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ABSTRACT 
 

The theoretical modelling of circular shallow foundation for offshore wind turbines 
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Lam Nguyen-Sy 
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Currently, much research is being directed at alternative energy sources to supply power 
for modern life of today and the future. One of the most promising sources is wind energy 
which can provide electrical power using wind turbines. The increase in the use of this 
type of energy requires greater consideration of design, installation and especially the cost 
of offshore wind turbines. This thesis will discuss the modelling of a novel type of 
shallow foundation for wind turbines under combined loads. The footing considered in 
this research is a circular caisson, which can be installed by the suction technique. The 
combined loads applied to this footing will be in three-dimensional space, with six 
degrees of freedom of external forces due to environmental conditions. At the same time, 
during the process of building up the model for a caisson, the theoretical analyses for 
shallow circular flat footing and spudcans also are established with the same principle.   
 
The responses of the soil will be considered in both elastic and plastic stages of 
behaviour, by using the framework of continuous plasticity based on thermodynamic 
principles. During this investigation, it is necessary to compare the numerical results with 
available experimental data to estimate suitable values of factors required to model each 
type of soil. There are five main goals of development of the model.       
 
Firstly, a new expression for plasticity theory which includes an experimentally 
determined single yield function is used to model the effects of combined cyclic loading 
of a circular footing on the behaviour of both sand and clay. This formulation based on 
thermodynamics allows the derivation of plastic solutions which automatically obey the 
laws of thermodynamics without any further assumptions. A result of this advantage is 
that non-associate plasticity, which is known to be a proper approximation for 
geotechnical material behaviour, is obtained logically and naturally. A FORTRAN source 
code called ISIS has been written as a tool for numerical analysis.  
 
Secondly, since there are some characteristics of the geometric shape and installation 
method which are quite different from that of spudcans and circular flat footing, another 
objective of this study is to adapt the current model which has been developed in ISIS for 
spudcans to the specific needs of caissons. 
 
The third goal of this research is the simulation of continuous loading history and a 
smooth transition in the stress-strain relationship from elastic to plastic behaviour. The 
model is developed from a single-yield-surface model to a continuous plasticity model 
(with an infinite number of yield surfaces) and then is discretized to a multiple-yield-
surface model which can be implemented by numerical calculation to be able to capture 
with reasonable precision the hysteretic response of a foundation under cyclic loading. 
This can not be described by a conventional single-yield-surface model. 
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Fourthly, as a method to simplify the numerical difficulties arising from the calculation 
process, a rate-dependent solution will be introduced. This modification is implemented 
by changing the dissipation function derived from the second law of thermodynamics.  
 
Finally, in order to control the model to capture the real behaviour, many parameters are 
proposed. A parametric study will be implemented to show the effects of these parameters 
on the solution. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Shallow foundations for offshore wind turbines  

There are many onshore wind turbines which have been used in few countries. However, 

there is a lot of controversy associated with this option for renewable energy generation. 

As mentioned in Byrne and Houlsby (2003), the main reason for this is the aesthetic 

effect of the onshore wind farm on the landscape. Moving wind turbines offshore could 

be a solution for this problem. Moreover, by using offshore wind turbines, larger wind 

turbines can be constructed which therefore supply much more power and can be more 

economically efficient.   

 

In the development of offshore wind turbines, the foundations usually are a significant 

fraction of the overall installed cost. They are about from 15 % to 40% of the total cost of 

a unit (see Houlsby and Byrne, 2000). Consequently, the designers of the foundation for 

offshore wind turbines also face the challenges of finding an economical solution for this 

problem. In recent designs of foundations for offshore structures, there are five main 

types: piled, gravity bases, mudmats used as temporary supports of piles, spudcan 

foundations for jack-up units and caissons. These forms are mostly used for offshore 

structures in the field of the oil and gas industry. Obviously, there is wide knowledge of 

these foundations which can be used for their design. The design of a foundation for the 

offshore wind industry, in some important aspects, is quite different from that of offshore 

foundations within the oil and gas industry, the differences are briefly: 

- The vertical loading is typically much smaller than that in oil and gas industry. 
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- As a result of above, the effects of horizontal and moment loading are much 

larger. Thus, the dynamic influences of environmental loading, such as wave, 

current and wind, are different from those that dominate in the design of oil and 

gas structures.  

- The water depth at the installation location is typically much smaller. 

- The requirements for mass-production and multiple installations are higher, 

leading to a need for economical designs.    

 

 

 

 

 

 

 

 

 

 

 

Seabed 

Wave surface 

100 m 

90 m 

30 m 

6 MN 

4 MN 

25 MN 

200 MN 

Seabed 

Figure 1.1 Typical sizes and loadings of an offshore wind turbine and a jack-up rig drawn in the same scale, 
after Byrne and Houlsby (2003) 

For instance, for a given 3.5 MW offshore wind turbine, the maximum load may be about 

6 MN, the applied horizontal load, located at about 30m above the seabed, is about 4 MN. 

In Figure 1.1, a comparison between a typical wind turbine and a jack-up unit is presented 

to illustrate the differences in serviceability conditions.  

 

The monotonic behaviour of shallow foundations of offshore soil and gas structures is 

well established. However, as mentioned above, the effects of environmental loadings on 
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offshore wind turbines differ from those of oil and gas designs. Thus, it might be 

unsuitable to transfer directly the previous results to the designs of offshore wind turbine 

foundations. It is therefore necessary to explore a new concept for the designs of the 

foundations for offshore wind turbines, instead of extending previous concepts from the 

oil and gas industry. This work can offer another choice for engineers to create both 

technically and economically improved designs. So far, almost all offshore wind farms 

are installed in shallow water close to the shore, and there are few of them. Large-

diameter monopile and gravity base foundations have been used for these offshore wind 

turbines. In this research, a novel form of shallow foundation, called a suction caisson, is 

considered which can provide an economical choice for the design (see Byrne et al., 

2000). This foundation essentially consists of two parts, a circular plate and a perimeter 

skirt connected together. The whole foundation is installed by the combination of gravity 

and suction. Firstly, the caisson footing is pushed down to an initial depth in the seabed 

by its self-weight. Afterwards, applying suction pressure to pump the water out of the 

caisson carries on the installation process. The pressure differentials between the inside 

and the outside of the caisson, which are created by the suction process, not only play the 

role of further vertical forces but also, in sand, reduce the vertical bearing capacity of the 

soil at the tip level of the caisson’s skirt. Once the inside volume of the caisson is fully 

occupied by the soil, which is considered as full penetration, the installation process is 

finished. Figure 1.2 shows the principle of the suction assisted installation.   

 

There are two main possibilities for a caisson foundation for an offshore wind turbine: 

single-caisson foundation and multi-caisson foundation. 
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 Figure 1.2  Installation  of caisson with suction assistance 
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 (a) Single caisson foundation                                         (b) Multi caisson foundation 

Figure 1.3 Caisson foundation for wind turbine 

 

 

Figure 1.3 shows the outlines of these two kinds of foundation for offshore wind turbine 

structures. In case of a single-caisson foundation, vertical and horizontal forces as well as 

overturning moments are resisted directly. Meanwhile, in a multi-caisson foundation, 

which often consists of three (tripod) or four (quadruped) caissons, the moment resistance 

is provided by the combination of tension and compression capacities on upwind and 

downwind legs. The vertical and horizontal forces are also distributed over the whole 

system of caissons. Thus, the caissons in a multi-caisson footing are often smaller than 

those of a single footing. However, the single-caisson foundation offers a great advantage 

of simplicity (see Houlsby and Byrne, 2000). It can be used for wind turbine structures 
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which are perhaps constructed on the seabed with the water depth up to approximately 40 

m. In addition, this foundation can easily be removed after the end of the life of the 

structure, although it has been very expensive to do this with the previous types of 

offshore foundations. 

 

1.2 Numerical modelling of circular shallow foundations for offshore structures 

There has been a lot of research describing shallow foundation behaviour under combined 

loadings. Traditionally, geotechnical solutions established have been based on the 

estimation of bearing capacity and the use of some ad hoc procedures using emprical 

factors such as the method proposed in Meyerhof (1953) or in Brinch Hansen (1970) and 

Vesic (1973). These methods are appropriate to the prediction of the failure of 

foundation. They include a series of empirical factors which must be modified to evaluate 

capacity for horizontal and moment loading during the calculation, but this process can 

not be implemented in a numerical analysis program. Moreover, these methods also do 

not pay attention to the plastic response in the pre-failure stage, which has many effects 

on the stability of foundations and structures. 

 

Another approach which is used to investigate the foundation behaviour under combined 

loading is to discretise the soil media into many elements and solve the problem using the 

Finite Element method. Although this approach can allow consideration of details such as 

a complicated constitutive law, soil characteristics and geometry; the requirements of a 

large computer memory, large data storage capacity, excessive running time and the need 

for an experienced analyst to carry out the work are still obstacles for the user.  
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A requirement exists to understand the foundation behaviour within the structural 

analysis. In addition, it is necessary to find a practical calculation method for engineers. 

Both these requirements lead to the need to develop a “force-resultant” model 

encapsulating the generalised behaviour of the foundation purely in terms of the resultant 

forces and the corresponding displacements through a reference point. This concept is 

also called a “macro-element”. The key advantage expected from this model is that it can 

be implemented easily and accurately in a program which is able to analyse the 

foundation-structure interactions. In a similar way to the use of force resultants and nodal 

displacements in the conventional analysis of beams or columns, the soil media and the 

footing are combined together and considered as a “macro-element”. The behaviour of 

this element will be reflected through applied loads from the structure and corresponding 

displacements of the foundation. By using this concept, some models have been 

developed, on the basis of work hardening plasticity theory, to describe the shallow 

foundation behaviour. Among others, Nova and Montrasio (1991) and Gottardi and 

Butterfield (1995) have described the strip footing behaviour on sand. Martin and 

Houlsby (2001) have proposed the model B for a spudcan footing on clay. Cassidy 

(1999), Houlsby and Cassidy (2002) and Cassidy et al. (2002) have given the solution for 

circular shallow foundation on loose sand which is called model C. 

 

Extensive tests have been done at the University of Oxford to develop the models based 

on this “macro-element” concept. So far, there have been two models which are 

constructed and verified, Model B and Model C. These models are based on a convenient 

framework using work hardening plasticity theory. Model B and Model C address 

directly the response of a foundation through the variation of displacements under applied 

loading without considering the complicated stress states in the soil beneath the 
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foundation. The most important factor of these models is to determine an experimental 

yield surface in load space. Figure 1.4 shows the shape of this yield surface, in which, V0 

is the vertical bearing capacity of the foundation at a certain depth. 

    

Particularly, model B is a plasticity model applying for the analysis of clay under a 

spudcan footing in a 2-dimension problem (V, M, H). This model was originally proposed 

in Houlsby and Martin (1992). It focuses on two main issues of spudcan foundation 

assessment on clay. 

  

Firstly, the preloading in the installation process is considered. This process may involve 

large penetrations of the foundation in the soil. The magnitude of penetration in soft clay 

is very large, for instance, 30m penetration of a 15m-diameter spudcan is not unusual (see 

Martin, 1994). This requires an analysis accounting for shear strength, which increases 

with depth of the clay. 

 

The second issue addressed in model B is the performance of a spudcan foundation under 

combined loading which includes three components: vertical, horizontal and moment 

load. In simple analysis procedures, the jack-up structures are assumed to transfer only 

two components of load to their foundations: vertical and horizontal loads. However, the 

moment loads also have some significant effects in the performance of structure and 

foundation as shown in Figure 1.5. Therefore, it is necessary to take into account the 

moment loads in the analysis for more accuracy and safety. 

  

Model C is also a theoretical model based on work hardening plasticity theory. The 

motivation of this model, again, is the performance of a spudcan foundation under the 
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extreme conditions of environmental loads such as wave and wind. By using this model, 

the behaviour of a circular footing on sand subjected to an arbitrary combination of 

drained vertical, horizontal and moment loading has been described (see Cassidy, 1999).  
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M/2R 
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2R 

Current position w  

u  θ  

V 
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Figure 1.4 Shape of the yield surface        Figure 1.5 Loads and displacements of the foundation 

It is clear that the foundation behaviour has to be investigated in a six-degree-of-freedom 

system of cyclic loading with displacement response evaluated. It should be noted that the 

directions of environmental forces such as wave and wind do not usually coincide. Both 

Model B and Model C, however, just address three degrees-of-freedom with a planar 

applied loading (V, H, M). These models are focussed on monotonic failure with a single-

yield surface but, for offshore wind turbines, it is necessary to investigate the case of 

cyclic loading in a six degrees-of-freedom system.  

 

Furthermore, during the cyclic loading, hysteresis occurs in the unloading-reloading 

processes. In the single-yield-surface model, the response which is obtained from the 

unloading will be much stiffer than the actual behaviour since it is just an elastic 

unloading response and cannot reflect the hysteresis, which makes the stress-strain curve 

softer in the unloading-reloading process.  
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In addition, the single-yield-surface models using macro-element concept, such as Model 

B and Model C, have been developed for circular flat footings and spudcan footings. 

However, in the case of caisson footings, there are some special characteristics related to 

geometry and installation techniques which have not been considered.  

 

Therefore, in this research, in order to simulate correctly the cyclic effects of loading, the 

three-dimensional performance of the offshore wind turbine foundation and the special 

features of caisson, the two models, B and C, will require developments. The method 

used will be an approach to plasticity theory based on thermodynamics which is called 

continuous hyperplasticity, modified for the caisson footing. An overview of the 

continuous hyperplasticity formulation will be given in the following section.   

 

1.3 Application of plasticity models based on thermodynamic principles 

A framework for the derivation of plasticity theory based on thermodynamic principles 

has been proposed in Houlsby and Puzrin (2000). This framework is originally derived 

from the works of Ziegler (1977).  Corresponding to this framework, the derivation of 

constitutive behaviour of elastic-plastic materials will be established in strict accordance 

with the first and the second laws of thermodynamics. The key feature of this approach is 

to specify fully the constitutive behaviour of materials by using only two scalar potential 

functions, which are called the free energy function and the dissipation function, 

following the two laws of thermodynamics. The incremental constitutive behaviour of 

materials is derived from these functions. These incremental responses therefore always 

automatically obey the two laws of thermodynamics. This is the feature that some 

conventional plasticity models cannot take into account. In fact, obeying the two laws of 

thermodynamics also is an important motivation for the establishment of models based on 
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thermodynamic framework, which are called hyperplasticity models. The advantages of 

this approach, which have been pointed out in Collins and Houlsby (1997), Houlsby and 

Puzrin (2000) and Puzrin and Houlsby (2001), are outlined briefly below. 

 

Firstly, as mentioned above, the hyperplastic approach guarantees that incremental 

derivation of plasticity will strictly obey the Laws of Thermodynamics. It allows the 

description of any constitutive behaviour just by using two scalar functions, the free 

energy function and either the dissipation or the yield function. The problem of choosing 

a non-associate flow rule for plastic responses of geotechnical materials is therefore 

formulated easily and automatically without any further potential functions which are 

usually used in conventional plasticity theory. This convenience is the result of the use of 

generalised stresses, which depend on the plastic state of the model, and the existence of 

the true stress terms in either the dissipation function or the yield function. A detailed 

demonstration of this characteristic of generalised stress space in hyperplastic models is 

given in Collins and Houlsby (1997). 

 

The second advantage of the hyperplastic model results from the use of internal variables 

in the case of cyclic loading. Using these variables, no distinction is necessary between 

the case of cyclic loading and monotonic loading. This is because the past history of the 

loading-unloading process represented by a strain state is always reflected clearly through 

the state of the internal variables. This is very convenient for the computational analysis, 

especially in the case of offshore construction because of the cyclic feature of 

environmental loads such as winds and waves. 
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Continuous hyperplasticity, disceretised by Puzrin and Houlsby (2001a), is the next step 

in the development of the hyperplastic model. The motivation for this improvement is to 

increase the abilities of constitutive models to capture fully the irreversible strains in 

materials under the applied loads. In fact, in many types of geotechnical materials, 

especially in soil, irreversible strains appear very soon when the value of loading is still 

very low. The increase of irreversible strain occurs continuously and smoothly during the 

loading-unloading process. This implies that there is almost no stage of purely elastic 

behaviour of materials and the elasto-plastic behaviour will be taken into account as soon 

as the loads are applied. Furthermore, it should be noted that, by using continuous 

plasticity, elastic-plastic behaviour should also occur on unloading which can not be 

explained by a conventional single-yield-surface model. The hysteresis is therefore 

expressed more logically and clearly. In the continuous hyperplastic model, the internal 

variables which, in this case, represent the irreversible parts of the total strains are 

developed into internal functions. Consequently, the two scalar potential functions 

become the two scalar potential functionals, which can be defined as the functions of 

functions.  The most important feature of the continuous hyperplastic model is the choice 

of internal functions, which play on the role of internal variables in the hyperplastic 

model. These functions must be chosen to fit the curves of the stress-plastic deformation 

relationship well, which are derived from the results of experiments. 

 

It is necessary to bear in mind that there could be some numerical difficulties arsing in the 

application of the continuous plasticity model. Particularly, when using the rate 

independent behaviour of materials, the adjustment for the load point to lie on the surface 

of a system of infinite number of yield surfaces could require some very complicated 

numerical procedures. In order to avoid this obstacle, a further development that will be 
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considered in this thesis is rate-dependent behaviour. Originally, rate-dependent plasticity 

models derived from hyperplasticity have been proposed in Houlsby and Puzrin (2001b). 

Once the rate-dependent behaviour is applied, the dissipation function no longer serves as 

a purely scalar energy potential function. It will be divided into two parts known as force 

potential and flow potential function. The relationship between these parts is expressed 

mathematically by a Legendre-Fenchel transformation. Based on this methodology, the 

rate-dependent solution for shallow foundation for offshore wind turbines is established. 

Rate-dependence plays a role not just in removing the numerical difficulties but also may 

be the base for future research on the model which takes into account the rate effects of 

materials. 

 

In order to validate this theoretical model, the last core issue is integrating the model into 

a numerical program. Afterward, a number of numerical examples are implemented to 

compare the results with those of experiments or other models available. For this reason, 

the continuous plasticity model derived in this paper is discretized to a multiple-yield-

surface model which has a finite number of yield surfaces to be able to implement a 

numerical implementation. A FORTRAN program named ISIS is built during the 

investigation process. This program is based on an earlier first version, which has been 

written by Professor Guy T. Houlsby (Oxford University) using the conventional 

plasticity theory with macro-element concept to validate model B and model C.  

  

1.4 Outline of this thesis 

The strategy of this research is to build a theoretical model combined with programming 

for the numerical analysis step by step. Firstly, the conventional single-yield-surface 

models (model B and model C) are used as the starting point. Then, these models are 
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converted to the single-yield-surface hyperplasticity model. Afterwards, the multiple-

yield-surface hyperplasticity model is developed from its single-yield-surface version. A 

step-by-step approach has therefore been adopted. In each step, there will be some 

numerical illustrations to validate the current version of the model. The outline of this 

thesis is expressed by the following structure. 

   

Chapter 2: Literature review and background 

This chapter will describe briefly the theoretical background and conventional solutions 

concerned with this research.  

 

Chapter 3: Single-yield-surface hyperplasticity model  

This chapter discusses the following issues: 

- Development of a hyperplasticity model with single yield function based on those 

of both model B and model C.  

- Consideration of the special features of models for caisson foundations. 

- The rate-dependent solution is introduced to prepare for further developments. 

 

Chapter 4: Continuous hyperplasticity and the discretization for numerical analysis 

This chapter includes the following discussions:  

- Theoretical development of continuous hyperplasticity model using rate-

independent materials for circular rigid foundation under combined loading in a 

three-dimensional problem. 

- Theoretical development of continuous hyperplasticity model using rate-

dependent materials for a circular rigid foundation under combined loading in 

three-dimension problem. 
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- Discretization of rate-dependent continuous hyperplasticity model for numerical 

analysis. 

 

Chapter 5: Parametric study 

This chapter presents the investigation of the relationship among the factors and the 

suitable values of parameters given in the model. 

 

Chapter 6: Model applications 

This chapter presents the applications of the model to predict the behaviour of real 

caissons. 

 

Chapter 7: Concluding remarks 

This chapter discusses the final results of the research, the lesson learned, the experiences 

obtained and the achievements gained. 
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CHAPTER 2  

LITERATURE REVIEW AND BACKGROUND 

 

This chapter briefly presents the developments of theoretical analyses of circular 

foundations for offshore wind turbines and the motivation behind the development of a 

novel model based on thermodynamic principles.  

 

2.1 Introduction 

In order to establish a model predicting the response in the pre-failure stages of loading of 

the foundation, there are three issues which must be considered: the elastic behaviour, the 

boundary of the elastic region which is the so-called yield surface and the incremental 

plastic response which is affected by the expansion, contraction and movement of the 

yield surface in stress space during loading-unloading processes.  

 

In addition, in the prediction of the behaviour of the soil under a circular footing of an 

offshore structure, there are two main analyses that must be undertaken separately. 

Firstly, the pre-loading process (footing penetrations during the installation process) has 

to be analysed. Secondly, the effects of environmental loads, represented by the cyclic 

combined loadings (storm, wind and wave) have to be simulated as accurately as 

possible. In the case of foundations for offshore wind turbines, the serviceability of the 

structure in extreme natural conditions is much more important than the ultimate vertical 

bearing capacity. Therefore, this study mainly considers the behaviour of a circular 

foundation under cyclic combined loading. The background of the vertical bearing 

capacity calculation and of the elastic response of foundations used here is based on the 

experimental and theoretical results of previous researchers.       
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The previous investigations, based on plasticity theory for offshore foundations, such as 

model B and model C, will be used as the starting point for this research. Thus, the review 

of previous plasticity models will focus on developments from Model B and Model C to 

the introduction of the hyperplasticity model which is the main focus of this research. 

  

2.2 Conventional elastic solutions 

The installation of shallow foundations for offshore structures on the seabed always 

causes plastic deformations and remoulding of the soil surrounding the footings. 

Furthermore, during the operation of the structures, additional plastic deformations 

happen under the combined loadings which are caused by the environmental conditions. 

However, before going to the plasticity models, it is necessary to mention the elastic 

solutions as the beginning of any mechanical behaviour. 

 

2.2.1 Elastic solutions of circular flat footing and spudcan 

Poulos and Davis (1974) proposed a solution for the deflection of a rigid circular footing 

on the surface of a homogeneous elastic medium: 
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−
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8 3GRM         (2.1) 

where the loads and displacements are defined in Figure 2.1b. G and ν are the shear 

modulus and Poisson’s ratio of the soil and R is the footing radius. There are some 

investigations confirming that equations (2.1) are exact solutions in the case of a rough 

footing on incompressible soil (ν = 0.5), such as Poulos (1988) and Bell (1991). These 

solutions have often been applied to an embedded footing, although they are originally 

derived for a surface footing.  
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(a) Six degrees of freedom    (b) Three degrees of freedom 

Figure 2.1 Combined loading of a circular footing and corresponding displacements 

 

 

 

 

 

Investigations about the cross-coupling terms between horizontal and rotational 

displacements have been carried out by Butterfield and Banerjee (1971) and Gazetas et al. 

(1985). In research using three-dimensional finite element analysis, Bell (1991) has 

confirmed these terms for ratios of penetration depth and footing radius such as 0.25, 0.5, 

1.0, and 2.0. Endley et al. (1981) pointed out that, in practice, these ratios rarely exceed 

the value of 2.5. Ngo-Tran (1996) has extended the work of Bell (1991) with some further 

details on the shape of spudcan footing. 

 

In this research, the elastic responses are based on the solutions of previous research such 

as Bell (1991), Ngo-Tran (1996). These elastic solutions for 2D analysis can be described 

in matrix form as follows: 
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Where V, M and H are vertical load, moment load and horizontal load respectively. The 

corresponding displacements are w, θ and u. These solutions have been used in Model B 

(Martin, 1994) and Model C (Cassidy, 1999). K1, K2, K3 and K4 are the dimensionless 

stiffness coefficients for elastic behaviour. 

11 2GRkK = ; ; 2
3

2 8 kGRK = 33 2GRkK = ;       (2.3) 4
2

4 4 kGRK =

in which k1, k2, k3 and k4 are the stiffness coefficients of soil (see Ngo-Tran, 1996). They 

depend on the embedment depth of the footing, the radius of the footing, the Poisson’s 
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ratio, the cone angle of the footing (spudcan) and the property of the surface of the 

footing. The closed forms of these factors which have been derived from a variety of 

elastic solutions, such as Bycroft (1956), Gerrard and Harrison (1970), Poulos and Davis 

(1974), were conducted by Bell (1991) and were modified by Ngo-Tran (1996).  

 

The elastic solutions of Bell (1991), Ngo-Tran (1996) and their applications in Model B 

(Martin, 1994) and Model C (Cassidy, 1999) are considered only in 2D problems. 

However, this study is concerned with 3D analysis. Thus, it is necessary to expand these 

above elastic solution for a 3D problem. In the first version of the ISIS program, Houlsby 

proposed an expansion of the elastic solution for both model B and model C as follows: 
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The elastic response of the current model will be based on the above form. The additional 

stiffness factor K5 was proposed by Houlsby (2003) to take into account the effect of 

torsion about the vertical axis. It can be calculated as: 

                (2.6)  5
3

5 8 kGRK =

The convention for the loadings and corresponding displacements in a three-dimensional 

problem has been shown in Figure 2.1a.  
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2.2.2 Elastic solution for caisson footing 

Based on a numerical study using the scaled boundary finite-element method, Doherty et 

al. (2004) have provided an accurate means of assessing the elastic behaviour of caisson 

footings (see Figure 2.2).  

 

An elastic half-space representing the soil combined with shell finite elements has been 

used to represent the flexible caisson skirt, which has a significant influence on the elastic 

response of the foundation. The dimensionless elastic stiffness coefficients calculated 

have been expressed as functions of the relative stiffness of the caisson’s skirt compared 

with the soil, the geometric shape of the caisson and the two extreme calculations, which 

are (a) the case of a rough rigid circular foundation at the soil surface and (b) the case of 

absolutely rigid caisson. This solution is briefly described in the following. 

 
Load reference point 

d 

mudline 

2R

V

Flexible skirt,  
Elastic properties Esteel, νsteel

M

t 

Figure 2.2 Caisson foundation with flexible skirt  

 

 

 

 

 

 

 

The dimensionless elastic stiffness coefficients can be calculated as follows: 
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 where the subscript i represents 1, 2, 3, 4 and 5 as the indices of the elastic stiffness 

coefficients corresponding to those of Eqs. (2.3) and Eq. (2.6);  J is a dimensionless 

parameter which represents the normalised bending stiffness of the caisson skirt; k0i is the 

value of the stiffness coefficients ki when J tends to zero, corresponding to the case of a 

circular flat footing; k∞i is the value of ki when J tends to infinity, corresponding to the 

absolutely rigid caisson. The form of J is expressed as follows: 

RG
tE

J
R

steel=                    (2.8) 

where GR is the shear modulus of the soil at the depth equal to the value of  the radius R, t 

is the thickness of the skirt, Esteel is the elastic modulus of the skirt. Jmi is the value of J at 

ki = (k0i + k∞i)/2 and p is proportional to the gradient of the ki curve at Jmi. The factors k0i, 

k∞i, Jmi and pi have been tabulated in Doherty et al. (2004). The general shape of the ki 

curve is shown in Figure 2.4  

ki

lnJ 

k∞i

k0i

lnJmi

2p 

1 

p(k∞i - k0i)/2 

(k∞i + k0i)/2 

Figure 2.4 Stiffness coefficient variations (after Doherty et al., 2004 ) 

 

 

 

 

 

 

 

2.2.3 Elastic shear modulus 

In the application of the elastic solutions, one of the most important factors, which 

strongly affects the accuracy of the results, is the choice of shear modulus G. The 

variations of shear modulus G that will be reviewed briefly in this section are in the case 
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of clay (Model B - for a circular flat footing and spudcan), in the case of sand (Model C - 

for a circular flat footing and spudcan) and in the analysis of a caisson footing. 

 

In the case of clay, the shear modulus is often determined from the undrained shear 

strength of soil su and an empirical rigidity index (Ir) defined as G/su. The value of G/su 

depends on the level of strain. In SNAME (1994), for the clay beneath the spudcan under 

extreme loading events, a value for G/su is suggested as 39. In the case of small strain 

problems, the value of G/su ranges from 150 to 200. For very small strain problems, such 

as in serviceability conditions, G/su can vary from 200 up to 800 (see Martin, 1994).  It 

should be noted that the value of shear modulus must be an approximation because of the 

inaccuracy in the measurement of su. Therefore, it is necessary to pay attention as much 

as possible to reproduce the natural conditions and stress histories of soil specimens. In 

this thesis, a linear variation of undrained shear strength with depth is mainly used. The 

undrained shear strenth profile is shown in Figure 2.5 in which sum is the undrained shear 

strength at mudline, R is the radius of footing, z is the depth of footing and ρ is a factor 

which typically has a value of about 2 kPa/m (see Martin, 1994). 

Mudline 
sum

su(z) = sum + ρz 

Depth 

su(z)  
z  

ρ 

1 

Figure 2.5 Undrained shear strength profile 

   

 

 

 

 

 

  

In the case of sand, Wroth and Houlsby (1985) have pointed out that the variation of 

shear modulus depends not only on the depth of footing but also on the vertical stress 
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level applied. Therefore, the form of shear modulus which is derived from the 

experimental observation (Wroth and Houlsby, 1985) is taken as follows: 

            
a

a p

R
R
V

gpG
'2 γ

π
+

=               (2.9) 

 where pa is atmospheric pressure, g is a non-dimensional shear modulus factor and 'γ  is 

the effective unit weight of the soil. 

 

In an investigation of the effects of caisson stiffness behaviour in non-homogeneous soil, 

Doherty et al. (2004) have proposed a variation in the shear modulus as follows: 

                                              ( )
α

⎟
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⎜
⎝
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R
zGzG R             (2.10) 

where GR is the shear modulus at a depth R. The value of GR could be calculated by using 

the formulation of model B (for clay) or Eq. (2.9) (model C - for sand). α is the 

dimensionless factor depending on the soil type. 

 

z/R 

α =0 
Homogeneous soil 

(Heavily consolidated clay) 

0 < α  < 1 

α  = 1 
Gibson soil 

0  

1  

GR G(z) 

               Figure 2.6 Variation of shear modulus with depth (after Doherty et al., 2004) 

 

 

 

 

 

 

 

This variation is chosen from the point of view that the shear modulus depends on the 

stress level which could increase with depth. Within the types of heavily consolidated 

clay which have very large overconsolidation ratios, there are not large variations of shear 
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modulus with depth. The factor α is therefore close to zero. For normally 

overconsolidated clay, the value of α tends to unity, which is known as the α value of a 

“Gibson” soil. Other types of soil have α values varying from 0 to 1. For example, sands 

show an approximate value of α of 0.5 (see Doherty et al., 2004). Figure 2.6 shows the 

variation of shear modulus with different kinds of soil. 

 

2.3 Vertical bearing capacity formulations 

In the analysis of shallow foundation for offshore structures, there have always been two 

issues which have to be considered and implemented: the installation process of the 

footing and the performance of the foundation under the environmental conditions during 

the lifetime of the foundation. Both these issues involve the calculation of bearing 

capacity. For clay, the undrained bearing capacity is the focus of interest. For sand, the 

drained or partially drained bearing capacity will be relevant. The size of the yield surface 

which is used in elastic-plastic analysis is also related to the bearing capacity. For 

instance, the size in V-axis of the yield surface in Model B (Martin, 1994) or in Model C 

(Cassidy, 1999) is determined by the bearing capacity.     

 

There has been a lot of research published on the issue of bearing capacity of foundations. 

It is impossible to review all of them here. Therefore, in this section, it is appropriate to 

present briefly the solutions of the bearing capacity of circular footings and spudcans 

under purely vertical and combined loadings in offshore industry and introduce a 

proposed calculation procedure for the vertical bearing capacity of a caisson footing, 

which is the main goal of this research.   
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2.3.1 Bearing capacity formulations for circular flat footing and spudcan 

Original vertical bearing capacity formulations 

The solutions for the vertical bearing capacity under pure vertical load on cohesive soil 

generally accepted are the solutions of Meyerhof (1951, 1953), Brinch Hansen (1961, 

1970) and Vesic (1975). From the solution of bearing capacity for strip footing on a 

weightless Tresca material, ( ) usAV 2/0 += π , Brinch Hansen (1970) has modified a 

formulation with some more empirical shape factors and depth factors to take into 

account the effects of footing geometries and the installation process. The circular footing 

is changed to an equivalent square footing with the size of πRB = . Brinch Hansen’s 

formulation can be expressed as follows: 
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Vesic (1975) has modified the Hansen’s formulation to get the smooth transition at 

1=
B
z . For a square footing, Vesic’s formulation can be written as: 
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Martin (1994) has proposed the bearing capacity for circular flat footing and spudcan on 

clay as follows: 

 uc RsNV π00 =                             (2.15) 

where is determined from the set of theoretical bearing capacity factors; 0cN R is the 

radius of the footing.  

2 - 10 



 

In the case of sand, Gottardi et al. (1999) has provided an empirical formulation for the 

bearing capacity of a circular flat footing based on test results as follows: 
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where   is the elastic stiffness (or the initial plastic stiffness);  is the depth of 

footing;  is the maximum vertical bearing capacity and  is the value of  at this 

maximum bearing capacity. Numerical values of ,  and are derived from 

experiments. 

pk pw

mV0 pmw pw

pk mV0 pmw

 

Cassidy (1999) and Houlsby and Cassidy (2002) have modified Gottardi’s formulation to 

take into account the case when ∞→pw  as follows: 

2

0

0

2

0

1
121

1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

=

pm

p

ppm

p

m

pmp

m
pm

p

p

p
pp

w
w

fw
w

V
wk

V
w
w

f
f

wk

V                         (2.17) 

where  is a dimensionless constant that describes the limiting value of vertical load of 

. Figure 2.7 shows the curve representing the Eq. (2.17). 

pf

mV0

 

By changing the magnitude of , Eq. (2.17) can match the vertical bearing capacity 

curve in both cases of loose sand and dense sand. The dashed curve in Figure 2.7 shows 

the typical variation of the vertical bearing capacity of a circular footing on loose sand 

corresponding to the case when  and 

pf

1→pf ∞→pmw .    
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Figure 2.7 Vertical bearing capacity of a circular flat footing on dense and loose sand 

 

 

 

 

 

 

 

 

Bearing capacity of foundation under combined loading 

In the offshore industry, bearing capacity methods have been widely used to estimate the 

failure of a foundation under combined loading. Meyerhof (1951, 1953), Brinch Hansen 

(1961, 1970) and Vesic (1975) have given calculation procedures of the bearing capacity 

of foundations under inclined or eccentric load conditions. In general, a combined planar 

loading on a circular foundation can be transferred to a combination of an eccentric 

vertical load and a horizontal load as shown in Figure 2.8. 

 

For a strip footing, Meyerhof (1953) has suggested an effective width as B’ = B – 2e, in 

which e is the eccentricity of the applied loads. For a circular footing, the effective area is 

determined as that of the equivalent rectangle constructed so that its geometric centre 

coincides with the load centre of the original circular footing. The American Petroleum 

Institute (API, 1993) has recommended a formulation for determining the effective 

dimensions B*, L* for the circular footing as: 

⎟
⎠
⎞

⎜
⎝
⎛−−−== −

R
eReReRLBA 12222**' sin22π  and 

eR
eR

L
B

−
+

=*

*

            (2.18) 
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Figure 2.8 Equivalent force systems on rigid foundation 

 

 

 

 

 

 

 

Meyerhof (1953) and Binch Hansen (1961) have introduced the inclination factors ciζ , 

qiζ and iγζ to take into account the influence of the inclination and eccentricity on the 

vertical bearing capacity of the foundation. These factors are calculated by using the 

concept of effective area as can be seen from Figure 2.9. The vertical bearing capacity 

becomes: 

       ''
0 '

2
1 LBBNqNcNV iqiqqcicc ⎟

⎠
⎞

⎜
⎝
⎛ ++= γγγ ζζγζζζζ                (2.19) 
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θn

B 

B’ 

L’ 

Q 

B*

L*Q 

e 

R 

(a) Effective area of rectangular (b) Effective area of circular 

                Figure 2.9 Equivalent and effective areas of foundations 

 

  

   

 

 

 

 

 

Alternative failure envelopes 

The bearing capacity formulations under combined loadings discussed in the preceding 

paragraphs are mainly described in cases of using onshore shallow foundations which are 
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just subjected to small effects from horizontal loading and moment. Meanwhile, the 

effects of lateral loading during the lifetime of the foundation of offshore wind turbines 

are relatively large. This shortcoming of conventional bearing capacity analyses leads to 

the need for a better solution. Another problem is that it is impossible to apply these 

formulations to numerical analysis because of their empirical characteristic. Therefore, 

the use of the concepts of plasticity theory and the exploration of the shape of the yield 

surface within three-dimensional load space (V: M: H) can overcome this obstacle to 

allow for the implementation of numerical analysis. This approach has been proposed 

firstly in Roscoe and Schofield (1956).  

 

Some alternative failure envelopes are proposed in the (V: M: H) plane. Butterfield and 

Ticof (1979) have suggested a parabolic yield surface along the V axis. The sizes of their 

surface have been fixed within the range of dimensionless values of  and 

 where V

1.0/ 0 ≈BVM

2.0/ 0 ≈BVM 0 is the maximum vertical load known as the pre-consolidation 

load and B is the width of strip footing. Figure 2.10 shows the cigar shape of the failure 

envelope suggested by Butterfield and Ticof (1979). 

 

This shape of the failure envelope has been verified and confirmed by Nova and 

Montrasio (1991). For conical footings and spudcan footings, research implemented at 

Cambridge University has shown the similar cigar-shaped failure surface. This 

investigation was done by Noble Denton and Associates (1987) and has been summarised 

by Dean et al. (1992). The proposed surface has the biggest cross section at 5.0/ 0 =VV  

and the corresponding ratios are 0875.02/ 0 =RVM  and 14.0/ 0 =VH .      
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                 Figure 2.10 Cigar-shape of the failure envelope (After Buterfield and Ticof, 1979)       
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A modified cigar-shape yield surface similar to that of Butterfield and Ticof (1979) (see 

Figure 2.10) has been proposed in Martin (1994). Martin also pointed out that the shape 

of yield surface remains constant during expansion, which has been caused by the 

increase of penetration. This has allowed the definition of a normalised yield function 

with respect to only , which is the pure vertical bearing capacity at the depth 

considered. The Model B yield function is defined as: 
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Where ; ;  000 2RVmM = 000 VhH =
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The six parameter values obtained from experimental data (see Martin and Houlsby, 

2001) are 083.00 =m , , 127.00 =h 518.01 =e , 180.12 −=e , 764.01 =β  and 

882.02 =β .   

In the case of a circular footing on dense sand, based on the experimental results, Gottardi 

et al. (1999) proposed an elliptical yield surface as follows: 
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 (2.21) 

The definitions of  and  are the same with those of Martin’s formulations. The 

parameters are 

0M 0H

09.00 =m , , a = -0.2225.   1213.00 =h

 

In the case of a spudcan on dense sand, Cassidy (1999) has proposed a yield function 

which has a similar form as that in Model B (Martin, 1994) as shown in Eq. (2.20). The 

six parameter values obtained from experimental data now become , 

, , , 

086.00 =m

116.00 =h 2.01 −=e 0.02 =e 9.01 =β  and 99.02 =β . 

  

2.3.2 Installation and vertical bearing capacity of caisson footing 

Since the suction caisson is a rather novel type of foundation for offshore structures, there 

are not many theoretical solutions established for the bearing capacity problem of caisson 

foundation. This section, therefore, only presents the calculation procedures suggested by 

Byrne and Houlsby (2004a and 2004b) to describe the installation of a suction caisson on 

single layer soils as the background for the establishment of the model investigated in this 

study. The evaluation of the vertical bearing capacity of a caisson will be based on the 

calculation procedure of the installation at the full depth. 

 

The strategy of this calculation is that it uses the concepts of pile design, silo design and 

bearing capacity theory to conduct the estimation of vertical bearing capacity of caisson. 

The numerical illustrations for this theory will be shown in chapter 3 (for single-yield-

surface model) and chapter 4 (for multiple-yield-surface model). 

Since the contact area with the soil of the caisson varies from the beginning to the end of 

the installation process, there are two main stages which must be calculated separately: 

partial penetration and full penetration. In the partial penetration stage, the vertical 
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bearing capacity of the caisson is caused by the friction inside and outside the part of the 

skirt contacting the soil medium as well as the end bearing capacity at the tip of the skirt. 

When the caisson reaches to the full penetration position, the vertical bearing capacity is 

calculated as the summation of the adhesion outside the perimeter skirt plus the end 

bearing capacity of a circular flat footing which has the same outside diameter as the 

caisson and is located at the depth of the tip of the skirt. The undrained condition is 

assumed for clay and the drained condition is the idealised case for sand. The calculations 

are described briefly in the following sections.   

 

2.3.2.1 Installation of caisson footing on clay 

Byrne and Houlsby (2004a) have proposed a calculation procedure for the installation of 

a suction caisson in clay. In this section, the calculation process will be reviewed briefly 

for more convenience in later uses. 

 

Installation without suction - partial penetration 

 

wp

mudline 

Dout

t 

Figure 2.11 Outline of the caisson    

tDinsz 

L 

1

Dm = Dout + 2foutwp

 fout

 

 

 

 

 

 

Figure 2.11 shows the outline of a caisson with the notations that will be used in the 

following expressions. The vertical bearing capacity of a partially penetrated caisson 
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without suction can be calculated by using Eq. (2.19) for the end bearing capacity of a 

strip footing with the width t and the friction forces along the skirt as: 

            (2.22) ( ) ( ) ( )( DtNqNcNDzsdzDzsV qc

w

insuins

w

outuout

pp

πγπαπα γ')()(
00

0 ++++= ∫∫ )

where  zszs umu ρ+=)( (as shown in Figure 2.5); αout and αins are the adhesion factors 

outside and inside of the caisson; Dout and Dins are the outside and inside diameters of the 

caisson skirt as shown in Figure 2.11; D is the average diameter: 
2

insout DD
D

+
= ; wp is 

the penetration depth of the caisson; c is the shear strength at depth wp i.e. pum wsc ρ+= ; 

q is the overburden pressure caused by the soil weight: ; Npwq 'γ= q and Nc are the 

appropriate bearing capacity factors of a deep strip footing with width t in clay.  

 

Installation with suction assistance 

Since the permeability which controls the hydraulic gradient of clay is rather small, the 

influences of suction pressure to the flow of water through the soil can be neglected. The 

suction pressure just results in an additional pressure differential across the top plate of 

the caisson. Therefore, an extra vertical force which equals the suction pressure 

multiplied by the plan area of the top plate is applied. The vertical bearing capacity can be 

calculated as follows: 
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where s is the suction pressure applied. 
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Limits to suction assisted penetration 

During the process of suction application, the average vertical stress σ1 at the tip level 

inside the caisson can be reduced. Meanwhile, vertical pressure σ2 caused by the vertical 

load during the installation on the rim area of the caisson skirt can be constant. Therefore, 

there is a possibility that, with a small enough value of σ1 and a big enough value of σ2, 

the local failure which leads to the flow of the soil into the caisson can happen. Byrne and 

Houlsby (2004a) have considered this failure as the “reverse” bearing capacity problem 

and proposed a formulation, estimating the limit magnitude of the suction pressure 

applied at a certain depth as follows: 

                   ( )
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where su(z) is the shear strength at depth z; Nc
* is the bearing capacity factor of a circular 

flat footing with diameter Dins.   

 

Vertical bearing capacity at full penetration 

At full penetration position, the caisson footing is treated as a circular flat footing buried 

at depth L (full length of caisson skirt) plus the adhesion on outside surface of the skirt. It 

should be noted that the suction is turned off when the caisson reaches to the full 

penetration depth. 
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2.3.2.2 Installation of caisson footing on sand 

In a similar way to the previous section, this section briefly reviews the work of Houlsby 

and Byrne (2005a) with extra explanation. Figure 2.12 shows the outline of the caisson 

and the notations for the following discussion. 
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Figure 2.12 Outline of the caisson in sand  
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Purely vertical penetration 

Vertical bearing capacity on sand can be calculated as: 
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where and  are friction stresses 

which depend on the vertical stress level and respectively on outside and 

inside surfaces of the skirt. (Ktanδ)

)()tan()( ' zKz Voutoutout σδτ = )()tan()( ' zKz Vinsinsins σδτ =

)(' zVoutσ )(' zVinsσ

out and (Ktanδ)ins are the combined friction factors on 

the outside and inside skirt surface. x is a factor depending on the ratio between and 

 at the tip of caisson skirt. The detail calculation of , and x can be 

found in Byrne and Houlsby (2004b). 

'
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Installation with suction  

Based on the assumption that there is a uniform hydraulic gradient of water flow caused 

by suction pressure in the soil media, Houlsby and Byrne (2005a) suggest the formulation 

for vertical bearing capacity with suction assistance as: 
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in which the vertical effective stress  can be calculated with the replaced effective 

weight of sand 

)(' zVoutσ

pw
as

+'γ  instead of 'γ ; the stress  can be calculated with the 

replaced effective weight of sand 

)(' zVinsσ

( ) s
w

a

p

−
−

1'γ  instead of 'γ . The factor a is a pressure 

factor which represents the variation of excess pore pressure in the soil medium around 

the caisson.  

 

Limits to suction assisted penetration 

In the case of sand, the local failure is observed when the soil inside the caisson is totally 

liquefied. At that time, a major flow of water goes into the caisson without any further 

penetration. From these observations, Houlsby and Byrne (2005a) have proposed the 

mathematical explanation that the local failure occurs when  i.e.: 0)(' =pVins wσ

 ( )a
w

s p
ultimate −

=
1

'γ
                   (2.28)  

where  is the depth of the tip of the caisson.  pw
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Vertical bearing capacity at full penetration 

In a similar way to the expression of caisson on clay, the vertical bearing capacity of 

caisson on sand could be calculated by using Eq. (2.25). Figure 2.13 shows the typical 

shape of the vertical bearing capacity versus penetration depth of a caisson foundation. 

L 0 wp

V0

Figure 2.13 Typical calculation curve of vertical bearing capacity of caisson 

 

 

 

 

 

 

2.4 Conventional plasticity models for shallow foundation for offshore structures 

The idea of establishing a plasticity model in terms of the force resultants acting on the 

footings and the corresponding footing displacements have been first proposed by Roscoe 

and Schofield (1956). Based on experiments of rigid foundation subjected to combined 

loads, Butterfield and Ticof (1979) have expressed the foundation behaviour in the form 

of an interaction diagram (figure 2.10). This directs towards establishing the main 

components of plasticity models.  Martin (1994) constructed a plasticity model using 

force resultant concept for circular footings based on a comprehensive series of tests of 

both shallow and deep foundations in Kaolin clay. Cassidy (1999) developed a complete 

plasticity model for spudcan footings on sand in a similar way to Martin’s work. 

 

In general, the plasticity-based approach using force resultants concept has been regarded 

as a more powerful and consistent technique than the use of conventional bearing 

capacity methods with increasing number of empirical parameters (Gottardi et al., 1999).  
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As this study will be started from the developments of Model B (Martin, 1992) and 

Model C (Cassidy, 1999), the following sections review the main ideas of these two 

models. 

 

2.4.1 Plasticity model for circular shallow foundation on clay  

In Martin (1994), the behaviour of spudcan footing on cohesive soil in three-dimensional 

load space has been conducted from test results and modelled in terms of a work 

hardening plasticity theory which was named Model B. The yield function of the model 

has been presented in Eq. (2.20). 

 

In addition, non-associated plasticity has been considered through the change of 

volumetric strain component in Martin’s solution (Model B). An empirical “association 

parameter”,ζ , has been introduced in the flow rule for Model B: 
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            (2.29) 

Where is a non-negative scalar determining the magnitude of the plastic increment; Λ

pwδ , pδθ  and puδ are plastic increments of displacement corresponding to vertical, 

moment and horizontal load increments respectively. 

 

2.4.2 Plasticity model for circular shallow foundation on sand  

Based on a series of loading tests performed by Gottardi and Houlsby (1995), Cassidy 

(1999) has constructed a numerical model named Model C to simulate the behaviour of a 

spudcan footing on dense sand. He has proposed a yield function which has a similar 

form as that in Model B (Martin, 1994). In Model C, based on the observation results 
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from experiments, a potential function which had the similar form with the yield function, 

but using different exponential factors, was given to treat the non-associated characteristic 

of the behaviour of sand: 
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β ; Vα is an association parameter (associated flow is given by 

0.1=Vα ); , ,  and  is a dummy parameter which 

gives the intersection of the plastic potential g with the V-axis;  and 
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H/V and M/2RV at the widest section of the yield surface. 

 

As shown in Figure 2.14, the flow rule of plasticity in Model C is defined as:  
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Figure 2.14 Definition of flow vector in model C (Cassidy, 1999) 
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However, both Model B and Model C, which are constructed based on classical 

expressions of plasticity theory, have not taken into account the cyclic nature of 

environmental loading. Moreover, the case of a caisson footing has not been considered 

in these models. Besides, a series of tests have been implemented by Byrne (2000), Byrne 

and Houlsby (2004), Houlsby et al. (2005a) and Villalobos et al. (2003a, 2003b, 2004a, 

2004b) for both spudcan and caisson footing under cyclic loading. It is therefore 

necessary to develop a theoretical model which can explain logically special aspects of 

cyclic behaviour of foundation, especially for caisson footings. This is the motivation of 

this research.  

 

2.5 Plasticity models based on a thermodynamic framework 

One of the disadvantages of using conventional plasticity theory as in Model B and 

Model C is the lack of ability to capture the foundation behaviour under cyclic loadings. 

In order to overcome this difficulty, Houlsby and Puzrin (2000) and Puzrin and Houlsby 

(2001b) have set out a broad and rigorous framework of plasticity based on 

thermodynamic principles. The key feature of this approach is that the entire constitutive 

behaviour is fully described by two scalar functions, the free energy and dissipation 

functions. Consequently, the loading history which is representative of the cyclic loading 

is effectively captured through the use of internal variables. In addition, Puzrin and 

Houlsby (2001a) have modified this framework with the concept of infinite numbers of 

internal variables, which are so-called internal functions. This development provides 

ability to model realistic hardening effects and a smooth transition between elastic and 

plastic behaviour. Rate-dependent behaviour has been described in Houlsby and Puzrin 

(2002, 2003) to get a more accurate modelling for the behaviour of soils, and also to 

provide a proper way to avoid the numerical difficulties rising during the calculation 
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process using rate-independent behaviour. This section briefly presents the theoretical 

framework. 

 

This section reviews briefly the development of plasticity theory based on the 

thermodynamic framework of Houlsby and Puzrin (2000). Afterwards, the application of 

this theory to the force resultant model will be discussed.      

 

2.5.1 Single-yield-surface hyperplasticity 

2.5.1.1 Energy function and internal variables 

In Houlsby and Puzrin (2000), the internal energy is derived from that of classical fluid 

thermodynamics, with a slight difference. To be applied to solid mechanics, the pressure 

and the specific volume are replaced by the stress tensor and the strain tensor 

respectively. In this research, the Gibbs free energy and its variables will be used. The 

tensor, αij, denotes internal state variables. The tensor, ijχ , defines generalised stresses 

which depend on the change of energy with respect to the change of internal state 

variables.  

 

Neglecting thermal effects (i.e. neglecting θ), Collins and Houlsby (1997) have shown 

that, by using a proper choice of the internal variables αij, the Gibbs free energy can be 

written in the form of a combination of a function of stresses, g1(σij), a function of 

internal variables, g2(αij), and a function of the cross effect between stresses and internal 

variables, αijσij, as follows: 

                              ( ) ( ) ijijijij ggg ασασ −+= 21              (2.32) 

For a decoupled material in which the elastic response is independent of plastic 

deformation, this follows the relationship: 
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The internal variables, αij, play the same role as plastic strains in conventional plasticity 

theory.  

 

2.5.1.2 Dissipation and yield function 

Dissipation function 

The main goal of the definition of the internal variables is to supply the tools for the study 

of the dissipation energy in materials. The concept of dissipation based on 

thermodynamic principles has been given in Ziegler (1977) and Collins and Houlsby 

(1997). Later, Houlsby and Puzrin (2000) have set out a slightly different approach, 

although consistent with the earlier works. In that paper, the dissipation function is 

defined as a function not only of the thermodynamic state of the material but also of the 

rate of change of state. In the case of using the Gibbs free energy function, the dissipation 

function is written as: 
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A concept of the dissipative generalised stress has been given: 
ij
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d
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∂

∂
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α
χ . For a rate-

independent material, the dissipation function must be a homogeneous first order function 

of the rate . This constraint will be different in the case of using a rate-dependent 

material and will be mentioned in section 2.5.1.3. The Euler’s theorem for homogenous 

first order functions gives: 
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Following the approach of Houlsby and Puzrin (2000), the dissipation can be derived as 

follows: 

ijijd
•

= αχ                (2.37) 

 Comparing with (2.36), it is straightforward to obtain that ( ) 0=−
•

ijijij αχχ . Ziegler 

(1977) has made a stronger condition which has been followed by Houlsby and Puzrin 

(2000): 

        ijij χχ =                 (2.39) 

 

Yield function and flow rule 

The yield function in this formulation is a degenerate special case of the Legendre 

transformation of the dissipation function. Since the dissipation is a homogeneous first 

order function, its Legendre transform is singular (see Collins and Houlsby, 1997) and 

defines a yield function: 

                   (2.40) 0=−=
•

dy ijij αχλ

Where λ is an arbitrary non-negative multiplier and the flow rule is followed: 

                                                 
ij

ij
y
χ
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∂
∂

=
•

                (2.41) 

It can be seen that the yield function is derived directly and automatically from the 

dissipation function through the Legendre transformation. The explanation of the 

Legendre transformation that makes the conversion between the potentials proposed in 

this framework will not be described here but it can be found in Collins and Houlsby 

(1997). In addition, the rate of change of the internal variables, as shown in Eq. (2.52), is 
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the differential of the yield function with respect to the generalised stress, unlike the 

conventional plasticity theory where the flow rule (in the case of associated plasticity) is 

the differential of the plastic potential with respect to the true stress. Besides, Collins and 

Houlsby (1997) have demonstrated that the non-associated plastic behaviour is obtained 

automatically if the yield function involves the true stresses. This result will be applied in 

this study. The yield function used in this research is based on that of Model B and Model 

C, but it will be discussed in terms of internal variables, true stress space and generalised 

stress space instead of purely true stress space as in conventional plasticity formulation.  

     

2.5.1.3 Incremental response 

The implementation of the constitutive relationship in numerical analysis usually requires 

an incremental form. This section firstly presents the derivation of a rate-independent 

solution, and then the rate-dependent solution is expressed, based on the formulation of 

rate-independent solution for brevity. 

 

Rate-independent solution 

In a rate-independent solution for a decoupled material, Puzrin and Houlsby (2001) have 

proposed a description similar to a conventional plasticity. When plasticity occurs, the 

incremental response is derived by invoking the consistency condition of the yield 

function: ( ) 0,, =ijijijy σχα . Consequently, the incremental response can be expressed as 

follows: 

 
ij

kl

klij

ij
yg
χ

λσ
σσ

ε
∂
∂

+
∂∂

∂
−=

••
1

2

    (2.42) 

where λ is a non-negative scalar multiplier. The details of the calculation of λ can be 

found in Houlsby and Puzrin (2001b). 

2 - 29 



Rate-dependent solution 

The rate-dependent behaviour of materials is addressed by Lemaitre and Chaboche (1990) 

and Maugin (1990). From another approach, based on the thermodynamic framework, 

Houlsby and Puzrin (2002) have modified their framework to be able to apply for both 

rate-independent and rate-dependent material. They have emphasized strongly the 

specification of material behaviour entirely through two potential functions, free energy 

and dissipation energy. In this study, the works of Houlsby and Puzrin (2002) will be 

used to investigate the rate-dependent behaviour of soil. The Gibbs free energy does not 

change in the rate-dependent behaviour, but the dissipation function does not serve as a 

pure potential. Due to the fact that the dissipation function is no longer a homogeneous 

first order function, it is divided into two separate potentials called the force potential and 

flow potential. 

 

The force potential  serves as the potential of the dissipative generalised 

stress, χ

⎟
⎠
⎞

⎜
⎝
⎛=

•

ijijijzz αασ ,,

ij. It is, therefore, written as follows: 

ij

ij
z
•

∂

∂
=

α
χ                    (2.43) 

The dissipation function, d, can now be written in the form: 

                                                 ij
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                                 (2.44) 

It is noted that the force potential and the flow potential are linked by the Legendre 

transformation. Thus, the flow potential w can be defined as follows: 

( ) zdzw ijijijijij −=−=
•
αχχασ ,,                 (2.45) 
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Therefore:
ij

ij
w
χ

α
∂
∂

=
•

. 

The flow potential function w, which is analogous to the yield function y in the rate-

independent case (see Houlsby and Puzrin, 2002) is not equal to zero due to the fact that 

w is not a homogeneous first order function of the rate of change of internal variables. If d 

is chosen as a homogeneous function of order n in the internal variable rates, the force 

potential can be chosen as z = d/n so that dnzz
ij

ij

==
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α
. It is clear to see that when n 

= 1, the above relationship becomes that of rate-independent behaviour. 

 

The incremental relationships are obtained from the above definitions: 
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           (2.46) 

 

2.5.2 Multiple-yield-surface hyperplasticity and continuous hyperplasticity 

2.5.2.1 Rate-independent solution 

The main reasons for the introduction of multiple-yield-surface and continuous yield 

surface hyperplasticity are the simulation of the smooth transitions between elastic and 

plastic behaviour (see Puzrin and Houlsby, 2001) and the capture of the hysteretic 

response with a reasonable accuracy that cannot be obtained by using a single-yield-

surface plasticity model. The internal variables αij, in this case, are replaced by α(n)
ij (n = 

1..N). Therefore, the energy and dissipation functions become: 
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By using the degenerate of the Legendre transformation for the dissipation function d, for 

each n = 1,…, N, the nth yield function is:  

 ( ) 0,,...,, )()()1()()( == n
ij

N
ijijij

nn yy χαασ    (2.49) 

The dissipative generalised stress  corresponding to the n)(n
ijχ th yield function is defined 

as: 
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The flow rule for the nth yield surface therefore becomes: 

)(

)()1(
)()1()(

)(
,...,,,...,,

n
ij

N

ijij
N

ijijij
n

n

ij

d

χ

αααασ
α

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

=

••

•

   (2.51) 

By invoking the consistency condition for every single yield surface, , the 

incremental response can be written as follows: 
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where λ(n) is the non negative scalar multiplier corresponding to the nth yield function and 

is derived from the consistency condition similar to those of single-yield-surface model. 

 

The continuous yield surface plasticity can be derived in a similar way. The internal 

variables, now, become the internal functions  and their rates become . 

Following this, the free energy function and dissipation function become functionals: 
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Where Y is the domain of η. 

The derivation from the above two functions can be seen in Puzrin and Houlsby (2001) 

and will not be presented here for brevity. As the final result of this process, the 

incremental response is expressed as follows:   
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         (2.55) 

 

2.5.2.2 Rate-dependent solution 

As mentioned in section 2.5.2.1, in the case of using multiple-yield-surface model or 

continuous plasticity model, in order to calculate the multiplier λ(n) for each yield function 

y(n), the consistency conditions of all yield surfaces must be satisfied at the same time. For 

instance in the case of multiple-yield-surface model, this requirement could be expressed 

as a system of equations as: 
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where N* is the number of the yield surfaces which have been activated.  

This leads to a very complicated numerical procedure. In particular, in order to ensure 

that the load point always lie exactly on the intersection of the yield surfaces activated, 

the system of equations in Eq. (2.56) must be satisfied completely at every single load 

step. A numerical correction to satisfy this consistency condition must be implemented 
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for all the yield surfaces activated instead of only for one yield surface as in single-yield-

surface model. This work could require a very long calculation time and it may lead to 

unstable numerical results. These difficulties are not significant in the case of using 

single-yield-surface model but they become critical when the multiple-yield-surface or 

continuous plasticity model is applied.  

 

The above obstacle can be overcome by using the rate-dependent solution. The 

consistency condition for the yield surface is no longer required therefore Eq. (2.56) can 

be neglected. The framework of rate-dependent solution has been reviewed in section 

2.5.1.3 and can be found in Puzrin and Houlsby (2003) for more details. 

  

The force potential w in the case of using multiple-yield-surface model becomes:  
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The incremental response is: 
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In the case of using continuous plasticity model, Puzrin and Houlsby (2003) have given 

the force potential as: 
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Then the incremental response can be derived as follows: 
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Using the rate-dependent solution, the load point can be accepted to lie outside the yield 

surfaces thus there will be different results obtained from the use of rate-dependent and 
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rate-independent solution. However, if the rate effects which relate to the viscosity factor 

μ and the time increment dt are small enough, the rate-dependent solution can mimic the 

rate-independent solution. Houlsby and Puzrin (2002) have demonstrated this feature. 

  

Although the rate-dependent solution is used mainly for computational convenience, 

almost all materials in nature reveal the rate-dependent behaviour and soil is not an 

exception. Therefore, the use of rate-dependent solution can be useful for more realistic 

models. 

 

2.5.3 Application of the hyperplasticity theory to a force resultant model   

In earlier papers (Collins and Houlsby, 1997; Houlsby and Puzrin, 2000), a plasticity 

theory, named hyperplasticity, which is based on thermodynamics has been described. 

Afterwards, this theory has been extended in two directions. Firstly, the concept of 

internal variables is extended to that of finite numbers of internal variables (for multiple-

yield-surface plasticity) and infinite numbers of internal variables (for continuous 

plasticity). The purpose of this work is to describe the smooth transitions between elastic 

and elastic-plastic behaviour (Purzin and Houlsby, 2001a).  Secondly, Houlsby and 

Puzrin (2002) have proposed the concept of rate-dependent behaviour to the 

thermodynamic framework. From this development of the hyperplasticity theory, which 

has also been reviewed briefly in sections 2.5.1 and 2.5.2, it can be found that a 

thermodynamic framework for modelling of constitutive behaviour of both rate-

independent and rate-dependent plastic materials has been established in terms of stress 

and strain tensors. 
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In a similar way to the development of the hyperplasticity theory, a force resultant model 

can be established. In this case, the whole system of the foundation is treated in 

macroscopic terms and is expressed in terms of force resultants. Therefore, the plastic 

displacement components of the foundation, iα , can be referred as the internal state 

variables instead of the plastic strain ijα . The true stress space, which is described as ijσ  

in the thermodynamic framework, can be represented by the load space iσ . This means 

that the loads will play the role of true stresses in this model. The subscript i  represents 

the six degree-of-freedom in three-dimensional space. The entropy  and the temperature s

θ  are not considered in the foundation model. All the definitions of variables in a force 

resultant model are the same with those of hyperplasticity theory but in terms of vectors. 

 

This strategy of the development of a force resultant model will be applied for the 

development of the ISIS model which is the main work of this study.   

      

2.6 Summary 

In this chapter, the fundamental literature has been presented briefly. The two main 

aspects that the author would like to mention as the goals of this research are the analysis 

of a novel type of footing, called caisson, and the new derivation of plasticity model, 

called hyperplasticity. The analyses of other types of circular shallow foundation such as 

circular flat and jack-up footing in the case of monotonic loading have been discussed in 

previous research. 

 

The background for the development of the new model of shallow foundation for offshore 

wind turbine has been presented in this chapter. There are three main steps that have been 

considered in order for a plasticity model to be established: 
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- The elastic solution applied for the elastic response of the model (section 2.2). 

- The bearing capacity formulations that are keys to determining the yield function 

for plastic behaviour (section 2.3). 

- The new expression of the plasticity theory that is the base to derive the plastic 

response for the new model (section 2.5). 

The two first steps above have been well-established and will be used as the starting point 

to this study. This research will be continued with the developing of the new plasticity 

model, which is the so-called ISIS model using hyperplasticity theory.   
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CHAPTER 3  

SINGLE-YIELD-SURFACE HYPERPLASTICITY MODEL  

 

3.1 Introduction 

This chapter presents the development of a single-yield-surface hyperplastic formulation 

for modelling of circular shallow foundations for offshore wind turbines. The three types 

of footing considered in this chapter are circular flat footing, spudcan and caisson. 

Although spudcan is not relevant to the wind turbine case, it is analysed in this study to 

illustrate the model capacity. Four main tasks are completed in this chapter:  

 

(a) A numerical model called ISIS is established for the six-degree-of-freedom problem 

with the six general components of external forces. Based on the experimentally 

determined yield functions of both Model B (for clay) and Model C (for sand), a modified 

yield function is suggested for a caisson footing. The explicit incremental response for the 

rate-independent case is established by using the yield function instead of the dissipation 

function.  

 

(b) The rate-dependent solution is introduced. This approach extends the work on rate-

independent materials to give an alternative solution. The dissipation function is no longer 

first-order homogeneous. It is divided into two separate potentials: force potential and 

flow potential. The incremental response is established by using the flow potential 

involving the yield function of the work (a). 

 

(c) The application of the vertical bearing capacity of caissons in the ISIS model is 

presented. A mathematical treatment used to adjust the theoretical evaluation of vertical 
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bearing capacity of caisson is discussed. In addition, the principle of the application of 

suction in the model is described.  

 

(d) Some numerical examples are performed to demonstrate the capabilities of the single-

yield-surface hyperplasticity model (ISIS) in reproducing the behaviours of Model B and 

Model C.  This work also shows the single-yield-surface ISIS model as the starting point 

for the modelling of shallow foundations under cyclic loading.  

 

There are several parameters and experimental factors which are introduced in this 

chapter. The values chosen for the numerical examples are preliminary. A detailed 

discussion about the choice of these values and their relationships is not given in this 

chapter but is presented later in chapter 5 – Parametric study.     

 

3.2 Conventions of foundation 

 

 

 

 

 

 

 

Load reference point (LRP)
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(b) Spudcan footing (a) Caisson footing  

Figure 3.1 Foundation geometry   

Initially, it is necessary to introduce the geometry of footing and the convention system for 

forces and corresponding displacements. The geometries of circular flat footings and 

spudcans have been described in Martin (1994) and many other previous studies. 
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Therefore, this section just focuses on the description of the conventions of force 

directions and displacement systems. In the case of caisson footing, there are essentially 

two parts: a circular top plate and a perimeter skirt. Figure 3.1a shows the geometry of 

caisson in which d is the distance between the load reference point (LRP) and an idealised 

soil surface at the depth of the skirt’s tip. In both foundations, the position of the LRP is 

arbitrary and depends on the preference of the analyst. However, for convenience, the 

position of the LRP can be taken at the joint between the caisson and the support structure 

as shown in Figure 3.1a. Meanwhile, in the case of a spudcan footing, the LRP can be 

located as shown in Figure 3.1b. Obviously, in the case of a circular flat footing, the LRP 

can always be at the idealised soil surface level and therefore d = 0.    

 

The displacement vector at soil surface level is εi = (w, u2, u3, ω, θ2, θ3) as shown in 

Figure 3.2. The components w, u2, and u3 are the vertical displacement, horizontal 

displacement in 2-axis and horizontal displacement in 3-axis respectively. The 

components ω, θ2, and θ3 are the rotational displacement about 1-axis, 2-axis and 3-axis 

respectively. The corresponding displacements at the LRP are given as follows: 

R

R

R

RR

RR

R

duu
duu

ww

33

22

233

322

θθ
θθ
ωω

θ
θ

=
=
=

−=
+=

=

     (3.1) 

Figure 3.3 shows the convention for the force system. The forces VR, H2R, H3R, QR, M2R, 

M3R are applied at the LRP. However, in the analysis, it is convenient to use the force 

vector σi = (V, H2, H3, Q, M2, M3) at the soil surface level. The radius r of the footing at 

the soil surface level depends on the type of footing considered. In the case of a flat 
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footing or a caisson, r is equal to R. Otherwise, in the case of a spudcan, r is smaller than 

R if d > 0 and r is equal to R when d = 0.  

The relationship between the two force systems is described as follows: 
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Figure 3.3 Convention for force system 
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Figure 3.2 Convention for displacement system  

From now on, by using the relationships in Eq. (3.1) and Eq. (3.2), force results or 

displacement results can be obtained through the load reference point. Thus, the forces or 

the displacements used in the following sections are at the load reference point. For 

simplicity, the subscript R is taken out of the force and the displacement variables. 

 

3.3 Single-yield surface hyperplasticity model using rate-independent behaviour 

Based on the hyperplasticity framework (Houlsby and Puzrin, 2000), a mechanical model 

can be derived from two scalar functions: the Gibbs free energy g, and either the 

dissipation function d or the yield function y. In this study, the yield function y is used. 
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3.3.1 Free energy function and definitions of internal state variables for the 

foundation using the macro element concept 

This section discusses the application of the internal variables and the choice of the Gibbs 

free energy function in the case of a circular foundation under a six-degree-of-freedom 

combined loading. As mentioned in section 2.5.3, the internal state variables, αi, represent 

the plastic displacements of the foundation. The true stress space is replaced by the load 

space σi. 

  

There are six components of plastic displacement corresponding to six degrees of freedom 

in three-dimensional analysis. These components are ( )3232 ,,,,, MMQHHVi ααααααα =  

and represent the vertical, horizontal and rotational displacements in the chosen 

orthogonal coordinate system. The subscripts of these variables define the force 

components and the axes that they refer to. 

 

The Gibbs free energy still has the original style as in Houlsby and Puzrin (2000b). For a 

model without elastic-plastic coupling, it can be rewritten as: 

( ) ( )iMMQHHV gMMQHHVMMQHHVgg ααααααα 23322332232321 ,,,,, +−−−−−−=
 

(3.3) 

The first term g1 represents elastic response of the foundation under the combined loading. 

This response is based on the elastic solution of Bell (1991) or Ngo-Tran (1996) or 

Doherty (2004) and has been extended to a six-degree-of-freedom solution as mentioned 

in section 2.2.1. Based on the matrix form of the elastic solution in Eq. (2.4), the general 

formulation of g1 in three-dimensional analysis can be expressed as follows: 
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in which the definitions of the elastic stiffness factors K1, K2, K3, K4 and K5 are similar to 

those in Eq. (2.3) and Eq. (2.6), except that they are modified by the effects of the distance 

d between the LRP and the soil surface level as follows: 

11 2GRkK =       (3.5) 

3
2

4
2

2
3

2 28 kGRddkGRkGRK +−=    (3.6) 

33 2GRkK =       (3.7) 

dGRkkGRK 34
2

4 24 −=     (3.8) 

5
3

5 8 kGRK =       (3.9) 

                    (3.10) 2
432 KKKD −=

where G is the shear modulus of the soil; k1, k2, k3, k4 and k5 are the dimensionless 

stiffness coefficients obtained from the elastic solutions of different kinds of footings. 

Ngo-Tran (1996) has proposed the values of these elastic coefficients for spudcan and flat 

footing. Doherty et al. (2004) have given an elastic solution for caisson foundation in 

which the relation between the elastic stiffness of the caisson itself and the soil has been 

taken into account. 

 

The term g2(αi), which is a function of plastic displacements, defines the type of kinematic 

hardening of the plastic response. In this research, there are two types of hardening that 

will be used: isotropic hardening and mixed kinematic-isotropic hardening. The isotropic 

hardening is discussed firstly in a single-yield-surface model which is presented in this 

section. The mixed isotropic-kinematic hardening will be described in the next chapter for 
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the multiple-yield-surface model. Therefore, in what follows, it is suitable simply to take 

g2 = 0 since the single-yield-surface model does not undergo kinematic hardening. 

 

In the thermodynamic framework (Houlsby and Puzrin, 2000), the elastic response, g1, is 

completely independent of the internal variables. In this study, however,  cannot be 

considered independently of the plastic displacements, which play the role of internal 

variables. Indeed, as shown in Eq. (3.4), the  term includes the elastic stiffness factors 

. These factors, as defined in Eq. (3.5) to Eq. (3.9), involve the radius R, the 

shear modulus G and the elastic stiffness coefficients 

1g

1g

( 51→=iKi )

( )51→=iki . The radius R and the 

G value concerning the elastic stiffness of soil depend on the depth, which is 

representative of the vertical plastic displacement Vα  of the foundation. The elastic 

stiffness coefficients are also calculated from the depth of footing (see Ngo-Tran, 1996 

or Doherty et al., 2004). All these factors are combined in the factors, leading to the 

dependence of the  term on the displacement 

ik

iK

1g Vα . In addition, from the definitions of 

thermodynamic framework which has been explained by Houlsby and Purzin (2000), the 

orthogonality leads to ii χχ = . Therefore, the generalised dissipative forces 

( )3232 ,,,,, MMQHHVi χχχχχχχ =  can be defined as follows: 

Vgg
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−==
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−==
α
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  Qg

Q
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∂
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−==
α
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3
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33 Mg

M
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∂
∂

−==
α

χχ      (3.16) 

The back forces ( )QMMHHVi ρρρρρρρ ,,,,, 3232=  which are the differences between true 

forces iσ  and corresponding generalised forces iχ  are in turn expressed as functions of 

the internal variables iα  as follows: 
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α

χρ
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+=−=                   (3.17) 
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∂
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Q

QQ
gQQ
α

χρ
∂
∂

+=−=             (3.20) 

2
2222

M
MM

gMM
α

χρ
∂
∂

+=−=     (3.21) 

3
3333

M
MM

gMM
α

χρ
∂
∂

+=−=     (3.22) 

Nevertheless, for the time being, the isotropic hardening is applied, which means that there 

is no translation of the yield surface in the force space. Therefore, in the case of using 

isotropic hardening, the back forces iρ  are zero except the vertical component Vρ  because 

of the dependence of the elastic response on the depth of footing as expressed in Eq. 

(3.11). 
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3.3.2 Yield function 

In the conventional approach to plasticity, the plastic behaviour of a material depends on 

three main items: the yield function, the flow rule and the hardening rule. The yield 

function defines of the boundary of the zone in which an elastic response exists. The flow 

rule represents the incremental response of the plastic behaviour. The hardening rule 

expresses the expansion or the contraction of the yield surface. This section presents the 

discussion about the first item: yield function.  

 

In the hyperplasticity framework (Houlsby and Puzrin, 2000), for a rate-independent 

material, the yield function is the singular Legendre transform of the dissipation function, 

which is a function of the rate of change of the internal state variables  (corresponding 

to  in this study). Thus, by using the macro-element idea, the yield function can be 

expressed as a function of the generalised dissipative forces 

ij

•

α

i

•

α

iχ . Furthermore, Collins and 

Houlsby (1997) have demonstrated that the appearance of true force components in the 

yield function leads to a non-associated flow rule known as the appropriate flow rule for 

the foundation behaviour. From the definition of the non-associated flow rule, there are 

differences between the partial differentials of the yield function with respect to the true 

force space and those with respect to the generalised force space. In other words, the flow 

vectors and the normal vectors of the yield surface do not coincide. The differences 

between these vectors depend on the relationship between the true and the generalised 

forces in the yield functions. Consequently, it is necessary to introduce new factors to 

conduct the interpolation between these two force spaces in the yield function.  These 

factors called association factors give the ability to adjust the non-associated 

characteristics of the model to be more realistic. 
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Therefore, to establish the yield functions for circular flat footing, spudcan and caisson, 

there are two main stages implemented. Firstly, based on the yield functions which have 

been used in Model B (Martin, 1994) and Model C (Cassidy, 1999), a new expression of 

the yield function for circular flat footings and spudcans is proposed to include the non-

associated flow rule and also to be available for six-degree-of-freedom problems. 

Secondly, from this result, the yield function for caisson is derived with certain 

modifications to include the special aspects of caissons. 

 

3.3.2.1 Yield function for circular flat footing and spudcan 

In Model B and Model C for the analysis of spudcan and circular flat footing either on 

clay or on sand, Martin (1994) and Cassidy (1999) have proposed the same forms for the 

yield function as in Eq. (2.20). In order to describe the non-associated flow rule, these two 

models have to use an additional assumption such as the association parameter ζ for the 

volumetric term as in Eq. (2.29) (Model B) or the potential function g as in Eq. (2.30) 

(Model C). In this study, by using hyperplasticity theory, these further assumptions are no 

longer necessary. The appearance of both true and generalised dissipative forces and their 

relationship can be used to derive the non-associated flow rules within only one yield 

function. Certainly, there are many options for the relationship between iσ  and iχ . 

However, for simplicity, the linear relationship is chosen in this research.  

 

The experimental yield function of either Model B or Model C in true force space, 

( )pi wy ,σ , now becomes the yield function in both true and generalised dissipative force 

space, ( )pii wy ,,σχ . The Eq. (2.20) can be rewritten as follows:  

( ) 012,, 21

2112
22 =−−−+= βββσχ vvSehmmhwy pii     (3.23) 
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in which: 
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χ

    (3.25) 

002
)1(

VRm
Maa

m MmM −+
=

χ
    (3.26) 

00

)1(
Vh

Haah HHH −+
=

χ
    (3.27) 

0V  is the bearing capacity of the foundation at the penetration depth considered. The six 

parameter values obtained from experimental data (see Martin and Houlsby, 2001) are still 

used for clay:  , 127.00 =h 083.00 =m , 518.01 =e , 180.12 −=e , 764.01 =β  and 

882.02 =β . For sand, these parameters can be: 116.00 =h , , 086.00 =m 2.01 −=e , 

, 0.02 =e 9.01 =β  and 99.02 =β  (see Cassidy, 1999). The factors , ,  and  

are the association factors which play the role of the interpolation between the true forces 

V, M, H and the generalised dissipative forces 

1Va 2Va Ma Ha

Vχ , Mχ , Hχ . The values of these 

association factors should be chosen from 0 to 1 so that the equations from Eq. (3.23) to 

Eq. (3.27) represent an interpolation between the true and generalised forces. The 

projections of the yield surface presented by Eq. (3.23) in plane (V:H) and (V:M)  are 

shown in Figure 3.4, in which the factor α which determines the position of the largest 

cross section of the yield surface can be calculated as: 
21

1

ββ
β

α
+

= . Figure 3.4 shows the 

projection of the yield function expressed in Eq. (3.23) in true force space. 
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Eq. (3.23) shows the yield function using the hyperplasticity expression for the cases of 

circular flat footing and spudcan under planar combined loading either on clay or on sand. 

In fact, if the association factors aV1, aV2, aM and aH are all equal to zero, the yield function 

in Eq. (3.23) will be back to the form of that in Model B and Model C as in Eq. (2.20). In 

another extreme condition, if these association factors are all equal to one, the yield 

function becomes purely dependent on the generalised dissipative forces and reveals the 

associated plasticity behaviour. This matter has been explained in the hyperplasticity 

framework (see Houlsby and Puzrin, 2000).  

 
M/2R  
 

V V0

m0/α  

1

 αV0

(a) Yield function in (V:M)  

χV

V V0

1
h0V0  

 αV0

(b) Yield function in (V:H)  

h0/α  

H

 

 

 m0V0  

 

 

 

 
Figure 3.4 Projections of the yield function in true force space 

 

Besides, comparing with the Eq. (2.20), there are some modifications introduced in the Eq. 

(3.23): the appearance of the square root term, the absolute value forms and the changes in 

the definitions of , ,  and .  1v 2v h m

Firstly, the purpose of changing the form of the yield function as in the Eq. (3.23) is to 

ensure that the numerical value of the yield function is always negative inside the yield 

surface, positive outside the yield surface and zero on the yield surface. By using the form 
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of the yield function as in Eq. (2.20) these conditions could not be satisfied because of the 

non-integer values of the exponents 1β  and 2β . 

 

Secondly, the definitions of , ,  and m  as from Eq. (3.24) to Eq. (3.27) allow the 

appearance of both the generalised forces 

1v 2v h

iχ  and the true forces iσ  in the yield function. 

The non-associated flow rule can therefore be derived from this form of the yield function.   

 

In order to extend to the six-degree-of-freedom problem, the yield function as in Eq. 

(3.23) is modified and can be written as follows: 

( ) 01,, 21

2112 =−−= βββσχ vvStwy pii         (3.28) 

in which: 

( )[ ]21 1sgn vvS −= ; ( )( )

21

21

)()( 21

21
12 ββ

ββ

ββ
ββ

β
++

= ; 

and 

)(2 2332
22

3
2
2

2
3

2
2 mhmheqmmhht −−++++=              (3.29) 

Further definitions are expressed as follows: 

( )
0

11
1

)1(
V

Vaa
v VVVV ρχ −−+
=      (3.30) 

( )
0

22
2

)1(
V

Vaa
v VVVV ρχ −−+

=     (3.31)  

00

22
2

)1(
Vh

Haah HHH −+
=

χ
     (3.32) 
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       (3.33) 
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           (3.34)                        
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( ) ( )( )

00

2323
3 2

1
VRm

dHMada
m MHMM −−+−

=
χχ

           (3.35) 

002
)1(

VRm
Qaa

q QQQ −+
=

χ
              (3.36)        

In which the parameters , , , and  are again the associate factors which 

have values inside [0.0, 1.0]; the parameters ,  which determine the sizes of the yield 

surface in horizontal and moment directions can take the values as in Model B (for clay) 

or Model C (for sand); the additional parameter q

1Va 2Va Ha Ma Qa

0h 0m

0 which determines the size of the yield 

surface in the torsion direction can be temporarily chosen as 0.1; the shape parameters e1, 

e2, β1 and β2 which determine the shape of the yield surface in the cross section and the 

smooth peaks in the vertical direction can also take the values as in either Model B or 

Model C;  

 t 

1  α V/V0

 

 1 

 

 

 
Figure 3.5 Yield function in six-degree-of-freedom problem for circular and spudcan footing 

 

In the definitions of  and  as in Eq. (3.34) and Eq. (3.35), d  is the distance between 

the point used to apply the loads for the model analysis and the LRP used to apply the 

internal forces transferred from the superstructure. The additional effects in moment 

loadings coming from the products of horizontal loads and this distance, as has been 

expressed in Eq. (3.2), are taken into account in Eq. (3.34) and Eq. (3.35).  

2m 3m
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The yield function in six-degree-of-freedom problem can be roughly shown in Figure 3.5. 

In which t is the square root term in Eq. (3.28).  

 

3.3.2.2 Yield function for caisson footing 

In the case of a caisson footing, in serviceability conditions, the interaction between the 

perimeter skirt and the soil results in a tensile bearing capacity. This is a difference 

compared with either a circular flat footing or spudcan. Particularly, in the case of the 

leeward leg of a multi-caisson foundation, the vertical load V can tend to zero or become 

negative, but the whole structure is still stable. It is therefore necessary to explore a new 

yield function to be able to reflect this tensile bearing capacity of the caisson foundation. 

 

Based on the yield function for a circular footing and spudcan as in Eq. (3.28), a modified 

version of this function is proposed incorporating a tensile capacity factor  to take into 

account the tensile bearing capacity . Essentially, this tensile capacity factor can be 

defined in term of a ratio between tensile bearing capacity  and the compression bearing 

capacity . Thus, the proposed yield function can be rewritten as follows: 

0t

tV

tV

0V

01 21

20112 =−+−= βββ vtvSty     (3.37) 

in which: ( )( )[ ]201 1sgn vtvS −+= ; 
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⎛
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Further definitions follow below: 
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0 V
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t t=       (3.38) 
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The definitions of , , , , ,  and  in Eq. (3.36) and Eq. (3.29bis) are the 

same as from Eq. (3.30) to Eq. (3.36). It is convenient to note that the vertical load at 

which the maximum dimension of the yield surface is achieved is:  

1v 2v 2h 3h 2m 3m q

21

021

0 ββ
ββ

α
+
−

==
t

V
V       (3.39) 

This leads to an equation for the parameters 1β  and 2β : 

α
α

β
β

−
+

=
1
0

2

1 t
       (3.40) 

-t0 1 

1 

 α  0 V/V0

t 
 

 

 

 

 

Figure 3.6 Yield function in six-degree-of-freedom problem for caisson footing  

The yield surface using Eq. (3.36) is shown in Fig. (3.6). There is an extension of the yield 

surface to the negative part of the horizontal axis corresponding to the tensile capacity of 

the caisson. The parameters ,  and  still are the shape factors which determine the 

size of the yield surface in the moment, horizontal and torsion directions. They are all 

experimental factors coming from a series of tests for caisson implemented at Oxford 

University (Villalobos, personal communication), Villalobos et al. (2004c) and Villalobos 

et al. (2005). Particularly, the typical values of ,  and  for a caisson with (L/R = 1) 

are 0.15, 0.337 and 0.1 respectively. 

0h 0m 0q

0h 0m 0q

 

The calculation procedure of the tensile bearing capacity Vt can be based on that of the 

vertical bearing (compression) capacity V0. As mentioned in section 2.3.2, the vertical 
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bearing capacity of the caisson foundation includes three components which are the 

vertical bearing capacity of the top flat plate, the friction forces along the surface of the 

perimeter skirt and the vertical end bearing capacity of the rim of the skirt. In the case of 

tensile loading (negative vertical load), the vertical bearing capacity of the top flat plate 

and of the rim of skirt will vanish and the only remaining force resultant is the friction on 

the skirt. Therefore, it could be simple to take the friction force on the skirt as the tensile 

capacity of the caisson footing. However, from the Oxford University test results, the 

tensile capacity Vt is not completely the same as the friction force calculated by using the 

procedure in Byrne and Houlsby (2004a, 2004b). From experiments, Kelly et al. (2004, 

2005) have pointed out that there is a complicated variation of  with tV Vα . This matter 

needs more investigation but this is beyond the scope of this study. For the time being, the 

tensile capacity  is accepted as a fraction taken from . Therefore it could be simple to 

take t

tV 0V

0 as a constant. From the test observations (personal information from Fellipe 

Villalobos, Oxford University), the value of t0 can be chosen roughly from 0.06 to 0.1088 

for a typical caisson with L/D = 0.5. 

 

It is clear that the yield function in Eq. (3.37) can be applied easily for both caisson and 

spudcan footing as well as for circular flat footing. In fact, when  is equal to zero, the 

yield function in Eq. (3.37) goes back to the form of that in Eq. (3.28). Thus, from this 

time, the yield function in Eq. (3.37) will be used as the general form for the analysis.   

0t

 

3.3.3 Flow rule  

Following the introduction of the yield surface, the next item which should be discussed 

for a plasticity model is the flow rule. The main role of the flow rule is to present ratios 

between plastic displacement increments. Based on the hyperplasticity theory, the core of 
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the calculation of the flow rule for rate-independent materials is the product of 

differentials of the yield function with respect to the generalised dissipative forces iχ  and 

a positive scalar multiplier λ (see Puzrin and Houlsby, 2001). The general expression of 

the flow rule is: 

i

i
y
χ

λα
∂
∂

=
•

           (3.41) 

where  is the rate of change of the plastic displacements. i

•

α

 

This is the difference between the conventional plasticity theory and hyperplasticity 

theory. In conventional plasticity theory,  is calculated from the differentials of a 

potential function which is often different from the yield function. Therefore, it is 

necessary to propose an additional potential function, and sometimes this function may 

imply that the model violates the thermodynamic principles. Meanwhile, by using the 

hyperplasticity concept, there is no need to propose a further potential function. The yield 

function is in fact the singular Legender transformation of the dissipation function. 

Therefore, the thermodynamic principles are satisfied, provided that the rate of the 

dissipative energy , which transforms to 

i

•

α

0≥d 0≥
∂
∂

i
i

y
χ

χ . This is always satisfied if (1) 

is convex and (2) it contains the origin in y iχ  space.  

 

Differentials of the yield surface in generalised stress space will be (after removing the 

zero terms): 
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In this case, since the isotropic hardening is used, the “back forces” iρ  are all equal to 

zero. Thus, the partial differentials in the formulations from Eqs. (3.42) to (3.47) can be 

expressed as follows: 
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3.3.4 Incremental stress-strain response 

In the incremental response of the single-yield-surface plasticity model, in a similar way to 

conventional plasticity models, there are two possibilities. The first is that, when the 

loading point is still inside the yield surface, the response of the model is purely elastic. It 

also means that the value of the yield function is negative ( 0<y ) and the multiplier 

0=λ . The second possibility is that the loading point lies on the yield surface. Therefore, 

the plastic behaviour occurs and leads to the conditions: 0=y  and 0≥λ . 

 

In general, based on the thermodynamic framework (Houlsby and Puzrin, 2000), the 

incremental stress-strain relationship can be defined as follows: 
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The dot notations express that the variables are presented in terms of their rates of changes 

within a time step dt i.e.:  

dt
dxx =

•

             (3.62) 

In the thermodynamic framework (Houlsby and Puzrin, 2000), the Gibbs free energy 

function for a decoupled material includes three terms, )(1 ig σ , )(2 ig α and the coupling 

term iiασ− . In which  is a function of stresses 1g iσ  and represents the elastic energy. 

The incremental response is therefore expressed as follows: 
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For a coupled material, is not purely a function of stress, it includes the existence of the 

state variables 

1g

iα  i.e. ( iigg )ασ ,11 = . Particularly, in this study, the elastic behaviour 

involves the vertical plastic displacement, Vα . Therefore, it should be necessary to 

consider the case of coupled material in this problem. Converting to the matrix form using 

macro element concept, the incremental response can be: 
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where ),,,,,( 3232 θθωε uuwi = is the displacement vector. 

 

 3.3.4.1 Elastic response 

The incremental elastic response can be expressed in the following formulation: 
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In which the notations e represent the elastic case. 
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In the case of clay, the shear modulus G is independent of the vertical load V. The elastic 

response as in Eq. (3.65), after removing the zero terms, can be described in more detail as 

follows: 
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In the case of sand, the shear modulus G of soil depends on the vertical load V (see 

Cassidy, 1999). Thus, the expressions for the elastic response become more complicated:  
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The above calculations are straightforward but quite lengthy. Therefore, it is inappropriate 

to describe the full details in this chapter. 

 

3.3.4.2 Plastic response 

Once the yield surface is activated, the incremental expression of y can be written as 

follows: 
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 By using the isotropic hardening with 02 =g , the generalised dissipative force can be 

expressed as follows: 

j
jj

j
gg σ
αα

χ +
∂
∂

−=
∂
∂

−= 1          (3.79)  

Thus, the rate of change of the generalised dissipative forces is: 
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The incremental change of plastic displacement is defined as: 
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Substituting (3.80) and (3.81) into (3.78): 
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By converting the Eq. (3.82), the scalar multiplier λ is calculated as follows: 
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Therefore, the plastic response can be expressed as follows: 
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In more details, the scalar multiplier λ  in Eq. (3.83) after removing the zero terms is: 
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where r, the radius of the footing at the mudline, is applied for the spudcan only. In cases 

of circular flat footing and caisson, the terms which involve r vanish since the radius of 

these footings are constant. 

 

Again, in the above formulations from Eq. (3.66) to Eq. (3.91), both in elastic and plastic 

responses, all the partial differentials can be evaluated numerically or by closed forms 

which are derived from the Gibbs free energy function and the yield function. These 

processes are straightforward but quite lengthy so it is not necessary to describe them here. 

 

Finally, the incremental response for a rate-independent solution is written as follows: 
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In which λ can be calculated by using Eq. (3.83) with the variations iδσ  instead of using 

. i

•

σ

  

3.4 Single-yield surface hyperplasticity model using rate-dependent behaviour 

Houlsby and Puzrin (2001) have introduced the rate-dependent solution using the 

hyperplasticity theory. There are two main differences compared with those of the rate-

independent solution: the form of dissipation function and the consequent incremental 
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response. This section presents the particular application of the rate-dependent behaviour 

to the ISIS model. 

 

3.4.1 Flow potential function 

In the rate-dependent solution, the dissipation function is no longer first-order 

homogeneous. It can be separated into two functions which are the force potential z and 

the dissipation potential w  (see Houlsby and Puzrin, 2001) as follows:  
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If the dissipation function d can also be written as: 
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Then a Legendre-Fenchel transformation can give: 
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In which the definitions of the generalised dissipative forces iχ  and the rates of change of 

the state variables iα  can be expressed as follows: 
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Therefore, the flow potential function w is analogous with the expression of the yield 

function y in case of using rate-independent solution which is described as 

. However, since z is not a homogeneous first-order function of 

, the flow potential function could not be zero during the calculation. Houlsby and 

Puzrin (2001) have proposed several theories to give the form of w such as linear 

dy iiiii −=
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αχχασ ),,(

i
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viscosity, nonlinear viscosity and rate process theory. In this study, the linear viscosity 

form is used for w as the starting point. 

 

For brevity, the derivation of the rate-dependent solution presented in this section is just 

implemented with the linear viscosity formulation of w which is defined as: 

 
µ2

2y
w =         (3.98) 

where µ  is the viscosity factor; y is the yield function as in Eq. (3.37) of the rate-

independent solution;  are the Macaulay brackets which operate as xx =  if  

and 

0>x

0=x  if . Other theories can be derived using the same framework.  0≤x

 

3.4.2 Incremental stress-strain response 

As proved in Houlsby and Puzrin (2001) and extended in Puzrin and Houlsby (2003), the 

incremental response of the rate-dependent behaviour can still be expressed by using Eq. 

(3.63). The definitions of the generalised dissipation forces iχ  and the rate of change of 

plastic displacements  are expressed in Eq. (3.96) and Eq. (3.97). Furthermore, the time 

increment dt described in Eqs. (3.62) now has real physical meaning instead of an artificial 

value as in the rate-independent solution.  
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By substituting Eq. (3.98) into Eq. (3.97) and then applying to Eq. (3.63), the incremental 

stress-strain response using rate-dependent behaviour can be written as: 
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Converting Eq. (3.99) to the variational form, it becomes: 
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In which the functions g1 and y are still used as in Eq. (3.4) and Eq. (3.37). The definitions 

of the partial differentials in Eq. (3.100) are exactly the same as those of the rate-

independent solution. 

 

There are two factors that have strong effects on the rate-dependent solution: the viscosity 

factor µ and time increment dt. Houlsby and Puzrin (2001) have demonstrated that by 

choosing suitable values for the viscosity and the time increment, the rate-dependent 

solution can simulate well the results of the rate-independent solution. Otherwise, 

inappropriate values of µ and dt can lead to either instability or inaccuracy of the 

numerical calculation. Unfortunately, there is no explicit mathematical expression for the 

relationship between µ and dt to give a correct answer to this problem. However, some 

empirical remarks can be useful for the analyst to choose appropriate values for these 

factors. The details will be presented in the parametric study (Section 6.6). 

 

3.5 Application of the vertical bearing capacity of caisson in ISIS model 

3.5.1 Modification of the vertical bearing capacity of caisson foundation 

In section 2.3.2, the calculation procedure for the vertical bearing capacity of caisson 

foundation has been reviewed. However, in this calculation, the heave caused by the 

inward movement of soil during the installation process has not been taken into account. 

Particularly, at the end of the installation, this volume of soil is roughly equivalent to one 

half of the volume occupied by the perimeter skirt in the soil medium. In addition, the 

changes of relative density of the soil inside the caisson during the suction process also 

have not been considered. Indeed, from experimental observations (Villalobos et al., 
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2003a), the full penetration can be determined as the position at which the vertical bearing 

capacity curve changes its direction dramatically. After finishing the installation process, 

the depth at the full penetration position is always smaller than the length of the skirt of 

caisson. Figure 3.7 shows the  curves versus w0V p obtained from the tests and from the 

calculation using the concept of Houlsby and Byrne (2004a and 2004b) in which L* 

represents the full penetration depth in experiments and L is the length of the skirt. From 

now, for simplicity,  which is the calculation result from the concept of Houlsby and 

Byrne (2004a and 2004b) is called . Therefore, this section presents a procedure 

used to modify the  curve to capture the real  curve versus penetration with a 

reasonable precision.  

0V

idealV −0

idealV −0 0V

 

In principle, the calculation of the vertical bearing capacity is based on the conventional 

limit analysis solutions and some further assumptions. Furthermore, this procedure can be 

implemented separately from the model analysis. Therefore, it is possible to evaluate both 

the V0-ideal curve and V0 curve as the set of points corresponding to the positions of the 

caisson during the installation process. Then, during the analysis, the vertical bearing 

capacity used at a certain depth is interpolated from these pre-calculated points. Based on 

this principle, the modification process is implemented to convert the set of points of the 

 curve to those of the  curve. idealV −0 0V

Figure 3.7 Comparison between the calculation result and test observation of V0 curves versus wp

L wp

Calculation result 

Test result 

L*

V0
 

 

 

 

 

 0 
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The core of the modification is the introduction a bell-shaped smoothing function. Each 

point on the  curve is the result from the adjustment of the corresponding point on the 

 curve. There are two steps in this process. Firstly, a segment, in which the 

considered point is the central point, is picked from the  curve. Then, the bell-

shaped function is applied to this segment as the weight function. Consequently, the 

values of the other points within one segment will affect the value of  at the considered 

point as shown in Figure 3.8. 

0V

idealV −0

idealV −0

0V

 

In this study, there are two forms of bell-shaped function used: the Gauss form and the 

quadratic form. The Gauss form can be expressed as follows: 
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where xi is the local coordinate of the point i considered on the segment and has the value 

in the range [-4.0, 4.0]. Figure 3.9 shows the graph of the Gauss function. The limitation 

of x values from –4.0 to 4.0 means that outside this boundary, the influence of other points 

to the central point which is being corrected can be neglected. 

 

As shown in Figure 3.8a, the bell width wbell, which is also the length of the segment, can 

determine the influence range of the adjacent points to the central point considered and 

therefore affect the shape of the ( : ) curve. At an adjacent point i at the depth , 

the corresponding value of x can be calculated as follows: 

0V pw piw
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i w

ww
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=     (3.102) 

where  is the depth of the central point which is being adjusted. centralpw −
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(a) Application of the bell-shaped weight function to the V0-ideal curve 

 

L 
(b) V0-wp curve after the correction 

0 wp
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V0-ideal curve 

 

 

 

 

 

 

 

 
Figure 3.8 Modification of the V0 curve versus penetration wp

 fbell

x 

 

 

 

 

 

 

 

Figure 3.9 Gauss function  

The correction using the quadratic form of the bell-shape function is similar to that using 

the Gauss form. The quadratic form can be written as: 
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In which xi is in [-2.0, 2.0] as shown in Figure 3.10. The calculation of xi can be: 
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Finally the value of  can be calculated as follows: 0V
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where n is the number of points taken into account in a segment;  

 fbell 

 

 

 

 

 

 

 x 

  Figure 3.10 Quadratic form of the bell-shape function 

It is clear that the heave inside the caisson at the full penetration position involves the 

factors of skirt length L, skirt thickness t, suction pressures s during the installation and the 

relative density Dr of the soil. Therefore, the bell width wbell which is the core parameter to 

simulate the heave should be a function of these factors. However, in order to explore this 

function, it is necessary to implement an investigation in the soil structures under the 

effects of suction pressure which is beyond the range of this study. Therefore, the 
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magnitudes of the bell width used in this research basically come from laboratory 

observations.     

 

3.5.2 Analysis of the suction assisted penetration in ISIS model 

In the installation of caisson foundations, the suction technique is used to reduce the 

vertical force needed to push the caisson into the seabed. There are two main effects from 

the application of suction pressure to the soil medium during the installation process. The 

first effect is that the suction pressure causes the difference between the vertical pressure 

inside and outside the caisson as the additional vertical forces. The second effect is the 

influence of water flow caused by the suction pressure on the pore pressures at the tip of 

the caisson’s skirt. This means that the bearing capacity of the soil is reduced while the 

suction occurs. Therefore, the vertical bearing capacity of the caisson, , becomes a 

function of depth  and suction pressure s instead of a function of depth only. 

0V

pw

 

The main idea of the suction assisted penetration is that firstly the caisson can be pushed 

into the seabed to a certain initial depth by its own weight. Then, the suction pressure is 

applied and the vertical force is still equal to the self-weight of the caisson during this 

process.  

 

Figure 3.11a shows the outline of the development of the yield surface during the 

installation with suction assistance. V0s is the vertical bearing capacity of the foundation 

during the suction process. Essentially, V0s is evaluated by using the calculation procedure 

of , which is now treated as a function of both  and s. Figure 3.11b shows the 

outline of the calculation procedure of V

0V pw

0s. Each dashed line represents a (V0s: ) curve 

corresponding to a value of the suction pressure. When the suction increases from the 

pw
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pressure  to ( )is ( )2+is , the V0s value does not change but the penetration depth  is 

increased from  to . 

pw

( )i
pw ( )2+i

pw

 

 

 

 

 

 

 

L 0 wp

V0
V0 curve (pushing) 

V0s jumps to V0 
value when the 
suction is stopped  

V 

V0

V0s

H or M/2R 

Yield locus during 
penetration 

Yield locus after 
stopping suction 

Suction assisted penetration 

(a) Developments of the yield surface during the suction assisted penetration  
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V0s = V0 s(i +2)s(i +1)
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(b) Outline of the calculation procedure of V0s as a function of the depth wp and suction pressure s 

 Figure 3.11 Outline of the installation using suction assistance 

During the suction process, V0s plays the role of  in the yield function. Since the suction 

pressure causes disturbance of the soil, it leads to a decrease in the vertical bearing 

capacity V

0V

0s. Thus, the size of the yield surface dominated by V0s does not increase with 

depth as in pushing installation (the dashed line in Figure 3.11a). 
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After completing the installation, the suction is terminated. Therefore, the soil can recover 

the original bearing capacity, , which is again a function of depth only. This is the 

application principle of the suction installation in ISIS model. 

0V

 

3.6 Numerical illustrations 

This section presents a series of numerical examples of circular flat footing, spudcan and 

caisson on both clay and sand using single-yield-surface ISIS model. There are three main 

aspects that can be validated through these examples. 

 

The first aspect is the validation of the ISIS model in the analyses of a circular flat footing 

and spudcan. The comparisons will be made between the solution using conventional 

plasticity theory (Model B or Model C) and that using the rate-independent hyperplasticity 

(ISIS model). This work aims at proving that the ISIS model reproduces completely the 

solutions of Model B and Model C which have been achieved and verified in Martin 

(1994) and Cassidy (1999). 

 

The second aspect is the illustration of the simulation of suction assisted penetration in the 

ISIS model of which the principle has been discussed in section 3.5.2. A numerical 

analysis of the installation process using both suction and vertical loading of caisson 

foundation is introduced. This work is used to demonstrate the ability of the ISIS model in 

describing the caisson footing behaviour using the rate-independent solution.  

 

Lastly, the rate-dependent solution is implemented in an example of caisson footing and 

compared with the results of rate-independent solution. The purpose of this work is to 
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show the potential of the rate-dependent solution in the application to the next 

development of the ISIS model, multiple-yield-surface model. 

 

3.6.1 Simulations of the behaviours of circular flat footing and spudcan on both clay 

and sand using rate-independent hyperplasticity 

In this section, there are four examples implemented: circular flat footing on clay, circular 

flat footing on sand, spudcan on clay and spudcan on sand. 

 

Example 1: Circular flat footing on clay 

This example describes the response of a circular flat footing under combined loading. 

The input data file which include geometry, loads, hardening rule and soil type are listed 

in Table 3.1. 

Table 3.1 Input data of Example 1 

Soil properties and geometry 
Type of soil Clay 
Hardening Isotropic 
Number of loading stages 3 
Radius (m) 15.0 
Initial V0 (kN) 103

Undrained shear strength (at mudline) (kN/m2) 20.0 
Effective unit weight (kN/m3) 10.0 
Mode of shear strength variation Linear 
Poisson’s ratioν   0.5 
ρ  (kPa/m) 2.0 
Ir = G/su 400 

Model parameters (for ISIS model) 
aV1 aV2 aH aM aQ

  Association factors 0.58 0.58 1.0 1.0 1.0 
e1 0.518 
e2 -1.18 
t0 0.0 
m0 0.083 
h0 0.127 
q0 0.1 
β1 0.764 

Shape factors of yield 
surface 

β2 0.882 
Loading process 

Load stage V (kN) H2(kN) H3(kN) Q(kNm) M2(kNm) M3(kNm) 
1 0.0 to 9000 0.0  0.0 0.0 0.0 0.0 
2 9000 to11000 0.0 to 1000 0.0 to 1000 0.0 0.0 0.0 to -17000 
3 11000 1000 to 1500 1000 0.0 0.0 to -17000 -17000 
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The numerical results compared with those of the Model B are shown in Figure 3.12, 

Figure 3.13 and Figure 3.14. Model B is implemented in the same code of ISIS program 

but using the conventional plasticity theory. 
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Figure 3.12 Comparison between ISIS and Model B in vertical response 
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Figure 3.13 Comparison between ISIS and Model B in horizontal response  
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Figure 3.14 Comparison between ISIS and Model B in rotational response  

It should be noted that the shape factors of the yield function are the same as those of the 

yield function used in Model B. Besides, the association factors are chosen to be able to 

reproduce the flow rule of Model B and the explanation of these options will be presented 

in section 6.3. 

 

Example 2: Circular flat footing on sand 

In this example, a circular flat footing working under combined loadings on sand is 

analysed. In a similar way to the first example, the details of the input data file are 

described in Table 3.2. The shape factors of the yield function used in this example are 

taken from those of the yield function of Model C. Using the same strategy as in Example 

1, the association factors are the results of the attempt to reproduce the flow rule of Model 

C with the use of the yield function of the ISIS model. The numerical results are compared 

with that of the conventional plasticity model (Model C). 

 

Figures 3.15, 3.16 and 3.17 show the response of the foundation in vertical, horizontal (3-

axis) and rotational (about 3-axis) directions respectively. 
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Table 3.2  Input data of Example 2 

Soil properties and geometry 
Type of soil Sand 
Hardening Isotropic 
Number of loading stages 4 
Radius (m) 10.0 
Initial V0 (kN) 71600.0  
Shear modulus G (initial value) (MN/m2) 80.0 
Effective unit weight (kN/m3) 10.0 
Angle of friction 45o

Poisson’s ratio ν  0.2 
Model parameters (for ISIS model) 
aV1 aV2 aH aM aQ

Association factors 0.55 1.0 0.6 0.95 0.4 
e1 -0.2 
e2 0.0 
t0 0.0 
m0 0.086 
h0 0.116 
q0 0.1 
β1 0.9 

Shape factors of yield 
surface 

β2 0.99 
Loading process 

Load 
stage 

V (kN) H2(kN) H3(kN) Q(kNm) M2(kNm) M3(kNm) 

1 0.0 to 140000.0 0.0  0.0 0.0 0.0 0.0 
2 140000.0 down to 

70000.0 
0.0 to 
1000.0 

0.0 0.0 0.0 0.0 

3 70000.0 to 85000.0 0.0 to 
7500.0 

0.0 0.0 0.0 0.0 to 
150000.0 

4 85000.0 to 
100000.0 

7500.0 to 
13995.0 

0.0 to 3750.0 0.0 0.0 to -
75000.0 

150000.0 to 
279900.0 
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Figure 3.15 Vertical response of the circular flat footing on sand  
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 Figure 3.16 Horizontal response of the circular flat footing on sand 

As shown in Figure 3.15, there is a loading-unloading process of vertical load applied in 

this example. This load path leads to the fact that the load point moves firstly to the peak 

of the yield surface and therefore increases the size of this surface (first loading stage).  

Afterward, it goes back nearly half way coming inside the yield surface (unloading stage). 

Therefore, in this stage, the foundation exhibits an elastic response. Later on, in the last 

two loading stages, since the horizontal and moment loads are applied with big enough 

magnitudes, the load point touches the yield surface again. The footing behaviour 

therefore becomes plastic as shown in the curvature parts of the responses shown in Figure 

3.16 and 3.17. 
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Figure 3.17 Rotational response of the circular flat footing on sand 
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As shown in Figures 3.16, 3.17, there are some minor differences between the ISIS and 

Model C in horizontal and moment responses. There are two main reasons which come 

from the formulation of the potential function and the expressions of the association 

factors in Model C. Firstly, in the formulation of the potential function of Model C, there 

is a factor V0
’ which is determined by an empirical formulation. This value essentially 

determines the longitudinal size of a potential surface at a certain point on the yield 

surface. In the ISIS model, there is no point which involves this expression of V0
’. In other 

words, the ISIS model and Model C are not mathematically identical. Secondly, the 

expressions of the association factors in Model C are the functions of the plastic 

displacements in the forms of the ratios 
p

p

w
u

 and 
p

p

w
Rθ2

 in which and pu pθ are the 

horizontal and rotational plastic displacements. The association factors in the ISIS model 

are not functions of these ratios. However, it could be expected that by using the multiple-

yield-surface model in which the yield surfaces are activated with respect to the level of 

plastic displacements, the flow rule could be changed correspondingly. The plastic 

response can therefore give a result closer to that of Model C.   

 

Example 3: Spudcan on clay 

This example presents the analysis of a spudcan footing under combined loadings on clay.  

 

The geometric sketch of this footing is shown in Figure 3.18. The soil properties, loading 

process and the model parameters are presented in Table 3.3. The numerical results 

compared with those of Model C are shown in Figure 3.19 and 3.20 for vertical and 

horizontal component respectively. The rotational response has the same form as that of 

horizontal response; therefore it is omitted for brevity.  
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Figure 3.18 Geometry of the spudcan footing considered in Example 3  

As shown in Figure 3.19, there is an initial penetration of spudcan. This is made by the 

self-weight of the spudcan in the first touch on the seabed before the loading process 

occurs and results in an initial size for the yield surface. Consequently, it leads to elastic 

behaviour in the first stage of loading as can be seen in the very first part of the curve in 

Figure 3.19. 

Table 3.3  Input data of Example 3 

Soil properties and geometry 
Type of soil Clay 
Hardening Isotropic 
Number of loading stages 3 
Initial V0 (kN) 103

Undrained shear strength (at mudline) (kN/m2) 150.0 
Effective unit weight (kN/m3) 10.0 
Mode of shear strength variation Constant 
Poisson’s ratioν   0.5 
Ir = G/su 400 

Model parameters (for ISIS model) 
aV1 aV2 aH aM aQ

Association factors 0.58 0.58 1.0 1.0 1.0 
e1 0.518 
e2 -1.18 
t0 0.0 
m0 0.083 
h0 0.127 
q0 0.1 
β1 0.764 

Shape factors of yield 
surface 

β2 0.882 
Loading process 

Load 
stage 

V (kN) H2(kN) H3(kN) Q(kNm) M2(kNm) M3(kNm) 

1 0.0 to 11000 0.0  0.0 0.0 0.0 0.0 
2 11000 down to 9000 0.0  0.0  0.0 0.0 0.0  
3 9000 0.0 to 500 0.0 to 500 0.0 0.0  0.0 to -900 
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In a similar way to Example 1, there is also an unloading of the vertical load. However, 

the decrease of vertical load is rather small. This means that the load point is still near the 

peak point V0 of the yield surface before the horizontal and moment loads are applied. 

Then, the horizontal and moment loads are applied with the constant vertical load. Figure 

3.20 shows an almost horizontal line for the plastic behaviour of the footing. This is 

because of the fact that the influence of the hardening in this case is very small. 
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Figure 3.19 Vertical response of spudcan footing on clay  
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Figure 3.20 Horizontal response of spudcan footing on clay 
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Example 4: Spudcan on sand 

In this example, the spudcan as shown in Example 3 is used. The details of the input data 

file are shown in Table 3.4. The numerical results of vertical response, horizontal response 

in 3-axis and rotational response about 3-axis are shown in Figures 3.21, 3.22 and 3.23 

respectively. 

Table 3.4  Input data of Example 4 

Soil properties and geometry 
Type of soil Sand 
Hardening Isotropic 
Number of loading stages 4 
Radius (m) 10.0 
Initial V0 (kN) 6820.0  
Shear modulus G (initial value) (MN/m2) 25.0 
Effective unit weight (kN/m3) 10.0 
Angle of friction 35o

Poisson’s ratio ν  0.2 
Model parameters (for ISIS model) 
aV1 aV2 aH aM aQ

Association factors 0.1 1.0 0.4 0.4 0.1 
e1 -0.2 
e2 0.0 
t0 0.0 
m0 0.086 
h0 0.116 
q0 0.1 
β1 0.9 

 

Shape factors of yield 
surface 

β2 0.99 
Loading process 

Load 
stage 

V (kN) H2(kN) H3(kN) Q(kNm) M2(kNm) M3(kNm) 

1 0.0 to 140000.0 0.0  0.0 0.0 0.0 0.0 
2 140000.0 down to 

70000.0 
0.0 to 1000.0 0.0 0.0 0.0 0.0 

3 70000.0 to 85000.0 0.0 to 7500.0 0.0 0.0 0.0 0.0 to 
150000.0 

4 85000.0 to 100000.0 7500 to 
14000.0 

0.0 to 
3750.0 

0.0 0.0 to -
75000.0 

150000.0 to 
279900.0 
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Figure 3.21 Vertical response of the spudcan on sand in Example 4  
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Figure 3.22 Horizontal response of the spudcan on sand in Example 4  
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Figure 3.23 Rotational response of the spudcan on sand in Example 4 
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Again, the numerical results given by the ISIS model capture rather well those of Model 

C. The ability of ISIS in reproducing the results of Model C can be confirmed. 

 

3.6.2 Installation of caisson with and without suction assistance 

In this section, a numerical simulation of the installation process of a caisson using suction 

is presented. In order to demonstrate the effect of the suction technique, an analysis of the 

installation of this caisson without suction is also implemented. The outline of the caisson 

is shown in Figure 3.24. The details of the soil properties, vertical loads and suction 

process are described in Table 3.5. 
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Figure 3.24 Outline of the caisson   
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There are five stages of loading implemented in this example. The first two stages are 

implemented without suction to describe the initial penetration of the caisson into the 

seabed by its own weight. In the third, fourth and fifth loading stages, the suction pressure 

is applied and increase gradually. The more the caisson is penetrated the bigger the suction 

pressure should be applied. The whole process represents a typical installation of caisson 

footing in practice. 
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Table 3.5  Input data of the installation of caisson using suction assistance 

Soil properties and geometry 
Type of soil Clay 
Hardening Isotropic 
Number of loading stages 5 
Initial V0 (kN) 3.0 
Undrained shear strength (at mudline) (kN/m2) 10.54 
Effective unit weight (kN/m3) 10.0 
Mode of shear strength variation linear 
Friction angle  35o

Poisson’s ratioν   0.5 
Ir = G/su 200 
ρ  1.96 

Model parameters (for ISIS model) 
aV1 aV2 aH aM aQ

Association factors 0.297 0.297 0.7 0.7 0.7 
e1 -0.2 
e2 0.0 
t0 0.1088 
m0 0.15 
h0 0.337 
q0 0.2 
β1 0.99 

 
 
 

Shape facors of yield 
surface 

β2 0.99 
Bell width (wbell) (m) 0.15 

Loading process 
Load 
stage 

Suction  
(kN/m2) 

V (kN) H2(kN) H3(kN) Q(kNm) M2(kNm) M3(kNm) 

1 Off 0.0 to 20.0 0.0  0.0 0.0 0.0 0.0 
2 Off 20.0 to 21.0 0.0  0.0  0.0 0.0 0.0  
3 0.0 to 

0.8 
21.0 0.0  0.0  0.0 0.0  0.0  

4 0.8 to 
2.3 

21.0 to 23.0 0.0 0.0 0.0 0.0 0.0 

5 2.3 to 
22.3 

23.0 0.0 0.0 0.0 0.0 0.0 

 

Figure 3.25 shows the comparison of the two installation methods. If using the installation 

without suction, the need to apply a very big vertical load can be an obstacle to the 

installation in practice. Furthermore, this work may be very costly. Otherwise, it is clear 

that with the suction assistance the magnitude of the vertical load needed to push the 

caisson to the full penetration position is much smaller than without suction. This is the 

most important advantage of the suction method.  
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Figure 3.25 Installation of caisson with and without suction assistance  

3.6.3 Rate-dependent solution  

This section presents a numerical example implemented for a full scale caisson. This 

footing is installed by pure vertical load (without suction assistance). The numerical 

results using the rate-dependent solution are compared with those of the rate-independent 

solution. The purpose of this work is to show that, by using suitable values of viscosity 

and time increments, the results of rate-independent solution can be reproduced 

completely by the rate-dependent solution in the ISIS model. The geometry of the caisson 

in this example is shown in Figure 3.26. The details of the input data file are presented in 

Table 3.6. 
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 Figure 3.26 Outline of the caisson   
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Table 3.6 Input data of the installation of caisson without suction assistance 

Soil properties and geometry 
Type of soil Sand 
Hardening Isotropic 
Number of loading stages 3 
Initial V0 (kN) 20.0 
Shear modulus G (initial value) (MN/m2) 25.0 
Effective unit weight (kN/m3) 10.0 
Angle of friction 35o

Poisson’s ratio ν  0.2 
Model parameters (for ISIS model) 

aV1 aV2 aH aM aQ
Association factors 0.297 1.0 0.7 0.7 0.7 

e1 -0.2 
e2 0.0 
t0 0.1088 
m0 0.15 
h0 0.337 
q0 0.2 
β1 0.99 

 

Shape factors of yield 
surface 

β2 0.99 
Viscosity factor µ  0.002 
Bell width (wbell) (m) 0.7 

Loading process 
Load 
stage 

V (kN) H2(kN) H3(kN) Q(kNm) M2(kNm) M3(kNm) Time 
increment 

1 0.0 to 100.0 0.0  0.0 0.0 0.0 0.0 1000.0 
2 100.0 to 8772.0 0.0  0.0 0.0 0.0 0.0 1000000.0 
3 8772.0 to 81272.0 0.0  0.0 0.0 0.0 0.0 11000000.0 
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Figure 3.27 Installation of caisson using purely vertical loads  
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As shown in Figure 3.27, the results of the rate-dependent solution using the viscosity 

factor and the time increments as in Table 3.6 are almost the same as those of the rate-

independent solution. This is a good starting point for the development of the ISIS model 

to the multiple-yield-surface version. 
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Figure 3.28 Rate-dependent solution with different values of the viscosity 

 

Figure 3.28 shows the rate-dependent solution of the caisson given in Figure 3.26 and 

Table 3.6 but with various values of the viscosity factor. When the viscosity decreases, the 

result of the rate-dependent solution shows convergence to the rate-independent solution 

as shown by the plot of the rate-dependent solution corresponding to 002.0=µ  (see 

Figure 3.27). 

 

3.7 Discussion 

In section 3.6, the numerical examples are mainly preformed under monotonic loadings. 

The analysis of footings under cyclic loading has not yet been performed. In principle, 

Model B, Model C and even the single-yield-surface ISIS model cannot reflect the 

behaviour of cyclic loadings correctly. In fact, since the unloading processes in these 

models are always elastic then the hysteresis which has been widely observed in 
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experiments can not be simulated. This is also the motivation for the development of the 

multiple-yield-surface ISIS model. The main purpose of the numerical illustrations in this 

chapter is to validate the single-yield-surface ISIS model as the starting point for this 

development.   

 

The yield surfaces used in the examples of section 3.6.1 essentially come from those of 

Model B (for clay) and Model C (for sand). Indeed, in true force space, the yield surfaces 

of the ISIS model and either Model C or Model B are exactly the same in the cases of 

circular flat footings and spudcans. Differences between ISIS and these conventional 

plasticity models are in the definitions of the flow rules, which are affected by the 

association factors. In the ISIS model, instead of using an additional potential function as 

in Model C or a modified yield function as in Model B, the flow rules are defined by the 

partial differentials of the yield function with respect to the generalised dissipative forces. 

In addition, the relations between true forces and generalised forces are controlled by the 

association factors. Therefore, it could be reasonable to predict that using appropriate 

values of the association factors, the ISIS Model cancapture entirely the results of either 

Model B or Model C.  

 

Indeed, as presented in the examples for the circular flat footing and spudcan on clay 

(Examples 1 and 3) in section 3.6.1, by using the values of the association factors given in 

Table 3.1 and 3.3, the solution of Model B can be captured very well by the ISIS model. 

Furthermore, it is possible to establish the explicit relationship between the two models 

(Model B and ISIS) to determine the value of the association factors in ISIS. The details of 

this will be discussed in section 6.3.  
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In the analysis of caisson foundation, since the single-yield-surface model presented in 

this chapter is just the starting point of the ISIS model, the behaviour of caisson 

foundation cannot be reflected completely. Furthermore, the two previous models using 

conventional plasticity theory, Model B and Model C, also cannot simulate the behaviour 

of the caisson footing. Thus there is no theoretical solution that can be used to validate the 

new model. Consequently, no conclusion can be given for the comparison between the 

numerical results and the test results as well as for the consideration of the horizontal and 

moment loadings at this stage.    

 

In section 3.6.2, a trial running of the ISIS model for the analysis of the penetration 

process of a caisson with and without suction assistance has been done to demonstrate the 

availability of the model. The idea about the application of the suction process in ISIS, 

which has been discussed in section 3.5.2, has been validated as shown in Figure 3.25. 

Besides, special features of the caisson foundation have been taken into account such as 

the vertical bearing capacity formulation and the shape factors of the yield surface of the 

caisson. These shape factors are observed experimentally from the series of tests in the 

Oxford University which can be found in Villalobos et al. (2004a) and Villalobos et al. 

(2004b).  

 

3.8 Concluding remarks 

The first version of an elasto-plastic model using hyperplasticity theory, named ISIS, has 

been achieved. This version is appropriate for the modelling of caisson foundation as well 

as circular flat footing and spudcan types. The main advantages of the ISIS model 

presented in this chapter include: 
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- Its formulation can express the plastic behaviour more rigorously and broadly by 

using the two functions without any further assumption. In addition, this derivation 

automatically obeys the thermodynamic principles. 

- It can reproduce entirely the solutions of conventional plasticity models (Model B 

and Model C) in the analyses of circular flat footings and spudcans. 

- By using the concept of association factor, the problems of associated plasticity 

and non-associated plasticity can be expressed in a general way.   

- It gives the solution for the installation with and without suction assistance as well 

as the solution for the vertical loading for caisson foundation. 

- It introduces the rate-dependent solution as the alternative solution as well as the 

starting point for the next developments to capture the foundation behaviour more 

realistically. 
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CHAPTER 4  

CONTINUOUS HYPERPLASTICITY AND THE DISCRETIZATION 

FOR NUMERICAL ANALYSIS 

 

4.1 Introduction 

In the previous chapter, the single-yield-surface hyperplasticity model has been presented. 

Three kinds of analysis can be implemented in this model: elastic loading, elasto-plastic 

loading and elastic unloading. However, in geotechnics, the stiffness of soil depends not only 

on its properties but also on the stress level. This leads to the fact that, even in the unloading 

process, there are still changes of the soil stiffness that can be understood as elasto-plastic 

unloading processes causing so-called hysteresis. This response cannot be expressed by using 

the single-yield-surface model. This is therefore the main reason to develop an improved 

model, called continuous plasticity, in which internal variables in the form of continuous 

functions are introduced to allow the definition of the continuous yield surface. Consequently, 

the model can simulate the smooth transition between elastic and plastic behaviour in both 

loading and unloading processes, as well as predict with reasonable precision the hysteretic 

response of a foundation under cyclic loading. 

 

This chapter presents firstly the establishment of the analytical expression of the continuous 

plasticity model. Secondly, the multiple-yield-surface model is derived by the discretization 

of the continuous plasticity formulation to serve the numerical analysis. Both rate-

independent and rate-dependent solutions are considered in this model to show the theoretical 
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basis. However, the numerical applications are implemented by using the rate-dependent 

solution only, because of its numerical advantages. 

 

4.2 Continuous hyperplasticity formulation 

In this model, the conventions for loads and displacements of the foundation are still used as 

those of the single-yield-surface model presented in chapter 3. 

 

Based on the thermodynamic framework (Houlsby and Puzrin, 2000), there are two key 

functions defining a plasticity model: the free energy function and either the dissipation or the 

yield function. Thus, in order to establish the continuous hyperplasticity formulation, it is 

necessary to start with the free energy function and the yield function. The flow rule is 

followed to determine the incremental response. Then, the rate-dependent solution is 

introduced to provide another option for the numerical analysis. 

 

4.2.1 Free energy functional and internal functions of the variables 

Starting from the form of the Gibbs free energy function for a single-yield-surface model as in 

Eq. (3.3), further developments for the continuous hyperplasticity model are introduced. The 

internal variables now become functions of a dimensionless parameter η which varies from 0 

to 1. The Gibbs free energy therefore becomes a functional as follows: 

( ) ⎥⎦
⎤

⎢⎣
⎡+−=
∧∧

∫ iii gdgg αηηασ 2

1

0
1     (4.1) 

In which the hat notation expresses that the variable is a function rather than a single value. 

The meaning of the dimensionless parameter η is that it represents the relative position of the 
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variable in the yielding process. When η = 0, no plastic behaviour occurs. If η = 1, fully 

plastic behaviour occurs. 

 

The term 1g of the Gibbs function represents the elastic response and is still used as in Eq. 

(3.4).  As mentioned in chapter 3, the elastic response of the foundation depends on the depth 

of the foundation, which is represented by the vertical plastic displacement Vα  in the single-

yield-surface model. Corresponding to this, in the continuous hyperplasticity model, the 

elastic response depends on the total vertical plastic displacement which is ( )∫
∧1

0

ηηα dV  rather 

than the individual value of each )(ηα V

∧

. Therefore, there is no change in the mathematical 

expression for the elastic response in this version compared with that of the single-yield-

surface version. 

 

In order to establish the functional ( )⎥⎦
⎤

⎢⎣
⎡ ∧

ηα ig 2 , it is necessary to start from the expression of 

the function 2g  in Eq. (3.3). In the single-yield-surface model, using isotropic hardening, the 

function 2g  is taken as zero. However, considering kinematic hardening, this function 

requires more attention. Indeed, the term 2g  is the part of the work of plastic displacements 

that defines the kinematic hardening of the model. In order to choose the form for 2g , there 

are two issues that need to be involved: the dimension of the function and the relationship 

among plastic displacements. Firstly, 2g  is a part of the energy function that just includes the 

plastic displacements. Thus, it may be appropriate if 2g  is a function of squared terms of 

plastic displacements multiplied by factors which possess the dimensions of the stiffness 
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factors to guarantee the dimension of energy. Secondly, the development of plastic 

displacements depends on the current deformations of the model which obviously involves 

the elastic parts. During the elastic stage, the relationship between the displacements is 

determined by the elastic stiffness factors as shown in function 1g . In the elasto-plastic stage, 

as discussed above, there are the factors having the dimensions of the stiffness factors in the 

function 2g . Therefore, it may be suitable and simple to use the relationship of elastic 

displacements in the 1g  term to apply the relationship of plastic displacements in the 2g  term. 

Of course, there could be many other ways to choose the form for 2g . However, in this study, 

the above expression seems to be one of the logical explanations. In the following section the 

details of 2g  are discussed. 

 

The Gibbs free energy function of a single-yield-surface model can be rewritten with a slight 

modification for 2g  as follows: 

( ) ( )2
23322332232321 ,,,,, iMMQHHV gMMQHHVMMQHHVgg ααααααα +−−−−−−=   (4.2) 

In which the term 1g  is expressed in Eq. (3.4). 

 

Based on the Thermodynamic framework in Houlsby and Puzrin (2000),  the corresponding 

Helmholtz free energy function ( )iif αε ,  coming from the Legendre transformation of Gibbs 

function ( )iig ασ , can be written as: 

( )2
2234324

2
22

2
22

2
5

2
33

2
23

2
1

222222 i
eeee

eeeeee

fuKuKKKqKuKuKwKf αθθ
θθ

−−++++++=   (4.3) 

Where: 
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V
e ww α−= ; 222 H

e uu α−= ; 333 H
e uu α−= ; Q

e qq α−= ; 222 M
e αθθ −= ; 333 M

e αθθ −=   

The components ew , eu2 , eu3 , eq , e
2θ and e

3θ are the elastic parts of the total displacements. 

 

The expression of the Helmholtz energy function exhibits the relationship between the elastic 

displacement components in the model. As mentioned in the above paragraph, it is assumed 

that the 2g  term has the same style as the elastic part of the Helmholtz free energy. Therefore, 

the form of 2g  can be proposed as follows: 

( )2332
*
4

2
3

*
2

2
2

*
2

2*
5

2
3

*
3

2
2

*
3

2*
1

2 222222 HMHM
MMQHHV H

HHHHHH
g αααα

αααααα
−++++++=

           (4.4) 

Where *
1H , *

2H , *
3H , *

4H  and *
5H  are the hardening parameters of Vα , 2Mα , 3Mα , 2Hα , 3Hα  

and Qα  as shown in Eq. (4.4). These hardening parameters can be chosen as functions of the 

stiffness factors K1, K2, K3, K4 and K5 respectively and represent the kinematic haderning of 

the model.  

 

Replacing the internal variables iα in Eq. (4.4) by the internal functions ( )ηα i

∧

, 2g  can be 

written as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫∫

∫∫∫∫

⎟
⎠
⎞

⎜
⎝
⎛ −+++

++++=

∧∧∧∧∧
∧∧∧∧

∧∧∧∧∧∧∧∧

1

0

2332

*

4

1

0

2

3

*

2
1

0

2

2

*

2

1

0

2*

5
1

0

2

3

*

3
1

0

2

2

*

3
1

0

2*

1
2

22

2222

ηηαηαηαηαηηηαηηηαη

ηηαηηαηηηαηηηαη

dHdHdH

dHHdHdHg

HMHM
MM

QHHV

(4.5) 

In which the hardening parameters *
1H , *

2H , *
3H , *

4H  and *
5H  also become the functions 

( )η
*

1
∧

H , ( )η
*

2
∧

H , ( )η
*

3
∧

H , ( )η
*

4
∧

H  and ( )η
*

5
∧

H  respectively. These functions determine the 
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shapes of force-displacement hardening curves. In this study, the hyperbolic shape will be 

used for the hardening curves. By using hyperbolae, the model is mathematically simple and 

capture the hardening observed from experiments. Thus, the hardening funtions can be 

defined as follows: 

( ) ( ) in
iiii bKAH ηη −=

∧ *

     (4.5) 

Where i  = {1,…, 5}; Ai, bi, ni are parameters determining the shape of the hyperbolic curves. 

Discussions about the choice of hardening functions in continuum mechanics can be found in 

Puzrin and Houlsby (2001). In this study, they are extended to the general forms as in Eq. 

(4.5) to be able to capture the real curves obtained from tests of foundation behaviour.  

 

The vertical generalised force can be defined as: 

  ( )
( ) ( ) ( )

( )
( )

( ) ( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∂

∂
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂
∂
∂

−=
∂

∂
−= ∫∫

∧
∧

∧

∧

∧∧

∧

∧

∧
∧ 1

0

2
*

1

1

0

1

2
ηηαη

ηα
ηηα

ηαηαηα
ηχ dHdV

w
w
gg V

V

V

VV

p

pV

V  

(4.6) 

where wp is the total plastic displacement of the foundation and can be calculated as 

( )∫
∧

=
1

0

ηηα dw Vp . Therefore the vertical generalised force is: 

( ) ( )ηαηχ V
n

p
V bKAV

w
g ∧
∧

∧

−−+
∂
∂

−= 1
111

1               (4.6bis) 

The other generalised forces  are defined as follows: 

( )
( ) ( )

( )
( )

( ) ( )
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⎞
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∧
∧ 1
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2 2
ηηαη

ηα
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ηχ dHdHg H
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HH

H  
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   ( ) ( ) ( ) ( )ηαηηαη 244432223
42

H
n

M
n bKAbKAM

∧∧

−+−−=                  (4.11) 

Therefore, the coordinates of the centre of the yield surface at yielding level η in true force 

space can be defined as: 

( ) ( ) ( ) ( )ηαηηχηρ V
n

VV bKAV
∧∧∧

−=−= 1
111                  (4.12) 

( ) ( ) ( ) ( ) ( ) ( )ηαηηαηηχηρ 34442333222
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M
n
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4.2.2 Yield functional 

 

 

 

 

 

 

 

In the continuous-plasticity version of the ISIS model presented in this chapter, there is an 

infinite number of yield surfaces used in the analysis. The size of each inner yield surface is 

V0 0 Vt V 

H or M/2R 
Outer most yield surface 
(has not been activated) 

Load point 

Inner yield surfaces 
(have been activated) 

Figure 4.1 System of yield surfaces in continuous plasticity model 
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determined by a certain value of the internal parameter η as the scaled yield surface from the 

outermost yield surface (at η = 1). At a yielding level corresponding to a value of  0 < η* < 1, 

there is a set of yield surfaces which have been activated already corresponding to the values 

of 0 < η < η*. Therefore, every single incremental movement of the load point in the force 

space will be related to the translation and either expansion or contraction of that set of yield 

surfaces. Then, the plastic behaviour of the model at that time is determined by the 

combination of the plastic response caused by the yield surfaces activated. Figure 4.1 shows 

the system of yield surfaces in the continuous plasticity model. 

 

At a certain value of η of a yield surface activated, the yield function can be described as 

follows:      

( )( ) 01
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The factors S , 12β , 1β , 2β , e and 0t  have similar definitions to those of the single-yield-

surface model. 

 

4.2.3 Flow rule and incremental response using rate-independent solution 

The general expression of the flow rule may be written as: 

i

i
y
∧

∧
∧

•
∧

∂

∂
=

χ
λα            (4.27) 

where i

•
∧

α  is the rate of change of the plastic displacements at the yielding level η, and 
∧

λ  is 

the positive scalar multiplier of the ηth yield surface being considered. 

 

In the same way as for the single-yield-surface model, the partial differentials of the yield 

surface in generalised dissipative force space will be (after removing the zero terms): 
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The partial differentials in Eqs. (4.28) to (4.33) can be expressed as follows: 
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In the incremental response of a continuous-yield-surface hyperplasticity model, at a certain 

value of η, there are two possibilities. The first is that the loading point is still inside the ηth 

yield surface, and the response of the model is elasto-plastic from the beginning (η = 0) to η* 

(η* < η). The variable η* represents the maximum value of η at which the yield surface has 

been activated. It also means that the value of the yield function is negative ( ( ) 0<
∧

ηy ) and the 

multiplier ( )ηλ
∧

 equals zero for the range of η* < η < 1.0. The second possibility is that the 

loading point lies on the ηth yield surface. Then, the plastic behaviour of the ηth yield surface 

is activated and leads to the conditions: ( ) 0=
∧

ηy  and ( ) 0>
∧

ηλ  for the range of *0.0 ηη ≤< . 

 

Once the ηth yield surface is activated, the incremental expression of ( )η
∧

y  can be written as 

follows: 
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In general, the generalised dissipative forces can be expressed as follows: 
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Then, the velocity of the generalised dissipative forces can be expressed as: 
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The incremental change of plastic displacement is defined as: 
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By substituting Eq. (4.53) and Eq. (4.54), Eq. (4.51) becomes: 
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By converting Eq. (4.55), the scalar multiplier ( )ηλ
∧

 can be calculated as follows: 
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Therefore, the plastic response can be expressed as follows: 



4 -  15

m

iilljljj

l

ljj

k

k

j

j
m

y

yyyggy

gyyy

∧

∧

∧

∧

∧

∧

∧

∧

∧∧

∧

∧∧

∧

∧

∧

•

∧

∧

∧

∧
•

∧
•

∧

∧

•
∧

∂

∂

∂

∂

∂

∂
−

∂

∂
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∂∂

∂
+

∂∂

∂

∂

∂

∂∂

∂

∂

∂
−

∂
∂

+
∂

∂

=
χ

χαχααααχ

σ
σαχ

σ
σ

σ
χ

α
2

2
1

2

1
2

       (4.57) 

The full details of the partial differentials are straightforward and similar to those of the 

single-yield-surface model, but are lengthy. Therefore, it is considered inappropriate to 

present them here. 

 

Finally, the incremental response for a rate-independent solution is written as follows: 
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In which ( )ηλ
∧

 can be calculated by using Eq. (4.56) with the variations iδσ  instead of using 

i

•

σ ; *η  is the maximum value of η  at which the thη  yield surface has been activated. 

 

4.2.4 Incremental response using rate-dependent solution 

The rate-dependent solution has been proposed for the single-yield-surface hyperplasticity 

model in Houlsby and Puzrin (2001) and then rate-dependent hyperplasticity with internal 

functions has been developed in Puzrin and Houlsby (2003). By using this concept for the 

foundation problem in the ISIS model, the dissipation function now becomes a functional and 
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can be separated into two functionals which are the force potential 
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If the dissipation function ( )η
∧

d  can be written as: 
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Then a Legendre-Fenchel transformation can give: 
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In which the definitions of the generalised dissipative forces ( )ηχ i

∧

 and the rates of change of 

the state variables ( )ηα i

∧

 can be expressed as the internal functions as follows: 
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It can be seen that the use of the flow potential function at internal coordinate η, ( )η
∧

w , is 

analogous to that of the yield function ( )η
∧

y  in the case of using the rate-independent solution. 

However, since ( )η
∧

z  is not the homogeneous first-order function of ( )ηα i

•
∧

, the flow potential 

function cannot be required to be zero during the calculation (see Puzrin and Houlsby, 2003). 

As mentioned in chapter 2, in this study, the linear viscosity form is applied for 
∧

w  as follows: 
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η
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w            (4.64) 

where μ  is the viscosity factor; ( )η
∧

y  is the yield function as in Eq. (4.18) of the rate-

independent solution. 

 

Developing the analysis as in the single-yield-surface model for rate-dependent solution, the 

incremental stress-strain response using rate-dependent behaviour can be written as: 
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Converting Eq. (4.65) to the incremental form as: 
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where μ and dt are the viscosity factor and the time increment respectively. 
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4.3 Discretization formulation – multiple-yield-surface model (ISIS) 

In section 4.2, the formulation of the continuous-plasticity model has been presented and 

gives the possibility of capturing the cyclic behaviour. However, since this model is expressed 

in term of continuous functions, it is necessary to establish a discretization formulation based 

on the continuous formulation. This work needs some careful attention to ensure its 

consistency.  

 

This section presents the discretization process from the continuous formulation to the 

multiple-yield-surface formulation for the ISIS model. The features of the continuous model 

will be rewritten in terms of the multiple-yield-surface model. 

 

4.3.1 Discretization of the free energy functional and internal variable functions 

From the section 4.2.1, the full expression of the Gibbs free energy function of the continuous 

plasticity model has been described. In this section, firstly, the integration terms will be 

changed to summation terms in the Gibbs function. Secondly, the definitions of variables will 

be established corresponding to the new expression of the Gibbs function.  

 

By changing from integration to summation, the Gibbs free energy function of the continuous 

plasticity model now can be rewritten in terms of a multiple-yield-surface model  as follows: 
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                     (4.67) 

The hat notations are abandoned to show that the variables are no longer functions, they 

become a series of discretized values. N is the number of yield surfaces that are chosen to 

simulate the continuous yield surface. The factor iη  can be defined simply by the uniform 

distribution as
N
i

i =η . Then, 
NN

i
N
id i

11
=

−
−=η . 

 

 

 

 

 

 

 

 

 

A further simplification assumption here is that the N value chosen is big enough to make a 

small enough value for idη  in which the values of ( )i
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Figure 4.2 Discretization of internal function of state variables in internal coordinate η  
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( )i
M

ηα 3  can be treated approximately as constants. Figure 4.2 shows the concept of a uniform 

distribution of the internal variables )( i
j
ηα  discretized from the internal function ( )ηα j

∧

. The 

definitions in Eq. (4.5) now become: 
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The generalised forces can be defined as: 
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Consequently, the coordinates of the centre of the ith yield surface in true force space can be 

defined as follows: 
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4.3.2 Yield functions 

By using the same style of yield function as in the continuous plasticity model, the ith yield 

surface has the following form: 
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The factors, 12β , 1β , 2β  and 0t , have similar definitions to those in the single-yield-surface 

model. ( )iS η  can be defined by using the formulation of S  in single-yield-surafce model and 

replacing 1v  and 2v  by ( )iv η
1  and ( )iv η

2 .  

 

4.3.3 Modification of the yield functions 

In the development of the continuous plasticity model as well as the discretization of the 

multiple-yield-surface model, the initial size of the first yield surface can be infinitesimal 

depending on the η  or iη  values. In order to control this initial size in the vertical direction, 

modifications of the definitions of  ( )iv η
1  and ( )iv η

2  are expressed as follows: 
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There is a new factor i0η  which is used in the denominators of ( )iv η
1  and ( )iv η

2  , as in Eq. 

(4.87bis) and Eq. (4.88bis), instead of iη  as in Eq. (4.87) and Eq. (4.88). The purpose of the 

introduction of this new factor is to be able to control the longitudinal size of the yield 

surfaces and the longitudinal distribution of these yield surfaces in true force space 

corresponding to specific kinds of footing. The calculation of i0η  can be expressed as follows: 

( )
N
iinitialinitial

i 000 0.1 ηηη −+=             (4.94) 

where initial
0η  is an initial parameter which can be chosen in the range [0,…,1]. The choice of 

this parameter depends on the kind of footing considered. It is clear that when  00 =initialη , the 
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factor ii N
i ηη ==0  and Eqs. (4.87bis) and (4.88bis) reduce to the forms of Eqs. (4.87) and 

(4.88). By using the expression in Eq. (4.94), the distribution of the yield surfaces in the 

longitudinal axis (V-axis) is uniform from 00 Vinitialη  to 0V when iη  goes from 1 to N. 

 

Figure 4.3 shows an illustration of a multiple-yield-surface model using five yield surfaces in 

a fully plastic behaviour under vertical loading. The longitudinal sizes of the yield surfaces 

are calculated by using the relationship in Eq. (4.94) and Eq. (4.85). 

 

 

 

 

 

 

 

 

 

The motivation of the introduction of the factor i0η  as well as the initial parameter initial
0η  is to 

control the negative plastic displacements that occur during the unloading process especially 

in vertical unloading. There is a well-known phenomenon that during the vertical unloading 

process of the foundation, there always are some small negative plastic displacements. This 

phenomenon can be considered as the softening in plasticity models. It can produce a small 

decrease in the depth of the footing after the unloading process. By using the concept of the  

The first yield surface  

Figure 4.3 System of five yield surfaces in a full plastic vertical loading 
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Load point 
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multiple-yield-surface model, the theoretical explanation for this is straightforward. However, 

quantitatively, by using the uniform distribution of the yield surfaces corresponding to the 

zero value of initial
0η  in multiple-yield-surface model, the negative plastic displacements 

obtained after the unloading process can be overestimated. In fact, since the size of the first 

yield surface is too small, the first elastic unloading process will be terminated very early. It 

also means that the plastic behaviour that causes the negative plastic displacement increments 

will occur too early as well. This has effects not only in the flow rule resulting in negative 

increments but also in the decrease of the size of the whole yield surface system. 

Consequently, the vertical negative plastic displacement increases faster and faster in an 

unrealistic way. Therefore, it is necessary to control the developments of the negative plastic 

displacement increments and the introduction of initial
0η  is an appropriate way to do this.   

 

4.3.4 Flow rule and incremental response using rate-independent solution 

In order to avoid any misunderstanding about the subscripts, the nth yield surface is 

considered instead of the ith yield surface as in the previous section. In the rate-independent 

solution, the flow rule of the nth yield surface corresponding to the internal coordinate 

N
n

n =η  can be defined as follows: 

( )n

nn

l

n

l
y

η
ηη

χ
λα

∂
∂

=
• )(

)()(      (4.95) 

where )( nηλ  is the non-negative scalar multiplier of the nth yield function; the subscript l 

represents the notations V, H2, H3, Q, M2 and M3 respectively.  
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The establishment of )( nηλ , the detailed definitions of the flow rules and the incremental 

response are similar to those of the continuous plasticity model presented in section 4.2.3. The 

continuous values of η  are replaced by the discretized value of nη  in the equations from Eq. 

(4.28) to Eq. (4.50). However, since there is a difference in the definition of the generalised 

force 
( )n

j

η
χ  in the multiple-yield-surface model compared with that of the continuous 

plasticity model, it is worth re-establishing some of these formulations with care.    

 

When the nth yield surface is activated, its incremental expression can be written as follows: 
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where 
N
n

n =η . 

 

Corresponding to the nth yield surface, the generalised forces can be expressed as follows: 
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 Thus, the velocity of the generalised forces is: 
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     (4.98) 

The incremental changes of plastic displacements 
( )i

l

η

α
•

 have been defined as in Eq. (9.45). 

Substituting Eq. (4.95) and Eq. (4.98) into Eq. (4.96), it becomes: 
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The scalar multiplier ( )nηλ  is therefore calculated by converting Eq. (4.99): 
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 The incremental response, in general, is written as follows: 
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For the rate-independent case, the detailed expression of the incremental response in Eq. 

(4.101) can be rewritten as: 
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In which the multiplier ( )nηλ  is calculated by using jδσ , kδσ  and lδσ  instead of using the 

rate form j

•

σ , k

•

σ  and l

•

σ  as in Eq. (4.100). 

 

4.3.5 Flow rule and incremental response using rate-dependent solution 

In the multiple-yield-surface model, the dissipation function d can be defined as a summation 

of  N internal dissipation functions, ( )nd ,  as follows: 
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By using the rate-dependent solution proposed in Houlsby and Puzrin (2001) and Puzrin and 

Houlsby (2003), each internal dissipation function, ( )nd , can be separated into two functions: 

the force potential function ( ) ( )
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n iii
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η αασ ,,  and flow potential function 

( ) ( ) ( )( )nn
iii

nw ηη χασ ,, . The relationship between ( )nz , ( )nw  and ( )nd  can be expressed as 

follows: 
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Therefore, the definition of the rate of plastic displacements, 
( )n

i

η

α
•

, is made by the Legendre 

transformation between ( )nz  and ( )nw  in which ( )n
i
ηα  and iσ are passive variables: 
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By the use of linear viscosity as proposed in Houlsby and Puzrin (2001), the flow potential 

funtion ( )nw  can be defined as: 

( ) ( ) ( )( )
( ) ( ) ( )( )

μ

χασ
χασ

ηη
ηη

2
,,

,,
2

nn

nn
iii

n

iii
n

y
w =     (4.106) 

It should be noted that ( )nw  is often greater than zero in plastic behaviour and equals zero 

when the rates of plastic displacements, 
( )n

i

η

α
•

are all equal to zero, which means that the rate-

independent condition is recovered for the elastic case. 
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By substituting Eq. (106) into Eq. (105), the plastic incremental response corresponding to the 

internal coordinate 
n

η is: 
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The changes of the internal variables are now no longer independent from the time increment. 

Therefore the variation form of the plastic displacement increments can be written as follows: 
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Figure 4.4 shows an outline of the variation of plastic displacement under an incremental 

loading. The total value of the increase of the plastic displacement component is the area 

bounded by the dashed curves.  
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Figure 4.4 Illustration of an increment of a plastic displacement variable in the multiple-yield-surface model 
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By substituting Eq. (4.108) into the general relationship in Eq. (4.101), the incremental 

response of the multiple-yield-surface model using the rate-dependent solution can be 

expressed as follows:  
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4.4 Application of hardening rules to the model 

As mentioned in Collins and Houlsby (1997) and Houlsby and Puzrin (2000, 2002), by the 

use of the free energy function and either the dissipation function or the yield function, the 

elasto-plastic behaviour of the foundation can be fully described in the model, including the 

hardening. There are four options corresponding to four different hardening rules: elastic-

perfectly plastic (no hardening), elastic-isotropic hardening plastic, elastic-kinematic 

hardening plastic and elastic-mixed isotropic-kinematic hardening plastic. The following 

discussion presents these cases and gives the reasons for the choice of the hardening rule 

applied in the model. The key functions proposed are based on those of the multiple-yield-

surface ISIS model of this study. They are expressed in general forms for ease of discussion.  

 

4.4.1 Possibilities of hardening rules 

(1) Elastic - Perfectly plastic 

 In this behaviour, there is no hardening during the analysis. The Gibbs free energy function 

and either the yield function or the dissipation function can have the forms as follows: 

 ( ) ( )∑
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n
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In which i0σ  are the forces defining the original sizes of the yield surface in force-axes; the 

term 2g , in this case, is zero. If i0σ  do not depend on the plastic displacements iα  then the 

functions ( ) ( )ii
n

ik σσ ,0  do not involve the plastic displacements either. Thus, once the load 

point touches the yield surface, perfectly plastic behaviour occurs. Then the generalised forces 

are: 
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It can be found that at a certain force level, the plastic displacement increment is independent 

of the generalised force. Figure (4.5) shows the outline of this behaviour. Therefore, when 

yielding occurs, there is no change of the yield surface which means that perfectly plastic 

behaviour occurs. 

 

 

 

 

 

(2) Elastic – Isotropic hardening plastic 

Using isotropic hardening, the two main functions should be:  
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Figure 4.5 Perfectly plastic behaviour 
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Again, in this case, the term 2g  equals to zero. The existence of the plastic displacement 

variables in the yield function can lead to changes of the size of the yield surface during the 

yielding process. In fact, from the definition of the generalised forces, 

( ) ( )
( )n

nn

i
ii

gN η

ηη

α
χχ

∂
∂

−== , it can be found that ( ) ( ) 0=−= nn
iii
ηη χσρ . This means that the 

centres of the yield surfaces in both true force space and generalised force space always 

coincide. This leads to the fact that there is no translation, but only expansion of the yield 

surfaces, and this type of hardening is defined as isotropic hardening. 

     

(3) Elastic – Kinematic hardening plastic 

By the use of the full expression of the Gibbs free energy function and the definitions of the 

yield functions which do not depend on plastic displacement variables, the hardening rule of 

the model can be demonstrated to involve kinematic hardening. The two functions, in this 

case, can be written as follows:  
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Since there is no plastic displacement variable in the yield function, the yield surfaces 

activated are therefore just move around in true force space without expansion. The details of 

the translations of the yield surfaces are defined by the definition of the “back forces” as: 

( ) ( )

( ) ( )( )
( )n

n

nn

i

N

n
i

n

iii

g

η

η

ηη

α

α
χσρ

∂

⎟
⎠

⎞
⎜
⎝

⎛
∂

−=−=
∑
=1

2
2

   (4.117) 



4 -  33

 This means that the terms ( )ng 2  in the Gibbs free energy function govern the translation of the 

yield surfaces during the analysis. Note that the work caused by the plastic displacements is 

not dissipated completely but is partly stored. In this case, a part of this work is stored through 

the term ( ) ( )( )∑
=

N

n
i

n ng
1

2
2

ηα  in the Gibbs free energy function. 

 

(4) Elastic – Mixed isotropic-kinematic hardening plastic 
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By using the above forms of the Gibbs free energy function and the yield function, a mixed 

isotropic-kinematic hardening rule is achieved. In fact, referring to the previous two 

possibilities of hardening rules (isotropic and kinematic), the existence of the plastic 

displacement variables in the yield function can lead to the isotropic hardening. Meanwhile, 

the appearance of the term ( ) ( )( )∑
=

N

n
i

n ng
1

2
2

ηα  in the Gibbs free energy function represents the 

kinematic hardening. In this case, the yield surfaces activated will have both actions: 

expansion (or contraction) and translation in the true force space. 

 

4.4.2 Discussion  

In the above expressions, the four possibilities of the hardening rules that can be applied for 

the model have been presented. In the multiple-yield-surface ISIS model, the mixed isotropic-

kinematic hardening rule has been used. 
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Firstly, as presented in the previous sections, all the yield functions that have been proposed 

in the single-yield-surface model, in the continuous plasticity model, and in the multiple-

yield-surface model, have the form ( )( ) 0,,0 == iipwVyy χσ . In which the vertical bearing 

capacity, ( )pwV0 , plays the role of the force i0σ  and also is a function of the vertical plastic 

displacement pw (or Vα ). Therefore, by the use of ( )pwV0  in the yield function, the ISIS 

model automatically obeys the isotropic hardening rule. The physical meaning of this aspect 

is that the vertical bearing capacity of the foundation not only depends on the soil properties 

but also depends on the depth represented by pw . The deeper the footing is penetrated the 

larger the elastic range can be, essentially depending on ( )pwV0 . Furthermore, due to negative 

vertical forces (tensile forces) occurring in the leeward caisson of a multi-caisson, or 

applications of large moments or horizontal loads and small vertical loads, negative vertical 

displacements can occur. This leads to the possibility that the caisson is pulled out of the soil. 

During this process, the depth of the footing, pw , decreases and the response of the 

foundation becomes weaker. By using isotropic hardening, this phenomenon can be explained 

clearly. Since the decrease of pw  leads to the decrease of ( )pwV0 , a contraction of the yield 

surface results, known as the softening phenomenon. In continuum mechanics using finite 

element analysis, solving the system of equations with softening can be a very complex 

process. However, fortunately, by using the macro element concept, there is no problem with 

the numerical solution. Modelling the softening phenomenon therefore also leads to the need 

to use the isotropic type of hardening in the model of this study. 
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Secondly, the appearance of the terms ( ) ( )( )∑
=

N

n
i

n ng
1

2
2

ηα  allows kinematic hardening represented 

by the concept of “back forces” ( )n
i
ηρ  in the equations from Eq. (4.79) to Eq. (4.84) playing 

the role of the coordinates of the centres of the yield surfaces in the true force space.  As 

mentioned in the above expression of the kinematic hardening, the work caused by the plastic 

displacement is not completely dissipated. A part of this work is stored in the free energy 

function. The terms ( ) ( )( )∑
=

N

n
i

n ng
1

2
2

ηα  represent this work.  

 

So far, there is still no way to estimate correctly the part of energy dissipated and the part of 

energy stored in the mechanisms proposed. Therefore, using the mixed isotropic-kinematic 

hardening rule and adjusting the energy functions to capture the real behaviour, one may 

obtain the appropriate solution. 

 

4.5 Numerical illustrations 

This section presents a number of numerical examples to validate the model. There are two 

main features that should be highlighted by the numerical results. Firstly, the numerical 

illustrations could be used to prove that the multiple-yield-surface model has some advantages 

compared with the single-yield-surface model. In the second feature, the availabilities of the 

model will be illustrated by the comparisons with test results to demonstrate that the model 

can capture the real behaviour with reasonable precision.  

 



4 -  36

The functions of hardening determining the shapes of the force-displacement curves can be 

considered as the kernel functions of the model. As in formulations from Eq. (4.68) to Eq. 

(4.72), these kernel functions are now chosen with the specific expressions as follows. 
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( ) ( ) 0.3
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( ) ( ) 0.3
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*
4 0.15.0 iKH i η
η

−=     (4.123) 

( ) ( ) 0.3
5

*
5 0.15.0 iKH i η
η

−=     (4.124) 

Obviously, there could be many other options for the parameters, Ai, bi and ni, of the kernel 

functions. However, in this section, the above options are used as the preliminary choice to 

demonstrate the capabilities of the model. The effects of changing the values of these 

parameters in the kernel functions will be discussed in section 5.5. 

 

4.5.1 Advantages of the multiple-yield-surface model compared with single-yield-surface 

model 

As mentioned in the previous sections, the hysteretic phenomena and their effects on the 

foundation behaviour under cyclic loading cannot be described by the single-yield-surface 

model and are explained explicitly by the use of the multiple-yield concept. This section 

presents some numerical results of the multiple-yield-surface version of the ISIS model as 

well as comparisons with the single-yield-surface model.  
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Before discussing the numerical validation for the caisson footing, which is the main goal of 

this work, four numerical examples will be implemented for a circular flat footing and 

spudcan on both sand and clay. The purpose of this work is to prove the generality of the 

multiple-yield-surface model. 

 

In addition, since the main goal of this research is to establish the numerical model for the 

caisson foundation, the comparison between theoretical model and experiments will be 

presented for the caisson only.  

 

4.5.1.1 Numerical examples for circular flat footings   

There are two examples presented in this section: a circular flat footing on sand and on clay. 

In each example, a variety of load paths are applied and their results described. 

 

Example 1: Circular flat footing on sand 

The soil properties, geometry and loading paths of the footing considered in this example are 

listed in Table 4.1. 

 

The two load paths in Table 4.1 are shown in Figure 4.6. The purpose of load path 1 is to 

verify the model in the vertical direction. Load path 2 is used to check the model under cyclic 

horizontal forces and moments. 
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Table 4.1 Input data for circular flat footing on sand 

Soil properties and geometry 
Type of soil Sand 
Radius (m) 10.0 
Shear modulus G (initial value) (MN/m2) 100.0 
Effective unit weight (kN/m3) 10.0 
Angle of friction 35o 
Poisson’s ratio ν  0.2 

Model parameters (for ISIS model) 
aV1 aV2 aH aM aQ 

Association factors 0.1 1.0 0.4 0.4 0.4 

e1 -0.2 
e2 0.0 
t0 0.0 
m0 0.086 
h0 0.116 
q0 0.1 
β1 0.9 

Shape factors of yield 
surface 

β2 0.99 
Viscosity μ  60.0 Parameters for the rate-

dependent solution Time increment dt Changed with the load incerements 
Number of yield 
surfaces 

10 yield surfaces used 

Loading path 1 
Load 
stage 

V  
(MN) 

H2  
(MN) 

H3  
(MN) 

Q  
(MNm) 

M2 
(MNm) 

M3 (MNm) Time 
increment 

dt  
1 0.0 to 140.0 0.0 0.0 0.0 0.0 0.0 3.0*107 
2 140.0 down to 0.0 0.0 0.0 0.0 0.0 0.0 108 
3 0.0 to 200.0 0.0 0.0 0.0 0.0 0.0 9.0*107 

Loading path 2 
1 0.0 to 140.0 0.0 0.0 0.0 0.0 0.0 3.0*107 
2 140.0 down to 

70.0 
0.0 0.0 0.0 0.0 0.0 107 

3 70.0 0.0 to 13.5 0.0 0.0 0.0 0.0 to -270.0 3.0*109 
4 70.0 13.5 to -15.5 0.0 0.0 0.0 -270.0 to 310.0 1.0*1010 
5 70.0 -15.5 to 17.5 0.0 0.0 0.0 310.0 to -350.0 1010 

 

 

 

 

 
Load stage 1 

Load stage 2 

Load stage 3 

140 MN 
200 MN 0 

V 

Load stage 1 

Load stage 2 

140 
0 

V (MN) 

M/2R or H 

70 

Cyclic deviation loadings at 
V = 70 MN 

(a) Load path 1 (b) Load path 2 

Figure 4.6 Load paths applied for example 1 
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The numerical results of each load path are compared with those of the solutions using the 

single-yield-surface model. The vertical response of the footing under load path 1 is shown in 

Figure 4.7a and 4.7b. In the result of the multiple-yield-surface model, there is a gap between 

the unloading and reloading curves. This is because the flow of the inner yield surface results 

in plastic response of the model. Meanwhile, the unloading and reloading curves in the single-

yield-surface solution coincide completely. Figure 4.7b shows the variation of the plastic part 

of the vertical displacements. Obviously, in the unloading-reloading stage, there is no plastic 

displacement occurring in the solution using the single-yield-surface model. 

 

In load path 2, instead of decreasing the vertical load down to zero, the unloading process is 

stopped at an intermediate value of V = 70 MN. Afterwards, the moments and horizontal 

forces are applied at that constant vertical load. Figure 4.8 and 4.9 show the responses of the 

footing in horizontal and rotational components. Figure 4.10 shows the relationship between 

rotational and vertical movements at such constant vertical load.    

 

 

 

 

 

 

 

 
Figure 4.7a Vertical response of the circular flat footing in load path 1 

0

50000

100000

150000

200000

250000

0 0.005 0.01 0.015 0.02

Vertical displacement (m)

V
er

tic
al

 lo
ad

 (k
N

)

Multiple-yield-surface model (10 yield surfaces)

Single-yield-surface model



4 -  40

 

 

 

 

 

 

 

 

The main goal of running the example in load path 2 is to reveal the effects of inner yield 

surfaces in the behaviour of the multiple-yield-surface model. In fact, as shown in Figure 4.8, 

4.9 and 4.10, since the vertical load is kept constant at half the value of the maximum vertical 

load, the horizontal and rotational loading processes start in the middle of the system of yield 

surfaces. Therefore, during the loading-unloading process, the inner yield surfaces are 

activated one by one. Consequently, the transitions between elastic and plastic response occur 

gradually. As shown in Figure 4.8 and 4.9, the horizontal and rotational responses of the 

multiple-yield-surface model show the much smoother transitions between elastic and elasto-

plastic behaviour than those of the single-yield-surface model. 

 

Furthermore, in the last loading stage of load path 2, all the yield surfaces of the model have 

been activated. Therefore, the elasto-plastic stiffness of the foundation at this time has a value 

which is similar to that of the single-yield-surface model. Consequently, it is clear that the two 

solutions of the multiple-yield-surface and the single-yield-surface models tend to coincide 

together at the end of the loading process. 

Figure 4.7b Vertical plastic response of the circular flat footing in load path 1 
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Figure 4.8 Horizontal response of the circular flat footing under load path 2 
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Figure 4.9 Rotational response of the circular flat footing under load path 2 
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Figure 4.10 Vertical movements under load path 2 
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Figure 4.10 shows the vertical movement that occurs during the cyclic loading. In the partial 

plasticity stage, the vertical movement in the solution using the multiple-yield-surface model 

is larger than that using the single-yield-surface model. When the full plasticity occurs the two 

solutions tend to coincide, as for the horizontal and rotational responses.  

 

Example 2: Circular flat footing on clay 

This example is of a circular flat footing on clay. The soil properties, geometry, model 

parameters and loading process are given in Table 4.2. The horizontal response, rotational 

response and vertical movements during the cyclic loading are shown in Figure 4.11, 4.12 and 

4.13 respectively. 

 

In order to have a closer look at the actions of the inner yield surfaces, the cyclic horizontal 

forces and cyclic moments applied are chosen to be small enough to avoid the fully plastic 

behaviour occurring when all the ten yield surfaces are activated. 

 

As shown in Figure 4.11 and 4.12, the full plasticity state has not been reached. This means 

that, in the case of using the single-yield-surface model, the loading point is still in the elastic 

zone and then the horizontal and rotational responses are still straight lines. Meanwhile, by 

the use of multiple-yield-surface model, the hysteresis has been revealed very significantly. 

This is because there are a number of inner yield surfaces activated and therefore a smooth 

transition between the elastic and plastic behaviours is made. As shown in Figure 4.13, it 

should be noted that, with the single-yield-surface model, the vertical movements during the 

small cyclic loading could not be simulated. However, upward or downward movements of 
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the shallow foundation during cyclic loading are recorded in almost all test observations. 

Obviously, the multiple-yield-surface model can satisfy this requirement. 

Table 4.2 Input data for circular flat footing on clay 

Soil properties and geometry 
Type of soil Clay 
Radius (m) 15.0 
Undrained shear strength (at mudline) (kN/m2) 20.0 
Effective unit weight (kN/m3) 10.0 
Angle of friction 35o 
Poisson’s ratio ν  0.5 
Mode of shear strength variation Linear 
ρ (kPa/m) 2.0 
Ir = G/su 400 

Model parameters (for ISIS model) 
aV1 aV2 aH aM aQ 

Association factors 0.58 0.58 1.0 1.0 1.0 

e1 0.518 
e2 -1.18 
t0 0.0 
m0 0.083 
h0 0.127 
q0 0.1 
β1 0.764 

Shape factors of yield 
surface 

β2 0.882 
Viscosity μ  60.0 Parameters for the rate-

dependent solution Time increment dt Changed with the load incerements 
Number of yield 
surfaces 

10 yield surfaces used 

Loading process 
Load stage V  

(MN) 
H2  

(MN) 
H3  

(MN) 
Q  

(MNm) 
M2 

(MNm) 
M3 (MNm) Time 

increment 
dt 

1 0.0 to 4.9 0.0 0.0 0.0 0.0 0.0 105 
2 4.9  to 8.9 0.0 0.0 0.0 0.0 0.0 5.0*106 
3 8.9 down 

to 4.9 
0.0 0.0 0.0 0.0 0.0 106 

4 4.9 0.0 to 0.5 0.0 0.0 0.0 0.0 to -8.5 108 
5 4.9 0.5 to -0.7 0.0 0.0 0.0 -8.5 to 11.9 2.0*108 
6 4.9 -0.7 to 0.7 0.0 0.0 0.0 11.9 to -

11.9 
2.5*108 
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Figure 4.11 Horizontal response of circular flat footing on clay (Example 2) 
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Figure 4.12 Rotational response of circular flat footing on clay (Example 2) 
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Figure 4.13 Vertical movements of circular flat footing under cyclic loading on clay (Example 2) 
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4.5.1.2 Numerical examples for spudcan footings 

This section presents the numerical analyses of a spudcan in both cases of sand and clay. The 

outline of this footing is shown in Figure 4.14. 

 

 

 

 

 

 

 

 

Example 3: Spudcan on sand 

Table 4.3 gives the input data for the analysis of the spudcan on sand. The installation process 

and one cycle of both horizontal and moment loading are taken into account. Since there is a 

variation of the effective footing diameter during the installation process, the rate of loading 

needs to be carefully controlled. Thus, there are six loading stages, from 1 to 6, applied to 

simulate the installation.  

 

Figure 4.15 shows the vertical loading-unloading process. Again, the solutions of the single-

yield-surface model and the multiple-yield-surface model are almost the same.   

  

In addition, after the installation process, there is a small unloading stage (load stage 7). The 

purpose of this is to describe the behaviour of the model near the peak in V-direction of the 

Figure 4.14 Geometric shape of the spudcan footing considered in section 4.5.1.2 
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yield surfaces. Figures 4.16, 4.17 and 4.18 show the horizontal and rotational responses and 

the vertical movements of the footing during the cyclic loading respectively. It is clear that the 

hysteresis is still modelled well compared with the results of the single-yield-surface model. 

 

Table 4.3 Input data for spudcan footing on sand 

Soil properties and geometry 
Type of soil Sand 
Radius (m) 10.0 
Initial V0 (kN) 1.0e3 
Shear modulus G (initial value) (MN/m2) 25.0 
Effective unit weight (kN/m3) 10.0 
Angle of friction 35o 
Poisson’s ratio ν  0.2 

Model parameters (for ISIS model) 
aV1 aV2 aH aM aQ 

Association factors 0.1 1.0 0.4 0.4 0.1 

e1 -0.2 
e2 0 
t0 0.0 
m0 0.086 
h0 0.116 
q0 0.1 
β1 0.9 

 

Shape factors of yield 
surface 

β2 0.99 
Viscosity μ  60.0 Parameters for the rate-

dependent solution Time increment dt Changed with the load incerements 
Number of yield surfaces 10 yield surfaces used 

Loading process 
Load 
stage 

V  
(MN) 

H2 
(MN) 

H3 
(MN) 

Q 
(MNm) 

M2 
(MNm) 

M3 
(MNm) 

Time 
increment dt 

1 0.0 to 0.1 0.0  0.0  0.0  0.0  0.0  109 
2 0.1 to 14.0 0.0  0.0  0.0  0.0  0.0  1011 
3  14.0 to 28.0 0.0  0.0  0.0  0.0  0.0  1012 
4 28.0 to 140.0 0.0 0.0 0.0 0.0 0.0 1013 
5 140.0 to 400.0 0.0 0.0 0.0 0.0 0.0 1015 
6 400.0 to 900.0 0.0 0.0 0.0 0.0 0.0 1015 
7 900.0 down to 850.0 0.0 0.0 0.0 0.0 0.0 1014 
8 8.50.0 0.0 0.0 to 10.0 0.0 0.0 to 200.0 0.0 2.0*1014 
9 850.0 0.0 10.0 to -14.0 0.0 200.0 to -280.0 0.0 4.0*1014 

10 850.0 0.0 -14.0 to 18.0 0.0 -280.0 to 360.0 0.0 4.0*1014 
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Figure 4.15 Installation of the spudcan on sand 
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Figure 4.16 Horizontal response of the spudcan on sand 
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Figure 4.17 Rotational response of the spudcan on sand 
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Example 4: Spudcan on clay 

Table 4.4 gives the information of the numerical example of the spudcan shown in Figure 

4.14 on clay.  The installation, the horizontal response, the rotational response and the vertical 

movements during cyclic loading are shown in Figure 4.19, 4.20, 4.21 and 4.22 respectively. 

In a similar way to the case of spudcan on sand, these responses reveal the differences 

between the results obtained by using the single-yield-surface model and the multiple-yield-

surface model especially in the partial plasticity behaviour. Again, the outermost yield surface 

of multiple-yield-surface has not been activated. This corresponds to the fact that the yield 

surface of the single-yield-surface model has not been reached. In other words, the behaviour 

of the footing using the single-yield-surface model still is purely elastic.  

 

In addition, it should be noted that, in the installation processes of both the circular flat 

footing and spudcan examples (from example 1 to example 4), there is almost no difference 

between the solutions of the multiple-yield-surface model and those of the single-yield-

surface model. Meanwhile, there always are significant differences between them in the 

Figure 4.18 Vertical movements of the spudcan during cyclic loading on sand 
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horizontal and rotational responses. The reason for this is that, in the installation process, the 

state of fully plastic behaviour, in which all the yield surfaces are activated, occurs after just a 

few loading steps. Therefore, the stiffness of the foundation in the multiple-yield-surface 

model becomes nearly the same as that in the single-yield-surface model. Consequently, the 

two results coincide during the installation.   

Table 4.4 Input data for spudcan on clay 

Soil properties and geometry 
Type of soil clay 
Radius (m) 10.0 
Initial V0 (kN) 1.0e3 
Undrain shear strength (at mudline) (kN/m2) 150.0 
Effective unit weight (kN/m3) 10.0 
Angle of friction 35o 
Poisson’s ratio ν  0.5 
Mode of shear strength variation Constant 

Model parameters (for ISIS model) 
aV1 aV2 aH aM aQ 

Association factors 0.645 0.645 1.0 1.0 1.0 

e1 0.518 
e2 -1.18 
t0 0.0 
m0 0.083 
h0 0.127 
q0 0.1 
β1 0.764 

 

Shape factors of yield 
surface 

β2 0.882 
Viscosity μ  60.0 Parameters for the rate-

dependent solution Time increment dt Changed with the load incerements 
Number of yield surfaces 10 yield surfaces used 

Loading process 
Load 
stage 

V  
(MN) 

H2 
(MN) 

H3 
(MN) 

Q 
(MNm) 

M2 
(MNm) 

M3 
(MNm) 

Time 
increment dt 

1 0.0 to 0.5 0.0  0.0  0.0  0.0  0.0  1.0e9 
2 0.5 to 9.0 0.0  0.0  0.0  0.0  0.0  1.0e11 
3  9.0 to 49.0 0.0  0.0  0.0  0.0  0.0  1.0e13 
4 49.0 to 255.0 0.0 0.0 0.0 0.0 0.0 1.2e15 
5 255.0 down to 200.0 0.0 0.0 0.0 0.0 0.0 2.0e13 
6 200.0 0.0 0.0 to 10.0 0.0 0.0 to 170.0 0.0 1.0e13 
7 200.0 0.0 10.0 to -12.0 0.0 170.0 to -204.0 0.0 2.0e13 
8 200.0 0.0 -12.0 to 14.0 0.0 -204.0 to 238.0 0.0 2.0e13 
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Figure 4.19 Installation of spudcan on clay 
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Figure 4.20 Horizontal response of spudcan on clay under cyclic loading 
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Figure 4.21 Rotational response of spudcan on clay under cyclic loading 
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4.5.1.3 Numerical examples for caissons 

As mentioned in the introduction, there are two main kinds of caisson footings suitable for 

offshore wind turbine structures: single caisson (monopod caisson) and multi-caisson (tripod 

or quadruped caisson). The serviceability conditions of these kinds of caisson are also 

different. During their lifetime, monopod caissons carry a compressive vertical load 

(downward) coming from the structure’s own weight and from the dynamic effects from the 

blades, and cyclic horizontal forces and moments coming from the environmental conditions. 

On the other hand, multi-caissons withstand smaller horizontal forces and moments but the 

magnitude of vertical load varies more and occasionally there are some tensile vertical forces 

(upward). Therefore, this section presents two numerical examples for caissons. The first 

example simulates the behaviour of a monopod caisson in the installation process, with and 

without suction, and the responses under cyclic loading as in serviceability conditions. The 

second example describes the behaviour of a caisson under compression-tension vertical 

loading. The comparison between multiple-yield-surface and single-yield-surface solutions 

will be made to validate the abilities of the multiple-yield-surface model.    

Figure 4.22 Vertical movements of spudcan on clay under cyclic loading 
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Example 5: Monopod caisson 

 

 

 

 

 

 

 

This example presents the behaviour of a single caisson as shown in Figure 4.23. Firstly, the 

installation using suction is implemented and compared with the installation using pure 

vertical force. Secondly, a cycle of the application of horizontal force and corresponding 

moment is calculated. The comparison between the solution of the multiple-yield-surface 

model and the single-yield-surface model will be made.  The soil properties, the model 

parameters and the loading processes are described in Table 4.5. 

 

The installations with and without suction assistance are shown in Figure 4.24. In the first 

period of the installation, when the suction is not yet applied, the caisson penetrates into the 

soil by self-weight. After the initial penetration, by turning the suction on and increasing the 

suction pressure gradually with the depth as shown in Figure 4.25, the caisson is installed 

continuously into the soil without any more vertical loading. 

 

 

 

LRP

9.5 m 

19.0 m

0.0425 m 

Figure 4.23 Outline of the monopod caisson   
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Table 4.5 Input data of the example 5 – monopod caisson 

Soil properties  
Type of soil Sand 
Shear modulus G (initial value) (MN/m2) 25.0 
Effective unit weight (kN/m3) 10.0 
Angle of friction 35o 
Poisson’s ratio ν  0.2 

Model parameters (for ISIS model) 
aV1 aV2 aH aM aQ 

Association factors 0.297 1.0 0.7 0.7 0.7 
e1 -0.2 
e2 0.0 
t0 0.1088 
m0 0.15 
h0 0.337 
q0 0.2 
β1 0.99 

 

Shape factors of yield surface 

β2 0.99 
Viscosity μ  0.002 Parameters for the rate-

dependent solution Time increment dt Changed with the load incerements 
Number of yield surfaces 20 yield surfaces used 
Bell width (wbell) (m) 0.7 

Installation with suction assistance 
Load 
stage 

Suction 
pressure 

(kPa) 

V  
(kN) 

H2 
(kN) 

H3 
(kN) 

Q 
(kNm) 

M2 
(kNm) 

M3 
(kNm) 

Time 
increment 

dt 
1 0.0 0.0 to 100.0 0.0  0.0 0.0 0.0 0.0 103 
2 0.0 100.0 to 1000.0 0.0  0.0 0.0 0.0 0.0 106 
3 0.0 1000.0 to 8772.0 0.0  0.0 0.0 0.0 0.0 108 
4 0.0 to 

20.0 
8772.0 0.0  0.0 0.0 0.0 0.0 1.0e8 

5 20.0 to 
200.0 

8772.0 0.0  0.0 0.0 0.0 0.0 1.0e8 

Installation without suction assistance 
1 0.0 0.0 to 100.0 0.0  0.0 0.0 0.0 0.0 103 
2 0.0 100.0 to 1000.0 0.0  0.0 0.0 0.0 0.0 106 
3 0.0 1000.0 to 10000.0 0.0  0.0 0.0 0.0 0.0 108 
4 0.0 10000.0 to 

80000.0 
0.0  0.0 0.0 0.0 0.0 2.0*109 

5 0.0 80000.0 down to 
8772.0 

0.0  0.0 0.0 0.0 0.0 2.0*109 

Application of  1 cycle of horizontal and moment loadings 
6 0.0 8772.0 0.0 0.0 to 

400.0 
0.0 0.0 to 12784.0 0.0 4.0*107 

7 0.0 8772.0 0.0 400.0 to 
-800.0 

0.0 12784 to -
25568.0 

0.0 8.0*107 

8 0.0 8772.0 0.0 -800.0 to 
1000.0 

0.0 -25568.0 to 
31960.0 

0.0 2.0*108 
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A comparison between the multiple-yield-surface solution and the single-yield-surface 

solution was carried out. However, since on the scale of the whole installation process the two 

solutions almost coincide, just the beginning of the vertical load-penetration curve in Figure 

4.24 is chosen and shown in detail in Figure 4.26 to have a closer look at the differences. 

Again, in a similar way to the previous cases of circular flat footing and spudcan, the stiffness 

of the foundation analysis using the multiple-yield-surface model becomes the same as that of 

Figure 4.24 Installation of the caisson with and without suction assistance 

See Figure 4.26 
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Figure 4.25 Suction pressure applied during the installation process 
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the single-yield-surface model when all its yield surfaces have been activated. In fact, Figure 

4.26 shows a smooth transition from the elastic stiffness to the plastic stiffness in the case of 

using the multiple-yield-surface model instead of the sudden change from elastic to plastic 

stiffness as in the single-yield-surface model.  

 

 

 

 

 

 

 

 

 

Figure 4.27, 4.28 and 4.29 show the horizontal, rotational and vertical responses respectively 

during the cyclic loading. It is found that there are similarities in horizontal and rotational 

responses as have been shown in the previous examples. However, in the vertical response, 

the differences are more important. Instead of downward movements as in the previous 

examples (from example 1 to 4), there are upward movements during the cyclic loading.  

Mathematically, this is caused by the negative values of the partial differential of the yield 

function with respect to the generalised vertical force, 
( )

( )n
V

ny
χ∂
∂ , at the small ratio of 

0V
V . In 

physical terms, this means that at a small vertical load, under cyclic horizontal loading, the 

footing can be pulled out of the seabed. The sign of the differential 
( )

( )n
V

ny
χ∂
∂  not only depends 

Figure 4.26 Vertical behaviour at the beginning of the installation   
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on the vertical load but also on the association factors 1Va  and 2Va  which will be discussed in 

section 5.3 in more detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27 Horizontal response of the caisson  
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Figure 4.28 Rotational response of the caisson  
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Example 6: Caisson under vertical compression-tension forces  

This example could have been implemented together with Example 5. However, since there 

are many issues to discuss, it is clearer to present the issue of compression-tension behaviour 

of the caisson in a separate example.  

 

 

 

 

 

 

 

Figure 4.30 shows the outline of the caisson in this example. The soil properties and model 

parameters are exactly the same as those of example 5. The bell width wbell is taken as 0.04. 

The loading process is described in Table 4.6.  
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Figure 4.30 Outline of the caisson in Example 6   

Figure 4.29 Vertical movements during the cyclic loading 
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Table 4.6 Loading process of the example 6 

Loading process 
Load 
stage 

Suction 
pressure 

(kPa) 

V  
(kN) 

H2 
(kN) 

H3 
(kN) 

Q 
(kNm) 

M2 
(kNm) 

M3 
(kNm) 

Time 
increment 

dt 
1 0.0 0.0 to 10.0 0.0  0.0 0.0 0.0 0.0 2.0*102 
2 0.0 10.0 to 200.0 0.0  0.0 0.0 0.0 0.0 3.5*103 
3 0.0 200.0 to 742.0 0.0  0.0 0.0 0.0 0.0 106 
4 0.0   742.0 to 2742.0 0.0  0.0 0.0 0.0 0.0 2.0*106 
5 0.0 2742.0 to 4742.0 0.0  0.0 0.0 0.0 0.0 4.0*106 
6 0.0 4742.0 to 8742.0 0.0  0.0 0.0 0.0 0.0 3.2*107 
7 0.0 8742.0 to 16742.0 0.0  0.0 0.0 0.0 0.0 3.2*108 
8 0.0 16742.0 down to 1987.0 0.0  0.0 0.0 0.0 0.0 2.0*109 
9 0.0 1987.0 to -1000.0 0.0  0.0 0.0 0.0 0.0 1010 

10 0.0 -1000 to 0.0 0.0  0.0 0.0 0.0 0.0 2.0*103 
11 0.0 0.0 to 200.0 0.0  0.0 0.0 0.0 0.0 2.0*106 
12 0.0 200.0 to 15000.0 0.0  0.0 0.0 0.0 0.0 4.0*108 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

Figure 4.31 Installation and compression-tension loading of the caisson in Example 6 
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Figure 4.32 Closer look at the caisson behaviour under compression-tension loading 
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The vertical response of the caisson under the loading process in Table 4.6 is shown in Figure 

4.31. The compression-tension part is scaled in Figure 4.32 and compared with the solution of 

the single-yield-surface model. Once again, the hysteresis loop occurs in the solution of 

multiple-yield-surface model but not in the single-yield-surface model.  

 

4.5.1.4 Summary 

In sections 4.5.1.1, 4.5.1.2 and 4.5.1.3, numerical examples for three kinds of shallow 

foundation of offshore structures, namely circular flat footing, spudcan and caisson, have been 

carried out. All these examples are implemented with comparisons between the two 

theoretical models: the multiple-yield-surface model and the single-yield-surface model. The 

most important feature highlighted is the potential of the multiple-yield-surface model to 

simulate the behaviour of shallow foundations under cyclic loadings. The results coming from 

the above six examples have satisfied this requirement. The hysteresis that usually occurs in 

cyclic behaviour of shallow foundations is modelled reasonably.  

 

The remaining issue that must be addressed to validate the multiple-yield-surface model is to 

examine its ability to capture the real behaviour observed from experiments.  

 

4.5.2 Capturing the real behaviour of caissons   

This section presents the numerical illustrations using the multiple-yield-surface model to 

simulate the results observed from experiments of caisson models in sand. These tests have 

been carried out at Oxford University and reported in Villalobos et al. (2003a, 2003b, 2004a 

and 2004b). The installation without suction, and cyclic horizontal and rotational loadings at 
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different constant vertical loads have been performed. Different kinds of caisson models have 

been used with different shape ratios, which is the ratio of the length of the skirt L over the 

diameter D. The results obtained have given a common shape of the installation curve. Thus, 

for simplicity, the numerical analysis will be implemented to capture the results of one of 

these tests. Particularly, the results of the test number T79-13-1 in Villalobos et al. (2004a) 

that has been done for cyclic moment loading are selected. The caisson model geometry is 

shown in Figure 4.33. The soil properties and model parameters are given in Table 4.7 

 

 

 

 

 

 

 

There are two issues which should be focused on: (i) the installation process and (ii) the 

performance of caisson in serviceability conditions. Firstly, as shown in Figure 4.34, it is clear 

that the results of the theoretical solution for installation are rather close to the test results. 

Adjusting the bell width of the bell function and the parameters of the bearing capacity 

calculation procedure can change the gap between the two curves. However, since the tests 

for installation do not coincide, it is not necessary to adjust the theoretical solution to capture 

just one specific test. Furthermore, the theoretical curve also shows a very similar shape to 

that of the test in both installation and unloading process.  
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Figure 4.33 Outline of the caisson in laboratory tests 
                     (After Villalobos et al., 2004a)  
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 Secondly, in order to have a preliminary verification before moving on to the cyclic loading, 

a numerical analysis is implemented for the monotonic loading of horizontal force and 

corresponding moment at a constant vertical load, which is held from the end of the 

installation process (Figure 4.34). Figures 4.35 and 4.36 show the comparisons between the 

numerical results and test results during this loading. It is found that the two results are rather 

close.  

Table 4.7 Input data of the caisson in test scale 

Soil properties  
Type of soil Sand 
Shear modulus G (initial value) (MN/m2) 0.7 
Effective unit weight (kN/m3) 10.0 
Angle of friction 35o 
Poisson’s ratio ν  0.2 

Model parameters (for ISIS model) 
aV1 aV2 aH aM aQ 

Association factors 0.297 1.0 0.7 0.7 0.7 
e1 -0.2 
e2 0.0 
t0 0.1088 
m0 0.15 
h0 0.337 
q0 0.2 
β1 0.99 

 

Shape factors of yield surface 

β2 0.99 
Viscosity μ  0.002 Parameters for the rate-

dependent solution Time increment dt Changed with the load incerements 
Number of yield surfaces 20 yield surfaces used 
Bell width (wbell) (m) 0.01 

 

 

 

 

 

 

Figure 4.34 Installation of the caisson model  

0
100
200
300
400
500
600
700
800
900

1000

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Vertical penetration (m)

V
er

tic
al

 lo
ad

 (N
)

Multiple-yield-surface model
(20 yield surfaces)
Test results



4 -  62

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, the numerical analyses have been carried out with ten cycles of horizontal and 

corresponding rotational loading at constant vertical load (V = 50 N). Figures 4.37 and 4.38 

show the results of the first four cycles. Figure 4.39 shows the vertical movements of the 

caisson during the cyclic loading which, in this case, are upward movements. In fact, in this 

case, the theoretical curves do not entirely capture the test. However, they show the correct 

trends, which look very similar to those of the test results, and the differences between the test 

and the theoretical curves are not too great. In addition, it should be noted that the 

Figure 4.35 Horizontal response of the caisson model under monotonic loading  
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Figure 4.36 Rotational response of the caisson model under monotonic loading  
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comparisons presented in this example are made with the theoretical solution and a particular 

test, which can only be expected to provide the trend of the real behaviour and similar but not 

exact magnitudes. Besides, the theoretical solution uses preliminary choices for its model 

parameters and these parameters can be adjusted to get better results. Therefore, from the 

illustrations shown, it is reasonable to hope that the multiple-yield-surface model can be an 

applicable model to give reasonable predictions for the cyclic loading behaviour.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.37 Horizontal response of the caisson model under cyclic loading  
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Figure 4.38 Rotational response of the caisson model under cyclic loading  
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An alternative is to check the model by using the concept of “backbone” curve. Originally, 

Masing (1926) has given two statements for the behaviour of a pure kinematic hardening 

material, suggesting that the initial loading curve, so-called backbone curve, may be used to 

define the behaviour during all subsequent load reversals as follows: 

(1) The tangent modulus at the start of each loading reversal assumes a value equal to the 

initial tangent modulus for the initial loading curve. 

(2) The shape of the unloading or reloading curves is the same as that of the initial 

loading curve, except that the scales of both load and displacements axes are enlarged 

by a factor of 2 

Then, Pyke (1979) has formally stated two additional rules, which are known as the extended 

Masing’s rules, as follows:  

(3) The unloading and reloading curves should follow the initial loading curve (backbone 

curve) if the previous maximum shear strain is exceeded. 

(4) If the current loading or unloading curve intersects the curve described by previous 

loading or unloading curve, the stress-strain relationship follows the previous curve. 

Figure 4.39 Vertical movements of the caisson model under cyclic loading  
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Byrne and Houlsby (2004) state these rules and given some test results confirming the Masing 

behaviour for caisson foundations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To examine whether the model of this study can obey the Masing behaviour and consequently 

confirm the ability to capture the cyclic behaviour, two steps are required. Firstly, a numerical 

calculation has been implemented to simulate the backbone curves of both horizontal loading 

and corresponding moment at the constant vertical load V = 50 N. Figures 4.40 and 4.41 show 

Figure 4.40 Theoretical horizontal backbone curve and the cyclic loading test 
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Figure 4.41 Theoretical moment backbone curve and the cyclic loading test 
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the results of this work compared with the total ten cycles of loading curves observed from 

the test T79-13-1 (Villalobos et al., 2004a). It is clear that the theoretical backbone curves 

look very similar to the backbone of the test. 

 

Secondly, by comparing the backbone curves of theoretical solution and test results at 

different constant vertical loads, the feature of Masing behaviour of the model can be 

confirmed. There are two numerical analyses undertaken with the caisson model in Figure 

4.33. The model parameters are given in Table 4.8. The two tests, T1-1 with constant vertical 

load V = 50 N and T 31-4-1 with constant vertical load V = 100 N in Villalobos et al. (2004a), 

are used to validate the theoretical results.   

Table 4.8 Model parameters of the caisson in test scale (Test T1-1 and T31-4-1) 

Model parameters (for ISIS model) 
e1 -0.2 
e2 0.0 
t0 0.1088 
m0 0.122 
h0 0.229 
q0 0.2 
β1 0.99 

 

Shape factors of yield surface 

β2 0.99 
 

In the first analysis following the test number T1-1, the vertical load is kept constant at the 

value of 50 N, which is rather small compared with the maximum vertical load (V = 945 N). 

Therefore, the unloading causes some negative plastic vertical displacements (upward 

movements) and re-activates some of the yield surfaces. Particularly, in this case, the first five 

yield surfaces are re-activated during the unloading process as shown in Figure 4.42. 

Consequently, the horizontal and rotational responses start with the elasto-plastic stiffness of 

the first five yield surfaces contributing. Figures 4.43 and 4.44 show the results of these 

responses which are very close to the experimental observations.



4 -  67

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V0 
0 

Vt 
V 

H or M/2R 

Outer most yield surface  

Load point 

Figure 4.42 System of first five yield surfaces activated after unloading process (V = 50 N) 
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Figure 4.43 Initial horizontal loading (backbone) curve at constant vertical load V = 50 N 
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Figure 4.44 Initial rotational loading (backbone) curve at constant vertical load V = 50 N 
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In the second analysis compared with the test number T34-1-1, the constant vertical load is 

twice that in the previous analysis. Therefore, the unloading process reaching this value has 

not re-activated any yield surface. Consequently, the horizontal and rotational responses start 

with the purely elastic stiffness as shown in Figure 4.45. Figures 4.46 and 4.47 show the 

results of this work. Again, similarities between the theoretical solution and the test are clear. 
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Figure 4.45 System of yield surfaces after unloading process (V = 100 N) 
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Figure 4.46 Initial horizontal (backbone) curve at constant vertical load V = 100 N 
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Considering the vertical movements during the cyclic application of horizontal loads and 

moments at constant vertical loads, there is experimental evidence available (Villalobos et al., 

2004a and 2004b). This shows that the vertical movements depend on the ratio between the 

vertical load and the vertical bearing capacity of the foundation at the full penetration depth. 

In fact, the magnitudes of the vertical load during the installation without suction always 

approximate those of the corresponding vertical bearing capacities. As shown in Figure 4.48, 

Villalobos (2004d) has given evidence of this feature. In this figure, the U-shape curves show 

the trends of the vertical movement during the cyclic horizontal and moment loadings. Each 

point in a U-shape curve corresponds to a peak point of a cycle. A series of tests have been 

done with the caisson model as shown in Figure 4.33 on sand at different relative densities Rd. 

The maximum vertical load applied in these tests varies from 750 N up to 1100 N and then 

the constant vertical loads have been used as in Figure 4.33. From these tests, it can be found 

that once the vertical load applied is small the vertical movements during the cyclic loading 

Figure 4.47 Initial rotational (backbone) curve at constant vertical load V = 100 N 
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tend to be upward. The magnitude of these movements decreases and even changes sign when 

the vertical load increases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the multiple-yield-surface model (ISIS model) with the system of 20 yield surfaces for 

the caisson model in Figure 4.33, the results are shown in Figure 4.49. With the same 

maximum vertical load (Vmax = 945 N), the model shows two different vertical behaviours at 

two different constant vertical loads, V = 200 N and V = 300 N. There is a difference between 

the experimental results and theory whereby, at the value of 200 N constant vertical load, the 

vertical movements in the test are downward while they are still upward in the theoretical 

results. However, in the tests, the magnitudes of maximum vertical loads as well as the soil 

specimen parameters cannot be exactly reproduced in theoretical analyses.  

Figure 4.48 The peak points of moment responses, shown as the U-shape curves, represent the  
                    variations of the vertical movements which depend on the constant vertical load kept during  
                    the cyclic loading (after Villalobos, 2004d) 
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Finally, in order to complete this section, it is necessary to mention the relationship between 

laboratory tests and field tests. There is a wide range of field tests that have been implemented 

and reported by Kelly et al. (2003, 2004) and Houlsby et al. (2005a, 2005b) for caisson 

foundations in both clay and sand. From the comparison between the laboratory test results 

and that of field trials, Kelly et al. (2005c) have pointed out that the quality of agreement 

between laboratory test results and the field trial results is highly satisfactory. This remark 

leads to more confidence not only for the scaling relationship between laboratory and field 

tests but also for the theoretical predictions presented in this study. 

  

4.6 Discussion 

In section 4.2, the analytical expression of a continuous hyperplasticity model for shallow 

foundations of offshore structures has been presented. Then, in sections 4.3 and 4.4, the 

discretization of this model which can be understood as the multiple-yield-surface model has 

been described to be suitable for numerical analyses. The mathematical difficulties coming 

Figure 4.49 Vertical movements under cyclic loadings at different constant vertical loads 
                     (Theoretical solutions using multiple-yield-surface ISIS model with 20 yield surfaces) 
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from the consistency conditions for many yield surfaces at the same time in the rate-

independent solution have led to the introduction of the rate-dependent solution. As discussed 

in chapter 3 and now confirmed in the numerical illustrations of this chapter, the rate-

dependent solution with suitable values of its parameters can give very realistic results. 

However, using the rate-dependent solution to mimic the rate-independent solution, the values 

of the viscosity factor, time increments and number of steps in each load stage must be chosen 

with care, possibly after a few trials. The completion of this process depends on the 

experience of the analyst. This is a drawback of the rate-dependent solution of this model. 

This problem will be discussed in more detail in section 5.6. 

 

In section 4.5, numerical validations have been performed with a series of numerical 

examples for circular flat footings, spudcans and caissons. The goal of introducing the 

numerical analyses for circular flat footings and spudcans is to prove that the hyperplasticity 

model can cover not only caisson footings but also other kinds of shallow foundations. In the 

main work of this research which is modelling for suction caisson, there are two main aspects 

which have been highlighted: the differences of the multiple-yield-surface model compared 

with the single-yield-surface model and the capability to capture the real behaviour observed 

from experiments. 

 

In the first aspect, as discussed in section 4.5.1, there are significant differences between the 

solutions of the multiple-yield-surface model and the single-yield-surface model. The most 

impressive result obtained from the multiple-yield-surface model is that it can rigorously 

express the change of elastic stiffness depending on strain level by using the concept of the 
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inner yield surfaces. This well-known phenomenon, which has been mentioned in Muir Wood 

(1991) or Atkinson (1993), cannot be simulated correctly by using either conventional single 

yield surface plasticity models or hyperplasticity single-yield-surface models. 

 

In the second aspect, the process of capturing the experimental behaviour of a caisson has 

been presented. Firstly, the vertical response of the caisson during the installation is calculated 

and compared with that of the test. Secondly, the initial loading of horizontal and 

corresponding moment is simulated. Thirdly, the analysis of caisson behaviour under cyclic 

horizontal and moment loading is implemented. Afterwards, the verification of the model 

using the concepts of the Masing’s rules have been made. Lastly, to confirm the similarities 

between the theoretical backbone curves (Masing curves) and the experimental backbone 

curves, two more calculation examples were undertaken for the caisson model under initial 

monotonic loading, as shown in Figures 4.43, 4.44, 4.46 and 4.47. In addition, a brief 

discussion about the connection between laboratory test results, theoretical results and field 

test results, has been presented. In general, throughout this work, similarities between theory 

and experiment were often observed or, at the worst, the model proposed has shown 

capabilities to be adjusted to capture the real behaviour.  

 

4.7 Concluding remarks 

The derivation for the multiple-yield-surface version of the ISIS model has been presented. 

This version possesses not only all the advantages of a model using hyperplasticity theory as 

mentioned in section 3.8 but also reveals some more important features as follows: 



4 -  74

- It is flexible to adjust the two scalar functions, which are free energy function and 

either dissipation function or yield function, to describe as closely as possible the hardening 

rule. 

- By using the concept of multiple-yield-surfaces, the model can simulate very well the 

smooth transition between the elastic and plastic stiffness. Consequently, hysteretic 

phenomena can be reproduced logically. 

- As demonstrated in section 4.5, the model presented gives reliable predictions for the 

cyclic behaviour of caisson foundations under environmental loads.           

 

The torsion component in the ISIS model has not been treated in detail. Essentially, the 

torsion response can be treated in the same way as the moment. Furthermore, the caisson 

response for many load cases is not sensitive to the torsion component. Since there is 

currently little available experimental data, the model parameters involving the torsion 

component are merely given as starting points. They can be adjusted to be more suitable for 

the model in the future works after collecting enough experimental data.  



CHAPTER 5 

PARAMETER SELECTION AND PARAMETRIC STUDY 

 

5.1 Introduction 

In the development of the model, a number of parameters are employed to make the model 

more flexible in capturing real foundation behaviour. There are four main groups of 

parameters in the model which control the numerical solution. These parameters are related to 

the yield function ( , , ), the flow rule ( , , , , ), the distribution of the 

yield functions ( ) and the hardening rule ( , , ). In addition, the requirement to 

mimic the rate-independent behaviour of the rate-dependent solution leads to an extra 

relationship between the viscosity factor 

0m 0h 0t 1Va 2Va Ma Ha Qa

initial
0η iA ib in

µ , the time increment, the elastic stiffness factors 

and the number of either load increments or displacement increments in each stage of the 

analysis. 

 

In previous chapters, from the first version of the model using a single yield surface to the 

current version using the multiple-yield surface concept, preliminary choices of values of the 

model parameters have merely been given without explaining their basis. This chapter 

presents details about the methods for choosing suitable values for the model parameters and 

discussion regarding the various values. In some cases, it may be impossible to give either 

explicit mathematical expressions or purely theoretical explanations for the values chosen. 

However, with empirical results and test observations, appropriate ranges for these parameters 

can be proposed.    
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5.2 Shape of the yield surface 

5.2.1 Variations of the shape parameters corresponding to the ratios of L/D 

In the theoretical models using macro-element concept such as model B (Martin, 1992), 

model C (Cassidy, 1999) as well as the current ISIS model for caisson foundations, the peak 

values on longitudinal axis of the yield surfaces have been determined from the vertical 

bearing capacity . For other axes, they are calculated by multiplying  by the factors  

and  for the horizontal and moment force axes respectively. 

0V 0V 0h

0m

 

The circular flat footing can essentially be considered as a special case of a caisson foundation 

with the ratio L/D = 0.0. In the case of a circular flat footing on sand, Cassidy (1999) has 

proposed the magnitudes for and  as shown in Table 5.1. Villalobos (private 

correspondence, 2003) has observed the parameters corresponding to the shape ratios (L/D) of 

0.5 and 1.0 which are also given in Table 5.1.  

0h 0m

Table 5.1 Shape parameters for the yield surface (LRP at the base of the caisson) 

L/D h0 m0 t0 Eccentricity factor e 

0.0 0.116 0.086 0.0 -0.2 

0.5 0.299 0.122 0.088   -0.75 

1.0 0.21 0.172 0.115 -0.89 

 

The values of  and  are the intersections of the yield surface with the horizontal force 

axis, 

0h 0m

0V
H , and moment axis, 

02RV
M , respectively at its largest cross section. By using the Load 
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Reference Point (LRP) at the base of caisson as shown in Figure 5.1a, the cross section of the 

yield surface can be drawn as shown in Figure 5.1c. 
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Figure 5.1c Biggest cross section of the yield surface  
                    corresponding to the LRP at the base  
 

Figure 5.1d Biggest cross section of the yield surface  
                    corresponding to the LRP at metacentre  
 

 
Figure 5.1a Load Reference Point at the base of the caisson 
 

Figure 5.1b Load Reference Point at metacentre 

Figure 5.1 Cross section of the yield surface corresponding to the LRP viewpoint 
 

In this case, the values of and  are different from those of the corresponding peak points 

of the yield surface. Consequently, there could be some confusion and it might be difficult to 

determine the changes of and  when the ratio 

0h 0m

0h 0m
D
L  of the caisson is changed. It is 

therefore convenient to look for a position of the LRP at which the yield surface does not have 

any the eccentricity in cross sections in the ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

00 2
:

RV
M

V
H  plane. The position of this new LRP 
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can be called the metacentre. The position originally proposed by Bell (1991) for the elastic 

solution of offshore foundations and the cross section of the yield surface viewed at this 

position are shown in Figure 5.1b and 5.1d.   

 

In addition, it should be emphasized that the two cross section shapes, shown in Figures 5.1c 

and 5.1d, are just alternative presentations of a unique yield surface. The different shapes are 

because the yield surface has been projected from different Load Reference Points. Therefore, 

it can be suggested that the yield functions when using the LRP at the metacentre has the form 

as follows:  

01 21

20112 =−+−= βββ vtvSty m     (5.1) 

In which, the subscript m is used to represent the term related to the metacentre.  

    

Considering the yield surface in true force space and simplifying it for a 2-D analysis in (V: 

H3: M2) space, the relation between the two forms of the yield function, as in Eq. (3.36) and 

Eq. (5.1), must result in the following equation: 

mtt =             (5.2) 

where  and now can be expressed as: t mt

23
2
2

2
3 2 mehmht −+=      (5.3) 

2
2

2
3 mmm mht +=       (5.4) 

Since the yield surface from the reference of the metacentre point is such that there is no 

eccentricity, the coupling of horizontal and moment components therefore vanishes from . 

From Eq. (5.2), it follows: 

mt
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  (5.5) 

It should be noted that since the yield surface is unique, Eq (5.5) must be satisfied at every 

point on the yield surface. Therefore Eq. (5.5) must be equivalent to the following system of 

equations derived from the equalities of the terms including ,  and  

respectively. 
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From the above equalities, the relations between , ,  and , ,  can be derived 

as follows: 

0h 0m e mh0 mm0 mz

2

0
0

1 e

h
h m

−
=       (5.9) 

00 mm m =                 (5.10) 

0

0

h
m

e
D
zm −=                (5.11) 

The reverse relations also can be expressed as:  

2
00 1 ehh m −=               (5.12) 

mmm 00 =                          (5.13) 
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From Eq. (5.9) to (5.14), it can be found that there is a mapping between the shape factors of 

the yield surface using the LRP at the base of the caisson ( ,  and e ) and that of the yield 

surface using the LRP at the metacentre ( ,  and ). Table 5.2 shows the values of 

,  and  corresponding to the values of ,  and  shown in Table 5.1. 

0h 0m

mh0 mm0 mz

mh0 mm0 mz 0h 0m e

Table 5.2 Shape parameters of the yield surface (LRP at the metacentre) 

L/D h0m m0m zm/D 

0.0 0.118 0.086 0.148 

0.5 0.45 0.122 0.3 

1.0 0.46 0.172 0.729 
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Figure 5.2 Variation of the biggest cross section of the yield surface  
                   corresponding to different ratios of L/D (LRP at the metacentre)  
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Figure 5.2 shows the changes of the cross section of the yield surface corresponding to the 

change of the ratio L/D. The physical meaning of the metacentre is that at that point, if there is 

purely horizontal load applied (M = 0), there will be no rotational displacements. The caisson 

is therefore just moving horizontally. By using the concept of a metacentre, it is easier to 

observe the variation of the peak values  and  and therefore easier to interpolate these 

values corresponding to any ratio of L/D. Furthermore, as mentioned above, from the values 

of ,  and , it is possible to derive the values of ,  and  at a certain ratio of 

L/D. An approach could thus be taken where the variations of ,  and are 

interpolated before determining the values of ,  and .  

mh0 mm0

mh0 mm0 mz 0h 0m e

mh0 mm0 mz

0h 0m e

 

However, since the experimental data observed so far are not sufficient to confirm the details 

of these curves, we can merely discuss expected trends. Firstly, the variations of the vertical 

bearing capacity  and the passive pressures along the skirt of the caisson are assumed to be 

almost linear. This leads to the fact that the horizontal and rotational capacities of the caisson 

(  and ) increase with the square of depth, meanwhile  increases linearly with 

depth. The variations of  and are therefore expected to be almost linear. Secondly, the 

ratio 

0V

00Vh 00 2RVm 0V

mh0 mm0

D
zm , which represents the position of the metacentre, is expected to increase gradually 

with the length of caisson. The exact form of this variation has not been proposed yet but it 

could be varied to give steady values of the ratio 
L
zm  in the range from 0.6 to 0.75 (in case of 

a long caisson or short pile, see Bell, 1991). Lastly, the value of  can be determined from 

the ratio of total friction force along the skirt over the vertical bearing capacity . It can be 

0t

0V
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therefore calculated directly from the calculation procedure of  and then adjusted by 

referring to the test results. Figures 5.3, 5.4, 5.5 and 5.6 show the common trends of the 

variations of , , 

0V

mh0 mm0 D
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Figure 5.3 Variation of  with respect to L/D mh0 Figure 5.4 Variation of  with respect to L/D mm0
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5.2.2 Discussion 

In section 5.2.1, the procedure for determining the variations of the shape parameters of the 

single-yield-surface model for caisson footings in the serviceability condition (after finishing 

the installation process) with different ratios of the length L over the diameter D has been 

proposed. The key feature of this procedure is that it is based on a unique yield surface. The 

position of the metacentre therefore depends on this condition and consequently depends on 

the yielding process.   

 

In the single-yield-surface model, as there is only one yield surface considered, the 

correlations from Eq. (5.9) to Eq. (5.14) can not be changed during the yielding process. The 

situation is much more complicated when considering the multiple-yield-surface model. The 

shapes of the inner yield surfaces are not the same. They are changed depending on the level 

of plasticity which implies the number of yield surfaces activated. The correlations from Eq. 

(5.9) to Eq. (5.14) are thus no longer applicable. Fortunately, the procedure for determining 

the system of yield surfaces based on the metacentre is not necessary. This is because the 

yield surface considered in the single-yield-surface model now plays the role as the outermost 

yield surface and it will be activated when full plasticity occurs. In addition, the shape of the 

inner yield surfaces can be flexibly chosen. In this study, the initial distribution of inner yield 

surfaces in the multiple-yield-surface model is based on the outer most yield surface which is 

the yield surface considered in the single-yield-surface model. Therefore, in the multiple-

yield-surface model, the correlations from Eq. (5.9) to Eq. (5.14) are used to determine the 

outermost yield surface first and then the inner yield surfaces can be defined automatically.       
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For clay, since only very limited experimental data are available at present, there is no 

definitive expression for the yield function in clay. However, a similar approach to that 

proposed for a caisson in sand could be used. Furthermore, from the results obtained from 

Martin (1992) for spudcan footings on clay and Cassidy (2000) for spudcans on sand, it can 

be recognised that the behaviours of shallow foundation on clay and on sand in the case of 

undrained loading are not too different. Thus, it could be expected that there will not be many 

important changes in the relations established between clay and sand in the analysis described 

in this thesis.   

 

5.3 Association factors 

The association factors ( , , , , ) are used to express the non-associated flow 

rule in which the flow vectors do not coincide with the normal vectors of the yield surface. In 

model B and model C, this feature has been described by using an extra function called the 

potential function. The flow vectors are then derived from the partial differentials of this 

function with respect to the corresponding true forces. In the ISIS model, the flow vectors are 

defined as the partial differentials of the yield function with respect to the corresponding 

generalised forces directly, and without further assumptions about the potential function as in 

model B or model C. The association factors are used to manage the interpolation between the 

true forces and the generalised forces in the yield function. Essentially, they play the role of 

adjustments in the directions of the flow vectors which can be observed from tests. The 

concept of association factors can allow the ISIS model to replicate flexibly the experimental 

observations as closely as possible. Therefore, it can be expected that by using suitable values 

of the association factors, in the case of circular footings and spudcans, the ISIS model can 

1Va 2Va Ma Ha Qa
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repeat the results of model B and model C. This aspect has been illustrated in section 3.6. In 

this section, the fundamental basis for choosing the suitable values for the association factors 

is presented. 

   

5.3.1 Association factors for circular flat footings and spudcans in single-yield-surface 

model 

For simplicity, the full three-dimensional yield surface will be simplified to a two-

dimensional yield curve in the (V: H) plane to consider firstly three association factors , 

 and . Afterwards, this work will be repeated with the factors  and . 

Ha

1Va 2Va Ma Qa

 

It is essential at the outset to point out the constraints due to the role of the “parallel point” in 

the models mentioned. A parallel point is a point on the yield curve at which the flow vector 

is parallel to the H-axis. It is analogous to the “critical state” in soil models, and was initially 

defined by Tan (1990). In the case of clay, the point at the top of yield curve in the H-

direction, as shown in Figure 5.7a, is the parallel point in model B (Martin, 1994). In case of 

sand in model C (Cassidy, 1999), the position of the parallel point has to lie on the part to the 

left of the top of the yield curve. This means that the vertical load corresponding to this 

parallel point, Vp, must be smaller than 0Vα . Figure 5.7b shows the position of the parallel 

point and its flow vector in the case of sand, for which, the factor α has been defined in 

section 3.3.2.1. 

 

Secondly, in case of clay, Martin and Houlsby (2001) have recognised that the direction of the 

trigonometric angles between incremental plastic displacement vectors and normal vectors of 
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the yield curve are changed when V is greater than the value of 0Vα . For instance, as shown in 

Figure 5.8a, in the part of positive values of H, the incremental plastic displacement vectors 

are rotated clockwise from the normal vector when V is smaller than 0Vα . Once V is greater 

than 0Vα  this direction must be anti-clock-wise. In the case of sand, the experimental results, 

as shown by Cassidy (1999), give a different result. The flow vectors, which are incremental 

plastic displacement vectors, are always rotated clockwise from the normal vectors as shown 

in Figure 5.8(b). 
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H 

h0 /α  

1

Parallel point 

Flow vector 

V αV0 V0
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 Figure 5.7 Position of parallel point on the yield curve
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Figure 5.8 Direction of plastic flow vectors on the yield curve 
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Based on the remarks above, there are some constraints that must be satisfied about the 

characteristics of flow vectors in each case. They are described in the following paragraphs. 

 

The formulation of tanφ, tanφnormal in both the case of clay and sand can be defined using the 

yield function in Eq. (3.17) as follows: 
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where φ is the angle between flow vector and V-axis; φnormal is the angle between the normal 

vector and the V-axis. 

 

In the case of clay: 

a. 0=
∂
∂

=
•

V

V
y
χ

λα  when V = Vp = 0Vα   with 5.04.0 ≈=α  (see Martin, 1994) 

b. tanφ ≤ tanφnormal ≤ 0 when V ≤ 0Vα . 
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c. tanφ ≥ tanφnormal ≥ 0 when V ≥ 0Vα . 

In the case of sand: 

a. 0=
∂
∂

=
•

V

V
y
χ

λα  when V = Vp ≤ 0Vα   with 4.033.0 ≈=α  (see Cassidy and Houlsby, 

2002) 

b. tanφ ≤ tanφnormal ≤ 0 when V ≤ Vp. 

c. 0 ≤ tanφ when Vp ≤ V ≤ 0Vα . 

d. tanφ ≤ tanφnormal  when V ≥ 0Vα . 

where Vp is the value of vertical load at the parallel point.  

 

Evaluating the above inequalities, the relationships between , ,  can be defined. Ha 1Va 2Va

- For clay:  = 1,  =  (= 0.645 or 0.58) corresponding to model B (see 

Martin, 1994). 

Ha 1Va 2Va

- For sand:  ≤  ≤  corresponding to model C.  1Va Ha 2Va

For the association factors  and , a similar procedure can be applied. It is 

straightforward and then not necessary to present in detail. 

Ma Qa

 

In general, the relationship of association factors in three-dimensional analysis may have the 

form as follows:  

- For clay:   =  =  = 1,  =  = 0.645  Ha Ma Qa 1Va 2Va

- For sand:  ≤ , ,  ≤ 5.01 ≈Va Ha Ma Qa 12 =Va   
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 The approximate value of 0.5 proposed for  comes from empirical results obtained during 

attempts to capture the solution of model C. 

1Va
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Figure 5.9 The ranges of values of association factors 
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Figure 5.9 shows the ranges of values of association factors which are appropriate for a 

circular flat footing or spudcan on either clay or sand. The grey areas in this figure represent 

the available ranges of values of the association factors.    

 

5.3.2 Association factors for a caisson footing in single-yield-surface model 

In this section, the association factors  and  which are related to the vertical plastic 

displacement increments are considered; first by using the concept of the parallel point. 

Secondly, there are some discussions about suitable values of ,  and  which can be 

chosen empirically. 

1Va 2Va

Ma Ha Qa

 

As presented in section 5.3.1, at the parallel point, the partial differential of the yield function 

with respect to Vχ  must be zero. By using the yield function defined in Eq. (3.36) and the 

definition of the parallel point, the following equation can be derived: 
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In which  and  can still be defined as in Eq. (3.23) and Eq. (3.24) respectively. Then, 

from Eq. (5.19), the relationship between  and  can be expressed as follows: 
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In Eq. (5.20),  and  can be regards as values in true force space. This means that, 

referring to the true force space, they have the same magnitude and can be calculated as: 

1v 2v

0
21 V

Vvv ==            (5.21) 

From the test results observed by Villalobos et al. (2004d), during cyclic horizontal loading 

there is almost no vertical movement when the constant vertical load applied is approximately 

0.15 of the maximum vertical load applied in the installation process (without suction). 

Furthermore, the shape factors 1β  and 2β  can be taken as about the same with the value of 

0.99. For a caisson with the ratio of L/D = 0.5, the value of  is approximately 0.1. In 

addition, the association factor  can be taken as 1.0 for simplicity. Therefore, in this 

particular case of a caisson footing, the value of  would be approximately 0.3. This result 

can be used not only for the single-yield-surface model but also for the multiple-yield-surface 

model since the single yield surface essentially plays the role of the outermost yield surface in 

the multiple-yield version. For different caissons (different ratios of L/D), in order to calculate 

the value of , the tensile factor can be changed depending on the frictional resistance 

along the skirt of the caisson. In addition, the position of the parallel point can be changed. 

0t

2Va

1Va

1Va 0t
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These features require more experimental results, which are not yet available, to determine 

their rules. However, it would be straightforward using the procedure as expressed above.  

 

In order to determine the factors ,  and , it would be necessary to collect the 

experimental data about the flow vector. Unfortunately, this information is not available yet. 

However, the ranges of values for the association factors as shown in Figure 5.9 for a circular 

flat footing and spudcan on sand are likely to be suitable for a caisson in sand. The evidence 

for this note is that, in the whole numerical examples shown in section 4.5, the association 

factors have been chosen using these ranges. As a result, the test curves have been captured 

quite well.  

Ma Ha Qa

 

5.3.3 Effects of the association factors on the solutions using multiple-yield-surface 

model 

This section presents effects of , , and  on the model response. 1Va 2Va Ma Ha

 

Firstly, it is necessary to consider the trend of the vertical response of the model during cyclic 

loading analysis. So far, in the use of the multiple-yield-surface model, each association factor 

has a chosen value used for all the yield surfaces. This can lead to the result that, during cyclic 

horizontal or moment loading at a constant vertical load, the plastic response can produce 

vertical plastic displacement increments with different signs whenever an extra yield surface 

is activated. In the multiple-yield-surface model, the shapes of inner yield surfaces are 

different from each other, thus the relative locations of the parallel points of the yield surface 

system on the V-axis are different. In other words, the position of the parallel point of each 
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yield surface depends not only on the magnitudes of the factors  and  for that surface 

but also on the shape of the yield surface. In addition, the parallel point plays the role of the 

threshold point between negative and positive zones of vertical displacement increments. 

Therefore, with a constant vertical load, the plastic response can give a positive vertical 

plastic displacement increment for the current yield surface but a negative increment for the 

next yield surface. Using the rate-dependent solution, the vertical displacement increments of 

each yield surface in multiple-yield-surface model can be written as follows: 

1Va 2Va
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In which the directions of the vertical movements depend on the sign of the term 
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Figure 5.10 System of yield surfaces, their parallel points and their flow vectors  
                    during  cyclic loading at constant vertical load  
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It is clear that the direction of vertical increment depends on  and  as shown in Eq. 

(5.23). When either these factors or the magnitudes of 

1Va 2Va

( )nv η
1  and ( )nv η

2  are changed, the position 

of the parallel point is changed.  

 

Furthermore, as shown in Figure 5.10, because of the different sizes of the yield surfaces, the 

parallel points of the yield surfaces can not be in a straight line which is perpendicular to the 

V-axis of the yield surface in true force space. Thus, the flow vector of the first yield surface 

shows a negative vertical displacement increment but the flow vectors of the other yield 

surfaces show positive vertical displacement increments. Consequently, during cyclic loading 

at constant vertical load, there might be upward movements at the beginning and downward 

movements when the horizontal loads and moments become bigger or vice versa. This feature 

can be seen in the test results of Villalobos et al. (2004a). 

 

Obviously, there are many ways to arrange the positions of parallel points by using suitable 

formulations of  and  to change their values when going from the inner-most to the 

outer-most yield surface. However, it seems that a complex variation of these factors is not 

necessary. In fact, as shown in the numerical illustrations (section 4.5), by using the set of 

constant association factors (

1Va 2Va

297.01 =Va , 0.12 =Va , 7.0=Ma , 7.0=Ha , ), there 

are reasonably good solutions obtained for the caisson with the ratio L/D = 0.5. For other 

ratios of L/D, there is a need for more experimental results to give suitable values for the 

association factors but it could be reasonable to use constant values for them. 

7.0=Qa
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In order to show the effects of ,  and (mainly  and ), there are three 

examples implemented. In these examples, the test-scale model of the caisson and the soil 

properties as shown in section 4.5.2 are used.  

Ma Ha Qa Ma Ha

 

In the first analysis, instead of using values for ,  and  of 0.7, they now have the 

value of 1.0. The vertical association factors,  and , are still 0.297 and 1.0 respectively. 

This work is to show how the changes of ,  and  affect the model response. The 

numerical analysis is implemented for cyclic loading within 2 cycles under the constant 

vertical load of 50 N. The maximum vertical load used to install the caisson to the full 

penetration is 945 N. Thus, the ratio of V/V

Ma Ha Qa

1Va 2Va

Ma Ha Qa

max is 0.053.  The results are compared with those 

using the constant factor of 0.7 for ,  and . Figures 5.11 and 5.12 show these 

comparisons. 

Ma Ha Qa
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 Figure 5.11 Horizontal response of caisson model during cyclic loading on sand 
                    (Constant vertical load V /Vmax = 0.053, aV1 = 0.297, aV2 = 1.0) 
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Figure 5.12 Vertical movements of caisson model during cyclic loading on sand 
                    (Constant vertical load V /Vmax = 0.053; aV1 = 0.297, aV2 = 1.0)  

In the second analysis, the vertical association factors are the same as in the first example 

(  and ) but the other association factors are changed to vary linearly 

from 1.0 to 0.7 through the system of yield surfaces. This means that, at the first yield surface 

(inner-most yield surface), the factors ,  and  are 1.0; at the last yield surface (outer-

most yield surface) these factors are 0.7; at the i

297.01 =Va 0.12 =Va

Ma Ha Qa

th yield surface, the value of these factors will 

be: ( )
( ) ( 7.00.1

1
10.1 −
−
−

−===
N
iaaa QHM ), in which N is the number of yield surfaces used 

in the model. The results are also compared with the case using constant values of 0.7 for the 

association factors of horizontal, rotational and torsion components. Figures 5.13 and 5.14 

show the plots of this work.  

 

In the above two analyses, the horizontal and rotational displacements increase slightly. The 

most affected component is the vertical movement during the cyclic loading. Furthermore, 
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since the cyclic loading is applied at the small ratio of V/Vmax, the vertical movements are 

upward.  
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Figure 5.13 Horizontal response of caisson model during cyclic loading on sand 
                    (Constant vertical load V /Vmax = 0.053; aV1 = 0.297; aV2 = 1.0)     
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The third analysis is implemented with a larger ratio of V/Vmax of 0.423. By using this ratio, 

which is higher than the ratio of the parallel point of the outer most yield surface (Vparallel/Vmax 

= 0.15 as mentioned in section 5.3.2), the vertical movements during cyclic loadings are 

Figure 5.14 Vertical movements of caisson model during cyclic loading on sand 
                    (Constant vertical load V /Vmax = 0.053; aV1 = 0.297; aV2 = 1.0) 
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downward. The association factors ,  and  are chosen to vary linearly from 1.0 to 

0.7 in a similar fashion to the second example. Figures 5.15 and 5.16 show the comparisons 

between the results of this analysis and that of the case using ,  and  with a constant 

value of 0.7. Again, there is still a gap between the two solutions of vertical movements and 

almost no difference obtained in horizontal and rotational responses.    

Ma Ha Qa

Ma Ha Qa
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Figure 5.15 Horizontal response of caisson model during cyclic loading on sand 
                    (Constant vertical load V /Vmax = 0.423; aV1 = 0.297; aV2 = 1.0)  
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Figure 5.16 Vertical movements of caisson model during cyclic loading on sand 
                     (Constant vertical load V/Vmax = 0.423; aV1 = 0.297; aV2 = 1.0) 
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It is clear that, in the case where association factors are all equal to 0.7 (except  and  

which are kept at the values of 0.297 and 1.0 respectively), the vertical movements obtained 

are the largest. In the case of using linear variation for ,  and  from 1.0 to 0.7, the 

vertical movements decrease. The smallest vertical movements are obtained when ,  

and  are all 1.0.  

1Va 2Va

Ha Ma Qa

Ha Ma

Qa

 

It should also be noted that the changes of ,  and  do not significantly affect the 

horizontal and rotational response; especially in the case when the vertical load is applied 

constantly at small ratio of V/V

Ha Ma Qa

max. This is in fact the usual serviceability condition for 

offshore wind turbine foundations.  

 

Consequently, from the above verifications and with the numerical illustrations in section 4.5, 

there are three remarks which can be made about the choice of the association factors for the 

theoretical analysis for shallow foundation on sand using the multiple-yield-surface ISIS 

model. 

 

(a) A suitable order for the magnitudes of the association factors is: 10 Va<  ≤ , ,  ≤ 

. 

Ha Ma Qa

12 =Va

 

(b) The values of  and  depend on the position of the parallel point, which depends on 

the shape of the footings and should be determined from tests. For simplicity,  can take 

the value of 1.0. 

1Va 2Va

2Va
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(c) In order to adjust the numerical solutions to simulate cyclic responses, it should be noted 

that when the factors  and increase, the vertical movements during cyclic loading will 

decrease and vice versa. The horizontal and rotational responses, however, are not changed 

significantly with the changes of  and . 

Ha Ma

Ha Ma

 

5.4 Initial distribution of the yield surfaces 

In the use of the multiple-yield-surface model, the initial distribution of the yield surfaces can 

be defined in a variety of ways. In this study, the simplest option, including an initial size of 

the innermost yield surface, and a uniform distribution of the other surfaces in the remaining 

space between the first (inner-most) yield surface and the last (outer-most) yield surface has 

been used. By changing the initial size of the first yield surface, the plastic response of the 

model is changed significantly, not only in the vertical component but also in both the 

horizontal or rotational components. In section 4.3.2, there is a brief explanation of the effect 

of the initial parameter which is the key factor in determining the initial size of the first 

yield surface in the vertical installation-unloading process. 

initial
0η

 

In this section, the effect of  on vertical response is discussed in more detail. The 

changes of horizontal and rotational responses as a result of this are explained.    

initial
0η

 

 Firstly, it is necessary to discuss the mechanism of the yielding during the installation and 

unloading processes. Two possibilities can happen depending on the initial size of the first 

yield surface or, in other words, on the initial parameter . initial
0η
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(b) Installation (vertical loading) (c) Vertical unloading to the serviceability condition 

Figure 5.17 Installation and purely elastic vertical unloading process to the serviceability condition   

In the first possibility, shown in Figure 5.17, the installation process starts with purely elastic 

behaviour and quickly reaches the fully plastic state which means that all the yield surfaces 

have been activated (Figure 5.17b). After finishing the installation, the unloading process 

follows back to the vertical load of the serviceability condition at which the environmental 

horizontal forces and moments start to be applied.  In this case, the size of the first yield 

surface is big enough so that the load point after the unloading process is still inside the first 

yield surface without any re-activated yield surface. The unloading process is therefore purely 

elastic (Figure 5.17c).  
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Figure 5.18 Installation and elasto-plastic vertical unloading process to the serviceability condition   

In the second possibility the installation process also starts with purely elastic behaviour and 

reaches the fully plastic state as shown in Figures 5.18a and 5.18b. However, the yielding 

occurs sooner since the size of the first yield surface is smaller than that in the case above. 

Furthermore, in the unloading process, due to the smaller first yield surface, there are some 

yield surfaces re-activated (Figure 5.18c). Consequently, the unloading process is elasto-

plastic and causes the negative (upward) vertical plastic displacements in the analysis. 
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Figure 5.19 Vertical response from the elastic to the full plastic behaviours  
                    (at the beginning of the installation process)  

In order to illustrate the above, numerical analyses have been implemented for the caisson 

footing which was introduced in Example 5 in section 4.5.1.3 with a variety of initial  

parameter magnitudes of 0.0, 0.2, 0.4, 0.6 and 0.8. Figure 5.19 shows the beginning of the 

vertical responses from the start to the full plastic state. It is clear that the smaller the initial 

parameter used, the sooner the plastic behaviour occurrs. In addition, there are also 

differences between the curves using different initial parameters during the unloading process 

following installation. As shown in Figure 5.20, at the end of the unloading process the 

biggest upward displacement obtained corresponds to the smallest value of . In fact, the 

bigger the value of  used, the smaller the upward movement. In the case of , 

the unloading is purely elastic and shown by the straight line in Figure 5.20. In the other case, 

there are a number of yield surfaces activated. Table 5.3 shows the numbers of yield surfaces 

activated at the end of the unloading process corresponding to different values of . 

initial
0η

initial
0η

initial
0η 8.00 =initialη

initial
0η
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Figure 5.20 Vertical response during the vertical unloading process  
                    (after finishing the installation process) 

 

Table 5.3 Number of yield surface activated after finishing the vertical unloading process (20 yield surfaces in 

total) 

initial
0η  0.0 0.2 0.4 0.6 0.8 

Number of yield surfaces activated 16 15 13 9 0 

 

Consequently, at the beginning of either horizontal loading or moment loadings, there is an 

initial elasto-plastic stiffness due to the number of yield surfaces activated at the end of the 

vertical unloading process. Therefore both the horizontal and rotational responses can be very 

different depending on the value of the initial parameter. Figure 5.21 shows the initial 

horizontal response of the caisson described above corresponding to 16, 15, 13, 9 and 0 yield 

surfaces activated as shown in Table 5.3.  

 

From the numerical illustrations in section 4.5, the uniform distribution combined with the 

initial parameter, , can be seen to be a reasonable choice for the multiple-yield-

surface ISIS model.  There are, however, many other choices for the distribution of the yield 

8.00 =initialη
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surfaces. The discussions in this section give a general idea about the mechanism by which 

the distribution of the yield surfaces affects the solutions which will be applicable to other 

options.  
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Figure 5.21 The first horizontal response at the constant vertical load of the 
                    serviceability condition  (after finishing the unloading process)  

5.5 Effects of kernel functions on the distribution of plastic displacements 

In addition to the effect of the initial distribution of the yield surfaces on the transition from 

purely elastic behaviour to fully plastic behaviour, the form of kernel functions can also affect 

the shapes of the transition curves. Since the same kernel function is applied for all loading 

directions, this section focuses on the explanation of the effect of the kernel function on the 

vertical response as being representative of all other components. 

 

Firstly, it is necessary to look back to the general formulation of the vertical kernel function, 

which was proposed in chapter 4 as follows: 

( ) ( 1
111

*
1

n
ibKAH i η

η
−= )    (5.24)(4.68bis) 
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In the multiple-yield-surface ISIS model, there is an assumption that, once the whole system 

of yield surfaces is activated, fully plastic behaviour has occurred. The fully plastic behaviour 

of the multiple-yield-surface version must be compatible with those of the single-yield-

surface version of ISIS using isotropic hardening which has been verified by either Model B 

or Model C. Therefore, the parameter can be fixed as 1. It is clear that when the last (outer-

most) yield surface is activated the internal coordinate 

1b

iη  is equal to 1. Then, the term ( )NH η*
1 , 

as in Eq. (5.24), becomes zero. This means that there is no kinematic hardening applied for 

the outer most yield surface. This yield surface just expands or contracts without translation. 

In contrast, the inner yield surfaces have both actions. 

 

Consequently, there are two changeable parameters,  and , in the kernel function.  is 

the parameter controlling the initial slope of the hardening curve, while  affects the 

curvature of this curve. In order to illustrate the effects of these parameters on the solution, 

the numerical analysis of the caisson described in section 5.4 will be used. The first stage of 

the installation process is analysed using different forms of the kernel function 

1A 1n 1A

1n

( )iH η*
1  

corresponding to different values of the various parameters. The multiple-yield-surface model 

using 20 yield surfaces is used for these analyses.  

 

There are two separate series of numerical analyses. Firstly, different values of the parameter 

 are taken into account while the other parameters of the kernel function are kept constant. 

The second series considers the solution with different values of the parameter . 

1A

1n
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 Figure 5.22 Vertical responses using different values of A1 for the kernel function 

Figure 5.22 shows the vertical responses corresponding to the magnitudes of  of 1.0, 10.0 

and 0.1 respectively. In this figure, the curves show the stage from the end of purely elastic 

behaviour to nearly full plastic behaviour. It is clear that, in the very initial part when the 

footing behaviour is still elastic, all the curves have the same slope. Afterwards, when the 

yielding occurs, the initial elasto-plastic slope of the curve increases significantly when  

becomes larger. As a result, the transition from purely elastic behaviour to fully plastic 

behaviour becomes more dramatic. The larger the value of  used, the smaller the effects on 

the model behaviour obtained from the inner yield surfaces. In other words, the multiple-

yield-surface solution will get closer to the single-yield-surface solution when  is 

increased.  

1A

1A

1A

1A

 

In addition, as shown in Figure 5.23, corresponding to the smaller values of , the 

magnitudes of the internal variables which are accumulated in the inner yield surfaces are 

much larger. This implies that when  is chosen to be smaller, there is a larger amount of 

energy dissipated in the model during partial plasticity.  

1A

1A
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 Figure 5.23 Vertical internal variable magnitude at each level of plasticity 
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 Figure 5.24 Vertical responses using different values of n1 for the kernel function 

The effects of changing the exponential parameter  are shown in Figures 5.24 and 5.25. It 

can be seen that, by decreasing the magnitude of , the transition between purely elastic 

behaviour and fully plastic behaviour becomes more dramatic. The changes in the magnitudes 

1n

1n
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of the vertical internal variables accumulated in the inner yield surfaces, as shown in Figure 

5.25, confirm this remark.  

Figure 5.25 Vertical internal variable magnitude at each level of plasticity  
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Figure 5.26 Developments of the vertical bearing capacity V0 corresponding to the levels of plasticity 

 

Finally, it is necessary to explain the mechanism of the effects of the kernel functions on the 

solution of the multiple-yield-surface ISIS model. The kernel functions play the key role of 
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the kinematic hardening of the model.  They determine the velocities of the inner yield 

surfaces moving inside the outer-most yield surface. At the same plastic displacement during 

the elasto-plastic loading, if the velocities of the inner yield surfaces are faster the larger 

numbers of yield surfaces are activated. This means that the fraction of the plastic work stored 

in the Gibbs free energy function (the term ) increases when the velocities of the inner yield 

surfaces increase and vice versa. 

2g

 

From the numerical analyses for the caisson introduced in the preceding paragraphs of this 

section, the changes of the vertical bearing capacity , which represent the isotropic 

hardening corresponding to the number of yield surfaces activated have been shown in Figure 

5.26. It can be found that, once the inner yield surfaces move slower corresponding to smaller 

value of , the increase of  becomes faster. This implies that there is increasing 

dissipative energy coming from the expansion of the yield surfaces when they move slower. 

0V

1A 0V

 

Therefore, it can be seen out that by changing the parameters of the kernel functions, the ISIS 

model can be adjusted to capture the hardening curves for the foundation response on many 

different kinds of soil. In particular for the case of loose sand as tested in Villalobos et al. 

(2004a), the kernel functions for caisson footing can be used as shown in equations from Eq. 

(4.120) to Eq. (4.124).   
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5.6 Relationship between viscosity factor, time increment and loading step in rate-

dependent solution 

In the use of rate-dependent solutions to simulate the rate-independent behaviour, there are 

two matters that should be investigated: the stability and the accuracy of the numerical 

solutions.  

 

The matter of accuracy involves the difference between the rate-independent and the rate-

dependent solution. This depends on the rates of loading or the rates of displacements applied. 

The slower the rate of loading applied, the more accurate a solution can be obtained, which 

means that the solution using the rate-dependent behaviour can get closer to the solution using 

the rate-independent solution. In order to decrease the rate of loading, there are options such 

as increasing the time increments for a given load or decreasing the load increments for a 

given time. Decreasing the viscosity factor can be shown to have an effect equivalent to that 

of slowing down the solution.  

 

Since the numerical calculation is an approximate process, there always exist some numerical 

errors in the solution. These errors can accumulate either to make the solution divergent or to 

return the load point into the elastic zone, which causes the model response to be oscillate 

between elasto-plastic and purely elastic behaviour. These phenomena result in instability of 

the solution. A criterion to verify the stable condition before implementing the calculation is 

therefore required.    
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To satisfy the two criteria for accuracy and stability, a compromise with suitable choices of 

the time increments, load increments and the viscosity factor is required. Unfortunately, 

establishing rigorous mathematical derivations for these criteria for the sophisticated ISIS 

model is very difficult. Therefore, in the following expressions, there will not be an attempt to 

determine the universal criteria for the general cases. There are merely principal explanations 

for the choices of the parameters involved in the rate-dependent solution. The main purpose of 

this work is to give some advice in terms of the empirical formulations which come from the 

mathematical derivations for the simpler models.  

  

5.6.1 Accuracy and stability conditions of the simplest one-dimensional kinematic 

hardening rate-dependent model  

 

c  

 

 

 

  

H K σ  

µ

α  eε  

ε  
 

Figure 5.27 One-dimensional model 
 

Considering a very basic one-dimensional model using kinematic hardening as shown in 

Figure 5.27, the two scalar functions of the model can be expressed as follows: 

22

22 ασασ H
K

g +−−=                  (5.25) 
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2••

+= αµαcd                         (5.26) 

In which: K  is the elastic stiffness; H is the hardening factor; c is the threshold stress and µ  

is the viscosity factor. 

 

The force potential function can be defined as: 

2

2•
•

+=
αµαcz                          (5.27) 

The generalised stresses χ  and the dissipative generalised stresses χ  can be defined as: 

 ασ
α

χ Hg
−=

∂
∂

−=                                (5.28) 

••

• +⎟
⎠
⎞

⎜
⎝
⎛=

∂

∂
= αµα

α
χ sgncz                  (5.29) 

By using Ziegler’s orthogonality condition (Puzrin and Houlsby, 2001a), χχ = , the rate of 

changes of the internal variable α  can be derived as: 

µ

αασ
α

⎟
⎠
⎞

⎜
⎝
⎛−−

=

•

•
sgncH

                  (5.30) 

The stress-strain relationship can be written as follow: 

ασε +=
K

            (5.31) 

Then, in an elasto-plastic response with σ , σd  and  all positive, the incremental response 

can be expressed as follows: 

•

α

dtcHKKdd ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−=

µ
ασεσ           (5.32) 
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There are two separate analysed that are required. Firstly, the accuracy condition is considered 

for both stress-controlled and strain-controlled cases. Secondly, the stability of the calculation 

is investigated. 

 

Accuracy in stress-controlled problems  

In this case, the stress rate  can be assumed as constant. The stress can thus be explained as: 
•

σ

tc
•

+= σσ                                   (5.33) 

In which we assume that at the beginning of the plastic behaviour, when , the magnitude 

of the stress is equal to the threshold stress c . The incremental response in Eq. (5.32) can be 

rewritten as follows: 

0=t

⎟
⎠

⎞
⎜
⎝

⎛ −−⎟
⎠
⎞

⎜
⎝
⎛ +−=

•

cHtcK
dt
dK

dt
d ασ

µ
εσ           (5.34) 

From Eq. (5.31) combined with the definition of σ  in Eq. (5.33), the plastic strain can be 

expressed as follows: 

 
K

tc
•

−
−=

σεα                 (5.35) 

Substituting Eq. (5.35) into Eq. (5.34), the incremental response can be expressed as follows: 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ +
−−+−=

•
••

c
K

tcHtcK
dt
dK σεσ

µ
εσ       (5.36) 

Simplifying Eq. (5.36), one can get a first order ordinary differential equation with respect to 

ε  and t  as follows: 

c
K
H

K
t

K
HH

dt
d

µ
σσ

µ
ε

µ
ε

++⎟
⎠
⎞

⎜
⎝
⎛ ++=+

•
•

11    (5.37) 
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Integrating Eq. (5.37), the analytical rate-dependent solution using stress-control can be 

determined as: 

  ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++−⎟

⎠
⎞

⎜
⎝
⎛ +

=
−

•
tH

e
HK

cc
KH

HK µσµσε 12                      (5.38) 

If the viscosity factor becomes 0=µ , the Eq. (5.38) becomes the rate-independent solution 

( )
K
cc

KH
HK

+−⎟
⎠
⎞

⎜
⎝
⎛ +

= σε . Thus, the proportional errors between the rate-independent and 

rate-dependent solution can be expressed in the following form: 
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K
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HK
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−
•

σ

σµ µ12

                     (5.39) 

At large time the exponential term tends to zero Eq. (5.39) can be simplified as: 

( )
s

accacc f

K
HcH

dt
d

e ≤
⎟
⎠
⎞

⎜
⎝
⎛ +−

=
σσ

σµ
          (5.40) 

Where the proportional difference between the two solutions  must be smaller than an 

accuracy factor  proposed. 

acce

s
accf

 

It can be seen that if H is much smaller than K , the accuracy factor can be approximately 

( )cH
f s

acc −
≥

•

σ
σµ  (5.40bis). 
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Accuracy in strain-controlled problems 

In this case, the strain rate is assumed as constant and the strains can be expressed as: 

t
K
c •

+= εε                                 (5.41) 

(If again the time is measured from the onset of plasticity) 

 

Eq. (5.32) can be rewritten as follows: 

( )cHKK
dt
d

−−−=
•

ασ
µ

εσ                (5.42) 

From Eq. (5.31) combined with Eq. (5.41), the plastic strain can be expressed as follows: 

K

t
K
c

K

•

+
−=−=

ε
εσεα                (5.43) 

 Substituting Eq. (5.43) into Eq. (5.42), the incremental response can be rewritten as a first 

order ordinary differential equation as follows: 
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εε
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σ
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By integrating Eq. (5.44), the analytical expression of the stress-strain relationship can be 

written as: 
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            (5.45) 

By using a similar procedure to the stress-controlled solution, the proportional accuracy 

condition can be derived as: 

 ( ) ( )
e

accacc f
Hc

K
HK

dt
d

e ≤
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+
=

ε

εµ
           (5.46) 
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If H is much smaller than K , Eq. (5.46) simplifies to 
c

f e
acc

•

≥
εµ  (5.46bis). This means that 

for a given , it can be able to choose 
•

ε µ  to control the accuracy of the solution. 

 

Stability condition 

In order to consider the stability of the numerical solution, it is necessary to start from an 

initial state of the model with a certain error. Then, by considering the relation between the 

initial error and the next error after an increment of loading, the stability condition can be 

derived.   

 

At the initial state, it can be assumed that the model is at the stress level of 1σ , the total strain 

1ε  and the error  compared with the correct rate-dependent solution as shown in Figure 

5.28. In the correct solution, the yield function can be written as follows: 

1e

0=−−= cHy ασ                          (5.47) 

Therefore, the stress increment can be calculated as: 

ασ Hdd =                               (5.48) 

In the approximate solution, the yield function can be written as follows: 

 01 =−−−= ecHy ασ                  (5.49) 

The incremental response becomes: 

dtecHKKdd ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−−
−=

µ
ασ

εσ 1                               (5.50) 

In a correct solution, ασ Hdd = . Thus, the value of αHd  can be calculated as follows: 
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dtecHKKdHd ⎟⎟
⎠

⎞
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⎛ −−−
−=

µ
ασ

εα 1                     (5.51) 

This leads to the following derivation: 

 1e
dt
d

Kdt
HdcH ++−=−−

εµαµασ           (5.52) 

Substituting Eq. (5.52) into Eq. (5.32), the result can be: 

1eKdtHdd
µ

ασ −=                          (5.53) 

The error updated at the end of the increment can be: 

 ⎟⎟
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⎞
⎜⎜
⎝

⎛
−=−=−+=

µµ
ασ KdteeKdteHddee 111112            (5.54) 

The relation between  and can be chosen depending on the quality of the stress-train 

curve required. There are three possibilities which can be used as the guidance for the choices 

of the relations between them. 
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Figure 5.28 One-dimensional incremental response with its errors 

 

The first possibility is that if , the solution is divergent and the stress-strain curve will 

continue to diverge from the correct results. This is an unstable solution. The second 

12 ee >
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possibility is when 12 fee ≤ . In this case, the absolute value of  must be smaller than or 

equal to , multiplied by a factor of (where 

2e

1e f 1≤f ). By using this relation, the solution can 

converge smoothly if . Otherwise, if 02 >e 02 <e , the solution may oscillate slightly but can 

be quasi-stable. Figure 5.28 shows the shape of the stress-strain curve (the dashed line) 

compared with the correct solution curve (the continuous line) and the errors for the second 

possibility with . The third possibility is the case of 02 >e 12 fee −≤ . The solution in this case 

will oscillate and will either become stable more slowly than the second possibility or go 

unstable depending on how much  is smaller than 2e 1fe− . The more negative the value of 

, the more oscillation occurs in the solution.  2e

 

Whenever the value of  becomes negative, there will be oscillations occurring in the stress-

strain curve of the results. The reason is that, for a negative value of , after a load increment 

the load point will return into the elastic zone which means that, in the next increment, the 

behaviour of the model will become purely elastic. The model then shows a much stiffer 

response than the elasto-plastic response expected. The amplitudes of these oscillations 

depend on the ratio of 

2e

2e

1

2

e
e

. Therefore, if there is either too big a value of  chosen or a 

larger value of 

f

2e  compared with , the solution will become unstable and oscillation in 

the stress-strain curve will occur. 

1fe

  

In this simple model, the second case is used as the guideline to determine the stable 

condition. The following relation between  and , is therefore required: 1e 2e
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f
e
e

≤
1

2                              (5.55) 

By substituting Eq. (5.54) into Eq. (5.55), the stability condition can be found as: 

( )0.1,min1
1

1
1

fKdtf −
≤≤

+
µ                           (5.56) 

It should be noted that  is supposed as a positive error. Furthermore, if negative values of 

 are not accepted, i.e. 

1e

2e 0.1≥
Kdt
µ , the solution will be stable with every stress or strain 

increment applied.  

  

5.6.2 Accuracy and stability conditions for ISIS model 

For a much more sophisticated model such as ISIS, unfortunately, it is very difficult to derive 

explicit formulations for both accuracy and stability conditions. However, the characteristics 

of accuracy and stability described in the previous simple model can still exist in the ISIS 

model.  Therefore, based on the form of these criteria in the one-dimensional model in section 

5.6.1, empirical formulations for the accuracy and stability criteria are suggested for vertical 

component. 

 

In order to verify whether the solution is correct or not, the first condition which must be 

satisfied is that it must be stable to give reasonable results. Afterward, the accuracy of the 

solution will be considered. Therefore, in the following sections, the stability condition is 

addressed first.  

5.6.2.1 Stability conditions for ISIS model 
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Since it is too difficult to establish the explicit formulation for the stability condition, it could 

be easier to investigate the vertical component as the starting point.   

 

In the ISIS model, since the mixed kinematic-isotropic hardening is used, the stability 

condition must involve the vertical bearing capacity  which determines the isotropic 

hardening in the model behaviour.   

0V

 

Based on the expression of the rate-dependent ISIS model presented in chapter 3, an 

incremental plastic vertical displacement can be expressed as follows: 

dtyy
d

V
V χµ

α
∂
∂

=               (5.57) 

Thus, the viscosity factor µ  can be defined as follows: 

dty
d

y

VV χα
µ

∂
∂

=               (5.58) 

In Eq. (5.58), the value of the yield function  is dimensionless; the incremental plastic 

displacement has the dimension of length (m); the partial differential 

y

V

y
χ∂
∂  has the dimension 

of 1/force (1/N); the time increment has the dimension of time (s). Therefore, the viscosity 

must have the dimension of  (s/Nm). 

dt

 

Applying the form of the stability condition of the simple model in Eq. (5.56), the stability 

condition taken into account the dimension of µ  can be defined as follows: 

 V
stab

V f
t
CV

≥
δ

µ 2
0            (5.59) 
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In which  is the elastic factors corresponding to vertical components in the diagonal of the 

compliance matrix [  which is the inversed matrix of the elastic stiffness matrix [ ]. 

VC

]C K

   

After a series of tests, the empirical stability factor  for the rate-dependent multiple-yield-

surface ISIS model is suggested as 7.0 i.e. 

V
stabf

0.7
2

0 ≥
t
CV V

δ
µ

 (5.59bis) 

 

It should be noted that this value of the stability factor is just valid with the accuracy of the 

solution of about 1%. In the vertical component, this accuracy can be seen by the ratio 

between V  and  i.e. 0V 01.0
0

0 ≅
−
V

VV
. This is because the value of the yield function that 

is not required to be zero in the rate-dependent solution increases with almost squares of the 

error 

y

0V
V− 0V

. This means that if the error is too large, the increase of y will be much faster 

than that of the error. This leads to the change of displacement rate, which is related to the 

differential of y  with respect to Vχ . Meanwhile the stability condition was based on a 

constant strain rate in the simple model or constant displacement rate in the ISIS model. 

Therefore, the error 
0

0

V
VV −

 must be kept small enough to ensure that the change of does 

not lead to the big change of the displacement rate. 

y

 

For other components, the horizontal and rotational components, the stability condition can be 

chosen in the similar form to the Eq. (5.59) corresponding to their stiffness factors.  
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5.6.2.2 Accuracy conditions for ISIS model 

In addressing the accuracy conditions, it is impossible to integrate the differential equations of 

the force-displacement relationship analytically in either the rate-dependent or rate-

independent solution cases. The only way that the accuracy of the solution can be determined 

is by repeating the rate-dependent solution with different parameters (time increments, load 

increments or displacement increments and viscosity factor) and observing the difference 

between solutions. Once there is only a small difference between the two trials, the solution 

can be considered as a correct answer.     

 

Based on the form of either Eq. (5.40bis) or Eq. (5.46bis), the formulation of the accuracy 

criterion can be proposed in the ISIS model with the simple forms as follows: 

 

In the case of a load-controlled solution: 

i
sacc

i
i f

K
V

_
0 ≤

•

σµ                       (5.60) 

In the case of a displacement-controlled solution:    

i
eacci fV _0 ≤

•

εµ                    (5.61) 

where iσ  represents the force components ( )3232 ,,,,, MMQHHV  and  is the 

corresponding elastic stiffness factor;

iK

iε  represents the displacement components 

( )3232 ,,,,, θθωuuw ;   and  are the accuracy factors in the load-control and 

displacement-control cases corresponding to each 

i
saccf _

i
eaccf _

iσ  and iε . It is flexible to choose the 
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values for these accuracy factors. This depends on how much of the accuracy that people need 

for the solution. 

 

5.6.3 Discussion and advice for the use of rate-dependent solution  

It is clear that the smaller the accuracy factors chosen, the more accurate results are obtained. 

However, the penalty of choosing the small accuracy factors is that, in order to keep the 

solution stable, the number of increments must be increased. For instance, as shown in Eq. 

(5.61), at a certain constant displacement rate, the viscosity factor µ  must be decreased to 

make the solution more accurate. This leads to the decrease of the term in the right hand side 

of Eq. (5.59) and may cause the violation of this inequality. Thus, in order to satisfy this 

inequality, the value of the time increment dt  must be decreased. This means that the number 

of displacement increments must be increased. Consequently, the calculation time can become 

longer. 

 

Since the accuracy and stability criteria depend on the elastic stiffness factors, time 

increments, load increments, viscosity factor and the vertical bearing capacity of the footing, 

there is a common procedure proposed to make an input data file which can satisfy the 

accuracy and stability criterion without the need for running so many trials.    

 

Firstly, some trial values of the load increments, the time increments and the viscosity factor 

are used to find a stable solution which is not required to be accurate. This process is 

implemented in case of applying purely vertical load (pushing installation). The stability 

factor in Eq. (5.59bis) can be used as the starting point.   
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Secondly, the difference between V  and  is considered as the error. If this error is lager 

than 1% then either the viscosity factor or the number of increments can be changed to get 

more accurate solution. During this process, the stability condition in Eq (5.59bis) must be 

satisfied.  

0V

 

Thirdly, after finishing the installation process with reasonable precision, the number of 

increments and either loading rates or displacement rates in other components can be chosen 

proportionally with the ratio between their elastic stiffness factors and the vertical elastic 

stiffness factor.    

 

5.7 Concluding remarks 

In this chapter, the explanations of the following matters have been discussed: 

- The shapes of the yield surfaces and their shape parameters; 

- The association factors and the suitable ranges of their magnitude; 

- The initial distribution of the yield surfaces in force space; 

- The kernel functions and their effects on the hardening process; and 

- The general ideas and empirical advice for determining suitable input data for 

the use of the rate-dependent solution. 

From the above issues, the model parameters can be selected reasonably for the application of 

the model in practice.  
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CHAPTER 6 

MODEL APPLICATIONS 

 

6.1 Introduction 

This chapter presents numerical applications of the multiple-yield-surface rate-dependent ISIS 

model to predict the response of caisson foundations. There are two foundation options 

considered: a monopod caisson and a quadruped structure with four caissons. Three kinds of 

soil are used for these analyses: sand, soft clay and stiff clay. The numerical results are 

compared with the results of finite element analyses (Fugro, 2004) which determined the 

failure loads. In addition, the influences of the model parameters on the solution are 

addressed.  

LRP

t 

D

 

 

L  

 

 

 Figure 6.1 Outline of caissons   

 Table 6.1 Dimensions of caissons (after Fugro, 2004) 

Case Monopod Quadruped 

External diameter D (m) 19.0 6.0 

Length of skirt L (m) 9.5 4.0 

Wall thickness t (mm) 42.5 20.0 
 

The outline and the dimensions of both monopod and quadruped caissons are presented in 

Figure 6.1 and Table 6.1.  The soil properties are provided in Table 6.2. 
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Table 6.2 Soil properties (after Fugro, 2004) 

Case Sand Soft clay Stiff clay 

Effective unit weight, γ’ (kN/m3) 10.0 10.0 10.0 

Shear modulus, E (MPa) 25.0 (3.0 + 0.4 (z/m)) 
G/su = 200 

30.0 
G/su = 200 

Poisson’s ratio, ν 0.2 0.49 0.49 

Angle of friction, φ’ (o) 35 - - 

Undrained strength, su (kPa) - (15.0 + 2.0(z/m)) 150.0 
 

In this study, the shear modulus G will be determined using the formulation presented in Eq. 

(2.10) (Doherty et al., 2004). Values of the exponential factor α are given as 0.0, 0.5 and 0.0 

for sand, stiff clay and soft clay respectively. Values of the coefficient GR are given as 25.0 

MPa and 30.0 MPa for sand and stiff clay. For soft clay, GR are given as 6.8 MPa in the case 

of monopod caisson and 4.6 MPa in the case of quadruped caisson. 

 

Since the monopod caisson is a single foundation, it requires an analysis of a single loading 

combination for a given load case. However, the quadruped caisson may require several 

analyses which depend on the relative position of the caisson in the quadruped group for a 

given load direction. For a given load case, the different caissons are subjected to different 

load combinations. In this chapter, the two extreme loading combinations are applied for the 

analysis of the quadruped caisson: a windward caisson subjected to tensile loads and a 

leeward caisson to compression loads. 

 

The extreme environmental conditions represented by the loading combinations in Table 6.3 

are represented by planar loading. These data are provided in the reports of Fugro (2004). The 

strategies of the loading process for the two kinds of caisson foundation are presented below: 
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(i) Installation to full depth using suction; 

(ii) Load to the vertical load (load point A) as given in Table 6.3; 

(iii) Apply the load combination following the linear load path passing through the 

load point B (see Table 6.3) to failure load.   

Table 6.3 Load cases (after Fugro, 2004) 

Case Monopod Quadruped - 
leeward 

Quadruped - 
windward 

Vertical load, V (kN) 8,772 1,987 1,987 

Horizontal load, H (kN) 0 0 0 

Load point A 

Momnet, M (kNm) 0 0 0 

Vertical load, V (kN) 8,772 4,729 -739 

Horizontal load, H (kN) 3,196 1,927 1,591 

Load point B 

Moment, M (kNm) 100,000 1,445 1,817 
 

In the ISIS model, there are two ways to estimate the tensile capacity  of the caisson. The 

first way is expressing the tensile capacity as a fraction of the vertical bearing capacity . 

The second way is calculating the tensile capacity on the basis of friction on the side of the 

caisson. In the examples of this chapter, the first way is used. Values of  are given in Table 

6.4. 

tV

0V

0t

 

The failure point of the solution can be determined in two cases: (1) the numerical solution 

fails or (2) the plastic displacement of the foundation is larger than the corresponding limit 

value defined in the model. The limitations of the displacements in the model are defined as 

0.01R(m) for horizontal displacement. 
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6.2 Analysis of a monopod caisson 

This section presents the analysis of a monopod caisson in three different kinds of soil. Figure 

6.2 shows the load path for this case. During the application of the horizontal and moment 

loads, the vertical load that represents the self-weight of the wind turbine is kept constant. The 

model parameters are as given in Table 6.3.    

 

 

 

 

 

   

Table 6.4 Model parameters for the analysis of the monopod caisson 

Model parameters (multiple-yield-surface ISIS model) 
aV1 aV2 aH aM aQ

Association factors 0.297 (sand) 
0.645 (clay) 

1.0 (sand) 
0.645 (clay) 

0.7 (sand) 
1.0 (clay) 

0.7 (sand) 
1.0 (clay) 

0.7 (sand) 
1.0 (clay) 

e1 -0.2 (for sand); 0.518 (for clay) 
e2 0.0 (for sand); -1.18 (for clay) 
t0 0.05 (for sand); 0.1 (for soft clay); 0.4 (for stiff clay) 
m0 0.15 
h0 0.337 
q0 0.2 
β1 0.99 

 

Shape factors of yield 
surface 

β2 0.99 
Viscosity µ  0.002 Parameters for the rate-

dependent solution Time increment dt Changed with the load incerements 
Number of yield surfaces 20 yield surfaces used 
Bell width (wbell) (m) 0.012 

 

6.2.1 Installation 

In this example, the installation is implemented by using the suction technique. Figure 6.3 

shows the initial penetration of the caisson under its self-weight and the installation during the 

Figure 6.2 Load paths applied for the monopod caisson 

B 

A 
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0 
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Load stage 2 

Load stage 1 

Deviation loadings until 
failure at V = 8.772 MN 

A 

M (MNm) 

H (MN) 
0 3.196 

Load stage 2 1000.0 B 

Deviation loadings until 
failure at V = 8.772 MN 
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suction process. In the soft clay, the caisson penetrates to a depth which is almost two third of 

the length of the caisson under its own weight. In the case of stronger soil (stiff clay and 

sand), the initial penetration of the caisson is much smaller. 
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 Figure 6.3 Vertical load during the suction installation of monopod caisson  
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Figure 6.4 Suction pressures needed to install the monopod caisson 
                   to the full depth in stiff clay  

After the self-weight penetration is finished, suction pressures are applied to install the 

caisson to the full depth. In the case of sand, the suction pressure plays the role of an 
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additional vertical load and also causes the decrease of the effective stress of the soil inside 

the caisson, which leads to the decrease of the strength of the soil at the tip level of the 

caisson. In case of clay, since the permeability of clay is low, the suction pressure merely 

plays the role of the additional vertical load without any effect on the soil strength. This leads 

to the fact that installing the caisson by suction in clay may be harder than in sand, especially 

in the case of strong soil such as stiff clay. Figure 6.4 shows the prediction of the suction 

pressure needed to install the monopod caisson to the full penetration depth (L = 9.5m) in stiff 

clay. It can be found that in order to get to the full depth, a very high pressure must be applied 

at the end of the process, up to approximately 1.0 MPa. This would not be a possible value in 

practice at shallow water depth. Therefore, in this analysis, the caisson in the case of stiff clay 

is installed to a smaller depth (which is approximately 99% of the full depth) to avoid 

unrealistic behaviour.     
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Figure 6.5 Suction installation of monopod caisson  

 

Figure 6.5 shows the suction pressures required to install the caisson to the full depth in sand, 

soft clay and to 9.41m-depth in stiff clay. Again, it can be seen that in case of soft clay, the 
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suction pressure must be increased dramatically at a few centimetres before the full depth.  

The precise position at which this increase occurs depends on the “bell width” parameter, 

which in part represents effects of heave of the soil within the caisson. 

 

6.2.2 Horizontal and rotational responses 

Figure 6.6 and 6.7 show the horizontal and rotational responses of the monopod caisson in all 

three cases of soil. In these figures, the curves of the caisson in stiff clay and soft clay are 

stopped at clearly defined failure load points. In the case of caisson in sand, the failure occurs 

when the horizontal displacement reaches the limiting displacement. Details of the failure 

loads are presented in Table 6.5.   

 

It can be seen that the horizontal response of the caisson in stiff clay is stiffer than that in the 

case of sand and soft clay. In both components (horizontal and moment responses), the curves 

representing the behaviour of the caisson in sand are in the middle between the stiff clay and 

soft clay (at the beginning of the loading). 

  

Figure 6.8 shows the vertical movements of the caisson under the horizontal and moment 

loading. In the cases of sand and stiff clay, the caisson moves slightly upward. In the case of 

soft clay, the upward movement of the caisson is larger than other cases.  

 

The fact that the caisson lifts in the case of soft clay seems unreasonable. This is because the 

parallel points on the yield surfaces are not located correctly by the model parameters. In fact, 

the positions of the parallel points in the case of clay in these analyses are based on that in the 
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cases of circular footing and spudcan (Model B). This needs to be corrected by using the 

additional experimental observations for clay, which are not available yet.  
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Figure 6.6 Horizontal response of monopod caisson  
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Figure 6.7 Rotational response of monopod caisson 
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Figure 6.8 Vertical movement of monopod caisson  
      (until failure in soft clay)   

6.2.3 Numerical results 

Table 6.5 shows the failure load values of the monopod caisson in all three kinds of soil. The 

results of finite element analysis and extreme environmental loads (Fugro, 2004) are also 

given in Table 6.5 for comparison.  

Table 6.5 ISIS results compared with Finite Element analysis (after Fugro, 2004) 

Loads Monopod 
caisson 

Soil Profile 
Vertical 
(MN) 

Horizontal 
(MN) 

Moment 
(MNm) 

Percentage 
environmental 

load 

Notes 

Sand 8.772 15.873 496.67 496.67 B 
Soft clay 8.772 3.467 108.50 108.50 A 

Failure 
values (ISIS) 

Stiff clay 8.772 7.127 223.00 223.00 A 
Sand 8.800 15.400 481.50 481.6  

Soft clay 8.800 3.200 99.00 99.3  
Failure 

values (FE) 
Stiff clay 8.800 25.500 797.00 797.2  

Point A 8.772 0.000 0.000   
Point B 8.772 3.196 100.0   

Note A: clearly defined failure (case 1) 

Note B: failure considered as horizontal plastic displacement u = 0.01R (case 2) 

As shown in Table 6.4, the FE analyses give significantly higher failure values in the case of 

stiff clay. Meanwhile, in the case of soft clay, the ISIS failure loads are larger than FE values. 

In the case of sand, the ISIS model gives failure values which are close to the FE results. The 

differences between the two solutions may be due to the following points: 
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(i) In the FE analyses, the footings were assumed to be in place without consideration 

of the installation process. However, the method of installation can significantly 

affect the foundation response during the horizontal and moment loadings. 

Different methods can cause different stress histories in the soil, and different 

responses of the footing after installation are therefore expected. This matter will 

be discussed in more detail in section 6.4. 

(ii)  The ISIS solution is rather sensitive to the choice of the parameters. In particular, 

the tensile capacity t0 (which represents the tensile capacity of the footing) has 

strong effect on the results, especially in cases of applying small vertical loads. 

Detailed expressions will be given in section 6.5. 

(iii) In the cases of soft clay and stiff clay, the shape parameters of the yield function 

have the same values as those for sand since there is limited experimental data 

available for clay. This can cause some inaccuracy in the ISIS solution. 

(iv) In stiff clay, according to the ISIS analysis, it is difficult to install the caisson to 

the full depth by suction because of the required high pressure. The analyses of the 

monopod caisson in stiff clay have been implemented at 99% of its depth. This 

means that the V0 value, which determines the sizes of yield surfaces, is smaller 

than that at the full depth. This leads to the smaller failure loads obtained. The 

calculation principle of this matter is similar to that of the heave inside the caisson 

discussed in section 6.6. 

(v) The finite element analyses may themselves be subject to errors and inaccuracies.  
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6.3 Analysis of a quadruped caisson 

This section presents the analysis of a quadruped caisson in the two extreme load cases of a 

leeward leg and a windward leg. Figures 6.9 and 6.10 show the load paths of these examples. 

The corresponding extreme environmental loads are given in Table 6.3 and shown as point B 

in Figures 6.9 and 6.10.  

 

The dimensions of the caisson are provided in Table 6.1. The model parameters used in this 

example are the same as in the analysis of the monopod caisson (see Table 6.4).    
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 Figure 6.9 Load paths applied for the quadruped caisson – leeward leg 
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Figure 6.10 Load paths applied for the quadruped caisson – windward leg  
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6.3.1 Installation  

As with the monopod caisson, the analysis in this section also commences with the prediction 

of the installation process. Figure 6.11 shows the suction pressures required to install the 

caisson to its full depth in sand and stiff clay. Since the suction process of the caisson in soft 

clay has a different scale compared with that in the case of sand and stiff clay, it is presented 

in a separate figure (Figure 6.12). 

 

Again, in the case of stiff clay, the suction pressure required increases dramatically near the 

full penetration depth. Thus, the analysis for this case is implemented at a slightly smaller 

depth at which the suction process is stopped (see Figure 6.11). The approximate depth is 

3.96m (99% of the full value). In the case of soft clay, the caisson penetrates to almost the full 

depth by its self-weight. However, in order to complete the installation, it still needs a further 

suction pressure of approximately 170 kPa. In contrast, in the case of sand, since the initial 

penetration by the self-weight is rather big, the suction pressure needed to assist the 

installation is small. 
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Figure 6.11 Suction pressure needed for the installation of the quadruped-leeward 
                  caisson in sand and stiff clay 
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Figure 6.12 Suction pressure needed for the installation of the quadruped-leeward caisson  
                    in soft clay  

6.3.2 Horizontal and rotational responses 

This section presents the horizontal and rotational responses of the quadruped caisson in both 

cases: the leeward-leg load case and the windward-leg load case.  

 

Quadruped caisson at leeward leg  

Figures 6.13 and 6.14 show the horizontal and rotational responses of the caisson. Figure 6.15 

shows the further vertical displacement of the caisson under the combined loading. Figure 

6.16 shows the vertical movement versus rotation displacement of the caisson during the 

loading process. 

 

In all three kinds of soil, the caisson responses under the leeward-leg load case fail as the 

plastic displacements become larger than the limit values. In this particular example, the 

horizontal displacements are larger than the corresponding limit value, which is 0.03m 

(0.01R). 
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As shown Figure 6.15, the vertical movements of the caisson, regardless of the soil profile, 

are downward. This means that under the leeward load case, the caisson is penetrating into the 

soil.  
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Figure 6.13 Horizontal response of the quadruped-leeward caisson until failure  
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 Figure 6.14 Rotational response of the quadruped-leeward caisson until failure 
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 Figure 6.15 Vertical displacement of the quadruped-leeward caisson 
                     during compressive loading   
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Figure 6.16 Movement of the quadruped-leeward caisson 
                     during compressive loading    

In all the components, the analysis of the caisson in stiff clay, which is the strongest soil in 

this example, gives much smaller failure loads than in the case of sand. This contradiction is 

due to the effect of the incomplete penetration. The value of the vertical bearing capacity , 

which affects the plastic response, increases quickly in the area near the full penetration 

depth. The model is therefore very sensitive to the depth of caisson near the full penetration 

position. Consequently, the 1% of the depth (0.04m) which has not been reached causes a 

0V
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significant decrease of the footing capacity. This matter is discussed in more detail in section 

6.6.  

 

Quadruped caisson at windward leg 

As shown in Figure 6.10, the quadruped caisson at the windward leg is subjected to a 

combination of a horizontal load, a moment and a tensile vertical load. Figures 6.17, 6.18 and 

6.19 show the horizontal, rotational and vertical responses of the caisson in all three kinds of 

soil.  

 

In this load case, the analyses of the caisson in sand and soft clay fail when the horizontal 

displacements become larger than the limit values (failure case (2)). In stiff clay, the analysis 

is terminated since the numerical solution fails, which implies the failure of the foundations 

(failure case (1)).   
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Figure 6.17 Horizontal response of the quadruped-windward caisson until failure 
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As shown in Figure 6.19, the caisson is pulled out of the soil. In the case of stiff clay, the 

vertical response is much stiffer than in other soil profiles. The upward displacement at failure 

in the case of soft clay is largest. 
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Figure 6.18 Rotational response of the quadruped-windward caisson until failure 
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Figure 6.19 Vertical displacement of the quadruped-windward caisson 
                    during tensile loading    

In the case of caisson in soft clay, the response shows the failure point at a positive value of 

vertical load. This means that in soft clay, the caisson cannot withstand the tensile vertical 
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force. This matter depends on the value of the tensile capacity factor . With a larger , the 

model response can show a small tensile capacity of the caisson. 

0t 0t
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Figure 6.20 Movement of the quadruped-windward caisson 
                    during tensile loading    

Figure 6.20 shows the vertical movement of the caisson versus the rotational displacement. It 

can be seen that the movement of the caisson in the case of stiff clay has the similar shape as 

in the case of soft clay but much smaller. 

 

6.3.3 Numerical results  

This section presents the numerical results showing the failure loads of the foundation in both 

leeward and windward load cases. The results of ISIS are compared with FE analysis results 

reported in Fugro (2004). Tables 6.6 and 6.7 show the results for the leeward load case and 

windward load case respectively. 

 

In the leeward load case, the ISIS model gives failure values, which are close to the FE results 

in the case of sand. This is similar to the case of the monopod caisson in sand. The model 
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parameters used in this study are from experiments with the caisson at a ratio of V / , which 

is in the range from 0.0 to 0.2 (Villalobos et al., 2003b, 2004a and 2004b). Therefore, among 

these examples, the failure loads predicted in the cases of monopod and quadruped-leeward 

caissons in sand can be expected to be the most reliable results.  In the cases of stiff clay and 

soft clay, the ISIS results are approximately one half of the FE results. This means that the 

ISIS solution gives much more conservative results.  

0V

Table 6.6 ISIS results compared with Finite Element analysis (after Fugro, 2004) – quadruped caisson – leeward 

leg 

Loads Quadruped 
caisson 

(leeward) 

Soil Profile 
Vertical 
(MN) 

Horizontal 
(MN) 

Moment 
(MNm) 

Percentage 
environmental 

load 

Notes 

Sand 12.406 7.322 5.491 380.0 B 
Soft clay 3.852 1.310 0.982 67.98 B 

Failure 
values (ISIS) 

Stiff clay 7.443 3.835 2.876 199.03 B 
Sand 17.100 10.600 7.900 550.8  

Soft clay 6.200 3.000 2.200 154.3  
Failure 

values (FE) 
Stiff clay 20.200 12.800 9.600 664.2  

Point A 1.987 0.000 0.000   
Point B 4.729 1.927 1.445   

Note A: clearly defined failure (case 1) 

Note B: failure considered as horizontal plastic displacement u = 0.01R (case 2) 

 

Table 6.7 ISIS results compared with Finite Element analysis (after Fugro, 2004) – quadruped caisson – 

windward leg 

Loads Quadruped 
caisson 

(windward) 

Soil Profile 
Vertical 
(MN) 

Horizontal 
(MN) 

Moment 
(MNm) 

Percentage 
environmental 

load 

Notes 

Sand -0.873 1.669 1.906 113.3 B 
Soft clay   0.378 0.938 1.072 62.6 B 

Failure 
values (ISIS) 

Stiff clay -1.965 2.307 2.634 146.9 A 
Sand -3.700 3.300 3.800 208.3  

Soft clay -1.500 2.000 2.300 127.4  
Failure 

values (FE) 
Stiff clay -7.800 5.700 6.500 358.8  

Point A 1.978 0.000 0.000   
Point B -0.739 1.591 1.817   

Note A: clearly defined failure (case 1) 

Note B: failure considered as horizontal plastic displacement u = 0.01R (case 2) 
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In the windward load case, the differences between the results of ISIS and FE are 

approximately 50%. Again, the ISIS results are sensitive to the tensile capacity factor  as a 

result of the decreasing vertical load. 

0t

 

6.4 Effect of the simulation of suction installation on the solution 

It is generally accepted that soils possessing different stress histories can exhibit different 

behaviours. In the case of caisson foundations, the installation of the caisson creates a stress 

history in the soil before the serviceability condition is analysed. In the ISIS model, two 

installation methods are mentioned: pushing installation and suction installation. This section 

presents the effect of these methods on the model response when they are taken into account. 

 

Figure 6.21 shows the yielding process during the suction installation. Firstly, from the initial 

position (Figure 6.21a) which implies that there is no yield surface activated, the caisson is 

installed by its self-weight. This process usually reaches the full plastic state quickly (Figure 

6.21b). This means that all the yield surfaces have been activated. After finishing the self-

weight penetration, the suction is applied. During the suction process, the vertical bearing 

capacity , which determines the sizes of the yield surfaces, does not increase with depth 

because of the influence of suction pressure. Thus the yield surfaces do not expand. Once the 

caisson reaches the full penetration depth, the suction is stopped. In the ISIS model, this leads 

to the fact that the foundation is returned to the “original” state at which there is no yield 

surface activated. The  which has been a function of both depth and suction pressure is 

immediately returned to be a function of depth only and its current value is the value of the 

bearing capacity of the caisson at the full depth (without taking into account the suction). This 

0V

0V
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sudden change of  from a small constant value during the suction process to a great value 

of the vertical bearing capacity of the caisson at the full depth leads to the instantaneous 

redistribution of the yield surfaces. Figure 6.21c shows the redistribution of the yield surfaces 

after the suction is switched off.  The relative position of the load point with respect to the 

positions of the yield surfaces is therefore changed. From being the intersection of the yield 

surface, the load point is now inside the yield surfaces. This means that all the yield surfaces 

are inactivate. Consequently, in the next stage of loading, the model response will start with 

elastic behaviour.      

0V

 

Figure 6.22 shows the yielding process during pushed installation. In this case, after the 

installation is completed, there must be an unloading process to return the vertical load to the 

self-weight of the caisson. During the pushing installation, kinematic hardening of the yield 

surfaces occurs. The yield surfaces move with the increase of the  values. In the unloading 

process, since the self-weight is rather small compared with the vertical bearing capacity , 

some inner yield surfaces are reactivated (see Figure 6.22c) and cause a slight uplift 

displacement of the footing as well as the contraction of the yield surfaces. This means that in 

the next stage of loading, the model response will start with the elasto-plastic behaviour. 

0V
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It is clear that the response of the caisson installed by suction is different to that of the caisson 

installed by pushing. Using the formulation of the ISIS model, the caisson installed by suction 

may give a stiffer response.  This may, however, be unrealistic as experiments show that 

suction installation may give a more flexible response (Villalobos et al., 2005). 

 

6 -  21



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V 

Figure 6.21 Yielding process during suction installation  
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Figures 6.23, 6.24 and 6.25 show the comparison between the responses of the monopod 

caisson in sand installed by pushing and that installed by suction. It can be seen that the 

response in the case using suction installation is much stiffer than that using pushing 

installation. In Figure 6.25, the difference between the vertical displacements at the beginning 

is caused by the softening during the unloading process of the caisson installed by pushing. 
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Figure 6.23 Effect of the installation method to the horizontal response  
                    of the monopod caisson in sand (t0 = 0.05) 
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 Figure 6.24 Effect of the installation method to the rotational response  
                    of the monopod caisson in sand (t0 = 0.05) 
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Figure 6.25 Effect of the installation method to the vertical movement  
                of the monopod caisson in sand (t0 = 0.05)  

The above discussion about the effect of installation method on the foundation response as far 

as the theory is concerned. This feature needs further experimental work. A more rational way 

of distributing the yield surfaces at the end of suction installation may be required.  

 

6.5 Effect of the tensile capacity factor on the caisson response 

This section presents the influence of the tensile capacity factor  on the model response. 

Two main effects of  are illustrated:  

0t

0t

(i) Effect on the model response after installation; and  

(ii) Effect on the difference between the model response using suction installation and 

that using pushing installation.  

 

(i) Effect on the model response after installation 

By using the model parameters, the geometry and the load case of the monopod caisson 

presented in section 6.2, another numerical example is implemented with a different value of 

tensile capacity factor : . 0t 1.00 =t
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Figures 6.26 and 6.27 show the comparison between the two results in horizontal and moment 

responses. It is clear that with the larger , the model response become stiffer and the failure 

load values also become much higher. As shown in Figure 6.28, with a small  the yield 

surfaces, especially at the small value of vertical load, are smaller than in the case of the large 

. This means that in the next loading stage using the same decreasing vertical load, the load 

point in the case of small will touch the yield surfaces sooner. Therefore the elasto-plastic 

response of the model becomes softer. 

0t

0t

0t

0t

 

The effect of  on the solution essentially occurs in the negative and small positive part on 

the V-axis. If the next loading stage (after the installation) is implemented with increasing 

vertical load, the effect of  on the solution can be reduced. This is because the sizes of the 

parts of the yield surfaces in the large value range of V-axis are not too sensitive to the change 

of .   

0t

0t

0t

 

05.00 =t  
1.00 =t  

Figure 6.26 Effect of the tensile capacity factor t0 to the horizontal r
              

esponse 
     of the monopod caisson in sand
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Figure 6. 27 Effect of the tensile capacity factor t0 to the rotational r
                     of the monopod caisson in sand 

esponse 
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Figure 6.28 System of five yield surfaces in a full plastic vertical loading 
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(ii) Effect on the difference between the model response using suction installation and that 

using pushing installation 

In this section, another example using the data of the monopod caisson in section 6.2 is 

analysed but with a larger value of  ( 10t .00 =t ). The two installation methods, suction and 

pushing, are used for comparison.  Figures 6.29 and 6.30 show the comparison between the 

model response after the suction installation and that after the pushing installation. 

 

Comparing the results in section 6.4 (Figures 6.23 and 6.24), the difference between the 

response of the caisson installed by suction and that by pushing on the solution is decreased 

when the value of the tensile capacity  is increased. In fact, when  increases, the yield 

surfaces become larger and the unloading process causes fewer yield surfaces to be activated. 

This means that the response of the model in the next loading stage will get closer to the 

elastic behaviour, which is the response in the case using suction installation. 

0t 0t
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Figure 6.29 Effect of the installation method to the horizontal response  
                    of the monopod caisson in sand (t0 = 0.1)  
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 Figure 6.30 Effect of the installation method to the rotational response  
                    of the monopod caisson in sand (t0 = 0.1) 

 

6.6 Effect of the heave on the caisson response 

In the numerical applications presented in sections 6.2 and 6.3, in order to compare with the 

FE results (which have not considered the effect of the heave inside the caisson) the ISIS 

solution takes into account a very small heave, represented by a very small bell width. 

However, the heave inside the caisson always exists and it may give serious problems for the 

design of caisson foundations in both the installation and the serviceability condition. 

 

In section 3.5.1, the calculation procedure for the vertical bearing capacity  taking into 

account the heave through a bell function with a certain bell width has been presented. In this 

current section, the effect of the heave represented by the bell width on the real foundation 

behaviour is illustrated numerically by an example.    

0V
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A monopod caisson is used with the loads and the model parameters presented in section 6.2 

(see Table 6.2) but with different  and bell width values. In this section the tensile capacity 

 is 0.1. 

0t

0t

 

From the experimental observations by Villalobos et al. (2003a) for model test scale in loose 

sand as well as the results from the centrifugal tests of Manh Tran (University of Western 

Australia, 2004 – personal correspondence) in dense sand, the heave inside the caisson is 

approximately 8% to 10% the length of the caisson. Therefore, in this example, the 

penetration depth expected is approximately 8.7m. The bell width is chosen as 0.7m to give a 

vertical bearing capacity curve which looks similar to the test observations. Figure 6.31 shows 

the variations of  corresponding to the two different values of the bell width.  0V
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Figure 6.31 Variation of V0 corresponding to different bell width  

 

As mentioned above, the installation of the caisson in the case using the large bell width 

(0.7m) is stopped at the depth 8.7m (91.5% the full depth). At this depth, the caisson is 

predicted that it cannot penetrate further because of the heave. In the case using small bell 
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width (0.012m), the caisson is installed to the full depth. Comparison between these two cases 

is presented to show how much the heave affects the caisson behaviour. 

  

In the case when the heave is not taken into account (small value of bell width), the caisson 

can be installed to the full penetration depth corresponding to a very high value of . Taking 

into account the heave, the installation must be stopped at a smaller depth (partial penetration) 

and the value of  is much lower than in the previous case. This leads to a softer behaviour 

of the caisson when subjected to the load case of the serviceability condition. Figures 6.32 and 

6.33 show the illustration for this feature in horizontal and rotational responses.  

0V
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It can be found that when the heave is taken into account, the failure loads of the foundation 

become much smaller than the results of the analysis without the heave. Thus, in the design of 

a caisson foundation, it is necessary to pay attention to this matter to avoid the overestimation 

of the foundation capacity. 
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Figure 6.32 Horizontal response of the monopod caisson after installation 
                    with different bell width 
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Figure 6.33 Rotational response of the monopod caisson after installation 
                    with different bell width 

 

 

6.7 Confirmation for cyclic behaviour 

In order to check the whether the model still has the ability to capture the cyclic behaviour in 

real load cases with real caisson footings, two examples are presented in this section: (i) a 

monopod caisson under cyclic loading and (ii) a quadruped caisson under vertical tension-

compression loading.  

 

(i) Monopod caisson under cyclic loading 

A numerical example is implemented to analyse the monopod caisson presented in section 

6.2. A cyclic loading based on the environmental loading given in Table 6.3 is applied in this 

example. Model parameters, suction pressures and loading process are given in Table 6.8. 
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Table 6.8 Input data – monopod caisson 

Model parameters (for ISIS model) 
aV1 aV2 aH aM aQ

Association factors 0.297 1.0 0.7 0.7 0.7 
e1 -0.2 
e2 0.0 
t0 0.1 
m0 0.15 
h0 0.337 
q0 0.2 
β1 0.99 

 

Shape factors of yield surface 

β2 0.99 
Viscosity µ  0.002 Parameters for the rate-

dependent solution Time increment dt Changed with the load incerements 
Number of yield surfaces 20 yield surfaces used 
Bell width (wbell) (m) 0.7 

Installation with suction 
Load 
stage 

Suction 
pressure 

(kPa) 

V  
(MN) 

H2
(MN) 

H3
(MN) 

Q 
(MNm) 

M2
(MNm) 

M3
(MNm) 

Time 
increment 
dt (106) 

1 0.0 0.0 to 0.1 0.0  0.0 0.0 0.0 0.0 10-3

2 0.0 0.1 to 1.0 0.0  0.0 0.0 0.0 0.0 1.0 
3 0.0 1.0 to 8.772 0.0  0.0 0.0 0.0 0.0 102

4 0.0 to 
20.0 

8.772 0.0  0.0 0.0 0.0 0.0 102

5 20.0 to 
200.0 

8.772 0.0  0.0 0.0 0.0 0.0 102

Application of  1 cycle of horizontal and moment loadings 
6 0.0 8.772 0.0 0.0 to 3.1960 0.0 0.0 to 100.0 0.0 5000.0 
7 0.0 8.772 0.0 3.1960 to 

 -3.8352 
0.0 100.0 to -120.0 0.0 9000.0 

8 0.0 8.772 0.0 -3.8352 to 
4.1548 

0.0 -120.0 to 130.0 0.0 11000.0 

9 0.0 8.772 0.0 4.1548 to 
 -4.6022 

0.0 130.0 to -144.0 0.0 12500.0 

10 0.0 8.772 0.0 -4.6022 to 
5.1136 

0.0 -144.0 to 160.0 0.0 12500.0 

 

Figures 6.34 and 6.35 show the numerical results of the cyclic loading case compared with 

those of the monotonic loading case which is the extreme environmental load case given in 

Table 6.3. It is clear that the monotonic loading curves still play the role of the “backbone” 

curves in this example. This means that Masing’s rules are still followed.  
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Figure 6.34 Horizontal cyclic and monotonic response of the monopod caisson in sand 
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Figure 6.35 Rotational cyclic and monotonic response of the monopod caisson sand  
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Figure 6.36 Vertical movement during cyclic and monotonic loading of the monopod caisson in sand 
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In addition, Figure 6.36 shows that under cyclic loadings, the caisson is uplifted faster than in 

monotonic loading. This is a reasonable observation.  

 

(ii) Quadruped caisson under tension-compression load 

Table 6.9 Input data – quadruped caisson 

Model parameters (for ISIS model) 
aV1 aV2 aH aM aQ

Association factors 0.297 1.0 0.7 0.7 0.7 
e1 -0.2 
e2 0.0 
t0 Calculated from friction 
m0 0.15 
h0 0.337 
q0 0.2 
β1 0.99 

 

Shape factors of yield surface 

β2 0.99 
Viscosity µ  0.002 Parameters for the rate-

dependent solution Time increment dt Changed with the load incerements 
Number of yield surfaces 20 yield surfaces used 
Bell width (wbell) (m) 0.012 

Installation with suction 
Load 
stage 

Suction 
pressure 

(kPa) 

V  
(MN) 

H2
(MN) 

H3
(MN) 

Q 
(MNm) 

M2
(MNm) 

M3
(MNm) 

Time 
increment 
dt (106) 

1 0.0 0.0 to 0.01 0.0  0.0 0.0 0.0 0.0 10-3

2 0.0 0.01 to 0.2 0.0  0.0 0.0 0.0 0.0 1.0 
3 0.0 0.2 to 1.987 0.0  0.0 0.0 0.0 0.0 102

4 0.0 to 96.0 1.987 0.0  0.0 0.0 0.0 0.0 102

Application of  1 cycle of tension and copression loads 
5 0.0 1.987 to -2.98 0.0 0.0 0.0 0.0 0.0 2000.0 
6 0.0 -2.98 to 11.0 0.0 0.0 0.0 0.0 0.0 8000.0 

 

In this example, the quadruped caisson presented in section 6.3 is used. The model parameters 

and loading process are given in Table 6.9. The tensile capacity factor is now calculated 

directly from the friction on the side of the caisson. 

 

Figure 6.37 shows the results of the analysis. It can be seen that the vertical response of the 

caisson in the reloading stage (compression) is elastic until the vertical load reaches again the 
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value of the vertical bearing capacity  at the corresponding depth. This feature is different 

from test observations in Kelly et al. (2004). Figure 6.38 shows the outline of these tests.   
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Figure 6.37 Tension – compression behaviour of the quadruped caisson in sand 
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 Figure 6.38 Vertical displacement in tension-compression test  
                     (after Kelly et al., 2004)

 

The shape of the test curve shows that there might have some gaps between the caisson base 

and the soil occurring in the tensile loading. Thus, in the reloading stage, the foundation 

reveals the elasto-plastic response rather soon, then it tends to be elastic again. In the current 

version, the ISIS model has not taken into account the matter of the gaps existing between the 

caisson and the soil during cyclic loadings.  
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 6.8 Concluding remarks 

The application of the ISIS model to analyse the real caissons under extreme environmental 

loads has been presented in this chapter. Although there are significant differences between 

the ISIS solution and finite element analysis, the ISIS model, in general, gives the more 

conservative results.  

 

In addition, the effects of the suction installation, tensile capacity factors and the heave inside 

the caisson on the model response have been addressed. These can be considered to be the 

reasons for the differences between the ISIS solution and finite element analysis results.  

 

It is clear that choosing appropriate values for the model parameters is very important. By 

using the results obtained from experiments, suitable preliminary values of the model 

parameters can be selected. However, for any real caisson, it is also possible to carry out a FE 

analysis to calibrate important factors for the ISIS model. The ISIS model would then be used 

in combination with structural analysis, which will be very expensive if using finite element 

analysis.  
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CHAPTER 7 

CONCLUDING REMARKS 

 

7.1 Introduction 

The development of a numerical model simulating the behaviour of shallow foundations of 

offshore structures under cyclic loading has been presented as the main achievement of this 

study. The applicability of the model for suction caisson foundations and their special 

characteristics is the main objective of this research. Several conclusions have been presented 

in previous chapters. In this final chapter, the important conclusions are summarised. In 

addition, some ideas for future developments are proposed. 

  

7.2 Main Findings 

Based on the thermodynamic framework (Puzrin and Houlsby, 2000), a hyperplasticity 

model, developed in chapters 3 and 4, has shown promising abilities to describe the cyclic 

behaviour of shallow foundations. A model which allows calculation of incremental plastic 

response including a non-associated plastic flow rule without the violation of thermodynamic 

principles has been achieved. This model is named ISIS.  

 

A framework for the analysis of cyclic response of shallow foundations of offshore structures 

including a novel kind of footing called a suction caisson has been established within the ISIS 

model. Many options have been allowed in its development to be able to adjust the model 

behaviour for different cases of both footings and soils.     
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In chapter 3, by the use of the macro-element concept, a single-yield-surface hyperplasticity 

model (the preliminary version of ISIS) for shallow foundations has been developed. This 

model uses a different set of definitions and assumptions from those of conventional plasticity 

models. Numerical results have provided evidence of the capability of the model in capturing 

the results of the previous conventional plasticity models, such as Model B (Martin, 1992) 

and Model C (Cassidy, 1999). 

 

The most important development of the ISIS model presented in chapter 4 is the introduction 

of the multiple-yield-surface concept for plastic behaviour. By the use of this concept, there 

are two aspects of foundation behaviour explained more rigorously. Firstly, the changes of 

elastic stiffness of the foundation depending on the level of displacements are described in a 

straightforward manner. Secondly, the hysteretic phenomenon of the foundation response 

during cyclic loading can be expressed clearly, both in physical and mathematical terms.       

 

Based on a series of experiments on caisson models performed at the University of Oxford by 

Villalobos et al. (2003a, 2003b, 2004a and 2004b) and field tests by Kelly et al. (2005c), 

details of the numerical analysis for suction caisson foundations have been specified and 

applied in the ISIS model. A FORTRAN program has been written to perform retrospective 

simulations of the footing tests. In addition, the analyses of circular flat footings and spudcans 

have been discussed and illustrated.       

 

The rate-dependent solution has been introduced as the way to mimic the rate-independent 

solution and to avoid numerical difficulties when using the multiple-yield-surface model. 
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In chapter 5, a number of investigations into the use of the model parameters have been 

discussed to give some useful hints and guidelines for model applications.    

 

In chapter 6, the model has been used to analyse two real caissons, a monopod and a 

quadruped caisson, under extreme environmental loads. The numerical results of ISIS had 

been compared with those of Finite Element analysis (Fugro, 2004). In general, the ISIS 

model gives rather conservative results. However, the parameters of the ISIS model can be 

adjusted to give a less conservative solution, hence getting closer to the Finite Element 

results.    

 

7.3 Suggestions for future research 

In this dissertation, by using the macro-element concept, the analyses can be implemented in a 

much simpler fashion than the analyses using Finite Element procedures. However, this 

simplification leads to the need to use the results of many other investigations as tools or 

parameters for the model. The model, by itself, cannot cover all aspects of the foundation 

behaviour. The more the tools supplied for the model, the more reliable the results obtained in 

the solution. In particular, in the current version of the ISIS model, some features which have 

not been taken into account or have not given the correct answers are described as motivations 

for future research and presented in the following sections. 

 

Firstly, the heave of the soil inside the caisson under suction-assisted penetration needs to be 

investigated in more detail. This phenomenon depends on the relative density of the soil, the 

thickness of the caisson skirt and the suction pressures applied during the installation process. 
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In the current research, the heave is partly taken into account by the use of the bell function 

presented in section 3.5.1 and the magnitude of the bell width is chosen empirically. It could 

be necessary to implement this in more detail. 

 

Secondly, in the case of tension-compression loadings as shown in section 4.5.1, the current 

ISIS model has not been able to simulate this feature. The gap between the base of the footing 

and the soil which happens during this loading process has not been simulated in the model. 

 

The third issue which could need some more information is that of the shape of the outer most 

yield surface depending on the ratio between the length and the diameter of the caisson. In 

this study, the information of the shapes of yield functions is mainly based on experiments 

with the ratio of L/D as 0.5 and 1.0. Obviously, this is not enough for a general analysis for all 

kinds of caisson foundations. 

 

The model parameters such as the shape parameters of the yield function ( , , ), the 

association factors ( , , , , ), the initial parameter of the distribution of yield 

surfaces ( ) and the hardening rule parameters ( , , ) still need more experiments to 

find appropriate values for a variety of caisson types (with different L/D) as well as for 

different kinds of  soil. 

0m 0h 0t
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initial
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7.4 Conclusion 

This dissertation has presented the modelling of the shallow foundations of offshore 

structures; especially the caisson foundation is a promising footing type for offshore wind 
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turbines.  By the introduction of the multiple-yield-surface concept, the ISIS model is capable 

of giving realistic predictions for the foundation behaviour.  
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