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ABSTRACT 
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There is a risk that excessive vibration in long span cantilever grandstands can be 
triggered by the spectators synchronising their jumps to the music played.  If the 
jumping frequency excites a resonance of the grandstand, large force could be 
generated.  This thesis studies human-structure interaction in cantilever grandstands, 
with emphasis on modelling the passive and jumping crowds, and analysing the 
response of a single degree-of-freedom (SDOF) structural system. 
 
Preliminary work on analysing a cantilever occupied by seated humans shows that it 
is acceptable to use a SDOF structural system for analysis which meant emphasis of 
later work could be placed on understanding the interaction between a passive crowd 
and the structure. 
 
Human dynamic models from published biomechanics studies are used to develop a 
passive crowd model.  A transfer function, fitted to the crowd apparent mass, is used 
to define the crowd model.  It is found that the passive crowd can be approximated 
well by using a single 2DOF system.  The combined passive crowd-structure system 
is modelled as a feedback system and a parametric study is conducted.  It is found that 
the passive crowd adds significant mass and damping to the structure and these effects 
vary with the natural frequency of the structure. 
 
Records of forces of people jumping to a beat are used to develop a probabilistic 
model of crowd jumping loads.  Key parameters are introduced to characterise the 
timing and shape of the jumping impulses.  An analytical function is used to 
approximate the impulse shape.  All parameters are characterised with probability 
distribution functions.   
 
Using the fitted probability distribution functions, the Monte Carlo method is used to 
simulate individual jumping load-time histories and to obtain the structural responses 
due to group jumping loads.  The variations of the structural response with the natural 
frequency of the empty structure and the size of the active crowd are presented in 
charts.  As expected, the worst response is found on structures with natural 
frequencies coinciding with the first three harmonics of the crowd jumping loads.  For 
structures occupied by passive crowds, a significant reduction in the structural 
response is found at resonance excited by the second and third harmonics, due to high 
levels of damping provided by the passive crowds.  On variation of the structural 
response with the crowd size, it is found that the structural response becomes 
asymptotic for groups larger than 16 people.      
 

 



Experimental individual jumping and bobbing tests are conducted at six distinct beat 
frequencies to look at the variations of the impulse shape and degree of 
synchronisation with the beat frequency.  The bobbing action is found to have a 
higher inherent variability between individuals compared to jumping.   Jumping tests 
involving two people facing each other are also conducted.  The results show that 
there is a better synchronisation when two people are jumping together compared to 
when jumping alone. 
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Chapter 1 

1. Introduction 

1.1. The Problem 

Problematic levels of vibration are being reported in several stadiums around the 

world, especially during pop concerts and football matches, due to excitations by 

rhythmic crowd motions such as clapping, foot stamping, bobbing or jumping.  A 

few examples are given here.  Firstly, the Maracana football stadium in Brazil 

(Batista and Magluta 1993), with a capacity of 150,000 people, is a reinforced 

concrete structure with a cantilever stand 21 m long.  The natural frequencies of the 

cantilever stand when empty were 4.6, 6.6 and 17.0 Hz.  It was reported that high 

levels of acceleration and large displacements could be felt during football games.  

Cracks were found in the cantilever beams, most probably due to large 

displacements and hence over-stressing of the structure.   

 

Another example, the Feyenoord Stadium in the Netherlands (van Staalduinen and 

Courage 1994), with a capacity of 61,000 people, had also experienced strong 

vibrations during pop concerts.  The grandstand had natural frequencies of 2.3, 4.6 

and 5.8 Hz.  Strong vibrations were reported on the upper tier during pop concerts.  

To reduce the vibration level, the displacement of the stand was monitored during 

pop concerts and the audio system was turned down when there was excessive 

vibration.   

 

The Morumbi Stadium in Brazil (Almeida and Rodrigues 1998), with a capacity of 

80,000, had a few modes ranging from 2.2 to 4.0 Hz.  Complaints were received 
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from the crowds on the vibration of the structure.  Tuned mass dampers were fitted 

to the stadium to reduce the vibration level (GERB Vibration Control Systems 

2005).   

 

In the UK, excessive movements have been reported on several modern football 

stadiums during pop concerts or football matches, including Manchester United’s 

Old Trafford Stadium (Rogers 2000), Arsenal’s Highbury Stadium (Rogers 2000), 

Liverpool’s Anfield Stadium (Rogers and Thompson, 2000) and The Millennium 

Stadium in Cardiff (Otlet 2004).  To rectify the problem in the Old Trafford 

Stadium, the local authority restricted the use of the problematic tier to football 

match usage while for the Highbury Stadium, tuned mass dampers were fitted.  

Steel columns were fitted to the Anfield Stadium to raise its natural frequency while 

a series of temporary supports were installed at The Millennium Stadium prior to a 

pop concert. 

 

All the stadiums mentioned above have large cantilever spans with natural 

frequencies that fall within the frequency range of human-induced loadings.  In 

addition, they are often subjected to rhythmic human-induced loadings, especially in 

pop concerts in which the crowds synchronise their movements with the music 

played.  The high flexibility of the cantilever tiers and the rhythmic crowd motion 

produce resonant or near-resonant dynamic behaviour which may lead to excessive 

vibration.  This may cause human discomfort, crowd panic or at the extreme, a 

possible collapse of the structure.   
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1.2. Current approach to the problem 

To tackle this problem, existing codes and guidelines, including National Building 

Code of Canada (1990), BS 6399 (British Standards Institution 1996) and Guide to 

Safety at Sports Grounds (Department of National Heritage and Scottish Office 

1997) specify that a dynamic analysis should be performed for stadiums with 

natural frequencies below certain threshold values.  However, none of these codes 

and guidelines provides the tools that would allow a designer to analyse the 

performance expected of these structures. 

 

1.3. Human-structure interaction 

Generally, the crowds on a cantilever grandstand can be classified into active and 

passive crowds.  An active crowd moves rhythmically by jumping, bobbing or 

swaying, usually following a musical beat or crowd chanting.   A passive crowd 

remains stationary by either sitting or standing on the structure.  A dynamic analysis 

of the cantilever grandstand involves the study of how each of these two crowds 

interacts with the structure.  The active crowd is known to exert external dynamic 

loads on the structure by their rhythmic motions.  For the passive crowd, modal tests 

on several stadiums have shown that it behaves as a dynamic system added to the 

main structural system. 

 

The dynamic analysis of a cantilever grandstand consists of four main tasks: 

(a)  Modelling the passive crowd.  

(b)  Defining the dynamic load induced by the active crowd.  
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(c)  Analysing the passive crowd-structure system subjected to the dynamic 

load. 

(d) Assessing the resultant vibration level prediction for serviceability 

criteria. 

 

Current knowledge and practice are deficient in all four main areas mentioned 

above.  Therefore, no sensible analysis has yet been conducted on a cantilever 

grandstand to estimate its dynamic response when subjected to a crowd rhythmic 

motion.   

 

1.4. Aims of this thesis 

This thesis addresses the first three areas that are identified as deficient above.  For 

the passive crowd, the aim is to develop a simple dynamic model to represent the 

crowd as a system added to the main structural system.  A frequency response 

analysis is then conducted on the joint crowd-structure system to investigate how 

the dynamic properties of the occupied structure are different from when the 

structure is empty.  For the active crowd, the action of jumping, which is the most 

severe form of crowd-induced loading, is the subject of research in this thesis.  In 

addition, an initial investigation on the action of bobbing is conducted.  Once the 

passive and active crowds are defined, a dynamic analysis is conducted to calculate 

the response of a structure occupied by both active and passive crowds.  The 

outcome of this thesis gives an indication on the vibration levels to be expected on 

cantilever grandstands when occupied by various ratios of active to passive crowds.   
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1.5. Thesis outline 

The outline of this thesis is as follows.  Firstly, a literature review is presented in 

Chapter 2 to discuss the nature of the vibration problem on cantilever grandstands 

and to review current progress in tackling the problem.  The remainder of the thesis 

is divided into three parts: Parts I and II deal with modelling the passive and active 

crowds respectively.  Part III deals with simulating the crowd jumping loads and 

calculating the resultant responses on a passive crowd-structure system. 

 

Part I:  Chapter 3 looks at the dynamics of a cantilever beam occupied by passive 

humans and subjected to dynamic loads.  Chapter 4 investigates the effect of a 

passive crowd on the dynamic characteristics of a single degree-of-freedom (SDOF) 

structural system.  The results are presented in charts which enable engineers to 

estimate the amount of reduction in natural frequency and structural response for an 

occupied structure.   

 

Part II:   Chapter 5 deals with statistical modelling of individual jumping loads 

which are obtained from experimental tests. 

 

Part III:  Chapter 6 deals with simulating the crowd jumping loads and calculating 

the resultant responses on a passive crowd-SDOF system.  The results are presented 

in charts to allow engineers to estimate the structural responses due to various ratios 

of active to passive crowds.  Chapter 7 reports on some experimental tests involving 

two subjects jumping together and a single subject bobbing. 

 

Lastly, in Chapter 8, conclusions are drawn from Parts I, II and III.  

  



 

Chapter 2 

2. Literature review 

In this chapter, the first two sections (2.1 and 2.2) serve to provide some 

background while the rest of this chapter reviews two main areas which are the 

focus of this thesis: modelling the passive and active crowds.   

 

Firstly, in section 2.1, the problematic mode of vibration encountered on cantilever 

grandstands is identified.  Then the findings from several onsite measurements of 

stadiums are reviewed in order to give a better understanding on the nature of the 

problem. This is followed by a review on the recommendations provided by existing 

codes and guidelines (section 2.2).  The deficiencies in these codes and guidelines 

are identified.  The rest of this chapter reviews current research work on modelling 

the passive (section 2.3) and active (section 2.4) crowds.  For the active crowd, 

emphasis is placed on modelling the jumping load but a very brief review on 

bobbing load (section 2.5) is included.  In the last section, some concluding remarks 

are presented, mainly to identify areas that require further research. 

 

2.1. Vibration problem on grandstands  

2.1.1. Vertical mode of vibration 

In order to determine the dynamic performance of a grandstand when subjected to 

human-induced loads, the designer needs to identify the low-frequency modes of the 

proposed structure.  Often, it is possible for a number of global and local modes to 

be excited and these modes can be classified into three directions: vertical, front-to-
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back and side-to-side (Reid et al. 1997).  For a grandstand with multiple tiers, the 

cantilever sections in the tiers above the ground level (shown by the circled section 

in Fig. 2.1) are most vulnerable to vibration in the vertical direction, especially for 

long span tiers.  This thesis is concerned with this local vertical mode of vibration. 

 

2.1.2. Onsite monitoring 

Several onsite measurements have been conducted on stadiums during pop concerts 

and sports events.  There are two main emphases in these works, one is to monitor 

the response of the grandstands when subjected to crowd rhythmic motions and the 

other is to investigate the dynamic properties of the grandstands when occupied by 

passive crowds. 

 

Littler (1998, 1999) measured the performance of stadiums in the UK during pop 

concerts.  Altogether, the responses of five large cantilever grandstands with natural 

frequencies between 4.64 Hz and 7.3 Hz when empty were measured.  The 

spectators in all four concerts were quite diverse. In one concert, all the spectators 

consisted of 16 to 25 years olds among which two-thirds were male.  At the start of 

each song, a large proportion of the spectators jumped to the music for 20 to 30 

seconds.  Another concert by an artist who has been popular for 30 years had a wide 

age range.  Most of the spectators were standing and clapping and there was no 

widespread jumping.  In all concerts, the motions were perceptible and several 

people remarked about the movements but none complained.  The peak 

accelerations recorded were between 0.48 and 1.62 m/s2.  The frequency response 

spectra showed that there were significant responses due to excitations by the first 

three harmonics of the crowd-induced loads.   
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On the other hand, several modal tests and experimental studies showed that 

structures have different dynamic characteristics when empty compared to when 

occupied by passive spectators.  Modal test conducted on the Twickenham Stadium 

(Ellis and Ji 1997), which had a natural frequency of 7.32 Hz when empty, found 

that there were two modes at 5.41 Hz and 7.91 Hz when occupied.  Other modal 

tests on three cantilever grandstands (Littler 1998, 1999) showed that the natural 

frequencies of the empty grandstands ranged from 4 to 6 Hz and a reduction of 

between 0.3 Hz and 0.5 Hz was observed on all grandstands when occupied by 

spectators.  For the Bradford Stadium which had modes between 3.28 Hz to 5.75 Hz, 

modal tests conducted during 20 football matches and 9 rugby matches (Reynolds et 

al. 2004) showed that there was a reduction in the natural frequencies when the 

stand was occupied by seated or standing spectators.  A slightly greater reduction 

was observed when the spectators were standing than when seated, illustrating the 

effect of crowd configuration.  An increase in the damping ratio was also reported.  

Experimental tests conducted on a SDOF platform occupied by a standing person 

(Harrison and Wright 2004) showed that there was a reduction in the natural 

frequency and an increase in the damping.  However, a vibration test on an 

18.68 Hz beam (Ellis and Ji 1997) showed that there was an increase in the natural 

frequency when a person was seated or standing on the beam while no change was 

recorded when the person was jumping or walking on the beam.   

 

2.1.3. Modelling of stadiums 

Several works on the computer modelling of grandstands with emphasis on the 

dynamic behaviour have been conducted.  In particular, a comparative study on the 

use of 2D and 3D FE models (Mandal and Ji 2004) found that a 2D model was 
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sufficient to examine the behaviour of a grandstand in the vertical direction.  

However, the presence of non-structural elements might have a significant influence 

on the modal properties and it is difficult to model them accurately.  Discrepancies 

between the calculated and measured modal properties were found for a grandstand 

in a football stadium (Reynolds and Pavic 2002) due to additional stiffness provided 

by the joints between the main structural members.  Another example is the City of 

Manchester Stadium (Reynolds et al. 2005) in which the perimeter concrete 

blockwork wall was found to have a significant influence on the natural frequencies 

of the structure.   

 

2.2. UK codes and guidelines 

Three codes and guidelines are relevant for engineers designing a stadium in the UK 

and they are reviewed below. 

 

In BS 6399: Part 1 (British Standards Institution 1996), it is stated that for an empty 

structure with a vertical frequency less than 8.4 Hz and a horizontal frequency less 

than 4 Hz, a dynamic analysis is required to assess its ability to withstand the 

dynamic loadings in the vertical and two orthogonal horizontal directions.  The 

vertical threshold frequency is obtained by considering up to the third harmonic of 

the crowd motion which has an upper frequency limit of 2.8 Hz.  Guidance on 

individual jumping load is given in Annex A. 

 

The ‘Green Guide’ (Department of National Heritage and Scottish Office 1997) 

adopts the same strategy of recommending a dynamic analysis for a grandstand but 
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with natural frequencies of less than 6 Hz vertically and 3 Hz horizontally when the 

structure is occupied by spectators. 

 

In 2001, an interim guidance was published (IStructE/ODPM/DCMS Working 

Group 2001) due to growing concern on the dynamic performance of modern 

grandstands when used for pop concerts.  The interim guidance recommends 

different natural frequency thresholds for permanent grandstands based on the 

degree of synchronisation of the crowd activities on the grandstands.   For 

grandstands used solely for viewing events with no external stimulus to coordinate 

the crowd movement, a natural frequency threshold of 3 Hz is recommended.  For 

grandstands used for pop concerts with the crowds coordinating their movements to 

the music played, a natural frequency threshold of 6 Hz is recommended.  An 

advisory note was published subsequently (IStructE/ODPM/DCMS Working Group 

2003) to address issues related to the determination of the structure’s natural 

frequencies.  It highlights the need to consider the effect of the non-structural 

elements.  The working group is currently preparing a final guide on designing 

stadiums subjected to different crowd activities. 

 

  



2. Literature review                                                                                                                           2-6 

2.3. Passive crowd modelling 

This section reviews the work on passive crowd modelling in the areas of civil 

engineering and biomechanics. 

 

2.3.1. Civil engineering 

In civil engineering, passive human occupants were known to contribute a 

significant amount of damping to floor systems.  It was commented that human 

occupants provided excellent damping, with the floor damping increasing by 300 % 

due to the presence of four people on a steel joist-concrete slab floor (Lenzen 1966).  

Free vibration tests on nailed wood-joist floors with human occupants seated and 

lying on the floor found that the occupant’s physique influenced the damping 

capacity provided to the floor (Polensek 1975).  Heel impact and shaker impact tests 

conducted on a composite concrete slab and an open web steel joist floor found that 

the heel impact test gave higher damping than the shaker impact test due to damping 

provided by the person (Rainer and Pernica 1981).  In the same study, it was also 

noted that damping increased with the modal amplitude at the location of the person. 

 

Early efforts to model a single standing occupant using a lumped parameter model 

can be found in the dynamic analysis of floor response by Foschi and Gupta (1987) 

and Folz and Foschi (1991). The former used a SDOF system while the latter used 

both 2DOF and 11DOF systems.  Later developments included the use of an 

undamped continuous model (Ji 1995) and a SDOF system (Zheng and Brownjohn 

2001) to represent a standing person. 
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In modelling cantilever grandstands, the need is to model a group of people rather 

than single individuals.  It is possible to represent each individual in the group using 

a lumped parameter model but the resultant crowd model will have too many 

degrees of freedom.  Ellis and Ji (1997) proposed using an undamped SDOF system 

to represent the passive crowd on a grandstand.  However, it is more desirable to 

include damping in the model considering the high damping capacity of the human 

body.  Sachse et al. (2002) conducted experimental tests involving a 15000 kg beam 

occupied by 5 seated occupants.  A SDOF system was used to model the occupants 

and its modal properties were obtained by curve-fitting the measured FRFs.  In 

Sachse’s tests, the total mass of the human occupants was only 5% of the mass of 

the structure.  Hence the influence of the human occupants on the measured FRFs 

might be very small and it might be affected by noise in the measurements. 

 

The ISO 5982 (International Organization of Standardisation 1981) uses 2DOF 

lumped parameter models to represent a seated and standing human but according to 

Fairley and Griffin (1984) these models were derived from studies of heavy people. 

  

2.3.2. Biomechanics 

A passive crowd on a grandstand undergoes whole-body vibration due to the motion 

of the structure.  The interest is on the external effect of the whole-body vibration 

on the dynamic properties of the structure.  Mathematically, the interaction between 

the two systems, the passive crowd and the structure, can be quantified in terms of 

the force transmitted across the interface.  Many research studies have been 

undertaken in the area of biomechanics to model this behaviour of a single seated 

person.  The purpose is to assess the comfort and health criteria for human bodies 
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when subjected to vehicular vibration.  The common approach is to seat the test 

subject on a vibrating platform and measure the driving-point frequency response 

functions such as mechanical impedance and apparent mass.  This section reviews 

various models which may be appropriate for modelling the passive crowd on a 

cantilever grandstand. 

 

Many studies have been conducted on modelling the seated human body using 

lumped parameter models of varying complexity, ranging from SDOF to higher 

order systems.  These studies include Coermann (1962), Suggs et al. (1969) and 

Donati and Bonthoux (1983) who developed respectively a SDOF system, two 

uncoupled SDOF systems and a 2DOF system.  A very comprehensive study was 

conducted by Fairley and Griffin (1989) and Wei and Griffin (1998).  The former 

conducted vibration tests for sixty seated subjects and the latter fitted the measured 

data with four models as shown in Fig. 2.2.   Each model is similar to those 

previously developed by other researchers in terms of the number of degrees of 

freedom involved: Model 1a is similar to Coermann’s model (1962); Model 1b is 

similar to Fairley and Griffin’s model (1989); Model 2a is similar to Donati and 

Bonthoux’s model (1983) and Model 2d is similar to Suggs et al.’s model (1969) 

but with no rigid mass.  It was found that Model 2b which consisted of two SDOF 

systems arranged in parallel gave the best fit to the measured apparent mass data.  

This agreed with the test observation that there were two modes of vibration noted 

in the apparent mass data, at approximately 5 and 10 Hz.  Linear biomechanics 

models with higher degrees of freedom and nonlinear models were developed by 

researchers such as Mertens (1978) and Boileau and Rakheja (1998) but these are 

too complicated for use in the modelling of cantilever grandstands.   
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For standing humans, a similar research approach has been adopted but 

considerably less research has been undertaken.  In particular, a series of tests was 

conducted for twelve male subjects and the measured data were curve-fitted with 

SDOF and 2DOF systems (Matsumoto and Griffin 1998, 2003), as shown in Fig. 

2.3.  It was found that Models 2a and 2c gave the best fit. 

 

2.4. Jumping load modelling 

This section reviews the development of a load model defining the crowd jumping 

in a pop concert in a stadium.  There are several important stages in this 

development: direct measurement of small groups, statistical analysis to simulate 

large groups and onsite measurement of grandstands during pop concerts.  Firstly, 

some terminology is introduced using an idealised jumping load-time history.  Then 

the various stages are reviewed.  Several relevant issues such as crowd effect, 

flexibility of the structure, group jumping frequency range and impulse shape are 

also reviewed. 

 

2.4.1. Terminology 

An idealised jumping load-time history consists of successive impulses separated by 

period of zero loads when the person is in the air (see Fig. 2.4).  The common 

practice (Bachmann and Ammann 1987, Ellis and Ji 1997) is to model each impulse 

using a half-sine function: 

( )
( )

⎩
⎨
⎧

≤≤
≤≤

=
pp

ppp

Ttt
ttttGk

tF
0

0/sin π
                                    (2.1) 

where  G  = static weight of the person 
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 kp  = Fmax/G = impact factor 

 Fmax = peak dynamic load 

 tp  = contact duration 

 Tp  = beat period 

 

The contact ratio, α, is defined by: 

1≤=
p

p

T
t

α                                (2.2) 

From the Law of Conservation of Momentum, the impulse of each jump equals to 

the weight of the person times the beat period: 

p

t

p
p TGdt

t
tGkp =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∫0

sin π                              (2.3) 

Thus the impact factor can be evaluated: 

α
π
2

=pk                               (2.4) 

Eqn. 2.4 shows that the maximum load is inversely proportional to the contact 

duration.  

 

The idealised jumping load-time history is periodic.  It can also be represented using 

a Fourier series: 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++= ∑

∞

=1

2sin0.1
n

n
p

n t
T
nrGtF φπ                  (2.5) 

where rn is the nth harmonic Fourier coefficient, also called the Dynamic Load 

Factor (DLF) when normalised by G, and φn is the nth harmonic phase lag. 
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2.4.2. Direct measurement 

Early studies on crowd jumping load involve direct measurements of the loads using 

a rigid force plate in a laboratory (Allen et al. 1985, Rainer et al. 1988, and 

Pernica 1990).  The results were analysed in the frequency domain and presented as 

DLFs which were given by the amplitudes of the frequency spectra at the excitation 

frequency and its integer multiples.  It was found that for increasing group sizes, 

there was a reduction in the DLFs and the amount of reduction increased for higher 

harmonics (Allen et al. 1985, Rainer et al. 1988).  The increase in reduction for 

higher harmonics suggested that there was a lack of synchronisation between each 

individual when jumping together.  For tests conducted at 1 to 4 Hz, higher DLFs 

were recorded for 2 to 3 Hz which showed that people were most synchronised 

when jumping within this frequency range (Pernica 1990).  One drawback for these 

direct measurements is that they were conducted in laboratories using force 

platforms.  There is a limitation to the size of the force platforms and hence the 

number of subjects that can be involved.  

 

2.4.3. Monte Carlo simulation 

Further developments involve a combination of direct measurement and Monte 

Carlo simulation, as adopted by Ebrahimpour and Sack (1989), Willford (2001), 

Ellis and Ji (2004), Parkhouse and Ewins (2004) and Kasperski and Agu (2005).  

The general approach is to collect data for a small group of people, introduce certain 

parameters to quantify the main characteristics and use the Monte Carlo method of 

sampling from some fitted probability distributions to generate the loads for a large 

crowd.   
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In order to take into account the lack of synchronisation between each individual, a 

phase lag, ψn, was introduced to the Fourier series in Eqn. 2.5 to represent the 

jumping load such that: 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
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⎝

⎛
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∞

=1

2sin0.1
n

nn
p

n t
T
nrGtF ψφπ                           (2.6) 

 

So far, a few attempts have been made to model the phase lag.  Ebrahimpour and 

Sack (1989) measured the loads due to individuals jumping alone and in groups of 2 

and 4 at 2 Hz on a rigid platform.  Taking the measured individual load as the basic 

model, the phase lag for each individual when jumping in a group was back 

calculated.  An exponential distribution function was fitted to the calculated phase 

lag.  Ji and Ellis (1993) assumed that the phase lag followed a Normal distribution 

and assigned arbitrary values to the standard deviation of the Normal distribution 

which represented different degrees of synchronisation.  Wilford (2001) also used a 

Normal distribution but set the standard deviation to 0.14 times the beat period. 

 

All three pieces of works (Ebrahimpour and Sack 1989, Ji and Ellis 1993 and 

Wilford 2001) assumed a constant phase lag for each load-time record without 

considering the slight time difference between each jump.  Therefore, each 

simulated individual load was treated as perfectly periodic.  In reality, each jump is 

slightly different in timing and shape. Ebrahimpour and Sack (1989) vaguely 

mentioned the use of two random error parameters following the Normal 

distribution, presumably to take into account the slight variation between each jump.   
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To take into account the slight variation between each jump, Ellis and Ji (2004) and 

Kasperski and Agu (2005) modelled the timing of each impulse.  Ellis and Ji (2004) 

modelled the jumping frequency and contact ratio of each impulse using statistical 

models, followed by simulation of the group jumping loads.  DLFs for groups of up 

to 8192 people were calculated.  Kasperski and Agu (2005) analysed the loads of 

more than 70 individuals on a rigid force platform.  They modelled the jumping 

frequency and Fourier coefficients of each impulse using statistical models, 

followed by simulation of the group jumping loads.  Some early results were 

presented for groups of up to 50 people.   

 

Parkhouse and Ewins (2004) adopted a more direct approach of adding up the 

individual load-time histories and obtaining the DLFs of the resultant load.  They 

conducted an extensive experimental programme to measure the loads of 100 

individuals jumping alone on a rigid force platform.  Individual loads were sampled 

from the experimental data and summed in the time domain to give the crowd 

jumping loads.  The DLFs were presented for groups of 5, 10 and 100 people.  This 

approach is simple and straightforward but lacks statistical justification.  It is 

uncertain whether the measurements provide a good sample for simulations of 

larger groups.  

 

2.4.4. Crowd effect 

One other aspect in modelling the crowd jumping load is the crowd effect due to 

synchronisation with the movements of neighbouring jumpers.  This is important 

because most of the simulated crowd jumping loads mentioned above were based on 

individual jumping test results.  An experimental work was conducted by 
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Ebrahimpour and Fitts (1996) to measure the coherency between two people 

jumping together at 1.5 to 3 Hz.  They concluded that there was a better 

synchronisation when the two jumpers were facing each other than when facing 

opposite to each other.  The best synchronisation was observed at 2 Hz.   

 

2.4.5. Flexibility of structure 

Another aspect that needs to be considered is the flexibility of the platform.  

Cantilever grandstands which are prone to excessive vibrations have very high 

flexibility whereas the studies on jumping loads mentioned so far have been 

conducted on rigid force platforms.  So far, studies on flexible platforms include 

direct measurement using a purposed built flexible platform (Yao et al. 2003) and 

onsite measurement of the response of real structures and back calculating the 

crowd jumping load (Pernica 1983, Allen 1990, Karsperski and Niemann, Ellis and 

Littler 2004).   

 

Yao et al. (2003) conducted individual jumping tests for subjects jumping at 1 to 

3.5 Hz on a SDOF flexible platform with natural frequencies from 2 to 6 Hz.  It was 

found that the frequency of the first spectral peak was a lot higher or lower than the 

metronome beat frequency when the natural frequency of the platform coincided 

with the metronome beat frequency, i.e. it was not possible for subjects to jump at 

the natural frequency of the platform.   

 

Pernica (1983) measured the response of a stadium during a 3-hour pop concert in 

which the spectators were seated, clapping and foot stamping to the music 

performed.  The stand had natural frequencies of less than 3 Hz.  From the 
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measurements, an acceleration of up to 0.3g and a peak-to-peak displacement of 

12 mm were recorded, due to excitation of the natural frequencies by the rhythmic 

actions of the spectators.  From the measured acceleration levels, the crowd jumping 

load was back calculated and expressed as the equivalent static live load, giving a 

value of 3 kN/m2.  This is lower than the 4.8 kN/m2 value required by 

BS 6399: Part 1 (British Standards Institution 1996), maybe due to the crowd not 

jumping but clapping and foot stamping.   

 

Allen (1990) measured the floor acceleration during an aerobic class.  The DLFs 

were back calculated from the measured acceleration based on the floor structural 

configuration.  The group size varied from 10 to 25 people, jumping at a frequency 

range of 2.25 to 3.03 Hz.  For jumping, setting r1 = 1.5, the DLFs for the second and 

third harmonics were found to be:  r2 = 0.3 ~ 0.80 and r3 = 0.06 ~ 0.15.  The test 

subjects can be considered as well-trained in their movements and therefore, the 

DLF values obtained can be deemed as the worst case.   

 

Kasperski and Niemann (2003) conducted jumping tests on a stand of a football 

stadium with a natural frequency of 2.45 Hz.  Tests involved groups of 5 to 70 

people jumping in time with loud music with a distinct rhythm.  The coordination 

factors for various group sizes were calculated from the ratio of the measured 

maximum response due to a group loading to the measured maximum response due 

to 5 people jumping together.  The results showed that for small groups, the load 

attenuation was small.  For larger groups (more than 30 people), the attenuation 

increased as the group size increased.  For the largest group considered which 

consisted of 70 people, an attenuation of about 50% was observed. 
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In Ellis and Littler (2004), the response of a stadium during a pop concert with the 

crowd bobbing to the music played was measured.  The advantage of this approach 

is that the loads are generated by a real crowd in a real concert.  However, it is often 

expensive to conduct such onsite measurements.  In addition, the derivation of the 

loads is often not a straightforward task and involves a number of assumptions and 

simplifications.  So far, no measurements have been taken on stadiums with the 

crowd jumping.   

 

2.4.6. Contact ratio 

BS 6399: Part 1 (British Standards Institution 1996) specifies contact ratio values 

varying from 0.25 to 0.67, depending on the type of jump.  Yao et al. (2003) found 

that the contact ratio was consistently above 0.5 from all their tests and they 

commented that subjects jumping on a flexible platform will automatically select a 

contact ratio that he/she is comfortable with when jumping.   

 

2.4.7. Group jumping frequency 

The jumping frequency is determined by the beat frequency of the music played.  

Several studies have been conducted to determine the frequency range from field 

measurements or survey of songs performed in concerts.  For dancing in a hall 

(Matthews and Montgomery 1988), it was found that the dancing frequency varied 

from 1.9 Hz for Waltz to 3.3 Hz for Rock ’n Roll.  Field measurements at stadiums 

during pop concerts (Pernica 1983; Ellis and Littler 2004) and at a gymnasium 

during aerobic classes (Allen 1990) showed that the crowd-induced rhythmic 

vibrations fell within the range of 2 to 3 Hz.  A survey on the beat frequency of 210 
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songs from the 1960s to 1990s (Ginty et al. 2001) showed that 96.2 % of the songs 

fell into the range from 1.0 to 2.8 Hz.  Another survey of 364 songs performed in 18 

rock and pop concerts (Littler 2003) showed that the songs fell into the range of 

0.49 to 3.28 Hz.  It was noted that the crowd might jump at every other beat for fast 

songs and at double the frequency of the songs for slow songs.  BS 6399: Part 1 

(British Standards Institution 1996) recommends a frequency range of 1.5 to 2.8 Hz 

for group jumping because at higher frequencies, it is difficult for a large group to 

maintain a coordinated rhythm.   

 

2.5. Bobbing load modelling 

It is also very common for the crowd on a cantilever grandstand to bob in a pop 

concert.  Compared to jumping, the action of bobbing is less well-researched.  Only 

three studies have been published so far (Yao et al. 2002, Parkhouse and Ewins 

2004, Duarte and Ji 2005).  Parkhouse and Ewins conducted individual bobbing 

tests on a rigid force plate while Yao et al. conducted similar test on a flexible 

platform.  Duarte and Ji measured the response of a beam and used it to back 

calculate the bobbing loads.  They found that the DLF of the first harmonic 

increased with the beat frequency.   

 

2.6. Concluding remarks 

2.6.1. The problem 

The vibration problem on cantilever grandstands is due to the structures having low 

natural frequencies which are prone to excitation by the rhythmic crowd motions.  

In particular, the first three harmonics of the crowd-induced loadings were found to 
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be of significant magnitude, capable of causing concerning levels of vibration.  

Therefore, this thesis concentrates on structures with natural frequencies within 

three times the frequency range of crowd jumping, which is 1.5 to 2.8 Hz, as 

recommended by BS 6399: Part 1 (British Standards Institution 1996). 

 

2.6.2. Structural modelling 

A 2D model should be sufficient for the purpose of analysing the vertical mode of 

vibration.  Various modal tests and experimental studies showed that the occupied 

structure had dynamic characteristics different from when it was empty.  Most 

results showed that there was a reduction in the natural frequency and an increase in 

the damping when occupied by a passive crowd.  Therefore, the passive crowd 

should be modelled as a dynamic system added to the structure.   

 

2.6.3. Codes and guidelines 

It is often uneconomical to design a stadium with its natural frequencies above the 

threshold frequencies recommended by various codes and guidelines.  A structure 

with natural frequencies below the threshold value might perform perfectly well.  

Therefore, it is best to carry out a dynamic analysis on the structure when used for 

various events with different levels of crowd liveliness.  For example, in a normal 

football game, most spectators are seated and there is minor excitation.  In a lively 

concert or a football final match, a large proportion of the spectators can be highly 

active and their motions are synchronised by the music played or chanted.  The 

worst scenario is in a pop concert in which the majority of the spectators 

synchronise their jumps with the music played.  The challenge in the design of a 

  



2. Literature review                                                                                                                           2-19 

grandstand is to ascertain the highest level of crowd liveliness that the grandstand is 

able to withstand without causing panic to the crowd and to limit the use of the 

stadium to this highest permissible level. 

 

2.6.4. Passive crowd modelling 

Considering all the passive human models that have been developed so far in both 

civil engineering and biomechanics, the best models are those from Griffin et al. 

(Fairley and Griffin 1989, Wei and Griffin 1998, Matsumoto and Griffin 1998, 2003) 

because of the large number of subjects involved in the test series and the varieties 

of models tested.  In addition, the subjects were subjected to a support acceleration 

of 1.0 m/s2 (r.m.s.), which is within the range of acceleration measured on 

grandstands (Littler 1998, 1999).  This thesis adopts these individual models to 

represent passive humans on a cantilever beam in Chapter 3 and to derive a passive 

crowd model in Chapter 4. 

 

2.6.5. Jumping load modelling 

A few issues relevant to modelling the crowd jumping load are discussed below. 

 

Database from direct measurement 

It is important to collect data for a large number of subjects so that the Monte Carlo 

simulation is statistically sound.  So far, the best quality of data was gathered by 

Parkhouse and Ewins (2005) who have kindly provided them for use in this thesis. 
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Statistical analysis 

In modelling the lack of synchronisation between individuals, each jump was 

treated as one independent event (Ellis and Ji 2004 and Kasperski and Agu 2005).  

Hence the jumps of all subjects were lumped together and analysed, several 

parameters were introduced to quantify each jump and a probability distribution 

function was used to curve-fit each parameter.  However, it is possible that each 

subject has a unique jumping mechanism such that the successive jumps in each 

record are dependent events.  This thesis treats the load-time record of each subject 

as one random process and assigns parameters to quantify each jumping process.  

The analysis is described in Chapter 5. 

 

Impulse shape and contact ratio 

There is a lack of research on the shape of the jumping impulse.  Most accepted the 

half-sine function to represent one impulse but no verification was found.  In 

addition, there is a discrepancy in the contact ratios given by BS 6399: Part 1 

(British Standards Institution 1996) and the experimental measurements from Yao 

et al. (2003).  Both issues are resolved in Chapter 5. 

 

Correlation with crowd size 

On the relationship between the loads generated and the crowd size, it is difficult to 

make a direct comparison between the various findings because the results were 

presented in various forms using different parameters.     
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Crowd effect 

So far, only one work was done in investigating the effect of jumping with another 

person (Ebrahimpour and Fitts 1996).  In this thesis, experimental tests are 

conducted to investigate this and the results are presented in Chapter 7. 

 

Flexibility of structure 

It was found that the jumping mechanism is affected by the flexibility of the 

structure and the mechanics of this is not yet fully understood.  It is important to 

first understand the fundamental jumping mechanism on a rigid platform before 

considering the effect of the structural movement.  This thesis focuses on the loads 

generated when jumping on a rigid platform. 

 

2.6.6. Bobbing load modelling 

While it is true that the most severe crowd-induced loading comes from jumping, 

experimental tests have shown that it is not possible to jump at the natural frequency 

of the structure.  However, this might not be true for bobbing.  As in the case of the 

Millennium Bridge (Dallard et al. 2001) in which the walking of the pedestrians is 

synchronised by the motion of the bridge, it might be possible that the motion of the 

cantilever grandstand is able to synchronise the bobbing of the crowd.  Further 

research is required to investigate this.  In this thesis, some initial experimental 

bobbing tests are conducted and reported in Chapter 7. 

  



 

Chapter 3  

3. Cantilever-human system 

Accurate models of the passive and active crowds are crucial in carrying out a 

sensible dynamic analysis of a cantilever grandstand.  The former is important 

because its presence alters the dynamic properties of the structure while the latter is 

needed to define the dynamic loads exerted by the crowd. 

 

This chapter aims at carrying out an initial investigation on the critical components 

affecting the response of a cantilever grandstand.  To achieve this, a simple model is 

introduced to represent a cantilever grandstand occupied by a seated crowd, called 

the cantilever-human system hereafter.  The cantilever-human system consists of a 

simple continuous mass system representing one bay of a cantilever grandstand and 

lumped parameter models representing seated humans on the structure.  These 

human models are taken from systems developed by Griffin et al. (Fairley and 

Griffin 1989, Wei and Griffin 1998, Matsumoto and Griffin 1998, 2003).  In section 

3.1, a description of the seated and standing human models developed by Griffin et 

al. is given.  The rest of the chapter presents the modelling and dynamic analysis of 

the cantilever-human system. 

 

3.1. Seated and standing human models 

This section presents the work conducted by Griffin et al. in developing lumped 

parameter models to represent single seated and standing humans. 
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Griffin et al. conducted vibration tests on 60 seated subjects (24 men, 24 women 

and twelve children) and twelve standing subjects (all men).  Each subject was 

shaken vertically on a moving platform with an acceleration level of 1.0 m/s2 (r.m.s.) 

over a frequency range of 0 to 20 Hz.  Each test subject adopted a comfortable, 

upright posture with normal muscle tension.  The force across the human-structure 

interface and the acceleration of the platform were measured.     

 

Work on human perception and response is usually presented in terms of 

acceleration, so it is natural to use the notion of ‘dynamic mass’ to relate 

acceleration and force.  For a dynamic system subjected to whole body sinusoidal 

acceleration, gx&& , with a circular frequency, ω, and giving rise to a force F, the 

apparent mass is given by: 

( ) ( )
( )ω
ωω
ix
iFim

g
app &&

=                                                                                                  (3.1) 

 

Griffin et al. calculated a non-dimensional parameter, called the ‘normalised 

apparent mass’, by dividing the measured apparent mass by the apparent mass at 

0.5 Hz.  The normalised apparent masses for all sixty seated subjects and twelve 

standing subjects are reproduced in Figs. 3.1 and 3.2 respectively.  Griffin et al. 

used these normalised apparent mass measurements to create an equivalent lumped 

parameter model for each subject.  The dynamic properties of each model (mass, 

stiffness and damping) were obtained by curve-fitting the model to the measured 

apparent mass data so as to minimise the square of the error between the measured 

and the calculated.  Various lumped parameter models were used to model the 

response data of each test subject (shown in Figs. 2.2 and 2.3).  Griffin et al. found 
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that a model consisting of two separate SDOF systems gave the best fit to the 

measured apparent mass frequency response data.  These models, reproduced in 

Fig. 3.3 for both the seated and standing humans, consist of two mass-spring-

damper systems arranged in parallel.  The difference between the seated and 

standing models is that the two constituent SDOF systems in the seated human 

models are attached to a rigid support of mass m0, whereas the standing model has a 

massless support.  This implies that while standing, the whole body is free to vibrate 

whereas while seated, there is proportion (probably representing the hips and lower 

spine) that is effectively rigid.  The parameters (mass, stiffness and damping) 

defining the mass-spring-damper systems in Fig. 3.3 for each subject were 

published in Wei and Griffin (1998) and Matsumoto and Griffin (2003). 

 

3.2. Cantilever-human system  

The aim here is to model a section of a cantilever grandstand, with one cantilever 

supporting one bay of seated area occupied by passive humans.  These passive 

humans are represented using the models in Fig. 3.3 and the published results on the 

model properties.  The resultant model, the cantilever-human system, is analysed to 

find out the effect of the passive crowd on the dynamic response of the structure.   

 

The outline of this section is as follows.  First, the representation of the cantilever-

human system as a feedback system is described.  Next, the use of state space 

models to describe the system in MATLAB® Control Toolbox (MathWorks, Inc.) is 

given.  Then a limit state design based on BS 5950: Part 1 (British Standards 

Institution 2000) is applied to determine the size of a cantilever subjected to loads 

specified in BS 6399: Part 1 (British Standards Institution 1996) for a grandstand.  
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Finally, the system is analysed to obtain its frequency response and the results are 

presented.   

 

3.2.1. Feedback system 

Consider a continuous mass cantilever discretised with J nodes, as shown in Fig. 3.4.  

Each node at coordinate xi is occupied by either a seated human or an external load.   

 

The response of the cantilever is obtained using modal superposition which has the 

advantage of using less degrees of freedom by considering only the significant 

modes.  So, from modal superposition, ( )txv i ,&& , the cantilever acceleration at node xi 

is given by: 

( ) ( ) ([ ]∑=
modes

, tYxtxv nini
&&&& φ )                             (3.2) 

where the subscript n denotes the nth mode of the cantilever, ( )in xφ  is the mode 

shape and ( )tYn
&&  is the modal amplitude. 

 

The combined human-structure system can be represented as a feedback system, 

shown in Fig. 3.5.  The interaction force between the seated human and the 

cantilever is calculated from the acceleration feedback of the structure.  A seated 

human at node xi is subjected to a support acceleration from the cantilever ( )txv i ,&& .  

The cantilever is subjected to some external loads and the interaction forces from 

the seated humans. 
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To simplify the analysis, all seated human models are combined to form a resultant 

human model, as shown in Fig. 3.6.  The method of implementing this will be 

discussed in section 3.2.2.2.  The resultant human model has the support 

accelerations for all seated humans as the input vector and the interaction forces as 

the output vector.  The response of the feedback system is calculated mode by mode 

using modal analysis.  A subscript n is added to denote the nth modal inputs and 

outputs in Fig. 3.6. 

 

3.2.2. State space model 

This section describes how each subsystem in Fig. 3.5 is represented as a state space 

model for analysis in MATLAB® Control Toolbox (MathWorks, Inc.).   

 

3.2.2.1. Cantilever 

The nth mode SDOF equation of motion for a cantilever is: 

K&&& 3,2,1;
)(

)()(2)( 2 ==++ n
M

tP
tYtYtY

n

n
nnnnnn ωωξ                         (3.3) 

where Yn(t) is the modal amplitude, Pn(t) is the modal force and Mn(t) is the modal 

mass.  The input to the state space model is the modal force; the outputs are the 

modal amplitude and the nodal accelerations ( )t,xv in&& , as depicted in Fig. 3.7.  The 

second order differential equation given in Eqn. 3.3 can be redefined as a set of first 

order differential equations in the following: 

Define a set of state variables as ),( 21 zz  where 

Let )(1 tYz n=                                                                         (3.4) 
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and 12 )( ztYz n && ==                  (3.5) 
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Expressing Eqns. 3.5 and 3.6 in matrix form, the state differential equations are: 

( )
( )

( )
( ) ( )tP
tz
tz

tz
tz

n
Mnnn n

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−

=⎥
⎦

⎤
⎢
⎣

⎡
1

2

1
2

2

1 0
2

10
ωξω&

&
                 (3.7)                             

where the modal force Pn(t) is given by the external loads [p(x1, t), …,  p(xJ, t)] 

multiplied by their corresponding mode shapes [φn(x1), …, φn(xJ)]: 
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The modal acceleration at node xi is:  
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From Eqns. 3.4 and 3.9, the outputs in matrix form are: 
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                    (3.10)    

The matrices in Eqns 3.7 and 3.10 define the state space model of the nth mode 

response of the cantilever.   

           

3.2.2.2. Seated human 

The seated and standing human models in Fig. 3.3 are defined by the following 

equations of motion: 
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gxmykycym &&&&& 1111111 −=++                                                                                    (3.11) 

gxmykycym &&&&& 2222222 −=++                                               (3.12)                              

( ) ( ) ( ) 22221111022110 ykycykycxmxymxymxmtF gggg −−−−=++++= &&&&&&&&&&&&&&         (3.13)                               

where  

m0 = mass of the rigid component in the seated human model (equals to 

zero for standing subject) 

y1 = relative displacement of mass m1 with respect to the support 

y2 = relative displacement of mass m2 with respect to the support     

gx&&  = support acceleration  

F = force transmitted across the human-structure interface 

 

When excited by the movement of the structure with an acceleration of gx&& , the 

human body undergoes vibration which in return exerts a force F back onto the 

structure.  This interaction force F which exists across the human-structure interface 

is a function of the relative movement of the human dynamical system (y1 and y2) 

with respect to the structural system, shown in Eqn. 3.13.  Therefore, for a seated 

human located at node xi, the input to the state space model is the cantilever modal 

acceleration, ( )txv in ,&& , and the output is the interaction force, Fin(t), as depicted in 

Fig. 3.8.           

 

Similar to the cantilever system, the second order differential equations defining the 

equations of motion of the human system can be redefined as a set of first order 

differential equations using state space variables.  For a human model at node i, 

define a set of state variables as ( )iz,z,z,z 4321  where 
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Let 11 yz =                                                  (3.14) 

and                                                                              (3.15) 112 zyz && ==

and 23 yz =                                       (3.16) 

and 324 zyz && ==                           (3.17) 

∴ ( )txvz
m
cz

m
kyz in ,2

1

1
1

1

1
12 &&&&& −−−==                                (3.18) 

∴ ( )txvz
m
cz

m
kyz in ,4

2

2
3

2

2
24 &&&&& −−−==                                              (3.19) 

Expressing Eqns. 3.15 to 3.19 in matrix form, the state differential equations are: 
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)                               (3.20) 

From Eqn. 3.13, expressing the interaction force in state variables: 

( ) ( )txvmzczkzczktF inoin ,42322111 &&+−−−−=                                  (3.21) 

Multiplying the interaction force by the mode shape to give the modal force on the 

cantilever: 

( ) ( ) ( ) ( ) ( )[ ]txvmzczkzczkxtFxtF inoinininin ,42322111 &&+−−−−== φφ                  (3.22) 

In matrix form, the modal force is given by: 

( ) ( )[ ]
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( )
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−−−−=                     (3.23) 

The matrices in Eqns 3.20 and 3.23 define the state space model of one seated 

human located at node xi. 
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For a cantilever occupied by multiple seated humans, each human model is 

represented using the state space model described above.  All human models are 

combined to form a resultant human model.  The resultant human model has an 

input vector consisting of all nodal accelerations and an output vector consisting of 

all modal forces, as shown in Fig. 3.9. 

  

The resultant human model is obtained by appending all human models from node 

x1 to node xJ.  The state differential equations of the resultant human model are:  
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The modal forces are: 
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For i varying from 1 to J, iz  denotes the state vector for the human model at node xi; 

Ai, Ci and Di denote the A, C and D matrices for human model at node xi 

respectively.  B is the same for all human models.  Each is given by:  
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[ ] iini ckckx nodeathumanfor2211)( −−−−= φC                                            (3.29) 

( )[ ] iinoi xm nodeathumanforφ=D                                                         (3.30) 

 

In MATLAB® Control Toolbox (MathWorks, Inc.), each subsystem is first defined 

in the state space model.  Then the cantilever and resultant human systems are 

combined using a feedback connection to form the feedback system in Fig. 3.6. 

                    

3.2.3. Limit state design 

The previous section shows how to model a cantilever occupied by seated humans 

in  MATLAB® Control Toolbox (MathWorks, Inc.).  In order to provide a realistic 

model of the cantilever grandstand, a limit state design according to 

BS 5950: Part 1 (British Standards Institution 2000) is carried out to determine the 

size of a cantilever capable of supporting dead and imposed loads according to 

BS 6399: Part 1 (British Standards Institution 1996).  Once the size of the cantilever 

is determined, the cantilever-human system is modelled in MATALB® Control 

Toolbox (MathWorks, Inc.) and analysed for its frequency response.  Some 

important findings on the dynamic characteristics of such an occupied structure are 

discussed at the end of this section. 
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3.2.3.1. Cantilever member  

Firstly, the tributary area of the cantilever is specified.  Consider a cantilever on a 

grandstand with a tributary area which consists of 10 rows of seats with each row 

having 14 seats.  Based on the guidelines given in the Guide to Safety at Sports 

Grounds (Dept. of National Heritage and Scottish Office 1997), the seat width is 

500 mm and the seating row depth is 760 mm.  Allowing 760 mm passageway at 

the front and back of the cantilever and 500 mm passageway on both sides, the 

length and span of the cantilever are:  

Length, L = 0.76×12 = 9.12 m 

Span, s = 0.5×16 = 8 m 

 

The cantilever supports a concrete seating deck with a thickness of 170 mm.  The 

dead load includes the self-weights of the cantilever and concrete deck.  The 

imposed load is 5.0 kN/m2, according to BS 6399: Part 1 (British Standards 

Institution 1996).  By trial and error, the UB 914×419×388 section is selected, 

satisfying both strength and serviceability criteria according to 

BS 5950: Part 1 (British Standards Institution 2000).  The design checks are 

presented in Appendix A. 

 

The total mass of the structure is 3.38×104 kg; the total mass of the crowd at full 

capacity is 1.12×104 kg.  The ratio of the mass of the crowd to the mass of the 

structure is 0.33. 
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3.2.3.2. Modal properties 

The natural frequencies of a cantilever are given by: 

( )
m
EIL nn

2αω =                                                     (3.31)                

where m is the mass per unit length of the cantilever including the self-weight of 

the concrete deck; 

875.11 =Lα ; 694.42 =Lα ; 855.73 =Lα ; ( ) ...,6,5,4for12
2

=−= nnLn
πα  

 

The mode shapes are given by: 

( ) ( ) ( ) ( ) ( )[ ]xxxxx nnnnnn αασααφ sinhsincoshcos −−−=                                 (3.32)                              

where ( ) ( )
( ) ( ) K3,2,1;

sinhsin
coshcos

=
+
+

= n
LL
LL

nn

nn
n αα

αα
σ  

 

Using the above equations, the natural frequencies of the first three modes are 

calculated: 

ω1 = 4.2 Hz,   ω2 = 26.6 Hz,  ω3 = 74.4 Hz 

 

The mode shapes are plotted in Fig. 3.10.  For a simple cantilever beam, the modes 

are widely separated in frequency and only the first mode is within the frequency 

range to be considered for human-induced loading.  Therefore, only the first mode 

will be used.  The mode shape for the first mode follows a roughly parabolic shape, 

as shown in Fig. 3.10. 
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3.2.3.3. Frequency response analysis 

Two analyses are conducted, one to investigate the effect of the position of the 

crowd and the other to look at the effect of the crowd size on the frequency response 

of the structure.  The human models are defined using the mean value of the model 

parameters (m0, m1, m2, c1, c2, k1 and k2) published by Wei and Griffin (1998):  

m0 = 6.7 kg,  m1,= 33.4 kg, m2,= 10.7 kg, c1 = 761 Ns/m,  c2 = 458 Ns/m, 

k1 = 35776 N/m and k2 = 38374 N/m. 

 

In the first case, one row is occupied by seated spectators at one time and the modal 

amplitude Yn of the cantilever at the free end due to a unit sinusoidal load applied 

there is obtained.  Analyses are conducted for rows 1, 5 and 10 occupied by seated 

spectators (row 1 is the row nearest to the fixed end and row 10 is the row at the 

free end).  The results, presented in Fig. 3.11, show that the presence of the seated 

crowd reduces both the modal amplitude and the resonant frequency of the structure.  

The reduction is greater when the occupied row is farther from the fixed end.  This 

can be explained in terms of the bigger influence from the seated humans due to 

increased displacements towards the tip of the cantilever, as reflected in the mode 

shape of the cantilever. 

 

In the second case, analyses are conducted with the cantilever empty; half-full and 

completely full with spectators.   For the half-full cantilever, half of the seats in 

each row are occupied.  The modal amplitude of the cantilever at the free end due to 

a unit sinusoidal load applied there is shown in Fig. 3.12.  As can be seen, the modal 

amplitude and the resonant frequency both decrease as the crowd size increases. 
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3.2.3.4. Discussion 

Several important key findings are found from the results presented here.  Firstly, 

for a simple cantilever, the response is dominated by the first mode.  Secondly, the 

presence of the seated humans contributes to lower modal amplitude and resonant 

frequency compared to when the structure is empty.  In addition, the effect of the 

passive crowd is a function of the size of the crowd and the motion of the structure.  

Therefore, two parameters are found to be important in the analysis: the natural 

frequency of the empty structure and the size of the passive crowd. 

 

At this stage, there are two options on how the research can proceed.  One option is 

to build a more complicated model with more degrees of freedom.  An attempt is 

made to build a system which consists of rigid planks spanning across two 

cantilevers.  However, due to too many degrees of freedom involved, it is not 

possible to generalise the analysis.   

 

The second option is to concentrate on the unknowns in the analysis, i.e. the crowd-

structure system and the loads exerted by the active crowd.  For the former, it seems 

appropriate to carry out a parametric study to investigate the human-structure 

interaction on structures with various natural frequencies and occupied by crowds of 

different sizes.  However, the method of analysis used in this chapter is restrictive 

because it is difficult to vary the natural frequency of the cantilever while adopting 

an optimum member size that satisfies both strength and serviceability criteria.  The 

dominance of the first mode suggests that a SDOF structural system is adequate.   
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3.3. Conclusions 

Due to difficulties in generalising the analysis using a complicated model, it is 

decided that a SDOF system will be used to represent the cantilever grandstand.  

The advantage of using a simple model is such that because the dynamic 

characteristics of the structure are simple and well-defined, the fundamental 

interaction between the passive crowd and the structure can be better understood.  

Therefore, a SDOF structural system is adopted in subsequent chapters. 

 

 

  



 

Chapter 4  

4. Passive crowd-SDOF system 

As mentioned in Chapter 3, the use of a simple SDOF structural system with known 

dynamic properties allows the fundamental interaction between the passive crowd 

and the structure to be investigated.  This chapter looks at the modelling of such a 

SDOF structural system with an added dynamic system to represent the passive 

crowd.  A few parameters are introduced to quantify the effect of the passive crowd. 

 

This chapter presents the derivation of a crowd model (section 4.1) and the analysis 

of a joint crowd-SDOF system (section 4.2).  The results are presented in charts 

with an example to illustrate how the charts can be used.  Section 4.3 simplifies the 

joint crowd-SDOF system to two equivalent reduced-DOF systems. 

 

4.1. Passive crowd model   

The human models developed by Griffin et al. (Fairley and Griffin 1989, Wei and 

Griffin 1998, Matsumoto and Griffin 1998, 2003) are introduced in the literature 

review (section 2.3.2) and are considered to be the best models available (section 

2.6.4).  They are used in the cantilever-human system in Chapter 3 to represent 

seated humans on a cantilever.  Their use is extended, in this chapter, to represent a 

group of people seated and standing on a structure.  First, an alternative 

interpretation of Griffin et al.’s results is presented.  Then using these results, a 

crowd model is derived. 
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4.1.1. Dynamic properties of individual human models 

The values of the model parameters m0, m1, m2, c1, c2, k1 and k2 were published in 

Table 2 in Wei and Griffin (1998) for sixty seated subjects and in Table 5 in 

Matsumoto and Griffin (2003) for twelve standing subjects.  Using these published 

values, the modal properties of each of the two constituent SDOF systems are 

calculated for each of the sixty seated and twelve standing models.  The resulting 

modal mass, undamped natural frequency and damping ratio are plotted in Fig. 4.1 

for DOF 1 (the one with lower undamped natural frequency) and in Fig. 4.2 for 

DOF 2.  The size of the bubble indicates the modal masses, m1 and m2.  The mean 

and standard deviation for all four groups of test subjects (seated 

men/women/children and standing men) are presented in Table 4.1 for the 

undamped natural frequency and damping ratio and in Table 4.2 for the modal mass.   

 

For all groups, the mean undamped natural frequency for DOF 1 is between 5 and 

6 Hz and for DOF 2, between 9 and 16 Hz.  The first resonant frequency is evident 

in the measured normalised apparent mass data shown in Figs. 3.1 and 3.2 while the 

second is less obvious.  DOF 1 has significantly higher modal mass than DOF 2 but 

the difference is less for standing men.  The damping ratios for all groups are high, 

within the range of 20% to 60%, indicating the ability of the human body to absorb 

energy when placed on a moving platform.  For different postures, the standing men 

have a slightly higher undamped natural frequency than the seated men.   
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4.1.2. Crowd model 

In theory, the individual models could simply be added together to produce a model 

of the crowd.  However, this produces a model with a very high number of degrees 

of freedom, since there are two for each person, and hence is overly complicated.  A 

lower order model that is a good approximation to the crowd is derived here.  Using 

the model parameters given by Griffin et al., the apparent mass frequency response 

of each subject is calculated.  The responses for all subjects are summed to give the 

total response for each group of men, women and children.  The total response is 

then normalised by the total mass of each group to give the average normalised 

apparent mass of each group, presented in Fig 4.3.  The apparent mass for any size 

of crowd can be obtained by multiplying the average normalised apparent mass data 

in Fig. 4.3 by the total mass of the crowd.  The average normalised apparent mass 

calculated here is the mean response of the derived models and is therefore different 

from the ‘average man’ derived by Wei and Griffin (1998).  The latter is obtained 

by taking the mean of each model parameters (mass, stiffness and damping). 

 

In analysing the dynamic response of a structure occupied by a crowd, it is 

necessary to consider the crowd as a dynamic system added to the main structural 

system.  The representation of a dynamic system can be in the form of differential 

equations of motion in the time domain or a transfer function in the frequency 

domain.  In this case, the crowd is represented using a transfer function based on the 

apparent mass.  The apparent mass data plotted in Fig. 4.3 are fitted from 0 to 20 Hz 

with rational polynomials of varying order from 1 to 6 using the damped Gauss-

Newton method (Dennis and Schnabel 1983).   It is found that the solution 

converges with polynomials of order of 4, i.e.  there is no significant further 
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reduction in the error when increasing the order from 4 to 5.  An order of 4 for the 

transfer function indicates that the group response can also be modelled as a 2DOF 

system.  In other words, a crowd model consisting of numerous, different, parallel 

2DOF systems, with each system representing one human, can be approximated 

well by using a single 2DOF system.  The transfer function for this 2DOF system is 

given by: 

( )
01

2
2

3
3

4
4

01
2

2
3

3
4

4*

bsbsbsbsb
asasasasa

smapp ++++
++++

=                                          (4.1) 

where 

*
appm  =     normalised apparent mass 

an, bn     = coefficients for n = 0 to 4, values given in Table 4.3 for all four 

groups, each normalised with respect to b4

s   =     Laplace Transform variable 

 

From Fig. 4.3, the frequencies at the maximum normalised apparent mass are 

4.42 Hz for seated men, 4.2 Hz for women, 4.53 Hz for children and 5.16 Hz for 

standing men.  A secondary peak is observed for standing men at a frequency 

slightly greater than 10 Hz.  In addition, the crowd of standing men has a slightly 

higher natural frequency than the seated groups.  For all groups, the phase angles 

are roughly 90o at high frequencies. 

 

The force transmitted from the human dynamical systems to the structure is a 

function of the relative movement of the two (Eqn. 3.13).  At low platform 

frequencies, the human bodies act as masses with little movement relative to the 

support.  The relative movement between the human dynamical systems and the 
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support is greatest at the peak normalised apparent mass which is between 4 to 6 Hz.  

At high platform frequencies, the human dynamical systems behave like dampers 

with their masses remaining still. Knowing these behaviours of the human 

dynamical systems will help us to understand how these systems might affect the 

behaviour of structures with different natural frequencies.  This will be discussed in 

more detail in section 4.2. 

 

4.1.3. Error analysis 

It is inevitable that there will be some errors in the derivation of the crowd model 

and it is important to know its order of magnitude in order to assess its significance 

on the results obtained from using the crowd model.  The total error for the crowd 

model defined using the transfer function in Eqn. 4.1 equals to the sum of the errors 

from curve-fitting the individuals’ measured apparent mass data with lumped 

parameter models and the error due to curve-fitting the total model response with a 

rational polynomial of order of 4.  The error for the former procedure which was 

conducted by Griffin et al. was not reported.  The maximum error from the latter 

procedure is found to be 0.7 % for the magnitude of normalised apparent mass and 

0.7o for the phase, for the range 0 to 20 Hz.  

 

4.2. Dynamic analysis of crowd-structure system 

This section presents a method of analysing the crowd-structure model.  The 

displacement-frequency response of the combined system is calculated and 

compared to that of the empty structure.  The changes in the resonant frequency and 
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peak response are obtained for various natural frequencies of the structure and 

crowd sizes. 

 

4.2.1. Implementation of analysis 

The crowd-structure model, shown in Fig. 4.4, consists of a crowd of people 

represented by the 2DOF model derived in section 4.1, on a structure which is itself 

modelled as a SDOF system with an intrinsic structural damping ratio of 2%, 

subjected to an external force, Fext. Crowds of seated and/or standing men are 

considered.  The relative mass of the crowd to the structure is defined by a mass 

ratio, γ, which has the value zero for an empty structure.  

 

Using MATLAB® Control Toolbox (MathWorks, Inc.), the crowd-structure model 

is represented as a feedback system shown in Fig. 4.5.  Each block represents one 

component:  the structure is represented by a SDOF state space model and the 

crowd, both seated and standing, are modelled using the transfer functions derived 

in section 4.1 for groups of seated and standing men (Eqn. 4.1 and Table 4.3).  If the 

structure is occupied with only a seated or a standing crowd, then the two systems 

are connected in a feedback loop in which the interaction force between the crowd 

and the structure is calculated from the acceleration feedback on the structure.  If 

the crowd consists of both seated and standing men, there are two feedback 

connections to the SDOF structural system.  Analyses are carried out for natural 

frequencies of the empty structure varying from 1 to 10 Hz and mass ratios of 0, 

0.05, 0.1, 0.2, 0.3 and 0.4.  The results are presented in terms of the Dynamic 

Magnification Factor (DMF), defined as: 
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skX
∆
X

⋅==
static

 DMF                                                              (4.2) 

where  

X = amplitude of response due to a unit amplitude sinusoidal load, 

sin (2πft) 

∆static = static deflection of the empty structure due to a unit load (1 N) 

ks = stiffness of the structure 

 

4.2.2. Frequency responses 

For the design of cantilever grandstands, the frequencies where there is concern for 

human-induced loadings lie below 8.4 Hz (BS 6399: Part 1, British Standards 

Institution 1996).   Fig. 4.6 shows the DMF of a seated crowd-SDOF system for 

four structures with natural frequencies varying from 2 to 8 Hz.  Each plot shows 

the frequency responses for mass ratios of 0, 0.05, 0.1, 0.2 0.3 and 0.4.  Several key 

observations can be made from the plots in Fig. 4.6.  For the 2 Hz structure, the 

human dynamical systems are subjected to a low frequency support excitation.  

Therefore, each DOF is behaving like a mass with its spring acting as a rigid link 

between the human mass and the support.  In effect, the crowd system is adding 

mass to the structural system which reduces both the natural frequency and the 

damping ratio of the occupied structure compared to the empty structure.  This is 

evident in the reduction in natural frequency and the increase in DMF shown in 

Fig. 4.6.  For the 4, 6 and 8 Hz structures, there are reductions in both the DMF and 

the natural frequency as the mass ratio increases.  At these frequencies of support 

excitation, the human dynamical systems are undergoing large relative vibration.  

The effect of the crowd on the structure is to reduce its dynamic response in a way 
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similar to a tuned mass damper though, unlike a TMD, the crowd properties cannot 

be optimised for a particular structure.  Very similar trends are found for a standing 

crowd-SDOF system and a 50:50 seated/standing-SDOF system.  For example, the 

plots for a 6 Hz structure for both cases are presented in Fig. 4.7.   

 

4.2.3. Reductions in natural frequency and DMF 

The frequency responses for all three crowd-SDOF systems (100% seated, 100% 

standing and 50:50 seated/standing crowds) are evaluated for structures with natural 

frequencies varying from 1 to 10 Hz.  In order to allow designers to estimate the 

structural response due to various crowd sizes, the results are summarised in 

Figs. 4.8 and 4.9 in terms of the frequency reduction factor and the DMF reduction 

factor, defined as:  

Frequency reduction factor: 

empty

occupied
R ω

ω
=F                                                               (4.3) 

where 

ωoccupied  = natural frequency of the occupied structure  

ωempty  = natural frequency of the empty structure 

The natural frequency is the frequency at the maximum response. 

 

DMF reduction factor: 

*
empty

*
occupied

R DMF
DMF

DMF =                                                                         (4.4) 

where 

*
occupiedDMF  = maximum DMF of the occupied structure 

  



4. Passive crowd-SDOF system                                                                                                        4-9 

*
emptyDMF  = maximum DMF of the empty structure 

                                       

Since the DMFs of both the occupied and the empty structures are normalised by 

the static deflection of the empty structure due to a unit amplitude sinusoid, the 

DMF reduction factor can be represented as: 

*
empty

*
occupied

R  DMF
X

X
=                                                                           (4.5) 

where 

*
occupiedX  = maximum displacement amplitude of the occupied structure 

*
emptyX  = maximum displacement amplitude of the empty structure 

 

As shown in Fig. 4.8, for all three crowd-SDOF systems, the frequency reduction 

factor varies with the natural frequency of the empty structure and the mass ratio.  

The frequency reduction factor decreases as the mass ratio increases with a 

reduction factor of up to approximately 0.75 achieved for a mass ratio of 0.4 for all 

three cases.  For each mass ratio, as the natural frequency of the empty structure 

increases, the reduction factor reduces to a minimum value.  This is followed by a 

region where the frequency reduction factors are plotted using thin hollow lines.  

This is due to a complicated transition in which the frequency response curve 

consists of two peaks with very close maximum DMF values.  Therefore, it is 

difficult to identify the natural frequency.  At higher natural frequencies, one of the 

two peaks becomes more dominant and the frequency reduction factor reaches a 

plateau.  This trend continues for structures with natural frequencies higher than 10 

Hz which are not shown in Fig. 4.8.  This contradicts the laboratory measurements 

by Ellis and Ji (1997) which showed that for a mass ratio of 0.3, there was an 
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increase in the resonant frequency for a 18.68 Hz reinforced concrete beam when 

occupied by a single standing or a seated person.   

 

For all three crowd-SDOF systems, the DMF reduction factor, shown in Fig. 4.9, is 

greater than 1 for structures with natural frequencies less than 2 Hz.  That is, the 

crowd increases the response of the empty structure by effectively adding mass and 

therefore reducing the damping ratio.  For natural frequencies of empty structures 

greater than 2 Hz, there is a significant reduction in the DMF with minimum values 

at around 7 to 8 Hz.  At higher natural frequencies, the DMF reduction factor 

increases gradually. 

 

The minimum values for the standing crowd-SDOF system are located at natural 

frequencies slightly higher than for the seated crowd-SDOF system.  This is due to 

the higher frequency of the maximum apparent mass of the standing crowd 

compared to seated crowd.  For the 50:50 seated/standing-SDOF system, the 

transition from the minimum value to the plateau is less abrupt, spreading over a 

wider frequency range.   

 

From the results presented in Figs. 4.8 and 4.9, it is clear that a passive crowd has a 

strong influence on the combined dynamical response by contributing added mass, 

damping and stiffness to the structural system.  In particular, the crowd acts as an 

added mass to the structural system at low natural frequencies and as an added 

damper at high natural frequencies.  There is greatest reduction in the natural 

frequency and the DMF for structures with natural frequencies within the range of 4 
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to 8 Hz.  The level of reduction in the DMF increases with the mass ratio, i.e. more 

damping is provided as the crowd size increases. 

 

4.2.4. Illustrative example 

An example is presented here to illustrate the use of Figs. 4.8 and 4.9 for two 

purposes:  (1) To estimate the natural frequency of an occupied structure; (2) To 

estimate the maximum displacement of an occupied structure when subjected to 

dynamic loads.  The procedures are summarised in the flow chart in Fig. 4.10 and 

are explained below. 

   

Consider a SDOF structural system with a natural frequency of 3 Hz, a damping 

ratio of 2 % and a mass of 800 kg.  It is occupied by two seated individuals 

(possessing the dynamical properties of a crowd) each with a body mass of 80 kg, 

giving a mass ratio of 0.2.   

 

Estimation of natural frequency of the occupied structure: 

From Fig. 4.8, for a 3 Hz structure with γ = 0.2, 

FR = 0.89   

From Eqn. 4.3,   

ωoccupied = ωempty × FR

             =  3 × 0.89 

             =  2.7 Hz 
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Estimation of maximum displacement of the occupied structure: 

If one person is jumping on the occupied structure, the most severe load is when the 

person is jumping at a frequency coinciding with the natural frequency of the 

occupied structure.  Considering excitation by the first harmonic of the jumping 

load, the force on the structure is: 

( tWF 7.22sin1 )⋅= πα                      (4.6) 

where  

W = self-weight of the jumper 

α1        = Dynamic Load Factor of the first harmonic, typically 1.5 for jumping, 

according to Willford (2001) 

 

The steady-state displacement amplitude of the empty structure, , due to F is: *
emptyX

( ) ( )[ ] 2
1

2221*
empty 21

−
+−= ξββ

α

sk
WX                             (4.7) 

where  

β = ratio of excitation frequency to natural frequency of the structure 

ξ = damping ratio 

 

Taking α1 = 1.5, β = 1, ξ = 0.02, 

W = 80 × 9.81 = 784.8 N (for a typical adult) 

kN/m2.284800)32( 22 =⋅⋅== πω sns mk  

Gives: 

*
emptyX = 0.104 m 
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From Fig. 4.9, DMFR = 0.764 

From Eqn. 4.5, the maximum displacement of the occupied structure is 

R
*
empty

*
occupied DMF×= XX  

             = 0.104 × 0.764 

             = 0.08 m 

 

Therefore, the occupied structure which has two-thirds of the crowd seated and one-

third jumping, has a calculated maximum displacement of 80 mm.  This is an 

illustrative example that gives the worst response due to a perfectly periodic 

jumping load at the natural frequency of the structure.  In some experimental tests, 

Yao et al. (2003) showed that it was not possible for a single jumper to jump at the 

natural frequency of the structure which had a mass ratio of 0.41.   In addition, there 

is a slight variation between each jump which is not taken into account in the 

periodic loading function.  Therefore, the results given in this example should be 

taken as a very conservative estimation. 

 

4.2.5. Design implications 

Currently, BS 6399: Part 1 (British Standards Institution 1996) adopts the threshold 

frequency design approach based on the natural frequency of the structure.  The 

crowd jumping frequency is within the range of 1.5 to 2.8 Hz.  In the example 

above, a natural frequency of 3 Hz was deliberately chosen to show that structures 

with natural frequencies coinciding with the second harmonic of a crowd jumping 

load might be excited by the first harmonic due to a reduction in the natural 

frequency when the passive crowd is present.  Generally, structures with natural 

frequencies within the second or third harmonics of human-induced loads might be 
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prone to more severe excitation at the lower harmonics due to the presence of the 

passive crowd.  However, the response of the structures might still be acceptable 

due to the additional damping provided by the passive crowd.    The charts in 

Figs. 4.8 and 4.9 allow designers to estimate the response of a structure for various 

crowd activities.  Structures with unacceptable vibration levels when the entire 

crowd is active, such as in a pop concert, might perform well if used for less lively 

events, such as football matches, in which only a small portion of the crowd is 

active. 

 

4.3. Equivalent reduced-DOF systems 

This section investigates the possibility of representing the joint crowd-structure 

system in section 4.2 as an equivalent reduced-DOF system.  For a structure with 

either a seated or a standing crowd, the joint crowd-structure system is a 3DOF 

system while for a structure with both standing and seated crowds, the two groups 

of passive crowds are each modelled as an independent 2DOF system, giving a 

5DOF joint crowd-structure system.  In this section, the 50:50 seated/standing-

SDOF system is reduced to two equivalent reduced-DOF systems - SDOF and 

3DOF systems.  The reduced-DOF systems have the advantage of making the 

analysis more straightforward because fewer DOFs are involved.  In addition, the 

modal properties (mass, stiffness and damping) of the equivalent SDOF system will 

give some insight into how the passive crowd alters the dynamic response of the 

structure, e.g. by adding mass or damping, depending on the natural frequency of 

the structure.  The errors between the two reduced-DOF systems and the full model 

are presented.   
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4.3.1. Equivalent SDOF system 

4.3.1.1. Curve-fitting DMF-frequency response curves 

Dynamic response of the full model shows that a passive crowd has a strong 

influence on the joint dynamical response by contributing added mass, damping and 

stiffness.  This raises the possibility of modelling the joint system as a SDOF 

system with modal properties different from those of the empty structure, as first 

suggested by Michael Willford (Blakeborough 2005).   

 

The equations of motion for a SDOF system subjected to a force of F(t) are given 

by: 

)()()()( tFtkxtxctxm =++ &&&                   (4.8) 

where m, c and k are the mass, damping and stiffness respectively. 

 

Taking the Laplace Transform: 

)()()()(2 sFskXscsXsXms =++                  (4.9) 

Rearranging to give X(s): 

)(1)( 2 sF
kcsms

sX ×
++

=                (4.10) 

Normalising Eqn. 4.10 by the static deflection due to a unit amplitude load: 

k
X 1

0 =                               (4.11) 

Hence: 

)()(
2

0

sF
kcsms

k
X

sX
×

++
=                 (4.12) 

The term on the left hand side of Eqn. 4.12 is the normalised displacement and is 

termed as DMF(s), therefore: 
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)()(DMF 2 sF
kcsms

ks ×
++

=                (4.13) 

Rearranging, the transfer function for a SDOF system is given by: 

kcsms
k

sF
s

++
= 2)(

)(DMF                (4.14) 

 

An example of the DMF-frequency response curves is shown in Fig. 4.7.  The most 

crucial response is around the peak response.  Therefore, Eqn. 4.14 is fitted over a 

bandwidth of 1/ 2  times the peak response using the damped Gauss-Newton 

method (Dennis and Schnabel, 1983).  The modal properties of the equivalent 

SDOF system are obtained from the coefficients of the transfer function in 

Eqn. 4.14.  They are expressed as mass, stiffness and damping ratios.  The mass and 

stiffness ratios are ratios of the mass and stiffness of the equivalent SDOF system to 

those of the empty structure.  The damping ratio is that of the equivalent SDOF 

system, i.e. ratio of its damping to its critical damping value.   

 

4.3.1.2. Modal properties of equivalent SDOF system 

The results, presented in Fig. 4.11 for a SDOF structure with an intrinsic damping 

ratio of 2%, show that the equivalent SDOF system reflects the important properties 

of the full model in that at low frequencies, the passive crowd is adding both mass 

and stiffness to the system.  At frequencies greater than 5 Hz, the passive crowd is 

adding very significant damping to the system.  The damping ratio increases with 

the mass ratio, with maximum damping ratio found for structures with natural 

frequencies between 5 and 8 Hz.  
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4.3.1.3. Error analysis 

For assessing the accuracy of the equivalent SDOF system in representing the full 

model, the peak DMF relative error and resonant frequency relative error are 

calculated.  They are defined as (see also Fig. 4.12):  

Peak DMF relative error: 

%100
DMF'

DMFDMF
model Full

'
'
RE ×

∆
=                                                  (4.15) 

where  

DMF’Full model = Peak DMF of full model 

∆ DMF' = Peak DMF of equivalent SDOF – Peak DMF of full model  

 

Resonant frequency relative error: 

%100
' model Full

'
'

RE ×
∆

F
F

F                                              (4.16) 

where  

The resonant frequency refers to the frequency at the peak DMF and  

F’Full model = Resonant frequency of full model 

∆F' = Resonant frequency of equivalent SDOF – Resonant frequency of full model 

 

As shown in Fig. 4.13, the equivalent SDOF system shows a very good fit for 

natural frequencies up to 4 Hz.  This implies that the full model exhibits the 

behaviour of a SDOF system, with the crowd adding mass to the SDOF structure.  

For frequencies above 4 Hz, the relative errors increase with the mass ratio, with 

maximum values of 4% for the peak DMF relative error and 9% for the resonant 

frequency relative error, for a mass ratio of 0.4.  Therefore, with an increasing 
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number of people on the structure, the joint system is behaving less like a SDOF 

system and the errors inherent in the approximation become significant. 

 

4.3.2. Equivalent 3DOF system 

For structures greater than 4 Hz, the equivalent SDOF system is not giving a very 

good fit, particularly for the resonant frequency.  Hence in this section, an 

equivalent 3DOF system is attempted.  For the equivalent 3DOF system, each of the 

seated and standing crowd is modelled as a SDOF system, added to the SDOF 

structural system.  The method of analysis is the same as the full model, i.e. the 

equivalent 3DOF system is represented as a feedback system, as shown in Fig. 4.5, 

and analysed for its DMF-frequency response using MATLAB® Control Toolbox 

(MathWorks Inc.).  It is important to note that this section looks at structures with 

both seated and standing crowds.  For the cases of structures with only a seated or a 

standing crowd, the reduced system is a 2DOF system. 

 

4.3.2.1. SDOF crowd model 

For civil engineering structures, there are significant motions for structures less than 

8.4 Hz (BS 6399: Part 1, British Standards Institution 1996).  For this reason, the 

SDOF crowd model is obtained by curve-fitting a rational polynomial to the average 

normalised apparent mass at low frequencies.   

 

The transfer function for a SDOF crowd model is given by: 

( )
01

2
2

01
2

2*

bsbsb
asasa

smapp ++
++

=                          (4.17) 
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Eqn. 4.17 is fitted to various frequency ranges such as 0 to 5 Hz, 0 to 8 Hz and 0 to 

10 Hz.  By trial and error, it is found that curve-fitting from 0 to 5 Hz gives the least 

total absolute error for structures from 0 to 8.4 Hz. 

 

Fig. 4.14 shows the average normalized apparent mass for seated and standing men, 

together with the fitted transfer functions given in Eqns. 4.1 (2DOF crowd model) 

and 4.17 (SDOF crowd model).  While the 2DOF crowd model shows almost 

perfect fit, the SDOF crowd model shows deviation at high frequencies.  Values of 

the coefficients of the transfer function in Eqn. 4.17 are presented in Table 4.4.     

   

4.3.2.2. Dynamic analysis and error analysis 

Dynamic analysis similar to the full model is performed for the equivalent 3DOF 

model with the crowd consisting 50% seated and 50% standing men.  The peak 

DMF relative error and resonant frequency relative error are presented in Fig. 4.15.  

The relative errors increase proportionally with the mass ratio because the crowd 

model is obtained by multiplying the transfer function in Eqn. 4.10 by the mass of 

the crowd.  For the peak DMF relative error, it falls within the range of ± 3%.  The 

resonant frequency relative error is very low, less than 3%.  Compared to the 

equivalent SDOF system, the equivalent 3DOF system gives a better fit for 

structures greater than 4 Hz. 

 

4.3.2.3. Bode diagrams 

Fig. 4.16 shows the DMF-frequency response curves for the full model, equivalent 

SDOF and 3DOF models, for 2, 4, 6 and 7 Hz structures with a mass ratio of 0.4.  
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The equivalent SDOF shows good fit for the 2 and 4 Hz structures.  However, for 

the 6 and 7 Hz structures  – the shape of the curve does not match that of the full 

model.  In particular, there is a slight discrepancy in the resonant frequency but a 

good approximation for the maximum DMF is found.  As for the equivalent 3DOF 

system, the shape of the curve matches and it gives good approximations for both 

the resonant frequency and the DMF for all structures. 

 

4.4. Conclusions 

It has been shown that a passive crowd which consists of many different 2DOF 

systems in parallel can be approximated as a single 2DOF system.  An analysis tool 

is introduced to illustrate that the joint crowd-SDOF system can be represented as a 

feedback system.  The frequency response of the combined system is quantified in 

terms of the natural frequency and DMF reduction factors for structures with natural 

frequencies from 0 to 10 Hz.  For structures with low natural frequencies, a passive 

crowd adds significant mass to the system while for high natural frequency 

structures, it adds significant damping.  Both effects cause a reduction in the natural 

frequency of the structure.  At very low natural frequencies (below 2 Hz), the crowd 

increases the response of the structure compared to when it is empty by adding mass.  

For natural frequencies above 2 Hz, a significant reduction in the response of the 

structure is induced by the high damping contributed by the passive crowd.  The 

results presented in Figs. 4.8 and 4.9 allow designers to estimate the changes in the 

natural frequency and response of an occupied structure for various crowd sizes.    

 

Work on the reduced equivalent-DOF systems show that the joint 50:50 

seated/standing crowd-SDOF system can be modelled satisfactorily as a SDOF 
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system for 1 to 4 Hz structures.  At low natural frequencies of the empty structures, 

the crowd is adding mass to the structure and thus the joint system exhibits little 

deviation from the behaviour of a SDOF system.    For structures above 4 Hz, the 

relative errors in DMF and resonant frequency increase with the mass ratio, 

indicating a deviation from the behaviour of a SDOF system as the number of 

people on the structure increases.  Bode plots of the equivalent 3DOF system show 

a good match with those of the full model while a mismatch is found for the 

equivalent SDOF system for high natural frequency structures.  Hence the 

equivalent 3DOF system is found to give a more accurate fit for structures above 

4 Hz due to less error in the resonant frequency.   

 

In practice, the engineer is interested in the maximum DMF.  The slight discrepancy 

in the resonant frequency given by the equivalent SDOF should not matter.  The 

maximum DMF relative errors for the equivalent SDOF and 3DOF systems are both 

within the range of ± 4%.  In fact, the equivalent SDOF system gives a better fit for 

structures below 4 Hz.  Therefore, for design purpose, the equivalent SDOF, with 

less DOFs, is a better option because it is more simplistic.  It should be noted that 

theoretically, the equivalent 3DOF is a more accurate model because it gives a 

lower resonant frequency relative error. 

  



 

Chapter 5 

5. Statistical modelling of individual jumping load 

There are two important aspects in the dynamic analysis of a cantilever grandstand, 

modelling the active and passive crowds.  In Chapter 4, a joint crowd-SDOF system 

is developed to model a structure occupied by a passive crowd.  The next task, 

modelling the active jumping crowd, is addressed here by deriving a load model 

which defines the forces due to a group of people jumping together.  In the next 

chapter, the jumping load model is applied to the joint crowd-SDOF system. 

 

The load model derived here is based on the experimental results from the work of 

Parkhouse and Ewins (2004).  Parkhouse and Ewins conducted an analysis of the 

jumping loads using methods in the frequency domain.  This thesis carries out an 

independent study based on an analysis in the time domain. 

 

As mentioned in the literature review in Chapter 2, this thesis treats the load-time 

record of each subject as one random process and assigns parameters to quantify 

each jumping record.  In this chapter, the jumping record of each individual is 

characterised by the timing and shape of the measured impulses.  The strategy is to 

introduce a few parameters to model these two key aspects.  The relevant 

parameters are fitted with probability distribution functions.  In the next chapter, 

Monte Carlo simulations based on the fitted probability distribution functions are 

conducted to simulate group jumping loads and the responses of the joint crowd-

SDOF system are evaluated. 
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This chapter begins with a brief description of the experimental tests conducted to 

measure the loads generated by individuals jumping in time to audio prompts.  This 

is followed by analysing the load measurements in terms of the impulse timing 

(section 5.2) and the impulse shape (section 5.3).  The relationship between these 

two properties of the measured impulses is considered (section 5.4) and lastly in 

section 5.5, all major findings are summarised. 

 

5.1. Experimental tests 

Experimental tests were conducted by Parkhouse and Ewins (2004) to measure the 

individual jumping loads of 100 test subjects at four distinct frequencies:  1.5, 2, 

2.67 and 3.5 Hz (equivalent to 90, 120, 160 and 210 beats per minute).  Each test 

involved a single participant jumping on a 0.8 m x 0.6 m force plate which 

measured the horizontal and vertical loads (see Fig. 5.1).  Each participant was 

asked to jump in time with regular audio beeps generated by a metronome.  Each 

test started with the participant standing still on the force plate followed by jumping 

for 30 to 35 s.  The load and beep signals were recorded at a sampling interval of 

5 ms.       

 

5.2. Impulse timing 

The modelling of the impulse timing aims to capture the lack of synchronisation 

between individual’s timing when jumping together in a group.  This is expected to 

lead to a less conservative load model, i.e. one not assuming perfect synchronisation 

between individuals.  Several parameters characterising the timing of each impulse 

are first introduced and the criteria for selecting the test results for analysis are 
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stated.  This is followed by a presentation of the statistics of two key parameters, 

namely the mean phase delay and phase scatter.  The relationship between these 

two parameters is considered and each parameter is modelled using one or several 

probability distribution functions.   

 

5.2.1. Definition of parameters 

Fig. 5.2 shows a series of jumping impulses in schematic form and the variables 

used in the analysis.  The impulses are separated by intervals of zero loads when the 

person is in the air.  Each impulse is obtained by splitting the test record at these 

intervals of zero loads.  The effective time of the ith impulse, teff,i,  is used to define 

the timing of each jump.  It is calculated as the time at the impulse centroid, i.e.: 
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where Fj is the sampled load at time tj and Np is the number of sampled points in 

each jump. 

 

The metronome generates a beep with a pulse 15 ms in duration.  Since the 

sampling interval is 5 ms, the pulse for each beep is usually recorded in three 

successive samples but occasionally in two.  The timing of each beep, tbeep, is taken 

from the mean value of the detected points for each pulse. 

 

The time delay, tdelay,i, is the time lag between each impulse and the corresponding 

beep: 
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iii ttt ,beep,eff,delay −=                                         (5.2)                 

 

The mean time delay, delayt , is the average time delay of each test record.  The time 

deviation, , is the difference between the time delay and the mean time delay.  

Since the mean time delay removes the DC offset, it follows that the time deviation 

has a mean of zero.   

'
it

delay,delay' ttt ii −=                                        (5.3) 

 

It is sometimes more useful  to define the time parameters in terms of the beat 

period, Tbeat, giving the phase delay, θdelay,i, mean phase delay, delayθ , and phase 

deviation, 'iθ : 

o

beat

,delay
,delay 360⋅=
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iθ                                                   (5.4) 
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The standard deviation of phase deviation for each test record, referred to as the 

phase scatter hereafter, is given by: 

T

N

i
i

N

T

∑
== 1

2'

'

θ
σθ                                          (5.7)             

where NT is the total number of impulses in each test record.   
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5.2.2. Synchronised tests 

For each test record, the first four and last two impulses are discarded so that only 

the steady state jumping process is analysed.  In some cases, the test subjects are not 

able to jump in time with the beeps, with misses or extra jumps.  Only results for 

synchronised tests, i.e. when the subject jumps once per beep, with no misses or 

extras throughout the whole duration of the test, are analysed.  This means that the 

worst loading case is being considered with all individuals able to synchronise their 

jumps with the beeps.  Out of the 100 tests conducted for each beat frequency, the 

number of synchronised tests for 1.5, 2, 2.67 and 3.5 Hz are 55, 75, 67 and 41 

respectively.  Hence people are most synchronised when jumping at 2 and 2.67 Hz.  

The lower number of synchronised tests at 1.5 Hz  is due to the difficulty in timing 

the landing and launching actions.  For jumping at lower frequencies such as 1 Hz, 

individuals tend to land on their toes and heels whereas for higher frequencies at 2 

Hz and above, individuals tend to land only on their toes.  Jumping at an 

intermediate frequency of 1.5 Hz is a mixture of these two actions and is difficult to 

control.  For jumping at 3.5 Hz, the small number of synchronised tests could be 

due to difficulty in keeping up with the fast pace.  Out of the 100 test subjects, 26 

re able to perform synchronised jumping at all four beat frequencies.   a

 

The impulses for all synchronised tests are presented in Figs. 5.3 to 5.6, with each 

plot corresponding to one test record.  The vertical axis is the normalised load, 'F , 

defined as the measured load divided by the static weight of the subject.  For ease of 

comparing the shape of the impulses, all impulses are centered about the timing of 

the impulse, teff, so that at t = 0, the time equals teff.  The shape of these impulses 

ction 5.3. will be discussed in se
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5.2.3. Statistics 

The phase delays for all synchronised tests are presented in Fig. 5.7.  Each plot 

shows the results for one beat frequency and within each plot, each column of data 

corresponds to the phase delay of one individual.  The mean phase delays are 

plotted as triangles and the phase delays as squares.  In order to impose some 

structure on the graphs the results are plotted in terms of increasing mean phase 

delay.  Most of the mean phase delay values are positive, which means that the 

centroids of the impulses occur after the beeps.  Depending on the shape of the 

impulse, most centroids are close to the maximum force exerted during landing.  

This indicates that the test subjects probably timed their jumps by coinciding their 

ndings with the beeps.   

the beep and the latter quantifies the degree of 

ariability of a person’s timings.  

la

 

For each test record, the impulse timing is quantified by the mean phase delay and 

phase scatter.  The former gives an average indication of how closely a person’s 

jumping impulse coincides with 

v

 

Table 5.1 presents the mean and standard deviation of the mean time delay and 

mean phase delay.  Generally, the mean time delay is close to 0.1 s for all four beat 

frequencies, indicating a common preference for timing the jumps at all beat 

frequencies.  The standard deviation of the mean phase delay is a measure of the 

inter-subject variation and has the highest value for 1.5 Hz and the lowest value for 

2.67 Hz.    Therefore, there is least variation among individuals when jumping at 

2.67 Hz and greatest variation when jumping at 1.5 Hz.  The high variation at 1.5 

Hz could be due to the difficulty in timing the landing and launching actions.  
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Jumping at 2.67 Hz involves one single action of landing and launching on toes and 

e pace is easy to keep up.   

 

lay, there is least 

ter-subject variation at 2.67 Hz and greatest variation at 1.5 Hz. 

ill be treated as independent 

ndom variables in the statistical modelling process.   

 

th

 

The phase scatter, σθ', is a measure of the jumper’s coordination with the beeps.   

Its mean and standard deviation are calculated and presented in Table 5.2.  The 

mean value shows that overall, the test subjects show best coordination when 

jumping at 2 and 2.67 Hz and worst coordination when jumping at 1.5 and 3.5 Hz.  

The standard deviation shows that similar to the mean phase de

in

 

Fig. 5.8 shows plots of the phase scatter against the mean phase delay.  Visual 

inspection suggests that there is no obvious correlation between the two parameters, 

i.e.  individuals with high mean phase delay do not show significantly higher or 

lower phase scatter.  The correlation coefficient, r, of these two parameters is 

calculated and shown in Table 5.2.  There is a weak correlation for 2 and 3.5 Hz (r 

of -0.3) and no correlation for 1.5 and 2.67 Hz (r close to zero).  It can be concluded 

that there is negligible correlation between the mean phase delay and phase scatter.  

Therefore, the mean phase delay and phase deviation w

ra

5.2.4. Mean phase delay 

Fig. 5.9 shows histograms of the mean phase delay for all synchronised tests at each 

of the four beat frequencies.  Superimposed on each histogram is the relative 

frequency curve.    The  most  probable  values  for the mean phase delay are 

between -180° and 180°, i.e. the duration of one beat period.  For all four beat 
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frequencies, the mean phase delay values are mostly positive with the distribution 

skewing to the right.  Hence, a Beta distribution function is chosen for curve-fitting 

ecause of its fixed range and ability to assume widely differing shapes. 

ability distribution function for a random variable y with α and β 

parameters is: 

b

 

The Beta prob

( ) ( )
( ) 10;0,,

,
≤≤>= y

B
yf βα

βα
1 11 − −− yy βα

                          (5.8) 

where B(α, β) is the Beta function defined as: 

( ) ( ) ( ) ( )
( )∫ +Γ

ΓΓ
=−= −−

1

0

11 1,
βα
βα

βα βα dyyyB                             (5.9) 

 

The mean phase delay range is set to be oo 180180 delay ≤≤− θ  and the Beta distribution 

is only defined for   A ransfo of var ble is erefo1  t rmation ia  th re required:  0 ≤≤ y .

( ) oo*
delay 360/180+=θ                   delayθ                     (5.10) 

herew  *
delayθ is called the transformed mean phase delay and 10 *

delay ≤≤ θ .     

using the thod of m

 

The α and β parameters are obtained  me aximum likelihood 

estimates.  For a better fit, the outliers ( 3.0*
delay ≤θ  or o72delay −≤θ ) are not considered 

in the evaluation of the α and β values.  The 0.3 cut-off value is selected based on 

ial and error so as to minimise error in the curve-fitting process. 

t the mea

tr

 

A χ2 test is performed to test the null hypothesis tha n phase delay follows a 

Beta distribution.  All data, including the outliers ( 3.0* ≤delayθ ), are considered in the 

  



5. Statistical modelling of individual jumping load                                                                          5-9 

χ2 test.  By using properties of the Beta distribution, the expected frequency, Ni is 

calculated and presented in Table 5.3, together with the observed frequency, ni, and 

the X2 value, which is defined as: 

[ ]∑ −
=

k

=

ii Nn 2
2                                      (5.11) 

2 value 

exceeding the critical value of .  Therefore, the region 

                                     (5.12) 

i iN
X

1

where k is the total number of class intervals.  The X2 value gives the sum of the 

discrepancies in each class interval normalised by the associated expected 

frequencies.  It is a measure of the discrepancy between the observed data and the 

fitted theoretical probability function.  Since the α and β parameters defining the 

Beta distribution are computed from the sample data, the number of degrees of 

freedom, d = k-3.  The width of each class interval is set to be 0.4σ  (σ is the 

standard deviation of the data) as suggested by Bendat and Piersol (1986).  They 

also suggested that Ni  > 3 in all class intervals so that Eqn. 5.11 gives an acceptable 

approximation.  However, this is not possible here because the sample size is small.  

Instead, class intervals at both the head and the tail are merged into one interval 

such that the expected frequencies are greater than one (Ni >1).  In addition, the first 

and last class intervals extend to 0 and 1 respectively.  A significance level, α, of 

0.05 is adopted for the hypothesis testing, i.e. 1 in 20 chance of the X

2
; αχ d of acceptance is: 

2
;

2
αχ dX ≤  

 

As shown in Table 5.3, all beat frequencies except one (2 Hz) pass the χ2 test.  This 

is rather unfortunate because the 2 Hz beat frequency has the highest number of 

synchronised tests and hence has the best data among the four beat frequencies.  

The histogram for 2 Hz appears to be more peaky than the others and it diminishes 
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quite abruptly at the tail.  This explains the higher X2 value obtained.  Fig. 5.10 

shows the histograms superimposed with the expected relative frequency curves 

from the Beta distribution.  Note that the first and last class intervals are much wider 

than the rest because a few intervals are merged to make sure (N1,  Nk) >1.  The 

expected relative frequency for the first interval is slightly higher because it extends 

to 0.  Considering that three out of the four beat frequencies pass the χ2 test and for 

consistency of modelling, the Beta distribution is adopted to model the mean phase 

delay for all beat frequencies.  Values of the parameters, α and β, defining the Beta 

istribution at each beat frequency are given in Table 5.4. 

 

 while the latter is 

ased on a hypothesis which will be discussed in section 5.2.5.2. 

 

eviation of each test record is fitted with a Normal distribution which is 

defined as: 

d

5.2.5. Phase deviation 

Two methods of modelling the phase deviation of each test record are considered, 

first using a Normal distribution and then using an auto-regression algorithm.  The 

former attempt is made because of the standard properties of the Normal 

distribution which makes it favourable in the modelling process

b

5.2.5.1. Normal distribution 

The phase d

⎥⎦⎢⎣ ⎠⎝22 σσπ
⎥
⎤

⎢
⎡

⎟
⎞

⎜
⎛ −

−=
2

gaussian
'1exp1 µθy                                                                    (5.13) 

here θ ′ is the phase deviation, µ is the mean and σ  is the standard deviation. w
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A χ2 test is again conducted.  The histograms for all synchronised tests at all four 

beat frequencies are presented in Figs. 5.11 to 5.14, superimposed with the expected 

relative frequency curves.  The X2 and 2
; αχ d values (shown in brackets) are shown in 

each plot.  Note that the first and last intervals extend to -∞ and +∞ respectively.  

For all four beat frequencies, an average of about 58% of the test records pass the χ2 

test.  Hence, it can be concluded that the phase deviation does not quite follow a 

Normal distribution.  In the next section, an attempt is made to model the phase 

eviation using an auto-regression algorithm. 

s a inear 

combination of previous m phase deviations added to a new random

''
m

θθρθ ∆+= ∑

d

 

5.2.5.2. Auto-regression process 

First, let us postulate that the phase deviation of the kth jump, '
kθ , i  l

 error kθ∆ : '

'

1
k

j
jkjk

=

                                                (5.14) 

 which ρj is the jth order auto-regression coefficient. 

e with n data points and there is m term 

regression, there are n - m equations: 
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Or in matrix

−
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Consider a phase deviation sequenc
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If n > m+1 then the set is over-determined and the auto-regression coefficients in r, 

obtained by minimising the sum of squared error, 2T , are given by:  ∆

TT 1−
=                                                  (5.17) ( ) TAAAr

 

As the order of regression increases, 2∆T reduces.  The task is to select the order of 

regression such that the remaining errors are acceptable.  Auto-regression models of 

increasing order from one to four (m = 1 to 4) are fitted to each of the phase 

deviation sequence and the standard deviation of error, m,'θσ ∆ , (square root of 2∆T ) 

is presented in Fig. 5.15.  At m = 0, the standard deviation of error corresponds to 

the phase scatter.  There is a significant reduction in the standard deviation by 

ing the first order regression.  Table 5.5 presents the reduction in the mean of 

m,'θ

apply

σ ∆  relative to the mean of 1,' −mθσ ∆  as the order of regression increases.  The 

application of the first order regression reduces the standard deviation by 

approximately 60% for all four beat frequencies.  A further reduction of 10 to 20% 

is achieved from the second order regression.  The errors for most subjects show 

distributions resembling the bell shaped curve of the Normal distribution.  These 

observations imply that there is some structure in the phase deviation sequence 

which can be modelled by the auto-regression model and the subsequent error by a 

ormal distribution. 

delling the errors using a Normal 

distribution, the  phase deviation is given by: 

N

 

Considering the significant reduction in standard deviation achieved by the first 

order of regression and the possibility of mo

kth

''
11

'
kkk θθρθ ∆+= −                                                 (5.18) 
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Eqn. 5.18 means that the timing of the kth jump is influenced only by the timing of 

the (k-1)th jump scaled by a factor of ρ1 plus a random error given by '
kθ∆ .   In other 

words, the jumper adjusts the timing of the current jump according to the timing of 

the previous jump with a slight random error introduced to each jump.  The next 

task is to model the ρ1 and of all subjects.  These are presen wing 

o sections.  

 

o urves.  The 

1 values skew to the right, with most of the values between 0.8 and 1.   

o

i

 found to e 

reater than 1.  Therefore, the possible range for a synchronised test is 

'
kθ∆  ted in the follo

tw

5.2.5.3. Auto-regression coefficient 

Fig. 5.16 shows histograms of the regression coefficient, ρ1, for all subjects at each 

f the four beat frequencies, superimposed with the relative frequency c

ρ

 

The regression coefficient, ρ1, is related to the phase scatter, σθ', which is a measure 

f an individual’s degree of synchronisation with the beat.  Fig. 5.17 shows plots of 

ρ1 against σθ' for each of the four beat frequencies.  There is a slight parabolic trend 

n the data:  low ρ1 values correspond to low σθ' values and ρ1 approaching 1 as the 

σθ' increases.  Theoretically, a low ρ1 value is expected for well synchronised jumps 

with small deviation about the mean phase delay.  ρ1 = 0 corresponds to a perfectly 

synchronised test.  The plots in Fig. 5.17 show ρ1 > 0 which corresponds to an 

increasing trend for the phase deviations, most probably due to exhaustion as the 

jumping duration increases.  For unsynchronised tests, the ρ1 values are  b

10 1 ≤≤ ρ . g

 

g the skewness of the ρConsiderin 1 distributions in Fig. 5.16 and its range of 
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10 1 ≤≤ ρ , a Beta distribution is fitted.  A χ2 test is conducted and the calculations, 

tabulated in Table 5.6, show that all beat frequencies pass the χ2 test.  Therefore, the 

eta distribution is adopted to model the auto-regression coefficient.  Values of the 

α and β  parameters defining the Beta distribution for each beat frequency are 

presented in Table 5.7.  Fig. 5.18 shows the histograms superimposed with the 

expected relative frequency curves from the Beta distribution.  Note that the

B

 first 

nd last class intervals are wider because they extend to 0 and 1 respectively.   a

 

5.2.5.4. Random error 

The random error from the first order regression of each test record is fitted with a 

Normal distribution.  The mean, 1,' =mθµ∆ , and standard deviation, 1,' =mθσ ∆ , defining 

the Normal distribution are estimated from the sample data.  A χ2 test is conducted.  

The histograms for all synchronised tests at all four beat frequencies are presented 

in Figs. 5.19 to 5.22, supe osed with the expected relative frequency curves.  

The corresponding X

 rimp

se deviation are found to pass the χ2 test when 

ith a Normal distribution. 

2 and 2
; αχ d values (shown in brackets) are also shown in each 

plot.  Note that the first and last intervals extend to -∞ and +∞ respectively.  For all 

four beat frequencies, more than 90% of the test records pass the χ2 test.  Hence, it 

can be concluded that the random error follows a Normal distribution.  In 

comparison, only 58% of the pha

fitted w

 

The mean of the random error is a function of the boundary conditions and the 

regression coefficient (see Appendix B for proof).  Its variation between individuals 

is insignificant compared to the standard deviation.  Therefore, it is assumed to be a 
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constant with a value of zero for all subjects in the simulations.  Hence only the 

d deviation needs to be modelled.  Fig. 5.23 shows the histograms of 

1,' =mθ

standar

σ ∆ superimposed with the relative frequency curves for all four beat frequencies.  

Most values are between 0° and 20°.  Considering the rather peaky and skewed 

Beta distribution function is fitted.  An arbitrary range of 

1,' 1800 ≤≤ =mθσ ∆

distribution, a 

is set for the purpose of curve-fitting.  A transformation of variable 

is performed: 

=mθ∆                            (5.19) 

such that  

*
1,' ≤≤ =mθσ ∆                                                             (5.20) 

superimposed with the 

xpected relative frequency curves are shown in Fig. 5.24. 

 

een th

 stand

o

*
1,' = =mθ σσ ∆ 180/1,'

0 1

 

A χ2 test is conducted and the calculations are presented in Table 5.8.  Two beat 

frequencies (2 and 2.67 Hz) fail the test.  This is due to large discrepancies at the 

end intervals.  The intermediate intervals, which contain most of the data points, 

give a good fit.  Therefore, it is reasonable to use the Beta distribution to model the 

standard deviation of the random error.  The α and β parameters defining the Beta 

distributions are given in Table 5.9.  The histograms 

e

5.2.5.5. Correlation 

A correlation analysis is performed to investigate the linear relationship betw e 

regression coefficient, ρ1, and the ard deviation of random error, 1,' =mθσ ∆ .  

Fig. 5.25 shows plots of ρ1 against 1,' =mθσ ∆ .   Compared to the plots in Fig. 5.17 for 

the un-regressed phase deviation data, the parabolic trend has disappeared after the 
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application of the auto-regression algorithm.  A check on the linear relationship 

between the two parameters finds that the correlation coefficient falls between –0.02 

and 0.06 for all four beat frequencies.  Therefore, it can be concluded that there is 

no correlation between the two parameters and they can be treated as independent 

ndom variables. 

 

entified and its frequency content is compared with that of 

e measured impulses. 

 

ra

5.3. Impulse shape 

As mentioned before in Chapter 2, the half-sine function is widely used to represent 

a single jumping impulse although no verification has been conducted.  In this 

section, three analytical functions, including the half-cosine function which is 

equivalent to the half-sine function, are used to curve-fit the measured impulses.  

The best fit function is id

th

5.3.1. Load profile 

The impulses for three subjects are reproduced in Fig. 5.26 for all four beat 

frequencies, with each column corresponding to one beat frequency and each row 

corresponding to one subject.  The three subjects are chosen because each has a 

different impulse profile at 1.5 Hz which is related to the value of the maximum 

normalised load, called the impact factor kp.  The impact factor has values of 

approximately 2, 3 and 4 and above which correspond to profiles of twin peaks 

(first subject in Fig. 5.26), merging of twin peaks (second subject) and single peak 

(third subject) respectively.  For the twin peaks, the first peak is the landing impulse 

while the second peak is the launching impulse.  Among the 55 test subjects 
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performing synchronised jumps at 1.5 Hz, 6 are found to have the twin peaks 

impulse shape.  The majority of the subjects have the merging of the twin peaks 

impulse shape.  For higher frequencies of 2, 2.67 and 3.5 Hz, the impulses are 

ostly single peaks. 

 

used to curve-fit the measured impulses:   

mal distribution function: 

m

5.3.2. Curve-fitting impulse 

Three analytical functions are 

Nor
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Cosine function: 
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τ
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Cosine-squared function: 
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The Normal distribution is used because of its standard statistical properties which 

would make the analysis process simpler.  The cosine and cosine-squared functions 

are used because of their close resemblance in shape with the measured impulses.  

For each of these functions, one or two parameters are optimised using the method 

of least squared error.  For the Normal distribution function, the mean, µ, and 

standard deviation, σ, are optimised.  For the cosine and cosine-squared functions, 

the contact period, τ, defined as the amount of time the person is in contact with the 
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ground, is optimised.  The constraint that the total area under the fitted curve and 

e measured impulse are equal is applied in the optimisation process. 

ness of the fit, the root-mean-squared-error (RMSE) for each 

impulse is calculated: 

RMSE = 

th

 

For assessing the good

pN

where '

FF 2
fitted )''(∑ −

                         (5.24) 

F  is the normalised measured load, , is the fitted function and Np is 

e number of points fitted.   

s calculated by taking the mean 

of the RMSE values for all the impulses in that test: 

fitted'F

th

 

For each test record, the mean RMSE value, µRMSE, i

IN
=RMSEµ       ∑ )RMSE(

                    (5.25)              

here NI is the number of impulses in each test record. w

 

For the 1.5 Hz data, impulses with twin peaks are not considered in the curve-fitting.  

The µRMSE values for all three functions are plotted in Fig. 5.27 with each plot 

corresponding to one beat frequency and within each plot, each column corresponds 

to one test record.  The data are plotted in ascending order of the µRMSE values of the 

cosine-squared function.  For 1.5 Hz, the cosine function gives the best fit.  The 

cosine-squared function gives the best fit for 2 and 3.5 Hz.  The higher µRMSE values 

given by the cosine and Normal distribution functions at these frequencies are due 

to poorer fit of the contact period.  For 2.67 Hz, both the cosine-squared and Normal 

distribution functions are equally good.  The error for 1.5 Hz is slightly higher than 
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those of the higher frequencies which have µRMSE values less than 0.2.  Fig. 5.28 

shows a sample of the measured impulses superimposed with the fitted cosine-

squared functions for a range of RMSE values.  The cosine-squared function fits 

very well except for 1.5 Hz with high RMSE values due to local irregularities in the 

measured impulses.  For modelling, it is better to adopt one analytical function to 

define the impulse profile.  To achieve this, the mean of all µRMSE values for all 

three functions are calculated and presented in Table 5.10.  The last column gives 

the sum of the mean µRMSE values for all four beat frequencies.  The cosine-squared 

function gives the lowest total error and hence is adopted to model the impulse 

rofile. 

btained by 

king the mean of the time-shifted impulses shown in Figs. 5.3 to 5.6.   

Any periodic signal, xp(t), can be repr

p

 

5.3.3. Frequency content 

This section compared the frequency content of the measured and fitted cosine-

squared impulses.  First, the average impulse of each test record is o

ta

 

esented as a Fourier Series,  

( ) ( )[ ]∑
∞

++=
=1

0 2sin
n

nnp tfnratx φπ                                    (5.26)             

The Fourier coefficients, rn, for a periodic signal generated from the average 

impulse are obtained by taking the Fast Fourier Transform at a sampling frequency 

of 200 Hz.  Test records with twin peaks impulse shape at 1.5 Hz are not considered.  

The Fourier coefficients for the first three harmonics are presented in Fig. 5.29.  

Each plot corresponds to one beat frequency.  The mean values of the Fourier 

coefficients are given in Table 5.11.  For all beat frequencies, the average impulse is 
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dominated by the first harmonic with decreasing Fourier coefficients for higher 

armonics.   

igher harmonics are not considered because they are of very small magnitude. 

 

 timing and size.  This section looks at the relationship between 

ese two aspects.   

ly, the correlation between the contact 

tio and the impulse timing is investigated.  

 

h

 

Similarly, the Fourier coefficients of the cosine-squared function fitted to each 

average impulse are calculated.  The Fourier coefficient relative error, given by the 

difference between the Fourier coefficients of the cosine-squared function and the 

average impulse, divided by the Fourier coefficient of the average impulse, is shown 

in Fig. 5.30 for the first two harmonics.  Most of the relative errors are within the 

range of ±10%, indicating good compatibility in the frequency content between the 

measured and the fitted cosine-squared impulses.  The Fourier coefficients for the 

h

5.4. Relationship between impulse size and timing 

In section 5.2, the impulse timing is modelled using the auto-regression algorithm.  

In section 5.3, the cosine-squared function is used to model the impulse shape.  For 

simulating a jumping load-time history, it is necessary to know the relationship 

between the impulse

th

 

Firstly, a relationship between the impulse size and timing is established.  Then, the 

contact ratios of each test record, which define the impulse sizes, are modelled 

using the Normal distribution function.  Last

ra
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5.4.1. Impulse size and timing 

First, define the magnitude of the kth impulse, Ik, as the area under each impulse: 

∫=
τ

0
'dtFI k                                       (5.27)     

where 'F  is the normalised load and τ is the contact period. 

 

Assume that the jumping impulses are infinitesimally short.  Consider what governs 

the magnitude of the kth impulse, Ik, which we shall say occurs at time tk.  

Immediately prior to the impulse the jumper (of mass m) will be descending with a 

velocity, , and afterwards will be ascending with a velocity .  The magnitude 

of the impulse is therefore given by:  

↓
kv ↑

kv

)( ↑↓ += kkk vvmI                                       (5.28)   

The time the jumper spends in the air before the next impulse is: 

g
vtt k

kk

↑

+ =−
2

1                                    (5.29)             

and because the jumper loses no energy whilst in the air: 

↑↓
+ = kk vv 1                                       (5.30)  

 

Each impulse is therefore made up of two components - a launching impulse which 

projects the jumper into the air from rest and a landing impulse, which is necessary 

to bring the mean velocity of the jumper to zero and is the same magnitude as the 

previous launching impulse.  We can combine these last three equations to give: 

)(
2 11 −+ −= kkk ttmgI                                      (5.31)  
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The timing of each impulse is given by teff and the measured impulse is normalised 

by the static weight of the subject,  hence giving: 

)(
2
1

1eff,1eff, −+
−=

kkk tti                                                           (5.32) 

Eqn. 5.32 is verified with the experimental measurements, shown in Fig. 5.31 as 

plots of the measured ik against the theoretical ik, with both parameters normalised 

by the beat period.  The measured ik is obtained from Eqn. 5.27 and the theoretical ik 

from Eqn. 5.32.  Ideally, the data should show a linear relationship with a slope of 1.  

Instead, the data show a linear relationship but with a slope of slightly greater than 1.  

A line of best fit is fitted to the data in Fig. 5.31 and the coefficients are presented in 

Table 5.12.  There are some measured ik values which are much lower than the 

theoretical values because the jumper landed partially outside the force plate.  

Hence when curve-fitting the data, measurements with ik values less than 0.75 times 

the beat period are not considered in the linear regression.  Also shown in Table 

5.12 is the maximum absolute ik  error, given by the maximum absolute difference 

between the theoretical and measured ik  values within the range of 0.9375 to 1.0625 

in which most data fall into.  The maximum error is small, i.e. 0.02 times the beat 

period for 1.5 Hz.  One possible cause of error is the assumption that the impulse is 

instantaneous.   In reality, the jumping impulse is distributed over the contact period 

with the landing and launching actions occurring one after the other.  Due to the 

small magnitude of error involved, no attempt is made to find out the cause of the 

error.   

 

5.4.2. Contact ratio and impulse timing 

Using the cosine-squared function in Eqn. 5.23, the impulse size can be expressed 
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as a function of the contact ratio and impact factor: 

2
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                         (5.33) 

Relating the impulse size to the impulse timing: 

( ) ( ) )(
2
1

2 1eff1eff −+ −= kk
p tt

k τ
                (5.34) 

One of the two parameters defining the cosine-squared function (kp and τ) needs to 

be modelled in order to simulate the jumping impulses.  The following section 

presents modelling of the contact ratio. 

 

5.4.2.1. Contact ratio modelling 

All measured impulses are approximated using the cosine-squared function, giving 

the contact ratios.  The contact ratios of each test record are fitted with a Normal 

distribution function.  The mean, µα, and standard deviation, σα, defining the 

Normal distribution function are estimated from the sample data.  A χ2 test is 

conducted.  The histograms for all contact ratios at all four beat frequencies are 

presented in Figs. 5.32 to 5.35, superimposed with the expected relative frequency 

curves.  Also shown in each plot are the corresponding X2 and values (shown in 

brackets).  Note that the first and the last intervals extend to -∞ and +∞ respectively.  

For all four beat frequencies, more than 90% of the test records pass the χ

2
; αχ d

2 test.  

Hence, it can be concluded that the variation of the contact ratio is adequately 

described by a Normal distribution. 

 

The mean and standard deviation of the random error, µα and σα, need to be 

modelled.  Figs. 5.36 and 5.37 show the histograms of µα and σα respectively for all 
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four beat frequencies superimposed with the relative frequency curves.  As shown 

in Fig. 5.36, the mean contact ratios are higher than 0.4 for all four beat frequencies.  

This agrees with the findings from Yao et al. (2003) which found that the contact 

ratios were above 0.5.  The range of 0.25 to 0.67 given in BS 6399: Part 1 (British 

Standards Institution 1996) seems to be too low.  The distribution becomes 

narrower as the beat frequency increases, indicating there is less inter-subject 

variation as the jumping pace increases.  Considering the rather peaky and skewed 

distributions, Beta distribution functions are fitted over the range of 10 ≤≤ αµ  and 

10 ≤≤ ασ . 

 

A χ2 test is conducted and the calculations are presented in Tables 5.13 and 5.14.  

All pass the χ2 test except one (µα  for 3.5 Hz), which fails the χ2 test due to the 

unusually large count for the middle interval.  Hence it can be concluded that both 

parameters are adequately described by the Normal distribution function.  The 

histograms superimposed with the expected relative frequency curves are shown in 

Figs. 5.38 and 5.39.  The α and β parameters defining the Beta distributions are 

given in Tables 5.15 and 5.16.   

 

A correlation analysis is conducted to investigate the relationship between the mean 

and standard deviation of the contact ratio.  Fig. 5.40 shows plots of the standard 

deviation versus the mean for all four beat frequencies.  The correlation coefficient 

is calculated and shown as the k values in the figure.  The first three beat 

frequencies show moderate correlation with k values of around 0.6 while the last 

beat frequency shows no correlation with k = 0.1.  There are two options available: 

either treating both parameters as dependent or independent variables.  Both options 
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are equally appropriate considering the k values very close to 0.5 for the first three 

beat frequencies.  Hence, it is decided that both parameters will be treated as 

independent random variables. 

 

5.4.2.2. Correlation between contact ratio and impulse timing 

Knowing that the impulse size and impulse timing are related according to 

Eqn. 5.34, this section looks at the correlation between the contact ratio and impulse 

timing.   

 

Figs. 5.41 to 5.44 show plots of the contact ratio against the impulse size for all four 

beat frequencies.  Also shown in each plot is the value of the correlation coefficient, 

k, and the plots are arranged in order of increasing k values.  The k values fall 

between 0 and 1.  A low k value, say k < 0.3, means that there is no correlation 

between the two variables and both can be modelled as independent random 

variables.  A high k value, say k > 0.7, means that there is a strong linear 

relationship between the two variables and it should be modelled using a regression 

line.  Overall, the k values are found to be lower for higher beat frequencies, 

indicating there is a higher degree of randomness and hence less correlation 

between the contact ratio and impulse size as the subject jumps faster.  At lower 

beat frequencies, the jumpers vary their impulse sizes by controlling their contact 

durations with the ground.    

 

There are two ways of modelling the contact ratio, depending on the degree of 

dependency between the two parameters, a regression line for high k values and a 

Normal distribution function for low k values.  An error analysis is conducted by 
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calculating the response of a SDOF structure due to three load cases: (1) the actual 

measured load; (2) a load-time history generated using the measured impulse timing 

and the impulse shape defined by the contact ratio modelled using a regression line; 

(3) a load-time history generated using the measured impulse timing and the 

impulse shape defined by the contact ratio sampled from a Normal distribution 

presented in section 5.4.2.1.  The difference between load cases (2) and (3) is that 

the former is treating the contact ratio as linearly dependent on the impulse size 

while the latter treats the contact ratio as an independent variable following a 

Normal distribution. 

 

The relative errors of load cases (2) and (3) compared to load case (1) are calculated.  

The error analysis is conducted for all test records with k > 0.7.  No analysis is 

conducted for the 3.5 Hz beat frequency because only one test record has k > 0.7.  It 

is expected that the error due to load case (3) is the upper bound because the loads 

generated in (2) are closer to the actual measured loads compared to (3).  Analyses 

are conducted for SDOF structures with natural frequencies within ±10% of the first 

three harmonics of the beat frequency.   

 

From the calculated responses, two parameters are obtained: maximum 

displacement and the root-mean-square (RMS) acceleration, both normalised by the 

stiffness of the structure.  An example of the results, plotted as the normalised 

maximum displacement versus the natural frequency of the structure, is presented in 

Fig. 5.45 for beat frequency of 1.5 Hz with each plot corresponding to one load case.   

 

The errors of load cases (2) and (3) relative to (1) are calculated and their means for 
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structures within ±10% of each harmonic are presented.  Figs. 5.46 to 5.48 present 

the mean relative error for the normalised maximum displacement at beat 

frequencies of 1.5, 2 and 2.67 Hz.  Similar plots for the normalised RMS 

acceleration are presented in Figs. 5.49 to 5.51.  In each figure, there are three plots, 

giving the mean relative error for structures at each harmonic.  All results show that 

the simulated loads give higher responses than the measured loads. 

 

The overall mean, tabulated in Tables 5.17 and 5.18, reveals that the first and 

second harmonics show results as expected, i.e. the relative error due to load case 

(3-Normal) is higher than that due to load case (2-Regression) although the 

difference is not large.  However, for the third harmonic, the error due to load case 

(2) is significantly higher than (3).  This is probably due to the linear regression not 

taking into account the high frequency local variation in the contact ratio which can 

be significant on high frequency structures.  Hence, it is decided to use the Normal 

distribution to model the contact ratio.  From the analysis, it is found that the 

maximum relative error from the simulated loads is approximately 25% for the 

maximum displacement and 50% for the RMS acceleration, as shown in Tables 5.17 

and 5.18. 

 

5.5. Conclusions 

The work presented in this chapter is based on the premise that the jumping record 

of each individual should be analysed separately.  Each jumping record is modelled 

as successive cosine-squared impulses and the timing of each impulse is given by 

the time at the impulse centroid.  The impulse timings of each record are modelled 

using an auto-regression algorithm based on the hypothesis that the timing of the 
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previous jump influences the timing of the next jump due to the jumper wanting to 

synchronise his timings with the audio beeps.  Using the assumption that the human 

body is a rigid mass, the size of each impulse, derived from the Law of 

Conservation of Momentum, is a function of the impulse timing.   

 

From the auto-regression model, the phase delay of the kth jump is given by: 

''
11delay,delay kkk θθρθθ ∆++= −                                                (5.35) 

All parameters in Eqn. 5.35 are fitted with probability distribution functions, as 

summarised in the flowchart in Fig 5.52.  The impulse shape, modelled using a 

cosine-squared function, is defined by the contact ratio, its modelling is summarised 

in the flowchart in Fig. 5.53.  The various correlation analyses show that each 

variable can be treated as an independent variable in the simulation process.  Monte 

Carlo simulations, based on the fitted probability distribution functions, are 

presented in the next chapter. 

 

  



 

Chapter 6 

6. Joint crowd-SDOF system subjected to crowd jumping loads 

This chapter puts together the tools developed in the previous chapters.  The aim is 

to calculate the response of the joint crowd-SDOF system developed in Chapter 4 

when subjected to crowd jumping loads.  This chapter consists of two main parts.  

The first part is about simulating individual jumping loads based on the statistical 

models developed in Chapter 5 (section 6.1).  The second part analyses the joint 

crowd-SDOF system subjected to these simulated jumping loads (section 6.2).  The 

structural responses due to crowd jumping loads of various crowd sizes are obtained 

and presented in charts.  An example is presented to illustrate the use of these charts.  

Various factors affecting the structural response due to crowd jumping loads are 

discussed.  Lastly, the limitations to the results presented here are stated. 

 

6.1. Jumping load simulation 

The procedures for simulating individual load-time histories are illustrated in the 

flow chart in Fig. 6.1.  For each load-time history, two sets of parameters need to be 

generated: one set describing the impulse timing and the other the impulse shape.  

The impulse timing is defined by the effective timing, teff, which can be calculated 

from three parameters: mean phase delay, delay , auto-regression coefficient, 1θ ρ , 

and random error 'θ∆ .  For the impulse shape, each impulse is modelled by a 

cosine-squared function defined by the contact ratio, α.  All these parameters are 

fitted with either Beta or Normal distributions, as presented in Chapter 5.  A Monte 

Carlo method, i.e. sampling of random variables from probability distribution 
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functions, is used to simulate individual jumping loads.  The whole process, 

described in the flowchart in Fig. 6.1, is implemented in MATLAB® Statistics 

Toolbox (MathWorks, Inc.).     

 

First, one needs to decide the number of load-time histories to be simulated, denoted 

as N.  Simulations are conducted for beat frequencies of 2, 2.67 and 3.5 Hz.  No 

simulation is conducted for the 1.5 Hz beat frequency because most of the measured 

impulses have either twin peaks or merging of the twin peaks impulse shapes which 

cannot be modelled accurately using the cosine-squared function (see sections 5.3.1 

and 5.3.2).  Considering the duration of one pop song to be between two and three 

minutes, each load-time history is simulated for duration of two minutes and at a 

sampling rate of 0.005 s.  Five random variables: mean phase delay, delayθ , auto-

regression coefficient, 1ρ , standard deviation of contact ratio, 'θ
σ

∆
,  mean of 

contact ratio, µα, and standard deviation of random error, σα , are sampled from 

their corresponding probability distribution functions.  For each variable, N values 

are sampled.  The number of impulses in each record, M, equals 120/Tbeat, where 

Tbeat is the beat period.  For each load-time history, M values of  and '
kθ∆ kα are 

sampled (the subscript k refers to the kth impulse).  Using these sampled data, four 

parameters are calculated:  effective timing, teff, k, impulse size, ik, contact period, τk, 

and impact factor, kp,k.  Each impulse is modelled by the cosine-squared function 

defined by the τk  and kp,k  values.  In the time domain, each impulse is defined by its 

centroid at teff, k. 

 

In simulating a load-time history, a series of instantaneous pulses are first generated 
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at times teff, k.  Each instantaneous pulse is discretised into two pulses 0.005 s apart 

with their magnitudes determined by linear weighting from teff, k.  The simulated 

load is obtained by convolving the cosine-squared impulses with their 

corresponding discretised pulses. 

 

To minimise the error due to discretisation of the pulses, each convolved impulse is 

scaled such that the impulse size, given by the load-time integral in Eqn, 6.1, equals 

ik.  The scaling is important to make sure that the total momentum in each impulse 

is conserved. 

                                 (6.1) ∫=
τ

0
'dtFik

 

As an example, Fig. 6.2 shows six simulated load-time histories at beat frequency 

2 Hz in the interval from 1 to 4 seconds.  As shown in the figure, there is quite a 

distinctive variation in the impulse timing and impact factor between the six load-

time histories.  The impact factor varies from 2.5 to 4 and the impulse timing (teff), 

which is located at the maximum load, can vary by up to 0.15 s within one beat 

period.  The implications of all these variations on the structural response will be 

investigated in the next section. 

 

6.2. Joint crowd-SDOF system subjected to crowd jumping loads 

6.2.1. Structural response to crowd jumping loads 

With N simulated load-time histories now available, it is possible to analyse the 

response of the joint crowd-SDOF system subjected to these simulated loads, first 

by calculating the response due to each individual load-time history and then 
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randomly sampling the responses (i.e. Monte Carlo method) and summing them to 

get the response due to loading by a crowd.  The steps are outlined in the flow chart 

in Fig. 6.3.  The block diagrams on the left show the steps in the analysis while 

those on the right give the outputs of each step.  

 

The joint crowd-SDOF system being analysed here is the same as the one specified 

in Chapter 4 and shown in Fig. 4.4.  It consists of a crowd of standing people 

represented by the 2DOF model derived in section 4.1, on a SDOF structure with an 

intrinsic structural damping ratio, ζ, of 2% and a natural frequency of ωn when 

empty.  The relative mass of the standing crowd to the structure is defined by the 

mass ratio, γ.  Analyses are conducted for various ωn and γ values. 

 

A total of N = 1024 load-time histories are simulated at beat frequencies of 2, 2.67 

and 3.5 Hz.  For each set of ωn and γ values, the response of the joint crowd-SDOF 

system subjected to each load-time history is calculated, giving 1024 sets of 

acceleration and displacement records. 

 

Out of the 1024 acceleration and displacement records, n records are sampled 

without replacement and summed to give the resultant structural response due to a 

group of n jumping loads.  Two parameters are used to characterise the structural 

response: the maximum displacement and the root-mean-squared (RMS) 

acceleration.  The former, given by the maximum absolute value of displacement, is 

important in assessing the maximum stress in the structure.  The latter, defined in 

Eqn. 6.2, is used for assessing human comfort criteria.   
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where L is the total number of sampled point in the acceleration record. 

 

Analyses are conducted for group sizes of n = 2, 4, 8, 16, 32 and 64.  For each group 

size, a total of 200 samplings are made.  The running mean, standard deviation and 

95-percentile value for the maximum displacement and RMS acceleration are 

calculated for increasing numbers of samples, with the aim of obtaining the steady 

average response of the structure. 

 

6.2.2. Example 

An example will serve to illustrate the procedure outlined in the flow chart in 

Fig. 6.3.  Analyses are conducted for the following parameters: 

Beat frequency = 2 Hz 

Natural frequency of structure, ωn = 2, 4 and 6 Hz  

Damping ratio, ζ = 2%  

Mass ratio, γ = 0  

Number of load-time histories simulated, N = 1024 

Group size, n = 2, 4, 8, 16, 32 and 64 

Duration of load-time history = 120 s 

Sampling rate = 0.005 s 

 

The natural frequencies of the structures are chosen such that each structure is 

excited by one harmonic of the jumping load.  Six out of the 1024 simulated 
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individual loads are presented previously in Fig. 6.2.  The corresponding 

displacement and acceleration responses are presented in Figs. 6.4 and 6.5 

respectively.  The displacement is normalised by the static deflection due to a unit 

load.  In the analysis, the mass of the structure is set to 1 kg.  The acceleration is 

normalised by the gravitational acceleration, g = 9.81 m/s2.   

 

As shown in Figs. 6.4 and 6.5, for the 2 Hz structure, the responses are highly 

periodic but for the 4 Hz and 6 Hz structures, a greater variation in the periodicity 

and the magnitude is observed.  This indicates that the lack of synchronisation 

between individuals jumping together affects higher frequencies more.  In addition, 

the third harmonic of loading is less well synchronised compared to lower 

harmonics.    

 

As expected, the acceleration shown in Fig. 6.5 is identical in shape to the 

displacement in Fig 6.4 but differs in magnitude and sign.  Considering resonance 

due to excitation by only one harmonic, the acceleration of each structure is 

approximately  times the normalised displacement, where k2/1 nsk ω× s is the 

stiffness of the structure and ωn is the natural frequency of the structure.  Since the 

mass of the structure is set to 1 kg,  

2
nsk ω=                                          (6.3) 

gXX /−=∴ &&                               (6.4) 

where X is the normalised displacement, X&&  is the acceleration in g (=9.81 m/s2). 

 

As mentioned before, for each record, the maximum displacement and the RMS 

acceleration are obtained.  Since the jumping load is normalised by the static weight 
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of the jumper, the maximum displacement, when normalised by the static deflection 

due to a unit load, is the Dynamic Magnification Factor (DMF).   

 

The distributions of the DMF and RMS acceleration are presented in Figs. 6.6 and 

6.7 respectively.  As shown in both figures, the distributions seem to shift from a 

Normal distribution to a skewed (perhaps Rayleigh) distribution as the natural 

frequency of the structure increases.  As we know, each structure is excited by one 

harmonic of the jumping load.  Therefore, each distribution depicts the distribution 

of one harmonic of the jumping load.  The first harmonic of the jumping load 

follows a Normal distribution while the third harmonic follows a skewed 

distribution.  The second harmonic is in between the two. 

 

Out of the 1024 responses, random samplings are conducted to generate the 

structural response for group sizes of n = 2, 4, 8, 16, 32 and 64.  Altogether, 200 

samplings are made for each group size and the running mean, standard deviation 

and 95-percentile values are calculated.  As an example, the running mean, standard 

deviation and 95-percentile value for the DMF and RMS acceleration are presented 

in Figs. 6.8 and 6.9 respectively, for the 2 Hz structure.  The results are presented as 

the average response per person (dividing the response by the group size).  The 95-

percentile value is calculated after every 20 samplings.  As seen in these figures, 

there are some fluctuations in the parameters during the early samplings but they 

settle to steady state after about 50 samplings.  Generally, the steady state is reached 

at lesser number of samplings for larger crowd sizes.  The last value for the running 

mean, standard deviation and 95-percentile is taken as the representative value. 
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Recognising that the jumping loads include some random variations, the idea of 

characteristic response is used.  The 95-percentile value is used to represent the 

characteristic response of the structure (that is, the response that will be exceeded in 

one case in 20).  This is the same as the limit state design philosophy adopted in the 

British Standards structural design codes.  Suppose the structural response follows a 

Normal distribution, the 95-percentile rule implies that the characteristic response is 

related to the mean and standard deviation of the response: 

σDMF645.1DMFDMF meanchar ×−=                            (6.5) 

rms
σ

rms
mean

rms
char 645.1 XXX &&&&&& ×−=                  (6.6) 

 

Using Eqns. 6.5 and 6.6, the 95-percentile values are calculated and compared to 

those obtained from the sampled values.  Both are plotted against the group size in 

Fig. 6.10 for the DMF and in Fig. 6.11 for the RMS acceleration.  As shown, a good 

match is found between the two.  Hence, it can be concluded that the responses 

follow a Normal distribution.  In addition, the characteristic responses are found to 

vary non-linearly with group sizes up to 16 people and they exhibit an asymptotic 

behaviour for group sizes larger than 16.   

 

6.2.3. Overall results 

The final stage of work involves extending the analyses in section 6.2.2 to structures 

with natural frequencies varying from 1 to 13 Hz.  In addition, structures occupied 

by a standing crowd with γ  = 0.15 are analysed.  The parameters are summarised 

below: 

Beat frequency = 2, 2.67 and 3.5 Hz 
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Natural frequency of structure, ωn = 1 to 13 Hz  

Structural damping ratio, ζ = 2%  

Mass ratio, γ = 0 and 0.15 

Number of load-time histories simulated, N = 1024 

Group size, n = 2, 4, 8, 16, 32 and 64 

Duration of load-time history = 120 s 

Sampling rate = 0.005 s 

 

A sample size of 1024 is chosen after an error analysis is conducted.  The error 

analysis looks at the relative error between samples of 256, 512 and 1024 load-time 

histories.  The 512 and 1024 samples are found to give very similar results with 

minimal discrepancy.   

 

Characteristic response 

The example presented in section 6.2.2 shows that the DMF and RMS acceleration 

follow a Normal distribution.  The idea of characteristic response is used by taking 

the 95-percentile value.  From a design perspective, this means that the probability 

of a structure having a response greater than the characteristic value is one in 20.  

 

Only the characteristic response for the DMF and RMS acceleration are presented in 

this chapter.  The mean, standard deviation and the characteristic responses 

calculated using Eqns. 6.5 and 6.6 are presented in Appendix C.  

 

Variation of characteristic response with natural frequency of structure 

Results for variation of the characteristic DMF with the natural frequency of the 
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empty structure are presented for beat frequency of 2 Hz, γ = 0 (Fig. 6.12) and γ = 

0.15 (Fig. 6.13); beat frequency of 2.67 Hz, γ = 0 (Fig. 6.14) and γ = 0.15 (Fig. 6.15); 

beat frequency of 3.5 Hz, γ = 0 (Fig. 6.16) and γ = 0.15 (Fig. 6.17).  Results for the 

characteristic RMS acceleration are presented in the same sequence in 

Figs. 6.18  to  6.23. 

 

From these figures, the general observation is that there are three resonant peaks due 

to excitation by the first three harmonics of loading.  There is a significant reduction 

as the group size increases and this will be discussed further in the next paragraph.  

Overall, for γ = 0, the characteristic DMF falls within the range of 30 to 45 for all 

three beat frequencies while the characteristic RMS acceleration falls within the 

range of 2g to 3g, due to excitation by the first harmonic.  Jumping loads at 2 Hz 

produce the highest DMF, follow by jumping loads at 2.67 Hz and 3.5 Hz.  

Comparing results between γ = 0 and 0.15, the presence of the passive crowd adds 

significant damping to the structure.  The damping effect of the passive crowd is 

most significant on structures with natural frequencies from 4 to 8 Hz.  Hence the 

greatest reduction in structural response is found on the second and third harmonic 

resonant peaks.   In addition, for γ = 0.15, the resonant peaks are located at natural 

frequencies slightly higher than the harmonic frequencies.  This is due to the 

occupied structures having natural frequencies slightly lower than the empty 

structures. 

 

Variation of characteristic response with group size 

To summarise, results for the variation of the maximum response at each resonant 

peak with the group size are presented in Figs. 6.24 (γ = 0) and 6.25 (γ = 0.15) for 

  



6.  Joint crowd-SDOF system subjected to crowd jumping loads                                                    6-11 

the DMF; and in Figs. 6.26 (γ = 0) and 6.27 (γ = 0.15) for the RMS acceleration.  

Similar to the trends shown earlier in Figs. 6.10 and 6.11, a non-linearity is found 

for groups of up to 16 people and an asymptotic behaviour for groups with more 

than 16 people.   

 

For experimental tests conducted to measure the jumping loads of a large crowd on 

a cantilever grandstand, the results in Figs. 6.24 to 6.27 imply that tests with less 

than 16 jumpers are likely to overestimate the jumping loads.  On the other hand, 

the asymptotic trend observed for groups with more than 16 people suggests that 

when modelling large crowds, a group size of 16 or 32 is sufficient. 

 

Estimating response of a cantilever grandstand 

For design purposes, the charts in Figs. 6.12 to 6.17 allow one to estimate the 

characteristic DMF for one mode of the cantilever grandstand.  Similarly,  the charts 

in Figs. 6.18 to 6.23 allow one to estimate the characteristic RMS acceleration for 

one mode of the cantilever grandstand.  These charts are derived from analyses on 

SDOF structures having a damping ratio of 2% and are for group sizes up to 64 

people.  For groups with more than 64 people, the values for group size of 64 people 

can be used since the trend seems to reach an asymptotic behaviour as noted in 

Figs. 6.24 to 6.27.  The guidelines on how to use these charts are summarised in the 

flow chart in Fig. 6.28 and illustrated using an example below.   

 

Example 

Consider one bay of seating decks supported by a cantilever having a span of 9 m 

between steel frames and a length of 14 m.  The bay has 15 rows and each row has 
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approximately 14 seats (estimated from a seat width of 500 mm).  Therefore, the 

total number of seats per bay is 210.  For a typical mass of 80 kg for one person, the 

total weight of the crowd is 165 kN.  Assuming that the mass of the crowd is 0.3 

times the mass of the structure, therefore, the mass of the structure, ms is 56000 kg.   

Assume that the structure’s fundamental mode is 4 Hz and its modal mass equals 

the actual mass, its modal stiffness, ks is given by: 

( ) MN/m4.355600024 22 =⋅⋅⋅=⋅= πω sns mk                           (6.7) 

Obtaining the DMFchar values from Figs. 6.12 and 6.17 (for n = 64), the maximum 

deflection of the structure is given by: 

activecharmax /DMF WkX s ×=                   (6.8) 

where Wactive is the weight of the jumping crowd in Newton. 

 

Obtaining the  values from Figs. 6.18 and 6.23 (for n = 64) and since in the 

analysis, the mass of the structure is set to 1 kg, the RMS acceleration of the 

structure is given by: 

rms
charX&&

activecharrms / WmXX s ×= &&&&                               (6.9) 

where ms is the mass of the structure and Wactive is the weight of the jumping crowd 

in Newton. 

 

The results are tabulated in Tables 6.1 and 6.2 for γ = 0 (all the spectators jumping) 

and γ = 0.15 (50% jumping and 50% standing) respectively.  From Tables 6.1 and 

6.2, a maximum displacement of 69.5 mm and a maximum RMS acceleration of 

2.21g are obtained when the whole crowd jumps at 2 Hz.  These large responses are 

due to resonance excited by the second harmonic of the jumping loads.  The 
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responses are significantly reduced when half of the crowds are standing.  In fact, a 

reduction of up to 89% is found for the RMS acceleration at 2 Hz beat frequency 

when half of the crowd are standing.  The reduction in structural response is due to 

both the halving of the jumping loads and the damping contributed by the standing 

crowd.  For the 3.5 Hz beat frequency, it is interesting to note that the RMS 

accelerations for both γ = 0 and γ = 0.15 are the same.  This is due to the resonant 

peak located at frequencies slightly higher than 3.5 Hz due to the presence of the 

passive crowd.  The higher response for a 4 Hz structure with γ = 0.15 compared to 

γ = 0 compensates for the halving of the jumping loads. 

 

6.2.4. Discussion 

One of the limitations with using the charts in Figs. 6.12 to 6.23 is that only three 

beat frequencies are considered. A structure with natural frequency of say, 5 Hz, is 

prone to resonance due to a jumping load at 2.5 Hz.  Due to only three beat 

frequencies being considered, no attempt is made to investigate the variation of the 

structural response with the beat frequency.  However, the general observation from 

the results is that the structural response tends to reduce with increasing beat 

frequency.   

 

There is also the issue on the upper limit for the crowd jumping frequency.  Assume 

it is 3.5 Hz, therefore, structures with natural frequencies less than 3.5 Hz are prone 

to resonance by the first harmonic of the crowd jumping load.  Structures with 

natural frequencies between 3.5 and 7 Hz are prone to resonance by the second 

harmonic and similarly, structures with natural frequencies between 7 and 10.5 Hz 

are prone to resonance by the third harmonic.  However, if the highest crowd 
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jumping frequency is 2.8 Hz, then structures with natural frequencies greater than 

5.6 Hz undergo resonance due to excitation by the third harmonic and not the 

second harmonic.  Most research seems to agree on an upper limit of 2.8 Hz.  The 

upper limit also varies with the type of event, e.g. pop concert by a pop rock band is 

more lively than a normal premier league football match; as well as the age group of 

the audience. 

 

In addition, it is important to bear in mind that the statistical models of the jumping 

loads are derived from tests of individuals jumping alone.  The effect from jumping 

together with others is not considered.  This issue is dealt with briefly in the next 

chapter. 

 

The possibility of jumping at a frequency which coincides with the natural 

frequency of the structure is still uncertain.  Yao et al.’s tests (2003) showed that 

this was not possible but their tests involved very few test subjects.  Testing more 

subjects might give a more convincing finding. 

 

In addition, only results for synchronised tests are analysed.  Hence the worst case 

scenario is considered here, without taking into account individuals who are 

jumping out of synchronisation with the beat. 

 

The charts in Figs. 6.24 to 6.27 are useful for predicting the maximum response due 

to excitation by the first three harmonics.  Due to several limitations mentioned 

above, it is left to the discretion of the engineers to decide how these results are to 

be used in their analysis of a cantilever grandstand. 
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6.3. Conclusions 

This chapter puts together all the tools that have been developed throughout this 

thesis in order to analyse the response of a SDOF system either empty or occupied 

by a passive crowd.  The Monte Carlo method of random sampling is adopted to 

simulate a sample which consists of 1024 jumping load-time histories.  Random 

samplings are then conducted to calculate the structural responses due to crowd 

jumping loads of various group sizes.  The results, presented in charts in Figs. 6.12 

to 6.27, allow engineers to estimate the response of a SDOF system subjected to 

crowd jumping loads.  These results should be used with discretion, taking into 

consideration the possible crowd jumping frequency and the harmonic of excitation.  

In addition, it is important to be aware that the visual effect due to jumping in a 

group and the flexibility of the structure are not considered in the derivation of the 

crowd jumping model. 

  



 

Chapter 7 

7. Experimental jumping and bobbing tests 

Two areas are covered in this chapter.  Firstly, an initial investigation on bobbing 

loads is carried out by conducting individual bobbing tests in the laboratory.  As 

mentioned in Chapter 2, bobbing is an interesting mechanism which has the 

potential of being synchronised by the movement of the structure and hence, 

producing high level of structural response.  Secondly, the effect of jumping 

together with another person is investigated.  The results will give an indication on 

the reliability of the statistical load models developed in Chapter 5 which is based 

on measurements of individual jumping tests.   

 

This chapter reports on the experimental tests conducted in the Structural Dynamics 

Laboratory at the University of Oxford.  It is divided into two sections.  The first 

part reports on jumping and bobbing tests conducted to investigate the effect of the 

beat frequency on the forces that can be generated by one individual on a rigid 

platform.  The second part reports on jumping tests involving two people facing 

each other, aiming to investigate the degree of synchronisation between two people.  

For each part, a description of the experimental tests is first given, followed by a 

description on how the data are handled.  Lastly, an analysis of the load 

measurements in terms of the degree of synchronisation, impulse timing and 

impulse shape is presented. 
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7.1. Individual jumping and bobbing tests 

7.1.1. Experimental tests 

A total of 10 male participants took part in the test series.  The means and standard 

deviations of the age and body weight of the subjects are presented in Table 7.1.   

 

Tests are conducted at six beat frequencies: from 1 to 3.5 Hz at an increment of 

0.5 Hz.  Each test involves a single participant jumping on a 0.4 m x 0.4 m load cell 

which measures the vertical loads (see Fig. 7.1).  The load cell comprises three 

load-sensing elements sandwiched between 20 mm thick aluminium alloy top and 

bottom plates.   The overall depth is 85 mm.  The top plate has dimensions 

400 mm × 400 mm, it is sufficiently rigid with a fundamental frequency of around 

150 Hz, allowing the load to be transferred to the elements without excessive 

vibration or deformation within the load cell.  A calibration test is conducted by 

successive loadings of dead weights up to a maximum load of 200 kg and 

unloadings at the centre and the four corners of the rectangular top plate.    The 

calibration factor is taken from the mean of all five locations.  The five 

measurements have a mean of 2145.08 kg/volt and a standard deviation of 

4.4  kg/volt. 

 

During each test, the load cell is placed on a very stiff floor, enclosed by a wooden 

platform so that the subject would not fall if landing outside the top plate.  Each test 

starts with the subject standing still on the load cell followed by jumping for 40 s in 

time to regular beeps.  The beeps are generated from a digital pulse signal converted 

to an analogue signal and transmitted to an audio transformer.  The digital periodic 
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pulses are defined in terms of the pulse period and width.  The pulse period is given 

by the inverse of the beat frequency while the pulse width is varied for each beat 

frequency such that the sharpest beep is heard.  Both the beep and load signals are 

recorded at a sampling interval of 1 ms.   

 

7.1.2. Data handling 

The jumping test records are handled in the same way as the load measurements 

from Parkhouse and Ewins (2004), presented in Chapter 5.  Each test record is 

separated into individual impulses by splitting at intervals of zero loads.  For 

bobbing, each test record is separated into individual impulses at instants when the 

body momentum equals zero.  The procedure is based on Newton’s Second Law of 

Motion which states that the integral of the force acting on the body is given by the 

change in its momentum,  

( 12

2

1

d vvmtF
t

t

−=∫ )                                                                                                (7.1) 

where F is the force acting on a rigid body of mass m and v is the velocity of the 

body.   

 

At the start of each test, the subject stands still on the load cell.  Therefore, the 

initial velocity v1 equals zero.  When bobbing, the velocity changes and at the end 

of each bob, the velocity returns to zero, i.e. v2 equals zero.  The impulse is given by 

the area under the effective dynamic load Fd, which is defined as the measured force 

minus the self-weight of the subject: 

Fd = Fmeasured – mg                                                                                  (7.2) 
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Therefore, 

( )12

2

1

d ttmgtF
t

t
measured −=∫                         (7.3)                               

 

Each bobbing impulse is therefore split at the intersection of the measured force-

time and static weight-time integrals.  The first attempt to separate the bobbing 

impulse fails because this ‘zero momentum’ method, although theoretically sound, 

is highly sensitive to noise in the measurements.  A high pass filter with a cut-off 

frequency of 0.1 Hz is applied to the measured load to eliminate noise in the 

measurements before calculating the measured force-time integral.  As an example, 

Fig. 7.2 shows the integral of the filtered measured load over time for subject 9 

bobbing at 1 Hz.  Due to the high pass filter, the DC offset in the load signal is 

removed.  Instants of zero momentum are thus given by the intersections of the 

force-time integral and the horizontal axis (marked by circles in the figure).  Even 

after filtering, there is ambiguity in the results because there are a few instants of 

zero momentum in one single bob and it is sometimes difficult to define which 

marks the end of a bobbing impulse. 

 

7.1.3. Degree of synchronisation 

For each test record, the first four and last two impulses are discarded so that only 

the steady state jumping and bobbing processes are analysed.  Only results for 

synchronised tests, i.e.  when the subject jumps or bobs once for every beep, are 

considered in the analysis.  Table 7.2 gives a summary on the number of deficit or 

extra jumps recorded for all 10 subjects.  A value of zero refers to a synchronised 
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test while a positive value gives the number of extra jumps and a negative value the 

number of deficit jumps.  The bobbing results are presented in Table 7.3. 

 

As shown in Table 7.2, there is a good synchronisation for jumping at all beat 

frequencies except for 3.5 Hz where only four individuals are able to perform 

synchronised jumping.  This is probably due to difficulty in keeping up with the fast 

pace.  Several subjects express difficulty in jumping at 1.5 Hz due to difficulty in 

controlling the landing and launching timings.  At 1 Hz, the subject lands on the 

heel and pauses for a while before launching on the toe.  At higher beat frequencies 

(2 Hz and above), the subject lands and launches the next jump on the toe without 

landing on the heel.  Jumping at 1.5 Hz is a mixture of these two jumping actions. 

 

Overall, three subjects (subjects 3, 5 and 10) show large numbers of jump 

discrepancies and are considered as having difficulty in synchronising their jumps 

with the audio prompts.  Seven subjects show a small number of jump discrepancies 

and are considered able to synchronise their jumps with the audio prompts.   

 

For bobbing, the subjects show significantly better synchronisation at all six beat 

frequencies compared to jumping, indicating it is easier to control one’s timing 

when bobbing compared to jumping.   Only two (subjects 3 and 5) have difficulty in 

synchronising their bobbing  while eight subjects show good synchronisation at 

almost all six beat frequencies.   
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7.1.4. Impulse timing 

The phase delays for all synchronised jumping test records are presented in Fig. 7.3, 

with each plot corresponding to one beat frequency.  The results agree with those 

from Parkhouse and Ewins (2004), with most phase delays within the range of 0 to 

200°.  The mean and standard deviation of the mean phase delay and phase scatter 

are compared with those calculated in Chapter 5 from measurements of Parkhouse 

and Ewins (2004) in Tables 7.4 and 7.5 respectively.  A reasonable agreement is 

found for both parameters. 

 

7.1.5. Impulse shape 

Figures 7.4 and 7.5 show the jumping and bobbing impulses of all subjects who are 

able to perform synchronised tests at all six beat frequencies respectively.  Each row 

corresponds to one beat frequency and each column corresponds to one subject.  All 

impulses are plotted on a time scale shifted by teff such that at t = 0, the time equals 

the timing of the impulse teff.   For the jumping impulses, the vertical axis is the 

normalised load, 'F  (the measured load divided by the weight of the subject).  For 

the bobbing impulses, it is plotted as the normalised effective dynamic load,  

(the effective dynamic load divided by the weight of the subject). 

'dF

 

As shown in Figure 7.4, the jumping impulses exhibit three general profiles: twin 

peaks, merging of twin peaks and single peak, as the beat frequency increases.  The 

twin peaks impulse shape exhibited at 1 and 1.5 Hz shows a clear separation of the 

landing and launching impulses by a ‘stationary interval’ when the subject stands 

still on the load cell.  As the beat frequency increases, this ‘stationary interval’ 

reduces to the merging of the twin peaks and a single peak.  The impulse shape of 
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each test subject is fairly consistent, especially at high beat frequencies (2 Hz and 

above).  In addition, there is less inter-subject variation in the impulse shape as the 

beat frequency increases. 

 

For bobbing, there are generally two bobbing patterns.  Two out of ten subjects 

(subjects 7 and 10) flex their knees while the rest of the eight subjects rise to their 

toes and land on their heels when asked to bob.  The impulses presented in 

Figure 7.5 show significant inter-subject variation at each beat frequency, indicating 

that the bobbing action is highly variable between individuals.  For subjects 7 and 

10 who flex their knees when bobbing, no point of zero momentum is found at the 

trough of the impulse whereas for all other subjects, a point of zero momentum at 

the trough is used to split each bobbing impulse. 

 

The average impulse of each load-time record is obtained by taking the mean of the 

time-shifted impulses.  The Fourier coefficients, rn for a periodic jumping or 

bobbing load generated from the average impulse are obtained by taking the Fast 

Fourier Transform at a sampling frequency of 1 kHz.  The Fourier coefficients for 

the first five harmonics are presented in Figures 7.6 and 7.7 for jumping and 

bobbing respectively.  Each plot corresponds to one beat frequency and within each 

plot, each line corresponds to the Fourier coefficients of the average impulse of one 

test subject.  The mean and standard deviation of the Fourier coefficients are given 

in Tables 7.6 and 7.7 for jumping and bobbing respectively.  The standard deviation 

gives an indication of the inter-subject variation in the impulse profile. 
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The Fourier coefficients are related to the impulse shape.  In particular, jumping 

impulses at 1 and 1.5 Hz with a twin peaks impulse shape are dominated by the 

second harmonic.  For higher beat frequencies, the jumping impulse is dominated 

by the first harmonic with decreasing Fourier coefficients for higher harmonics.  

The standard deviations for 1, 1.5 and 2 Hz are significantly higher than other beat 

frequencies, indicating that there is a significant inter-subject variation in the 

impulse shape at these beat frequencies. 

 

For bobbing, the average bobbing impulse is truncated at both ends so that its length 

is equal to one period of the beat frequency.  For all beat frequencies, the Fourier 

coefficients are significantly lower than for jumping.  At low beat frequencies (1, 

1.5 and  2 Hz), there is no distinct dominance by one harmonic, the Fourier 

coefficients spread over a few harmonics.  For higher beat frequencies of 3 and 3.5 

Hz, there is a clear dominance at the first harmonic with decreasing Fourier 

coefficients for higher harmonics.  This indicates a resemblance to the jumping 

impulse when bobbing at high beat frequencies.  In contrast to jumping, the 

standard deviation of bobbing shows higher values for 2.5, 3 and 3 Hz, indicating 

greater inter-subject variation in the impulse profile for higher beat frequencies.   

 

The average impulse for bobbing is less reliable because there are greater 

inconsistencies in the shape of the impulse.  The time-shifted bobbing impulses do 

not line up as well as the jumping impulses.  Taking the mean values will average 

out the variations and therefore contributes to a loss of information on the shape of 

the impulse. 
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Unlike the jumping impulse which has a distinct half-sinusoid curve, the bobbing 

impulse is highly variable, the effective timing expressed in Eqn. 5.1 is not 

appropriate in defining the timing of each bob.  Another approach is attempted to 

model the bobbing load by deconvolving the measured load-time signal with the 

average signal in order to retrieve the timing of each bob.  Unfortunately, the 

deconvolution process is highly sensitive to error and no meaningful result is 

obtained. 

 

7.1.6. Conclusions 

The experimental tests show that for the beat frequency range of 1 to 3.5 Hz, seven 

out of  ten subjects are able to synchronise their jumping and bobbing with the 

audio prompts.  It is found that synchronised bobbing is easier to perform than 

jumping as the subject has more control of the timing.  Compared to jumping, the 

bobbing action is found to have a higher inherent variability between individuals.   

 

7.2. Two people jumping tests 

The work presented in Chapters 5 and 6 is from measurements of individuals 

jumping alone.  Two parameters are introduced to quantify each individual’s 

impulse timing: mean phase delay and phase scatter.  Both parameters measure 

one’s degree of synchronisation with respect to the auditory signal, without the 

influence of another person jumping together, i.e. the visual effect.  In a pop concert, 

an individual’s jumping would be affected by both the music played and the people 

jumping around.  Therefore, experimental tests are conducted to investigate the 

coherency between people due to both auditory and visual effects.  The results are 
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compared with those from individual jumping tests.  The findings give an indication 

of any improvement necessary for the crowd jumping loads presented in Chapters 5 

and 6.     

 

7.2.1. Experimental tests 

Each test involves two people standing on two separate load cells, facing each other 

and about 2 m apart.  The ten subjects involved in the individual jumping tests in 

the previous section are ranked according to their abilities to synchronise their 

jumps with the audio beeps.  The best five subjects (subjects 4,6-9) are selected to 

participate in the tests conducted at 6 beat frequencies, from 1 to 3.5 Hz, at an 

increment of 0.5 Hz.  Each subject is paired with three other subjects except one 

paired with four subjects, giving a total of 8 pairs. 

 

7.2.2. Results and discussion 

For each pair, the results for both subjects when jumping alone and together are 

compared.  For each case, two parameters are introduced, θ∆  and 'θ
σ∆ .  θ∆ is 

defined as the absolute difference in mean phase delay between the two subjects 

while 'θ
σ∆ is the absolute difference in phase scatter.  Both are plotted in Figs. 7.8 

and 7.9 respectively.  In each figure, each plot corresponds to one pair of subjects, 

giving their θ∆  and 'θ
σ∆  when jumping separately and together, at six beat 

frequencies.  Most results show that both parameters are less when jumping together 

than when separately.  This implies that the visual effect provided by another 

jumper improves the coherency between the two jumpers.  The average reduction 

for each pair over the six beat frequencies are presented in Table 7.8 for θ∆  and 
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'θ
σ∆ .  Overall, θ∆  falls between 35% and 74% while 'θ

σ∆ falls between 52% and 

86%.  Therefore, both parameters should have lower standard deviations than those 

calculated in Chapter 5 due to a better synchronisation provided by the visual effect.  

Hence the crowd jumping load generated in Chapter 6 might be lower than they 

ought to be.  Due to the small number of tests conducted, it is not possible to 

provide a statistically sound quantification of the crowd coherency.    

  



 

Chapter 8 

8. Conclusions and recommendations 

8.1. Conclusions 

Vibration problems have been reported on several cantilever grandstands both in the 

UK and overseas.  These cantilever grandstands, which have large spans, are prone 

to excessive vibrations due to rhythmic crowd motions.  Various codes and 

guidelines have stated the need to carry out a dynamic analysis on these structures.  

It is the responsibility of the design engineers to assess the performance of such 

structures when being used for lively events such as pop concerts.  However, 

current practice is incapable of doing so due to a lack of knowledge on human-

structure interaction on cantilever grandstands.  This thesis is directed towards 

modelling and analysing the response of a cantilever grandstand.  It involves 

studying the active and passive crowds occupying the structure and the resultant 

structural response.  The work in this thesis consists of three main areas:   

• Modelling of a passive crowd 

• Modelling of the crowd jumping load  

• Analysing a combined crowd-structure system with a jumping crowd.   

 

A brief experimental study on bobbing load is also conducted.  In this chapter, the 

main findings are summarised, conclusions drawn and some possible directions for 

future research are presented. 
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8.1.1. Initial study 

Analysis of the cantilever-human system shows that, for a simple cantilever system, 

the response is dominated by the first mode.  The seated humans are found to lower 

the modal amplitude and resonant frequency compared to when the structure is 

empty.  Two parameters are important in the analysis: the natural frequency of the 

empty structure and the relative mass of the passive crowd.  All these suggest that a 

SDOF structural system is adequate for further work.  Hence subsequent work uses 

a SDOF system to represent the structure.  By using such a simple structural model 

with well-defined dynamic characteristics, the fundamental interaction between the 

passive crowd and the structure can be better understood.   

 

8.1.2. Modelling of passive crowd 

A 2DOF system is developed to represent a passive crowd.  By curve-fitting the 

apparent mass of sixty seated and twelve standing individuals, it is found that a 

rational polynomial of the order of 4 is sufficient for the crowd model.  This means 

that a crowd model which consists of numerous independent 2DOF systems can be 

approximated well by using a single 2DOF system.  This reduces the computational 

time and effort significantly because fewer DOFs are involved. 

 

A parametric study shows that for low natural frequency structures (say 2 Hz), the 

crowd adds mass to the structural system, which reduces both the natural frequency 

and the damping ratio of the occupied structure compared to the empty structure.  

At higher natural frequencies (> 4 Hz), the crowd reduces the structural response by 
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adding significant damping in a way similar to a tuned mass damper though, unlike 

a TMD, the crowd properties cannot be optimised for a particular structure.   

 

The results for three joint systems (100% seated, 100% standing and 50:50 

seated/standing crowds) are presented in charts in terms of the frequency reduction 

factor and the DMF reduction factor.  There is greatest reduction in the natural 

frequency and the DMF for structures with natural frequencies within the range of 4 

to 8 Hz, due to the very significant damping provided by the passive crowd.  The 

amount of reduction in the DMF increases with the mass ratio, i.e. more damping is 

provided as the crowd size increases.  Using these charts, designers are able to 

estimate the changes in resonant frequency and peak response.  In order to estimate 

the structural response, a load model is required and this is dealt with in Chapters 5 

and 6.   

 

It is recognised that the transfer function representation for the crowd model might 

not be the common practice among engineers.  It was suggested by Michael 

Willford (Blakeborough 2005) that the combined system be reduced to a SDOF 

system.  In this thesis, work is conducted to represent the 5DOF joint 50:50 

seated/standing crowd-structure system as SDOF and 3DOF systems.  It is shown 

that the joint crowd-structure system can be modelled as a SDOF system for 1 to 

4 Hz structures.  For structures above 4 Hz, the joint system is best represented as a 

3DOF system.  For design purpose where the interest is on the maximum response, 

the equivalent SDOF is more appropriate because it is more simplistic compared to 

the 3DOF system and also, there is not much difference in the maximum DMF 

values estimated from both systems.  The modal properties of the equivalent SDOF 
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system confirm the findings that the passive crowd behaves as an added mass for 

low natural frequency structures and as an added damper for structures 4 Hz and 

above.   

 

8.1.3. Modelling of crowd jumping load 

A statistical approach is developed to model the jumping loads.  Several parameters, 

each described by a probability distribution function, are used to model the 

randomness in the impulse timing and shape.   

 

From the experimental measurements of Parkhouse and Ewins (2004), out of the 

four beat frequencies (1.5, 2, 2.67 and 3.5 Hz), jumping at 2 Hz shows the highest 

number of synchronised tests, i.e. 75 tests.  Overall, 26 test subjects are able to 

perform synchronised jumping at all four beat frequencies.  Ten additional 

individual jumping tests conducted by the author show that four subjects show good 

synchronisation at six beat frequencies, from 1 to 3.5 Hz, at an increment of 0.5 Hz.  

Three subjects are found to have difficulty in synchronising their jumps with the 

audio beeps at almost all six beat frequencies.  In addition, most subjects express 

difficulty in jumping at 1.5 Hz due to awkwardness in controlling the landing and 

launching actions.   

 

In the statistical analysis conducted on the measurements of Parkhouse and Ewins 

(2004), the mean phase delay and phase deviation are introduced to quantify the 

impulse timing.  A mean value of approximately 0.1 s is observed for the mean 

phase delay at all four beat frequencies.  The standard deviations of both parameters 

show that there is least inter-subject variation when jumping at beat frequencies of 2 
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and 2.67 Hz, i.e. the most severe crowd loading can be expected at these beat 

frequencies. 

 

It is found that the phase deviation does not follow a Normal distribution.  Further 

analysis shows that there is some structure in the phase deviation sequence.  It is 

found that the jumper adjusts the timing of the current jump based on the timing of 

the previous jump with a random error added to each jump.  This phenomenon is 

modelled by a first order auto-regression algorithm and the residual error 

characterised by a Normal distribution.  All impulse timing parameters are modelled 

using either a Normal or a Beta distribution, as summarised in Fig. 5.52.  The 

majority of the parameters pass the chi-squared tests with a significance level of 

0.05.  Correlation analyses show that all variables can be treated as independent 

random variables. 

 

Three impulse shapes are observed from the experimental measurements:  twin 

peaks, merging of twin peaks and single peak.  The first two shapes are dominant 

for jumping at 1.5 Hz while the single peak impulse shape is observed for jumping 

at 2, 2.67 and 3.5 Hz.  For the twin peaks, the first peak is the landing impulse while 

the second peak is the launching impulse.  As the beat frequency increases, both the 

landing and launching impulses merge, giving the single peak impulse shape.  For 

the single peak impulse shape, it is found that a cosine-squared function gives the 

best fit among the three analytical functions tested (the other two are the Normal 

distribution function and the cosine function).  In addition, experimental tests 

conducted by the author show that the Fourier coefficients for beat frequencies of 1 

and 1.5 Hz are dominated by the second harmonic due to the twin peaks impulse 
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shape.   

 

It is found that the contact ratios of each test record can be adequately described by 

a Normal distribution.  Both the mean and standard deviation of the contact ratio are 

modelled using Beta distributions, as summarised in the flow chart in Fig. 5.53.  In 

particular, the mean contact ratio is found to be higher than 0.4, in contrast to the 

lower values suggested by the BS 6399: Part 1 (British Standards Institution 1996).  

A moderate correlation is found between the mean and standard deviation of contact 

ratio, however, it is decided that be treated as independent variables. 

 

8.1.4. Analysis of joint crowd-SDOF system with jumping crowd 

Dynamic analyses are conducted for the joint crowd-SDOF system with a mass ratio 

of 0 (empty structure) and 0.15 (with standing crowd). 

 

A closer look at the results for the 2 Hz beat frequency shows that the lack of 

synchronisation between individuals is more dominant at higher structural 

frequencies.  The distributions of the DMF and RMS acceleration shift from a 

Normal distribution to a skewed (perhaps Rayleigh) distribution as the natural 

frequency of the structure increases.   

 

For all three beat frequencies, the characteristic DMF (Figs. 6.12 to 6.17) and RMS 

acceleration (Figs. 6.18 to 6.23) show three resonant peaks due to excitation by the 

first three harmonics of the jumping loads.  Comparing the results for the empty and 

occupied structures, a significant reduction in the structural response is observed 

due to damping contributed by the passive crowd.  In addition, the resonant peaks 
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are located at frequencies slightly higher than those for the empty structure.  The 

discrepancy is greatest for structures with natural frequencies between 4 and 8 Hz 

when empty, i.e. structures excited by the second and third harmonics of the crowd 

jumping loads.  Both the reduction in structural response and the shift in resonant 

frequency are due to damping provided by the passive crowd. 

 

The peak characteristic DMF and RMS acceleration at each harmonic are plotted 

against the group size in Figs. 6.24 to 6.27.  A non-linear trend is observed for 

group sizes of up to 16 people.  For groups with more than 16 people, an asymptotic 

behaviour is observed.  This implies that for a real cantilever grandstand with a 

large crowd, the steady state structural response observed along the asymptotic 

trend should provide a good estimation.  Engineers could use these steady state 

values as estimation to the response of a cantilever grandstand subjected to crowd 

jumping loads.       

 

8.1.5. Experimental jumping and bobbing tests 

Two bobbing patterns are observed: Two out of the ten subjects flex their knees 

while the rest of the eight subjects rise to their toes and land on their heels.  A 

significantly better synchronisation is found for bobbing compared to jumping.  

Eight out of the ten subjects are able to perform synchronised tests at almost all six 

frequencies compared to only four for jumping.  The Fourier coefficients for 

bobbing are lower compared to those for jumping.  In terms of the impulse shape, 

the bobbing action is found to have a higher inherent variability between individuals 

compared to jumping.   
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Tests on two people jumping together show that the visual effect provided by 

another jumper improves the coherency between the two jumpers.  The results show 

that there is quite a significant improvement in the timings of both jumpers. 

   

8.2. Limitations and further research 

This thesis has contributed to the current understanding on the dynamic 

performance of grandstands by presenting a very straightforward method of 

analysing a SDOF system occupied by active and passive crowds.  A 2DOF crowd 

model is developed and applied successfully to a SDOF system through the use of a 

feedback system.  A comprehensive statistical analysis on the jumping loads is also 

conducted to take into account the lack of synchronisation between individuals.  

The results presented in this thesis allow engineers to estimate the structural 

response for various crowd sizes and structures with various natural frequencies.  

Realistically, designers should use the results presented here with caution, 

considering the various limitations which will be discussed below.  In addition, 

suggestions on further research are made where appropriate. 

 

In terms of the crowd jumping loads, the worst case scenario is being considered 

because only results for the synchronised tests are used.  The calculated structural 

response does not take into account spectators who are not jumping in time with the 

beat, i.e. the whole active crowd is treated to be jumping in time with the beat, 

whereas tests suggest that a significant proportion of people are unable to do so. 

   

On the other hand, an initial experimental study on the effect of jumping together 

with another person shows that the visual effect provided by another jumper 
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improves the coherency between the two jumpers.  This implies that the crowd 

jumping loads generated in Chapter 6 might be lower than they ought to be because 

they are based on test data from independent jumpers.  Further work is needed to 

quantify the crowd coherency.  One possible way of achieving this is to measure the 

loads of a group of people jumping together.  The results presented in Chapter 6 

show that a group of 16 is sufficient since an asymptotic trend is observed for larger 

groups. 

 

Experimental tests are conducted on rigid force plates.  Therefore, the flexibility of 

the structure is not taken into account in the derivation of the jumping load model.  

Since cantilever grandstands, especially those with vibration problems, are highly 

flexible, it is very important to take into account the flexibility of the structure.  

Further work is needed to investigate how the jumping loads vary with the 

flexibility of the structure.   

 

Work on bobbing is a whole new area of research that is worth pursuing considering 

the better synchronisation observed and its potential to be synchronised by the 

movement of the structure, as seen in the Millennium footbridge phenomenon 

(Dallard et al. 2001).  For bobbing, the person is in contact with the ground all the 

time.  The challenge is to model both the damping capacity of the human body and 

the external force exerted by the person onto the structure. 
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APPENDIX A 
Try UB 914×419×388  
 

Dead and imposed loads 
The loads expressed as uniform loads per unit length of the cantilever are:  
 
Dead load, ωD    = 36.4 kN/m  
Imposed load, ωI   = 40.0 kN/m 
Applying a load factor of 1.4 for dead load and 1.6 for imposed load, giving: 
Factored design load, ω   = 115.0 kN/m 
 
Limit state strength and serviceability design 
Assuming that the cantilever is restrained against torsion and lateral displacement 
by the concrete seating deck, the resultant maximum shear force and bending 
moment acting on the cantilever: 
 
Maximum shear force acting: 
Fv = ωL =  1049 kN 
 
Maximum bending moment acting: 

M = 
2

2Lω = 4784 kNm 

The following checks show that the selected member satisfies the strength and 
serviceability limit state criteria according to BS 5950: Part 1 (British Standards 
Institution 2000). 
 
Compact section 
Clause 3.5.2 

For rolled sections, limit is 9.5є with є = 1275 2
1

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

yP
                                                 

b/T = B/2/T = 5.7 < 9.5є 
∴ Section is compact 
 
Shear buckling 
Clause 4.2.3 
d/t = 37.4 < 63є                                      
∴ No need to check for shear buckling 
 
Bending resistance 
Clause 4.2.5                         
Mc = PyS = 275×720×10-3 = 4868 kNm (> 4784 kNm applied)     OK!                        
                
Shear resistance 
Clause 4.2.3 
Av = tD = 21.4×921 = 19709 mm2                                                               

Pv = 0.6PyAv = 0.6*275×19709×10-3
 = 3252 kN (> 1049 kN applied )    OK! 

  



 

 Deflection 
Clause 2.5.1 

Maximum deflection = 4.2610
10720000102058

12.91045
8

3
89

434

=×
××××

××
= −

xx

I

EI
Lω mm 

Deflection limit = mm7.50
180

1012.9
180

3×
=

L (> 26.4 mm)     OK! 

 

  



 

APPENDIX B 
For regression of order of one and a phase deviation sequence with n data points, 
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Rearranging, 
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Knowing that the mean of the n-point phase deviation sequence equals zero, i.e. 
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Substitute Eqns. B4 and B5 into Eqn. B6, 
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Divide by (n-1) to get the mean, 
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Eqn. B8 shows that the mean of the random error is a function of the boundary 
conditions, θ1’ and θn’; and the regression coefficient, ρ1.   
 

  



 

TABLES 
 
 

 Undamped natural frequency (Hz) Damping ratio (%) 
 f1 f2 ζ1 ζ2

 Mean SD Mean SD Mean SD Mean SD 
Seated men 5.1 0.58 9.3 2.01 31.1 10.11 43.7 43.41 
Seated women 5.3 1.06 9.2 2.85 38.5 14.90 31.7 11.63 
Seated children 5.2 5.16 15.9 24.20 37.5 39.23 31.2 36.35 
Standing men 5.8 0.54 12.6 2.34 33.1 7.21 45.9 17.21 
 
Table 4.1:  Mean and standard deviation of undamped natural frequency and damping ratio. 

 
 
 
 

 Subject body mass (kg) Modal mass (kg) 
 mbody m0 m1 m2

 Mean SD Mean SD Mean SD Mean SD 
Seated men 58.2 14.00 7.6 3.01 37.4 10.36 13.7 7.01 

Seated women 50.8 6.70 7.3 1.75 32.0 6.02 11.1 5.45 
Seated children 35.9 8.08 3.9 1.84 28.1 4.40 4.58 5.61 
Standing men 73.9 7.57 - - 43.1 16.90 28.5 19.07 

 
Table 4.2:  Mean and standard deviation of modal mass. 

 
 
 
 

 a4 a3 a2 a1 a0

Seated men 0.1406 32.23 3502 145.8×103 4.120×106

Seated women 0.1512 35.52 3866 152.8×103 3.892×106

Seated children 0.1115 33.50 3738 233.0×103 6.866×106

Standing men 0.0050 42.69 4940 255.3×103 8.739×106

      
  b4 b3 b2 b1 b0

Seated men 1 81.03 6509 144.9×103 4.127×106

Seated women 1 91.04 6808 154.3×103 3.919×106

Seated children 1 87.99 9098 235.0×103 6.854×106

Standing men 1 96.20 9517 258.7×103 8.715×106

 
Table 4.3:  Coefficients for transfer function defining the 2DOF crowd model (Eqn. 4.1). 

 
 
 
 
 
 
 
 
 
 

  



 

  

 a2 a1 a0 b2 b1 b0

Seated men 0.2805 21.20 994.9 1 20.55 994.4 
Seated women 0.2846 22.85 927.1 1 22.41 933.9 
Seated children 0.1400 26.88 1096.0 1 27.15 1094.0 
Standing men 0.2135 29.50 1454.0 1 29.39 1454.0 

 
Table 4.4:  Coefficients for transfer function defining the SDOF crowd model (Eqn. 4.17). 

 
 
 
 

Beat Mean time delay (s) Mean phase delay (o) 

frequency (Hz) Mean Standard Dev. Mean Standard Dev. 

1.5 0.077 0.09 41.60 46.7 
2 0.077 0.05 55.49 37.1 

2.67 0.097 0.03 93.33 30.5 
3.5 0.088 0.03 111.00 36.1 

 
Table 5.1:  Mean and standard deviation of mean time delay and mean phase delay. 

 
 
 
 

Beat frequency 
(Hz) 

Mean of σθ'  (o) Standard Dev. of σθ'  (o) Correlation coefficient, r 

1.5 31.76 16.3 -0.004 

2 24.61 11.7 -0.270 
2.67 24.49 8.7 -0.032 
3.5 31.91 11.1 -0.329 

 
Table 5.2:  Mean and standard deviation of σθ'  and correlation coefficient of σθ'  and mean 

phase delay.



 

(a) Beat frequency = 1.5 Hz (c) Beat frequency = 2.67 Hz 

Class interval Number observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0.45 4 2.17 1.55 
0.45 – 0.50 3 3.34 0.04 
0.50 – 0.55 7 6.04 0.15 
0.55 – 0.60 3 8.91 3.92 
0.60 - 0.65 15 10.68 1.75 
0.65 – 0.71 10 10.28 0.01 
0.71 – 0.76 9 7.68 0.23 
0.76 – 0.81 3 4.17 0.33 

0.81 - 1 1 1.73 0.31 
   X2  = 8.26 

Class interval Number observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0.58 2 2.62 0.15 
0.58 – 0.61 1 2.15 0.61 
0.61 – 0.65 2 3.37 0.55 
0.65 – 0.68 6 4.90 0.25 
0.68 – 0.72 8 6.62 0.29 
0.72 - 0.75 7 8.25 0.19 
0.75 – 0.78 17 9.39 0.17 
0.78 – 0.82 12 9.60 0.60 
0.82 – 0.85 3 8.58 3.63 
0.85 - 0.88 4 6.40 0.90 
0.88 – 0.92 3 3.64 0.11 

0.92 - 1 2 1.48 0.19 
   X2  = 13.63 

  59.122
05.0;6 === αχ d  2

;
2

αχ dX <∴  

  
 

92.162
05.0;9 === αχ d  2

;
2

αχ dX <∴   
 
  
  

(b) Beat frequency = 2 Hz   (d) Beat frequency = 3.5 Hz 

Class interval Number observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0.50 6 1.63 11.70 
0.50 – 0.54 3 3.12 0.004 
0.54 – 0.58 3 6.55 1.93 
0.58 – 0.62 8 11.02 0.83 
0.62 – 0.67 10 14.74 1.52 
0.67 - 0.71 17 15.43 0.16 
0.71 – 0.75 22 12.25 7.77 

0.75 – 1 6 10.27 1.77 
   X2  = 25.68 

Class interval Number observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0.62 1 1.64 0.26 
0.62 – 0.66 2 1.42 0.24 
0.66 – 0.70 4 2.28 1.30 
0.70 – 0.74 1 3.42 1.71 
0.74 – 0.78 5 4.74 0.01 
0.78 – 0.82 5 6.03 0.18 
0.82 - 0.86 8 6.89 0.18 
0.86 – 0.90 8 6.77 0.22 
0.90 – 0.94 4 5.21 0.28 

0.94 - 1 3 2.59 0.06 
   X2  = 4.44   07.112

05.0;5 === αχ d  2
;

2
αχ dX >∴  

  07.142
05.0;7 === αχ d  2

;
2

αχ dX <∴   
 
 

 
Table 5.3:  Calculations for χ2 goodness-of-fit test for fitting a Beta distribution to the transformed mean phase delay, *

delayθ :  
(a) 1.5 Hz.  (b) 2 Hz.  (c) 2.67 Hz.  (d) 3.5 Hz. 

  



 

 
Beat frequency 

(Hz) 
α β 

1.5 13.67 7.97 
2 24.34 12.30 

2.67 15.16 4.77 
3.5 12.63 3.00 

 
Table 5.4:  Values of the α and β parameters defining the Beta distribution of the transformed 

mean phase delay, *
delayθ .  

 
 
 
 

Relative reduction in mean of σ∆T, m (%) Order of 
regression, m 1.5 Hz 2 Hz 2.67 Hz 3.5 Hz 

1 58.3 65.4 59.1 62.1 
2 18.1 12.7 11.90 8.9 
3 2.7 2.0 2.3 1.3 
4 3.8 1.4 1.0 0.8 

 
Table 5.5:  Relative reduction in the mean of standard deviation of random order, σ∆T, m, for 

increasing regression order (m = 1 to 4). 
 
 
 

  



 

(a) Beat frequency = 1.5 Hz 

Class interval Number observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0.72 1 2.02 0.51 
0.72 – 0.75 1 1.35 0.09 
0.75 – 0.77 3 2.05 0.44 
0.77 – 0.80 2 3.01 0.34 
0.80 – 0.82 4 4.22 0.01 
0.82 - 0.85 10 5.62 3.42 
0.85 – 0.87 5 7.04 0.59 
0.87 – 0.90 8 8.15 0.003 
0.90 - 0.92 11 8.45 0.77 
0.92 – 0.95 5 7.38 0.77 
0.95 – 0.97 2 4.62 1.48 

0.97 - 1 3 1.10 3.28 
   X2  = 11.70 

  92.162
05.0;9 === αχ d  2

;
2

αχ dX <∴  

 
 (b) Beat frequency = 2 Hz 

Class interval Number observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0.71 2 1.26 0.43 
0.71 – 0.74 2 1.13 0.68 
0.74 – 0.77 1 1.95 0.46 
0.77 – 0.80 2 3.22 0.46 
0.80 – 0.83 5 5.07 0.0009 
0.83 - 0.85 7 7.53 0.04 
0.85 – 0.88 7 10.44 1.13 
0.88 – 0.91 15 13.19 0.25 
0.91 – 0.94 18 14.49 0.85 
0.94 – 0.97 13 12.19 0.05 

0.97 - 1 3 4.53 0.52 
   X2  = 4.87 

  51.152
05.0;8 === αχ d  2

;
2

αχ dX <∴  

(c) Beat  frequency = 2.67 Hz 

Class interval Number observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0.75 4 1.97 2.10 
0.75 – 0.77 0 1.73 1.73 
0.77 – 0.80 2 2.92 0.29 
0.80 - 0.82 3 4.63 0.58 
0.82 – 0.85 6 6.86 0.11 
0.85 – 0.87 11 9.34 0.30 
0.87 – 0.90 15 11.41 1.13 
0.90 - 0.92 10 12.01 0.34 
0.92 – 0.95 12 9.98 0.41 
0.95 – 0.97 3 5.30 1.00 

0.97 - 1 1 0.85 0.03 
   X2  = 8.00 

  51.152
05.0;8 === αχ d  2

;
2

αχ dX <∴  

 
 

    (d) Beat frequency = 3.5 Hz 

Class interval Number observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0.74 1 1.57 0.20 
0. 7 
0.77 – 0.80 

74 – 0.7 1 1.04 0.001 
5 1.60 7.22 

0.80 – 0.83 2 2.39 0.06 
0.83 – 0.86 1 3.44 1.73 
0.86 – 0.88 4 4.75 0.12 
0.88 - 0.91 5 6.21 0.24 
0.91 – 0.94 11 7.49 1.65 
0.94 – 0.97 7 7.76 0.07 

0.97 - 1 4 4.75 0.12 
   X2  = 11.42 

  αd∴07.142
05.0;7 === αχ d  22 χX < ;  

 
Table 5.6:  Calculations for χ2 goodness-of-fit test for fitting a Beta distribution to the auto-regression coefficient, ρ1:  

(a) 1.5 Hz.  (b) 2 Hz.  (c) 2.67 Hz.  (d) 3.5 Hz.

  



 

  

 
Beat frequency (Hz) α β 

1.5 18.94 2.86 
2 18.98 2.40 

2.67 25.74 3.55 
3.5 15.08 1.76 

 
Table 5.7: Values of the α and β parameters defining the Beta distribution of the 

auto-regression coefficient, ρ1.



 

  

(a) Beat frequency = 1.5 Hz 

Class interval Number observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0. 041 5  6.12 0.21 
0.041 – 0.052 11 7.88 1.23 
0.051 – 0.063 8 9.64 0.28 
0.063 – 0.075 10 9.33 0.05 
0.075 - 0.086 11 7.61 1.51 
0.086 – 0.097 4 5.46 0.39 
0.097 – 0.108 0 3.54 3.54 
0.108 – 0.119 3 2.10 0.39 
0.119 – 0.131 0 1.16 1.16 

0.131 - 1 2 1.15 0.63 
   X2  = 9.38 

  07.142
05.0;7 === αχ d  2

;
2

αχ dX <∴  

 
 

(b) Beat frequency = 2 Hz 

Class interval Number observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0.033 3 3.82 0.18 
0.033 – 0.037 2 5.70 2.40 
0.037 – 0.040 15 9.05 3.91 
0.040 – 0.044 11 11.39 0.01 
0.044 – 0.048 12 11.77 0.005 
0.048 – 0.052 14 10.27 1.35 
0.052 – 0.055 3 7.75 2.91 
0.055 – 0.059 4 5.15 0.26 
0.059 – 0.063 1 3.05 1.38 

0.063 - 1 6 3.05 2.85 
   X2  = 15.26 

  07.142
05.0;7 === αχ d  2

;
2

αχ dX >∴  

 
 

 (c) Beat frequency = 2.67 Hz 

Class interval Number observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0.035 1 4.09 2.34 
0.035 – 0.041 6 6.46 0.03 
0.041 – 0.048 13 9.65 1.16 
0.048 – 0.054 20 11.09 7.15 
0.054 – 0.060 6 10.39 1.85 
0.060 – 0.066 6 8.25 0.61 
0.066 – 0.073 3 5.72 1.29 
0.073 – 0.079 1 3.53 1.81 
0.079 – 0.085 3 1.97 0.54 

0.085 - 1 4 1.85 2.49 
   X2  = 19.29 

  07.142
05.0;7 === αχ d  2

;
2

αχ dX >∴  

 
 

 (d) Beat frequency = 3.5 Hz 

Class interval Number observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0.046 2 1.51 0.16 
0.046 – 0.051 2 2.36 0.05 
0.051 – 0.056 3 3.97 0.24 
0.056 – 0.061 7 5.33 0.52 
0.061 – 0.066 7 5.91 0.20 
0.066 – 0.071 3 5.57 1.19 
0.071 – 0.077 3 4.55 0.53 
0.077 – 0.082 4 3.27 0.16 
0.082 – 0.087 4 2.10 1.71 

0.087 - 1 2 2.43 0.08 
   X2  = 4.83 

  07.142
05.0;7 === αχ d  2

;
2

αχ dX <∴  

 
Table 5.8: Calculations for χ2 goodness-of-fit test for fitting a Beta distribution to the transformed standard deviation of random error, :  *

1,' =mθσ ∆

(a) 1.5 Hz.  (b) 2 Hz.  (c) 2.67 Hz.  (d) 3.5 Hz. 
 



 

  

 
Beat frequency 

(Hz) 
α β 

1.5 6.86 91.00 
2 25.68 528.07 

2.67 13.86 237.30 
3.5 26.08 365.23 

 
Table 5.9:  Values of the α and β parameters defining the Beta distribution of the transformed 

standard deviation of random error, . *
1,' =mθσ ∆

 
 
 
 

 1.5 Hz 2 Hz 2.67 Hz 3.5 Hz Total 

Gaussian 0.2551 0.1261 0.0878 0.0984 0.5673 
cos(t) 0.1670 0.1298 0.1435 0.1108 0.5511 
cos2(t) 0.1976 0.0894 0.0808 0.0649 0.4327 

 
Table 5.10:  Mean of all µRMSE  for curve-fitting measured impulses with Gaussian 

distribution, cosine and cosine-squared functions. 
 
 
 
 

Mean Beat frequency 
(Hz) 1st 2nd 3rd

1.5 1.429 0.495 0.199 
2 1.573 0.735 0.192 

2.67 1.550 0.702 0.169 
3.5 1.462 0.513 0.057 

 
Table 5.11:  Mean of Fourier coefficients for the first three harmonics at four beat 

frequencies. 
 
 
 
 

Line of best fit: y = mx + c Maximum absolute error Beat frequency 
(Hz) m c (times period of beat) 

1.5 1.2791 -0.2830 0.021 

2 1.1934 -0.1953 0.014 
2.67 1.1970 -0.1994 0.015 
3.5 1.1808 -0.1831 0.014 

 
Table 5.12:  Coefficients for the line of best fit and the maximum absolute error 

evaluated for ik from 0.9375 to 1.0625.



 

(a) Beat frequency = 1.5 Hz 

Class interval Number observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0. 481 2 1.97 0.0006 
0.481 – 0.526 2 2.01 0.0001 
0.526 – 0.570 4 3.22 0.19 
0.570 – 0.614 3 4.57 0.54 
0.614 – 0.659 6 5.74 0.01 
0.659 – 0.703 4 6.35 0.87 
0.703 – 0.747 10 6.08 2.53 
0.747 – 0.792 4 4.91 0.17 
0.792 – 0.836 3 3.18 0.01 

0.836 – 1 2 1.98 0.0001 
   X2  = 4.31 

  07.142
05.0;7 === αχ d  2

;
2

αχ dX <∴  

 
 

(b) Beat frequency = 2 Hz 

Class interval Number observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0. 448 3 4.22 0.35 
0.448 – 0.484 7 4.24 1.79 
0.484 – 0.520 9 6.52 0.94 
0.520 – 0.556 6 8.72 0.85 
0.556 – 0.591 8 10.16 0.46 
0.591 – 0.627 9 10.29 0.16 
0.627 – 0.663 11 8.97 0.46 
0.663 – 0.698 8 6.66 0.27 
0.698 – 0.734 2 4.11 1.09 
0.734 – 0.770 3 2.05 0.44 
0.770 – 0.1 1 1.05 0.002 

   X2  = 6.81 

  51.152
05.0;8 === αχ d  

2
;

2
αχ dX <∴  

(c) Beat frequency = 2.67 Hz 

Class interval Number observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0. 502 4 4.91  0.17 
0.502 – 0.530 3 4.40 0.45 
0.530 – 0.558 11 6.42 3.26 
0.558 – 0.586 8 8.16 0.003 
0.586 – 0.614 11 9.00 0.45 
0.614 – 0.642 5 8.57 1.49 
0.642 – 0.670 7 6.99 0.000004 
0.670 – 0.698 4 4.83 0.14 
0.698 – 0.726 1 2.78 1.14 

0.726 - 1 4 1.93 2.21 
   X2  = 9.31 

  07.142
05.0;7 === αχ d  2

;
2

αχ dX <∴  

 
 

(d) Beat frequency = 3.5 Hz 

Class interval Number observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0. 596 1 1.42 0.12 
0.596 – 0.616 1 1.59 0.22 
0.616 – 0.636 1 2.70 1.07 
0.636 – 0.655 5 3.98 0.26 
0.655 – 0.675 12 5.09 9.36 
0.675 – 0.695 1 5.61 3.79 
0.695 – 0.715 3 5.28 0.99 
0.715 – 0.735 4 4.19 0.009 
0.735 – 0.755 4 2.76 0.56 

0.755 – 1 3 2.37 0.17 
   X2  = 16.55 

  07.142
05.0;7 === αχ d  

2
;

2
αχ dX >∴  

 

 
Table 5.13:  Calculations for χ2 goodness-of-fit test for fitting a Beta distribution to the mean contact ratio, µ :  α

(a) 1.5 Hz.  (b) 2 Hz.  (c) 2.67 Hz.  (d) 3.5 Hz. 
 
 

  



 

  

 
(a) Beat frequency = 1.5 Hz 

Class interval Number observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0. 042 3 2.24 0.26 
0.042 – 0.051 2 3.41 0.58 
0.  

   X 07 

051 – 0.060 5 5.09 0.002 
0.060 – 0.069 4 6.05 0.69 
0.069 – 0.079 6 6.06 0.0005 
0.079 – 0.088 9 5.30 2.58 
0.088 – 0.097 1 4.16 2.40 
0.097 – 0.106 5 2.98 1.37 
0.106 – 0.115 4 1.98 2.07 

0.115 - 1 1 2.75 1.11 
2  = 11.

  .0;7 === αχ d  ∴  07.142
05

2
;

2 χ dX < α

 
 

(b) Beat fre ncy = 2 Hz 

Class interval Number obs i i

que

erved, n Number expected, N
( )

i

ii

N
Nn 2−

 

0 – 0. 022 5 4.56 0.042 
0.022 – 0.027 8 7.19 0.092 

 

   X  

0.027 – 0.032 9 10.34 0.174 
0.032 – 0.036 13 11.52 0.191 
0.036– 0.041 12 10.60 0.185 
0.041 - 0.046 6 8.41 0.691 
0.046– 0.051 6 5.93 0.0009 
0.051 – 0.056 4 3.79 0.012 
0.056 – 0.061 0 2.23 2.233 
0.061 – 0.066 1 1.23 0.042 
0.066 – 0.1 3 1.20 2.681 

2  = 6.34

  51.152
05.0;8 === αχ d  α∴  22 χ dX < ;

 
 (c) Beat frequ ncy = 2.67 Hz 

Class interval Number 

 
 

(d) Beat frequency = 3.5 Hz 

Class interval Number i i

e

observed, ni Number expected, Ni
( )

i

ii

N
Nn 2−

 

0 – 0. 020 8 7.21 0.088 
0.020 – 0.024 9 7.87 0.163 

 

   X  

0.024– 0.028 10 9.69 0.010 
0.028– 0.031 9 9.65 0.044 
0.031 – 0.035 8 8.16 0.003 
0.035– 0.039 4 6.06 0.702 
0.039 – 0.043 2 4.05 1.035 
0.043 – 0.046 4 2.47 0.977 

0.046 – 1 4 2.84 0.477 
2  = 3.47

  α∴  59.122
05.0;6 === αχ d  

2
;

2 χ dX <

observed, n Number expected, N
( )

i

ii

N
Nn 2−

 

0 – 0. 018 3 2.50 0.101 
0.018 – 0.020 3 3.20 0.013 
0.  

   X  

020 – 0.022 3 4.68 0.606 
0.022 – 0.024 6 5.53 0.040 
0.024 – 0.027 6 5.48 0.050 
0.027 – 0.029 6 4.67 0.378 
0.029 – 0.031 2 3.51 0.650 
0.031 – 0.033 3 2.36 0.171 
0.033 – 0.035 2 1.45 0.211 

0.035 – 1 1 1.61 0.231 
2  = 2.45

  .0;7 === αχ d  αd07.142
05

2
;

2 χX <∴  

 
Table 5.14:  Calculations χ2 goodness-of-fit test for fitting a Beta distribution to the standard deviation of contact ratio, σα:  

(a) 1.5 Hz.  (b) 2 Hz.  (c) 2.67 Hz.  (d) 3.5 Hz.
for 



 

  

 
Beat frequency 

(Hz) 
α β 

1.5 12.15 5.99 
2 17.40 12.19 

2.67 28.58 18.99 
3.5 61.56 28.50 

 
Table 5.15:  Values of the α and β parameters defining the Beta distribution of the mean 

contact ratio, µα. 
 
 
 
 

Beat frequency 
(Hz) 

α β 

1.5 9.10 109.67 
2 9.98 256.01 

2.67 10.79 347.52 
3.5 20.43 788.00 

 
Table 5.16:  Values of the α and β parameters defining the Beta distribution of the standard 

deviation of contact ratio, σα. 
 
 
 
 

Beat frequency = 1.5 Hz 
Harmonic Regression Normal distribution 

1st 8.2 9.3 
2nd 14.3 25.3 
3rd 36.8 25.8 

 
Beat frequency = 2 Hz 

Harmonic Regression Normal distribution 
1st 7.4 8.2 
2nd 8.3 12.5 
3rd 19.5 12.7 

 
Beat frequency = 2.67 Hz 

Harmonic Regression Normal distribution 
1st 5.6 6.2 
2nd 6.7 9.7 
3rd 16.3 9.5 

 
Beat frequency = 3.5 Hz 

Harmonic Regression Normal distribution 
1st 3.6 4.1 
2nd 4.9 6.3 
3rd 16.5 6.8 

 
Table 5.17:  Overall mean relative error for normalised maximum displacement due to loads 

generated from modelling contact ratio using regression and Normal distribution. 
 
 
 



 

  

 
 

Beat frequency = 1.5 Hz 
Harmonic Regression Normal distribution 

1st 9.5 9.4 
2nd 15.5 20.4 
3rd 61.0 49.3 

 
Beat frequency = 2 Hz 

Harmonic Regression Normal distribution 
1st 5.9 6.1 
2nd 8.0 8.3 
3rd 32.2 23.9 

 
Beat frequency = 2.67 Hz 

Harmonic Regression Normal distribution 
1st 4.1 4.3 
2nd 5.7 6.9 
3rd 29.0 20.3 

 
Beat frequency = 3.5 Hz 

Harmonic Regression Normal distribution 
1st 4.4 4.5 
2nd 6.6 7.0 
3rd 29.3 21.4 

 
Table 5.18:  Overall mean relative error for normalised RMS acceleration due to loads 

generated from modelling contact ratio using regression and Normal distribution. 
 
 
 
 

 Beat Frequency (Hz) 
γ 2 2.67 3.5 
0 69.5 21.1 32.5 

0.15 14.1 10.9 23.3 
 

Table 6.1:  Maximum displacement in mm for a 4 Hz structure when all spectators are 
jumping (γ = 0) and when 50% are jumping (γ = 0.15). 

 
 
 
 

 Beat Frequency (Hz) 
γ 2 2.67 3.5 
0 2.21 0.27 0.50 

0.15 0.25 0.13 0.49 
 

Table 6.2:  RMS acceleration (g) for a 4 Hz structure when all spectators are jumping (γ = 0) 
and when 50% are jumping (γ  = 0.15). 

 
 
 



 

  

 
 Mean Std. Dev.

Age (years) 29 3.7 

Weight (kg) 71.07 11.5 
 

 
Table 7.1: Age and body weight of test subjects. 

 
 
 
 

Jumping beat frequency (Hz) Test Subject 1 1.5 2 2.5 3 3.5 
1 0 +1 0 0 0 +2 
2 0 +11 +1 +3 0 -1 
3 +1 -4 +1 -9 -14 -30 
4 0 0 0 0 0 0 
5 0 -3 +1 -3 -4 -7 
6 0 0 0 0 0 -8 
7 0 0 0 0 0 0 
8 0 0 0 0 0 0 
9 0 0 0 0 0 0 

10 0 0 0 -13 -7 -13 
Number of 

synchronised 
test 

9 6 7 6 7 4 

 
Table 7.2: Number of extra or deficit jumps. 

 
 
 
 

Bobbing beat frequency (Hz) Test Subject 1 1.5 2 2.5 3 3.5 
1 0 1 0 0 0 4 
2 0 0 0 1 0 3 
3 0 0 -3 0 4 -2 
4 0 0 0 0 0 0 
5 0 -6 -2 -11 -14 -9 
6 0 0 0 0 0 0 
7 0 0 0 0 0 0 
8 0 0 0 0 0 0 
9 0 0 0 0 0 0 

10 0 0 0 0 0 0 
Number of 

synchronised 
test 

10 8 8 8 8 6 

 
Table 7.3: Number of extra or deficit bobs.



 

  

Beat Mean phase delay (o) 

frequency (Hz) Mean Standard Dev.

1 77 106 
1.5 115 (42) 43 (47) 
2 67 (55) 34 (37) 

2.5 65 (93) 52 (31) 
3 84 31  

3.5 89 (111) 38 (36) 
 

Table 7.4: Mean and standard deviation of mean phase delay for individual jumping tests 
compared with results from Parkhouse and Ewins’s experimental data (2004) (given in 

brackets). 
 
 
 
 

Beat Phase scatter (o) 

frequency (Hz) Mean Standard Dev.

1 28 13 
1.5 26 (32) 19 (16) 
2 28 (25) 12 (12) 

2.5 29 (24) 9 (9) 
3 30 10  

3.5 29 (32) 5 (11) 
 

Table 7.5: Mean and standard deviation of phase scatter for individual jumping tests 
compared with results from Parkhouse and Ewins’s experimental data (2004) (given in 

brackets). 
 
 
 
 

Mean Std. Dev. Beat 
frequency 

(Hz) 1st 2nd 3rd 1st 2nd 3rd

1 0.286 0.965 0.279 0.12 0.20 0.23 

1.5 0.506 0.744 0.200 0.39 0.39 0.08 

2 1.343 0.451 0.132 0.26 0.18 0.07 

2.5 1.480 0.532 0.105 0.06 0.08 0.05 

3 1.521 0.598 0.133 0.10 0.16 0.07 

3.5 1.434 0.460 0.035 0.04 0.06 0.02 

 
Table 7.6:  Mean and standard deviation of Fourier coefficients for average jumping 

impulse.   



 

 
Mean 

 
Std. Dev. Beat 

frequency 
(Hz) 

1st 2nd 3rd 1st 2nd 3rd

1 0.077 0.209 0.142 0.05 0.17 0.10 

1.5 0.149 0.223 0.138 0.09 0.10 0.09 

2 0.356 0.311 0.106 0.29 0.17 0.08 

2.5 0.479 0.270 0.107 0.27 0.13 0.07 

3 0.587 0.236 0.097 0.27 0.09 0.05 

3.5 0.663 0.242 0.089 0.21 0.07 0.04 

 
Table 7.7:  Mean and standard deviation of Fourier coefficients for average bobbing 

impulse. 
 
 
 
 

Amount of reduction (%)
Pair number

θ∆  'θ
σ∆  

1 73 56 
2 53 68 
3 39 65 
4 74 64 
5 35 76 
6 53 52 
7 37 86 
8 68 71 

 
Table 7.8: Average reduction in θ∆ and 'θ

σ∆ when jumping together and separately. 
 

 
 

 

 
 

 

  



Cantilever section
9m span and 14m length

Figure 2.1:  Cross-section of the Millennium Stadium in Cardiff, courtesy of W S Atkins.  Shown in the

circle is the cantilever grandstand.
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Figure 2.2:  Mass-spring-damper systems developed by Wei and Griffin (1998) for seated humans:

Model 1a (top left), Model 1b (top right), Model 2a (bottom left) and Model 2b (bottom right).

Figure 2.3:  Mass-spring-damper systems developed by Matsumoto and Griffin (2003) for

standing humans.
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Figure 2.4:  Idealised load-time history.
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Figure 3.1:  Normalised apparent mass and phase for 60 seated subjects, from Wei and

Griffin (1998).



Frequency (Hz)

P
h

a
s
e
 (

d
e
g

re
e
)

N
o
rm

a
lis

e
d

 a
p
p

a
re

n
t 
m

a
s
s

Figure 3.2:  Normalised apparent mass and phase for 12 standing subjects, from

Matsumoto and Griffin (2003).
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Figure 3.3:  Lumped parameter model for a seated human (left) and a standing human (right), reproduced

from Wei and Griffin (1998) and Matsumoto and Griffin (2003).
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Figure 3.4:  Discretised cantilever with seated human models and subjected to external loads.

Figure 3.5:  Feedback system representation for the cantilever-human system.

Figure 3.6:  Simplified feedback system representation for the cantilever-human system.
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Figure 3.7:  Block diagram for the cantilever.

Figure 3.8:  Block diagram for one seated human.

Figure 3.9:  Block diagram for the resultant human model.
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Figure 3.10:  Mode shapes for the 4.2 Hz cantilever.
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Figure 3.11:  Modal amplitude frequency response of the 4.2 Hz cantilever with one row
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Figure 3.12:  Modal amplitude frequency response of the 4.2 Hz cantilever when empty,

half-full and full.  (The vertical line marks the natural frequency of the empty structure).
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Figure 4.2:  Plot of damping ratio, undamped natural frequency and mass ratio for DOF 2.
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Figure 4.15:  Peak DMF relative error (left) and resonant frequency relative error (right) for equivalent

3DOF system.
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Figure 5.1:  Photo showing one test subject jumping on a force plate.

Figure 5.2:  Schematic description of parameters.
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Figure 5.3:  Jumping impulses for all synchronised tests at 1.5Hz.
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Figure 5.4:  Jumping impulses for all synchronised tests at 2Hz.
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Figure 5.5:  Jumping impulses for all synchronised tests at 2.67Hz.
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Figure 5.6:  Jumping impulses for all synchronised tests at 3.5Hz.
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Figure 5.7:  Phase delays for all synchronised tests: (a) 1.5 Hz.  (b) 2 Hz.  (c) 2.67 Hz.  (d) 3.5 Hz.
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Figure 5.11:  Phase deviation of all synchronised tests at 1.5 Hz superimposed with

expected relative frequency from Normal distribution.
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Figure 5.12:  Phase deviation of all synchronised tests at 2 Hz superimposed with expected

relative frequency from Normal distribution.
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Figure 5.13:  Phase deviation of all synchronised tests at 2.67 Hz superimposed with

expected relative frequency from Normal distribution.
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Figure 5.14:  Phase deviation of all synchronised tests at 3.5 Hz superimposed with

expected relative frequency from Normal distribution.
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Figure 5.15: Standard deviation of random error for increasing order of regression:  (a) 1.5 Hz.

(b) 2 Hz.  (c) 2.67 Hz.  (d) 3.5 Hz.
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Figure 5.16:  Histograms for auto-regression coefficient:  (a) 1.5 Hz.  (b) 2 Hz.  (c) 2.67 Hz.

(d) 3.5 Hz.
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Figure 5.17:  Variation of auto-regression coefficient with phase scatter:  (a) 1.5 Hz.  (b) 2 Hz.

(c) 2.67 Hz.  (d) 3.5 Hz.

Figure 5.18:  Histograms for auto-regression coefficient superimposed with expected relative

frequency from Beta distribution:  (a) 1.5 Hz.  (b) 2 Hz.  (c) 2.67 Hz.  (d) 3.5 Hz.
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Figure 5.19:  Random error of all synchronised tests at 1.5 Hz superimposed with expected

relative frequency from Normal distribution.
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Figure 5.20:  Random error of all synchronised tests at 2 Hz superimposed with expected

relative frequency from Normal distribution.
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Figure 5.21:  Random error of all synchronised tests at 2.67 Hz superimposed with expected

relative frequency from Normal distribution.
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Figure 5.22:  Random error of all synchronised tests at 3.5 Hz superimposed with expected

relative frequency Normal distribution.

R
e
la
ti
v
e
 f
re
q
u
e
n
c
y

Random error



0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

R
e
la
ti
v
e
 f
re
q
u
e
n
c
y

R
e
la
ti
v
e
 f
re
q
u
e
n
c
y

R
e
la
ti
v
e
 f
re
q
u
e
n
c
y

R
e
la
ti
v
e
 f
re
q
u
e
n
c
y

(c)

(a) (b)

(d)

S. D. of random error (o)

S. D. of random error (o) S. D. of random error (o)

S. D. of random error (o)

R
e
la
ti
v
e
 f
re
q
u
e
n
c
y

R
e
la
ti
v
e
 f
re
q
u
e
n
c
y

R
e
la
ti
v
e
 f
re
q
u
e
n
c
y

R
e
la
ti
v
e
 f
re
q
u
e
n
c
y

(c)

(a) (b)

(d)

Transformed S. D. of random error (o)

Transformed S. D. of random error (o) Transformed S. D. of random error (o)

Transformed S. D. of random error (o)

Figure 5.24:  Histograms for the standard deviation of random error superimposed with expected

relative frequency from Beta distribution:  (a) 1.5 Hz.  (b) 2 Hz.  (c) 2.67 Hz.  (d) 3.5 Hz.

Figure 5.23:  Histograms for the standard deviation of random error:  (a) 1.5 Hz.  (b) 2 Hz.

(c) 2.67 Hz.  (d) 3.5 Hz.
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Figure 5.25:  Variation of auto-regression coefficient with standard deviation of random error:

(a) 1.5 Hz.  (b) 2 Hz.  (c) 2.67 Hz.  (d) 3.5 Hz.
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Figure 5.26:  Jumping impulses for three subjects at four beat frequencies.
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Figure 5.28:  Examples of measured impulse (dotted line) and fitted cosine-squared

function (full line) for three subjects with the corresponding RMSE values.
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Figure 5.29:  Fourier coefficients of average impulse:  (a) 1.5 Hz.  (b) 2 Hz.

(c) 2.67 Hz.  (d) 3.5 Hz.
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Figure 5.30:  Fourier coefficient relative error for first (left) and second (right)

harmonics.
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Figure 5.31:  Comparison of measured and theoretical impulse magnitudes:  (a) 1.5 Hz.  (b) 2 Hz.

(c) 2.67 Hz.  (d) 3.5 Hz.
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Figure 5.32:  Contact ratio of synchronised tests at 1.5 Hz superimposed with the expected

relative frequency from the Normal distribution.
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Figure 5.33:  Contact ratio of synchronised tests at 2 Hz superimposed with the expected

relative frequency from the Normal distribution.
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Figure 5.34:  Contact ratio of synchronised tests at 2.67 Hz superimposed with the expected

relative frequency from the Normal distribution.
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Figure 5.35:  Contact ratio of synchronised tests at 3.5 Hz superimposed with the expected

relative frequency from the Normal distribution.
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Figure 5.37:  Histograms for the standard deviation of contact ratio:  (a) 1.5 Hz.  (b) 2 Hz.

(c) 2.67 Hz.  (d) 3.5 Hz.

Figure 5.36:  Histograms for mean contact ratio:  (a) 1.5 Hz.  (b) 2 Hz.  (c) 2.67 Hz.

(d) 3.5 Hz.
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Figure 5.39:  Histograms for the standard deviation of contact ratio superimposed with expected

relative frequency from Beta distribution:  (a) 1.5 Hz.  (b) 2 Hz.  (c) 2.67 Hz.  (d) 3.5 Hz.

Figure 5.38:  Histograms for mean contact ratio superimposed with expected relative frequency

from Beta distribution:  (a) 1.5 Hz.  (b) 2 Hz.  (c) 2.67 Hz.  (d) 3.5 Hz.
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Figure 5.41:  Variation of contact ratio with impulse size for synchronised tests at 1.5 Hz.
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Figure 5.42:  Variation of contact ratio with impulse size for synchronised tests at 2 Hz.
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Figure 5.43:  Variation of contact ratio with impulse size for synchronised tests at 2.67 Hz.
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Figure 5.44:  Variation of contact ratio with impulse size for synchronised tests at 3.5 Hz.



0 5 10 15 20 25 30 35 40 45
0

10

20

30

Regression

Gaussian

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

0 1 2 3 4 5 6
0

10

20

30

40

50

0 1 2 3 4 5 6
0

10

20

30

40

50

0 1 2 3 4 5 6
0

10

20

30

40

50

(a)

(b)

(c)

Natural frequency of SDOF (Hz)

N
o
rm
a
lis
e
d
 m
a
x
 d
is
p
la
c
e
m
e
n
t

Figure 5.45:  Normalised maximum displacement due to three load cases at 1.5 Hz beat

frequency: (a) measured load.  (b) simulated load with contact ratio varying linearly with

impulse size.  (c) simulated load with contact ratio modelled using Normal distribution.
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ratio modelled as dependent on impulse size (Regression) and using Normal distribution

(Gaussian) for 1.5 Hz beat frequency: (a) 1st harmonic.  (b) 2nd harmonic  (c) 3rd harmonic.
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Figure 5.48:  Comparing relative error of normalised maximum displacement due to contact

ratio modelled as dependent on impulse size (Regression) and using Normal distribution

(Gaussian) for 2.67 Hz beat frequency: (a) 1st harmonic.  (b) 2nd harmonic  (c) 3rd harmonic.
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Figure 5.47:  Comparing relative error of normalised maximum displacement due to contact

ratio modelled as dependent on impulse size (Regression) and using Normal distribution

(Gaussian) for 2 Hz beat frequency: (a) 1st harmonic.  (b) 2nd harmonic  (c) 3rd harmonic.
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Figure 5.50:  Comparing relative error of normalised RMS acceleration due to contact ratio

modelled as dependent on impulse size (Regression) and using Normal distribution

(Gaussian) for 2 Hz beat frequency: (a) 1st harmonic.  (b) 2nd harmonic  (c) 3rd harmonic.
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Figure 5.49:  Comparing relative error of normalised RMS acceleration due to contact ratio

modelled as dependent on impulse size (Regression) and using Normal distribution (Gaussian)

for 1.5 Hz beat frequency: (a) 1st harmonic.  (b) 2nd harmonic  (c) 3rd harmonic.
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Figure 5.51:  Comparing relative error of normalised RMS acceleration due to contact ratio

modelled as dependent on impulse size (Regression) and using Normal distribution (Gaussian)

for beat frequency 2.67 Hz: (a) 1st harmonic.  (b) 2nd harmonic  (c) 3rd harmonic.
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Figure 6.4:  Normalised displacement due to simulated loads shown in Figure 6.2 on 2Hz (top), 4Hz

(middle) and 6Hz (bottom) structures, with mass 1 kg. The normalised displacement is given by the

displacement divided by the static deflection due to a unit load (1N).

N
o
rm
a
lis
e
d
 d
is
p
la
c
e
m
e
n
t

N
o
rm
a
lis
e
d
 d
is
p
la
c
e
m
e
n
t

0 1 2 3 4 5 6 7 8 9 10
-50

-40

-30

-20

-10

0

10

20

30

40

50

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-50

-40

-30

-20

-10

0

10

20

30

40

50

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-50

-40

-30

-20

-10

0

10

20

30

40

50



Time (s)

Time (s)

Time (s)

Figure 6.5:  Acceleration due to simulated loads shown in Figure 6.2 on 2Hz (top), 4Hz (middle)

and 6Hz (bottom) structures, with mass 1 kg.
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Figure 6.6:  Distribution of DMF for 1024 simulated loads at beat frequency of 2Hz on 2Hz (top),

4Hz (middle) and 6Hz (bottom) structures.
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Figure 6.8:  Running mean (left cloumn), standard deviation (middle column) and 95-percentile value (right

column) for DMF (per person) of jumping loads at 2Hz on a 2Hz structure, group sizes of 2, 4, 8, 16, 32 and 64.
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Figure 6.11:  Comparison of the RMS acceleration 95-percentile value between
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Figure 6.12:  Variation of characteristic DMF with natural frequency of empty structure and group

size for jumping loads at 2 Hz and = 0.
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Figure 6.13:  Variation of characteristic DMF with natural frequency of empty structure and group

size for jumping loads at 2 Hz and  = 0.15.
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Figure 6.14:  Variation of characteristic DMF with natural frequency of empty structure and group

size for jumping loads at 2.67 Hz and = 0.
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Figure 6.15:  Variation of characteristic DMF with natural frequency of empty structure and group

size for jumping loads at 2.67 Hz and = 0.15.
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Figure 6.16:  Variation of characteristic DMF with natural frequency of empty structure and group

size for jumping loads at 3.5 Hz and = 0.
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Figure 6.17:  Variation of characteristic DMF with natural frequency of empty structure and group

size for jumping loads at 3.5 Hz and = 0.15.
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Figure 6.18:  Variation of characteristic RMS acceleration with natural frequency of empty structure

and group size for jumping loads at 2 Hz and = 0.
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Figure 6.19:  Variation of characteristic RMS acceleration with natural frequency of empty structure

and group size for jumping loads at 2 Hz and  = 0.15.
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Figure 6.20:  Variation of characteristic RMS acceleration with natural frequency of empty structure

and group size for jumping loads at 2.67 Hz and  = 0.
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Figure 6.21:  Variation of characteristic RMS acceleration with natural frequency of empty structure

and group size for jumping loads at 2.67 Hz and  = 0.15.
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Figure 6.22:  Variation of characteristic RMS acceleration with natural frequency of empty structure

and group size for jumping loads at 3.5 Hz and  = 0.

Natural frequency of empty structure (Hz)

Natural frequency of empty structure (Hz)

Figure 6.23:  Variation of characteristic RMS acceleration with natural frequency of empty structure

and group size for jumping loads at 3.5 Hz and  = 0.15.
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Figure 6.24:  Variation of maximum characteristic DMF with group size for resonance at

first three harmonics and  = 0.

Figure 6.25:  Variation of maximum characteristic DMF with group size for resonance at

first three harmonics and  = 0.15.
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Figure 6.26:  Variation of maximum characteristic RMS acceleration with group size for

resonance at first three harmonics and  = 0.

Figure 6.27:  Variation of maximum characteristic RMS acceleration with group size for

resonance at first three harmonics and  = 0.15.
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Figure 6.28:  Flow chart for estimating the maximum displacement and RMS acceleration

of a SDOF system with  = 0 or 0.15 and  = 2%, using charts in Figs. 6.12 to 6.23.



Figure 7.1:  Photo showing one test subject on the force platform.
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Figure 7.2:  Separating individual bobbing impulses at instants of zero momentum.
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Figure 7.3: Phase delays for all synchronised jumps.
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Figure 7.4: Jumping impulses for four subjects at six beat frequencies.

Figure 7.5: Bobbing impulses for six subjects at six beat frequencies.
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Figure 7.6: Fourier coefficients of average jumping impulse for six beat frequencies.

Figure 7.7: Fourier coefficients of average bobbing impulse for six beat frequencies.
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Figure 7.8: Absolute difference in mean phase delay for two subjects when jumping

separately and together at six beat frequencies.

Figure 7.9: Absolute difference in phase scatter for two subjects when jumping separately

and together at six beat frequencies.
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Figure C1:  Variation of DMF (mean, standard deviation and 95-percentile value) with natural

frequency of the structure and sample size for jumping loads at 2 Hz and  = 0.

Note:  Data in dots are the sampled

va lues and data  in  c i rc les are

calculated using Eqn. 6.5

Group size:

APPENDIX C



1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

2

4

8

16

32

64

Natural frequency of empty structure (Hz)

D
M
F
 -
 S
ta
n
d
a
rd
 d
e
v
ia
ti
o
n

D
M
F
 -
 9
5
-p
e
rc
e
n
ti
le

D
M
F
 -
 M
e
a
n

Figure C2:  Variation of DMF (mean, standard deviation and 95-percentile value) with natural

frequency of the structure and sample size for jumping loads at 2.67 Hz and  = 0.

Note:  Data in dots are the sampled

va lues and data  in  c i rc les are

calculated using Eqn. 6.5

Group size:
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Figure C3:  Variation of DMF (mean, standard deviation and 95-percentile value) with natural

frequency of the structure and sample size for jumping loads at 3.5 Hz and  = 0.

Note:  Data in dots are the sampled

va lues and data  in  c i rc les are

calculated using Eqn. 6.5

Group size:
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Figure C4:  Variation of DMF (mean, standard deviation and 95-percentile value) with natural

frequency of the structure and sample size for jumping loads at 2 Hz and  = 0.15.

Note:  Data in dots are the sampled

va lues and data in c i rc les are

calculated using Eqn. 6.5

Group size:
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Figure C5:  Variation of DMF (mean, standard deviation and 95-percentile value) with natural

frequency of the structure and sample size for jumping loads at 2.67 Hz and  = 0.15.

Note:  Data in dots are the sampled

va lues and data  in  c i rc les are

calculated using Eqn. 6.5
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Figure C6:  Variation of DMF (mean, standard deviation and 95-percentile value) with natural

frequency of the structure and sample size for jumping loads at 3.5 Hz and  = 0.15.

Note:  Data in dots are the sampled

va lues and data  in  c i rc les are

calculated using Eqn. 6.5
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Figure C7:  Variation of RMS acceleration (mean, standard deviation and 95-percentile value) with

natural frequency of the structure and sample size for jumping loads at 2 Hz and  = 0.

Note:  Data in dots are the sampled

va lues and data  in  c i rc les are

calculated using Eqn. 6.6

Group size:
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Figure C8:  Variation of RMS acceleration (mean, standard deviation and 95-percentile value) with

natural frequency of the structure and sample size for jumping loads at 2.67 Hz and  = 0.

Note:  Data in dots are the sampled

va lues and data  in  c i rc les are

calculated using Eqn. 6.6
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Figure C9:  Variation of RMS acceleration (mean, standard deviation and 95-percentile value) with

natural frequency of the structure and sample size for jumping loads at 3.5 Hz and  = 0.

Note:  Data in dots are the sampled

va lues and data  in  c i rc les are

calculated using Eqn. 6.6
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Figure C10:  Variation of RMS acceleration (mean, standard deviation and 95-percentile value)

fwith natural frequency of the structure and sample size or jumping loads at 2 Hz and  = 0.15.

Note:  Data in dots are the sampled

va lues and data  in  c i rc les are

calculated using Eqn. 6.6
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Figure C11:  Variation of RMS acceleration (mean, standard deviation and 95-percentile value)

with natural frequency of the structure and sample size for jumping loads at 2.67 Hz and  = 0.15.

Note:  Data in dots are the sampled

va lues and data  in  c i rc les are

calculated using Eqn. 6.6
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Figure C12:  Variation of RMS acceleration (mean, standard deviation and 95-percentile value)

with natural frequency of the structure and sample size for jumping loads at 3.5 Hz and  = 0.15.

Note:  Data in dots are the sampled

va lues and data  in  c i rc les are

calculated using Eqn. 6.6
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