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ABSTRACT

An Analytical Study of the Cone Penetration Test

Teh, Cee Ing
Hertford College, University of Oxford

A Thesis Submitted for the Degree of Doctor of Philosophy
Trinity Term, 1987

The quasi-static penetration of a cone penetrometer into clay can be
formulated as a steady state problem by considering a steady flow of soil
past a stationary cone. The so0il velocities are estimated from the flow
field of an inviscid fluid, and the incompressibility condition is achieved
by adopting a stream function formulation. Emphasis is placed on obtaining
an accurate velocity estimate and this is accomplished by a solution of the
Navier-Stokes equations.

The strain rates are evaluated from the flow field using a finite
difference scheme. The clay is modelled as a homogeneous incompressible
elastic-perfectly plastic material and the soil stresses are computed by
integrating along streamlines from some initial stress state in the upstream
region. These stresses do not in general obey the equilibrium equations,
although one of the two equations can be satisfied by an appropriate choice
of the mean stress. Several attempts have been made to use the remaining
equilibrium equation to obtain an 1improved wvelocity estimate and three
plausible iterative methods are detailed in this thesis.

In a second study, a series of finite element calculations on the cone
penetration problem is performed. In modelling the penetration process, the
cone is introduced in a pre-formed hole and some initial stresses assumed in
the soil, incremental displacements are then applied to the cone until a
failure condition is reached. Although the -equilibrium condition is
satisfied very «closely in the finite element calculations, it is extremely
difficult to achieve a steady state solution.

In a third series of computations, the stresses evaluated by the
strain path method are used as the starting condition for the finite element
analysis. This is believed to give the most realistic solution of the cone
penetration problem because both the steady state and equilibrium conditions
are approximately satisfied. Numerically derived cone factors are presented
and these are found to depend on the rigidity index of the soil and the in
situ stresses.

The pore pressure distribution in the soil around the penetrometer is
estimated wusing Henkel’s empirical equation. The dissipation analysis is
based on Terzaghi’s uncoupled consolidation theory. The governing equation
is tformulated in the Alternating-Direction-Implicit finite difference
scheme. This formulation is unconditionally stable and variable time steps
are used to optimise the solution procedure. The dissipation curves are
found to be significantly affected by the rigidity index of the soil and a
dimensionless time factor is proposed to account for this effect.
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Chapter 1: Introduction and Literature Review

1.1 Introduction

The cone penetrometer (CPT) has undergone tremendous development in
recent years as an in-situ site investigation tool. From its primitive form
wvhich was first wused by the Swedish Railway to correlate pile end bearing
resistance 1in sand, it has evolved into a highly sophisticated instrument
suitable for use in most types of soil. The use of a penetrometer with pore
pressure measurement for soil profiling is unsurpassed by any other modern
instrument, as 1t is capable of providing a continuous measurement over the
whole depth of penetration. The simplicity of the test procedure and the
high repeatability of the test data has made it increasingly popular,

especially in off-shore works.

The advance in equipment design, however, 1is not matched by the
progress in interpretation techniques. At the present moment, a rigorous
quantitative interpretation of CPT data is still not available. Correlations
between test data and soil properties still rely very heavily on empirical
relationships. Thus, it is not surprising that the main application of the

CPT in site investigation is for soil profiling.

Due to the complexity of soil behaviour and the complicated boundary
conditions in the cone penetration problem, it is highly improbable that a
unique analytical solution to the problem can be found. However, theories
assist in providing a better understanding of the problem despite the
inevitable simplifications and idealizations. When the problem is properly
formulated, a theoretical approach helps to shed light on the significance of
the various parameters and aids in the selection of the appropriate form of

correlation equations.

1.1
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1.2 Literature Review

In this section, a review of the development of the cone penetrometer
as a site investigation device, and the existing theories on cone penetration
will be presented. The relevance and limitations of these theories will be
critically reviewed so that a rational approach may be adopted in the present

study.

1.2.1 Historical Development of the Cone Penetrometer

The earliest recorded use of the cone in the form of a static sounding
probe in soil investigation can be attributed to the Swedish State Railway
around 191/ (Terzaghi and Peck, 1967). By the 1930s, the standard cone
penetrometer shape with a 60o cone angle and 10 cm: base area had emerged in
Holland. These probes were developed by the Delft Soil Mechanics Laboratory

(Delft, 1936) and the Dutch Department ot Public Works.

In the early cone designs, the tip and sounding tubes were advanced
separately and clogging of the probe was a considerable problem. This led to
a number of modifications which 1improved the performance of the cone.
However, another major problem remained. This concerned the failure of the
total friction on the sounding tubes to scale directly to the skin friction
on driven piles. In an attempt to improve the correclation between the
measured fricfrion on the penetrometer and the skin friction on driven piles,
Begemann (1953) developed a penetrometer which measured the skin friction
wvith the aid of a friction sleeve. This represented the first attempt to

measure the localised friction on the penetrometer.

By the 1960s, strain gauges were added to the tip to measure the tip

resistance electrically instead of mechanically. By 1970, Fugro B.V. had
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developed an electric cone capable of measuring the tip resistance and the
sleeve friction continuously during penetration (De Ruiter, 1971). Perhaps
the most significant development in penetrometer design is the incorporation
of pore pressure measuring elements into the probe. The evolution began with
the development of a piezometer probe by Torstensson (1975). This instrument
was used for measuring pore pressure only and could not provide any
measurement of tip resistance or skin friction. Around the same period, a
pore pressure probe of the same shape as the standard cone penetrometer was
developed at the Norwegian Geotechnical Institute. This pore pressure probe
was used to measure both the pore pressure during penetration and its
subsequent dissipation. The results from this probe were used in conjunction
with standard cone penetration tests (Janbu & Senneset, 1974). Although the
usefulness of simultaneous pore pressure and tip resistance measurement was
realised much earlier (Schmertmann, 1974), it was not until the 1980s that a
research penetrometer capable of measuring the tip resistance and pore

pressure was developed (Zuidberg et al., 1982).

As the use of the cone penetrometer becomes more widespread, it is

>5 ﬁ—_-iizz;;J sott seal

friction sleeve
surface area = 150.0 cm?

soil seal

o . .
60" conical tip

35.9 all dimension in mm

Figure 1.1: Standard Cone Penetrometer Geometry
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important that a standard cone design 1s adopted. Since the available
interpretation techniques are mostly empirical in nature, standardization
will help in the building up of a data base which can be used to validate and
improve these empirical relationships. Significant steps towvard
standardising the penetrometer design were taken in the late 1970s (ASTM-D-
3441, 1979; ISSMFE, 1977). The standardised cone penetrometer has a 60o
conical tip and a 10 cml cross-sectional area with a 150 cm; friction sleeve

(Figure 1.1).

1.2.2 Application of Cone Penetration Test Data

Most early cone penetration testings were concerned with the
determination of the end bearing of driven piles (e.g. Plantema, 1948). The
addition of a friction sleeve enabled a prediction of the soil type to be
made (Begemann, 1965). With the advent of the electric friction cone, this
soil type classification technique was further refined by Sanglerat (1972)
and Schmertmann (1975). The latter, based on the accumulated experience in a
wide range of soils, produced a chart (Figure 1.2) which classified soil
according to the measured tip resistance, Qo and friction ratio, fs/qC (in

%). More recently, the use of the excess pore pressure and tip resistance to

determine soil type has also been proposed (Jones & Rust, 1982).

The measurement of pore pressure during cone penetration has
significantly improved the sensitivity of the test data to changes in seil
stratigraphy. The excellent response of measured data to variation in soil
type is illustrated in Figure 1.3 (after Zuidberg et al., 1982), which shows
the output from an actual penetration test. VWith this device, even thin
laminated structures in the order of a few millimeters can be detected. This
characteristic has contributed to the status of the piezocone as an

outstanding tool for determining soil stratification.

1.4 -
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Apart from such qualitative correlations, the possibility of using
measured cone resistance and pore pressure to correlate soil strength has
also been suggested (Begemann, 1965; Tavenas et al., 1982). These
applications have become more important as a result of increased off-shore
activities where wundisturbed soil samples are extremely difficult and
expensive to obtain. However, such correlations give rise to a large scatter
(Figure 1.4) and although part of this may be due to the errors in the tests
used to determine undrained shear strength, it is equally likely that the

correlation relationship used is inadequate.

— 124
C
[N
= <
VUTO_ Nk =20
o
. E +
c! +
o 8—1 ~
E 4 v *+++ Nk—1b
v NPk
Z 5 * R SA:
; + ot E:’ N 10
- 1 +. + 7+ =
v L o + % +t‘+:}+ “
S W o
2-—1 1_1 **‘ﬁ? + +
O H T T T T T T T
0 160 200 300 400 500
Undraired tricxial shear strength
Cy (kpa)

Figure 1.4 Correlation Between q. and <y (after Toolan et al., 1980)

The possibility of using the measured pore pressure to determine the
overconsolidation ratio (OCR) has also been suggested by some authors (Baligh
et al., 1981; Lacasse et al., 1981). The empirical relationships proposerd
are often based on some ratio of pore pressure to tip resistance. Several
expressions have been used but the Bq factor proposed by Senneset et al.

(1982) is becoming increasingly popular.
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B = ——— (1.1)

Lunne & Lacasse (1982) reported good correlation of this ratio with OCR.

In addition, it has been suggested that the excess pore pressure
dissipation after stopping the penetration process can be used to obtain an
estimate of the consolidation parameters. Levadoux & Baligh (1986) conducted
a dissipation analysis around the cone penetrometer based on an initial pore
pressure distribution evaluated by the strain path method. The theoretical
dissipation curves were then used to derive an estimate of the consolidation
coefficient of Boston Blue clay. 1t was reported that the values of h
determined by this method was comparable to those obtained from other field

or laboratory tests.

More recently, many new applications of the cone penetrometer have also
been suggested. These generally require the use of specially designed
penetrometers. Tringale & Mitchell (1982) reported the use of an acoustic
cone to gather information on so0il types and profile conditions. Other
possibilities 1include the determination of the deformation modulus of soil
using a seismic cone (Campanella et al., 1985), and the relative density of
soil using a penetro-gammadensimeter (Ledoux et al., 1982). Although most of
these instruments are still at an early development stage, the potential for

practical applications seems promising.

1.2.3 Theories on Cone Penetration Test in Clay

The theories which have been proposed tor the cone penetration problem

in c¢lay can broadly be divided into three main categories. They are:

1. Bearing capacity theories (Meyerhof, 1961; Janbu & Senneset, 1974;
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Durgunoglu & Mitchell, 1975)
2. Cavity expansion theories (ladanyi, 1963; Vesic, 1972)

3. The strain path method (Levadoux & Baligh, 1980; Baligh, 1985)

The first two groups of theories will be reviewed in this chapter. A

separate, more 1in depth treatment of the strain path method is presented in

Chapter 2.

A. Bearing Capacity Theory

The bearing capacity theory 1in foundation analysis is based on the
plasticity approach as developed by Prandtl (1921). The success of this
theory in predicting the bearing capacity of shallow foundations is widely
acknowvledged. A number of attempts have been made to extend this approach to
deep foundation problems, and an analogous bearing capacity equation is

obtained for undrained analysis:

o]
il

undrained shear strength

vz = total overburden pressure

The extension of the bearing capacity approach to penetrometer analysis
required the assumption of a failure mechanism. Some of the mechanisms which
have been proposed for cohesive-frictional materials are shown in Figure 1.5.
Meyerhof (1961) adopted a failure mechanism as shown in Figure 1.5a, in which
the effect of embedment depth was replaced by a surcharge pressure acting on
the 1level of the cone base. A value ol 9.3 was obtained for the Nk factor.

Begemann (1965), on the other hand, assumed a system of circular sliding

planes and obtained an N, factor of 14.0 from a similar analysis.

k

1.8 -
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Meyerhof (1961) Nowafzki & Karafiath Mitchell & Durgunoglu
(1972) (1973)

Figure 1.5 Proposed Failure Mechanisms.

De Beer (1974) studied a plane strain problem in which a 900 wedge was
pushed into soil ahead of a flat ended penetrometer. The failure surfaces
wvere assumed to be semi-circular and centred at the corner of the base. The
slip lines were assumed to begin at the tip and extended tangentially to the
shaft from the other end of the semi-circular arc. A shape factor of 1.2 was
then applied to convert this plane strain solution to axial symmetry. By
this process, an Nk factor of 9.94 was obtained. Durgunoglu & Mitchell
(1974) solved the problem of the wedge based on a different set of failure
surfaces. The plane strain solution was then moditied by shape factors
derived from Hansen’s equation (1970). The proposed relationship is of the

form:

qd. = ECNCCLl + EquByz (1.3)

where: EP and Eq are shape factors

B is the penetrometer diameter

A1l the analyses which have been revieved so far were based on a plane
strain model. It is clear that the failure mechanisms which are relevant to

a plane strain problems cannot be extended directly to an axially symmetric
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problem. The use of shape factors to convert the plane strain solution to
axisymmetry may have met with some success in shallow foundations, but the
straightforward extension of this procedure to deep penetration can at best
be described as dubious. It is also doubtful that the effect of embedment
can be adequately modelled by simulating it by a surcharge pressure. In
addition, the boundary conditions wused in the analysis are not exactly
equivalent to those in the real problem, and the solution obtained cannot be

considered to be representative.

In an attempt to overcome the shortcomings of a plane strain analysis,
Koumoto & Kaku (1982) performed a 3-dimensional analysis of a cone
penetrometer buried deep 1in the soil. The problem was formulated in
axisymmetry and the governing equations were solved with the well established

0
method of characteristics. For a 60 rough cone, they obtained an N, factor

k
of 9.8 by assuming a vertical stress free surface behind the cone. This

boundary condition is not strictly representative of the real problem and the

solution can only be considered as approximate.

Koumoto & Kaku have also carried out laboratory and field tests with a
penetrometer in which the cone has a diameter greater than that of the shaft.
The experimental data were vreported to agree reasonably well with the
predicted Nk factor. Muromachi (1974) performed a series of penetration
tests into clay and obtained an average Nk tactor of 10.0. This result was
in close agreement with the analytical value obtained by Koumoto & Kaku. The
good agreement in this case was not entirely unexpected and could be
attributed to the peculiar shape of the penetrvometer with an enlarged conisnl
tip. During the penetration of such a probe, a void is formed behind the
cone shoulder by the passage of the enlarged tip. The presence of a free

surface near the tip created a situation where the slip line theory could

- 1.10 -
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give a reasonable solution. However, this solution no longer holds true when

the diameter of the shaft and the cone is the same.

This argument found support in a series of self-boring plate load tests
performed by Kay & Parry (1982) in a well-investigated site in
Cambridgeshire, U.K.. The average bearing capacity factor from these plate
test was about 9.0. 1In contrast, the Nk factor from adjacent CPTs averaged
about 20. Although the rate of loading in the plate tests was lower than the
cone penetration rate, this in itself could not explain the large discrepancy
in the two factors. It is more likely that the deformation mechanisms

associated with a flush penetrometer and the plate test (or a cone

penetrometer with an enlarged tip) are fundamentally different.

Different results have also been obtained theoretically when the actual
standard penetrometer geometry is included in the analysis. Houlsby & Wroth
(1982) analysed a penetrometer with a flush shaft wusing the method of
characteristics. The Nk factor computed using this approach was found to
increase indefinitely with depth. This trend was caused by the need of the
slip lines to extend all the way to the ground level, the nearest free
surface in the problem. This slip line pattern is due to the rigid plastic
model assumed for the soil. Tt has been suggested that if the elastic
response 1is included, a different failure mechanism would result and a
cut-off wvalue for Nk could be obtained when the depth exceeded a certain
limit. Unfortunately, this cannot be directly verified because the method of

characteristics is not applicable for an elasto-plastic material model.

From the above review, it mav be concluded that the bearing capacity
theory 1s not adequate for deep penetration analysis. One of the major
difficulty with this approach stems from the tigid-plastic soil model assumed

in the theory. In addition, most of the analyses were based on failure

1.11 -
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mechanisms which are not compatible with the boundary conditions. Therefore,
although the correlation equation based on the bearing capacity approach is
attractively simple, the Nk factor derived from such analysis is not strictly
applicable.

B. Cavity Expansion Theory

The problem of the expansion of a cavity in an ideally plastic infinite
medium has been treated by several authors (Bishop et al., 1945; Hill, 1950),
and Vesic (1972) suggested that this can be used to approximate the soil
deformation during deep penetration. The first attempts to apply spherical
cavity expansion theory to deep bearing capacity problems were those of
Meyerhof (1951) and Skempton (1951). The relationship proposed was of the

torm:

ol &

|:1+ln(§%- ] .ol (1.4)
IV

vhere E is a representative Young’s modulus. Meyerhof suggested that E could
be obtained from the initial tangent to the stress-strain curve from triaxial
tests. Skempton, on the other hand, proposed that E should be obtained from
the tangent of the line through the origin and the 50% failure stress on the
stress-strain curve. These recommendations immediately revealed the
difficulty of choosing the appropriate value for E. The two proposed
procedures are actually inexact attempts to derive a shear modulus of soil

from conventional laboratory tests.

Ladanyi (1963) showed that the strain field around an expanding cavity
is independent of soil properties and is uniquely determined by the geometry
of the problem. He suggested that if the strain path of the soil around the

cavity can be rveproduced in a suitable laboratory test, then the soil
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be determined. Based on this procedure, Ladanyi proposed a

factor in the form of:

ty

(o 1

- p&)/c (1.5)

u

initial mean effective stress

cavity pressure

H

on gives a typical Nk value of 9. The addition of 1 in the

supposed to compensate for the effect of cohesion on the

stress. This, however, has been questioned by De Beer

general solution of the cavity expansion problem in a Mohr-

wvas presented by Vesic (1972). 1In particular, the limit

the expansion of a spherical cavity in an incompressible

material subjected to an isotropic effective stress q was shown

cp = FCCU + q (1.6)
4 G
Poo- g [111(C ) 1} (1.7)
u
G = shear modulus of soil
) 1is analogous to the bearing capacity equation and Fc i
. G .
Nk' For the typical range of éﬁ, the value of FC is between
d u :
ion with expevimental data <suggested that cavity expansion
to underestimate the Nk factor. Al-Avkati (1977) conducted a
1.13
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series of penetrometer model tests in clay and found that a better
correlation betwveen the experimental data and the theoretical prediction

could be obtained if the cone factor is defined as:

Nk = 1.42 FC (1.8)

Baligh (1975) and Baligh & Vivatrat (1979), also working from cavity
expansion theory, suggested that the bearing capacity equation should be re-
defined as:

(1.9)

4 = thu * 0ho

wvhere: o] in-situ horizontal stress

ho ~

Based on this equation, a range of N1 of 1o + 2 was obtained for soil with

i
the typical wvalues of rigidity index, Ir’ Equation (1.9) has been used by

Lacasse & Lunne (1982) 1to interpret field data and good correlation with

experimental results was obtained.

In addition, <cavity expansion theory has also been used as a
theoretical basis for deriving empirical correlations between the excess pore
pressure and undrained shear strength. Vesic (1972) adopted Henkel’s
empirical pore pressure equation and obtained the following expression for

the excess pore pressure at the cavity wall:

/
fu = [Aln(lr)l'3 + O.943af]cu - spherical cavity (1.10)
and
. 1/2 N g C .
JAYU Zln(Ir) + U.8l7af <y - cylindrical cavity (1.11)
where: ap = Henkel’s pore pressure parameter at failure

S1.14 -
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It has generally been accepted that cylindrical cavity expansion solution is
relevant for predicting the pore pressure around the shaft and spherical
cavity expansion 1is appropriate for the tip of a penetrometer. Roy et al.
(1981) compared the prediction based on Equations (1.10) and (1.11) with
the results obtained from jacked pile tests. A good fit of the experimental
data at the tip level was achieved by using the cylindrical cavity expansion
solution. A similar trend has also been observed by Tavenas et al. (1982)
who suggested that c¢ylindrical vrather than spherical <cavity expansion
provides a better description of soil behaviour around the penetrometer tip.
These proposals appear to raise doubt about the accepted convention that

spherical cavity expansion is the suitable model for the pile tip.

Butterfield & Bannerjee (1970) presented a solution for the expansion
of a «cylindrical cavity in a von Mises material. The maximum pore pressure
on the cavity wall was found to lie hetween 4 and 6.5. Although there was a
mathematical error in the analysis, the analytical result was reported to
agree with published field data by Lo & Stermac (1965) and Koizumi & Ito
(1967). Randolph & Wroth (1979) have also analysed the cavity expansion
problem wusing an elastic-pevfectly plastic soil model. The maximum excess

pore pressure at the cavity wall was found to be:

bu = CU]n(JY) (1.12)

This result was supported hy a finite element analysis by Carter et al.
(1979) wusing a Cam-Clay model. Similar results have also been presented by
Battaglio et al. (1981) who compared the cavity expansion prediction with
pore pressure measured by the Torstensson probe. Good agreement was obtained
using cylindrical cavity expansion and values of rigidity index derived from

KO consolidated direct simple shear tests.

1.15 -
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More recently, Sagaseta (1984) investigated the general problem of the
expansion of a c¢ylindrical cavity with friction on the cavity wall in an
anisotropic soil. For the special case of zero friction and isotropic soil
state, the solution is equivalent to the expressions derived by Gibson &

Anderson (1969).

From the above review, it may be stated that the application of cavity
expansion theory for the prediction of soil strength from measured cone
resistance has met with limited success. Cavity expansion theory generally
under-predicts the cone factor, Nk' Corrvelation between Ou and Cu is
hampered by the ambiguity in the choice of the cavity type which should be
used. Several authors (Tavenas et al., 1982; Baligh, 1986) have discussed
the 1inadequacy of this approach. Among the criticisms raised was that the
actual shape of the penetrometer cannot be modelled by cavity expansions. A
more significant problem, however, is the over-simplication in modelling the
cone penetration process by a onc dimensional analysis. The strain paths of
soil during cone penetration are very complicated and cannot be reproduced by
cavity expansion. Thus, cavity expansion theories, no matter how generalised
and refined, will not give an accurate description of the stress state around

a cone. The limitation of this theory is apparent in the poor correlation

between the predicted results and experimental data.

C. Other Theories

A major development of Ladanyi’s concept ot stress calculation based on
a unique strain field was given by Levadoux & Baligh (1980). The principles
of this new development 1is encapsulated in an approximate analytical
procedure called the strain path method. Using this approach, the
quasi-static penetration process is modelled as a steady flow of soil past a

stationary penetrometer. Soil strains are estimated from an approximate

1.16
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velocity field and the stresses in the soil around the penetrometer are
evaluated by integrating the strain paths of the soil elements. A detailed
discussion of the numerical procedures involved is included in Chapter 2
because the principles of this approximate method form the basis of the

analytical studies performed in this thesis.

Apart from the theoretical approaches described above, the conventional
finite element method has also been used to solve the cone penetration
problems. De Borst & Vermeer (1984) analysed the case of a penetrometer
placed in a pre-bored hole. Incremental displacement controlled finite
element analysis was carried out until a limit state was reached. For this
purpose, the 1limit state was defined as the condition when the load on the
penetrometer did not change with further increase in the cone displacement.
It was assumed that the states of stress and strain around the cone at limit
state are similar to those which exist in a steady state penetration process.

For a penetrometer with a rough surface, an N, value of 10.2 was obtained.

k

De Borst (1982) also suggests that for normally consolidated clay, soil

stiffness does not influence the cone factor, NP' This finding is at
<

variance with the trend suggested by cavity evpansion theory. No explanation

to this apparent discrepancy was given and further study is necessary to

verify this tentative suggestion.

1.3 Strain Path Analysis of the Cone Penetration Test

In this thesis, the quasi static penetration of a penetrometer i<
analysed by the strvain path method. When the soil mass is assumed to be
infinite (e.g. in deep penetration), the penetration process can be modelled
by a steady flow of soil past a stationary peneltrometer. The basic

principles of the solution procedure are outlined in Chapter 2. The

1.17 -
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application of the method 1is illustrated with a simple pile problem. The
velocities of the soil elements are estimated from the flow field of an ideal
fluid. Although only the inviscid flow solution was used in this thesis,
provision has been made for the possibility of using a viscous flow field for
estimating the soil velocities. The numerical algorithm for solving the

fluid flow problem is presented in Chapter 3.

Chapter 4 deals with the detailed implementation of the strain path
method for stress calculations using a finite difference formulation. Since
the wvelocity field 1is only approximate, the computed stresses are inexact.
Various attempts were made to use the approximate stress field to improve the
initial velocity estimate. Three different methods have been tried and the
details of the correction procedures are described in Chapter 5. The

stresses computed from the strain path method are presented in Chapter 6.

In order to assess the acceptability of the strain path solution, an
independent numerical study has also been carried out. This was based on a
large strain finite element analysis of the cone penetration problem. The
soil was modelled by 15-node cubic strain triangular elements since this has
been shown to be the lowest order element which is suitable for limit load
calculations. The detailed formulation of the finite element analysis is
presented in Chapter 7. The accuracy of the finite element program was
checked by wusing it to <olve some test problems with known solutions.
Extensive comparisons were wmade between the strain path and finite element

solutions and these are presented in Chapter 8.

The dissipation of excess pore pressure around a cone penetrometer was
investigated using Terzaghi -Rendulic three dimensional consolidation theory.
The governing equation was formulated in finite difference form using the

Alternating-Direction-Implicit (A.D.T.) method. The initial pore pressure
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distribution in the soil was evaluated using Henkel’s empirical pore pressure
equation. This 1is considered to be justified because a comprehensive pore
pressure model for soil is not currently available. Parametric studies of
the various factors which influenced dissipation have also been included.

The details of these dissipation analyses are presented in Chapter 9.

- 1.19 -
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2.1 Introduction

Experimental observations of deep penetration problems (Rourk, 1961;
Vesic, 1963; Szechy, 1968) indicate that soil deformations due to the
penetration of piles and penetrometers are similar even though the properties
of the soils may be very different. This led Baligh (1985) to speculate that
deep steady penetration problems in soil are basically strain-controlled and
that the associated deformations are not sensitive to material behaviour. He
also argued that, due to the severe kinematic constraints that exist in deep
foundation problems, soil deformations can be estimated with a reasonable
degree of accuracy from kinematic considerations alone. This led to a new

approximate method of analysis which was called the strain path method.
In this chapter, the essential feartures of the strain path method in
undrained, deep steady penetration analysis are described. The application

of the method is illustrated with the analysis of a "simple pile"” problem.

2.2 Application of Strain Path Method

The quasi-static penetration of a cone pecnetrometrer into a homogeneous
soil is a steady state probhlem. For  an  observer moving with the
penetrometer, the deformation pattern in the soil does not vary with time.
Accordingly, by changing the reference co-ordinate system, the penetration
process can be modelled hy a sateadvy flow of =01l past a stationary
penetrometer. With vrespect to this rveference system, the paths of the soil

particles are defined by streamlines.

A complete solution to the deep pevetiation problem consists of the

determination of the states of stress and strain in the soil. In the strain
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path method, this solution 1is achieved by the following procedure for

an undrained total stress analysis:

(1) The initial total stresses and, if necessary, the hydrostatic pore

(2)

(3)

(4)

(3

(6)

(7)

pressure in the soil are estimated.

An approximate velocity field for the soil around the penetrometer
is obtained based on some simplifying assumptions. This velocity
estimate must be consistent with the boundary conditions of the

problem.

The strain rates in the soil are evaluated by differentiating the

velocities with respect to the fixed spatial co-ordinate system.

The strain paths of soil elements are calculated by integrating

the strain rates along streamlince.

By adopting an appropriate constitutive soil model, the deviatoric

stresses which correspond Lo a given strain path are computed.

The total mean pressure 1is evaluated from one of the tvo
equilibrium equations (or some linear combination of the two
equations). At this stage only one of the two equilibrium

equations can be satisfied.

The error in the siress solution is computed by examining the
remaining equilibrium equation. If the margin of error is
unacceptable, the initial deviatoric =stresses are used 1in a
cotrective schems to obtain an improved estimate for the velocity

field.
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8) If the effective stresses arve required, the excess pore pressure
] y

in the soil are estimated by using an appropriate model.

2.2.1 Velocity Field

Most of the existing experimental approaches to the deformation
studies of deep penetration consist of visual records of deformation pattern
by means of some photographic techniques (Rourk, 1961; Randolph et al.,
1979). Recently, more advanced experiments using X-ray equipment (Randolph,
1979) and the photo-elasticity method (Allersma, 1982) have also been
attempted. Vhile these measurements are suitable for determining the
deformation and the wvelocity field around the penetrometer, they are not
suitable for stress computation (Levadoux & Baligh, 1980). The main
objection concerns the inherent errors in such measurements, which are
compounded by the process of differentiation to obtain the strain in soil.
The stress solution based on  these strain values therefore contains an

intolerable margin of error.

In the strain path method, soil strains are evaluated from a velocity
field estimated on the basis of kinematic considerations alone. As a first
approximation, it has been suggested that this velocity field can be derived

from the flow solution of an inviscid, incompressible fluid.

2.2.2 Stress Strain Relationship

The strain paths of <oil due to cone penetration are very complex,
involving very large strain rates and strains., [t is as yet not possible to
duplicate such complicated <train paths in the laboratory. In a theoretical

study, however, the stress-strain behaviour is usually modelled by a suitable
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constitutive relationship. In steady penetration, soil stresses are
evaluated by integrating the constitutive equations along streamlines. This
process can then be repeated along as many streamlines as is necessary to

obtain sufficient detail of the stress field around the penetrometer.

2.3 Simple Pile Solution

The flow of an incompressible, inviscid fluid around a regular body of
revolution (Rankine-body) 1is a well-researched problem in Fluid Mechanics.
Such problems are usually solved by superimposing a suitable distribution of
sources and sinks in a uniform flow. The stream function formulation has
proved to be particularly convenient since many complicated flow patterns can
be obtained by superimposing the stream functions of the individual sources
and sinks. In steady flow, this formulation has the added advantage that

lines of constant stream function also represent particle paths.

The application of the strain path method will be illustrated in the
following sections with a simple example. The problem consists of a single
source in a uniform flow and the solid body of revolution generated is termed

a "simple pile” by Baligh (1986a).

2.3.1 Formulation

The flow field around a simple pile is axially symmetric, and it is
convenient to adopt a cylindrical co-ordinate system. The velocity
components v _ and v, in the directions of the co-ordinates axes (r,z)

respectively are defined as:

|

|
Q
<«

(2.1)

- 2.4 -
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The stream function at a point P with coordinate (r,z), due to a point source

at the origin is:

Q
b, = gy cos¢ (2.2)
) -1,r
where: ¢ = tan (;) (2.3)
Q = Source strength (volume/time) (2.4)

The stream function of a uniform flow with velocity VO in the positive z

direction is:

r
v, = -5V (2.5)

By the principle of superposition, the stream function of a flow system

consisting of a point source in a uniform flow is given by:

2

Q r
Vo= g OS¢ - 5 VO (2.6)

Substituting equation (2.6) into (2.1). we obtained:

L= 5 v o 9 5 cosé (2.7)
4mp

Q
Far ahead of the pile tip, z » -= and ¢ » 180 , the stream function at a

point located at a radial distance oy from the axis is given by:

(2.8)

Substituting equation (2.8) intc (2.6), the equation of the streamline in the

simple pile problem is found to be:

- 2.5 ~
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2o 2 YRy cose) (2.9)
0 2
o 1172
vhere: R - [EV;} (2.10)

2.3.2 Geometry of a Simple Pile

In an axisymmetric problem, the flux, q, enclosed by any stream tube
(i.e. the body of revolution generated by a streamline) at radius r is given

by the equation:

‘g
q - J v 2mrdr (2.11)
0

By definition, the flux enclosed within the simple pile boundary must be
equal to Q, the strength of the point source. Substituting Q and v, into

equation (2.11), the profile of the simple pile is given by:
- IR%(1 - cose) (2.12)

where rp is the radius of the <imple pile and ¢ is the polar angle as shown

in Figure 2.1.

The tip of the simple pile is defined as the point along the axis at
vhich the vertical velocity component vanishes. This is found to be located

at:

(2.13)

The radius of a simple pile 1increases asymtoptically to a value R as z
approaches infinity. For all practical purposes, however, it can be
considered to be equal to R when the distance from the tip is greater than

4R.

- 2.6 -
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streamline

_J

Figure 2.1 Simple Pile Problem: Definition Sketch

2.4 Undrained Simple Pile Penetration into Clay

The strain path approach assumed that soil deformation caused by
simple pile penetration can be approximated by the flow field of an inviscid
fluid. Therefore, the stream function solution described in the previous
section can be used to compute the strains in the soil. The geometry of the
problem 1is 1illustrated 1in Figure 2.1 where, for the sake of clarity, the
streamline profile has been exaggerated. In the present analysis, soil

deformation is described by a natural strain measure which is defined as:

€., = €.. dt 4+ ¢€ (2.14)
ij ij 0
0
where o is the strain rate tensor. The in-situ strain, €, can be
considered to be zero without loss of generality. The strain rate components

are evaluated from the gradients of the velocity as:
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2

. avr VOR 2 2
€ = w— - —5 (cos"d - 2sin“¢) (2.15)
rrY ar 2
4o
. sz VOR2 " 9
£, = 55 = 3 (sin“¢ - 2cos”¢) (2.16)
4p
9
. v, VOR°
0= T T 3 (217
bp
. 1 avr av2 VOR
8]:2 = z 5;'— + aT = ;;§(~51112¢) (2'18)

Substituting these strain rate expressions into equation (2.14), it is
possible to express the strain integral as a function of ¢ only (Appendix
2A). Evaluating this integral with the relevant boundary conditions gives

the following analytical solutions for strains:

3.2
€. = F(8) + (1 - SB)F,(¢) (2.19)
1 2
e, = -F ($) - 2(1 - 3B)E,(®) (2.20)
1
30,02 . o sin
€., = "3 [(ZB - 1)(E§§) + Bsing - ii%_?
-ome® - DY ran TG cond]] (2.22)
o 2 - o
wheres  Fi(9) - 31+ coso) DT 0 ) - 9 (2.2%)
() - Infl . CI cosd) | (2.24)
AL 2(R 0s9) 2.
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B - z(§9)2 D1 (2.25)
Yo
For the case when R is wvery large, these expressions reduce to the

approximate solutions derived by Baligh (19853).

Once the strain path of a soil element has been evaluated, the
corresponding stress path can be calculated using a suitable soil model. For
the sake of clarity a simple and yet relevant constitutive model has been
selected and the soil was modelled as an elastic-perfectly plastic material
obeying the von Mises yield criterion. For this constitutive model, closed
form expressions which relate the stress increments to strain increments
along a straight strain path exist (Booker, 1984). These expressions are
only applicable when the votation rates are zero. Since the simple pile
problem is based on an irrotational flow system, these could be used to

compute the stress changes.

The strain path due to simple pile penetration is not straight, so the
stress calculation must proceed incrementally by approximating the strain
path by small straight line sections. Beginning at a point far ahead of the
pile tip, the strain increments experienced by a soil element as it traversed
a small distance along the streamline is evaluated using equations (2.19) to
(2.22). The corresponding stress increment is computed using the analytical
stress update equations. When this calculation is carried out along the
entire length of the streamline, the complete stress path of soil due to

simple pile penetration is obtained.

2.4.1 Stress and Strain Due to Simple Pile Penetration

The stress paths and strain paths in the soil due to simple pile

penetration are believed to be vepresentative of deep penetration problem in
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general. The analytical solutions afforded by this simple problem may help
to shed 1light on the important features of soil behaviour during deep
penetration. Vith this objective in mind, the strain and stress changes due

to simple pile penetration are analysed in some detail.

In an axisymmetric problem, the stress tensor is completely defined by
the four non-zero components o, o__, o and T . It is possible to
rr zz 06 rz

represent the deviatoric terms of the stress tensor graphically by expressing

it in terms of three deviatoric stresses (Baligh, 1986a) which are defined

as:
S Le ) (2.26)
1 B 044 N 2 OL) N 099 )
V3
SZ = —j(cll cee) (2.27)
S3 = /3 T, (2.28)

In the stress space defined by three mutually orthogonal axes Sl’ 52 and Sg,
the distance from a stress point to the origin is proportional to the second

stress invariants, I

5 9
o- 2 (2« 55+ s (2.29)

In addition, three deviatoric strain components can be defined such

that the stress-strain behaviour in the elastic range is described by:

S,
i . ,
B, - 4 i-1, 2, 3 (2.30)
vhere: E1 = g (2.31)
E = '1(8 €.1n) (2.32)
2 /3 ir 0 Tes -
4 2.33
E3 -7y Vg (2.33)

[ )

10 -
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It should be noted that E1 represents the strain mode in a triaxial
compression test; E2 corresponds to the strain mode in a pressuremeter test
and E3 is similar to the strain mode in a direct shear test. The soil
strains as represented in equations (2.31) to (2.33) can similarly be mapped
onto a strain space described by three orthogonal axes, Ei' In this strain
space, the locus of successive strain states denotes the strain path. The

distance from a point in this strain space to the origin is proportional to

the octahedral shear strain, v

17,2 2 2
Yoot © 7§[E1 + E2 + EB] (2.34)

This octahedral shear strain is a good measure of the level of straining to

which a soil element has been subjected.

2.4.2 Strain Paths

A graphical vepresentation of the strain history of soil due to simple
pile penetration can be achieved by plotting the projections of the strain
path on three planes unormal to the Hi axes. Figure 2.2 shows the strain
paths in the far field of a simple pile. Significant strain reversals in the
El and the E3 components are observed. These strain reversals may have an
important effect on soil behaviour and should be taken into consideration in
the selection of a constitutive relationship. The E, component increases
monotonically to reach a final value which is comparable to the solution

predicted by the cavity expansion theory.

The <train paths of three =oil elements in the near tield of a simple
pile are illustrated in Figure ?2.3. Close to the pile, rhe deviatoric E1
and E3 components again show significant strain revevrsals. The shaded region

indicates the range of soil strain normally encountered in conventional
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Figure 2.2 Simple Pile Problem: Far Field Strain Paths
laboratory tests. The magnitudes of so0il strains due to simple pile

penetration are found to be much greater than those obtained in standard

laboratory tests.

Far behind the pile tip, E1 and E2 are no longer zero (as in the far

field) but have finite wvalues. These results should be compared with the
cylindrical  cavity expansion solution which, being a one dimensional
analysis, necessarily cshows that E1 and E} are zero. The present analysis,

which 1incorporate the two-dimensional nature of penetration process, can be

considered to give a move realistic solution for the strain paths.
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Figure 2.3: Simple Pile Problem - Near Field Strain Paths

2.4.3 Stress paths

In the far field (where the soil stresses are elastic) the deviatoric
stress components, Si’ are directly proportional to the deviatoric strain
components, Ei’ as indicated by equation (2.30). 1In a stress space defined
by three mutually orthogonal axes, Si’ the stress path has the same shape as
the strain path. Therefore, by a suitable change of scales of the axes, the
curves 1in Figure 2.3 also represent the stress paths in the far tield. The
stress deviators, Si’ are found to decay approximately in proportion to

R 2 . C . . .
(;—) , where r, is the initial location of the so0i1l element from the axis of
0

penetration. The deviatoric stresses do not increase monotonically but show

stress reversals, and important changes in  soil  stresses occur on  a

]

.13
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horizontal plane % above the pile tip. On this level, S1 vanishes, 83

reaches 1its maximum value and 82 reaches half its maximum value. Far behind

the pile tip, both S1 and 53 tend to zero while S2 reaches a maximum value.

S1/G S1/G
)
2} 2
1 10
N %25
1 2 1 2
y— ‘%A\ -0 t ! 1 S2/G
\ 1 r/R =5
25® ¢30° ¢
-1]
r/R=10
0° 1
’24
S3/G
)
2 /R =10

s

Figure 2.4 Simple Pile Problem: Near Field Stress Paths

For a soil with a rigidity index of 100, the stress paths of three
soil elements initially located close to the axis of the pile are showvn in
Figure 2.4. These ave significantly different from the far field stress
paths (Figure 2.3). Unlike the stresses in the elastic region, even the S

2

component exhibits large stress vreversal. Furthermore, the S1 and 83

components do not vanish far behind the pile tip. This result is different

- 2.14 -
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from the cylindrical cavity expansion solution which predicts that S1 and S3

are zZero.

In addition, the solution very close to the pile (Figure 2.5) also
differs from that obtained by Baligh (1986a) who adopted a similar
consititutive relationship for soil. Baligh’s solution shows that 53 is zero
tar behind the tip, while a finite, non-zero S3 is obtained in the present
analysis. The discrepancy between the two results may be caused by the
different approaches wused in the stress calculations. Baligh’s solution
ignored the initial elastic response whereas the full range of soil behaviour
including elasticity is included in the present calculation.

S¢/G S4/G

! |

2]

1%“\\_/ 120°

2

r

Figure 2.5 Simple Pile Problem - Stress Path of Soil Elewment at §9 = 0.001

- 2.15



Chapter 2: Strain Path Method

v
In the far field where = is very large, the analytical solutions for

R
strains can be reduced to the approximate expressions derived by Baligh. It
has been shown that the soil stresses which correspond to this approximate
strain field satisfy the equilibrium equations (Baligh, 1986b) and can thus
be considered to be exact. However, the stresses in the near field do not
satisfy the equilibrium equations completely and hence are only approximate.
Nevertheless, the analysis of a simple pile problem has revealed some
important features of deep undrained penetrations which cannot be obtained by
other simplified analytical methods. The strain path method can be

considered to be superior to the cavity expansion approach because it takes

into account the two-dimensional nature of the penetration process.
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Appendix 2: Calculation of Strain Path Due to Simple Pile Penetration

The natural strain measure of soil can be expressed in terms of the

strain rates as:

. . dS
Sij = J eijdt = J gij - (2A.1)
0 0

Streamline

Figure 2A.1 Simple Pile Problem - Determination of Strain Paths

From Figure 2A.1, an infinitesimal arc length along the streamline is given
by:

ds _ UL SR (2A.2)

- 2017 -
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The denominator in equation (2A.2) can be expanded using standard
trigonometric identities. The sine and cosine of the angle B can be

expressed in terms of the velocity components which results in:

ds pd ¢
vV (\/ZSilﬂb - VL‘COS(b) (2A.3)
Therefore,
¢
- . pd ¢
Sij N [ 8ij (v_sing - v _cosé) (24.4)
m
Since éij’ v, and v, are functions of ¢ only, Equation (2A.4) is a function

of ¢ and thus can be evaluated by direct integration.
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3.1 Introduction

The successful application of the strain path method hinges on the
assumption that the deformation field of so0il during deep undrained
penetration can be estimated from the kinematic constraints alone. In this
thesis, the flow field of an inviscid tluid is used as a first approximation
for the soil wvelocities. This assumptrion is essential as a direct

determination of soil deformation is virtually impossible.

The computation of the flow field around the cone penetrometer is by
no means a trivial problemn. Levadoux & Baligh (1980) has attempted to
simulate the flow by the method of superimposing a combination of sources and
sinks in a uniform flow field. It is difficult to simulate the geometry of
the penetrometer exactly by such a method. Some modifications to the profile
of the cone are necessary 1in order to avoid numerical instability and to
ensure convergence of the solution procedure. Levadoux & Baligh achieved
this by vreplacing rhe sharp corners in the cone geometiy by circular arcs.
One important effect of this idealization vas that the resulting solutions

underestimated the amount of deformation in the soil around the cone.

In this thesis, the actual shape of the penetrometer will be
incorporated in the analysis and provision is made for vwviscous flow
computations. Thus, the superposition method would not be applicable and a
numerical method was used instead. The formulation of the flow problem and
the solution procedure adopted are described in this chapter. The numerical
procedure was tested with some simple flow problems and comparisons were made

with published results.

[
—
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3.2 Mathematical Formulation

The flow around a cone penetrometer is an axisymmetric problem since
there 1s no wvariation in the circumferential direction. A c¢ylindrical co-
ordinate system has thus been adopted (Figure 3.1) and the problem is

formulated in an Eulerian reference frame.

- ;r{i;._______-ﬁr_
2

Figure 3.1: Flow around a Cone Penetrometer - Definition Sketch

In the flow computation, the fluid is assumed to be Newtonian. The
inviscid solution 1is obtained as a special case by using a large Reynolds
number and the appropriate boundary conditions. In an axisymmetric flow, the
governing equations are the relevant form of the Navier-Stokes equations

(Batchelor, 1967):

o . av L s S L,
—_ + V_ — + VZ *——L— = —— j + 0\ ( 5 + «?—I + = ;L - ‘;) (3.1)
ot ©dr 3z b or 3r 3z" r oor r

- _ _ 9 7

v oV av v v 1 3v

—~ Z - z 1 3 z z

~ + VI - + VZ ‘T' = *:’ N + 0V (‘ ) + e + 7’ f) (3.2)
At T 3z p 3z dr” 3z° r ar
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and the continuity equation:
v v v
L z Y
+ — 4+ —

or 3z r

0 (3.3)

wvhere Qr and Gz are the velocity components in the r and z directions
respectively, p 1is the pressure, p is the fluid density and v the kinematic
viscosity. The bar indicates that these quantities are dimensioned and they

can be normalised as follows:

(r, z) = Q:L_él G
R
\7/; v
G v = L) (3.5)
VO
p
S, (3.6)
o V.
V1
L o (3.7)
R

where VO is the wvelocity of the uniform flow and R the cone radius.

Substituting these normalised quantities into equations (3.1) and (3.2), we

obtain:
y)
v A v Bzv 3 v 1 3v_ v
B T P 1 PR S . (3.8)
at r ar z 3z ar Re 5 2 87? r oor r2 )
LAY avé av _ ap 1 azvf azv_ 1 v _
< Z. & <4 -
T - TR A ow N A T (39
e

vhere Re, the Reynolds number of the flow is defined as:

[
[
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VOR
Re A (3-10)
v
If the vorticity is defined in the usual way by:
(3.11)

oV v

—~
"N

is eliminated by differentiating (3.8) with respect to z

and the pressure, p,
then we obtain:

and (3.9) with respect to 1 and subtracting,

|

FL S P S ol RO i S I S 4 3.12)
at v or 'z 9z r Re ar2 rar 8”2 r2 )

is usnally referred to as the vorticity transport equation.

(3.12)

if we define a stream function, vy, such that

Equation

In addition,

1 3y
S P (3-13)
, o L3y
v - (3.14)

Substituting for v

then the continuity equation is automatically satisfied.
and v, in equation (3.11) and using the definitions in (3.13) and (3.14)
gives:
2 2 13
AR T A 1 (3.15)
ar- 3z"

which is a Poisson equation with ¢ as the source term.

ir terms of the two

The

is poveried by (30123 and (3.15)

The  flow  field
boundary conditions.

(¢,C) and a set ot
of equations is in fact primarily governed by

relevant
the

flow parameters

solution to such a set
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boundary conditions. A discussion of the appropriate boundary conditions

pertaining to this problem will be presented in a later section.

3.3 Numerical Solution Method

The governing equations (3.12) and (3.15) can be solved by using a
numerical procedure such as the finite ditference method. The particular
forms of finite difference expressions which have been used to represent the
partial differential equations are described in this section. The overall

solution algorithm adopted will also be detailed.

3.3.1 Choice of Finite Difference Mesh

In order to obtain a meaningful solution, it is essential that the
numerical procedure is able to model the various aspects of the problem as
accurately as possible. In particular, the computation must take into
account the infinite extent of the fluid medium associated with the original
problem. This requirement demands that the boundaries in the computation
mesh are set at a sufficiently lavge distance away from the cone. 1In
addition, a fine mesh should be used in regions where high gradients of ¢ and
{ are expected in order to ensure that a reasonable degree of accuracy is
achieved. In view of the limited computer storage available, these two
requirements cannot be accomodated at the same time with a uniform mesh. To

overcome this problem, a non-uniform mesh has been adopted (Figure 3.2).

In the wvicinity of the penetrometer, a fine mesh with small grid
interval 1is adopted. Further away from the cone, the grid spacing gradually
increases in size. Whilst this mesh may not be the optimum one possible, the
use of non-uniform grid size is unavoidable if the analysis is not to fall

prey to excessive computer storage and time requirements.
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Figure 3.2: Finite Difference Mesh for Cone Penetration Problem

3.3.2 Overall Solution Procedure

The usual algorithm for the numerical solution of Fluid Dynamics
problems expressed in vorticity-stream function form (Roache, 1976) has been

used here. The main steps in the solution procedure are as follow:
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(1) At the beginning of the solution procedure, the boundary values of
¢ are calculated and the vorticity, ¢, at each node is initialised
to zero. The Poisson equation governing the stream function is
solved. This results in a set of stream function values, wij'

(2) Based on the stream function obtained in step 1, the vorticities

generated at the boundavies are evaluated.

(3) The vorticity transport equation (3.12) which governs the
convection and diffusion of the vorticity is then solved to obtain

{ at each internal nodal point.

(4) At the next time step, the stream function equation is solved
subject to the new boundary values for y. The vorticity, {,

computed at the previous time step is used as the source term.

(5) The computational cycle consisting of Steps (2) to (4) is repeated
and the variation of ¢ and ¢ monitored. 1In a steady flow problem,
the cycle of computation is continued until there are negligible

changes in the flow variables in conscecutive time steps.

3.3.3 The Vorticity Transport Equation

It is possible in a steady state computation to set the g% term in the
vorticity transport equation (3.12) to zero. However, this procedure pre-
supposes the existence of a steady state solution which in fact may not exist
at all. TIf a tight convergence criterion is adopted, the non-existence of a
steady state solution will be vevealed by the failure of the numerical

process to converge. However, if the convergence criterion is not properly

chosen, this procedure may lead to a solution which is in fact non-steady.

3.7
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In this thesis, the time-dependent, transient approach has been used.
This approach does not presume, a priori, the existence of a steady state.
The solution 1is allowed to develop freely. If a steady state solution
exists, 1t 1is revealed by negligible changes of the flow variables in

consecutive time steps.

At each time step in the numerical procedure, the vorticity at the
internal points of the flov field is updated using a finite difference form
of the partial differential equation (3.12). This equation consists of two
main parts which reflects the physical laws governing the problem. The

ag

portion of the equation involving terms of the form s is called the
convective component Dbecause it governs the convection of the vorticity in
the flow. The second portion, which is pre-multiplied by the reciprocal of

the Reynolds number, governs the diffusion of vorticity and is therefore

called the diffusive component.
The numerical scheme used, discussed in detail below, is explicit in
nature. The solution procedure 1is thus limited by an upper bound on the

allowable time step size.

3.3.4 Finite Difference Representation

For the numerical algorithm to vield a correct solution, the finite
difference equations must be consistent with the partial differential
equations they are intended to represent. In other words, in the limit as
éx, &8y and &t approaches zero, the finite difference equation must reduce to
the original partial differential equation. Consistency does not only imply
the superficial similariry of the appearance but also the physical
implications of the equation (Roache), and these include the conservation and

transportation properties of the flow.
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The numerical scheme adopted here makes use of twvo particular methods,
namely the *Second Upwind Differencing’ and the Dufort-Frankel’s
substitution, which have been proven to be advantageous in Fluid Dynamics
computations. The ’Second Upwind Differencing’ method, also called the
"Donor-cell’ method, has been used with success by a number of workers (e.g.
Gillani & Swanson, 1976; Sobey., 1980). The application of this method
ensures that the wvorticity 1is convected only 1in the direction of flow
(transportive property). Unlike in & conventional finite difference
equation, velocities 1in the convective terms are computed at the mid-points
between the current node and its neighbours. Backward or forward
differencing 1is then used to represent the derivatives depending on whether
the velocities are positive or negative respectively. The velocities used in
the difference terms are those evaluated at intermediate points between
nodes, while the vorticity values, {, remain those represented at the nodal
points. If the velocities at rhe intermediate points are of the opposite

signs, central differencing is used.

Dufort-Frankel’s substitution is then applied. The purpose of this
substitution 1is to prevent instabilities arising from the viscous vorticity
transport terms. This is achieved by rendering the terms partially implicit.

. . . ‘ R . .
Following Gillani & Swanson, the value of S both the advective and the

’

diffusive terms are replaced by the average value (Zi j) over the time steps

’

(n-1) and (n+1). The values of ¢ at neighbouring points continue to be

represented at time step n. The resulting equation can be ve-arranged to

give an explicit expression for C?+§ in terms of C?‘; and ¢ at neighbouring
b b
points at time level n. This yields:
Cn+1 -4 Cn—l oA LA Cn . . A Cn (3.16)
i,3 7 o071, 1711, 271,301 0 371, 471,341 )
where the constants Ai (i=0 to 4) ave evaluated as shown in Appendix 3A.

3.9 -



Chapter 3: Flow Field Computation

3.3.5 Stream Function Equation

Using the time dependent approach, equation (3.15) must be solved at
each time step subject to the appropriate boundavry conditions. This equation
is represented in finite difference form using central differences
throughout. The vresulting algebraic equation 1is re-arranged to give an
explicit expression fo1 Wﬁ,j’ the value of stream function at the node (i,])

consistent with the stream function values at the neighbouring points:

wi,j = BOL‘Ci .+ B]\p.

g B,y By

i,5-1 7 B3ty Bavi g (3.17)

vhere Bi are evaluated as shown in Appendix 3A.

It should be noted that Wé ; does not necessarily represent the
solution of the stream function at the node (i,j). This is because as the
calculation proceeds through the mesh, the value of y at adjacent nodes will

change. Nevertheless, if the procedure is carried out iteratively, the value

at each point converges to the correct solution.

Expressed in this primitive form, ¢ converges very slowly.
Convergence can be speeded up by a procedure called Successive-Over-
Relaxation (S.0.R.) first suggested by Southwell (1948). 1If w? 3 represents

b

the wvalue of ¢ after kth iteration, the value of the ¢ at the (k+1)th

iteration is given by:

k+1 k k
L = o L 3.18
WI,J wl,J f (Wl,J wl,J> ( )
wvhere W% j is as in equation (3.17) and @ is a constant called the over-

relaxation factor. In computing W{ i the most up-to-date values of ¢ at the

neighbouring points arc used. This mecans that for those nodes already

- 3.10 -
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updated in the current iteration, values of ¢ which correspond to the
(k+1)th iteration step are used: and for those nodes yet to be updated, the

. h . . .
values at the K" iteration step are adopted instead.

In order to decide when to stop the iteration process, a suitable

convergence criterion has to be chosen. The criterion used in this study is:

Awrmq
7 = <8 (3.19)
max
where Ay is  the root-mean-square value of the change in ¢ at all the

rms

nodes between two consecutive iterations, wmax is the maximum stream function
value in the computation domain and & is a small constant. A value of & in
the order of 10—6 (depending on the mesh) has been used in this study.
Smaller values of & were found to have very little etfect on the solution but

required substantially longer computing time.

The effect of varying the value of @ on the rate of convergence has
been studied by many workers (e.g. Frankel, 1950). But except for the
simplest problem consisting of a rectangular domain with a uniform grid, no
analytical solution for the optimum Q value is available. Nevertheless, it
has been  well established that for 1<2<2, the S.0.R. procedure is
unconditionally stable and convergent. VWithin this range an optimum value of

@, which is dependent on the mesh used, always exists.

The effect of the Q value on the number of iterations required for
convergence under criterion (3.19) is shown in Figure 3.3. This result is
based on a steady flow solution of Equation (3.15) using the mesh shown in
Figure 3.2. The stream function at all nodes (except at the boundaries) and
the vorticity were initially set to zero. In each case, Q was set to 1 for

the first iteration as it 1is known that this will speed up convergence

311
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considerably. The graph in Figure 3.3 clearly shows an optimum @ which
results in convergence with the minimum number of iterations. The vorticity
for a flow involving Newtonian fluid is generally not zero, but the @ value
derived by this method is still applicable because it is not very sensitive

to the variation in C.

No of iteratfions

300
250 -
200 —
150
100 —
50

13 1.4 15 1.6 1.7 1.¢ 1,9 20

Relaxation Factor

Figure 3.3: Determination of Over-Relaxation Factor, @

In a typical calculation, the values of y at a given time step are not
initially zero but the converged solution from the previous time step. Since
the changes in ¢ from one time step to the next are generally small, the
iteration process begins at each time step (except the first) with a set of ¢
values which are very close to the converged solution. Consequently, the
number of iterations required for the stream [function equation to converge at

each time step is very much less than that indicated in Figure 3.3.

3.12
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3.4 Boundary Conditions

The solution to a set of differential equations such as (3.12) and
(3.15) 1is determined primarily by the boundary conditions. In order to
obtain a satisfactory solution, the boundary conditions must be properly
specified. In addition, the prescribed values of the field variables at the
boundary must be consistent with the physical laws governing the problem.
Failure to satisfy these «criteria always results in the divergence of the
numerical procedure, or worse <till, it may converge to a wrong solution

(Roache, 1976).

3.4.1 Boundary Conditions for y

The boundary <conditions for ¢ appropriate to the present problem are

set down bhelow.

(1) Since the datum of the stream function is arbitrary, ¢ on the axis
is set to zero. Furthermore, the entire boundary ABCD (Figure
3.4) ig a streamline by definition so ¥ on the cone face BC and

the shaft CD must also bhe zero.

(2) The far field boundary, EF, models the condition at infinity. The
boundary condition can be specified by setting the velocity at EF

to VO. the uniform flow velocity:

L3y oy 9
r ar Vo (3.21)

and in finite difference form, this is expressed as:
lpm,j ) wm~1,j N vormArm (3.22)

where m is the grid number of the extreme right hand boundary.

3.13 -
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(3) Similarly, the upstream boundary (AF) models a wuniform flow

condition, so

N

wi,O (3.23)

.

(4) At  the downstream boundary, it is advantageous to constrain the
flow as 1little as possible. This is achieved by requiring the
flow to have attained a steady state condition with zero radial
velocity. 1In finite difference form, this is expressed as:

. = . .24
wl,n w1,n—1 3 )

where n is the grid number for the top bhoundary

3.4.2 Boundary Conditions for (

It should be emphasised that the boundary values of € (or its
derivatives) must be consistent with the conditions prescribed for y.
Contradictory boundary conditions for ¢ and C would inevitably cause problems
in the convergence of the numerical procedure. A suitable set of boundary

conditions for C is described below.

(1) The symmetry condition on the axis (v=0) demands that Vr:O and

sz
5T_:O and so,

C- Y% g (3.26)

(2) The far field and upstream boundaries model the conditions at

infinity where the flowv is uniform so ( is set to zero.

(3) In the downstream houndary. we imposed the <teady state condition

and set

C, = C (3.27)

i,n i,n-1

_ 3,14 -
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should be

boundary.

Flowv Field Computation

For wviscous fluid flow, the no-slip condition must be applied at
the solid wall boundary, giving vZ:O. In addition, the
penetrometer shaft is assumed to be impermeable, so Vr:O' Then
on the wall can be written as:

v _ v _ 2

¢ . L oz 13w (3.28)
Y 2
ar

<

Bv using the Taylor’s expansion of ¢ at the node adjacent to the

wall, it can be shown that the wall vorticity is,

Z \p\-.’»rl w‘u" .
G AL, (3.29)
l ‘<
(or)
where: ww = stream function on the wall
ww+1 = stream function adjacent to the wall
Ar = grid between the two nodes

7

The boundary wvalue for ¢ on the cone face can be derived in a

similar manner.
an inviscid solution is required, the boundary conditions for

altered to reflect the fact that the fluid slips at the solid

The boundary value for the vorticity is then expressed as:

S = G (3.30)

A summary of the boundary conditions for ¢ and C are presented in Figure 3.4.
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<
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i,n "i,n-1
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Wm,j~wh—1,j+ o'm™m
B
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A“k ¥=0 =0
i=0 7=0 i=m

Figure 3.4: Boundary Conditions for ¢ and (

3.5 Verification of the Computer Program

The accuracy and stability of the finite difference formulation
described 1in this chapter is checked by using it to solve some simple flow
problems. The object of this exercise is to ensure that the formulation is
capable of giving a correct flow solution. Comparisons between the numerical
results and published data will be restricted to primary flow variables such
as the stream function. Although this parameter cannot be measured directly,
it is usually amenable to flow visualization techniques. On this basis,

three test cases have been selected:

1) Steady flow of a viscous, incompressible fluid 1in a circular

conduit with a sudden expansion.

2) Steady flow of a wviscous, incompressible fluid 1in a circular

conduit with an abrupt contraction.

- 3.16 -
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3) Steady flow around a circular disc placed normal to the direction

of a uniform stream.

3.5.1 Steady Flow In a Circular Conduit with a Sudden Expansion

The flow in a conduit with a sudden expansion is characterized by a
geometric condition that imposes separation even for very low Reynolds
number. The geometry of the problem is illustrated in Figure 3.5a. Fully
developed Poiseuille flows with parabolic velocity profiles are imposed on

the upstream and downstream boundaries.

The numerical stream function solution for a flow with a Reynolds

vV d
number, (Re = —%r) of 35 is shown in Figure 3.5b. A re-circulation zone is

visible downstream of the transition. This result is comparable with the
experimental and computational results by Macagno & Hung (1967) which are
shown in Figure 3.5c¢. The agreement between these solutions is exceptionally
good. The locations of the point of re-attachment and the centre of re-
circulation obtained from the two analyses are nearly identical. The
vorticity contours are also very similar to the numerical result given by
Macagno & Hung. This 1is remarkable considering that the computational
results were obtained with different finite difference schemes. In addition,
the use of a non-uniform mesh (as was used here) does not seem to have caused
any loss of accuracy when compared to the computational results by Macagno &

Hung which were based on a uniform grid system.
/L

BlLEr Y-

Figure 3.5a: Flow in a Circular Conduit with a Sudden Expansion

Definition Sketch

- 3.17 -
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Figure 3.5: Flow in a Circular Conduit with a Sudden Expansion
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3.5.2 Steady Flow in a Circular Conduit with a Sudden Contraction

The second test case consists of the same arrangement as in the
previous problem but with the flow direction reversed. This flow
configuration 1is more severe because the fluid is forced to flow towards a
forwvard facing step. Hence, this test will provide a more rigorous test for

the stability of the numerical procedure.

As far as the author 1is aware, no computational solution of this
problem has been published even though a vast amount of literature on the
equivalent two-dimensional flow problem is available. Dennis & Smith (1980)
analysed a twvo-dimensional, symmetrically constricted channel flow and
obtained a separation zone upstream of the transition. More recently, Mei &
Plotkin (1986) analysed the same two-dimensional flow and obtained two zones
of separated flow located just upstream and downstream of the constriction.
Smith (1979) presented an analytical study of the axisymmetric flow in a pipe
with a severe constriction and predicted the existence of two separation
zones. Although this analytical result was based on the asymptotic theory
involving very high Reynolds number, it is believed that it could be used as

a qualitative check on the computed results.

The stream function contours for a Reynolds number of 100 computed by
the numerical procedure described here is shown in Figure 3.6. Two zones of
separation, as predicted by Smith, are clearly vizible. Further confirmation
of the accuracy of the numerical results could be obtained from the
experimental flow data depicted in Figure 3.6c¢. (after Rouse, 1956). Good
agreement between the experimental and numerical results regarding the shapes

and the relative sizes of the two separation zones is apparent.
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Figure 3.6:
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3.5.3 Steady Flow around a Circular Disc

The two previous test cases involved flow systems with finite and well
defined boundaries. These problems are generally classified as internal
flows. The third test case has been chosen to verify the capability of the

program for flow computation involving an infinite fluid domain.

The problem consists of a civcular disc placed with its plane normal
to the flow direction of a uniform stream. The configuration of the problem
and the co-ordinate system is indicated in Figure 3.7a. The outer diameter
of the disc is R and is bevelled at 450 at the edge. The disc is 0.1 R thick
and it 1is attached on the backface to a c¢ylindrical rod which has a radius

0.1 R.

The contours of the stream functien computed for a flow with a
Reynold’s number of 5x104 are shown in Figure 3.7b. As far as the author is
avare, no numerical solution for such a flow problem has been published even
though numerous solutions have been presented for the equivalent two-
dimensional flow around a flat plate. The flow around a circular disc is
believed to exhibit similar features to the tlow around a normal flat plate.
The experimental result of such a two dimensional problem is shown in Figure
3.7¢c (after Prandtl & Tietjens, 1934). Similar features are observed in the
re-circulation =zone behind the circular disc. In addition, the average
experimental stream function contours obtained by Smyth (1980) from a flow
experiment wusing a Laser-Doppler method also confirmed the general flow

pattern computed here.

These test problems have demonstrated that the numerical scheme
adopted 1is suitable for general flov computations. The quality of the

numerical results indicated that the boundary conditions have been prescribed

21
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Figure 3.7: Flow Around a Circular Disc Placed Normal to the Stream
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correctly and that the algorithm 1is numerically stable. It is therefore
reasonable to assume that the numerical procedure formulated would provide a

reliable initial flow solution for the cone penetration problem.

3.23
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Appendix 3A: Derivation of Finite Difference Equations

J+1
BAz
Ar (D oAr |
Az
J-1
[-1 I [+1

Figure 3A.1: Local Grid System

Consider a nodal point (i,j) with the local grid spacing as shown in
Figure 3A.1. The partial derivative of a continuous, differentiable
function F(r,z) at node (i,j) can be expressed in finite difference form

using central differences as follow:

I aoFi,j + alFi-l,j + aZFi+1,j (3A.1)
oF

3 = PoFiLg v PiFy st bRy g (3A.2)
935 - ¢ F + o F F (34.3)
N “1%1-1,5 7 “2%i41,3 :
935 ~ dF v d,F d.F (3A.4
0yl o L] 501 7 % 5a -4

vhere the coefficients as, bj, €y and di (i=0,1,2) are functions of the

grid spacing between node (i,j) and the adjacent nodes. These are

summarised in Table 3A.1.
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Alternatively, the first order partial derivatives 5% and %g can be
expressed as forward or backward differences.
Using forward differences,
IF i+l Fi j
= - ) 1] (34.5)
T
ol
F. . F .
gg R A S (34.6)
BA
and for backward ditferences,
F. . F
3F 1,] i-1,3 7
ar by (34.7)
F. . F. .
oF i, 1,51 .
e A (3A.8)
i= 0 1 2
a o -1 S S S
i oAr (l+a)Ar o l+a)Or
b - 1 B B S
i BAz (1+B8) 4z B(1+B) Oz
-2 2 2
c, - - —————y —_—
i 2 2 2
afl Ar) (1) (D) alo+1) (Ar)
Y P )
q. .z — s
i 2 2 2
B(Az) (B+1)(hz) B(B+1)(4z)

Table 3A.1:

- 3.
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Finite Difference Form of the Vorticity Transport Equation

The wvorticity transport equation (3.12) is transformed into a finite
difference equation using forward differencing for time and central
differencing for space. The ’'Second Upwind Differencing’ is then applied

to the convective portion of the equation. This resultg in:

Cn+1

%ﬁi’j - UG5 Gy 80l g)
CUCGC e G g G gD ;gii,j
. éz[‘% . ?)d{l’j C e, - ?_3>c1§+1’j
a
) dlc?,j—l N dﬂc?,j+1 ’ (Co : ;9 N dc B %ﬁ)cp’j] (34.9)

wvhere the coeffients a. . bi' <.y and di are as shown in Table 3A.1 and the
values of U , V, g and h, are dependent on the sign of the velocities at
intermediate points as described in section 3.2. The velocity at the

intermediate points are evaluated asu:

v, -y
1 71,7 i-1,3
u1 - < AT (3A.10)
V. .o Y,
1 7i-l,y o Ti,g
Uy = 7 - sy (3A.11)
FER /I v, .
N S TR RS T (A1
A 5 (34.12)
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(3A.13)

The wvelocity at the nodal point is denoted by ug and Vo The appropriate

values of U, V, g4 and hi to be substituted in equation (3A.9) are

summarised in Table 3A.2.

r | W
U g6 g1 g,
u]>0 and u2>0 Uy 1/46r -1/ 4r 0
u1<0 and u?<0 U, -1/ abr O 1/ abr
u1>O and u2<0
or u o1 - 1
u1<O and u2>O 0 oAr (l+a) by o l+a) Ar
Table 3A.2a: Coefficients for 'Second Upwind Differencing’ method
v h h1 h2
v1>O and v220 Y1 1708z -1/4z 0
vlgo and v,<0 v, -1/BAz 0] 1/BAz
v1<0 and v2>0
or i u -8 1
o SIAVA (1+8) Az B(1+B) Az
v]>0 and v2>0

Table 3A.2b:

Coefficients for 'Second Upwind Differencing’ method
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Dufort-Frankel’s substitution is then applied to the finite difference

equation (3A.5) and C? ] is substituted by:

Cn+1 . Cp_l

n I S R YA |
&5 - : (3A.14)

wherever it occurs in the equation. The resulting algebraic equation can

be re-arranged to give:

n+1 n-1 n n n n
iy 7 RoCiLy t MGyt MGt MGt RSy ORI
o _ (1+D)
where: AO = 1) (3A.16)
2At[(c1 + al/r)/Re - Ugl]
S (1-D) (34.17)
2At((c2 + az/r)/Re - ng]
Ay = ) B (34.18)
ZAt(dl/Re - Vhl)
Ay = -5 (3A.19)
2At(d2/Re - th)
by = E) (34.20)
and D = At[(c +d o+ 39 1w)/Ro Ug - Vh + LiO] (3A.21)
0 o) r 2 i "0 o} r )

T

Finite Difference Form of the Stream Function Equation
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Using the finite difference coefficients as shown in Table A.1, the
stream function equation (3.15) can be transformed into the following

finite difference form:

oVt %,y Ca%ian, gt 9o%i, gAYyt doY

1 .
- ;(aowl’] ) = -vq, . (3A.22)

oAy RS TR i

i-1,]

Rearranging, we obtain:

Yig T BoTGiLy v Bivsqy t Bavy g v Baviiy gt By 5 (34.23)
1
wvhere: BO = Gt . d) (3A.24)
0] 0] O

B] = BO (c1 - al/r) (3A.25)

B, - B.d, (34.26)

83 = BO(C? a?/r) (3A.27)

B, - B.d, (34.28)

In the Successive-0Over-Relaxation method, the stream function values used
in equation (3A.23) are always the most up to date values. That is, if the
computation sweeps in the direction of increasing i and increasing j, then

at the kth iteration,

k+1 ) k+1

k
i1,j " B

S Lk
Vi 7 Boty g By i,5-1 B3V BaYi g (34.29)

]
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4.1 Introduction

In this chapter, the strain path analysis of the undrained, deep steady
penetration of a cone penetrometer into soft clay is described. The strains
in the so0il are estimated from the velocity field of an inviscid fluid. A
numerical integration scheme has been implemented for computing soil strains
and stresses. This process requires the determination of the streamlines,
and the stream function formulation is thus a particularly convenient way of

specifying the initial flow field.

For an incompressible material, the mean normal stresses are governed
solely by the equilibrium equations. Three different methods have been used
to evaluate the mean normal stress and these result in quite different
solutions. The implications of the difference 1in these mean pressure

solutions are discussed.

4.2 Flow Solution

The successful implementation of the strain path method requires the
estimation of the velocity field of the soil around the penetrometer. This
is usually obtained by assuming that =soil deforms without any shear
resistance (i.e. corresponds to an inviscid fluid). Thus, the algorithm for
flow computation formulated in Chapter 3 can be used to generate the required

velocity estimate.

The mesh wused in the flow computation is shown in Figure 3.2. The
infinite soil mass is modelled by a finite computational domain represented
by the rectangular finite difference grid system. The dimensions of this
mesh have been checked to ensure that the boundaries are sufficiently far

avay from the penetrometer to model an infinite soil mass. The mesh used has
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been found to be adequate and increasing the size of the mesh does not change

the flow solution significantly.

The streamlines for the flow of an inviscid fluid around a penetrometer
are shown in Figure 4.1. It may be noted that only those streamlines in the
proximity of the penetrometer are distorted by a significant amount. As the

distance from the penetrometer increases, the streamlines become almost

parallel to the axis.

i T T T

0 2 A 6 8
r/R

Figure 4.1: 1Inviscid Flow Field around a Cone Penetrometer

4.3 Strain Computations

In order to determine the soil strains associated with deep penetration
problem, the natural strain increment tensor defined in chapter 2 must be
evaluated along the paths taken by the so0il elements during cone penetration.
The computational procedure can be divided into two parts. The first stage

involves the determination of the streamline profiles which, in a steady

4.2



Chapter 4: Computation of Stress and Strain.

state condition, represent the location of soil elements at different time.

The second stage deals with the evaluation of the soil strain at different

locations along these streamlines.

4.3.1 Determination of Streamline Profile

In a finite difference scheme, the strain in the soil is represented by
discrete wvalues at the nodes. In order to calculate these nodal strain
values, the streamline that passes through each node must be found. Whilst
it 1is theoretically possible to determine the complete profile of the
streamline asséciated with each node, this is computationally inefficient.
An alternative procedure, which requires only the determination of a
streamline segment between two horizontal grid lines and an interpolation of
the =so0il strain in the radial direction, has been used in this thesis.
Substantial saving in computation effort is achieved by adopting such a

procedure.

n
7 6 %
b
Mn-t
/
8 P — /
0 4 3 / Az
M2
M
J ! ]AZ/n
1 Q 2 3 ¢

Figure 4.2: Determination of Streamline Profile

Consider an 1interior node P at the intevsection of the vertical grid

line T and the horizontal grid line J (Figure 4.2). The streamline that
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passes through P is uniquely defined by 1 the stream function value at P.
Since the initial flow field does not have any re-circulation zone, this
streamline must intersect the grid line below at some point, say Q. If the
grid spacing is sufficiently small, the streamline segment between the two
horizontal grids can be approximated by a straight line, PO. However, due to
the finite size of the grid spacings and the curvature of the streamline,
this approximation generally does not provide the required degree of
accuracy. In order to obtain an accurate solution, it is necessary to

determine the curved streamline segment more exactly.

The shape of the short streamline segment is governed primarily by the
local wvariation of . For the purpose of this calculation, a 9-node local
mesh system centred on P has been selected and the flow field around P is
assumed to be completely determined by the 9 discrete nodal ¢ values. The
spatial variation of ¢ locally is approximated by a Lagrangian interpolating

polynomial in terms of the local co-ordinates (&, n):

. 2 2 2 202 41
Y = ag + aj& + a2n + a3E + a4£n + asn ' a6£ n + a7En + dBE n (4.1)
vhere a, are constant interpolation coefficients. By substituting the nodal

co-ordinates and ¢ values into eguation (4.1), a set of 9 simultaneous

equations in the unknown a. is obtained:

(Ml {ay = (v} (4.2)
- dO . r l‘U(‘) 1
ay ¢1
where: {a} = (4.3) {w) ) (4.4)
| % ] L Y8
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and
2 ) 2 2.9 .
( 1 EO nO EO EO nO nO E‘Ono E0 hO E'OnO
2 5 22 2 2.2
L& g & &mpoomp &g g gy
M- (4.5)

) 2 2 2 2
1 & ng & &MNg Ng  &Ng &ghg &g

Since the elements of the matrix [M] and the vector {y} are known, a; can be
determined. The equation for the streamline that passes through P is
obtained by setting W:wo in equation (4.1). This is used to obtain a series
of points along the curved streamline segment for the purpose of integrating

the stress strain equations.

4.3.2 Strain Rate Definitions

By adopting an Eulerian description, the components of the strain rate
vector in an orthogonal Cartesian frame of reference are defined in terms of

the velocity gradients:

. 1 avi avj
EE I I T T (4.6)

Substituting for the velocity components in the above definitions using

equations (3.13) and (3.14), the strain rates can be are expressed in terms

of ¢ as:
: 1 9° 1 2
e, = -1 v, (4.7)
' t draz 7 3z
2
. 1 3%y
€z ~ r oraz (4.8)
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: 1 3y
IS - . - Zr
66 r2 3z
SO O S R O
re Y a22 r ar2
The strain components which «co

definitions are as shown in Figure 4.3
expressed 1in equations (4.7) to (4.9) su
condition is automatically satisfied. 1If
is required, it can be evaluated from
standard finite differences. The strain

nodes are evaluated from the interpolation

7 [

e, Eop

in.
(4.9)

Y
e (4.10)

1
- 2
r

rrespond to these strain rate
. The three normal strain rates as
m to zero, so the incompressibility
the strain rate at any nodal point
the known ¢ values at the nodes by
rates at locations other than the

function for ¢ (equation 4.1).

Ozz,Ezz

Tensile Stress

Positive

Figure 4.3: Stress and Strain Definitions in Axisymmetry

The transformation from the global to local co-ordinate systems

involves merely a translation. Hence, the partial derivatives with respect
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to (r, z) are similar to the partial devivatives with respect to (&, n), and

the strain rate components can he evalunated from equation (4.1) as:

érr = %f[aZ + aA(E -n + QaSn 4 a6i(£ - 2r)

¢ 2a,n(E - W) v 2agEn(E 21-)] (4.11)
. 1T L ) o
SZZ = ;_34 + ?,d()t, 4 2871‘1 + 4.718&,1]} (4.12)
£ = - 1 —a +a,& + 2an + a EQ + 2a,n& + 2a EQH] (4.13)
80 r2_ 2 4 -5 6 7 gt )
s Sl agma - 0 2act - a,(2rE « ')
Yy, = rz- as a61)(1 - - aAn - 2agr - ay(2re n

. 2
~ 2aB(rE )] (4.14)

vhere r is the radial distance of the point in the global co-ordinate system.

4.3.3 Integration of Strain Rate Equations

The integration of the strain rate equations along streamline is
facilitated by approximating the curved <srreamline segment by n linear
sections as illustrated in Figure (4.2). By subdividing the streamline
segment between the two horizontal gride into n cqual vertical intervals, the
co-ordinate nj ol the end points of each linear section will be known. The
other co-ordinate component Ej can be calculated by substituting N, into the

streamline equation (4.1).

The strain increment between O and P i< eovaluated incrementally by the

equation:
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de. = I ['s 93] (4.15)

The strain rates, éij’ and the wvertical velocity component, v, are
evaluated at the mid-points of the n straight line sections. The natural

strain tensor at P can then be calculated as:
(g..) = (e..) + de.. (4.16)

vhere (gij)q’ the soil strain at 0, is interpolated by fitting a parabolic
curve over the strain values at the three nodes on the lower grid line.
(Figure 4.2). The strain, Sij’ at the inflow boundary (J=0) is assumed to be
zero and derivation of the strain field begins at the horizontal grid level
J=1. The values of Sij at all the nodes on each horizontal grid line are
computed using the procedure described above before proceeding to the next

grid line. By sweeping the computation in the direction of increasing J, an

estimate of the strain field will be obtained.

4.4 Stress Computations

In a steady state condition, soil elements which are initially located
at a fixed radial distance from the axis of penetration are subjected to the
same strain history, and hence the same stress path. Therefore, by
evaluating the stress changes along a streamline, an estimate of the stress

state around the penetrometer can be obtained.

The stress path of a soil element can, in principle, be evaluated from
the strain history 1in wvarious ways. One  possibility 1is to carry out
laboratory tests in which strain paths similar to those predicted are imposed

and the stress changes observed. The stress-strain curves obtained can then

4.8
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be used to determine the stresses at different strain values. However, the
strain paths which exist in a penetralion test are very complicated, and in
general cannot be duplicated in the laboratory. 1In an analytical study, it
is usually more convenient to describe the stress-strain behaviour of soil by
some constitutive model. This latter approach has been adopted and the

choice of so0il model is described below.

4.4.1 Constitutive Relationship for Clay

Extremely high strain rates and strains are induced in the soil during
cone penetration. In addition, as illustrated by the simple pile problem,
significant stress and strain reversals can also occur. In order to model
accurately the soil behaviour due to cone penetration, the constitutive
relationship selected should be able to account for all these features. Such
a comprehensive constitutive model is mnot currently available and some

idealised model has to be adopted.

In this thesis, a simple and vet relevant constitutive relationship has
been chosen and the soil was modelled as an elastic-perfectly plastic
material obeying the von Mises vyield criterion. This simple model has been
deliberately chosen so that the analytical procedure was not obscured by
undue mathematical complexity. Such  complications could not have been

avoided if a more sophisticated constitutive law had been adopted.

The wvon Mises yield criterion is formulated in terms of deviatoric

stresses and the yield function can be written as:

o (4.17)

o
|
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vhere <y is the shear strength in undrained triaxial compression and the

deviatoric stress components are defined as:

S, = 0., +0P (4.18)
S, = O+ P (4.19)
Sg = Tgg t P (4.20)
(o + 0+ 0,4)
where: p = - L 3447~w799 (4.21)

A tension positive convention has been adopted and the stress components are

as shown in Figure 4.3.

In the elastic range, the new stresses due to a small strain increment

are given by:

S = s+ 2Gle (4.22)

Y ro 5

S = 8 + 2Gh0e (4.23)

z Z0 4

. _ 20 Ae :

Sg = Sgg LGAce (s« 87) (4.24)

T, = Ty F GAer (4.25)
where G 1is the shear modulus; s _, s , S and T are the deviatoric

ro Z0 6o 0

stresses at the start of the calculation step and Aer, Aez and Aee are the

increments of deviatoric strains which are defined as:

v
e = £ -3 (4.26)
v
€2 7 %z 7 3 (4.27)
v
€y = Tgg 3 (4.28)
vhere: v = €.+ € + € (4.29)

410 —
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In an undrained analysis, the wvolumetric strain v is equal to zero, so the

deviatoric and the natural strain increments have the same numerical values.

4.4.2 von Mises Plasticity

In the plastic regime, the total strain rate can be decomposed into an

elastic component and a plastic component:

S R (4.30)

By adopting an associated flow rule for the plastic flow, the plastic strain
rate for the case of no work hardening can be written as:
p aF

Sij = A 5. . (4.31)
1]

vhere A is a scalar multiplier. The elastic strain rate is related to the

stress rate by the equation:

R 8 (4.32)

Since the strain rate solution 1is based on an inviscid flow field, the

. . . v
rotation term, ®, is identically zero. Hence, the Jaumann stress rate, Uij’
is equivalent to the Cauchy stress rate, Uij'

Substituting equations (4.31) and (4.32) into (4.30), the stress rate

and the strain rate are governed by rhree differential equations:

S = 2GE  + 12GAs (4.33)
1 | 1

S = 2GE o+ 1UGAs (4.34)
Z 4 7

T, = Gy, o+ 126AT (4.35)



Chapter 4: Computation of Stress and Strain.

Equations (4.33) to (4.35) belong to a class of differential equations which
can be solved analytically by the integration factor technique vhen the
strain rates are constant with time. Applying the appropriate initial
conditions, the deviatoric stress components vwhich correspond to a small

strain increment are given by the following equations (Booker, 1984):

s, = (Ge @ + s )/¥ (4.36)
s, = (ZGeZ® + SZO)/Y (4.37)
T, = (Gy ¢ s T /Y (4.38)
where: ® = %[Sinh(gt) + XCosh(St) - X] (4.39)
B . B . B,
¥ = xsinh(=t) + cosh(Zt) (4.40)
o o
2cu
(¢4 = ﬁ (4-41)
2
2 20,2 2 by
BS = 4G [Ae‘ + De be  + De” o+ ) (4.42)
A roz Z 4
G _ ,
X - &B[Sro(zaer ! Aez) ! Szo(Ael ' 2A€7) * TOAYIZJ (4.43)

The above expressions are only applicable to a straight strain path, so

the calculation was performed using small strain increments.

4.4.3 Deviatoric Stress Update Calculations

As with other field parameters described in this analysis, soil
stresses are vrepresented by discrete values at the nodes. Thus, the stress
calculation follows an analogous procedure as the strain path computation.
The stress changes due to small strain increments are evaluated using the
constitutive equations derived 1in the previous section. Regardless of the

initial stress state, the stress increment is first assumed to be purely
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elastic. If the updated stress state violates the yield criterion, the
calculation is repeated using the appropriate plastic stress update
equations. This procedure has the advantage that any elastic unloading that

might take place will be detected and accounted for.

As the calculation proceeds along a streamline, an element of soil
which is initially elastic may become plastic during a strain increment. In
such a case, the fraction of the strain increment which just brought the soil
to yield 1is computed by combining the yield function and the elastic stress
update equations. The remaining fraction of the strain increment is assumed
to be purely plastic and the stress update calculation is performed using the

relevant equations.

4.4.4 Stress Interpolations

The incremental stress update procedure described above requires that
the stress state before the application of a strain increment is known. For
example, in order to evaluate the stresses at P (Figure 4.2), the stresses at
) must be computed. It is clear therefore that some form of stress

interpolation is necessary.

There 1is no unique way by which stress interpolation should be carried
out and many different possibilities exist. In this study, the
interpolation of deviatoric stiesses was achieved via the equivalent Lode’s
parameters (Figure 4.4). The deviatoric stresses are related to the Lode’s

parameters (c, ¢ and ¢) by the equations:

s, = 3 costsin(é v D) (4.44)
4
Sg - %c cos( sin(¢ g) (4.45)

4.13
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s, = %c cos{ sin¢ (4.46)
T = 5%c sing (4.47)
rz V3
2 2
vhere: ¢ = s (s_+s_) + s + T (4.48)
r°r A z rz

Note that the wvalue of ¢ 1is constrained by the von Mises yield function
(4.17) and will always be less than or equal to S the undrained shear
strength. The parameter c¢ is equal to <, when the stress state is plastic.
For an elastic stress state, ¢ 1is less than . The value of ¢ at Q is
obtained by linear interpolation between the adjacent nodal values. The
parameters ¢ and ¢ associated with the stresses at the nodes on the bottom
grid line are evaluated using equations (4.44) to (4.47). These nodal
parameters are fitted with a second order interpolation function from which
the wvalue at Q 1is computed. The wuse of the above technique avoids the

interpolation of an elastic stress state from two plastic states.

*OZZ (point P representfs

stresses in plastic
state )

|
b=0

Figure 4.4: Equivalent lLode’s Parameters

- 4014 -
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4.5 Calculation of the Octahedral Normal Stress

The octahedral normal stresses during undrained penetration, in which
the soil behaves as an incompressible material, are governed by the
equilibrium equations. For an axially symmetric problem formulated in a

cylindrical co-ordinate system, these equations are given by:

ap asr aTrz s, ~ Sg

—E + F + 3z + _]:_A = O (4-49)
ap asz aTrz T,

%t w w7 =0 (4.50)

in the radial and axial directions respectively. The mean normal pressure p
is a field parameter so for a stress field which is sufficiently smooth, the

spatial variation of p is given by:

_ gy, 0P
dp = ardl + az(lz (4.51)
vhere dr and dz are small displacements in the direction of the co-ordinate
axes. It 1is possible to calculate p if the boundary conditions and the

distribution of s, s, s

N , o and T, are known. Two particularly convenient
4

integration paths can be 1identified from Equation (4.51). One of these
corresponds to the horizontal grid line ftor which dz = 0. Along this line,
the mean pressure p is given by:

p=p %? dr (4.52)

vhere P, is the in-situ mean pressure at a point very far awvay from the cone
where the effect of penetration can be considered to be negligible.
Alternatively, p <can be evaluated by integrating equation (4.51) along a

vertical grid line for which drv = O:

4.15
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ap
P = P, +J5;dz (4.53)

In general the above procedures will result in different values of p,
unless the deviatoric stress distribution is correct. Furthermore, for a
sufficiently  smooth stress field with no stress discontinuities, the

equilibrium condition also requires that p satisfies the Poisson equation:

2 1
3 d d
T e T (4.54)
or r az
325r ast EZTL 1 axr 1 Bsr 1 ase
vhere: g = + 2‘ + 2 . (4.55)
ar Az dradz v dz o dt v v

Equation (4.54) 1is obtained by differentiating equation (4.49) and
(4.50) with respect to v and z respectively and adding. The source term g

can be evaluated from the known deviatoric stresses.

4.5.1 Tntegration along Radial Grid Lines

Vhen p 1is computed wusing equation (4.52), the calculation procedure
begins at a point on the right hand boundary and proceeds in the direction of
decreasing v (Figure 4.5a). The mean pressure at an internal node is given
by:

P = p - (32) by, (4.56)
.. . . ar 1
i,] i+1,3 M

wvhere Ari is the grid intevval between nodes (i,j) and (i+1,j) and M is a
point midway between the nodes. The mean pressure at the boundary is taken
to be the in-situ value, b, The term 2% i< evaluated from the known
deviatoric stresses using standard finite differences. By repeating the
calculation procedure at every horizontal line, a mean pressure solution

which satisfies the equilibrium equation in the radial direction is obtained.

4.16
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Figure 4.5: Integration Paths - (a) Radial Grid Lines, (b) Axial Grid Lines

4.5.2 Integration along Axial Grid Lines

If equation (4.53) 1is used to compute p, a procedure similar to that
described 1in section (4.5.1) can be adopted. The integration path is shown
in Figure 4.5b. At any node (i, j) along the vertical grid line, I, the mean
pressure is given by:

Ip
p = P v (5y) bz, (4.57)
i,] i,j-1 M
where (%g) is evaluated at the mid point between nodes (i,j-1) and (i,j) and

Azj is the grid spacing between the two nodes.

9T T
. . . . - r
Special attention was given to the calculation of the aiz and —?E
terms on the axis where r = 0. In the vicinity of the axis, the shear stress

component, T, can be considered to be an odd function of r and can

therefore be expressed in the form:

- 4.17
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Trz = ar’ + br (4.58)

i
. . . . , r
By adopting a second order finite difference scheme, the derivative T and
TI'Z
the quotient, — » on the axis are expressed as:
9T T T r3 T r3
rg vz 12 271 (4.59)
or N r ) - r3 s r3 )
1°2 271

where 'y and r, are the radial distances of the two nodes closest to the axis

and T and T, are the corresponding nodal shear stresses.

4.5.3 Solution of the Poisson Equation for Mean Pressure

The Poisson equation for mean pressure (4.54) is an elliptic equation
and can be solved by the numerical scheme developed in Chapter 3 for solving
the stream function equation. The boundary conditions, howvever, are

different and merit some detailed consideration.

At the upstream and far field boundaries, the mean pressure is
specified as Py On the axis, symmetry condition requires that %% = 0. At
the downstream boundary, a steady state condition is imposed and the boundary

condition is specified as:

d g (4.60)
3z

The most important boundary by far is the soil-penetrometer interface
It is not appropriate to prescribe the value of p on this boundary since rthis
is not known a priori. fne  possibility is  to specify a Neumann type

condition such as:

LU (4.61)
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wvhere p was computed from the deviatoric stresses using equation (4.49).
The implementation of this boundary condition requires special consideration
because its incorporation in the S$.0.R. scheme is not straightforward. At
first sight, one possible solution scheme is to evaluate the values of p at

the interior nodes as:

k+1 k 9 k+1 k+1 k k k
P = p + B Fp + Fp + Fp + Fp - Fp - g
i,] i, ol 1 i-1,j 2 i,j-1 3 i,3+1 4 i+1,] o i,j
(4.62)
and the pressure on the boundary is evaluated as:
kel kel 3
Pp - Ppa1  wm %t (4:69)

The superscript in these equations vrepresents the iteration number, the
subscript B denotes the boundary nodes and B+l refers to the interior nodes

adjacent to the bounday. The coeftficients FO to F, are finite difference

4

coefficients as described in Appendix 3A.

Although plausible, this method has been tested in Fluid Dynamics
(Roache, 1976) and was found not to converge to a solution. Miyakoda (1962)
recommended that the derivative boundary condition should be incorporated
directly into the S.0.R. difference scheme at the interior nodes adjacent to

the boundary. Using this scheme, the pressures at these nodes are expressed

as:
k+1 k k+l k+1 k k
QR 1. ap 4. . 3
p =p ¥ F (p - 5;&1) + Fp + Fop + Fp
i,3 i,] ol 1 1,3 7 1,9-1 3 i,j+1 4 141,]
k 1
- Fyp - g} (4.64)
0o i,]

- 4.19
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Note that the value of p at the boundary has been replaced by the expression

in equation (4.63). This equation can be re-arranged to give an explicit
expression for p?+; in terms of p at neighbouring nodes. The resulting
b

equation is wused 1in the S.0.R. scheme for all nodes adjacent to the soil-
penetrometer boundary. When convergence 1is reached, p on the boundary is
evaluated from equation (4.63). This procedure has been implemented

successfully and the numerical scheme was found to be unconditionally stable.

4.6 Deviatoric Stresses

The numerical procedure described in this Chapter has been implemented
for the analysis of the cone penetration problem. The soil was assumed to
have a rigidity index of 100 and the initial vertical and horizontal stresses
were assumed to be zero (Any initial isotropic stresses would appear purely

as additive terms to the results).

The contours of the deviatoric stresses around the cone penetrometer
are shown in Figure 4.6. Far behind the cone tip, the variation of the
deviatoric stresses are predominantly in the radial direction and changes in
the axial direction are negligible. This result appeared to provide some
justification for wusing cylindrical cavity expansion to approximate the
stress state around the shaft (Randolph et al., 1979). However, in the
region around the tip, the deviatoric stresses are two-dimensional in nature
and the stress distribution is very different from that obtained in a one-

dimensional cavity expansion approach.

Very high stress gradients exist in the vicinity of the tip as
indicated by the closely packed contour lines. These high stress gradients

are also observed in the shear stress distribution. Adjacent to the cone
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Figure 4.6: Contours of Deviatoric Stresses around a 60 Cone Penetrometer
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shoulder, the shear stress changes very rapidly. However, due to the

singularity associated with the sharp cone shoulder, it is difficult to draw

any firm conclusion from these deviatoric stress distributions.

4.7 Mean Pressure Solution

The mean normal pressure has been computed using the methods described
in Section 4.5. The results obtained are presented in Figure 4.7. The mean
pressures obtained by integrating along the radial and axial lines are
denoted by PL and P, respectively and pp is derived from the Poisson

equation. These solutions are found to differ significantly from each other.

The p, contours show that a region of soil adjacent to the shaft is
subjected to negative pressure (i.e. less than the initial in-situ value)

which becomes progressively more negative as z increases. This result is

1
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Figure 4.7: Mean Pressure Solutions around a 60 Cone Penetrometer

Evaluated by 3 Different Methods
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unrealistic and may be due to the errors associated with the shear stresses,

T . The effect of errors in T,., On p, can be studied by an analysis of the

Z

equilibrium equation (4.50) which is reproduced here for ease of reference.

. iz (4.50)

The above equation shows that the mean pressure variation in the axial

direction 1is governed by the gradients of S, and T, At a point far behind

as
the cone tip, 555 is very small (Figure 4.6b) and can be neglected. Thus, %g
is entirely dependent on the shear stress distribution. From the shear

3T T
. . rz rz
stress contours, it 1is observed that T £ and <

r

are negative in the

region adjacent to the shaft and so 52 is always negative. For such a

deviatoric stress distribution, integration along axial lines will invariably
lead to a solution for p which decreases indefinitely behind the tip. When
<

the shaft of the penetrometer 1is smooth, it can be shown that a ’steady

state’ solution for b, (in which —% {s zero far behind the tip) is possible
37

only if T, vanishes far behind the tip.

The effect of the errors in T., ©on p. can be analysed from the

equilibrium equation in the radial direction, which is reproduced below:

3p asr arrh S~ Sg

= = a— - A

ar ar Tz i r (4.49)

arrm

The shear stresses affect P, through the term *ggi- At a point far from the

arrn
. L 4 . . c
tip, the computed value of TRy 1S very small and the influence of T, On P
4
is negligible. Therefore, P, is less senzitive to the errors in Ty In
addition, the regions where the stresses are associated with high

Fans
tS
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uncertainties are located at the end of the integration path so their effects

will be more localised.

The solution based on the Poisson equation, pp, appears to support this
argument. The Poisson equation was derived from the two equilibrium

equations and can be considered to satisfy each one approximately. The

821_ 9T
rz rz

and

source term, g, 1in this equation contains the terms Tt 57

which

are small far behind the tip. Thus, the errors in T, are likely to have
&4
only minor impact on pp. This 1is partially confirmed by the similarity

between P, and pp adjacent to the shaft.

Despite the differences in the mean pressure solutions, the variations
of p along the cone face obtained from these three methods are quite similar.
The values of the tip resistance computed using any of these solutions differ
by not more than 10%. This degree of accuracy is sufficient for most
practical applications. The strain path method can therefore be relied upon

to give a good estimate of the tip resistance due to cone penetration.

The dependence of the mean normal pressure on the integration paths
implies that the computed deviatoric stresses are not correct. Although it
has been suggested that Ty is the stress component most likely to be in
error, the accuracy of the other deviatoric stresses is more difficult to
assess. It is believed that the approximate deviatoric stresses can be used
to obtain an improved estimate for the velocity field. Several methods of

correction based on this approach have been attempted and these are presented

in the next chapter.
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5.1 Introduction

The stresses calculated using the strain path method do not satisfy the
equilibrium equations fully. This failure is reflected in the dependence of
the octahedral mean stress on the 1integration path. Since the stress
solution 1is only approximately correct, it is useful to estimate the amount
of error 1in the computed results. This is particularly important if the

results are to be used as a basis for interpreting test data.

In the following sections the quality of the stress solution from the
strain  path method is assessed, and regions where high uncertainties exist
are 1identified. A measure of the amount of departure from the unknown exact
solution 1s defined and the possible sources of approximation discussed.
Three possible equilibrium correction methods have been attempted and these

will be discussed in some detail in this chapter.

5.2 Estimating the Errors in the Stress Solution

In continuum mechanics, any set of internal stresses can be forced to
satisfy the equilibrium equations provided thal an appropriate body force
field 1is assumed to bhe acting on the body. Thus, the deviatoric stresses
obtained by the strain path method could bhe considered to be correct if a set
of fictitious body forces was acsumed ro he present. 1In such a case, the

equilibrium equations can he writisn as:

as 9T = S .
p v rz X 0 .
A el Ty e T 4 B - 0 .
Y ar 3z ! v [r -1
\ as BTr_ T,
Z < 7 =
;Y5 ta t v h ) (5-2)
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in which Fr and FZ are the body forces in the radial and axial directions
respectively. The deviatoric stresses in these equations are known and this
leaves p, Fr and FZ as variables. With two equations and three unknowns, it
is possible to obtain an infinite combhination of p, Fr and Fz vhich will
satisfy equations (5.1) and (5.2). Furthermore, if an estimate for any of
these unknown quantities 1is available, then the vemaining two can be

evaluated from the equilibrium equations.

In Section 4.5, p has been evaluated using three different methods by
implicitly assuming that the deviatoric stresses are correct. The mean
pressure solutions obtained by integrating along radial lines, P and by
solving the Poisson equation, pp, are found to be quite similar. These two
solutions are considered to be reasonably accurate and so can be used to
estimate the fictitious body forces required to maintain equilibrium. Since
p,. was evaluated by implicitly assuming that Fl is zero, then only FZ need to
be found if P, is adopted as the mean pressure. The normalised contours of
FZ evaluated by substituting P, for p in equation (5.2) are plotted in Figure
5.1. Two regions where FZ is appreciably large can be identified. These are
located in the vicinity of the cone shoulder and the cone tip. The magnitude
of the fictitious body forces indicates that the errors in the deviatoric
stresses are quite appreciable. Elsevhere, Fz is found to be generally small

and the equilibrium condirtion is satisfied approzimately.

As an alternative way of assessing the accuracy of the strain path
results, the difference in the mean normal pressure solutions obtained from
different integration paths can be computed. This pressure difference when
expressed as a fraction of the mean pressure provides a useful indication of
the accuracy of the stress solution. From Figure 4.7, it is observed that

below the cone shoulder, the three pressure solutions are quite similar.
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Figure 5.1: Out-of-Balance Body Forces, FZ

Good agreement between P, and pp is also apparent above this level. The
strain path method can therefore be considered to be capable of giving a good
estimate of the stress state in most regions around the penetrometer with the

exception of the locations around the cone tip and the cone shoulder.

5.3 Equilibrium Correction Methods

The failure of the stresses computed by the strain path method to
satisfy the equilibrium condition is mainly due to the approximate nature of
the assumed velocity field. In order to improve the sgolution, it is
necessary to obtain a better estimate of the soil velocities. Three
different iterative procedures which made use of the approximate deviatoric

tresses to correct the initial velocity field have been tried. The

W

formulations of these iterative procedures are presented in the following

sections.

- 5.3 -
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5.3.1 Newton-Raphson Correction Scheme

In this section, a correction procedure wvhich is based on the Newton-
Raphson 1iterative principle 1is suggested. The algorithm involves carrying
out numerical experiments in which the initial stream function at each nodal
point is perturbed by a small amount. The effect of each perturbation on the
magnitude of an error measure 1is calculated. The changes in the error
measure are then used to obtain an estimate of the change in the stream

function which is required in order to satisfy equilibrium.

Error Measure

By differentiating the radial and axial equilibrium equations with
respect to z and r respectively and subtracting, the mean normal pressure in
the two equilibrium equations can be eliminated. For a set of stresses which

are in equilibrium, this results in:

| (o5}

3s aT s - s s aT.. T
I rz 1 S| a3 : y
3z lor  © . T (>-3)

oz r
Since the strain path solution is only approximate, the expression on the
left hand side of equation (5.3) would generally be non-zero. This
quantity, which will be denoted by H, provides a measure of the error in the

stress solution.

Numerical Algorithms

The main steps ot the Newton-Raphson procedure can be summarized as

follows:

Step 1: Based on an initial stream function estimate, the deviatoric
stresses are calculated using the strain path method. The error
measure, H _ , which corresponds to the initial stress solution is

(o]

5.4
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Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

evaluated at each node using the left hand side expression of

Equation (5.3)

The initial stream function at a node N is perturbed by a small
amount. The new stresses vhich correspond to the perturbed stream

function field are evaluated by the strain path procedure.

The error measure associated with the new stress field is computed.
This 1is denoted by Hl' The ’partial derivatives’ of the error
measure at node M due to a perturbation, Bwn, at node N is evaluated

as:

Xm,n T sy (5.4)

The stream function at the perturbed node is then restored to its

original value.

By repeating the perturbation process at every node, a matrix
equation can be set up.

IXI (o0} - () (5.5)
Each element in the matriz [X] is analogous to the derivative f’(x)
in the standard one-dimensional Newton-Raphson equation. Since this
matrix and the initial error {HO} are known, the required change in

stream function {Ay} can be evaluated from equation (5.5)

The stream function field is up-dated as:

ot L an® (5.6)

vhere k is the iteration number.

The stresses which correspond to the updated stream function field

are re-evaluated using the strain path method.

(Wal
(@)
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The «c¢ycle of computation from Step (2) to Step (6) is repeated until the

errors of equilibrium, represented by H, is acceptably small.

Test Cases:

The numerical procedure described above has been tested with a
hypothetical problem involving a uniform flow of soil down a smooth walled
tube. An arbitrary, non-uniform initial velocity field was assumed for the
soil. The changes 1in soil stresses due to this assumed velocity field and
the relevant boundary conditions were evaluated using the strain path
procedures. The error measure, H, which corresponds to this non-uniform
velocity field was in general non-zero. The Newton-Raphson scheme was then

applied to obtain an up-dated velocity field.

This verification exercise revealed that the range of applicability of
this correction procedure is very limited. When the soil stresses due to an
assumed strain field 1lie entirely within the elastic range, the Newton-
Raphson method vresults in very rapid convergence to the correct solution.

This is illustrated in Figure 5.2. The non-uniform initial velocity estimate

—_—
T

o
o

(a) (b)

Figure 5.2: Streamlines (a) Before and (b) After

Applying the Newon-Raphson Correction Scheme

5.6
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is represented by the irregular streamline pattern in Figure 5.2a. The
correct uniform wvelocity, represented by the streamline contours in Figure

5.2b, was obtained after two iterations.

However, the algorithm failed to converge to a solution when plastic
deformations occurred. This suggests that the corrective scheme can only
work for a system of linear equations and cannot be used when non-linearities
such as soil plasticity are involved. Since plastic deformation is an
essential feature of the cone penetration problem, the proposed method cannot

provide the desired correction.

5.3.2 Pseudo-Dynamic Correction Method

The second correction method which has been attempted is based on an
unsteady flow approach. Consider a soil element subjected to a set of

stresses which are not in static equilibrium. Under the action of these

stresses, the soil element will experience an acceleration governed by the
equation:
- 3s 3T s S v v v
ap Y rz r °) - -
— + - * + — p{— + Vr —— 4 ¥ B (_) 7)
ar A1 9z r ot a1 3z
3% 8§z a%rh %r7 ~ BGZ o dv, ~ aGZ
,AE) + =" — 2 — = P+ v, = v (5.8)
3z 3z or r t or “ 9z

vhere p is the density of the soil, QI and v the velocity components in the
P

radial and axial directions and t is the time. The bar in the two equations

emphasises that the quantities have dimensions and these can be normalised as

follow:
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(ry, z)

By substituting these

Equilibrium Considerations

eliminating p from the two equations gives:

The rotation rate of the soil element is defined

Substituting (5.14) into (5.13) results i

E1e
3t

wvhere: Q =

In addition, substituti

10)

11)

12)

and

13)

14)

15)

.16)

17)

S.., P
- £~114_32 (5.
C
u
_ (r, 2) (5.
R
_ (e, z) (5.
v
o)
7t
- 2 (5.
R
normalised quantities into (5.7) and (5.8)
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ng for v, and v_ in terms of ¢ in equation 5.14 gives:
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Equation (5.15) 1is analogous to the vorticity transport equation with (QeH)
replacing the vorticity diffusion terms. FEquation (5.17) is identical to the

stream function equation derived in Section 3.3.

In a viscous fluid flow, the shear stresses are directly related to the
local velocity gradient. However, no such simple relationship exist for the
"flow’ of an elasto-plastic material. The constitutive laws governing soil
behaviour are much more complex and the stresses are related not only to the
local velocity gradients (or strain rates) but are also dependent on the
previous stress path. Nevertheless, it is hypothesized that the loose link
that exists betwveen the stresses and strain rates may be used to provide a

means of correcting the initial velocity estimate.

Much insight 1into the stress strain behaviour of soil due to cone
penetration can be gained by a detailed examination of equation (5.15). If

the soil 1is assumed to have an undrained shear strength of 50 kPa and a
density of 1800 kg/mj, then for a standard penetration speed of 2 cm/sec, the

: . ; . . : 4 .
dimensionless time factor, Qe’ is approximately equal to 7 x 10°. As a first
approximation, the bracketed terms in equation (5.15) can be neglected

giving:

= = QeH (5.18)

Equations (5.17) and (5.18) can be solved by adopting a numerical procedure
similar to that wused in fluid flow computations. The solution algorithm

proposed 1s outlined below.

Step 1: Fquation (5.18) 1is expressed in a finite difference form and ¢ is
evaluated as:

gl ke 0 Hot (5.19)

.9
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In order to ensure convergence of the numerical procedure, a very

small time step, At, must he used.

Step 2: The boundary value of ¢ 1is evaluated from the current stream

function field.

Step 3: Fquation (5.17) is solved by the S.0.R. scheme to obtain the stream
function . In this calculation, the updated C values are used in

the source term.

Step 4: The stresses which correspond to the new stream function field are

evaluated using the strain path method.

Step 5: The error measure, H, associated with the new stress field is

evaluated.

The computation cycle from Steps (1) to (5) i3 repeated until H is acceptably
small. Except for the first iteration, the most recent value of H is used in

Step (1) to compute the new ¢ values.

The major wuncertainty in the implementation of this correction
scheme concerns the calculation of the boundary { values from ¢. Due to the
complexity of so0il behaviour at the penetrometer-soil interface, it is not
clear how this should be performed. A slip wall boundary condition which
models an inviscid fluid flow has been applied in this thesis. However, this
makes no distinction between soil and fluid behaviour and so is not strictly

correct.

The error measure, H, represents a quantity which tends to alter the

deformation pattern in the soil mass. FEquation (5.18) expresses this fact by
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indicating that H changes the rotation rates of the soil elements. Although
this parameter 1is useful for quantifying the equilibrium imbalance, it is
difficult to ascertain what magnitude of H represents an acceptable solution.
This is not a major obstacle if H 1is wused merely as an indicator for
comparing the relative quality of various solutions. A reduction in H is an
unambiguous signal of an improved solution and it will thus be a useful

parameter for checking the performance of the numerical scheme.

Test Cases

The algorithm formulated above was used to solve the hypothetical test
problem discussed in the previous section. The pseudo-dynamic method was
found to be more stable than the Newron-Raphson procedure. It could
approximate the exact solution quite closely even when plastic stresses were
involved. The stream function field before and after the application of this
correction procedure is very similar to that shown in Figure 5.2 and is not

repeated here.

This algorithm has also been tested with the cone penetration problem.
In this case, the overall progress of the correction procedure is monitored

by a global error measure which is defined as:

n .
E. = | L H (5.25)

A reduction of 10 to 20 per cent in Er is obtained when the algorithm is
applied to the cone penetration problem. However, the correction procedure
has wvery little effect on the errors in a small region around the cone
shouvlder where H is at a maximum. The failure of the scheme to eliminate

completely the stress errvor is probably due to the inadequate treatment of
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the penetrometer boundary, and partly due to the complexity introduced by
the singularities at the cone tip and the cone shoulder. A detailed analysis
of the shoulder in particular is necessary if the correction procedure is to
be implemented successfully. Due to the limited scope of the present study,

this has not been attempted here.

5.3.3 Finite Element Correction Method

It has been shown 1in Section 5.1 that the out-of-balance deviatoric
stresses can be forced to obey the equilibrium equations 1if a set of
fictitious body forces is present. In other words, the streamlines evaluated
for an inviscid fluid flow would be the correct trajectories of the soil
elements only if the fictitious body forces are present. If these body
forces are removed, the soil elements will follow slightly different paths

and a different streamline pattern is obtained.

In a correct solution, the fictitious body forces are identically
equal to zero if the self weight of the soil is neglected. Therefore, there
is a possibility of using the fictitious body forces computed to improve the
initial velocity estimate. One possible solution scheme is described below.
It should be emphasised that the proposed algorithm is based largely on

heuristic argument and hence is not mathematically rigorous.

Consider a soil element which moves along a streamline with stream
function we under the action of the deviatoric stresses and a set of
fictitious body forces. At a poiut very fav from the penetrometer, the
stresses are close to the in-situ values and the equilibrium condition is
satisfied fully. The fictitious body {orces at any other location along the
streamline can be cancelled by imposing an equal and opposite set of body

forces. Under the action of these imposed loads, the soil elements along the

5.12 -
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streamline would be displaced from their initial locations (Figure 5.3). The
amount of displacement due to the imposed load can be evaluated by a
numerical procedure such as the finite element method. The locus of the
displaced so0il element is assumed to represent a new streamline which retains
the original stream function value we. This is a reasonable assumption since
the wvalue of ¢ associated with any streamline is determined by its initial

location far ahead of the penetrometer.

fictitious
body forces

/ displaced position
of streamline

Figure 5.3: Displacement of Soil Elements Along Streamlines Due to

Imposed Body Forces

The new streamline profiles obtained by the above procedure represent a
new stream function (or velocity) field. The stresses which correspond to
this new velocity estimates can be computed by the strain path method. In
general, the wupdated stresses will not satisfy the equilibrium equations
completely, so a new set of fictitious body forces is obtained. If the
correction procedure has been performed correctly, the magnitude of these new
fictitious body forces will be smaller. This process can then be repeated

iteratively until the body forces are sufficiently small everywhere.

Preliminary studies using this correction method have not met with much

success. One major difficulty with this iterative procedure was due to the
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different numerical schemes which had been used in the strain path analysis
and the corrective displacement <calculations. The strain path method was
formulated 1in finite differences and the field variables were represented at
the grid points. The deformation analysis due to the imposed body forces, on
the other hand, was performed with a finite element method in which stresses
and strains were represented at the Gauss points. TIn general, the grid
points and the Gauss points did not coincide and some form of interpolation
was therefore necessary. The 1inevitable errors assocociated with the
interpolation process rendered it extremely difficult to implement this

algorithm accurately.

It is possible that the problem associated vith interpolation may be
alleviated by adopting a single numerical procedure, say the finite element
method, for both the strain path analysis and the displacement calculations.
This analysis 1is beyond the =scope of the present study and has not been

pursued further.

5.4 Summary

In this chapter, attempts have been made to utilised the approximate
stresses based on an initial velocity field to obtain a better solution.
Three different correction schemes have been investigated. The proposed
iterative finite element method has not been implemented successfully. This
is mainly due to the large amount of interpolation and data transfer required
between the finite difference and finite element meshes. It is suggested
that this corrective scheme 1is potentially useful 1if the problem of
interpolation 1is eliminated by adopting a single numerical formulation for

the overall analysis.
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It has been found that the proposed Newton-Raphson scheme is applicable
when the soil behaviour 1is linear (i.e. purely elastic). WVhen non-
linearities such as soil plasticity are included, this iterative scheme fails
to converge to a solution. The pseudo-dynamic method improved the solution
even when non-linearities are involved, but the errors of equilibrium
imbalance cannot be eliminated completely. The failure of this algorithm can
be attributed to inadequate treatment of the soil-penetrometer interface. In
addition, detailed analyses of the singularities at the shoulder and the tip

may also be necessary if an exact solution is to be found.
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6.1 Introduction

A series of parametric studies on the cone penetration problem has been
carried out. Various combinations of soil properties, initial stress states
and cone geometries vwere studied. An inviscid flow solution was used to
approximate the strain field of soil. The stresses computed are only
approximate because the equilibrium equations are not completely satisfied
throughout the whole soil mass. However, the solution in most regions are of
reasonable accuracy, except in the vicinity of the cone shoulder and (to a
lesser extent) the cone tip, where appreciable errors exist. In this

chapter, the total stresses are computed by adopting p, as the mean pressure

solution.

The results evaluated wusing the strain path method are compared
extensively with the predictions based on cavity expansion theory, which is
currently the state-of-the-art approach in deep penetration problems. It is
shown that wunder certain circumstances, cavity expansion theory and the
strain path method give rise to nearly identical solutiens. But in general,

the results obtained from these two approaches are rvather different.

6.2 FEffect of Cone Geometry

The simple pile problem discussed in Chapter 2 is attractive because it
is amenable to analytical solution. However, 1t this solution is to be
adopted for interpreting cone penetration data, the influence of the tip
geometrry must be thoroughly investigated. This is because the tip of a
simple pile 1is very ditferent from that of conventional cone penetrometers.
In this section, the effect of tip geometry is studied by comparing the
strain and stress paths of soil elements due to the penetration of

penetrometers with different apex angles. The deviatoric stresses and
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strains computed are plotted in the stress space defined by Si and the strain

space defined by Ei respectively.

Figure 6.1 shows the strain paths of soil elements located in the far
field of a penetrometer tipped with a 60o cone. For all practical purposes,
these strain paths are identical to those at comparable normalised distances
due to simple pile penetration (Figure 2.4). The residual values of the
deviatoric strains E1 and E3 at the downstream boundary are due mainly to the
finite size of the mesh used in the numerical computations and do not imply

differences in the two solutions.
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Figure 6.1: Strain Paths in the Far Field of a 60 Cone Penetrometer
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In the far field, where the stresses lie entirely within the elastic
range, the deviatoric stresses Si are proportional to the deviatoric strains
Ei (equation (2.30)). Therefore, the shapes of the stress paths at
comparable radial distances are similar to those of the strain paths. In
addition, these =stress paths are also similar to those in the simple pile
problem. Two important conclusion can be drawn from this result. The
obvious deduction is that the far field conditions in the soil are not
sensitive to the actual shape of +the tip (an example of St Venant'’s
principle). The second conclusion concerns the accuracy of the numerical
scheme. In the simple pile problem, the equation of the streamline is known,
and the stress path can be determined to any required degree of accuracy by
refining the calculation steps. The good agreement between the numerical

results and the analytical solutions for the simple pile problem is therefore

an indication of the accuracy of the numerical scheme.

Different results, however, were obtained for the near field stresses.

The stress paths of two soil elements originally located at normalised
o

distances, (ﬁ_)’ of 0.5 and 1.0 from rhe axis of the penetrometer are plotted
in Figure 6.2. These stress paths are significantly different from those in
the simple pile solution described in Chapter 2. Due to the finite size of
the grid spacings and the extremely high strains that exist in the near
field, some discretization errors are inevitable in the numerical solution.

This, however, could not explain the large difference observed and the

discrepancy must be due to the different tip geometries.

- 6.

(W]



Chapter 6: Stress and Strain in the Soil due to Cone Penetration

| S440

Mo
-9 =15
] \ 05 ] R

05 10 NS 2040 05 0 10/ 15 20

i L

/Ay Y ¢
05 ]
-1 0
g

A
Al
-

o
Figure 6.2: Stress Paths in the Near Field of a 60 Cone Penetrometer

In order to gain a better understanding of the effect of tip geometry,
penetration analyses of penetrometers with different apex angles were carried
out. The near field strain paths of soil elements initially located at a
radial distance of 1.0 R from the axis are shown in Figure 6.3. Regardless
of the cone angles, the values of E2 (which corresponds to the strain mode in
a pressuremeter test) at the level of the cone shoulder are nearly similar.
The main features that distinguish these strain paths are the amount of
deviatoric shear strain E3 and the deviatoric axial strain El' Increasing

the cone angle increases the El and E3 strain components quite significantly.

- 6.4
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For the 10 sharp cone, E1 and E3

of the strain path on the El_EZ plane is nearly parallel to the Ez—axis, and

are relatively small. The projection

thus closely resembles that due to the expansion of a cylindrical cavity. A
major proportion of the soil strain caused by the penetration of a 10o cone
occurs when the so0il 1is between the tip and shoulder elevations. In
contrast, for larger cone angles, the soil on reaching the tip elevation has
already been subjected to a significant level of straining and this is mainly
due to the E. and E, components.

1 3

Elevation
e cone shoulder
1 + cone tip

Figure 6.3: Strain Paths Due to Penetrometers with Different Apex Angles

A good indication of the soil deformations due to cone penetration can
be obtained from the velocities of the soil elements around the penetrometer,

and these are plotted in Figure 6.4. The scale for the velocity vectors are
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kept constant 1in all the plots. The soil velocities are found to be higher
around penetrometers with larger apex angles. 1In the 100 cone, soil was
displaced mainly 1in the radial direction with very little axial movement.
For the blunter cones, the deformation fields are more complex involving

large radial and axial movements.
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Figure 6.4: Velocity Field around Penetrometers with Different Apex Angles

6.3 Stress and Strain around a 10° Cone Penetrometer

Norbury and Wheeler (1987) presented an analysis of the penetration of
an 1infinite cone with very small apex angle. They report that the leading
order terms of the analytical solution for such a body is identical to the
cylindrical cavity expansion solution. It is thus reasonable to assume that
cylindrical cavity expansion theory can provide a good estimate of the soil
Stresses around a penetrometer with a very small apex angle.

o
The strain contours due to the penetration of a 10 cone are shown in

Figure 6.5. Ahead of the cone tip, a small zone of soil is subjected to

- 6.6 -
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Figure 6.5: Strain Contours around a 10 Cone Penetrometer
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tensile radial strains. Above the tip elevation, € is purely compressive
and the contours adjacent to the shaft are parallel to the axis of
penetration. The magnitudes of soil strains above the shoulder level are

broadly comparable to those derived from cylindrical cavity expansion theory.

In addition to the radial and hoop strain components, the strain path
method also predicts finite axial and shear strains. Approximately below the
cone shoulder level, the axial strain is purely compressive, and above it
purely tensile. This reversal in the direction of strain would not occur in
a slender body problem due to the infinite length of the body and the absence
of a sharp corner. This suggests that the slender body theory is strictly

not applicable to a penetrometer which has a more complicated geometry.

The stresses due to the penetration of a 10O cone penetrometer are
shown in Figure 6.6. The solution is based on a soil with a rigidity index
of 100 and an isotropic initial stress state. At the cone-soil interface,
soil stresses increase with the radius ot the conical section, reaching a
maximum at the cone shoulder. Above the cone shoulder, the normal stress
components decrease quite rapidly to reach a steady value some distance from
the shoulder. The stress contours far behind the tip are parallel to the

shaft, suggesting that a steady state condition has been reached.

In order to compare the results obtained from the strain path analysis
vith the predictions by cavity expansion theory, the variations of the
stresses with radial distance have been plotted in Figure 6.7. The soil
stresses shown are for a plane mid-way bhetween the tip and shoulder. The
analytical solution for the expansion of a cylindrical cavity from zero
radius (Sagaseta, 1984) is shown as dotted lines. Good agreement between the

twvo solutions 1is obtained for a zone of soil within a radius of 3 RC from

6.8
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Stress Contours around a 10 Cone Penetrometer
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the axis, where RC is the radius of the conical section (or final cavity
radius). Further from the cone face, the radial stresses still agree very
closely but significant differences are observed in the axial and hoop stress
components. In addition, the strain path method results in finite shear
stresses, 1in constrast to cavity expansion theory which predicts that T, is
zero. The differences in %50 and o, computed by these approaches appear to
be directly related to the magnitude of the shear stress. These differences

are large at the locations where T, is of appreciable magnitude, and vice

versa.
8
. -~ ——— Cylindrical cavity expansion
:3 Orr A (Sagaseta, 1984)
%) 6“
0
QmJ - O_ZZ\
£l Ir =100
I L4 YeeY

Cone angle = 10°

T T
0.3 06 1. 2. 3 6. 10 20. 30. 50.
r/R - Log scale

Figure 6.7: Stress Variation on a Horizontal Plane at the Mid-Cone

The wvariations of o, on various levels of the conical section are

plotted 1in Figure 6.8. As the cone shoulder is approached, the magnitude of

o, close to the cone falls below the value predicted by cylindrical cavity

expansion theory. It 1is apparent that the change in the trend of stress

- 6.10 -
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variation from the strain path analysis can be directly attributed to the
abrupt change 1in the cone geometry at the shoulder. Far from the cone
shoulder, the predicted agreement between a slender cone and cylindrical

cavity expansion has been reproduced quite satisfactorily.

Ir =100
Cone 0nglez10°

— N W U

1 —— -~ Cylindrical cavity expansion {Sagasefa, '8'4)

P ! ! l ]

T I i
03 06 1 2. 3 6. 10, 20. 30. 50
r/R - Log Scale

Figure 6.8: Variation of L with Radial Distance

o
on the Conical Section of a 10 Cone Penetrometer

[o]
6.4 Stress and Strain around a Standard 60 Cone Penetrometer

o}
In this section, the stresses and strains in the soil around a 60 cone
calculated by the strain path wmethod are described. The initial soil
velocities based on the inviscid tlow solution wvere partially corrected for

equilibrium imbalance by the iterative pseudo-dynamic scheme.

- 6.11 -
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o]
Figure 6.9: Strain Contours around a 60 Cone Penetrometer
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The strain field which corresponds to this initial velocity estimate is
shown in Figure 6.9. Beneath the tip, tensile radial strain is again

observed in a small zone of soil. Beyond this zone, ¢ is everyvhere

rr
compressive. Far behind the tip, the strain contours are approximately
parallel to the axis of the penetrometer and the variations of €00 and €.

with radial distance are comparable to the solutions based on cylindrical

cavity expansion theory.

The contours of the axial and shear strains are shown in Figures 6.9c
and 6.9d respectively. The cone shoulder once again marks an important
transition 1in the axial strain direction. Below the shoulder level, €, is
compressive, and above this level € is entirely tensile. A good indication
of the level of straining in the soil is provided by the octahedral shear
strain, Yoor? and this is plotted in Figure 6.10. The zone of maximum shear

ct

straining was located just adjacent to the penetrometer, and the strain

-[,..‘ Yod iﬂo/o

J I T

6 L 2
r/R

[o]
Figure 6.10: Octahedral Strain Contours around a 60 Cone Penetrometer
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(a) (b)

10

(Y]
Figure 6.11: Stress Contours around a 60 Cone Penetrometer
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magnitudes are found to be very much higher than those normally encountered

in conventional laboratory tests.

The stresses which correspond to the assumed strain field for a soil
with a rigidity index of 100 are shown in Figure 6.11. The initial stresses
in the so0il were assumed to be zero. High stress intensities are observed
around the cone face. The stresses are at a maximum in a region just below
the cone shoulder. Above the shoulder level, the normal stresses drop off
rapidly over a distance of about 5 R to reach a steady value. The stress
contours far behind the cone tip are parallel to the shaft indicating that a

steady stress state has been reached.

Figure 6.12 shows the stress variation on a level mid-way between the

10

—---— cylindrical cavity
expansion (Sagaseta, 1984)

I, =100

Cone angle= 60°

S’rresses/cu

-2 — S T T

03 06 1. 2. 3 6 10.  20. 30. 50.
r/R - Log Scale

Figure 6.12: Stress Variation on a Horizontal Plane

o
Mid-way between the Shoulder and Tip of a 60 Cone Penetrometer
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tip and the shoulder. Close to the cone, the total stress components are
higher than those predicted by cylindrical cavity expansion theory. The
variations of the stresses with radial distance derived from these two
me thods also differ significantly. It has often been assumed that
cylindrical cavity expansion theory can be used to provide an estimate of
soil stresses around the shaft far from the tip. This, however, is not
supported by the results from strain path analysis which shows a
significantly different distribution (Figure 6.13). The radial stress o,

adjacent to the shaft is smaller than ., and LIV in contrast to the stress

distribution at the cone face region where o, is the largest stress

component.
8 —— ,
~—-— Cylindrical cavity
] Expansion (Sagaseta, '8%4)
6 AN Cone angle = 10°
5 | Uz I =100
%
(%)
8 -
o
2_,4
0 Lz,
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0.3 06 1. 2. 3 6. 10. 20. 30. 50.
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Figure 6.13: Stress Variation on a Horizontal 20 R above the Tip
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The wvariation of the stress components along a vertical grid line is
illustrated in Figure 6.14. The rapid reduction in the normal stresses when
the soil emerges from the shoulder level is clearly evident and this is
accompanied by a reversal in the shear stress component, Top- Changes in the
relative magnitudes of the stress components are indicative of rotations of
the principal stress axes. This result has important implications on the
interpretation of penetration test data because the rotations of principal

stress axes 1is known to have a significant influence on the stress-strain

behaviour of soil.

Figure 6.14: Stress Variation along a Vertical Grid Line
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6.5 Pailure Zone due to Cone Penetration

A useful indicator of the deformation mechanism around a penetrometer
can be obtained from an analysis of the failure zone, which is defined as a
region in which the soil is deforming plastically. The failure zones around
penetrometers with cone angles of 100, 60O and 1200 in a soil with a rigidity
index of 100 are plotted in Figure 6.15. The cone angle is found to have an
appreciable effect on the extent of yielded soil around the tip. Above the

shoulder 1level, however, the zones of the plastically deformed soil are

unaffected by the apex angles.

.
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Figure 6.15: Failure Zones around Cone Penetrometers

The failure zone around a penetrometer is most conveniently described
by the elasto-plastic boundary which divides the soil into two regions in
vhich the =soil is deforming either plastically or elastically. In the cone
penetration problem, the size of the failure zone is characterised by two
parameters Rp and Zp' The radial distance ot the elasto-plastic boundary
from the axis of the penetrometer, at a large distance above the tip, is

denoted by Rp. The distance of this boundary from the cone tip, measured

6.18 -



Chapter 6: Stress and Strain in the Soil due to Cone Penetration

along the axis of penetration, is represented by Zp. The values of these two

parameters for different values of Ir are shown in Figure 6.16.

The normalised plastic radius, Rp/R, is found to be independent of the
cone angle but is significantly affected by changes in Ir' As Ir increases,
the zone of yielded soil around the cone also increases. The radius of the
elasto-plastic boundary in the expansion of either a <c¢ylindrical or a
spherical cavity from. zero radius in an infinite medium, normalised by the
current cavity radius, is shown in the diagram for comparison. The variation
of Rp with Ir is very similar to that predicted by the expansion of a
cylindrical «cavity although the normalised plastic radius from strain path

analysis was slightly smaller.

0

LASTIC

p o e ¢ CYLINDRICAL
CAVITY EXPANSION
(SAGASETA,1984)

ELASTIC

L]

SPHERICAL
CAVITY EXPANSION

Figure 6.16: Variations of Rp and Z_with Ir
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The values of Zp due to the penetration of 600 and 120o cones are
comparable to the spherical cavity expansion solution. This apparent
similarity is mainly due to the datum from which Zp is being measured. It is
obviously convenient to use the cone tip as a reference datum, but it is more
difficult to justify that this point corresponds logically to the centre of
the spherical cavity from which the theoretical solution is based. Hence,

the good agreement between the two solutions for the range of Ir studied is

partially fortuitious.

A more interesting trend is observed in the case of a 10o penetrometer.
The computed Zp is found to be very different from the cavity expansion
solution. For Ir values less than about 100, the elasto-plastic boundary is
coincident with the cone tip. This means that the soil surrounding the cone
tip can be divided into an elastic zone and a plastic zone. Similar result
has also been obtained analytically by Sagaseta (1984) who studied the
problem around the tip of an infinite cone. Sagaseta reported that the soil
around the tip can be in one of the two possible stress states. 1In case I,

the entire zone of soil surrounding the tip is in a plastic state. However,

Plastic soil

Elastic soil

Elastic soil ]

CASE 1 CASE II

Figure 6.17: Possible Soil States Due to the Penetration of an Infinite Cone
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for certain combinations of Ir and cone angle, both plastic and elastic
states can exist around the tip and this is classified as case II. These two

possible situations are illustrated in Figure 6.17.

For a 10o cone, the analytical result predicts that the transition from
case I to case II occurs at an Ir of approximately 200. This is much higher
than the numerical result obtained from the strain path approach. The
discrepancy in the solutions may be caused by discretization error due to the
finite mesh size. It is possible that the agreement between the numerical
and the analytical results could be improved by adopting a finer mesh for the
strain path analysis. It is nevertheless significant that the trend of the
theoretical prediction has been successfully reproduced in a numerical
calculation for this 1is an indication that the solution algorithm has been

formulated correctly.

6.6 Tip Resistance

The tip resistance derived from a cone penetration test is defined as
the average pressure acting on the cone during steady penetration. This is
one of the most important quantities obtained from the CPT and is widely used
in empirical correlations to determine the undrained shear strength of

cohesive soil.

By definition, the tip resistance can be evaluated from the equation:

(Pnsin(e) + Ptcos(e)v dA

q. = . (6.1)
sin(0) dA

vhere: P = Component of soil stress normal to cone face
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P = Component of soil stress tangential to cone face

dA = infinitesimal cone face area

The normal and tangential stress components are evaluated from the soil

stresses by a simple Mohr circle construction.

In the strain path method as implemented here, it is not possible to
control the roughness on the cone ftace. Hovever, Pt obtained from the
analysis 1is approximately equal to zero, so the calculated tip resistance is
relevant for a smooth cone. 1In general, the deviatoric stresses in the soil
adjacent to a rough cone face are ditferent from those computed here.
Nevertheless, the roughness on the cone face is not expected to change the

mean pressure in the soil significantly and it is possible to estimate the

tip resistance of a rough cone by the following approximate relationship:

(q.) = (q.) + Tgeot(9) (6.2)
" rough " smooth ]

where Tf is the mobilised friction on the cone face.

6.6.1 Effect of Rigidity Index on Tip Resistance

A series of analyses have been performed to investigate the effect of
the rigidity index of soil on cone resistance. The initial stresses in the

[e]
soil were assumed to be zero and a standard 60 cone was used in the

analysis. The cone resistance is evaluated from the computed stress state
using equation (6.1). The results of these analyses are shown in Figure
6.18. The cone resistance, T normalised by the undrained shear strength,

L is found to increase with the rigidity index of =o0il. For comparison,

the limit pressures required to expand a spherical cavity and a cylindrical

cavity have also been plotted in the same figure. It is observed that q,
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broadly exhibits the same trend of variation as the two cavity expansion
limit pressures but the magnitude of 4. is significantly higher. 1In

o]
addition, for a 60 <cone, spherical rather than cylindrical cavity expansion

provides a closer approximation to the tip resistance.

A / ¢
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o]
12 o -
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i o cavity expansion
[¢]
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cavity expansion
26
4 o |120%
o| 60° 26
] Yt
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Figure 6.18: Variation of q. with Ir

The effect of cone angle on tip resistance was investigated by
repeating the above analysis for cone angles of 100 and 1200. The trend of
variation of q. with Ir for each of these two cone angles is similar to that
for a 60O cone. For a particular value of Ir’ the magnitude of . is
also dependent on the cone angle. The greater the cone angle, the greater ic
the computed Q.- It is also interesting to note that although the stresses
around the 10o cone are similar to the prediction based on cylindrical cavity

expansion theory, the wvalue of q. is considerably higher than the

corresponding limit pressure.
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Experimental evidence suggests that cavity expansion theories generally
under-predict the cone resistance. The value of . evaluated by the strain
path method 1is higher than the cavity expansion limit pressure and can, in

this sense, be considered to provide a better estimate.

6./ Effect of Anisotropic Initial Stresses

The results that have been presented so far are based on an initial
stress state which is identically zero. For the deviatoric soil model
adopted, yielding of soil is independent of the mean pressure. Hence, these
results are applicable to the situation wvhere the initial stress state is
isotropic, but non-zero. The in-situ stress value will appear as an additive

term to the solution derived from zero initial stresses.

In a natural clay deposit, the horizontal stress is generally different
from the wvertical stress. Anisotropy in the initial stresses could have a
significant influence on the stress changes in the so0il due to cone
penetration and this 1is investigated 1in this section. The analyses wvere
performed with a standard penetrometer having an apex angle of 60O and the

soil was assumed to have a rigidity index of 100.

Initially, two arbitrary stress conditions were considered. The

lateral and vertical in-situ stresses are as follows:

%ho %0

Case A: T = 2.0 and E;” = 3.5 (6.3)
u u

and
%ho %o

Case B: — = 3.5 and o 2.0 (6.4)
u u
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The results obtained from the strain path method are presented as
stress contours in Figure 6.19 and 6.20 for cases A and B respectively. The
distributions of the radial stresses in the two cases are generally similar.
Significant differences, however, are observed in the axial and hoop stress
distributions. Despite the higher in-situ vertical stress in Case A, the
final value of o around the cone in Case B is considerably higher. This
higher axial stress value is duly reflected in the cone resistance, q.- which

has a value of 11.6 <, for case A and 13.1 . for case B.

Conventionally, the «correlation betwveen Ao and SH is expressed by the

equation:

Kk = T (6.3)

The Nk factors computed for the two initial stress states A and B are found
to be 8.1 and 11.1 vrespectively. The Nk factor for a soil with the same
rigidity 1index but an isotropic initial stress state is about 9.6. These

results show that the initial stress condition has a considerable effect on

the computed Nk factor.
In order to establish 1in greater detail the effect of the initial
stress conditions on the Nk factor, the analysis has been repeated for other

combinations of %o and %o For this purpose, the initial stress state was

characterised by a dimensionless factor, 4, vhich is defined as:

b= (6.6)

Using this factor, all possible combinations of horizontal and vertical

stresses are covered in the range of -1<4<1.
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Figure 6.20: Stress Contours due to Cone Penetration
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The wvariation of the computed Nk with the normalised initial stress
factor A is plotted as shown in Figure 6.21. The variation of Nk with 4 can
be approximated very closely by a straight line. The gradient of this line
is found to be approximately -2. This result indicates that de is almost

independent of %Yo and is affected mainly by the changes in %o Futhermore,

it suggests that if the cone factor is re-defined in terms of o’ then an

almost unique value can be obtained.

Ny = ——— (6.7)

This Nh factor can bg considered to be more appropriate for correlation with
soil properties because it 1is independent of the initial stress state.
Unfortunately, an accurate determination of the in-situ lateral stress in the
soil 1is extremely difficult to achieve. The Nk factor must therefore be
retained for correlation purposes. When Nk is used for interpreting CPT

data, due <consideration should be given to the effect of stress conditions

in the ground on the tip resistance.

9.~ 0y

£ L
|
—
(g

<%

L

N |11 f
N 1 1 1 10 1 1§ 1 E—> GV—Gh
0.75 05 025 %025 05 075 [ 2¢y

AY

Ce - N

Figure 6.21: Variation of Nk with A
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6.8 Cone Factor as Evaluated by the Strain Path Method

WVhen the Nk factor evaluated by the strain path method is plotted
against the Jlogarithm of Ir’ a straight line relationship is obtained. If
the effect of the initial stress anisotropy and cone roughness are taken into
consideration, the Nk factor for a 60o cone can be expressed approximately
as:

Nk = 0.4 + 21n(1r) - 20 + 2« (6.8)

where o is the roughness coefficient of the cone face and is defined as:

/3Tf

7o (6.9)
u

o = -

For a perfectly rough cone, o = 1 and for a perfectly smooth cone, « = O.

The term 24 in equation (6.8) accounts for the effect of the
anisotropic initial stresses. The influence of cone roughness is catered for
approximately by the term 2«a. For extreme combinations of soil condition and
cone roughness, the value of Nk may vange from 6.2 to 16.8 as illustrated in

Table ©6.1. This range of values i1s quite consistent with the Nk factors

obtained in both field and lahoratory tests.

I A o N
I k
50 1 0 6.2
500 -1 1 16.8

Table 6.1: Nk Values for Two Combinations of lr’ A and o
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6.9 Summary

The suitability of the strain path method as an approximate solution
procedure has been validated by the analysis of a penetrometer with a sharp
lOoconical tip. Slender body theory predicted that the stresses around a
very slender infinite cone can be approximated by the expansion of a
cylindrical cavity. This result has been reproduced quite satisfactorily by

the numerical procedure formulated in this thesis.

The cone angle has a significant effect on the deformation mechanism
around the penetrometer tip. This is reflected in the shapes of the failure
zones around penetrometers with different apex angles. The size of the
failure =zone 1is also affected significantly by the rigidity index of soil,
and increasing Ir increases the extent of soil around the penetrometer which
deformed plastically. The stresses and strains in the far field of the
penetrometer are not significantly affected by the cone geometry. In the
near field, however, the cone angle has a major effect on the stresses and
strains in the soil. Larger cone angles are found to result in greater cone

resistance.

The value of Q. computed from the strain path method is dependent on
the rigidity index of the soil. The variation of q. with Ir is broadly
similar in trend to that predicted by cavity expansion theory. The magnitude

of SHE however, is higher than the limit pressure for either cylindrical or

spherical cavity expansion.

The cone factor 1s <significantly atfected by in-situ stress state,
This influence is mainly due to the dependence of the cone resistance on the
horizontal stress. When the «cone factor is expressed in terms of ot &n
almost unique value which is independent of the stress state can be

obtained.
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7.1 Specific Considerations for the Finite Element Formulation

The rate of penetration for a standard CPT in clay is generally
considered to be sufficiently fast to give rise to undrained conditions. 1In
such conditions, the «clay behaves as an incompressible material and this

feature must be included in the finite element formulation.

The rigidity index of natural clay is typically in the range of 30 to
500. For low values of Ir’ a displacement controlled finite element analysis
may have to be carried out for a large displacement before the limit load
condition 1is reached. These large displacements and therefore large strains
features of the problem must be taken into account in the formulation of the
finite element -equations in order to obtain a correct solution. When large
displacements and large soil rotations are involved, the choice of the stress

rate definition also merits special consideration.

7.2 Description of Kinematics

For a body subjected to infinitesimal deformation, it is always possible
to define strain in a unique way. This is not true when the deformations are
large, since a wvariety of co-ordinate systems may be wused which will
inevitably vresult in different strain definitions. In continuum mechanics,
the deformation of a body subjected to large displacements is usually

described by either a Lagrangian ov an Eulerian reference system.

Consider a bhody subjected to large displacements as illustrated in

Figure 7.1. At a given time Lo the position of a trypical material point,

PO, in the deforming body is described by the co-ordinate vector, a,,

7.1
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y Current’ configuration
* p Time =t

{C

tia]

Initial configuration
Time= t,

T
X

Figure 7.1: Large Displacement Deformations

relative to some fixed reference frame. At time t, the same material point

has moved to position P which is described by the global vector, X in the

same reference frame.

In the Lagrangian description, the co-ordinate vector X, is related to

a., in an equation of the form:

X, = x(ﬁi, t) (7.1)

~1

and the deformations are described in terms of a strain measure:

ax ax
S . ] 7.2)
ij 2 aai da ij
where: 8. . is the Kronecker delta
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In the Eulerian description, the velocity of a material point, ii’ in

the current configuration is considered to be related to the co-ordinates of

the material point X, and the time t in the form:

)}i - >'<(xi, t) (7.3)

The deformation of the material 1is described by the rate of deformation

tensor defined as:

. 1 (7.4)

Yhen the deformation is infinitesimally small, these two descriptions
yield the same results. When the deformation 1is finite, the different
kinematic descriptions give rise to different strain definitions, so clear

distinction must be made between the two systems.

These two kinematical descriptions have both been used in finite element
analysis of large strain problems (Hibbitt et al., 1970; Carter et al., 1977;
Osias & Svedlow, 1974). The choice of a kinematical description is arbitrary
and 1is influenced to a large extent by the material behaviour that is being
modelled. The kinematical equations in an Bulerian description are well
suited to the analysis of material for which the constitutive laws are
conveniently expressed in terms of stress and strain rates, as is often the
case 1in Soil Mechanics. The Eulerian description has also been widely used
in fluid flow analysis where the deformation is described in terms of the
velocity field in a fixed reference frame, and was adopted in the flo=
computation described in Chapter 3. To preserve the consistency in approach,
the Eulerian description has been adopted in the formulation of the finite

element equations.
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7.3 Objective Stress Rate

One of the major considerations in continuum mechanics is the selection
of a suitable definition of stress rate for wuse in the constitutive
equations. 1In a consistent mathematical formulation, the stress rate adopted
should satisfy the «condition of being objective. This condition requires

that the stress rate vanishes under a rigid body motion.

This definition of objectivity is mnot sufficiently vrestrictive to
provide a unique definition of stress rate (Prager, 1961). As a result,
several definitions have been proposed (Jaumann, 1911; Truesdell, 1953
Oldroyd, 1950). Amongst these, the Jaumann definition has been most commonly
used in large strain finite element analysis. This popularity is mainly due
to the desirable feature that the wvanishing of this stress rate implies
stationary behaviour of the stress 1invariants (Prager). The Jaumann

definition is adopted in the present study and the stress rate is given by:

= 0,., - oikwjk - Ujkwik (7.5)

7.4 Incompressibility

It is well known that the analysis of incompressible materials using
the finite element method based on the conventional displacement formulation
often gives vrise to severe numerical difficulties. Nagtegaal et al. (1974)
have shown that this is due to the excessive number of kinematic constraints
imposed on the incremental displacement field by the incompressibility
condition. Since many of the elasto-plastic constitutive rvelationships used
in Soil Mechanics requive that the incompressibility condition is satisfied
throughout the material, the effect of incompressibility on the results of

computation will have important practical implications.
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The detrimental effects of the incompressibility condition can be
divided into two main categories. Firstly, in a calculation in which the
material stresses are of primary importance, the effect of incompressibility
is to produce large oscillations in the stresses across an element (Naylor,
1974). Secondly, in a collapse load calculation where the limit load is
sought, the excessive kinematic constraints imposed by the incompressibility
conditions often result in an over-stiff response. In such cases, it is not
uncommon for the finite element results to over-estimate the limit load, and
in extreme cases may even indicate no limit load when one is known to exist

(Sloan, 1981).

Several methods have been proposed to overcome the detrimental effect of
incompressibility. One of the earliest approach involved the so called
'reduced-integration’ technique. This method uses a lower order numerical
integration scheme than that required for exact integration to evaluate the
stiffness matrix. The use of an 8-noded quadrilateral with a 4-point Gauss
rule 1is a common example (Naylor, 1974). Several modified forms of the
'reduced integration’ technique have also been used. Nagtegaal et al. (1974)
proposed an approach in which the volumetric strain rates and the velocities
are admitted as independent variables and different geometric expansions are
used for each of these variables. This method is described as ’selective

integration’ by Malkus and Hughes (1978).

A particularly comprehensive analysis of the problems associated with
limit load calculation involving incompressibility has been given by
Nagtegaal et al. (1974). Having identified the eftfect of incompressibility
constraints, they proposed a critevion which must he satistied if the finite
element analysis is to yield a satisfactory solution. This criterion, which
is based on a limiting mesh consisting of an intinite number of elements of

identical type, requires that the number ot degree of freedom in an element

7.5
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must be greater than the number of constraints imposed by the
incompressibility condition. Sloan & Randolph (1982) show that the criterion
proposed by Nagtegaal et al. can be satistied by the use of higher order
elements. This hypothesis was wverified by Sloan (1981) who performed a

series of small strain collapse load calculations using triangular elements.

As an extension to the analysis for the limiting mesh, Sloan & Randolph
also analysed the necessary conditions for a mesh consisting of a finite
number of elements to be suitable for collapse load calculations. This
analysis has shown that the suitability of any finite element mesh is
governed by a factor, k. This factor is defined as the ratio of the number
of degrees of freedom to constraints per element derived from a mesh with an
infinite number of elements. When k is greater than unity, most meshes
generated will be suitable for limit load ralculations. The reverse is true
wvhen k 1is less than unity. When k 1is equal to wunity, it has been
demonstrated that at least half of the boundary degrees of freedom must be

left unrestrained in order to satisfy the criterion.

The philosophy of the last approach has been adopted in the finite
element calculation described 1in this thesis. The formulation is based on
the 15-node cubic strain triangle which is the lowest order element for which

the necessary criterion given by Sloan & Randolph holds.

7.5 Formulation of Finite Element Equations

In an Eulerian description, the instantaneous rate of deformation may be

described by the velocity gradients as:

R —— (7.6)

7.6
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. sz

Y2z T 3z (7-7)
v

& . _r (7.8)

66 I

. avr avz

Yrz = 3z _ar (7.9)
1[8\/r avﬁ]

<
w = ‘2"5‘ — 3 (7.10)

where v and v, are the velocity components in the r and z directions

respectively. The corresponding Jaumann stress rates are:

Qg

= o - 20T (7.11)
rr rr rz
v .
o = 0 2wt (7.12)
zz zz rz
v .
5o = Ygg (7.13)
¥ = T + (o - o) (7.14)
rz rz rt zz )

The superior dot denotes the time derivative with respect to the fixed

Cartesian axes.

7.5.1 Element Stiffness Matrix

The formulation of the element stiffness matrix is based on the iso-

parametric concept (Zienkiewicz, 1979). The conventional small displacement

formulation is modified to include the effects of rotation and geometrical

distortion. In the derivation of the finite element equations, the nodal

global co-ordinates of a point in the element is (x,y), and this corresponds

to the co-ordinates («,8) in the fixed reference frame.

7.7
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The global co-ordinates of a typical point in an element, x, are related

to the vector of nodal global co-ordinates, X, by

x - [N] X (7.15)

where, [N], the matrix of shape functions, is a function of the local co-

ordinates (o, B). Using the 1iso-parametric concept, the velocity, i, of a

typical point is related to the nodal velocity, i, by a similar equation,

x = [N] X (7.16)

The strain rate vector is defined as:

rr
Z27

£ = €50 (7.17)

rz

= L] IN] X (7.18)

- [B] § (7.19)

wvhere [L] is the operator matrix:

9
a 0
3
1 :
(L] = | ¢ 0 (7.20)

3 3

az or

3 2

9z ar
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vector also includes the rotation rate and this has been

found to be a convenient way of dealing with the Jaumann terms in the stress

rate definition (Carter et al., 1977; Burd, 1986).

The stress rate vector, &, which is energetically conjugate to £ y1s

%rr W
o
zZ

o = %90 (7.21)
T
rz
0

The total strain rate can be decomposed into two parts,
g = & + g (7.22)

ce
vhere ¢

elastic strain rate

Law:

vhere [D]

isotropic material

e

the

K

K

K

elastic component, and ép, the plastic component. The

. v
is related to the Jaumann stress rate, o, through Hooke’s

! aq

D¢ & (7.23)

. . . e
matrix of elastic constants. In axisymmetry, [D]~ for an

is given by:

4G 2G 2G )
T K - 3 K - 3 0 0
2G 4G 2G
¢ .26 (

3 K + 3 K : 0 )
2G 2G 4G
2 A Koo 46 0 0 (7.24)
3 ) 3

0 0 G 0

0 0 0 0
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where K and G are the elastic moduli of the material.

The plastic strain rates are derived from the plastic potential g(o)
based on the normality condition,

g - Ab (7.25)

wvhere: b = (7.26)

cv!q)
H i)}

and X 1is a scalar multiplier which must be positive in order to satisfy the

requirement that plastic work done is always positive.

If the yield function is given by f(o) = 0, then on plastic yielding,

the stress state will stay on the yield surface, thus:

al ¥ - 0 (7.27)
. _of
wvhere: a - 5 (7.28)

Substituting equations (7.22), (7.23) and (7.25) into the above expression

gives:

N - . (7.29)

This expression can bhe substituted in equation (7.22) to obtain a

relationship between the Jaumann stress rate and the total strain rate:

[D]P & (7.30)

' aq

7.10 -
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wvhere: [D]ep - [[D]e . [D]p} (7.31)
(D)% bal [D]°
and [D]p = S (7.32)
E~iT [D]e b

The matrix [D]p is applicable whenever the stress state of a material point
is plastic. If the stress state lies inside the yield surface, [D]p is set

to zero.

The Jaumann stress rate equation can be expressed as:

6 - o - [R] & (7.33)

0 0 0 0 T
rz
0 0 0 0 -T
rz
vhere: [R] = 0 0 0 0 0 (7.34)
o - o
0 0 0 0 Z7Z rr
2
0 0 0 0 0

Combining equations (7.30) and (7.33), we obtain an equation which relates

the Cauchy stress rate to the total strain rate:

o = [P Rl (7.35)

By the wvirtual work principle, a set of equivalent nodal forces, P,

which is consistent with the internal stiesses in an element ig given by:

Po- J 817 o dv (7.36)

7.11
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Equation (7.36) can be transformed using the reference co-ordinates (o, B)

into:
T .
P = [B]" o 2nr det[J] do dB (7.37)
vhere [J] is the Jacobian of transformation from global to local
co-ordinates. This equation may be differentiated with respect to time, as

described by Burd (1986), to give a rate equation:

rr

P - (B]T6 2nr det[J] do dB « JJ (181 2mr det[J]) o da dB (7.38)

e

p - 2nr[B]T[[D]eP N [R]][B] X det]J] do d JJ[C] X do dg (7.39)

The matrix |[C], called the distortion rate maxtrix, is evaluated by
expanding the second integrand in equation (7.38) and re-grouping the
relevant terms. The elements of the matrix [C] for a 15-node cubic strain

triangle are given in Appendix 7A.

7.6 Constitutive Relationship

The so0il is assumed to behave as an elastic-perfectly plastic bi-linear
material with constant moduli. In the plastic regime, the material behaviour
is governed by the von Mises yield criterion as described in Chapter 4. An

associated flow rule was adopted for describing the plastic deformation, so

g(o) = f(g) (7.40)

For such a constitutive model, the plastic material matrix [DJp is given by:
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(s.) s s Sg ST 0
“z°r (Sz)z z" 8 z rz 0
D] - - z(‘? sgS, SgS, (Se)z .. . .
R S Tr252 259 (Trz)2 0
0 0 0 0 0 |

vhere S,y Sg and s, are the deviatoric stresses.

7.7 Strain Rate Calculations

The basic finite element equations are solved by an incremental approach
using small load steps. At each calculation step, the Gauss point stresses
are evaluated by integrating equation (7.35) and this requires the

determination of the strain rate at each Gauss point.

Since the 1incremental approach adopted <consists of -evaluating the
primary wvariables at discrete intervals, information regarding how these
variables change during the interval is not available. 1In order to compute
the strain rates, it 1is necessary to make some assumptions concerning the
variation of the velocities or the strain rates during the load increment.
Houlsby (as described by Burd, 1986) assumes that the strain rates are
constant and derives a set of closed form solutions for the strain rates in a
plane strain formulation. Carter et al. (1977) adopted an averaging
procedure for all time dependent variables in an axisymmetric analysis and
the mean values of these quantities during a load step are used in the
calculation. In this thesis, the strain rate calculation as described by

Carfter et al. is adopted.

7.13
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7.8 Stress Update Calculations

At each increment, the Gauss point stresses are updated using the
appropriate constitutive law. At the beginning of each calculation step, the
stresses at each Gauss point can either be in an elastic state or a plastic
state. In the present formulation, all stress increments are first assumed
to be purely elastic regardless of the initial stress states. If the updated
stress state violates the yield criterion, then the calculation is repeated
using the appropriate constitutive equations. This has been found to be
successful for dealing with the possibility of elastic unloading (Davies et

al., 1974).

7.8.1 Elastic Behaviour Including Jaumann Terms

The deviatoric Jaumann stress rates can be written as:

Yol et (7.42)
I T Iz

v .

Y L e (7.43)
Z Z rz

¥ . % (S - (7.44)
rz rz T Sy Sy :

For a purely elastic behaviour, the mean pressure at the end of the load
increment is:

P = D, o+ Kav (7.45)

vhere Av is the volumetric strain increment and Py is the mean pressure at
the start of the load increment. The deviatoric Jaumann stress rates are

related to the deviatoric strain rates by the following relationships:

v

s, = 26e, (7.46)

g ape (7.47)
Z z

- 7.14
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A<

- Gr 7.48
rz Cer ( )
vhere ér and éz are the deviatoric strain rates as defined in Chapter 4.
Substituting the above expressions into the deviatoric Jaumann stress rate
equations results in three differential equations wvhich relate the deviatoric
stresses to the deviatoric strain rates. From these equations, the updated

elastic stresses can be evaluated as (Houlsby, 1986):

s - 2Ge.t + s (7.49)
a a ao
B . gin(2wrt)] 5 .
Sy = sbocos(2wt) + 2Geb[ ) ¢ _1031n(2wt)
. 1 - cos(Zwt)]
N 2<3yrzt[T—w (7.50)
B . Sin(Zwt)] 1 »
T, = Tocos(2wt) + GYFZ[—~§6—-—— - 2sb051n(2wt)
- (1 - cos(2wt)
N (7-5D)
vhere: S =S+ S S, =S - S_ (7.52)
a T z b X z
e, =e + ¢ e, = €, e (7.53)
and s, s and T are the values at the start of the calculation step.
ao bo 0

Evaluation of equations (7.50) and (7.51) with small w values could lead to
significant errors. To overcome this problem, the equations are expressed in
a Taylor’s series expansion retaining only the first order rotation terms

wvhen w is small:

. . 2
Sho * 2Gebt + ATowt + 2Gyrzwt (7.54)

. 9
wt -~ Gebwt“ (7.59)
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7.8.2 von Mises Plasticity Including Jaumann Terms

I1f the rotation rate, w, is very small, it can usually be dropped from
the stress vrate equations without any significant effect. The analytical
solutions relating stress increments to small strain increments derived in
Chapter 4 would then be applicable for the stress update calculation in the

plastic range.

In general, however, the rotation effect must be taken into account in
order to provide a consistent description of material behaviour. When the
rotation rates are included in the stress rate equations, it is necessary to
solve for the plastic stresses numerically. In this thesis, a Runge-Kutta
scheme described by Sloan (1984) has bheen adopted for stress update
calculations when the stresses at the Gauss point become plastic. By
adopting such a scheme, it is possible to control the accuracy of the stress

solution by varying the number of sub-increments in each load step.

/.8.3 Calculation of Yield Surface Intersection

For the case when the material becomes plastic during the load step, it
is necessary to determine the fraction of the increment which is elastic.
This can be found by combining the equations for the elastic stresses with
the von Mises yield function. The time at which intersection with the yield

surface occurs is then given by:

2 (1 - cos(2mt)) 4 sin(Zwt) ~
AT+ Ayt v A, . - A, s hg o= U (7.56)
9.
where: Ay = 1267 e; (7.57)
_ 2 -
A2 = 1.,(15806,d (7.58)
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. Tt e s . o
A3 ’ ch(“Toeh Shoer) v 26 (er * “b) (7.59)
A4 = 2G(2TOY[Z + Sboeb) (7.60)
2 22 402
Ao = A0S+ 51650 F S0 Y T T 3% (7.61)

Equation (7.56) can be solved by the Newton-Raphson iterative scheme with the

initial estimate of t given by:

Fb
t, - A (7.62)
b a
vhere: Fa - vyield function at the start of the calculation step.
Fb = vyield function at the end of the load step assuming

a purely elastic response.

7.8.4 Yield Surface Correction

WVhen the plastic stresses are evaluated numerically, there 1is a
posgibility that the final stress state may lie outside the yield surtface.
The error associated with such a violation of the vyield criterion is
cumulative and the offending stress state must be corrected back to the yield

surface.

There 1is no wunique way by which yield surface correction should be
performed and the choice of a correction algorithm is largely arbitrary. In
this thesis, vyield surface corrections are carried out by keeping the
direction of the principal stresses fixed (Carter et al., 1977), and the
stresses are corvected along a path normal to the yield surface (Figure 7.2).

C . .
The corrected stresses, o,y are given by:

o, = ; i=1, 2, 3 (7.63)

7.17 -
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(01‘03)2 + (03'01)2 + (01—02)2

wvhere: Q = 5 (7.64)
B¢
u
o, = uncorrected principal stresses.

yield surface

Ok—\

~

Figure 7.2: Yield Surface Correction

7.9 Solution Scheme

In a finite element analysis where material or geometric non-linearities
are present, it is important that an appropriate algorithm is chosen for
solving the resulting non-linear equations. This is usually achieved by an
incremental procedure. Within each increment, it is important to ensure that
the equilibrium equations are approximately satisfied. Many different
approaches have been proposed and these can be divided 1into two main

categories.

The first category uses an approach generally called the Euler scheme.
In the simplest algorithm, the exact solution is approximated by a series of
straight lines. FEach of these straight line segments has a gradient equal to
that of the exact curve at the start of a load increment. More refined

variants of this approach have also been used sucessfully. Carter et al.

- 7.18 -
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(1977) modified the basic scheme by using the slope of the exact curve at the
mid-point of the increment. Another variation employs the stiffness at the
start of the load increment but provides a correction procedure for the out-
of-balance nodal forces at the next increment (Hofmeister et al., 1971;

Sloan, 1981).

The second category is based on the Newton-Raphson iterative principle.
In these schemes, the exact solution which corresponds to a load increment is
approximated by a series of iterations (Figure 7.3). Different methods have
been used to evaluate the stiffness matrix in each iteration. In a ’true’
Newton-Raphson scheme, the stiffness matrix which corresponds to the updated
stress state 1is evaluated at each iteration. This can lead to excessive
computing time Dbecause of the need to evaluate and invert the stiffness

matrix tor each iteration. Nayak & Zienkiewicz (1972) described an

5i¢‘|

b}

l '

Displacement

Figure 7.3: Newton-Rahpson’s Solution Scheme
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alternative procedure called the ’initial stress’ method in which the
stiffness matrix calculated at the start of the increment is used for all the

iterations within an increment.

In this thesis, the modified Euler scheme described by Sloan (1981) is
adopted. This algorithm has been shown to be efficient and numerically
stable 1in a series of collapse load calculations by Sloan. A high degree of
accuracy can be obtained provided that small increments are used. The
application of this method is illustrated in Figure 7.4 for a problem with a

single degree-of-freedom.

AFio]

AR

P ¢&— — — —

Af.

!
l
|
I
l
l
|

o

46, l‘Asm Displacement

Figure 7.4: Modified Fuler Scheme

The general finite element equation can be written as:

F o= [K] 8 (7.65)

- 7.20 -
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. . h . .
where F 1is the imposed nodal load. At the start of the kt iteration,

equation (7.65) 1is solved using the stiftness matrix based on the initial

stresses to give a set of nodal displacement 8. The Gauss point stresses

within the element are updated using the method as described in section 7.3.
The nodal forces which are consistent with the internal Gauss point stresses

and the updated geometry are calculated using the virtual work equation:
T
P = J [B] o dV (7.66)

The nodal force vector, P, evaluated from equation (7.66) is generally

different from the applied nodal load, F. The difference between these two

quantities 1is the out-of-balance nodal forces, AR. During the subsequent
calculation step, &R 1is added to the load increment to obtain a better

approximation to the exact non-linear response.

7.10 Calculation of Consistent Nodal Forces

In a finite element analysis, load application is effected through
concentrated loads acting at the nodes. When body forces and surface
tractions are 1involved, these must be transformed into an equivalent nodal

load vector.

7.10.1 Body Forces

Consider an element which 1is subjected to a body force vector, Fb'

Under an arbitrary displacement, denoted by a nodal displacement vector §,

the work done by the body forces is given by:

v o= | st P, dv (7.67)

7.21 -
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By the wvirtual work principle, the equivalent nodal force vector, Pb, is

given by the equation:

P, - JJ Nyt P, 2nr det[J] de df (7.68)

7.10.2 Distributed Boundary Tractions

Figure 7.5: Distributed Boundary Tractions

Figure 7.5 shows a distributed force, T, acting on one of the edges of

an element. For an infinitesimal section along the loaded boundary, dS,
inclined at an angle 6 to the positive r axis, the surface traction can be
resolved into two concentrated forces , fr and fz, in the direction of the

co-ordinate axes:

f = q dS cos(9) - p dS sin(®) (7.69)

[y
1]

q dS sin(8) + p dS cos(6) (7.70)

- 71.22 -
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where p and q are the normal and tangential components of T acting on dS. By

the wvirtual work principle, the equivalent nodal load vector, Pt’ can be

shown to be:

P, - [ DIRKE: (7.71)
qr 3z
438 P 3z
wvhere: Q = (7.72)
9z o
45" P 3T
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Appendix 7A: Finite Element Equations for a 15-node Triangular Element

1— 34
34— 106
12— 114
1h— 124
o— =X

Reference Element Parenft Element

Figure 7A.1: Element Transformation

Consider the iso-parametric mapping for a 15-node triangular element
(Figure 7A.1). The vectors of global co-ordinates and displacement of a

point within the element are given by:
r u
X = u = (7A.1)
- z - v

The vectors of nodal global co-ordinates and nodal displacements are:

Frl Ful
Z.l Vl
1‘2 U2
) )
X - i 5 - : (74.2)
"15 R
{ 15 L 15
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where the subscript refers to

parametric concept, the global

within the element are related to

Element Analysis

the element node number.
co-ordinates

the nodal values by the equation:

Using the iso-

and displacement of a point

x = [N]X and u = [N]é& (7A.3)
The shape function matrix [N} is of the form:
1 0 N2 0 N3 0 .0 15 0
(N] - (7A.4)
N1 0 N2 0 N3 . . N14 15

vhere: N, = é% y(vy - %)(Y - %)(Y - %)

I CEE YO ST
32 1 1 3

Ny = 22 B(B - (B - (B - )
N, - 2 (M - Dy - D)
Ng = 64 () (¥)(e - (v - 1)
Ne - 20 (M- Do )
R CIGICER TR
Ng = 64 (@(B)(ax - (B 1)
Ny = 2 () (B)(B - DB )

2

Ny = 50 (BB - DB - )

Ny = 64 (BB - (v - )
11 RACER
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128 1 1
Nip = 128 () (B)(V)(y - 1
13 0‘)(6) Y Y - 4
N, = 128 (v)( 2
14 () (B)(v) (o - 7
N.. = 128 ( (v)( :
15 0‘)(8) Y 6 - 4
The [B] matrix is of the form:
ar ar
3N
1
0 e 0
N N
(B] = El 0 ;3 0.
az ar
9z ar
BNi 1 aNi aNi
and T © derpd] |3= tlsg @)
AN, 1 aN, aN.,
1 . _ 1 z(_l r.) -
9z det[J] |9B da i
where det[J] is

to the reference

ar 9z
dot do
S
9B 9B

co-ordinate systems:

Formulation of Finite Element Analysis

8N15 .
e )
0 ?le
az
N
= 0 (74.5)
?N15 8N15
ar z
My My
ar 3z
aNi aNi
gg" Z(E‘ Zl) (7A.6)
aNi 3Ni

the determinant of the transformation matrix from the global

(74.8)
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The large displacement formulation used 1in this thesis account for the
distortion of the element by a distortion rate matrix [C]:
[ C

C C .o . C i

1,1 1,2 1,3 7 : T T T YL, 30
©21 %2 G5 2,30
[c] - (7A.9)
€29,1
(330‘1 C30,2 C3O,3 . e e e e e e 'C3O,30
aN, 3N,
Vhere: C = - r1t__det|J..] + |o__ et T ag det{J] N,
211, 2§-1 rz 1] rr az rz 9z
{Bz BNJ dz oN ]
" Ni% 138 30 Ba 3B (74.10)
[BL aNj d1 aNj}
C21~1 ZJ = fO’rrth[Jij] + Nlo'ee _é‘O‘L W - —6 BT.(— (7A11)
{ aN, aNi]
C21 21 = -ro Zdet[Jij] + Trz 5t O, 5 det[J] Nj (7A.12)
Lzl’ ); = rrrzdet[Jij] (7A.13)
[ 9N, aN. 7
_t _ 4
do do
and det[Ji.] = (7A.14)
J O, AN
B 3B
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8.1 Verification of Finite Element Formulation

It is essential in any numerical analysis that the formulation and
solution algorithm are checked against bench mark problems with known
solutions. This 1is especially important 1in the present study where the
finite element equations are formulated to take account of large
displacements, for which problems with exact solutions are rare. Since the
finite element formulation described here 1is wused mainly for the
determination of 1limit loads and stress distributions in the soil, the
formulation has been comprehensively tested for its suitability for these
types of calculations. The wverification process was achieved by solving

three problems which have known solutions.

8.1.1 Expansion of a Thick-Walled Cylinder

The effect of incompressibility on the quality of the computed
stresses was 1investigated by the analysis of a small strain thick cylinder
problem. The problem consisted of a thick-walled cylinder, with inner radius
a and outer radius b, subjected to an internal pressure p. For a cylinder
made of a material which obeys the Tresca yield criterion, a closed form

solution for the stresses has been obtained by Hill (1951).

Two separate analyses have Dbeen carried out. 1In one of these, the
capability of the formulation tor stress calculation involving
incompressibility was studied. In order to isolate possible errors due to
the non-linear solution algorithm, a material with infinite strength has been
assumed so as to ensure a purely lineav elastic response. The infinite
cylinder was modelled by a mesh consisting of four 15-node triangular
elements. The prescribed boundary conditions are as shown in Figure 8.1.

A Poisson’s ratio of 0.49 was used to approximate the incompressible material
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behaviour. The expansion of the c¢ylinder was modelled by prescribing a

radial displacement of 0.003 times the internal radius to the inner boundary.

The computed stresses are normalised by the Young’s modulus E and
plotted in Figure B8.1. The analytical solutions by Hill are shown as
continuous lines. It is observed that the finite element results approximate
closely the analytical solutions for the perfectly incompressible case even
though a Poisson’s ratio of 0.49 instead of 0.5 has been used in the

calculation.

+ Finite Element Solution

30 ] ¢ Radial stress — Hill (1951
v Axial stress

x 1000

20 *  Hoop stress

1.0

stress

r/a

Figure 8.1: Expansion of Thick-Walled Cylinder - Stresses

The objective of the second analysis is to investigate the capability
of the finite element program for limit load calculations. The mesh used in
the first analysis has been retained. The material behaviour was described

by a rigidity index of 100 and a Poisson’s ratio of 0.49. A radial

- 8.2 -
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displacement, &8, of 5% of the inner radius was prescribed at the inner

boundary.

The load-displacement curve from this analysis is shown in Figure 8.2.
The cavity pressure, p, 1is normalised by the shear strength in undrained
triaxial compression S A limiting value for p is clearly defined in the
finite element results. For all practical purposes, this limit pressure is
identical to the analytical solution by Hill (1951). The factor 7% accounts
for the different yield criteria which were used in Hill’s analysis and the

finite element calculation.

P/CUA
2.01

2
e w—— = (1.4
1.5 E

Hill (1951)

1.0+
Finite Element Solution

0.49
100

v

0.51 Ir

T T T T T

0 1.0 2.0 3.0 4.0 5.0 Cua

Figure 8.2: Expansion of a Thick-Walled Cylinder - Limit Pressure

8.1.2 Cylindrical Cavity Expansion in an Infinite Medium

The expansion of a cylindrical cavity in an infinite medium is a rare

example of a problem involving large displacements which has a closed form

- 8.3 -
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solution. For the case of a von Mises material, an analytical solution has
been obtained by Sagaseta (1984). This problem thus provide a useful test

for the large displacement formulation discussed in this chapter.

The mesh used in the finite element calculation is necessarily finite.
Burd (1986) shows that if b is the outer radius of the mesh, it is possible
to simulate correctly the material behaviour of the infinite medium within a
radius b from the axis by the addition of a compensating layer to the outer
perimeter of the mesh. If the thickness of this correction layer is b, then

the material properties are given as:

N

2

E =17

E and Vv = 0.25 (8.1)
where E is the Young’s modulus of the continuum and E" and Vv are the Young's

modulus and Poisson’s ratio of the compensating laver.
P g )

The mesh used for the finite element calculation is depicted in Figure
8.3a. The soil was assumed to have a rigidity index of 100, and a Poisson’s
ratio of 0.49 was used to approximate the incompressibility condition. The

initial cavity radius was expanded by a factor of four.

The stresses in the wvicinity of the expanded cavity are plotted in
Figure 8.3b. A good match between the stresses computed by the finite
element method and the analytical solution has been obtained. Close to the
cavity wall, the numerical results are slightly lower than the analytical
solutions. These small deviations can be due to the smaller Poisson’s ratio
and the finite discretization of the soil in the finite element calculation.

Otherwise, the agreement is surprisingly good.
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Figure 8.3: Finite Element Analysis of an Infinite Cavity Expansion

(a) Finite Element Mesh (b) Stress Changes

8.1.3 Collapse Load Analysis of a Rough Rigid Circular Footing

Finite element calculations have a well known tendency to over-estimate
collapse loads and in severe cases to show no limit load at all, even though
one is known to exist (Toh & Sloan, 1980). Since the analysis of a
cone penetrometer 1is basically a collapse load problem, it is necessary to
check that the proposed formulation 1is suitable for this type of

computations. The collapse load calculation of a thick cylinder described in

- 8.5 -
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the previous section 1is not a sufficiently rigorous test because it is
essentially a one-dimensional problem. Therefore, a two dimensional collapse

load calculation for a circular footing has been selected.

The mesh which has been used in the calculation is shown in Figure
8.4a. The semi-infinite soil mass is modelled by a square mesh with each
side equal to 10B, where B is the radius of the footing. Around the edge of
the footing, a refined mesh system has been adopted to cater for the high
stress gradients expected in this region. The soil was assumed to be an
elasto-plastic von Mises material with a rigidity 1index of 100 and a

Poisson’'s ratio of 0.49.

A uniform vertical displacement was prescribed to the footing base and
horizontal movement of the nodes in contact with the footing is prevented to
simulate a perfectly vrough, rigid footing. Two sets of calculations with
different stress rate definitions were performed. 1In the first series, the
effect of soil rotations in the Jaumann stress rate definition was neglected,
vhile the complete Jaumann equation was used in the second series of

analyses.

Figure 8.4b shows the load-displacement response of the footing. VWhen
the rotation rates are not included, the finite element analysis yields a
collapse load of 6.78cu. This is comparable to the value of 7%(6.04cu) vhich
is an estimate of the <collapse load value for a rigid-plastic von Mises
material. The theoretical estimate is obtained by multiplying the solution

. . . . . 2
for a Tresca material (b.O&cU) obtained by slip line theory by the factor 73

No well defined collapse load was observed when the full Jaumann stress
definition was used. The pressure on the footing base after a displacement

of 0.125B continues to increase with further displacement increment, albeit
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at a much reduced rate. Similar behaviour has also been observed in the
finite element analyses of smooth flexible footings by Carter et al. (1977).
At a footing displacement of 0.1B, the footing pressure calculated using the
full Jaumann stress rate equation exceeds the corresponding solution which
ignored the Jaumann terms by about 1.0cu. The difference between these two

solutions remains unexplained.

Yy

(a)

“5¢
3% 10B

7

(b) ~
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Figure 8.4: Collapse Load Analysis of a Rough Rigid Circular Footing

(a) Finite Flement Mesh  (b) Load Displacement Curves
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In a deformation analysis involving finite displacements such as the cone
penetration problem, large soil rotations around the tip are expected.
Therefore, a consistent analysis should take this into account by adopting an
objective definition for the stress rate. This is achieved in the present

study by using Jaumann’s definition.

8.2 Finite Element Modelling of the Cone Penetration Test

In this section, a finite element analysis of the cone penetration
problem is described. The penetrometer was assumed to be installed deep in
the pground either by previous penetration or by placing it in a pre-formed
hole. These different modes of placement were modelled by adopting different
initial stresses in the soil prior to loading the penetvometer. The stresses
derived from the strain path method were used when modelling a penetrometer
which had been pushed into place. When modelling a penetrometer which has
been placed in a pre-formed hole, an undisturbed in-situ stress state was
assumed. This latter analysis is carried out for comparison with the work of
De Borst & Vermeer, and to assess the importance of the stresses set up

during penetration.

A series of parametric studies has been carried out. The parameters
investigated include the Poisson’s ratio, the rigidity index and the in-situ
stress state of the soil. The effect of shaft roughness has also been
considered. A mesh which consists ot 81 15-node triangular elements (Figure
8.5) was used in all the finite element calculations. The layout of the mesh
vas chosen with due congideration of the likely stress distribution around
the cone penetrometer. A good estimate of this stress distribution is
provided by the strain path analysis. 1In regions of high stress gradients,

the density of the elements was increased. The overall dimension of the mesh
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wvas designed to be similar to the finite difference mesh shown in Figure 3.2.
This facilitates the transfer of stress data between the two meshes when the
stresses computed by strain path method are used as the initial stress state

for the incremental finite element calculations (section 8.8).

loading due to soil stresses
] I B N N |

L

73777

Figure 8.5: Finite Element Mesh for Cone Penetration Analysis

In the finite element analysis, the cone penetration process was
modelled by prescribing incremental displacements to the penetrometer. For
a rough shaft, vertical displacements were prescribed on all the nodes on the
penetrometer-soil interface and radial movement of these nodes was prevented.
Vhen modelling a smooth shaftt, vertical displacements were prescribed only

for the nodes on the cone face but lateral movement was again prevented, the

- 8.9 -
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nodes on the shaft were free to slide in the vertical direction. Hence, in

both of these analyses, the cone face was assumed to be perfectly rough.

For the range of Ir generally associated with clay, the imposed
vertical displacement has to be sufficiently large to achieve a collapse load
or 'failure’ condition. If the cone face is to be modelled as smooth, the
interface nodes should be allowed to slide freely along the inclined surface.
When such a node reaches the cone shoulder, the restraint conditions must be
changed. This requirement increases the complexity of the solution procedure
considerably. The complication caused by the changing boundary conditions

can be avoided by assuming that the cone face is perfectly rough.

8.3 Effect of Poisson’s Ratio

The elastic compressibility of a material is governed by the Poisson’s
ratio, V. For a perfectly incompressible material, v is equal to 0.5.
Howvever, this wvalue could not be implemented directly in the finite element
method and the incompressible material behaviour is usually approximated by
adopting a value very close to 0.5. 1In order to investigate the effect of v
on the load-displacement characteristics of a cone penetrometer, finite
element calculations with three different values of v have been performed.
The soil was assumed to have a rigidity index of 100 and the initial stresses
wvere assumed to be zero. The calculations were carried out by prescribing a

vertical displacement of 0.2 R on a penetrometer with a smooth shaft.

The results of the finite element analyses are shown in Figure 8.6. At
a cone displacement of 0.1 R, the pressure on the cone tip on each of the
three cases has reached a constant value and further increase in displacement
does not change it significantly. TIncreasing the Poisson’s ratio resulted in

a stiffer initial response and a greater limit pressure on the cone tip. The

8.10 -
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pressure on the cone tip at the limit state condition has generally been
assumed to be equivalent to the steady state cone penetration resistance.
Hence, the results show that v not only governs the elastic response, but it
also affects the «cone resistance computed by finite element method. It is
therefore essential in modelling undrained soil behaviour that a value of v
very close to 0.5 1is wused to enforced the condition of zero volumetric
strain. A value of v equal to 0.49 has been shown to approximate the
incompressibility «condition quite satisfactorily in the infinite cavity
expansion problem, so this was adopted in the finite element calculations

described in the following sections.

qqéuf

12-
]
V= 0.49
104 0.40
0.25
81

Smooth Shaft
Ir = 100.

T 1 1 U 1 1 1

0 5 10 15 20
100x6/R

Figure 8.6: Effect of Poisson’s Ratio on Cone Resistance
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8.4 Stress Changes Due to Rough Cone Penetration

It has generally been accepted that the stresses evaluated by the
finite element method are of acceptable accuracy even though the equilibrium
conditions are not satisfied exactly at each material point. The quality of
the stresses evaluated by the finite element program formulated here has been
shown to be extremely high (section 8.2). It is reasonable to assume that
the numerical results around the cone would be of comparable quality and can

therefore be wused to assess the accuracy of the stresses computed by the

strain path method.

In order to study the effect of shaft roughness, finite element
calculations have been carried out for penetrometers with smooth and rough
shaft. The displacement vectors in the soil after an imposed displacement
of 0.2 R are shown in Figure 8.7. The computed displacement fields below the
tip in these cases are found to be quite similar. The effect of shaft
friction 1is reflected in the large soil displacements adjacent to the rough
shaft. In contrast, soil movements around the smooth shaft is very small,

and the deformation field is mainly confined to a region around the cone

face.

Smooth Rough

Figure 8.7: Displacement Field in Soil after a Cone Penetration of 0.2 R
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The difference in the deformation patterns for the two extreme shaft
conditions is reflected in the =zone of yielded soil (Figure 8.8). For a
penetrometer with a smooth shaft, the plastic zone is confined to the cone
face region, whilst a thin annular zone of soil around the rough shaft is

observed to have yielded as well.

asftic plastic

elastic elastic
Rough Shaft Smooth Shaft

Figue 8.8: Failure Zone around Cone Penetrometers

with different Shaft Roughness

The variations of the tip resistance with cone displacement for
the two shaft conditions are shown in Figure 8.9. Shaft roughness is found
to have a significant influence on the shape of the load-displacement curve.
A ’softer’ load-deformation response is observed for the penetrometer with a
rough shaft. This is mainly due to the higher stresses generated in the soil
around the shaftt by interface friction, which leads to a larger cone
displacement at comparable total load on the penetrometer. More
significantly, however, the results suggest that the limit cone resistance is
not very sensitive to shaft roughness. For a soil with an Ir of 100, the

values of q. for the two shaft conditions at a displacement of 0.2 R are
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nearly identical. For an Ir value of 300, the difference in . at this

displacement is found to be slightly greater.

Aeley ik
v =049
14
. 10= 300
10 - I =100
8 .
6
4 :}— Smooth Shaft
:J— Rough Shaft
O T T T T T 1 T M >
0 5 10 15 20
100x &/R

Figure 8.9: Effect of Shaft Roughness on Tip Resistance

The stress changes in the soil around a penetrometer after an imposed
displacement of 0.2 R are shown in Figure 8.10. The shaded areas indicate
regions where small stress oscillations render the contours irregular so that
they cannot be shown in detail. Below the cone tip, the patterns of stress
distributions for the two shaft conditions show broad similarities. The zone
of so0il subjected to significant stress changes are considerably greater when
the shaft is rough. High stress gradients are observed around the cone
shoulder, and the soil adjacent to the shaft is subjected to significant

shear loading.
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(a)
Tensile

Positive

(b)

Tensile
Positive

-0.5

(c)

Smooth Shaft Rough Shaft

Figure 8.10: Stress Distributions around a 60 Cone Penetrometer
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The stress changes around a smooth penetrometer shaft are generally
very small. The soil just above the cone shoulder is subjected to tensile
axial stress changes. These features may be due firstly to the way the
penetration process was being modelled, and secondly by the extreme

combination of a smooth shaft and a rough conical tip.

Despite the difference in approach, it is interesting to note that the
stress distributions around the cone face obtained from finite element
computations and the strain path method show striking similarities. The
shear stress distribution below the shoulder level are also broadly in
agreement with the strain path solution. These similarities partially
confirmed the reliability of the strain path method as an approximate
analytical tool. In addition, the uncertainty in the stresses around the
cone shoulder, which has been observed in the strain path solution, is also
present in the finite element analysis. This 1is an indication of the

importance of a detailed analysis at this point.

The variations of the stress components with radial distance are
plotted 1in Figure 8.11. Due to the nature of the discretization, it is not
possible to show the stress variation on any particular horizontal plane.
The data points shown in these plots correspond to the Gauss point stresses
in a thin horizontal layer of soil with a thickness of 0.1 R, located mid-way
between the tip and the shoulder levels (see inset of Figure 8.1la). The
magnitudes of the axial and hoop stress components immediately adjacent to
the cone are found to be considerably higher than those given by either the
cavity expansion theories or strain path method. The scatter in the computed

r

stresses for R < 1.0 is possibly due to the severe restraints prescribed on

the cone face. For % > 1.0, the stresszes in the plastic region vary almost
linearly with log(ﬁ). This feature has also been observed in the strain path

solution.
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8.5 Effect of Rigidity Index on Cone Resistance

The results of the strain path analysis indicate that the rigidity
index of so0il has a significant effect on the computed tip resistance. A
series of computations has been performed to investigate if the same trend
exists in finite element calculations. The Ir values which have been
analysed range from 30 to 500. A smooth penetrometer shaft was assumed in

all the calculations and the soil stresses was initially set to zero.

The computed results are plotted in Figure 8.12, which shows the

variation of tip resistance with penetrometer displacement. The limit state

qC/CU‘
18 | v=049
16—1
Ir =500
14 |
-—300
12
--—150
10 -———100
8— /HP*H‘P—_SO
6
4
2
01 Y ] 1 1 1 H | 1 —
0 5 10 15 20
100x8/R

Figure 8.12: Effect of Rigidity Index on Cone Resistance
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tip resistance at .a cone displacement of 0.2 R exhibits the same general
trend of variation as the vresults obtained from the strain path method.
However, the magnitude of Sh derived from the finite element calculations is
slightly higher. It should be noted that the finite element result were
computed for a rough cone, whereas the cone face was assumed to be perfectly

smooth in the strain path method.

8.6 Effect of In-situ Stress State

In the analyses considered so far, the initial stresses in the soil
were assumed to be zero. The effect of different stress states on the cone
resistance computed by the finite element method is investigated in this
section. This 1is accomplished by prescribing various combinations of

vertical and horizontal stresses as the initial conditions.

Figure 8.13 shows the finite element results based on four different
isotropic initial stress states (chozcvo) in a soil which has a rigidity
index of 100. At a displacement of 0.2 R, the limit load condition has been
reached 1in each of the calculations. The values of the cone resistance at
limit state were found, as expected, to differ by an amount which is equal to
the difference 1in T Therefore, if the results are expressed in terms of
the normalised cone factor Nk’ then a unique value is obtained. This
suggests that qe is not an appropriate quantity for correlating soil
properties since it contains a component due to the stress level. The Nk

factor 1is a preferred correlation parameter because it is independent of the

stress level when the initial stress state is isotropic.

The effect of anisotropic initial stress state on the Nk value 1is
investigated by varying the vrelative magnitude of %6 and 90 The

variations of Nk wvith cone displacement for three different initial stress
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Figure 8.13: Effect of Stress Levels on Cone Resistance, q.
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Figure 8.14: Effect of Stress Anisotropy on Cone Resistance, q.
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conditions are shown 1in Figure 8.14. The wvalues of %o and o, are as

indicated 1in the diagram. It is found that Nk increases when %o is greater

than ¢ . Conversely, if o is less than ¢ , a lower N, value is obtained.
Vo ho Vo k

This result confirms the general trend observed in the solution derived from

the strain path method. The N values determined by the finite element

k

method, however, are greater than those obtained from a strain path analysis.

8.7 Strain Path-Finite Element Analysis

The Nk factors evaluated by the incremental finite element analyses
described so far are not representative of the steady state penetration
resistance. The so0il stresses at failure are different from those around a
cone which is continually penetrating. A more realistic estimate of the cone
factor could be obtained if the penetrometer is assumed to have been
penetrated into place. An incremental displacement finite element analysis
in this case would then model the phase in an actual CPT when penetration was
resumed after a temporary interrvuption (e.g. for connecting the extension
rods). FExperimental evidence suggests that the cone resistance at this stage

of the test is similar to the steady state value.

However, this type of analysis requires the knowledge of the stresses
around the penetrometer which 1is in fact the solution being sought. To
overcome this «circular problem, a good, though inexact, estimate of the
stress state can be obtained from the strain path method. Thus, for a given
set of soil properties and in-situ stress conditions, the stresses around the
penetrometer are computed via the procedure described in Chapter 4. This set
ot stresses is then used as the starting condition in the incremental finite
element analysis. For want of a better term, this analytical procedure is

called the strain path-finite element method (abbreviated as SPFEM).
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Due to the different meshes used for the strain path and finite element
calculations, the 1initial Gauss point stresses in the finite element mesh
must be interpolated from the nodal values in the finite difference grid. A
data transfer routine has been implemented and the errors introduced by the
interpolation process were found to be minimal. However, the stresses
obtained via the strain path method do not satisfy the equilibrium conditions

completely and this should be corrected prior to the incremental finite

element analysis. Based on the fictitious body forces concept described in
Chapter 5, the errors of equilibrium were eliminated by an intermediate
finite element calculation. The equilibrium correction calculation was

accomplished by 1imposing a set of body forces, equal and opposite to the

calculated fictitious body forces, on the soil mass.

The results of the strain path-finite element analysis are shown in
Figure 8§.15. A rigidity index of 100 was assumed for the soil and a
Poisson’s ratio of 0.49 was wused in the finite element calculation to

approximate the incompressibility condition. The in-situ soil stresses were

q
C o .
assumed to be zero, so o is exactly equivalent to N

t

= The result of the
finite element calculation for a penetrometer placed in a pre-formed hole in
a soil with zero initial stresses (abbreviated as FEM), has also been plotted
in the same diagram for comparison. Point A in Figure 8.15 corresponds to a
stress state obtained directly from the strain path method without the
intermediate finite element correction and so is not in equilibrium. Point B
represents a corrected stress state after the fictitious body forces have

been eliminated. Therefore, the curves in Figure 8.15 represent the

numerical results for three different initial stress conditions.

Tt is observed that the curve from point B rises monotonically to reach

a well-defined 1limit wvalue. On  the other hand, the curve from point A
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Figure 8.15: Variation of Cone Resistance with Cone Displacements

from Strain Path-Finite Element Analysis

increases gradually to a peak before settling down to the same limit value.
The peak in the second load-displacement <curve cannot be due to strain
softening because the adopted constitutive model does not provide for such
material behaviour. It is possible that the shape of this curve is caused by
the equilibrium errors in the Gauss point stresses which are quite
significant initially. The difference between the curves therefore merely
reflect the errors in the stresses at A. However, due to the equilibrium
correction procedure inherent in the Modified Fuler solution scheme, the
out-of-balance stresses in case A are gradually corrected. Towards the final
stages of the calculation (when the equilibrium correction has taken its full
effect), the stresses are the same in both cases. As a result, the limiting
cone resistances (evaluated from the internal soil stresses) will have the

same numerical value.
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The tip resistances computed from the strain path-finite element method
is considerably higher than the corresponding results from the conventional

finite element analysis. An increase of about 20% in the N, factor has been

k
obtained for a rigidity index of 100. The SPFEM result can be considered to
provide a more realistic estimate because the initial stresses are more

representative of the stress condition that actually exist around the cone

penetrometer that has been continuosly penetrated into place.

8.7.1 Effect of Anisotropic Initial Stresses

The effect of anisotropic in-situ stresses on computed tip resistance
has been analysed using the strain path-finite element method. The initial
stresses obtained from the strain path method were corrected for equilibrium
prior to the displacement controlled incremental finite element calculations.
The results of these analyses are illustrated in Figure 8.16. The in-situ

stress state 1is characterised by the stress factor, 8. The values of N

k
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Figure 8.16: Variation of Nk with Stress Factor, A
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obtained from the conventicnal finite element method (FEM) have also been

plotted on the same figure.

The Nk factors evaluated by SPFEM for various combinations of %ho and
o,, are found to be higher than the corresponding FEM results. It is also
observed that changes 1in the stress factor, 4, has a greater effect on the
SPFEM solutions. This 1is 1indicated by the steeper gradient of the best
straight line fit of the SPFEM results. The gradient of this line is
approximately -2, indicating that Nk is dependent on Yo" Hence, an almost
unique value would be obtained if the cone factor is defined in terms of %o
The trend from the conventional FEM is less conclusive; it suggests that the
Nk factor 1is affected by both %o and S Nevertheless, the results of
these two analyses are consistent with the trend obtained from the strain
path method which shows that increasing %6 increases the N, factor.

k

8.7.2 Variation of Nk with Ir

The wvariation of the Nk factor with Ir computed by SPFEM for zero
initial stress states is illustrated in Figure 8.17. The results obtained
from the strain path analysis have been reproduced in the same diagram for
comparison. The Nk factor evaluated by SPFEM is significantly higher than
the strain path results. A rough cone solution (dotted line in Figure 8.17)
is estimated from the strain path analysis using the approximate expression

in equation (6.2). This 1is found to provide a better agreement with the

SPFEM results.

The possible ranges of Nk due to anisotropic stress effect for two Ir
values (100 and 500) are shown by vertical bars. The upper limit corresponds
to a stress state characterised by 4 = -1, and the lover limit is relevant

for A

it

1. These results suggest that for any given Ir’ it is more
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Figure 8.17: Variation of Nk with Ir as Evaluated from

SPFEM and Strain Path Method

appropriate to express Nk as a range of values, rather than a discrete value.
Such an expression helps to emphasise the dependence of Nk on the in-situ
stress state. Based on the vresults of the strain path-finite element

analyses, the following expression is suggested:

ko ~ 1.894 (8.1)

where Nko is the cone factor evaluated for an isotropic initial stress

state.

For the range of Ir values between 50 and 500, the effect of rigidity

index may be expressed by the approximate expression:

_ 9 L. 9 64] .
Ny, = 0-19 + 2.641n(1 ) (8.2)

- 8.26 -
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The cone factors computed from equation (8.2) and those derived numerically
are presented in Table 8.1. The maximum deviation between these two sets of

values are found to he less than 37%.

Ny h (N9 (N, )
lr fromr SPFEM trom Eq.<(8.2) (NEQTE
ST ) ko'l
50 10.69 10.52 0.98
100 12.26 12.35 1.01
150 13.25 13.42 1.01
200 14.03 14.18 1.01
300 15.11 15.25 1.01
400 16.10 16.01 0.99
500 16.98 16.60 0.98

Table 8.1: Comparison of the Cone Factors Derived from SPFEM

and Those Computed Using Equation (8.2)

Equation (8.2) was derived tfor a perfectly rough cone. If an
approximate correction for different cone face roughness similar to that

discribed in Chapter 6 is made, then Nko may be expressed as:

Ny = 0-10 = 2.64In(1 ) 2(1-o) (8.3)

where o is the roughness coefficient ot the cone face as defined in equation
(6.9). Repeating the calculation for the two extreme combinations of soil
conditions presented in Table 6.1 using equations (8.2) and (8.3), the values

of Nk are found to be 6.6 and 18.5. This is illustrated in Table 8.2. These
values are consistent with the range of Nk obtained from field and laboratory

tests. Furthermore, 1t 1is believed that the SPFEM can provide a better

estimate of Nk than the strain path method because the uncertainty due to the
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equilibrium errors in soil stresses 1is less significant in the former

approach.

I I o N

¥ k
50 1 0 6.6
500 ] 1 18.5

Table 8.1: Nk for Two Combinations of Ir’ A and «

8.8 Summary

The finite element formulation described in Chapter 7 has been
verified by the analysis ot thiee problems with known solutions. Good
agreements between the finite element results and the established solutions
were obtained. The cone resistance computed by finite element methods shows

the <ame variation with lr as those evaluated by the strain path procedure.
The tip resistance. q_, was found to be dependent on the in-situ stresses as

well as the soil properties. Correlation should therefore be effected
through the dimensionless cone factor. For an isotropic in-situ stress
state, the cone factor is independent of the initial stress level. However,

NP is affected quite significantiy by stress anisotropy and this is mainly
.

due to the lateral stress component.

Mie  fto the intfluence of the stress states on Nk factors, the correct

initial stress state must be prescribed for the soil around the penetrometer
if the incremental finite element analysis is to give a reliable solution.
The strain path-finite element method {o considered to give the best estimate

of Np because the soil stresses provide the most realistic representation of
N

the condition that actually exists around a penetrometer.



Chapter 9

Dissipation Analysis




Chapter 9: Dissipation Analysis

9.1 Introduction

The development of the cone penetrometer with simultaneous measurements
of pore pressure and tip resistance has greatly enhanced the piezocone as a
soil profiling tool. When steady penetration is interrupted, the dissipation
of the excess pore water pressures 1is controlled by the consolidation
characteristics of the soil. Until very recently, no rational interpretation
techniques were available to derive the consolidation parameters from
dissipation test data. Levadoux & Baligh (1986) suggest an interpretation
technique based on a linear consolidation analysis of the pore pressure
around the cone. When applied to the dissipation records in Boston Blue
clay, this technique has been found to give very consistent estimates for the

consolidation coefficients.

In this chapter, a dissipation analysis of ewcess pore pressure around a
piezocone 1is described. The initial pore wvater pressure distribution is
evaluated by the strain path method. The effects of soil parameters and cone
angle on the initial pressure distribution are addressed. The
characteristics of rthe dissipation curves at various locations on the
penetrometer are discussed and bhased on the results of these analyses, two

techniques for interpreting dissipation test data are suggested.

9.2 Consolidation Theories

The cousolidation characteristics of soil are conventionally defined by

the coefficients of consolidation, L and o which are related to the
permeability and compressibility of the soil. The permeability, which
governs  fluid flow in  the <oil matvix, is principally a function of void

ratio whereas the compressibility is a function of the current effective

stress level as well as the past stress history (i.e. the overconsolidation
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ratio, OCR). As the excess pore pressure dissipates, the effective stress in
the so0il increases and this is accompanied by a decrease in the void ratio.
In general, these changes in the permeability and void ratio will cause the

coefficient of consolidation to vary as dissipation proceeds.

This variation should be taken into account in a comprehensive
consolidation analysis. In practice, however, non-linear consolidation
solutions are very difficult to obtain and the few that have been attempted
are limited to very simple geometry and simplified soil models (Small et al.,
1976). Moreover, non-linear consolidation analyses are governed by many
parameters and the results are not amenable to normalization. Such analyses
are useful for predicting the response of a particular clay under particular
conditions, but the results cannot be generalised for other clays or even the
same clay under different conditions. A useful interpretation method, on the
other hand, should provide sufficient generality so that it is applicable to
a wide range of soils. Linear analysis, in which the coefficient of
consolidation 1is assumed to be constant, permits normalization and hence is

useful for interpretation purposes.

Linear consolidation analyses are usually treated by means of one of the

two theories:

1) The Terzaghi-Rendulic wuncoupled theory in which consolidation is

assumed to take place without changes in total stress.

2) Biot’s coupled consolidation theory in which the full interaction

between soil skeleton and pore pressure is introduced.

One significant feature of the coupling between pore pressure and total

stress changes is the Mandel-Cryer effect (Mandel, 1953; Cryer, 1963). This
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effect causes for some cases an increage in pore pressure in the early stages
of consolidation. This has been observed experimentally in the consolidation
of a spherical sample of clay (Gibson et al., 1963). However, this effect
decreases vwhen the permeability of the loaded area decreases or when the
drained Poisson’s ratio of the material is greater. Sills (1975) shows that
under certain conditions both theories lead to the same governing equations.
Viggiani (1970) and Davies & Poulos (1970) show that in a wide range of
practical problems, the Terzaghi-Rendulic theory predicts fairly well the
dissipation-time vrelationship with the exception of the Mandel-Cryer effect.
This effect 1is generally limited to the early stages of the consolidation
process and is not significant at later times. Levadoux & Baligh (1980) have
studied the dissipation around the «cone using both the coupled and the
uncoupled theories by a finite element formulation. The solutions from these
analyses give quite similar results except at the cone tip where the Mandel-

Cryer effect is observed.

In this thesis, the Terzaghi-Rendulic uncoupled theory has been chosen
as the basis of dissipation analysis. The governing equation based on this
theory 1is amenable to solution by the finite difference method, which is not
true for Biot’s coupled theory. Since the numerical schemes used in the
evaluation of stresses and pore pressure are formulated in finite difference
forms, this provides the desired continuity in the overall numerical approach
and avoids wundue interpolations. The same mesh which has been used in the
determination of the stresses and strains can thus be utilised for

dissipation analysis.

9.3 Mathematical Formulation

For an axisymmetric problem, the Terzaghi-Rendulic three dimensional

consolidation equation is given by:

9.3 -
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(9.1)

The bar denotes dimensioned quantities. In the derivation of equation (9.1),

it is assumed that the soil is elastic, isotropic and homogeneous with a
constant coefficient of consolidation, c. By expressing the various
quantities in normalised forms, equation (9.1) can be transformed into a
dimensionless equation:
au 82U . 13U . 82U (9.2)
aT ) r dr 2 )
or 3z
where: T = gﬁ% (9.3)
R
R (9.4)
c
u
(r, z) = (r, z)/R (9.5)
and R 1is the cone radius and ¢ is the undrained shear strength. Equation
(9.2) 1is a parabolic equation and can bhe solved for the value of U at any

time T provided that:

(1) the values of U at all points are known at T=0, and
(ii) the values or the gradients of U at the boundaries
are known for all T.

Equation
approaches.

the time

derivative

(9.2) can be expressed in finite difference form using several

One obvious

possibility is to use an explicit method in which

is expressed in forward differences and the spatial

derivatives are computed using central differences:

9.4 -
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k+1 k
i,j i,j 2.k 1 k 2
R T ¢ (U L) o+ = SY(Uivj) +  &7(UT ) (9.6)

. . 3
wvhere 6r, 6% and 65 represent the central finite difference operators for s

Ag, and ~g— respectively and U? ; is the pore pressure for node (i,j) at the

r 3"z ’
th time level. Equation (9.6) can be rearranged to give an explicit

k
expression of U at (k+1)th time level. The stability of this straightforward

finite difference scheme 1is constrained by the requirement of a very small

time step size and is generally not practicable.

Alternatively, the consolidation equation can be expressed using a

general weighted implicit finite difference method giving:

Uk+1 _ Uk
BRSNS S N R [52 gl Ly gkl g2 Ul.“l]
AT r i,j] r r 1,] z 1)
b (1-N) [62 T L gf o o g2k ] (9.7)
1,] ¥ X I,J Z 1,]
where: 0 <A<l (9.8)

Note that equation (9.6) is recovered when X is set to zero in equation
(9.7), and A=l gives a purely implicit scheme. If X=1/2, equation (9.7) is
known as the Crank-Nicholson formula. VWhen this equation is applied to each

. . . . . Sk
node, a system of n simultaneous equations is obtained for the n unknown T
at the nodes. These must be solved at each time increment. When n is very
large, this implicit scheme 1ig not viable due to the excessive amount of

computing required.

It is desirable that the finite difference scheme selected should be
unconditionally stable while at the same time avoids excessive computations.

One such scheme 1is the Alternating-Direction-Implicit (A.D.I.) procedure
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first suggested by Douglas (1951). The main teature of this method is a re-
formulation of the implicit finite difference equation so that the matrix of
simultaneous equations is tridiagonal. This is achieved by splitting a time
step into two equal sub-increments. The derivatives in one co-ordinate
direction are expressed using the Crank-Nicolson’s implicit formula and the
derivatives in the other direction 1is expressed using explicit finite

differences:

U,

i,] i,j %52 k+0.5 k 1 k+0 (9.9

(U, . + U, L) + 56 (U, .'5+Uli<

2.k
N 529 ) o+ S .
r'1,) 1,] LY T 1,] ] z'1,]

’

For the second sub-increment, the forms of expressions for the spatial

derivatives are switched and the finite difference equation is given by:

i3 i, 2. k0.5 1 k+0.5 1
5T77 = AU e U T g

2, kel k+0.5

Sz(ui,j + Ui,j ) (9.10)
Equations (9.9) and (9.10) when applied to each of the nodal points results
in two tridiagonal systems which can be solved efficiently. It should be

noted that only the solutions after a double sweep are of any significance

because of the inherent bias in the solution after the first sub-increment.

The A.D.I. formulation is unconditionally stable and therefore provides
extra flexibility in the choice of the time step size for optimising the
solution procedure. At rhe beginning of the solution process, the high pore
pressure gradients that exist near the cone make it necessary to use a very
small time step so that the required degree of accuracy and resolution in the
dissipation curve can be achieved. As dissipation continues, the pressure
gradient becomes progressively more gentle so the time step size, AT, can be
increased. The use of a wvariable AT helps to vreduce the amount of

calculation steps without unduly affecting the quality of the solution.
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9.4 Boundary Conditions

The solution of the parabolic consolidation equation requires the
boundary conditions to be specified for all time, T. The boundary conditions
vhich are relevant to the dissipation analysis are considered in this

section.

The bottom boundary has been chosen to be located sufficiently far away
from the cone for the pore pressure effects to be negligible. The choice of
the boundary condition here 1is not critical and the pore pressure can be
assumed to be zero at all time, T. The same also applies to the far field
boundary. The variation of pore pressure at the top boundary is essentially

in the radial direction and the pore water movement is primarily in the same

direction. Thus, it 1is appropriate to specify this as an impervious

boundary. The shaft of the penetrometer is assumed to be impermeable and on
. i Co ) . U

the axis, symmetry condition requires that P 0.

The cone face boundary was given special consideration because pore
pressure measurement is usually taken around this region in most penetrometer
design. Due to the high pore pressure gradients that exist here, any
relaxation in the boundary conditions will have a significant effect on the
computed dissipation curve. Therefore, a tight boundary condition which
requires that the flow of water across the houndary 1is zero has been
prescribed. By Darcy’s law, this condition can be expressed as:

18]

n ds = 0 (9.12)

where dS 1is the infinite=zimal length along the boundary and n is a unit

vector normal to the cone face.
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9.5 Factors Affecting Pore Pressure Dissipation

The rate of dissipation of excess pore water pressure in soil is
influenced by a number of factors. For a soil with a constant coefficient of
consolidation, it is primarily governed by the pore pressure gradients. This
is in turn affected by the initial pore pressure distribution and the

boundary conditions associated with a particular problem.

Levadoux & Baligh (1980) have carried out a series of parametric studies
on a one-dimensional consolidation problem. The factors governing the rate
ot dissipation on a pile are investigated using a combination of pressure
distributions and boundary conditions. These studies show that provided the
drainage boundary is located beyond the zone of soil initially affected by
excess pore pressure, it has negligible influence on the dissipation rate.
The consolidation process 1is thus entirely determined by soil properties

within the zone subjected to excess pore pressures.

In a vrealistic dissipation analysis, it 1is necessary to obtain an
accurate estimate of the initial pressure distribution around the
penetometer. Consolidation analyses based on arbitrary pore pressure
distributions (Jones & Van Zyl, 1982; Tortensson, 1977) are of limited
practical application because the assumed distribution is different from the
actual condition that exists around the penetrometer. In this thesis, the
pore pressures derived from the strain path method have been used for the
dissipation analysis. The reliability of the computed result is verified by

comparing with published experimental results.

9.8 -
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9.6 Initial Pore Pressure Distribution

The mechanism of pore water pressure generation in soil is a complicated
process which depends on the interaction between effective stress behaviour
of the soil and the equilibrium equations. Skempton (1954) introduced an
approximate expression which relates the excess pore pressure in a triaxial

compression test to changes in the principal stresses:

bu - BlBoy « A(Lo;  boy)] (9.13)

where A and B are pore pressure parameters. For a fully saturated soil, the
parameter B is taken as unity and A is essentially a ratio of the change in

pore pressure to change in the deviatoric stresses:

Au - Ao
A= —= (9.14)

Acl~ AOS
This equation 1is later refined Dby Henkel (1960) who proposed an

equation of the form:

Au = Agoct + afﬂtoct (9.15)
vhere: Aooct = change in octahedral mean normal stress (9.16)
AToct = change in octahedral shear stress {(9.17)

At failure, the parameter «o is related to the Skempton’s pore pressure

f

parameter Af by:

1
ap = 77(%Af 1) {9.18)

Thus given the stress path of the <oil specimen, the pore pressure in the

plastic zone can be estimated if either A, ouv o ic known.

f

- 9.9 -
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Based on the critical state concept, Wroth (1984) demonstrated that the
excess pore pressure generated in undrained triaxial compression is dependent
on the total stress path. This is illustrated in Figure 9.1. For a given
soil subjected to two different total stress paths, different values of Au
are obtained. This shows that the excess pore pressure, &u, is not a unique
measure of soil behaviour. Wroth suggests that O&u is made up of two
components, one of which (CD or CE) merely reflects the change in the mean
normal pressure during the test. The other component, BC, is a property of

the soil and can be correlated with other soil parameters.

4=04-03

f TSP @

TSP @

-

P' and P

Figure 9.1: Interpretation of Excess Pore Pressure Observed in

Undrained Triaxial Compression Tests (after Wroth, 1984)

This theoretical argument is reflected in Henkel’s empirical pore
pressure equation which, as well as identifying the component due to the
change 1in mean pressure, suggests that the shear induced pore pressure
component is a function of the change in octahedral shear stress. In view of

the lack of any comprehensive pore pressure model, this empirical equation

- 9.10 -
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has been used for evaluating the excess pore pressure due to cone

penetration.

9.7 Pore Pressure Dissipation around a Cone Penetrometer

The contours of excess pore pressure computed using equation (9.15) with
o equal to 1.0 is shown in Figure 9.2. This result was obtained for a soil
with an Ir of 100, subjected to an isotropic initial stress state. It is
observed that the pore pressure gradients at the tip of the penetrometer are
extremely high. Maximum excess pore pressure 1is found on the cone face
region just below the shoulder. Above the cone shoulder, the pore pressure
drops off rapidly to a value of about S.Ocu. This value is slightly smaller

than that predicted by the cylindrical expansion theory.

Figure 9.2: Excess Pore Pressure Distribution due to Cone Penetration
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In order to ensure a meaningful dissipation analysis, the reliability of
the predicted pore pressure distribution must be established by comparing
with that determined experimentally. However, it is extremely difficult to
measure the pore pressure in the soil accurately (Baligh & Levadoux, 1980).
As a result, published data are rare. A good record of the pore pressure
generated 1in the soil during deep penetration was obtained by Roy et al.
(1981) who conducted a comprehensive in-situ pile test programme in the St.
Alban clay. Prior to the pile tests, piezometers were installed at various
radial distances from the intended axis of penetration and at various depths
in the ground. The excess pore pressures generated during the installation
of these pilezometers were allowed to dissipate. Due to the large pile to
piezometer diameter ratio, the piezometers are believed to provide a reliable
measurement of the actual Au generated in the soil during pile penetration.

b

The wvariations of 33 with radial distance obtained from these tests

p

are shown in Figure 9.3, where Ué is the maximum effective pre-consolidation

LD I

! o 1 1
03 06 1 2 3 6 10 20 50
r/ R - Log Scale

Figure 9.3: Variation of Excess Pore Pressure due to Deep Penetration

- 9.12 -
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stress of the soil. The solid lines represent SE evaluated from strain path
u

method for a rigidity index of 300, a value quoted by Roy et al. Excellent
agreement was obtained for the measured and computed Au around the shaft far
from the pile tip. There is also a general agreement in the trend of
variation even at the tip level, although the shape of the pile tip (flat-

ended) is significantly different from a cone.

The change in the pore pressure measured by the piezometers during pile
penetration 1is shown in Figure 9.4. The variation of the computed Au along
vertical grid lines, located at various radial distances from the cone axis,
are shown in Figure 9.5, This latter plot is equivalent to an inverted
version of Figure 9.4. The computed results are found to have captured the
essential features of pore pressure changes in the so0il due to pile
penetration even though no direct quantitative comparison can be made. The
major difference between the numerical result and the test data is the
negative pore pressure measured before the pile tip reaches the piezometer
level. Baligh (1980) suggests that this observed behaviour is probably
caused by the soil-piezometer interaction as the soil is displaced by the

pile.

These comparisons show that the normalised Au distribution computed by
the strain path method is capable of giving a reasonable estimate of the pore
pressure surrounding a penetrometer. Therefore, a dissipation analysis based
on this initial pore pressure regime can be expected to give a good

approximation of the actual dissipation process.
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9.8 Results of Dissipation Analysis

A series of dissipation analyses using an A.D.I. formulation of the
Terzaghi-Rendulic consolidation theory has been carried out. The soil was
assumed to be subjected to zero initial stresses and has a rigidity index of
100. The excess pore pressure distributions at various stages of the
dissipation process are shown in Figure 9.6. The excess pore pressure, Ou,
at the cone face dissipates very rapidly. At T=1.0, Au on the cone face has
dropped by more than 507 and the zone of maximum Au has moved to a point just
above the shoulder. As dissipation continues, this zone is found to recede

further up the shaft.

The dissipation process as measured by the penetrometer 1is most
conveniently expressed as a pore pressure-time relationship. The dissipation

curves monitored at six locations along the probe are shown in Figure 9.7.

du

The normalised excess pore pressure, A is plotted against the logarithm of
i

T, where Aui is the initial pore pressure measured at each location. The
rapid rates of dissipation at locations 1, 2 and 3 are apparent in this plot.
The shape of the «curve for location 1 is distinctly difterent from those
measured at the other locations. This could be due to the unique location of
the tip which allows dissipation to take place three dimensionally. The
extremely high pressure gradient around the tip may also be a contributory

factor.

Along the shaft, no significant dissipation is observed for T less than
0.5. In fact, a slight increase 1in pore pressure is detectable at the
initial stages. This is due to the flow of water from the cone face region
to the soil adjacent to the shaft, induced by the high pressure gradient that

exists betwveen these two locations.

9.15
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Figure 9.6: Pore Pressure Contours at Different Stages of Dissipation
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Figure 9.7: Dissipation Curves at Different Locations

o
on a 60 Cone Penetrometer (Ir=100)
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Figure 9.8: Dissipation Data in Re-constituted Kaolin (after May, 1987)
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The experimental result obtained by May (1987) in re-constituted kaolin
in a large «calibration chamber is shown in Figure 9.8. The curves wvere
obtained at four locations on the probe which correspond roughly to positions
2 to 5 in Figure 9.7. 1t is observed that the predicted dissipation curves
broadly exhibit the same trend of variation as the experimental results.
However, the difference in the rate of dissipation between positions 4 and 5

from the chamber test is greater than that evaluated numerically.

9.8.1 Effect of Anisotropic Consolidation Characteristics

The coefficient of consolidation has been assumed to be the same in all
directions in the previous analysis. In a natural clay deposit, the
consolidation coefficient 1in the horizontal direction is very often higher
than that in the vertical direction. This anisotropy in the consolidation
coefficients may have significant implications for the interpretation of

experimental dissipation records.

The effect of anisotropy in consolidation characteristics on the rate of
dissipation 1is investigated in this section. Ac, value which is equal to
O.lch has been chosen for the study. The initial excess pore pressure
distribution 1is based on the same so0il properties as in the previous
analysis. The contours of A&u at diffevent time, T, was shown in Figure 9.9.
The dimensionless time factor, T, is defined in terms of Ch

On comparing Figure 9.9 with Figure 9.7, it is observed that reducing c,
slows down the rate of dissipation on the cone ftace. This is clearly

. IA) . .
illustrated by the contour for ;N = 0.5, The impact of a smaller c, on the

T

dissipation rate measured on the shaft is less significant and the effect is

not apparent until towards the end of the consolidation process.

.18
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Figure 9.9: Contours of Au at Different Stages of Dissipation (cv = O.lch)
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The dissipation curves at six locations along the probe are plotted in
Figure 9.10. For‘ comparisons, the results for the isotropic case are
superimposed on the same figure as dotted lines. Tt isg observed that the
rate of dissipation at a point slightly above the shoulder is speeded up at
the 1initial stages. This apparently anomalous response can be readily
explained by a careful examination of the pressure distribution at various
stages of dissipation. Initially, the pore pressure in the region beneath
the cone shoulder is very much higher than that which exists around the
shaft. In a perfectly iso&ropic soil (i.e. cv:ch), the higher pressure
gradient induces the pore fluid to flow from the cone face region towards the
shaft, thus effectively delaying the dissipation process at the latter
location. At larger T, the flow direction is reversed as the pore pressure

fMu at the cone face drops below that adjacent to the shaft. When cy is
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Figure 9.10: Effect of Anisotropic Consolidation Characteristics

on the Rates of Dissipation
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reduced, the movement of water in the wvertical direction is impeded.
Therefore, the net effect of a smaller ey is to increase the rate of
dissipation at a point just above the cone shoulder at the initial stages,

and to reduce it towards the end of the dissipation process.

For positions 1 and 2, the smaller ¢, causes an overall reduction in the
dissipation vrates as the flow in the axial direction is impeded. Far behind
the tip, the 1initial Au distrvibution dictates that dissipation takes place
mainly in the radial direction. Thus, changes in <, have very little impact
on the rate of dissipation monitored at these locations at the initial
stages. However, a hydraulic gradient gradually builds up in the axial
direction as T increases. Reducing ¢, again slows down the water movement in

this direction and hence reduces the dissipation rate at later times.

In summary, it may be stated that the dissipation process around the
conical tip 1is two-dimensional in nature, so the rate of dissipation is
sensitive to changes in both ¢, and ¢y, However, the effect of c, is
relatively small and dissipation 1is primarily controlled by L This is
indicated by the small changes in the dissipation curves for the two cases
studied when T 1is defined in terms of ¢y, If alternatively c, is used for

the normalisation, significant differences are apparent.

9.8.2 Fffect of Ir on the Rate of Dissipation

The magnitude of the excess pore pressuie and the zone of yielded soil
due to cone penetration will generally vary with Ir' As Ir increases, the
extent of the failure zone as well as the magnirude of ou both increase. For
the constitutive model adopted, the failure zone also represents the extent

of s0il subjected to excess pore pressure. These changes in pore pressure

distribution will in  turn affect the rate of dissipation. Therefore, the
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dissipation curves evaluated for an Ir of 100 (Figure 9.8) are not unique.
This is apparent from the results evaluated for a soil with an Ir of 500
(Figure 9.11) which show that the time T taken to reached a given degree of
dissipation has increased quite significantly. The shift in the dissipation
curves due to changes in Ir can be attributed partially to the choice of R as

a normalising quantity for T.
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Figure 9.11: Dissipation Curves at Different Locations

o]
of a 60 Cone Penetrometer (Ir:SOO)

For a conventional consolidation test conducted in an oedometer, the
length of the longest drainage path is used as the characteristic dimension
in the definition of T. If this philosophy 1is adopted in the cone
penetrometer problem, the time factor ought to be normalised by a parameter
which characterised the zone of soil subjected to excess pore pressure. One

such parameter {is the plastic radius, Rp, as defined in Chapter 6. It has
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been shown that a good estimate of Rp can be obtained from the cylindrical

R
cavity expansion theory which gives ﬁE equal to /Tr approximately. Adopting
Rp as the normalising quantity gives:
¢, t
- ;_hz (9.21)
IrR

However, unlike an oedometer test, the contour for Au=0 does not stay
stationary during the entire dissipation process. In addition, the effect of
the changes in the magnitude and gradient of the excess pore pressure due to
different Ir has not been adequately accounted for in the defintion of T as
expressed in equation (9.21). Increasing IL increases both R_ and the excess
pore pressure, AOu, which have opposing effects on the dissipation rate.
Equation (9.21) would only be adequate if the pore pressure distribution
normalised with respect to Rp wvas the same for different values of Ir'
Unfortunately, this is not the case and the normalisation as expressed in

equation (9.21) remains unsatisfactory.

In an attempt to account for the effect of Ir on the dissipation curves,

~4-

a nev time factor, T was defined:

. clt
T S “n (9.22)
(I.)R
where: 0 <n <1

Note that when n=0, the conventional definition of T is obtained and when

n=1, equation (9.21) is recovered.

It has been found that a good normalisation of the dissipation curves

for different Ir values can be achieved when n is set to in equation

2
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(9.22). The dissipation data at four locations on the probe have been
plotted against the logarithm of T; {with n:%) in Figure 9.12. The trace in
each plot consists of 7 curves with I ranging from 25 to 500. Except for an
Ir value of 25, all the curves are found to lie within a very narrow band,
especially for the piezometric element half way up the cone or at the cone
shoulder. One possible explanation for the scatter at an Ir of 25 is the
different dissipation pattern that exists around the cone for soil with such

a low rigidity index.

The dissipation vresults have also been plotted against the square root

of T in Figure 9.13. The dimensionless time factor is again defined with n
equal to %. The scatter in the dissipation curves is found to be minimal.
and a linear response is evident in the initial stages. The gradient of this
initial tangent is useful for making an estimate of Y from short dissipation

records, as will be illustrated in a later section.

9.8.3 Interpretation of Dissipation Data from CPT

Two methods for deriving the consolidation coefficients from dissipation
test data are suggested. These are based on the theoretical dissipation

curves presented in the previous section and only differ in the scale chosen

for T .

(A) Log-time Plot:

This technique is based on a curve matching principle. The test data
Ja\ . . -
are prec<ented as a plot of 5% against the logarithme of time, t. TIn order

to obtain an estimate of the consolidation coefficient, the time taken to
reach a certain degree of dissipation is matched with the corresponding

theoretical time factor, T . It has been demonstrated that the rate of

dissipation as measured by a piezocone is controlled mainly by the horizontal
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consolidation coefficient. Hence, the wvalue obtained from the test is a
measure of S
For example, 1if the time taken for 50% dissipation is tSO’ then ¢, can

be evaluated from the equation:

¢ = =2 v (9.23)

Yhere R is the radius of the cone penetrometer and Ir is the rigidity index

*

of soil. T50 can be extracted from Table 9.1 for the relevant location along

the probe.

Distance above

M (in%) | Tip  |Mid-face | Shoulder Cone Shoulder
i 5R 10R
20.0 0.001 | 0.014 0.038 0.294 | 0.378
25.0 0.002 | 0.022 0.056 0.378 | 0.528
30.0 0.006 | 0.032 0.078 0.503 | 0.662
40.0 0.027 | 0.063 0.142 0.756 | 0.995
50.0 0.069 | 0.118 | 0.245 1.100 | 1.458
60.0 0.154 | 0.226 0.439 1.646 | 2.139
70.0 0.345 | 0.463 0.804 2.430 | 3.238
75.0 0.530 | 0.665 1.104 3.235 | 3.887
80.0 0.8290 | 1.035 1.598 4.103 | 5.240

*
Table 9.1: Dimensionless Time Factor, T
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The consistency of the prediction based on this interpretation technique

C
. h .
can be checked by computing the wvalue of 73 at various degrees of
Y
dissipation. Slight wvariations in the computed values of this ratio are

inevitable partly because of the various idealizations adopted in the

theoretical analysis, and partly due to the <complexity of real soil

C
behaviour. Howvever, 1if the 7T ratios evaluated at various degrees of
v

dissipation differ significantly, it 1is possible that the initial pore
pressure distribution in the soil is different from that evaluated by the
strain path method. In such cases, the recommended interpretion technique

described herein would not then be applicable.

(B) Root-time Plot :

In a cone penetration test, it is usually possible to obtain a short
dissipation record without incurring substantial extra cost. This can be
achieved during the interuption in the penetration process for installing the
extension rods. The short dissipation data obtained could provide a very
valuable means of making an estimate of ¢ This i1s accomplished by plotting
the test data against the <square oot of time. The initial dissipation
process presented in this form c¢an usually be appioximated by a straight
line. Tf the gradient of this linear section is m, then 4 is evaluated from

the equation:

9 2
¢ = HXI } V7 R? (9.24)

where M 1is the gradient corvesponding to the theoretical curve for the
relevant location on the probe. The value of M derived from the numerical

analysis is shown in Table 9.2.
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Cone Cone Cone 5R Above
Tip Face Shoulder Shoulder
Gradient of
Dissipation curve 1.30 1.63 1.15 0.62

Table 9.2: Gradient of Dissipation Curves, Root-Time Plot

9.9 Pore Pressure Correction for Cone Resistance

Due to the intrinsic design of the piezocone, the pore water pressure
can exert a downward force on the ’exposed’ surface area at the base of the
cone (Figure 9.14), leading to a smaller measured cone resistance. Since the

values of u and d. in soft clay are often of the same order of magnitude, it

is important that the measured 4. is corrected for pore pressure effect.

0
-—?-
il
0
+
3
[
£
o
le}

Figure 9.14: Correction of Measured Cone Resistance

for Pore Pressure Effect
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This 1is essential if the measured values are to be compared with analytical
results or when experimental data from various cone designs are to be

correlated.

Referring to Figure 9.14, the total corrected cone resistance, denoted

by Ay is given by:

qt = q + (1 — ‘9)11 (9.25)

vhere Ug is the pore pressure acting at the gap behind the cone shoulder.

In most common penetrometer designs, the pore pressure is very often
measured at some locations other than immediately behind the cone shoulder
(in the cone design used by Zuidberg et al., for example). Thus, it is
necessary to know the variation of pore pressure along the probe if a proper

correction is to be made.

The wvariation of 0Ou along the penerrometer as computed by the strain
path method is shown in Figure 9.15. The pore pressure has been normalised

by Aush’ which is the excess pore pressure measured on the shaft a long way

behind the tip. The experimental data obtained by May (1987) in re-
constituted kaolin in a large calibration chamber has been plotted in the
same figure. It 1is clear that the general frend of Au variation along the
probe is predicted quite reasonably by the strain path method. The computed
results can therefore be wused as a calibration curve for pore pressure
variation. When the pore pressure at any point along the probe is known, the

value of Ug can be scaled from the curve in Figuve 9.23. It should be noted
the results presented are for Ir: 100.  The shape of the curve may change for

different Ir values.
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N e« May (1987)

Strain path
method

1 1 1 T
0 0.5 1.0 1.5 20 2.5

Aul Augpaft

Figure 9.15: Normalised Pore Pressure Variation

[+]
along a 60 Cone Penetrometer

9.10 Location of the Piezometric Element

In recent years, a standardised piezocone geometry has been widely
adopted. In one crucial design aspect, however, much debate is still
continuing. This concerns the siting of the piezometric element. Currently,
the two most popular locations are at the cone face and just behind the cone
shoulder. Various arguments have been put forward both for and against

placing the piezometric element at either of these two locations.

The 1location behind the cone shoulder has been adopted by some workers

(Campanella et al., 1982, Tavenas et al., 1982) because it is suggested that
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Ou measured here can be used directly for correcting the cone resistance. It
has alsc been veported that the filters located at this position are less
susceptible to wear and tear. Wroth (1984), based on a consideration of soil
behaviour, suggests that a higher proportion of the Au measured behind the
shoulder 1is due to shearing of soil, and is therefore more representative of
soil behaviour. This consideration is important if the measured Au is to be
used for correlating with soil properties such as OCR. A recent study by
Baligh (1986). however, suggests that the proportion of Au on the shaft due
to shearing is small compared to the change in mean normal pressure. Hence,

the measured Au may not be sufficiently sensitive to the changes in OCR.

From a theoretical standpoint, there are considerable difficulties in
interpreting the pore pressure measured at the cone shoulder. Significant
stress and strain reversals are observed in this region. Stress relaxation
in the soil around this region also make it extremely difficult to provide a

rational interpretation of the measured data.

A number of workers (De Ruiter, 1981; Zuidberg et al., 1982) have
selected the cone face location for pore pressure measurement because Au is
at a maximum in this region. This contention is well supported by
experimental data (Sugawara & Chikaraishi, 1982; Levadoux & Baligh, 1980).
The numerical results obtained in the present study also show that maximum Ou
occurs on the cone face. The higher magnitude helps in increasing the
sensitivity of the measured data to changes in the soil. 1In addition, the
rate of dissipation at this location 1is comparatively higher, thereby
permitting a full dissipation curve to be obtained in a shorter time and

helps in reducing the cost of site investigation.

Clearly, an ideal way of resolving this problem would be to have porous

elements Jlocated at both the cone face and the shoulder. This design has in
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fact been wused 1in some research instruments (May, 1987). However, such a
proposition may not be practical in a commercial cone and a compromise
location has to be sought. Based on the results of the strain path analysis
and taking 1into consideration the uncertainty associated with the solution
around the cone shoulder, it is the author’s opinion that the cone face would

be the preferred location for placing the piezometric element.
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10.1 Summary and Remarks

Experimental evidence suggests that soil deformation around a deep
penetrometer 1is largely independent of soil properties and is determined
primarily by the kinematic constraints on the problem. The strain path
method capitalised on this observation to obtain a solution for the stress
changes due to cone penetration via a rational and systematic procedure.
This approach was adopted in the present study, and the quasi-static cone
penetration process was modelled by soil flowing past a stationary cone.
These two situations are exactly equivalent when the soil medium can be

considered to be homogeneous and infinite in extent.

The velocities of soil particles around the penetrometer were
approximated by the flow field of an inviscid fluid. It is clear that the
choice of an 1inviscid flowv field is arbitrary and since the algorithm for
flow computation derived 1in this thesis is also applicable to viscous flow
computation, an alternative flew field could have bheen used as an initial
estimate. This has not been done principally because a viscous flow solution
would require special treatment of the boundary layer and it is not clear how
this should be implemented for soil. Furthermore, the viscous flow field is
dependent on the Reynolds number, which introduces an additional arbitrary
factor into the initial estimate. All these complications have been avoided

by adopting the inviscid flow solution.

The results derived from the strain path method were compared, wherever
possible, with other analytical solutions. Tt has been shown that the
stresses around a slender bodv <an be approximated <lesely by cylindrical
cavity expansion theory (Norbury & Wheeler, 1987). This prediction has been
reproduced quite satisfactorily by the strain path method for a penetrometer

¢}
wvith a very sharp conical tip. However, for a 60 cone penetrometer, cavity
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expansion theory has been shown to be no longer adequate because of the
predominantly twvo-dimensional nature of soil behaviour around the

penetrometer tip.

The stresses obtained from the strain path method are inexact because
the wvelocity field was based on an idealization of soil behaviour. The
approximate nature of the computation was revealed by the failure of the
deviatoric stresses to satisfy the equilibrium equations. Consequently, the
mean normal pressure was dependent on the path of integration. The impact of
these simplifving assumptions on the computed stress field was found te be
highly 1localised. The regions where the stresses are associated with
appreciable wuncertainties are located in the vicinity of the singular points
in the penetrometer geometry. FElsevhere, a solution of reasonable quality,
as indicated by the small deviations from the equilibrium condition, has been

obtained.

It 1is clear that the velocity tield in the region of high uncertainty
should be modified if an improved solution 1s to be obtained. Three
different methods, which utilise the approximate stress solution to derive an
improve velocity estimate, have been attempted. None of these was successful

in completely eliminating the errvors.

A series of finite element calculations has also been carried out.
Apart from being an independent analysis, the results of the finite element
calculations can also be used to verify the reliability of the strain path
solutions. A complete finite element analysis which simulate the actual
penetration process is not currently feasible. However, it has generally
been assumed that a incremental plastic finite element analvsis could provide
a usetul approximation to the solution ot the penetration problem, and such a

procedure has been adopted in this thesis.

—
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Extensive comparisons were made between the strain path solutions and

the finite element results. Despite the difference 1in the analytical
approaches, the stress fields in the soil around the cone face evaluated by
these two methods are comparable. The stress contours exhibit similar

features even though the magnitudes of the stresses differ slightly. Part of
this difference can be directly attributed to the roughness of the cone face,
which was assumed to be perfectly rough in the finite element calculations.
Far behind the penetrometer tip, the finite element calculations show very
small stress changes in the soil around the shaft, due mainly te the way the
penetration was modelled numerically. A more realistic solution requires
that a displacement 1in the order of a fevw cone radii be applied in the
incremental finite element calculations. This 1is not a practicable

proposition because of the prohibitive computing time required.

The wuncertainties in the stresses around the shoulder were observed in
both types of analyses. In the finite element computation, this uncertainty
was veflected by the considerable scatter in the Gauss point stresses around
the cone shoulder. While it may be possible to reduce the scatter by using a
finer mesh system around the cone shoulder, it is not c¢lear that the errors

could be completely eliminated by this process alone.

The conventional finite  element analysis is strictly a small
displacement failure calculation and does not take into account the fact that
the cone is continually penetrating. A< a result, the computed stress field
is not truly representative of the soil stresses around a steadily moving
penetrometer. In order to make a more accurate estimate of the steady state
cone resistance, a series of strain path-finite element analyses (SPFEM) were
carried out. The solution procedure consisted of estimating the steady state
stresses from the strain path method, this was then used as the initial

condition for the subsequent incremental finite element analysis. The tip
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resistances evaluated by this method were significantly higher than the
results obtained from conventional rinite element calculations based on an

‘undisturbed’ in-situ stress condition.

Anisotropy in fthe in-situ <tress =state has been found to have a
significant influence on the Nk factors obtained from the strain path method
and SPFEM analysis. Vhen the in-situ horizontal stresses were higher than
the vertical stresses, greater Nk factors were obtained. The changes in the
value of Nk due to anisotropv in the initial stresses could be significantly
reduced if it was defined in terms of %o The cone factor defined in this
way 1w less wensitive to the in situ stresses and would be a preferred
parameter tor correlating soil properties. Unfortunately, an accurate

measurement of is extremely difficult to achieve in practice, so Nk

g

ho
should be retained for interpretation purposes. Proper adjustment could then
be made in this parameter to account for the effect of stress anisotropy.

For example, in a highly over consolidated soil deposit, %o is usually

higher than ¢ so N, should be adjusted upwvards.
Ve k :
The Nk values obtained from the finite element analysis and the strain
path method were found to exhibit nearly the same trend of variation with Ir'
A best estimate of Nk from the analyses carried out is:

N o 0.19 4 2.04In(1 ) 1.896  2(1-0) (10.1)

The last term in equation (10.1) is an approximate correction to account for

the different roughness coudition on the cone face.
On  the whole, the strain path method has been found to be capable of

giving an overall solution which 1is of the same order of accuracy as the

finite element method. In fact, the strain path method was found to yield a
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more realistic steady state solution than the conventional finite element
analysis. The advantage of the former procedure can be better appreciated
wvhen the cost of computation is taken into consideration. On a DEC Vax11/780
computer, a calculation based on the strain path method on the average
required about 2 minutes of CPU time. The average finite element analysis

performed in this thesis, on the other hand, required about 4.5 CPU hours.

The normalised pore pressure distribution derived from the strain path
method using Henkel’s pore pressure equation was found to show good
qualitative agreement with field and laboratory test data. A dissipation
analysis based on such a pore pressure distribution could therefore be
expected to give a fair representation of the actual consolidation process

around the cone.

The dissipation analysis, based on Terzaghi’s three dimensional
uncoupled <consolidation theory, was formulated in finite difference form
using the Alternating-Direction-Implicit method. This formulation is
unconditionally stable and permits the wuse of a wvariable time step to
optimize the solution procedure. The normalised dissipation curves at
different locations on the penetrometer derived from these analyses are
comparable to those obtained from dissipation tests conducted in a large
calibration chamber. In addition, the analyses showed that the rate of
dissipation 1is affected significantly by the rigidity index of the soil.

A dimensionless time factor was proposed to take account of this effect.

Two interpretation techniques based on the computed normalised
dissipation curves were suggested. In the first technique which was based on
a curve matching principle, the dissipation data are plotted against the
logarithm of time. The time taken to reach a certain degree of dissipation

(expressed in the vrelevant normalised form) is equated to the theoretical
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t

time factor TX, from which an estimate of ¢ could be made. When only a
short dissipation record is available, a useful estimate of ¢y, can be
obtained by plotting the dissipation data against the square root of time.

The parameter ¢ is estimated by equating the 1initial tangents of the

h

experimental and theoretical dissipation curves.

An important feature of this research has been to reveal the importance
of the parameter Ir' Thevefore, in order to wuse the interpretation
techniques suggested in this thesis, the rigidity index of the soils must be
known. Since the piezocone 1is not a suitable device for stiffness
measurement, separate tests may be needed to determine the value of Ir' This
is unavoidable if a rational and consistent interpretation of the CPT data is
to be achieved, principally because the tip resistance and pore pressure
generated during cone penetration are affected significantly by Ir'
Moreover, current developments in new testing equipment such as the
pressuremeter-cone (Houlsby, 1986) may enable a measure of the soil stiffness
to be obtained in a penetration test. The additional information acquired

will wundoubtedly enhance the rational interpretations of cone penetration

data.

10.2 Future Research

In the analyses described in the thesis, a number of simplifying
assumptions have been introduced. These were made in order to clarify the
solution procedure and to avoid unnecessary complications in the formulation.
Due to the idealization of the problem, some important aspects of soil
behaviour have inevitably been neglected, and this 1in turn renders the
solution less representative of the real problem. One of the major
assumptions made was in the choice of constitutive relationship in which the

clay was modelled as an elastic-perfectly plastic von Mises material. This
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constitutive assumption is clearly unrealistic. The high strain level in the
soil during cone penetration raised question about the reliabhility of the
stress calculation based on such a simplified model. 1In addition, it has
been known that clay behaviour is strain rate dependent so the extremely high
strain rates encountered during cone penetration should be taken into account
in any future studies. The analysis would also benefit if additional
features of real soil behaviour such as strain softening and hardening could

be included in the constitutive model.

An important area of future research is the development of a correction
procedure which is capable of completely eliminating the errors due to
equilibrium imbalance. It 1is the author’s belief that the pseudo-dynamic
method outlined 1in Chapter 5 may provide the basis for such a scheme.
However, in order to improve the performance of this method, two particular
aspects of the scheme require special attention. Firstly, a proper treatment
of the soil-penetrometer interface must be found. Secondly, a detailed
analysis of so0il behaviour around the points of singularity in the
penetrometer geometry may also be necessary. A solution for the cone tip is
already available (Sagaseta, 1985), so a similar analysis for the shoulder
wvould be required. Preliminary studies suggest that it is the inadequate
treatment of these two aspects of the problem that prevented the complete
elimination of errors in the stress solution. It is highly probable that
progress along these 1lines would aid the development of a successful

iterative correction scheme.
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