.3 shows the 

configuration of the GN simulation in water depths of 0.3 m and 0.25 m with the amplitudes 

of the corresponding transmitted wave.  

 

The length of the numerical shelf ranges between 100 m to 500 m, depending on the height of 

the initial amplitude. This is to enable the solitary waves produced at the top of the shelf to 

distinguish themselves from the solitary waves in front and the dispersive tails behind. 

Seabra-Santos et al. (1987) used probes with a precision of about 1x10
-4

 m to extract the 

values for the transmitted solitary waves, in which the length of the step is sufficient for each 

solitary wave to reach its plateau given the precision. But, 18 m of shelf is not enough for the 

smaller waves to separate properly. For the case of a solitary wave propagating from a 0.25 m 

to 0.15 m water depth, there should actually be a very small 3
rd

 solitary wave also separating 

from the 2
nd

 solitary wave, as shown in Table 5.3. This 3
rd

 solitary wave was not detected in 

Seabra-Santos et al.’s experimental work. Although the 3
rd

 solitary wave is very small, there 

is a significance difference in terms of the solitary wave’s behaviour in different water depths. 

Figure 5.18 shows plots of non-dimensional transmitted wave amplitudes against 

non-dimensional initial amplitudes for two different water depths. They contain the results 

from the experimental wave channel, the GN numerical simulation and also a KdV equation 

based analytical approximation from Curry (2008). The analytical approach is undertaken by 

combining the linear scattering for a solitary wave over a step change followed by the KdV 
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conserved quantity based analytical approach to constant depth splitting. 

 

Table 5.3: Simulation configurations for solitary waves propagation on a slope. d is the water 

depth before the shelf, ai is the initial amplitude and atj is the amplitude of the jth transmitted 

wave. All units are in m. 

(Cases with a’s and b’s were not experimentally undertaken by Seabra Santos et al.) 

 

Simulation d ai at1 at2 at3 

1a 0.3 0.015 0.02085 0.00400  

1b 0.3 0.03 0.04126 0.00791  

1 0.3 0.0425 0.05814 0.01115  

2 0.3 0.068 0.09278 0.01767  

3 0.3 0.071 0.09689 0.01843  

4 0.3 0.075 0.10240 0.01945  

5 0.3 0.097 0.13313 0.02507  

5a 0.3 0.105 0.14455 0.02713  

5b 0.3 0.12 0.16635 0.03102 0.00015 

7a 0.25 0.0075 0.01126 0.00295 0.00003 

7b 0.25 0.0125 0.01864 0.00488 0.00004 

7 0.25 0.0178 0.02642 0.00690 0.00007 

8 0.25 0.0257 0.03798 0.00986 0.00011 

9 0.25 0.0384 0.05667 0.01454 0.00028 

10 0.25 0.0575 0.08568 0.02137 0.00090 

11 0.25 0.0717 0.10838 0.02638 0.00160 

12 0.25 0.074 0.11218 0.02720 0.00174 

12a 0.25 0.0875 0.13530 0.03200 0.00280 

12b 0.25 0.0925 0.14428 0.03380 0.00330 
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(a)          (b) 

Figure 5.18: Transmitted solitary waves over a step for initial water depths of a) 0.3 m and b) 

0.25 m. 

 

It can be seen from Figure 5.18 that generally, the numerical code is able to give good results. 

Although the transmitted amplitudes for the KdV analytical approximation do not depend on 

the non-dimensional amplitude of the incident wave, there is a slight dependence exhibited in 

the experimental and GN numerical results. In all cases, the experimental value is lower than 

the numerical prediction produced by the GN code. GN theory assumes that the water has no 

viscosity, so viscous damping is excluded. But experimentally, the waves experience energy 

dissipation due to the viscous damping effect. This reduces the height of its amplitude and is 

likely to broaden the wave width, and could be the reason for the discrepancies between the 

two. Due to the unknown nature of the length of the slope, numerical simulations have been 

carried out for slopes of 1:20 and 1:10 and are compared with one another to make sure that 

the discrepancies mentioned above are not due to the value of the slope. Figure 5.19 shows 

the transmitted wave amplitudes on three different slopes, with the water depth changing from 

0.3 m to 0.2 m. The difference in value for the first transmitted wave is about 0.3 % compared 

to the averaged 14 % difference between the numerical and experimental results above. 

Clearly, the slope has little effect on the discrepancies mentioned above. This further 

strengthens the view that viscous damping plays an important role. For the 2
nd

 transmitted 
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wave, there is a rather larger separation in results for the higher amplitudes (more non-linear 

cases). It happens that the slope of 1:30 gives the closest value to the experimental results. 

  

 

(a)                                   (b) 

Figure 5.19: Comparison of non-dimensional transmitted waves for 3 different bed slopes 

 

The reflected waves are much smaller than the transmitted waves and are likely to propagate 

linearly without much change in their profile and velocity on water of constant depth. Figure 

5.20a shows the reflected waves for 3 different initial water depths where the bed slope is 

1:30. Clearly, it can be seen that all the results have the same trend, where the reflected wave 

amplitude relative to its initial amplitude decreases as the initial amplitude increases. A higher 

amplitude solitary wave has a narrower width, and when the wave interacts with the slope, the 

wave sees the slope as a more slowly varying depth then would a smaller amplitude solitary 

wave of broader width. Consequently, the reflected wave amplitude relative to the initial 

solitary wave is smaller, even though the reflected wave amplitude is actually larger. This is 

consistent with the observation in Figure 5.20a. Comparison with experimental results is 

shown in Figure 5.20b. Instead of using the bed slope of 1:30, a bed slope of 1:10 is used in 

the simulation. It is found that even with the steeper slope, the numerical values are less than 

half the values from the experiment. 
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       (a)           (b) 

Figure 5.20: Non-dimensional reflected waves, a) 1:30 slope with varying initial water depth, 

b) comparison with experimental results for 1:10 slope 

 

The number of solitary waves produced depends on the depth ratio. Johnson (1997) gives 

estimates for the critical depth ratios at which perfect soliton separation occurs. These are 

listed in Table 5.4. 

 

Table 5.4: Critical depth ratio for soliton separation 

 

Number of 

solitary wave 
d1/d 

1 1 

2 0.6137 

3 0.4510 

4 0.3594 

 

A solitary wave of amplitude of 0.0425 m (Simulation 1 of Table 5.3) on initial water depth 

of 0.3 m has been simulated propagating over a slope of 1:30 for four varying depth ratios. 

Table 5.5 summarises the observed results. It can be seen that the code is able to cope with the 

high depth changes and produce good solitary wave separation. Quantitatively, the critical 

depth ratio for GN equations is not exactly the same as for the Johnson’s KdV equation 
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predictions. Using the KdV equation, the last depth ratio of 0.467 should produce only 3 

solitary waves with dispersive tails. 

 

Table 5.5: Observation of solitary wave separation using GN equations for varying water 

depth ratios 

 

d1/d Observation 

0.667 2 solitary waves with dispersive tails 

0.6 3 solitary waves with dispersive tails 

0.5333 3 solitary waves with dispersive tails 

0.467 4 solitary waves with dispersive tails 

 

 

5.6 Conclusion 

 The numerical scheme is able to produce physically realistic solitary wave propagation; 

which shows the ability of the numerical model to cope with non-linearity. The 

solitary wave propagates in water of constant depth without loss of amplitude or 

velocity.  

 In comparison with the KdV equation, qualitatively the GN equations have similar 

properties to the KdV equation.  

o  For solitary wave separation;  

 A starting condition where a wave has higher amplitude compared to its 

width than a solitary wave has been simulated. This initial condition 

evolves in time and separate into two or more solitary waves, 

accompanied by small dispersive waves. The leading solitary wave is 

higher than the initial wave, while the second and any subsequent 

waves are much smaller. 

 In the region of the release of new solitary waves, the amplitude of the 

leading solitary wave increases linearly while the amplitude of the new 
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solitary waves increasing in a quadratic manner above a critical 

threshold, the same behaviour shown by the KdV equation. This is 

expected as both approaches should adequately represent the same 

shallow water behaviour.  

o It should however be noted that the solutions to the GN equations are not 

scalable in terms of a/d, unlike the KdV equation. The KdV equation is a 

weakly non-linear equation whereby the speed of the wave varies exactly 

linearly with the amplitude whereas the wave speed for GN solution is slightly 

different (corrections beyond linear in amplitude). 

o  The GN equations are able to simulate solitary wave interactions well. 

 Two solitary waves interacting as they advance in the same direction 

has been simulated; a large amplitude solitary wave overtaking a 

small one. As the two waves interact, the fully merged wave has peak 

amplitude in between the two initial solitary wave amplitudes. The 

waves change their identity; with the slower wave becoming taller and 

faster and accelerating ahead while the larger wave becomes smaller 

and is left behind. 

 The fitted sech
2
 function gives a good approximation for the merged 

wave shapes. 

o The GN equations are able to handle the highly non-linear wave propagation 

on a varying water depth.  

 Solitary waves propagation from deep water to shallow water on a 

rather steep slope (1:30) have been simulated. At the top of the shelf, 

these waves have steeper fronts, which separate into a number of 

solitary waves (transmitted solitary waves) in the absence of wave 

breaking. This separation is a similar process as to what has been 

discussed in the solitary wave separation, in which a wave with higher 

amplitude than its equivalent solitary wave, given the same width, 

separates. 

 There is a slight dependence to amplitude exhibited in the 
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experimental (by Seabra-Santos et al., 1987) and GN numerical 

results for the transmitted solitary waves when compared to the 

analytical solution. The analytical approach is undertaken by 

combining the linear scattering for a solitary wave over a step change 

followed by the KdV conserved quantity based analytical approach to 

constant depth splitting. 

 Compared to the experimental results, the experimental value is lower 

than the numerical prediction produced by the GN model. GN theory 

assumes that the water has no viscosity, so viscous damping is 

excluded. But experimentally, the waves experience energy 

dissipation due to the viscous damping effect. 

 In short, the numerical solver for the GN equations works well and the GN Level 1 

gives quantitatively good results when compared to the corresponding solution of the 

KdV equation. 
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6 GN Numerical Simulation of Focussed Wave  

  Groups 

 

6.1 Introduction 

A wave group consists of a number of individual waves travelling and interacting with each 

other. If all the individual waves within the wave group have the same phase (e.g. the peak 

crests or troughs elevations of all the individual waves are aligned in space and time), a focus 

wave group is produced. A focus wave group can be constructed to have the same profile as 

the average shape of extreme wave events in long random time series as shown by the 

laboratory data analysis in Chapter 2. Figure 6.1 depicts a typical focus wave group profile. 

 

                           

Figure 6.1: Focus wave group profile 

 

The aim of this chapter is to understand the behaviour of focus wave groups representing 

extreme waves, in particular extreme wave’s interaction with a mild sloping bed (slope of 

1:100). Together with the data analysis in Chapter 2 and Chapter 3, the numerical result will 

hopefully give an insight on extreme wave’s behaviour. In general, the current research should 

reproduce the observations by Hunt (2003). Experimental work by Hunt involved focus wave 

groups interacting with a plane beach with slope of 1:20 (which is relatively steep compared 

to the current research). Hunt showed that there is a gradual dispersion from focus at the toe 

of the beach to a rather less well-defined wave group; the higher frequency waves emerging 

from the main wave and also the presence of breaking for the main wave crest, which then 

developed into a saw-toothed shape. Numerical simulations of these experiments can also be 

seen in Orszaghova et al. (2012). 

t

η 

t 
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This chapter starts with investigation of the effect of water depth and wave steepness for wave 

groups propagating on constant water depth towards their focus profiles. The profile of the 

wave group will be affected by the balance between linear dispersion and non-linearity; 

examined through separation of harmonics using the Stokes water wave expansion. The next 

section investigates wave group propagation on a gentle slope. The sloping bed cases should 

reproduce the same behaviour of the constant depth cases; both the reduction in water depth 

and increment in wave steepness increase the contribution of the higher order harmonics in 

the wave group. But intriguingly, the numerical result shows that there is an extra wave set-up, 

a function of the sloping bed because there is no evidence of a wave set-up produced as the 

wave propagates on constant depth, apart from the free error wave. In order to gain a better 

understanding of the behaviour of focus wave groups on mild sloping beds, the numerical 

results are compared to the averaged large wave events constructed from the random wave 

propagation of the Lowish experimental data. 

 

6.2 Simulation Setup 

A NewWave-type wave group can be obtained from the JONSWAP spectrum (given in 

Equation (1.3) of Section 1.3) using Fourier series. The wave group is composed of the 

summation of all individual oscillating wave components consistent with the spectrum and 

can be written by, 

 

   
1

, cos
N

i i i
i

x t a t k x 


   (6.1) 

 

where  is the free surface elevation, ai is the amplitude of the ith component, i is the wave 

frequency, ki is the wave number, and N is the total number of spectral components. 

 

By setting x = 0 m in Equation (6.1), a simple focus wave group in time is produced. However, 

the initial condition for the GN numerical simulation is taken to be a focus wave group in 

space, and thus the discretised wave number spectrum [S(k)] is used instead of the frequency 

spectrum (JONSWAP). The wave number spectrum can be obtained from the JONSWAP 
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spectrum by; 

 

   S k S   (6.2) 

 

where the GN linear dispersion equation [Equation (4.50) of Section 4.6.1] is utilized for the 

wave number step, k. This is necessary because the frequency step  is uniform in the 

JONSWAP frequency spectrum, while k in the wavenumber spectrum will not be uniform.  

 

6.3 Focussed Wave Groups on Water of Constant Depths 

A series of focus wave groups, each propagating on constant water depth is simulated. The 

water depth (d) and amplitude of the focus wave groups (a) are varied to investigate their 

effect as the focus wave groups propagate. Thus, both the effects of linear dispersion and 

wave steepness are investigated.  

 

From the GN linear dispersion equation, if the water depth, d changes for a given 

wavenumber, k, then the wave period, T changes. For these simulations, the peak wavenumber, 

kp is set constant at 3.23 m and the peak wave period, Tp is varied during the interchange from 

the frequency spectrum to the wavenumber spectrum for different water depths. The input 

parameters for the spectra are as follows; 

 

Table 6.1: Input parameters for the JONSWAP spectra  

 

No. d (m) Tp (s) kpd 

1 0.46 1.19 1.5 (deep water) 

2 0.39 1.22 1.25 

3 0.30 1.30 1 

4 0.23 1.41 0.75 

5 0.16 1.62 0.5 (shallow water) 
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The numerical scheme is setup as follows: 

The grid spacing is x = 0.04 m and the time step is t = 0.01 s. The length of the tank (solid 

boundaries) is 250 m. At each water depth, the amplitude effects on the behaviour of the wave 

groups are also investigated. The wave groups start at t = 0 s (at focus) and are assumed to 

propagate linearly (using akp of 0.001) backwards until t = -30 s. Then, the surface elevation 

profile and velocity distribution along the tank are multiplied by a multiplication factor, M 

and propagated forward for 60 s until t = +30 s (this corresponds to 30 s beyond linear focus). 

The behaviour of these wave groups of different steepness will be directly compared with the 

linear wave group simulations, examining in particular the wave groups’ structure at the linear 

focus time of t = 0 s. This wave steepness (akp) is based on the amplitude of the focus wave 

group, assuming perfect focussing, and the wavenumber corresponded to the peak period, Tp. 

Four different values of wave steepness for the wave groups at t = -30 s are investigated. 

These are listed in Table 6.2. 

 

Table 6.2: Variation in wave steepness for wave groups at t = -30 s 

 

No. M akp 

a 1 0.001 (assumed linear) 

b 100 0.1 

c 200 0.2 

d 400 0.4 

 

Note that there will be free error waves evolving from the starting condition of the non-linear 

wave group at t = -30 s due to the linear structure of the wave group. But by simulating waves 

with a longer numerical tank (in order for the main wave packets to be further separated from 

the free error waves), the main results will not be affected. 
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Recall the modified Miche criterion introduced in Section 2.6. This is shown again in 

Equation (6.3). In deep water, the equation reduces to a maximum wave steepness      

Hmaxk = 0.75, and in shallow water, it reduces to a maximum height-to-depth ratio Hmax/d = 

0.76. 

 

max

0.24 tanh kd
k

H   
 
 

  

where 

(6.3) 

H = wave height, 

k = wave number and, 

d = water depth. 

The most severe case (Case 5d, denoted by the shallow water group in Table 6.1, and the 

largest amplitude in Table 6.2) is at kpd = 0.5 and akp = 0.4, where the amplitude to water 

depth ratio (a/d) is 0.77. This exceeds the modified Miche limiting criterion which is based on 

the limiting wave height, so actual water waves in a tank would be expected to have broken 

even if the numerical GN results show no indication of this. 

 

6.3.1 Accuracy Test 

Initially a linear focus wave group at t = 0 s is run backwards in time to t = -30 s. Then the 

amplitude and velocity are scaled up by a factor of 400. Next, the wave group at t = -30 s is 

propagated forwards for 60s. Figure 6.2a shows the initial and end profiles of the simulation 

for the most severe case (Case 5d). Next, the end result at t = +30 s is taken as the initial 

condition for a reversed run; the wave group propagating backwards for 60 s back to t = -30 s, 

performed by simply running the code with a negative time step. The end profile of the 

reversed run is then superimposed on the initial profile of the original run to compare both the 

profiles (both amplitude and phase).  

 

Figure 6.2b shows the result for Case 5d, zoomed in onto the centre of the main wave packet 

so that the difference can be seen clearly. The original wave profile is very closely recovered 

from the reversed run. There is a very small shift in phase for the reversed run, but this phase 
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lag is very small (< 0.1 s) compared to the total runs of 120 s (or 75 wave cycles with Tp = 

1.62 s). This is acceptable considering the wave is very steep and in very shallow water depth, 

with associated complex interactions as demonstrated by the profile at t = +30 s in Figure 

6.2a.         

     

 

 

Figure 6.2: a) The initial and end profiles of the original simulation, b) Initial profile of the 

original simulation and the end profile of the reversed simulation for the most severe case  

(akp = 0.4, kpd = 0.5) 

 

The total energy (potential and kinetic energy) is often used as an estimate of the accuracy of 

potential flow simulations, for example Gibbs and Taylor (2005). In all conservative and 

non-dissipative wave problems, the total energy should be conserved. Potential energy is 

solely monitored here because it is well defined. For non-linear wave problems, potential 

energy may not be conserved in time as only the total, potential and kinetic, is a conserved 

quantity. In fact, variations in time between potential and kinetic energy for propagating wave 

trains are indicative of inherently non-linear interactions (Epilogue Part 2 of Lighthill, 2003). 

But, monitoring the potential energy only is useful in the context of a reversed run to assess 

the accuracy of the simulation.  
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The total potential energy over the wave tank is tracked over time for both the original and 

reversed run. This is plotted in Figure 6.3a. The reversed run recovers the potential energy at 

every time step. The plot shows the range from t = -30 s to t = -10 s, so that the oscillating 

potential energy at the initial stage of the simulation can be seen more clearly. Notice that the 

simulation starts from a dispersed condition, 30 s before the linear focus location. Because 

this is a very non-linear case (the surface elevation and velocity are scaled up 400 times from 

a linear condition at t = -30s), free error waves are introduced in the simulation from this 

starting condition. The error waves will interact with each other and also with the bound 

waves, resulting in the oscillation of potential energy at the early phase of the simulation. The 

potential energy after t = -20 s is close to constant. To explain this oscillation, Figure 6.3b 

shows the x-t plot for the surface elevation. The first 10 s is rather disorganised as the 

individual components of the wave group start to separate themselves from one another, 

followed by interactions of the individual components with each other at different space and 

time locations. It seems likely that the peaks in the potential energy correspond to wave crests 

combining where the reduction in potential energy relate to the diminishing magnitude of the 

surface elevation locally (the crests for a component wave package locally coinciding with the 

troughs of a second component packet). After 20 s, the wave group experiences less 

interaction between its individual wave components leading to a more constant value of 

potential energy. In all the simulations with different water depths and wave steepness, the 

potential energy check (end of the reversed run compared to the start of the original run) is 

accurate to 0.005 %, except for the most severe case which is accurate to 0.1 % (Case 5d). 

 

Figure 6.3c plots the normalized mass of the wave group integrated over space at each time. 

The mass is integrated using the Simpson’s rule and has been normalized by a mass-like 

quantity,  , 30
space domain

x t    at the initial condition. The figure illustrates that mass is well 

conserved throughout the entire simulation. The step change at t = 0 s, albeit very small is 

probably caused by a combination of finite resolution in both space and time when the waves 

are most non-linear, arising because the lack of resolution of the high order harmonics and the 

movement of the error wave systems relative to the main wave packet. 
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Figure 6.3: a) Potential energy over time for both the original (thick line) and reversed (thin 

line) simulations, b) x-t mesh plot, and, c) normalized mass of the wave group (in space) over 

time, for the most severe wave group case (akp = 0.4, kpd = 0.5) 
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In addition, a comparison of focus wave group propagation has been made between 

simulations by the Madsen and Sørensen version of the Boussinesq equations and the GN 

equations. The former has been done by Orszaghova (2011), using a numerical wave paddle 

as a wave-maker. Extensive validations of the inbuilt wave paddle were undertaken by 

Orszaghova who simulated solitary waves and compact wave groups which were in good 

agreement with measured data (Orszaghova et al., 2012).  

 

Figure 6.4 shows plots of the wave group propagations from focus at x = 0 m and t = 0 s at 

three different times using the Boussinesq equations driven by a first order paddle signal and 

the GN equations. The wave group was created using the Pierson-Moskowitz spectrum with 

peak frequency, ωp of 2.91 Hz and focus wave group amplitude of 0.114 m, on water of 

constant depth of 0.5 m. As can be seen from the figure, the two sets of results have almost 

identical main wave group profiles. At t = 5 s, the peak amplitude and phase matches with 

slight differences in amplitude for crests and troughs before and after the peak crest. As the 

waves propagate away, double frequency and long free waves are produced. The profile and 

phase of the main wave packets and double frequency free waves are in agreement with each 

other but the agreement is less good for the long free waves. It has to be noted that for the 

Boussinesq simulation, the wave paddle is sent a displacement signal in time and 

correspondingly the wave paddle moves to create the focus wave group. There is a delay in 

time before the wave paddle achieves the peak displacement needed to produce the peak 

amplitude, and by this time the long free wave has been created and propagates ahead of the 

focus wave group. In contrast, using an initial condition in space for the GN simulation, a 

long free wave is created at the same time as the initial condition of the focus wave group. 

Thus, this might explain the faster long free wave separation from the main wave packet for 

the Boussinesq simulation. Overall, the degree of agreement between the solutions from the 

enhanced Boussinesq equations and the GN equations is satisfactory. 
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Figure 6.4: Focus wave group simulation with kp  1.42 on constant depth of 0.5 m using, a) 

Boussinesq equations (Orszaghova, 2011) and, b) GN equations. 

 

The convergence test has been undertaken in Section 6.4.1 which involves a more 

complicated case; a wave group propagating over a gentle slope. The result exhibits a fourth 

order accuracy, which is consistent with the RK4 time stepping and fourth order spatial 

discretisation. Regarding the dispersion property of the wave group, comparisons made in 

Figure 4.4 of Section 4.6.1 showed that the dispersion relationship for the numerical 

simulations matches very well with the GN analytical dispersion equation. Thus, this section, 

together with the validations against the solitary waves in Chapter 5 provides confidence that 

the numerical scheme is working as intended and is ready to be applied to other problems. 

 

 

 

 

         

a  


(m

) 


(m
) 


(m

) 

t = 5 s 

t = 20 s 

t = 40 s 

(a) (b) 

x(m) x(m) 



 147 

6.3.2 Effect of Water Depth on Linear Wave Groups 

The behaviour of focus wave groups propagating on different water depths is investigated. 

Figure 6.5a shows x-t plots of the surface elevation for akp = 0.001 (linear wave group) from  

t = -30 s to t = 30 s for different water depths (kpd = 1.5 to 0.5) while Figure 6.5b shows the 

envelope plot of the surface elevation. The top panel in Figure 6.5a is the initial condition i.e. 

the focus wave group at t = 0 s. Note that the x-axis is the spatial coordinate along the wave 

tank and the wave profiles at the front of each panels correspond to t = 30 s. Both the figures 

show that the linear dispersion is working well, with the wave groups widening and the 

amplitudes reducing with time in each plot either side of the focus point, especially for the 

deeper water cases where the phase speed of each linear component is a strong function of the 

wavelength. Also, the focussing of wave energy can be seen by following the highest peak in 

the middle of each plot (at x = 0 m). As the water depth decreases, the wave groups are less 

dispersive. In the shallowest water, the wave group almost maintains the same profile 

throughout the time period.  

 

The wave groups are then decomposed to obtain the odd and even harmonics using the Stokes 

water wave expansion described in Section 3.3. Figure 6.6 presents x-t plots for the surface 

elevation together with its odd and even harmonics at kpd = 0.5. The odd harmonics profiles 

are essentially identical to the crest elevation profiles and there are no free error waves visible. 

The even harmonics in Figure 6.6c do exist but are negligible as they are a factor of 100 

smaller than the odd harmonics. This demonstrates that the wave group is behaving linearly 

even in the shallowest water depth. In deeper water, the contributions of the higher order 

harmonics are negligible.  

 

Also from Figure 6.6c, as the wave group propagates away from the focus location, several 

small groups of waves can be seen propagating in the opposite direction. The same feature is 

observed during the solitary wave separation runs in Section 5.3; the solitary waves emit a 

small dispersive group in the other direction from the start of the simulation. Again, this is 

plausible as GN equations permit waves propagating in both directions, unlike the KdV 

equation. 
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Figure 6.5a: x-t plot for linear wave group (akp = 0.001) propagation from t = -30 s to t = 30 s 

with decreasing water depth (linear wave focussing at t = 0 s, x = 0 m) 
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Figure 6.5b: x-t envelope plot for linear wave group (akp = 0.001) propagation from t = -30 s 

to t = 30 s with decreasing water depth (linear wave focussing at t = 0 s, x = 0 m) 
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Figure 6.6: x-t plot for linear wave group (akp = 0.001) propagation at kpd = 0.5; a) crest 

elevation, b) odd harmonics and, c) even harmonics from t = -30 s to t = 30 s (linear wave 

focussing at t = 0 s, x = 0 m) 
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6.3.3 Effect of Water Depth on Weakly Non-linear Wave Groups 

Wave groups of akp = 0.1 are chosen to represent weakly non-linear wave groups. Figure 6.7 

shows x-t plots of surface elevation for a focus wave group (akp = 0.1) at different water 

depths. Linear dispersion is strong when kpd > 0.75. The wave groups gets wider, the 

amplitudes decrease over time, and wave focussing at x = 0 m can be observed. But, as the 

water depth is reduced, there is a small modulation instability opposing the dispersive 

focussing as the wave focusses at x = 0 m. This non-linear effect is discussed in Section 6.3.9. 

From the start condition at each water depth, a group of free error waves is produced behind 

the main wave group, and a wave hump produced in front, both are relatively larger as the 

depth is reduced. Also, the free waves and humps travel at speeds nearer to the main wave 

packets as the water depth is reduced. This shows that the dispersive characteristic of water 

waves still applies at all water depths. For the shallowest water depth, there appears to be 

several wave humps that are yet to separate themselves from the main wave packet. 

Furthermore, there are now two groups of free error waves behind the main wave group. In 

comparison with the linear case in Figure 6.5, the occurrences of wave humps and free error 

waves are due to the non-linearity, mostly at second order.  

 

Separation of harmonics has been undertaken for all water depths for akp = 0.1. Figure 6.8 

shows the odd harmonics of the wave group plotted at the same scale as Figure 6.7. Clearly 

the wave groups are dominated by the linear order harmonics, but the even harmonics 

contribution now is only about a factor of five smaller than the odd harmonics (contrasting the 

odd harmonics of Figure 6.8 with Figure 6.7). The odd harmonics are clean (without any free 

error waves), except for the shallowest water depth where there is a clear third order free error 

wave group propagating forwards behind the main wave. Figure 6.9 displays the even 

harmonics at a magnified vertical scale. As the same vertical scale is used for all the water 

depths, it can be seen that the contribution of even harmonics increases with decreasing water 

depths. It is interesting to note that the double frequency bound waves (which is the wave 

group behind the wave hump, and has the same phase as the linear wave packet shown in 

Figure 6.8) are riding in a hole, i.e. there is a long bound wave set-down which can be seen 

more clearly at shallow water depths. 
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Figure 6.7: x-t plot for wave group (akp = 0.1) propagation from t = -30 s to t = 30 s with 

decreasing water depth (linear wave focussing at t = 0 s, x = 0 m) 
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Figure 6.8: x-t plot for the odd harmonics wave group (akp = 0.1) propagation from t = -30 s 

to t = 30 s with decreasing water depth (linear wave focussing at t = 0 s, x = 0 m) 
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Figure 6.9: x-t plot for the even harmonics wave group (akp = 0.1) propagation from t = -30 s 

to t = 30 s with decreasing water depth (linear wave focussing at t = 0 s, x = 0 m) 
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6.3.4 Separation of Second Order Bound and Free Wave Components 

In order to examine the bound wave set-down (the second order difference harmonics), the 

separation of even harmonics into second order sum harmonics and second order difference 

harmonics is achieved by spectral filtering according to the wavenumber using the spectral 

peak wavenumber kp as the switch point between the low and high order filtering. Figure 6.10 

shows the wave group harmonics for akp = 0.1 and kpd = 1, where Figure 6.10d and Figure 

6.10e plots the separation of even harmonics of Figure 6.10c. It can be seen that there is a 

wave set-down at the location of the double frequency bound waves. The magnitude of the 

wave set-down is almost the same as the amplitude of the double frequency bound waves. 

This occurrence of a significant wave set-down is in agreement with the observation in 

Section 3.3.2 for the random wave data measured in the laboratory. 

 

To further examine the bound wave harmonics (i.e. the main wave packet), Figure 6.11 shows 

the linear harmonics, second order sum harmonics and the second order difference harmonics 

stacked vertically for different water depths with akp = 0.1. The even harmonics (second order 

sum and second order difference harmonics) have been scaled by a multiplication of [10, 10, 

10, 5, 1] for each water depth, kpd = [1.5, 1.25, 1, 0.75, 0.5] for clear comparison with the 

linear harmonics. The phases of all the bound harmonics are aligned with the linear 

components at all water depths and at both times (t = 0 s, the linear focus time and t = 40 s, 

well after focus) showing that they are bound. At both times, there is obvious separation of 

harmonics in deeper water and down to kpd of 0.75. The bound double frequency and long 

waves are clearly evident, as indicated by the smooth wave set-down. At kpd of 0.75, the wave 

hump at x > 5 m for t = 0 s is actually the long free wave hump from the starting point at t = 

-30 s that is yet to completely separate from the main wave packet. The wave groups at the 

left hand side of kpd = 0.5 and kpd = 0.75 for t = 40 s are the second order free waves, which 

are yet to separate themselves from the main wave packet due to very weak dispersion in 

shallow water. At kpd of 0.5, the separation of harmonics is not smooth. The wave set-down 

has small oscillations superimposed on it; the higher order harmonics are not aligned for the 

crest and trough focus runs, so the method of adding crest and trough cases does not work 

properly. Even so, the profile of the wave set-down is clear.  



 156 

 

 

Figure 6.10: x-t plot for wave group (akp = 0.1) propagation at kpd = 1.0; a) crest elevation, b) 

odd harmonics and, c) even harmonics, d) second order sum dominated harmonics and, e) 

second order difference harmonics from t = -30 s to t = 30 s  

(linear wave focussing at t = 0 s, x = 0 m) 
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Figure 6.11: Harmonics plot for wave group (akp = 0.1) at time a) t = 0 s and, b) t = 40 s with 

decreasing water depth; black lines for linear harmonics, blue lines for double frequency and, 

red lines for long wave. Even harmonics are not to scale in the vertical direction. 
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6.3.5 The Shape of the Second Order Sum and Difference Bound Waves Components 

In order to approximate the second order sum and second order difference harmonics from the 

linear signal (linear harmonics), the Hilbert transform is applied. This NewWave (NW) based 

method through Hilbert transform is applied at the linear focus location (t = 0 s). The 

approximation for the shape of the second order contributions to NewWave is based on the 

identity; 

 

For second order sum, the trigonometric identity 

 

2 2cos(2 ) cos sin     (6.4) 

 

can be used to estimate the shape of the double frequency term 

  

NW2 = NW
2
-NWH

2
 (6.5) 

  

and likewise the second order difference, 

 

 2 2cos(2 ) cos sin      (6.6) 

giving  

NW2  -(NW
2
+NWH

2
) (6.7) 

 

where NW is the linear term and NWH is the Hilbert transform of the NewWave signal (NW). 

 

The amplitudes of the results are then scaled and the wave shapes are then compared with the 

harmonics obtained by spectral decomposition, as shown in Figure 6.12. For kpd > 0.75, the 

NW estimated wave profiles are the same as the spectrally decomposed actual signals. There 

is weaker agreement at kpd = 0.75 and no agreement at the shallowest water depth. Again, as 

has been demonstrated in Chapter 3, this NW-based method works acceptably well so long as 

the non-dimensional water depth, kpd is larger than 0.5.  
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Figure 6.12: Comparing the profile of the normalized NewWave derived even harmonics 

(solid lines) with the even harmonics obtained by spectral decomposition (dashed lines) for 

wave group (akp = 0.1) at time t = 0s, against decreasing water depth.  
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6.3.6 Wave Steepness Effects for Intermediate Water Depth 

Next, the behaviour is investigated of focus wave groups propagating on water of depth 

corresponding to kpd = 1 with varying wave steepness. Figure 6.13 shows x-t plots for kpd = 1 

from t = -30 s to t = 30 s for four different wave steepness, akp. For the linear case, the wave 

group propagates smoothly. The wave group focuses at the middle of the top plot and at t = 30 

s, the wave group is wider in width and lower in amplitude due to linear frequency dispersion. 

For a steeper wave group where akp = 0.1, the wave group is weakly non-linear and starts to 

shed free waves in the form of a wave hump in front of the main wave packet and a small 

dispersive wave group behind. At the most steep case of akp = 0.4, the wave group releases a 

substantial hump which then breaks up into several wave humps at the front followed by 

several wave groups at the back. There are also waves that propagate in the opposite direction. 

This is a very non-linear wave group and obviously the higher order harmonics components in 

the wave group are much more dominant compared to the linear harmonics. 

 

The increase in the importance of even harmonics compared to the linear harmonics as the 

wave groups become steeper can be seen in Figure 6.14 which plots the envelopes of the 

various wave harmonics together against different wave steepness. Again, as in Figure 6.11, 

the even harmonics bound waves are perfectly in phase with the linear harmonics. The 

envelope of the linear wave becomes slightly distorted at akp = 0.2, and has a rather different 

shape for akp = 0.4. 
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Figure 6.13: x-t plot for wave group at kpd = 1.0 propagating from t = -30 s to t = 30 s with 

increasing steepness (akp) (linear wave focussing at t = 0 s, x = 0 m) 
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Figure 6.14: Harmonics plot for wave group with kpd = 1.0 at t = 0 s against increasing 

steepness (akp); black lines for envelope of linear harmonics, blue lines for envelope of double 

frequency harmonics and, red lines for long wave (linear wave focussing at t = 0 s, x = 0 m) 
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6.3.7 Most Non-linear Case in Terms of Amplitude and Water Depth 

Figure 6.15 shows the wave group propagation for the most severe case, at kpd = 0.5 and akp = 

0.4. The top panel shows three solitary waves leading the wave group followed by at least two 

more solitary waves which are yet to separate themselves from the group. The main wave 

packet and the free waves are very hard to distinguish from one another. Clearly the 

separation of harmonics does not work well. There are a lot of solitary waves and also wave 

set-down in the odd harmonics (Figure 6.15b) while the solitary waves in the even harmonics 

are apparently only half the height of the solitary waves in Figure 6.15a. This is not correct. 

The reason for these is because of the mis-alignment between waves in the crest elevation and 

trough elevation numerical runs. As shown in Figure 6.15d, the solitary waves from the 

trough elevations are not aligned with those for the crest elevation. The reason is due to the 

nature of the wave group, which is highly non-linear.  

 

However, as has been stated before, the ratio a/d for this case is 0.77, which is physically 

implausible as the Miche limiting wave height criteria is being violated. However, it is still 

interesting that the GN code is able to cope without any stability issues. In a physical 

experiment, the wave breaking process is highly non-linear and the waves will have broken at 

this particular amplitude and water depth. However, overall, the physical trends of water 

waves are simulated correctly; solitary waves of higher amplitude travel faster regardless of 

how they are created for both the crest and trough elevations. 

 

6.3.8 Most Non-Linear Case in Amplitude but in Deep Water 

Figure 6.16 shows the separation of harmonics for wave group with kpd = 1.5 and akp = 0.4, at 

the deepest water depth considered. Unlike the shallow water case, the harmonics are 

separated smoothly for this case. Linear, double frequency and long wave bound harmonics 

are present along with free double frequency and long waves. It should be stressed that the 

boundaries for this numerical code are solid boundaries located at x = -150 m and x = +100 m. 

So some reflection has started to occur on the right edge of Figure 6.16c and Figure 6.16e. 
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Figure 6.15: x-t plot for wave group (akp = 0.4) propagation at kpd = 0.5; a) crest elevation, b) 

odd harmonics, c) even harmonics from t = -30 s to t = 30 s (linear wave focussing at t = 0 s, x 

= 0 m) and d) surface elevation plots at t = 30 s 
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Figure 6.16: x-t plot for wave group (akp = 0.4) propagation at kpd = 1.5; a) crest elevation, b) 

odd harmonics and, c) even harmonics, d) second order sum dominated harmonics and, 

 e) second order difference harmonics from t = -30 s to t = 40 s  
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6.3.9 Non-linear Defocussing 

Now consider the evolution of the envelope of the main wave packets through the focussing 

event. According to the linear dispersion equation, the wave speeds are functions of water 

depth, d and wave number, k. Thus in theory, the wave groups will travel at the same speed 

regardless of the amplitudes, given the same peak wavenumber and water depth.  

 

Figure 6.17 shows the envelopes for different wave steepness (kp is constant) at t = 0 s (Figure 

6.17a) and t = 30 s (Figure 6.17b) for all the water depths with the envelope peak scaled to 1. 

For the deepest water depth (top panel) the envelopes overlap each other except for the 

highest amplitude case; showing that the dynamics of the weakly non-linear first order 

components are independent of amplitude. As the water depth is reduced, the similarity 

between the main wave packets slowly disappears. The main wave packets become wider 

(and less smooth due to modulation of the envelopes). The speeds of the main wave packets 

are still the same and the centre of the envelopes remain close to the origin in space, showing 

that focussing, although weaker than for a linear group, is still occurring. This behaviour is 

consistent with the switch in the non-linear changes in the focussing properties of the 

non-linear Schrödinger equation, from focussing of wave groups on deep water, to defocusing 

for groups on shallow water. It means that for waves in deep water, the non-linear dynamics 

enhance the focussing of a linear group resulting in a narrower, more compact and taller wave 

group than linear focussing would have produced. In contrast for shallower water (kd < 1.36), 

the non-linearity opposes the linear focussing leading to spatially broader and smaller 

amplitude wave groups at focus. The switch point is at kd = 1.36, so close to linear focussing 

for kpd = 1.5 and kpd = 1.25 is to be expected even for the finite amplitude groups, with 

defocusing being increasingly important as the water depth is reduced (Benjamin and 

Hasselmann, 1967 and Slunyaev et al., 2002). For kpd = 0.5, broadening is clear but the idea 

of group dynamics rather than the dynamics of the individual waves is starting to fail. 
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Figure 6.17a: Envelope of linear harmonics with normalized height at t = 0 s; blue line for akp 

= 0.001, green line for akp = 0. 1, red line for akp = 0.2 and, cyan line for akp = 0.4 
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Figure 6.17b: Envelope of linear harmonics with normalized height at t = 30 s; blue line for 

akp = 0.001, green line for akp = 0. 1, red line for akp = 0.2 and, cyan line for akp = 0.4  
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6.4 Focussed Wave Groups on Sloping Bed 

A series of focussed wave groups, each propagating over a 1:100 sloping bed, is simulated. 

The numerical sea bed is configured to have the same dimensions as the experimental wave 

tank in Chapter 2, but with a few slight changes to prevent instability occurring in the 

numerical simulation. This is to allow direct comparison between the numerical and the 

experimental results and to understand further the nature of the wave groups. Instead of using 

the standard JONSWAP spectrum as applied in Section 6.3 for constant water depth, 

measured wave spectra at a few gauges from Case 1a1100 are taken as initial conditions for 

the present simulations (with input conditions for the Lowish experiment given in Table 2.1). 

As in Section 6.2, Equation (6.2) is implemented to transform the Lowish spectrum in the 

frequency domain to the wavenumber spectrum so that the initial condition for the GN 

numerical simulation is taken to be a focussed wave group in space.  

 

Wave spectra at Gauges 1, 3, 5 and 6 of Case 1a1100 are evaluated for the numerical 

simulation, while data from the gauges at shallower water depths are ignored. Wave groups at 

Gauge 7 and Gauge 8 are not simulated because their wave spectra do not correspond to 

waves which are dominated by linear order. These waves are broken and highly non-linear. 

And furthermore, it has been shown that the NewWave method (which corresponds to the 

scaled linear order wave) applied in Section 3.2 does not work in these very shallow regions.  

 

Table 6.3 lists the wave gauges with their corresponding water depths, d and peak 

wavenumber, kp obtained from the peak period of the wave spectrum input for the Lowish 

experiment. Figure 6.18 shows the numerical wave tank setup, with the bed slope starting at x 

= 122 m and ending at x = 170 m. There are slight differences between the numerical wave 

setup and the experimental wave setup shown in Figure 2.2a. The constant water depth of 0.5 

m for the numerical wave setup is appropriate because it is in relatively deep water, with kpd 

of about 1.6. At this water depth, the dispersion properties are not governed by water depth 

and the contributions of higher order harmonics are very small, as has been shown in the 

second order coefficient plot against kd of Figure 4.5. The region of interest is from deep 
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water where the depth is constant to the wave gauges along the slope. Thus, the right hand 

boundary will not affect the wave group propagation, as long as the free error long wave is 

not reflected back towards the main wave packet. 

 

Table 6.3: Wave gauges and peak wavenumber from the Lowish experiment and their 

corresponding water depths and location in the numerical tank 

Gauge d (m) kp (m
-1

) kpd 

Distance from 

left boundary 

(m) 

1 0.40 3.24 1.3 (taken as deep water) 132 

3 0.30 3.56 1.06 142 

5 0.20 4.10 0.83 152 

6 0.15 4.67 0.69 157 

 

 

Figure 6.18: Numerical wave tank setup 

 

The numerical scheme is setup as follows: 

The grid spacing is x = 0.04 m and the time step is t = 0.01 s. The length of the tank (with 

solid boundaries) is 190 m. At each gauge, the influence of amplitude on the behaviour of the 

wave groups is also investigated. The wave groups start at t = 0 s (at focus) at their respective 

gauges and are assumed to propagate linearly (using akp of 0.001) backwards until t = -80 s. 

Then, the surface elevation profile and velocity distribution along the tank are multiplied by a 

multiplication factor, M and propagated forward for 85 s until t = 5 s (corresponding to 5 s 
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after linear focussing). In order to separate the odd and even harmonics, a trough focussed 

wave propagation is also simulated, by using a negative signal for the initial condition at t = 0 

s during the backwards linear wave group propagation. The wave groups are then 

decomposed to obtain the odd and even harmonics using the Stokes water wave expansion 

described in Section 3.3. The behaviour of these wave groups of different steepness is 

investigated for each gauge, examining in particular their structure at the linear focus time of  

t = 0 s. Four different values of wave steepness for the wave groups are investigated. These 

are listed in Table 6.4. 

 

Table 6.4: Variation in wave steepness for wave groups at t = -30 s 

 

No. M akp 

a 1 0.001 (assumed linear) 

b 100 0.1 

c 200 0.2 

d 250 0.25 

                          

6.4.1 Accuracy Test 

The accuracy of the numerical model is assessed by comparing the surface elevations of the 

end result of a reverse simulation with the initial condition of a forward propagating 

simulation. The dispersed wave group at t = -80 s before linear focussing is propagated 

forward on a 1:100 slope to t = 0 s. Then, the end result of this original simulation is 

propagated backwards to t = -80 s to obtain the reversed simulation. Spatial resolutions, x, of 

between 0.2 m (course grid) to 0.02 m (fine grid) are considered with the corresponding time 

steps altered so that the Courant condition is constant at 0.5. The error contribution is 

determined using 

 

||E|| = √ (E1
2
+...+ EN

2
) 
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where 
i end initial

E     for the ith grid point and N is the total grid points. Gauge 5 has been 

chosen because it located in the shallow region of the domain, with a magnification factor, M 

of 200 so that it is a rather non-linear wave group. The results are shown in Table 6.5 and 

represented graphically in Figure 6.19. The numerical simulations exhibit fourth order 

accuracy, which is consistent with the RK4 time stepping and fourth order spatial 

discretisation. 

 

Table 6.5: Convergence test result 

 

x (m) ||E|| 

0.2 5.9E-3 

0.08 2.5E-4 

0.04 1.3E-5 

0.02 5.7E-7 

 

 

Figure 6.19: Convergence test result 
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6.4.2 Wave Steepness Effects 

 

Figure 6.20: x-t contour plot for wave group propagation from t = -80 s to t = 5 s with linear 

wave group focussing at t = 0 s and x = 152 m (Gauge 5 with M = 200) 

 

The general behaviour of the wave group propagations for each gauges and for all wave 

steepness, from their dispersed shape (at deep water) to their focus shape (on the slope) is 

captured in Figure 6.20, using Gauge 5 with M of 200 as an example. The dispersed wave 

group at t = -80 s propagates at deep water towards the sloping bed, which starts at x = 122 m 

and focuses at the gauge location (which is at x = 152 m for this case). This is shown by the 

brown colour which indicates the maximum surface elevation. 

 

The shape and magnitude of the focus wave group at its linear focussing time, t = 0 s after a 

forward run from the dispersed location (t = -80 s) is investigated for each gauge. Figure 6.21 

shows the odd and even harmonics time series at the linear focus locations for different wave 

steepness at each gauge (Notation G1 x M is used in the caption, where G represents gauge). 

As the wave steepness increases, the non-linearity increases at all gauges. This can be seen by 

the higher ratio of even harmonics to odd harmonics. Non-linearity also increases as the water 

depth is reduced, for a given wave steepness. 
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In order to obtain wave steepness, akp of about 0.001, the amplitudes at Gauge 1 and Gauge 2 

are set to 3 x 10
-4 

m while the amplitudes at Gauge 5 and Gauge 6 are set to 2 x 10
-4

 m, due to 

the variability in the peak wave number, kp. For each wave steepness, the peaks of the odd 

harmonics decrease slightly when the water depth is reduced, except for Gauge 6 where the 

peak seems to increase, which could be at the point of wave breaking. Also at Gauge 6, the 

peaks are narrower while the troughs are broader; displaying that there is a significant 

influence of higher order harmonics (mainly third order harmonics) at shallow water. Note 

that, as has been discussed in Section 3.2 of NewWave comparison with the odd harmonics, 

the combination of Stokes expansions for [c-t]/2, given in Section 3.3 shows that the odd 

harmonics contains the linear order, third order and higher order odd harmonics. Thus, as the 

water depth is reduced, the higher order harmonics will start to influence the signal. 

 

Interestingly, the trough amplitudes experience relatively more reduction than the crest 

amplitudes as the water depth reduces. This effect is in qualitative agreement with the Lowish 

data discussed in Section 2.6, referring to Figures 2.10 and 2.11. This holds true as the wave 

group moves from deep water to shallow water, and non-linearity comes into action which 

makes the wave group asymmetric, with steeper crest and broader and smaller troughs. 

 

For the even harmonics, it seems that a double frequency is superimposed on a long wave of 

almost the same magnitude, which can be clearly seen in the separation of even harmonics in 

Figure 6.22. Similar behaviour is observed for oscillatory wave propagation on constant depth, 

as discussed in Section 6.3.4. But, as the wave steepness increases, there is a wave set-up in 

front of the wave set-down, apart from the free error wave set-up which has travelled ahead. 

The wave set-up seems to be a function of the sloping bed because there is no evidence of a 

wave set-up produced as the wave propagates on constant depth, apart from the free error 

wave. This bed slope-induced wave set-up will be investigated further, later in the chapter.  
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Figure 6.21a: Odd (solid) and even (dashed) harmonics for Gauges 1 and 3 with different 

wave steepness at the linear focus location. 
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Figure 6.21b: Odd (solid) and even (dashed) harmonics for Gauges 5 and 6 with different 

wave steepness at the linear focus location. 
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t, s                           t, s 

Figure 6.22a: Separation of even harmonics for Gauge 1 and Gauge 3. Solid lines are for the 

double frequency and dashed lines are for the long waves. 
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Figure 6.22b: Separation of even harmonics for Gauge 5 and Gauge 6. Solid lines are for the 

double frequency and dashed lines are for the long waves. 

 

The lack of data in Figure 6.21b and Figure 6.22b (M = 200 and 250 of Gauge 6) is due to the 

very steep waves becoming unstable in the simulation. The combination of wave group 

focussing in shallow water and the transfer of energy by the reduction of horizontal velocity 

to the increment in crest amplitude due to the reduced water depth will increase the wave 

steepness dramatically. Given an already very steep wave group before wave focussing, the 

numerical code cannot cope with the high surface elevations and velocity differences between 

spatial points, and starts to give unreasonably high values, leading to failure of the simulation. 

Even after using a finer resolution of Δx = 0.02 m and smoothing of the solutions by means of 

a weighted average of the initially calculated solutions (for the free surface,  and velocity, u) 

at every time step does not resolve the instability. The five point stencil applied for the 

smoothing is as follows (Longuet-Higgins and Cokelet, 1976, Turnbull et al., 2003): 
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Figure 6.23 shows the very steep wave group (M = 250) spatial profiles at four different times 

before the rapid increase in surface elevation (at t = 80.8 s), at which the simulation fails. The 

linear wave focus is at x = 157 m (Gauge 6).  

 

Figure 6.23: Local profiles of steep wave groups in shallow water with spatial resolution of 

0.02 m a) development of instability and b) zoomed in portion of Figure 6.23a, with smoothed 

solutions at every 20 time steps. 
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Zooming in at the position of gauge 6 and ignoring the wave profile at t = 80.8 s, Figure 6.23b 

clearly shows the smooth increase in amplitude from linear focus at t = 80 s to t = 80.6 s, 

before the decrease of amplitude and the narrow peak on wide base wave profile at t = 80.7 s. 

At 0.1 s before the instability in Figure 6.23a, there is already a lack of correlation with the 

physical/real water wave in terms of the wave profile. 

 

6.4.3 Comparison with Lowish data 

As in the cases considered in the previous section, the wave group is propagated forward upon 

the 1:100 bed slope towards the linear focus location. But instead of varying the 

magnification factor M to investigate the effect of wave steepness, the corresponding M for 

the numerical simulation is chosen so that the linear peak matches the large wave event 

analysis of experimental Lowish data at each gauge. The average of the top 10 percent crests 

and troughs of Case 1a1100 is considered. Figure 6.24a compares the numerical and 

experimental odd harmonics time series, where the latter is the [ηc - ηt]/2 in Figure 3.2 from 

Section 3.2. It can be seen that the troughs and the crests either side of the main crest are 

much larger than the experimental data, suggesting that the numerical result is notably more 

narrow banded, and is shown in the amplitude spectrum plot of Figure 6.24b. The amplitude 

spectrum suggests that there is lack of non-linear interactions for the numerical data when 

compared to the experimental data. Increase in non-linear interactions would transfer the peak 

energy towards the higher frequencies and result in a better comparison with the experimental 

data. However, as the water depth is reduced, the peak spectra decreases and the third order 

harmonics (at about 2.5 Hz) increase (relative to the linear harmonics at about 0.8 Hz) for 

both the data. Furthermore, the wave period and the numbers of crests and troughs match each 

other. It should be noted that the experimental data consist of randomly propagating waves, 

whereas the numerical simulation consists of a single dispersed wave group propagating 

towards the focus wave profile.  
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Figure 6.24: Comparison of the odd harmonics between numerical data and experimental data 

for; a) surface elevation and b) amplitude spectrum  
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Next, the second order sum is obtained by spectral filtering of the even harmonics signal. This 

numerical result is then compared with the analytical second order prediction for the 

magnitude of the second order sum, e2 derived in Section 4.6.2. The analytical prediction is 

based on the linear signal in the numerical data and is given by 

 

2 2
e

EH
d

,  

 

where 2 22 HEH OH OH  and 
 

 

2

2 2

3

4

kd
e

kd


 , OH is the odd harmonics of the numerical 

data (which is dominated by the linear order terms) and subscript H corresponds to the Hilbert 

transform. The comparison between the numerical and analytical solution plotted in Figure 

6.25a shows close agreement at all gauges, particularly regarding the crest. This shows that 

the numerical code is giving the desired second order sum contributions, in accord with the 

analytical solution. Comparing the analytical solution above (which is very close to the GN 

numerical solution) with the experimental data, Figure 6.25b shows that there is very good 

agreement in shallow water but less satisfactory agreement in deep water. The reason for 

plotting the analytical solution instead of the numerical solution against the experimental data 

for Figure 6.25b is to link them with the Stokes coefficient S22. Using the Stokes coefficient 

S22 instead of e2 for the same signal EH2 gives a better result, but still does not give good 

agreement in deep water. The discrepancy with the experimental data could be due to the 

limitation of the GN Level 1 equation. A shallow water assumption of uniform horizontal 

velocity and linearly varied vertical velocity is not able to capture fully the energy of the 

second order sum component in deep water. This observation is based on the comparison 

between the Stokes coefficient S22 which is derived from the full water wave equation and e2 

which is from the GN equation. As shown in Figure 4.5 of Section 4.6.2, the coefficient e2 

matches S22 at shallow water but diverges at deep water. 
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Figure 6.25: Comparison of second order sum terms between a) numerical solution and 

analytical solution and b) analytical solution with experimental data 
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The spatial profile instead of the time series is now examined at t = -5, 0 and 5 s. The linear, 

second order sum and second order difference terms spatial profiles are plotted in Figures 

6.26a to 6.26d, for Gauges 1, 3, 5 and 6 respectively. At Gauge 1, Figure 6.26a shows the 

wave focusing from t = -5 s to t = 0 s and wave defocusing from t = 0 s to t = 5 s for all three 

harmonics. As the water depth reduces (different gauges), the wave dispersion weakens, and 

is overcome by non-linearity. This is shown by the increase in magnitude of the second order 

difference and sum terms at t = 5 s after the linear wave focus time, at the other gauges, 

especially Gauge 5 and Gauge 6 of Figure 6.26c and 6.26d.  

 

Interestingly, the second order difference term produces a wave set-down, and two wave 

set-ups, the free error wave and the extra wave set-up, as has been mentioned in Section 6.4.2 

(particularly Figure 6.22). Even more interesting is that the extra wave set-up is not bound to 

the main wave packet. In all water depths and at all times, the wave set-up keeps on 

increasing in amplitude as the wave group travels on the slope, little affected by the linear 

wave focus location. Obeying conservation of mass, this increasing mass of wave set-up 

through shoaling acts as a balance to the increment in magnitude of the wave set-down; 

pushing the mass of water ahead to produce the wave set-up. Unlike the free error wave set-up 

which is not affected much by the slope, this wave set-up continues to interact non-linearly 

with the main wave packet. Unfortunately, no physical validation can be made against the 

experimental data because there are no finely sampled spatial wave data throughout the wave 

tank at any time, only time series at gauges which are 5 m apart. Even the time series at the 

focus location will not pick up this increasing amplitude of wave set-up because this process 

happens downstream of the gauges. For example at Gauge 1, and at t = 5 s, the value of the 

wave set-up is about 0.5 x 10
-3

 m at x = 142 m, and not at the linear focus location. Figure 

6.27 shows the second order difference for the numerical simulation at the focus location of 

each gauge and no evidence of the large wave set-up. Groesen and Westhuis (2002) produced 

the same extra wave set-up in their wave group propagation over a slope but not the 

continuous increment in amplitude seen here. The small length of the slope by Groesen and 

Westhuis means that the interaction between the wave set-up and the slope is limited; the 

wave set-up starts to travel ahead of the main wave packet on constant depth.  
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Figure 6.26a: Spatial profiles of numerical results at Gauge 1 for t = -5, 0 and 5s (left panels: 

odd harmonics, centre panels: second order difference, right panels: second order sum). 
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Figure 6.26b: Spatial profiles of numerical results at Gauge 3 for t = -5, 0 and 5s (left panels: 

odd harmonics, centre panels: second order difference, right panels: second order sum). 
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Figure 6.26c: Spatial profiles of numerical results at Gauge 5 for t = -5, 0 and 5s (left panels: 

odd harmonics, centre panels: second order difference, right panels: second order sum). 
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Figure 6.26d: Spatial profiles of numerical results at Gauge 6 for t = -5, 0 and 5s (left panels: 

odd harmonics, centre panels: second order difference, right panels: second order sum). 
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Figure 6.27: Second order difference at four different gauges 

 

Figure 6.28 compares the numerical solution against the analytical solution of e2 for the 

second order sum term at Gauge 3, now for the spatial profile instead of the time series in 

Figure 6.25. The numerical solution slightly under predicts the peak at the linear focus 

location, but otherwise gives good agreement at all three different times. 
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Figure 6.28: Comparison of the second order sum terms with analytical solution (in space) 

 

6.5 Conclusion 

 The general behaviour of wave groups is simulated correctly by the GN code;  

o The simulations are reversible and potential energy is properly conserved, 

o Linear dispersion works well; the wave groups get wider and amplitudes are 

smaller as they propagate away from the focus location, 

o Free error waves are produced from linear-based initial conditions. Their 

magnitudes increase as the water depth is reduced. 

Both the reduction in water depths and increase in wave steepness increase the 

contribution of higher order harmonics in the wave group. They also lead to free 

waves in the form of a wave hump at the front of the main wave packet and a small 

dispersive wave group behind. 

 Smooth and clean decomposition of odd and even harmonics is achieved using the 

Stokes water wave expansion, except for waves in very shallow water for the constant 

depth case. 
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o Weakly non-linear wave groups (akp = 0.1), are dominated by the linear harmonic 

but the even harmonics’ contribution are significant. Also, the bound double 

frequency waves are riding in a depression (there is a bound wave set-down).  

o The phases of the double frequency and long waves set-down are aligned with the 

linear components, showing that they are bound.  

o For the most severe case with kpd = 0.5 and akp = 0.4, the separation of harmonics 

breaks down. In real water waves, the waves are most probably broken at this 

particular amplitude and depth. However, it is still interesting that the GN code is 

able to cope without any stability issues. The produced solitary waves with higher 

amplitudes travel faster showing that, overall, the physics of water waves are 

simulated correctly. 

 NewWave-based method through the Hilbert transform is able to estimate the shape of 

the bound double frequency and long wave set-down profiles for kpd larger than 0.5. 

The results and the limitation of this method have been demonstrated before for the 

NewWave analysis applied to random data in Chapter 3, and works as long as the 

non-dimensional water depth kpd is larger than 0.5. 

 In addition, defocussing of wave groups in shallow water is observed. This is 

consistent with the non-linear defocussing properties of the non-linear Schrödinger 

equation (NLSE) in shallow water. 

The switch point for the NLSE is at kd 1.36, so linear focussing here for kpd = 1.5 and 

kpd = 1.25 is to be expected with defocusing being increasingly important as the water 

depth is reduced. At kpd = 0.5 the broadening is clear but the idea of group dynamics 

rather than the dynamics of the individual waves is starting to fail. 

 Qualitatively, the numerical wave groups on a gentle slope produce the same 

behaviour as the experimental data; the trough amplitudes experience relatively more 

reduction than the crest amplitudes as the water depth reduces. 

 Evident of an extra wave set-up as the wave group propagates on a slope. It appears to 

be a function of the sloping bed.  

This bed slope-induced wave set-up continues to increase in amplitude and interacts 

non-linearly with the main wave packet as it travels up the slope, which can be seen 
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clearly along the length of the domain. A time series plot at the focus location will not 

show this rather large wave set-up because the process occurs downstream of the 

location. By conservation of mass, the increasing magnitude of wave set-down pushes 

the mass of water ahead, producing the wave set-up. 
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7 Conclusions and Recommendations 

 

 

Introduction 

There are two main contributions in this thesis. First, a detailed wave-by-wave statistical 

analysis of the shoaling of steep waves on gentle slopes, based on experimental data from 

Imperial College (Lowish, 2007 and Katsardi et al., 2013). Second, a Green-Naghdi (GN) 

numerical model, which is able to simulate non-linear and steep waves, has been developed 

and validated. Coupled with statistical analysis, mainly through a method called NewWave 

implemented as an initial condition for the GN numerical simulations and also using 

experimental data of random waves propagating on gentle slopes, the general behaviour and 

detailed physics of waves on gentle slopes have been examined and conclusions are made. 

The developed GN numerical model for shallow water (which is also applicable for 

intermediate water depth) has been validated thoroughly with solitary wave simulations; 

solitary wave separations and solitary wave interactions on constant depth and solitary wave 

propagation over varying water depth. This is then applied to simulate NewWave-type 

focussed wave group propagation on a gentle slope, representing the behaviour of extreme 

waves. 

 

A deeper understanding of the nature of both the GN predicted and experimentally measured 

extreme waves, which can be highly non-linear, is obtained through the combination of the 

statistical analysis of the experimental data and the numerical simulation. In particular, Stokes’ 

water wave expansion is applied extensively to separate the higher order harmonics and often 

to quantify them through the NewWave-based approach. This thesis is by no means a 

conclusive research in terms of understanding the behaviour of steep waves, and thus 

recommendations will be made for future work. 

 

 



 

194 

 

Statistical Analysis of Experimental Data 

Propagation of random waves from deep into shallow water obtained through experimental 

data from a wave flume has been analysed by examining the changing shape, crest, trough and 

wave heights as the waves shoal. This is done by averaging the large wave events at each 

water depth along the wave flume and applying the NewWave analysis. In previous work, 

NewWave has solely been tested for waves on relatively deep water (kd ~ 1.2 – 1.6 and kd ~ 

3). Now, it has been shown that NewWave can also be applied to waves on relatively shallow 

water with kd as low as 0.5. So, it is appropriate for a much wider range of kd than previously 

tested. Basically, NewWave is valid so long as the global wave behaviour is dominated by 

frequency dispersion. 

 

The principal observations are as follows: 

 Sharpening of crest and broadening of troughs can be seen as the waves propagate into 

shallow water. 

 The shapes of all the large waves considered are very similar during the time from 1 s 

before to 1 s after the maximum crest occurs, where the peak period Tp is 1.2 s. 

Further from the crests conditioning points, the individual shapes are distributed 

randomly. In shallow water, there is a definite crest height limitation criterion and also 

a loss of symmetry in the horizontal direction. 

 Applying a simple separation of wave harmonics works well for extracting the linear 

term up to the gauge where the asymmetry in shape starts to become apparent and then 

increases rapidly in shallow water. The NewWave methodologies give very 

satisfactory representations of average large wave events for non-breaking waves. 

Once large-scale breaking occurs, NewWave fails to match the measured data. 

NewWave appears to be a reasonable model for waves in deep and intermediate water 

depth (kd > 0.5). 

 For the even bound harmonics; dominated by double frequency second order terms, 

the period taken from trough to trough along the crest is halved compared to the odd 

harmonics. 
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 Also seen is a set-down term in deeper water (the troughs either side of the crest are 

larger than the crest itself); a wave group rides in a depression of its own making. In 

the shallow regions, this local set-down is as large as the double frequency sum term. 

 Attempts have been made to model waves after the main breaker line, which appears 

to be at around kd  0.5 for sufficiently energetic wave fields. Two models have been 

used; a simple solitary wave form riding on an unknown local current, and a hydraulic 

jump. In both cases, the wave crests move faster than the assumed wave forms on 

shallow water, requiring that they ride on a significant and highly variable onshore 

current. Given the limited data available for the shallowest depths, the analysis cannot 

be taken further. 

 In terms of the modified Miche criterion produced in the first phase of Lowish study, 

use of either the wavenumber (k = kp) based on deep water wave spectral peak or a 

local NewWave type model with a local zero-crossing based wavenumber (k = kNW) is 

appropriate, with the NewWave based model appearing to be a closer bounding limit 

to the data. 

 

The basic NewWave analysis has been extended from being a model of the main linear part of 

the average large wave event only to being able to estimate the shape and magnitude of 

second and third order sum contributions with reasonably good results by using a Hilbert 

Transformation-based method. Combined with NewWave, the height of extreme waves can be 

estimated. 

 The contribution of both second and third order sum harmonics increases in magnitude 

as the waves shoal, which is essential in the build-up of extreme waves. 

 

Green-Naghdi (GN) Numerical Model 

A numerical solver for the GN equations in shallow water over a non-uniform bed has been 

developed, with the capability of simulating steep waves on varying water depth. The GN 

equations are derived using a different (and simpler) notation than is used by Demirbilek and 

Webster (1992). A brief investigation shows that the one sheet GN equation set permits 
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solitary wave behaviour similar to that well known for the Korteweg-de Vries equation. 

 

Mathematical Formulation of the Green-Naghdi Equations 

The GN equations are a depth-integrated equations, derived from conservation of mass and 

momentum laws together with the kinematic and dynamic boundary conditions for free 

surface flow of inviscid and incompressible liquid. 

 The velocity field is approximated by using a single sheet fluid (GN Level 1) 

model and assuming the velocity profile of the horizontal component to be 

uniform while the vertical component varies linearly from zero to a maximum at 

the free surface, corresponding to shallow water flow. 

 GN equations satisfy the boundary conditions exactly, which is in accordance with 

the research of simulating free surface flows, and incorporates non-linear terms in 

its formulation even at the lowest order, which is essential in the analysis of steep 

waves. 

 

A finite difference scheme is applied to solve the derived GN Level 1 for shallow water 

equations numerically. Fourth order accuracy is implemented for both the space and time 

derivatives; using fourth order central differences in space and the time is integrated using a 

fourth order Runge-Kutta method (RK4). The mixed derivatives in the GN equations, together 

with the fourth order spatial discretisation, leads to a pentadiagonal matrix, which means that 

the variables at all grid points are solved simultaneously at each RK4 intermediate step. Solid 

walls are implemented at both left and right boundaries. 

 

Validation of the GN Numerical Model through Simulation of Solitary Waves 

The numerical scheme is able to produce physically realistic solitary wave propagation; which 

shows the ability of the numerical model to cope with non-linearity. In comparison with the 

KdV equation, qualitatively the GN equations have similar properties to the KdV equation. 

 Unlike KdV, the GN equations are not completely integrable. The KdV equation is a 

weakly non-linear equation whereby the speed of the wave varies exactly linearly with 
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the amplitude. For GN equations, there are corrections beyond linear in amplitude for 

the wave speed. 

 The GN equations are able to simulate the solitary wave separation and also solitary 

wave interactions well. The fitted sech
2
 function gives a good approximation for the 

merged wave shapes for the overtaking interaction of two solitary waves. 

 The GN equations are able to handle the highly non-linear solitary wave propagation 

on gentle slopes. Solitary wave propagation from deep water to shallow water on a 

rather steep slope (1:30) has been simulated. At the top of the shelf, a solitary wave 

has a steep front, which separates into a number of solitary waves in the absence of 

wave breaking. The GN numerical model gives good results for the transmitted 

solitary waves when compared to the analytical solution. The analytical approach is 

undertaken by combining the linear scattering for a solitary wave over a step change 

followed by the KdV conserved-quantity-based analytical approach to constant depth 

splitting. 

 

Compared to the experimental results by Seabra-Santos et al. (1987) for solitary waves 

propagating up a change in depth on a slope (1:30), the experimental value of the transmitted 

solitary waves is lower than the numerical prediction produced by the GN code. GN theory 

assumes that the water has no viscosity, so viscous damping is excluded. But experimentally, 

the waves experience energy dissipation due to the viscous damping effect. Thus, both the GN 

numerical and experimental results are in reasonable agreement, considering the inviscid 

assumption of the GN equations. 

 

In short, the numerical solver of the GN equations works well and the GN Level 1 gives 

quantitatively good results when compared to the corresponding solution of the KdV 

equation. 
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GN Numerical Solution of Focussed Wave Groups 

The developed and validated numerical model is used to simulate focussed wave groups on 

both constant depth and gentle slope. For the latter, the initial data were taken from the 

experiments in the Lowish project so that both the results from the numerical and 

experimental analysis could be compared. In general, the behaviour of waves simulated by the 

numerical simulation is very similar to that observed in the experimental data. The NewWave 

approach and also the Hilbert transformation-based extensions for the shape of the second 

order sum contributions work well at intermediate and deep water depth (kd > 0.5).  

 

Both the reduction in water depth and increase in wave steepness increase the contribution of 

higher order harmonics in the wave group, narrowing the crests and broadening the troughs. 

The increase in wave steepness from a linearised condition in deep water propagating towards 

the linear focus location at shallow water does not change significantly the non-linear focus 

location. This suggests that the focussing wave event is mainly a contribution of the linear 

dispersive focussing. The GN equations also shows the property of the NLSE, non-linear 

defocussing for kd < 1.36. This suggests that the Benjamin-Feir instability is not an important 

factor for the occurrence of extreme waves in intermediate water depth compared to deeper 

water.  

 

Non-linearity does play an important part in the structure of waves. As has been shown for the 

experimental data analysis, there is evidence of vertical asymmetry also for the numerical 

simulation as the water depth is reduced (different gauges); the trough amplitudes experience 

relatively more reduction than the crest amplitudes as the water depth reduces. Thus the 

higher order harmonics are becoming increasingly important for shoaling wave groups. The 

shapes and magnitudes of the higher order harmonics can be estimated through the Hilbert 

transformation of the NewWave. Given random waves in a sea-state and also the bathymetry 

of the seabed (assuming uniform change), the height of an extreme waves can be estimated at 

points up the slope by using NewWave and applying its non-linear second and higher order 

harmonics correction. 



 

199 

 

Interestingly, the second order difference term produces an extra wave set-up on gentle slopes, 

and is not bound to the main wave packet. In all water depths and at all times, the bed 

slope-induced wave set-up keeps on increasing in amplitude as the wave group travels on the 

slope, little affected to the linear wave focus location. Obeying conservation of mass, this 

increasing mass of wave set-up due to shoaling acts as a balance to the increment in 

magnitude of the wave set-down; pushing the mass of water ahead to produce the wave set-up. 

This wave set-up can continue to interact non-linearly with the main wave packet. 

Unfortunately, no physical validation can be made against the experimental data because there 

are no finely sampled spatial wave data along the wave tank at any time, only time series at 

gauges which are 5 m apart. Even the time series at the focus location will not pick up this 

increasing amplitude of wave set-up because this process happens upstream of the gauges as 

the main wave event passes. Groesen and Westhuis (2002) observed the same bed 

slope-induced wave set-up in their simulations of wave group propagation over a slope but 

not the continuous increment in amplitude seen here. However, the small length of the slope 

by Groesen and Westhuis means that the interaction between the wave set-up and the slope is 

limited; the wave set-up starts to travel ahead of the main wave packet on constant depth. The 

physics of the response of the second order difference term to varying water depth is not fully 

understood. 

 

Recommendations 

Most important recommendation concerns the comparison which has been made between the 

random waves of experimental data with the focussed wave group modelling from GN 

equations. To allow a direct and better comparison between them, either experimental model 

tests with initial waves that will focus in time at particular points on the slope should be 

performed or else paddle-type wave generation be included in the numerical simulation, 

which would allow modelling of random wave propagation. Then, the same statistical 

analysis executed in the experimental data could be applied to the numerical simulations of 

random waves. The latter is more appropriate given the code that has been developed. 

 



 

200 

 

From the literature review, NewWave has been applied to field measurement data for waves 

on relatively deep water (kd ~ 1.2 – 1.6 and kd ~ 3). It would be interesting to apply the same 

statistical analysis through the NewWave methodology to field measurements closer inshore 

for kd as low as 0.5, so that the change in shape of the NewWave and the TMA spectrum can 

be observed as the waves propagate in a line of wave gauges towards shallow water.  

 

Regarding the overshoot of surface elevation from the experimental data shown for cases with 

1 in 250 sloping bed (Figure 2.15 from Section 2.6), the internal examiner has pointed out 

other research that gives a higher surface elevation than predicted by the Gaussian distribution 

for random waves associated with bed slope changes for non-uniform bathymetry. Trulsen et 

al. (2012), through statistical analysis using skewness and kurtosis on laboratory data showed 

that there is a local maximum of the surface elevation at the top of a slope where a flat shelf 

starts, which is well beyond the Gaussian statistics. This is at the point of the intersection 

between the sloping bed with the constant depth at the shallow water region. Numerically, 

Sergeeva et al. (2011) also presented the same behaviour using KdV equation. It could be the 

cause of some freak waves. Demonstrating this behaviour through GN modelling using the 

same bed condition used in the Lowish experiment should reproduce the same overshoot seen 

in the experimental data. Sergeeva et al. (2011) showed that the length of the sloping bed does 

not influence this behaviour. But, further analysis can be done by investigating the 

smoothness of the transition point, by varying the parameter kw from Equation (5.4) of Section 

5.5. 

 

The GN Level 1 equations developed here have dispersive characteristics which match well 

with the full water wave equation for kd < 1.4 but 2
nd

 order perturbation analysis shows that 

the depth requirement for accurately matching the second order non-linearity is more stringent 

than for linear dispersion. A better shape function for the approximation of the vertical 

variation of the velocity field in Green-Naghdi theory would be sufficient to address the 

required problem, enabling the GN equations to model waves in deeper water relatively 

accurately. Also, GN Level 1 does not have an upper bound in terms of the physically realistic 
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modelling of waves. At least a Level 2 GN model would be needed to inherently allow wave 

breaking properties (Kim et al., 2003). Clearly, a high level GN theory ought to be capable of 

solving both shallow and deep water problems. The high complexity of the formulation could 

be tackled by using powerful symbolic mathematical software such as Mathematica, and the 

solution of the resulting equations could be done with relatively modest computational effort. 

 

It seems that the second order difference term plays a part in the behaviour of wave groups, 

especially with the set-down effect interacting with the decrease of water depth. A better 

model of the second order difference term than the NewWave-based approximation would 

help in establishing the shape and magnitude correctly and explaining the occurrence of the 

bed slope-induced wave set-up during wave groups shoaling. Experimentally, a 

finely-sampled spatial data set would help to validate the bed slope-induced wave set-up 

shown numerically by the wave group propagation on the gentle slope.  

 

Although the free error waves have not affected the main results; by simulating waves with a 

longer numerical tank (in order for the main wave packets to be further separated from the 

free error waves), it would be interesting to see if any difference results from using a second 

order correct solution for the initial conditions of the numerical simulations. This will avoid 

free error waves. 

 

Lastly, the incorporation of waves and current action into a GN approach ought to be possible. 

The action of waves with currents travelling in opposite direction has been one of the reasons 

of the occurrence of extreme waves e.g. in the Agulhas current which travels down the east 

coast of Africa (Lavrenov and Porubov, 2006).  
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