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Abstract

Theoretical Limits to Tidal Stream Energy Extraction
A thesis submitted for the degree of Doctor of Philosophy

Christopher Vogel
Magdalen College, Oxford

Trinity Term 2014

Tidal stream energy has gained attention as a source of predictable and renewable

energy. Devices resembling underwater wind turbines, placed in fast tidal streams,

have been proposed to extract this energy. Arrays of many such devices will need

to be deployed to deliver a significant amount of energy to the electricity grid. One

consequence of energy extraction is that the array provides a resistance to the tidal

stream, which may change the local and far field hydrodynamics, which in turn affects

the power available to the array. Array-scale hydrodynamic changes affect the flow

presented to the devices, which in turn affects the total resistance the array provides

to the flow. This thesis is concerned with the interactions between device, array, and

the tidal stream resource, to better understand the power potential of turbine arrays.

Linear momentum actuator disc theory is employed to describe the operation of an

idealised turbine array partially spanning a wide channel. The model is comprised of

two quasi-independent sub-models, an array-scale model, describing flow phenomena

around the array, which provides the upstream boundary condition to the device-scale

model, describing the flow around a device. The thrust applied by the array is the

sum of the thrust applied by the devices, completing the sub-model coupling.

The numerical simulation of arrays in depth-averaged simulations is then investi-

gated using the two-scale concept developed in the analytic partial-array model. It

is shown that the device-scale flow must be modelled with a sub-grid scale model

in order to correctly describe the unresolved device-scale flow and hence estimate

the power available to an idealised array. Turbulence modelling in depth-averaged

simulations of turbine arrays is also discussed.

Temporal variations in tidal amplitude and strength mean that generator capac-

ity will need to be economically matched to the available resource. As device per-

formance may consequently depart from the relationship derived in idealised models

when power capping is employed, blade element momentum theory is modified to

parameterise tidal turbine performance during power capping. The array-scale effect

of power capping is studied in depth-averaged simulations, in which it is shown that a

significant reduction in device thrust may occur during power capping, reducing the

impact of energy extraction from the tidal stream.



Nomenclature

Common Variables

α Non-dimensionalised turbine-scale core flow speed

β Non-dimensionalised turbine-scale bypass flow speed

η Basin efficiency

ν Molecular viscosity

ρ Density

A Cross-sectional/swept area

B Blockage ratio

b Flow passage width, centre-to-centre device spacing

CP Power coefficient

CT Thrust coefficient

D Turbine diameter

E Total energy

Fr Froude number

g Gravitational acceleration

H Total head

h Flow depth

ṁ Mass flow rate

P Instantaneous power

p Static pressure

Re Reynolds number

T Thrust applied to the fluid

t Time

u = (u, v, w) Velocity vector
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x = (x, y, z) Position vector

Common Subscripts

0 Array-scale upstream flow boundary

1 Immediately upstream of array/turbine-scale upstream flow boundary

2 Immediately upstream of device

3 Immediately downstream of device

4 Turbine-scale hydrostatic pressure equalisation point

5 Immediately downstream of array/turbine-scale downstream flow boundary

6 Array-scale hydrostatic pressure equalisation point

7 Array-scale downstream flow boundary

A Array-scale variables

c Channel

d Device, core flow streamtube

b Bypass streamtube

G Global-scale variables

L Local/device-scale variables

mix Mixing region

t Turbine

tot Total

Chapters 2, 3, and 6

ζ Free surface elevation, non-dimensional array-scale static head

θ Non-dimensional turbine-scale static head

λ0, λ1 Parameters related to bed friction and tidal devices, respectively

σ Non-dimensionalised array-scale core flow speed

τ Non-dimensionalised array-scale bypass flow speed

ω Tidal frequency

AC Channel cross-sectional area
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a Tidal amplitude

Cd Seabed drag coefficient

F Opposing force on flow in a channel, per unit mass

L Array width

n Number of turbines in array

Q Volume flow rate in channel

p∞ Static pressure in the far field

p+t Static pressure upstream of actuator disc

p−t Static pressure downstream of actuator disc

u∞ Free stream velocity

ut Through-disc velocity

uw Far wake velocity

V ,L, I, R, C Electrical voltage, inductance, current, resistance, and capacitance

WC Channel width

X Force acting on surface of core flow streamtube

Chapters 4, 5, and 6

〈()〉 Spatial average

(̄) Time-averaged component

()′ Fluctuating component

()n Parameter value at the nth time step

Γ Domain surface

γ Non-dimensional velocity scale

∆ Grid size

δ Kronecker delta

ǫ Energy dissipation rate

θ Numerical stability parameter

κ Non-dimensional length scale
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λ Ratio of eddy length scale to forcing eddy length scale

νT Turbulent eddy viscosity

ξ Free surface elevation

τ, τb Shear stress, bed shear stress

τ Non-dimensional time scale

φ Finite element test function

ψ Finite element basis function

χ Non-dimensional length scale

Ω Numerical domain

ω Vorticity, turbulent eddy angular velocity

C Kolmogorov constant

cs Smagorinsky constant

F Acceleration due to body force

f Coriolis parameter

K Turbulent kinetic energy

K Two-dimensional turbulent kinetic energy

k Turbulent fluctuation wave number

L,Lf Turbulent eddy length scale, turbulent eddy forcing length scale

l Characteristic eddy length scale

T Reynolds-averaging time period

∆t Numerical time step

Pa Atmospheric pressure

p Pressure

S Strain rate tensor

U = (U, V ) Depth-averaged velocity

u Characteristic eddy velocity scale

Z Two-dimensional enstrophy
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Chapters 7 and 8

()i Value of the ith annulus

α Angle of attack

β, βs Twist angle,pitch angle

γ Relaxation factor, ratio of flow speed to rated flow speed

δ() Incremental value of variable on an annular ring

ε Convergence parameter

λ Tip-speed ratio

σ Blade solidity

φ Angle of incidence

Ω Rotational speed of turbine

a, a2 Turbine plane axial velocity induction factor

a4 Volume-flux constrained turbine wake axial velocity induction factor

a′ Turbine plane tangential velocity induction factor

b Turbine wake axial velocity induction factor

b4 Bypass axial velocity induction factor

Cd Drag coefficient

Cl Lift coefficient

CF Capacity Factor

c Blade chord

D Drag force

d Rotor diameter

F Prandtl tip-loss factor

L Lift force

NB Number of blades

PF Power factor

PR Rated power
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p∞ Static pressure in the far field

p+d Static pressure upstream of rotor

p−d Static pressure downstream of rotor

Q Torque, volume flow rate

R Rotor radius

r Radial position

s Inter-turbine spacing distance

Ua Array flow speed

uθ Tangential flow speed through device

ud Axial flow speed through device

ur Rated flow speed

urel Flow speed relative to blade
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Chapter 1

Introduction

Quare patet quod si in aliis scientiis debemus venire in certitudinem sine
dubitatione et ad veritatem sine errore, oportet ut fundamenta cogni-
tionis in mathematica ponamus

If in other sciences we should arrive at certainty without doubt and truth
without error, it behooves us to place the foundations of knowledge in
mathematics

- Roger Bacon

The growing worldwide demand for energy, coupled with concerns about the envi-

ronment and energy security, has led to an increased interest in harnessing renewable

energy resources (MacKay, 2008). In light of public opinion, government policies,

and environmental constraints, as well as the need to provide a reliable and consis-

tent power supply, it is widely accepted that a diverse range of renewable generation

sources must be developed (Lund and Mathiesen, 2009). A key challenge for electric-

ity market operators will be that some renewable energy sources, such as wind and

solar power, are intermittent and prone to rapid fluctuations in capacity. The ability

of a network to cope with such intermittency is enhanced through dispersion of gener-

ation sites and having a diverse portfolio of generation sources, as intermittent sources

tend to vary independently of each other (Grubb, 1991). Marine renewable energy

therefore has the potential to form an important component of future renewable en-

ergy networks. The tides are considered to be a particularly promising marine energy

resource as the tides, although intermittent, are predictable, which has benefits for

electricity networks (Callaghan and Boud, 2006).

Ambitious government aims, such as the European Council’s ‘Energy 2020’ tar-

gets, stating that 20% of the European Union’s total energy supply should come from
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renewable sources by 2020 (European Commission, 2010), have spurred research and

development activities in renewable energy sources. A key challenge identified in the

‘Energy 2020’ plan was the need to diversify generation supplies in order to ensure

energy security and reliability. The United Kingdom’s Marine Energy Challenge, a

programme designed to accelerate development of marine renewable energy technolo-

gies, identified that approximately 20% of the total electricity demand in the UK

could be supplied by marine technologies (Callaghan and Boud, 2006). Studies com-

missioned by the Marine Energy Challenge suggest that 10% of electricity demand

might be met by tidal energy. The potential contribution of various sites around the

UK and the impacts of tidal energy extraction has been the subject of many subse-

quent studies. Similar energy targets have encouraged interest in North America, for

example, where it is estimated that up to 7% of total US electricity demand could be

supplied through tidal stream energy, and up to 10% of total electricity demand in

both New Zealand and Australia (Sinclair Knight Merz, 2006; Geoscience Australia,

2010).

1.1 Origin of the Tides

The relationship between the tides and the moon and the spatial variation in tidal

amplitude and phase has been known since antiquity (Deparis et al., 2013). Tidal

amplitudes of the order of one metre and low flow speeds mean that the energy flux

in the deep ocean is generally too low for economic energy extraction. It is instead

at the coasts, where the energy flux is concentrated, that tidal energy extraction may

be economically feasible. It is important to understand the processes that govern

the transmission of energy from the deep oceans to the coast, and the spatial and

temporal variability in the strength of the tides at the coast, in order to appreciate

the dynamics of tidal currents and the energy that may be harnessed from the tides.

3
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Figure 1.1: (a) Gravitational attraction between Earth and Moon (blue), gravitational
attraction of Moon on the Earth’s surface (green), and the net force on the Earth’s
surface (black) , and (b), resulting water distribution.

1.1.1 The Equilibrium Tide in the Deep Ocean

Newton considered a spherical body of mass m1 covered in a uniform depth of water

and its satellite of mass m2 in the Principia Mathematica, finding the net attraction

of the two bodies to be (Komar, 1976):

F̂ = G
m1m2

r2
, (1.1)

where the gravitational constant G = 6.6 × 10−11Nm2kg−2, and r is the distance

between the centres of mass of the two bodies. The attraction of the satellite on

individual elements of the planet, fa, varies according to their relative position to the

satellite; water on the near side of the planet experiences a greater attraction towards

the satellite than on the opposite side, as indicated in Figure 1.1, drawing the water

on the body into an oblate spheroid with an amplitude of approximately 54cm. The

gravitational interaction of the Earth and Sun also generates tides, approximately 27
59

the strength of the lunar tides, with the much greater distance between the Sun and

the Earth counteracting the larger mass of the Sun (Komar, 1976). The departures

from the mean net attraction, fa − F̂ , are responsible for raising the tides.
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The rotation of the Earth means that the location of high tide moves across the

surface of the planet, giving rise to the apparent propagation of high and low tide.

Longer term variations in the tides, such as the monthly spring-neap tidal cycle,

are due to the amplification from alignment of the major axes of the spheroids due

to the Sun and the Moon and attenuation when the major axes are perpendicular.

Although Newton’s theory provided a basic theoretical model to understand the tide

raising forces and the tides in the deep ocean, several phenomena were not explained

by the theory, such as the time delays between the tide and transit of the perturbing

body, the phase difference between transit and the maximum and minimum tides,

and the variation in tidal amplitude over small spatial areas (Deparis et al., 2013).

1.1.2 Periodicity of the Tides in the Deep Ocean

A long wave in the deep oceans (of depth approximately 4000m) has a wave speed

of approximately 200ms−1, whereas the sub-lunar point on the equator travels with

an average speed of 450ms−1. The speeds are almost equal at approximately 60◦N/S.

The oceans are thus too shallow for an equilibrium tide to propagate at the same

speed as the Moon’s position above the Earth, even in the absence of continents. The

continents divide the oceans into different basins and restrict the propagation of waves

around the Earth. Consequently, each ocean basin has individual modes of oscillation

and therefore differing responses to tide generating forces. Wave propagation is also

influenced by Coriolis accelerations due to the rotation of the Earth (Pugh, 1987).

Laplace (1782) developed a dynamic theory of the tides to address the shortcom-

ings of equilibrium tide theory. Laplace noted that the depth of the oceans is very

small relative to the radius of the Earth, and treated the problem as a quasi-two

dimensional flow (Deparis et al., 2013). Denoting the horizontal velocity of a water

particle u, the Earth’s angular velocity ω, and ζ the radial deformation of the fluid
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layer, Laplace formulated dynamical and continuity equations:

∂u

∂t
+ 2ω ∧ u = −g∇ζ +∇V +∇Φ, (1.2)

∂ζ

∂t
+∇ · hu = 0, (1.3)

where g is acceleration due to gravity, V the tidal potential, Φ the potential of the self-

gravity of the fluid layer, and h is the depth of the fluid particle (Deparis et al., 2013).

Movement of the Sun and the Moon relative to the Earth’s equator was modelled with

a series of satellites, each contributing a component of the combined tide-raising forces

acting on the oceans. Each satellite generated its own tide, with unique amplitude,

period, and phase, called a tidal constituent. Although harmonic analysis of the tides

reveals over one hundred tidal constituents, approximately 80% of tidal amplitude

and phase can be accounted for with just seven constituents (Defant, 1961). A key

innovation of Laplace’s work was the introduction of the 2ω ∧u term, accounting for

acceleration in a rotating reference frame, later known as Coriolis acceleration. Tidal

propagation was no longer assumed to occur in straight lines around the Earth, but

instead followed curved paths due to the action of the Coriolis force.

1.1.3 Interaction Between Deep Ocean and Continental Shelf

Tidal propagation across the oceans is generally obstructed by the presence of conti-

nental landmasses, with the exception of the Southern Ocean. Tides progress around

the oceanic basins, with the greatest tidal elevations achieved at the coasts and cen-

tred on regions of small tidal range, called amphidromic points, as illustrated in

Figure 1.2. The tides are thus a result of the interaction between the tides generated

in the deep ocean, deflection of tide propagation by the Coriolis force, and oceanic

and continental shelf bathymetry (Plumb and Marshall, 2007).

Propagation of the tides on the continental shelves is slower than in the deep
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Figure 1.2: Map of M2 tidal elevation (in colour) and amphidromes (line intersec-
tions).

ocean, as the water is much shallower (Plumb and Marshall, 2007). The effects of

direct tidal forcing in such small bodies of water are relatively small compared to the

effects of forcing from the open ocean boundaries. Tides on the continental shelves are

also influenced by the reflection of tidal waves along the coastline, allowing incident

and reflected tidal waves to combine. The tides at the coast are thus primarily the

result of tidal wave propagation across the continental shelves (Pugh, 1987).

The tidal amplitude may become large near the coast through two principal mech-

anisms; the first being the narrowing of a channel or estuary, concentrating the energy

of the incoming tide, and the second being constructive interference between incoming

and reflected components of the tide (Plumb and Marshall, 2007). Natural resonance

is achieved if the continental shelf is close to one-quarter (for the largest tidal am-

plitudes) of a tidal constituent wavelength, allowing a standing wave to form. This

occurs in a number of places around the world, such as in the Bay of Fundy, Canada,

where quarter wavelength resonance is established with the M2/S2 tidal constituents,

and the tidal range increases to over ten metres from approximately one metre in the

Gulf of Maine. On the other hand, diurnal tides are established in the Gulf of Mexico
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because the Gulf is resonant with the K1/O1 diurnal tidal constituents (Pugh, 1987).

Regions where tidal resonance occurs are of interest to tidal developers as the

energy transmitted from the deep oceans to the continental shelves is concentrated

in these locations, enhancing the economic and technical feasibility of extracting en-

ergy from the tides. Feasibility will be driven by the magnitude of the tidal resource

at a particular location, its temporal variability through the interaction of the dom-

inant tidal constituents and bathymetry, and the response of the system to energy

extraction, in particular whether the system moves closer to or away from the natural

resonant frequency with the deep ocean. These considerations will have an impact

on the choice of technology used to extract energy from the tides.

1.2 Harnessing the Tidal Resource

Energy extraction from the tides can be broadly classified into two categories. The

first requires the construction of a barrage or dam to enclose an area, such as an

estuary or a bay, which allows the difference in potential energy of the water between

high and low tides to be exploited. The second involves the deployment of devices to

extract energy from tidal currents, much in the same way as wind turbines extract

energy from the wind. The second of these methods is the focus of this thesis.

1.2.1 Tidal Barrages

Tidal barrages are formed by damming a body of water to separate it from the

open ocean. Sluice gates are opened as the tide comes in, allowing water into the

impoundment area. The gates are closed at high tide, trapping the water until a

sufficient height difference has developed between the trapped water and the falling

(ebb) tide. The water is then released through turbines in the barrage into the open

sea, with energy extracted as the water flows from the area of higher potential energy

8



Open ocean/sea

Impounded area, Ab
Barrage

(a) (b)

Figure 1.3: (a) Plan view of a hypothetical tidal barrage spanning the entrance to a
bay, and (b), a diagram of the water elevation in a tidal barrage operating in dual
mode, from Burrows et al. (2009).

inside the barrage to lower potential energy outside the barrage. The process may be

used during the flood tide, with the water entering the barrage through the turbines,

allowing generation on both the flood and ebb tides.

Garrett and Cummins (2004) analysed the maximum power, averaged over a tidal

cycle, that could be extracted by a tidal barrage operated on the flood and ebb tides,

illustrated in Figure 1.3. A sinusoidal tidal elevation ξ = a cos(ωt) was assumed at

the entrance to the bay, where a was the tidal amplitude, ω the angular frequency

of the tide, and t time. Assuming that the bay enclosed an area of uniform depth

Ab, and that the water instantaneously filled and emptied from the barrage, the

maximum averaged power was found to be 2π−1ρgAnωa
2, where ρ is the density of

water and g is acceleration due to gravity. As the water does not instantaneously fill

and empty the barrage, the potential energy difference across the barrage is reduced,

resulting in the available power being some fraction of the maximum average power.

This, in addition to the complexities of non-uniform bathymetry in bays and estuaries

giving rise to a non-constant area Ab as the impounded area fills and empties, leads

to challenging optimisation problems to determine the optimal filling and emptying

schedule of the barrage to maximise the power (Ryrie, 1995). The power may also be

improved by allowing water to be pumped in and out of the barrage to increase the

height difference between the two bodies of water (Yates et al., 2013).

9



(a) (b) (c)

Figure 1.4: (a) Marine Current Turbines SeaGen horizontal axis turbine. Image from
Fraenkel (2007). (b) THAWT Darrieus-type turbine. Image from McAdam et al.
(2009). (c) Oscillating hydrofoil type device. Image from DTI (2005).

Tidal barrages currently in operation around the world include the 240MW La

Rance tidal barrage in France, the Annapolis-Royal barrage in the Bay of Fundy,

Canada, and one in Kislaya Bay, near Murmansk, Russia (Charlier and Finkl, 2009).

Further barrages have also been proposed, in particular in the Bristol Channel, and

Bay of Fundy, as well as a number around China, South Korea, and South America,

although planning and construction is slow due to the high cost of construction and

the significant impacts that barrages have on the environment (Baker, 1991).

1.2.2 Tidal Current Turbines

Tidal current (stream) devices are designed to extract energy from the bulk motion of

water in tidal currents. The devices, examples of which are shown in Figure 1.4 may

broadly be classified into three general types: horizontal axis turbines; Darrieus-type

cross-flow turbines; and, oscillating hydrofoils. Development has largely converged

on the horizontal axis turbine, with many devices currently under development and

testing. The European Marine Energy Centre (EMEC) was established in the Orkney

Islands to provide facilities for testing tidal current devices and offers support facilities

for installation and maintenance, as well as grid connection (Charlier and Finkl, 2009).

The choice of turbine to harness best the tidal resource will depend on a number of

different considerations, and may vary according to the site and turbine deployment
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configuration. Despite the multiplicity of designs, a successful turbine will need to be

economical to construct, install, and maintain, as well as having good hydrodynamic

performance to maximise the power extraction. As tidal devices will be installed

in strong tidal currents, installation will be expensive and challenging and therefore

reducing installation complexity will be important. The supporting structure and

foundations will also play an important role in the choice of turbine, as support

structure drag has a significant effect on the power available to the turbine (Muchala

and Willden, 2014). The motivation behind Darrieus type devices in particular, such

as the THAWT device shown in Figure 1.4, is to maximise the cross-section of the

flow occupied by the turbine whilst minimising the need for support structure, and

hence the associated structural drag (McAdam et al., 2009).

Despite the complexities of selecting the optimal device to maximise power ex-

traction, tidal current turbines have attracted significant research and commercial

interest. Tidal current turbines may have a lower environmental impact than a tidal

barrage, as well as being cheaper and the possibility of developing turbine arrays

incrementally. The reduced environmental impact and lower capital outlay required

for tidal current devices means that there is lower investment and regulatory risk in

comparison to a tidal barrage, making tidal current technology attractive.

It is expected that, regardless of the exact device choice, devices will need to

be arranged in a fence or array-like configuration of many turbines to generate a

significant amount of power (Garrett and Cummins, 2007), with the configuration

depending on how constrained the flow is by channels, headlands, islands, or other

geographic features. Furthermore, numerous studies by Garrett and Cummins and

others indicate that inter-turbine spacing plays in determining the power available to

turbines. The flow around a single device has received considerable attention, and

the ‘array-scale’ flow, which concerns the power available to the turbine array, has

been gathering more attention, and forms the central focus of this thesis.
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1.3 Thesis Objectives

Significantly harnessing the tidal stream resource will require the deployment of large

numbers of tidal turbines in array configurations. The importance of inter-turbine

spacing and turbine-scale flow phenomena on the power available to turbines has

become established in the literature, however the importance of array-scale flow phe-

nomena on the power available from the flow is less well understood. This challenge

is addressed through three primary objectives, the first two concerned with modelling

array-scale flow around a finite width array of idealised turbines in a wide channel

analytically and numerically, and the third to incorporate realistic turbine thrust and

power characteristics to investigate the power extracted by an array and the effect on

the flow in a tidal channel.

1.3.1 Objective 1: Array-scale Flow Phenomena

Linear Momentum Actuator Disc Theory (LMADT) has been successfully applied

to wind and tidal turbines as an approximation to the flow around the rotor allow-

ing the turbine’s power to be assessed analytically. If an array is comprised of a

sufficient number of turbines, three-dimensional turbine-scale flow phenomena occur

over a much shorter distance and much faster than the larger, predominantly two-

dimensional array-scale flow phenomena, allowing the two flow scales to be separated

and analysed quasi-independently. LMADT has been extended to approximate the

flow field around an array in a channel with a free surface, providing a semi-analytic

tool for investigating the array-scale flow and power available to the turbines. This

is coupled with LMADT analysis of a single turbine to determine the power available

to the array and the far field impacts of energy extraction.
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1.3.2 Objective 2: Simulating Tidal Turbine Arrays

One of the challenges in modelling tidal turbine arrays is that the highly turbulent

flow field around a tidal turbine is three-dimensional and characterised by length

scales which are much smaller than those characterising the array-scale flow, which

is predominantly two-dimensional. However, it is computationally infeasible to re-

solve both length scales sufficiently to provide an accurate description of the effect

of turbulent mixing on a tidal array, and instead the contribution of turbine-scale

mixing must be approximated within the depth-averaged simulations. Turbulence is

believed to play an important role in wake mixing, and an objective of this thesis is

to investigate the modelling of turbulent mixing in depth-averaged flows.

A distinction is made between the power available to a turbine for conversion

into mechanical energy, which is the inviscid limit of the shaft power of a turbine

(Adcock et al., 2014), and the power dissipated in the mixing processes in the turbine

wake. The total power removed from the flow is the sum of the available power and

the dissipated power. This distinction is important in depth-averaged simulations

because the turbine-scale flow field cannot be simulated accurately, and therefore

the available power cannot be correctly determined. This thesis also investigates the

challenge of representing correctly the array thrust as well as correctly computing the

power available to the turbines. Concepts from the analytic section of this thesis are

utilised in order to model the turbine-scale flow within the array-scale simulation to

account for the effect of the bypass flow on turbine-scale performance.

1.3.3 Objective 3: Turbine Power Capping

Analytic theory and much of the numerical analysis of large tidal turbine arrays has

considered the flow around idealised turbines which extract axial momentum from

the flow with perfect hydrodynamic efficiency, neglecting, for example, the angular

momentum imparted on the flow and the shedding of tip-vortices. Realistic turbine
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performance, and thus turbine array performance, will therefore be different to that

of an idealised array as considered in the previous two sections. Furthermore, turbine

power will be limited (capped) to some level by the choice of generator capacity

which matches the revenue generated by the available power with the tidal resource

and installation costs. Turbine performance may therefore change with respect to

flow speed in a manner which diverges from that in actuator disc theory.

The third objective of this thesis has been to simulate arrays with realistic turbine

performance characteristics. Firstly, blade element momentum theory, widely applied

to wind turbine design, is modified to account for the volume-flux constrained flow

within which tidal turbines operate to develop a semi-analytic tool to determine thrust

and power characteristics for a specified turbine design. This allows turbine perfor-

mance to be evaluated in a variety of blockage conditions and also allows the effect

of blade feathering and similar control mechanisms to be investigated. The thrust

and power characteristics are then implemented within depth-averaged simulations

of turbine arrays, allowing the effect of turbine power capping to be investigated on

the array-scale, addressing the second aspect of the objective to simulate arrays with

realistic turbine performance characteristics.

1.4 Thesis Outline

This thesis includes an analysis of the flow around an idealised tidal turbine array,

the depth-averaged simulation of an idealised array, and development of a novel blade

element momentum theory model. The thesis has been broadly divided into three

sections, beginning with analytic models of idealised arrays, progressing to numerical

simulations of idealised arrays, and finally numerical simulations of arrays with more

realistic turbines.

The first section investigates the use of analytic models in modelling the flow
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around an idealised array of tidal turbines. Chapter 2 begins with a review of actuator

disc theory and its application to wind turbines. Traditional actuator disc theory is

not directly applicable to tidal turbines due to the confined flow field, and analytic

models proposed to determine the available power in a uniform tidal flow by turbines

are reviewed. Extension of actuator disc theory to the confined flow field around a

tidal turbine is discussed, leading to an analytic expression for the power available

to an actuator disc from such a flow under a range of conditions. Chapter 3 adopts

actuator disc theory for a single turbine to model the flow around an actuator disc

array partially spanning a wide channel to determine the power available to the array.

The second section investigates depth-averaged numerical simulations of turbine

arrays. Chapter 4 presents the shallow water equations, which describe two-dimensional

depth-averaged flow, and briefly discusses their implementation in the continuous

Galerkin Finite Element code TELEMAC-2D. The role of turbulence modelling in

depth-averaged simulations is discussed in Chapter 5, focussing in particular on the

differences between two- and three-dimensional turbulence. Chapter 6 investigates

the power available to an array partially spanning a wide channel of constant cross-

section in depth-averaged numerical simulations.

The final section simulates of arrays with realistic turbines rather than actuator

discs, as the power extracted by real turbines will not always follow the cubic rela-

tionship with flow speed derived in actuator disc theory. Blade element momentum

theory, which has been applied successfully to the design of wind turbines, is adapted

in Chapter 7 for the volume-flux constrained flow around a tidal turbine. Modified

blade element momentum theory is used in Chapter 8 to determine turbine char-

acteristics with respect to flow speed under a variety of conditions to parameterise

depth-averaged simulations of realistic turbine arrays (including power capping).

Chapter 9 presents the main conclusions of the thesis and suggestions for further

work.
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Chapter 2

Flow Around a Single Turbine

There is nothing more practical than a good theory
- Ludwig E. Boltzmann

This chapter reviews analytic methods developed to analyse the power of an array

of tidal devices spanning a channel. LMADT for wind turbines is reviewed, which

yields the simple result that the maximum fraction of the upstream kinetic flux that

may be extracted is 59.3%. Such a simple relationship cannot be derived for tidal tur-

bines, as the confined flow around the turbines results in a dynamic balance between

the resistance imposed by, and the diversion of the flow around, the turbine.

Analytic models for turbines are considered in two broad categories; those mod-

elling the overall effect of energy extraction from a channel or basin, and those mod-

elling the flow around a device. The tidal channel is examined analytically using the

zero-dimensional Navier-Stokes equations and its electrical analogy, from which it is

shown that the available power depends on the forces driving flow in the channel, the

natural resistance to the flow due to bed friction and other dynamic effects, and the

resistance imparted by the tidal turbines.

LMADT extensions have been proposed to account for the confined flow field

around the device imposed by the free surface, modelled as both a rigid lid and then

a pressure and volume constraint on the flow. It is shown that blockage, the ratio of

device frontal area to the cross-section of the surrounding flow passage is an important

factor in determining the power of a tidal turbine. There is also a dependence on the

Froude number of the flow. The chapter concludes with a review of the limitations

of the LMADT approach for a turbine array completely spanning a tidal channel.
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2.1 Wind Turbines

Actuator disc theory was developed by Rankine (1865) and Froude (1889) to describe

the flow field around a ship propeller. The complicated three-dimensional problem was

simplified by replacing the complex shape of the propeller with a simple, uniformly

porous disc, and applying incompressible fluid flow assumptions to determine the

steady state flow around the propeller. It was later shown by Lanchester (1915) and

Betz (1920) that the same idea could be applied to an inverse propeller in an infinite

flow field, of which the wind turbine is one example. Their approach involved using a

simple representation of the rotor as a porous actuator disc, which imparts an axial

thrust on the flow. The complexity of the flow problem was reduced and allowed a

control volume analysis to be used to determine the dynamics of the simplified flow

around the turbine.

2.1.1 The Lanchester-Betz Limit

Lanchester and Betz’s application of LMADT to wind turbines showed that it was

not possible to extract all of the projected kinetic flux upstream of the turbine, as any

attempt to do so would cause the flow to divert around the turbine as it presented an

increasingly large resistance to the flow. A diagram of the simplified flow field around

a turbine is shown in Figure 2.1, and demonstrates that the streamtube enclosing the

turbine expands as the flow speed in the wake of the turbine reduces to conserve the

mass flux through the streamtube. Streamtube expansion upstream and downstream

of the turbine increases as the applied thrust increases, as does the expansion of the

turbine wake.

Analysis of the simplified flow field allows a number of observations to be made

about the physics of wind turbines. The wind turbine is characterised by an actuator

disc with a frontal area Ad, which corresponds to the swept area of the turbine
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Figure 2.1: Diagram of a wind turbine and streamtube, with the idealised actuator
disc shown in grey. Adapted from Burton et al. (2001).

rotor, and a thrust Td, which corresponds to the thrust exerted by the turbine on

the flow. Conservation of energy, described by the Bernoulli equation, upstream and

downstream of the turbine yields:

p∞ +
1

2
ρu2∞ = p+t +

1

2
ρu2t , p−t +

1

2
ρu2t = p∞ +

1

2
ρu2w, (2.1)

where p∞ is the static pressure in the far field, p+t is the static pressure just in front

of the actuator disc, p−t the static pressure just behind the actuator disc, u∞ the

free stream velocity, ut the velocity through the actuator disc, and uw the velocity in

the far wake of the disc. It is assumed that no mixing occurs between the core flow

through the disc and the bypass flow around the disc. Equilibrating forces across the

actuator disc requires p+t − p−t = Td

Ad
. Combining these equations yields:

Td =
1

2
ρu2∞Ad

(

1− u2w
u2∞

)

. (2.2)

Similarly, the conservation of momentum between the upstream and downstream

boundaries of the flow (ignoring axial forces on the expanding streamtube) requires:

Td = ρu2∞Ad
ut
u∞

(

1− uw
u∞

)

. (2.3)
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Equating (2.2) and (2.3) requires ut

u∞

= 1
2

(

1 + uw

u∞

)

, thus it is possible to express

the solution as a function of uw

u∞

. Writing the power available to the actuator disc,

Pd = Tdut, as a function of uw

u∞

it is found that:

Pd = Tdut =
1

2
ρu3∞Ad

1

2

(

1 +
uw
u∞

)2(

1− uw
u∞

)

=
1

2
ρu3∞AdCP , (2.4)

where CP = 1
2

(

1 + uw

u∞

)2 (

1− uw

u∞

)

is the power coefficient.

The variation of power with the thrust imposed by the actuator disc can be de-

scribed by an inverted curve; no power is available when no thrust is applied, nor

is power available when the thrust is so large that all the flow bypasses the disc.

Between these limits lies a point at which the available power is maximised. At this

point, a positive increment in thrust results in a reduction in the mass flux through

the actuator disc, with more of the flow being forced into the bypass due to the

additional thrust. The incremental reduction in velocity through the turbine is not

offset by the incremental increase in thrust, resulting in an overall drop in the power.

Lanchester and Betz showed that this optimal point, found by maximising Equation

(2.4) with respect to uw

u∞

, corresponded to 16
27

of the undisturbed kinetic flux passing

through an equivalent cross-section projected into the flow upstream of the actua-

tor disc. The 16
27

fraction is known as the Lanchester-Betz limit, as it represents the

maximum available power when the optimal retarding force is applied to a flow.

The momentum theory used to derive the Lanchester-Betz limit is a simplified

representation of the aerodynamics of a turbine in an unbounded flow. The swirl or

tangential velocity component introduced into the turbine wake is not considered by

the one-dimensional streamwise analysis of actuator disc theory (Glauert, 1947). This

rotational motion represents an additional loss of energy from the axial flow, reducing

the power available to the turbine further below that of actuator disc theory (Burton

et al., 2001). Additional losses arise from the frictional drag between the fluid and the
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turbine blades and support structure, which appear to the fluid as an additional axial

resistance to the flow, but are not converted into useful power (Wilson and Lissaman,

1974).

2.1.2 Extensions to Betz Theory

The actuator disc theory of Lanchester and Betz has been extended in various ways

to overcome some of the simplifications used to formulate the model. A rotating

wake model was proposed by Glauert (1947) to modify the actuator disc so that it

is possible to account for the rotational motion imparted on the flow by a rotating

turbine. Multiple stream tube theory, double actuator disc theory and double multiple

actuator disc theory were developed to account for differences in the wind speed

seen by blades in vertical axis turbines (for example, Strickland (1975); Paraschivoiu

(1988); Beri and Yao (2011)). Blade element theory incorporates the aerodynamic

properties of turbine rotors to more realistically model the turbines, and has been

successfully used to account for drag losses (Wilson and Lissaman, 1974). Despite the

limitations of the simple LMADT model and the availability of more accurate models,

the Lanchester-Betz limit has proved to be a useful benchmarking tool for wind

turbine design and assessment, with modern turbine designs achieving approximately

90% of the Lanchester-Betz limit (Burton et al., 2001).

2.2 Analytical Models for Tidal Turbines

Despite the multiplicity of designs for tidal stream turbines, the simplified physics of

the flow around such devices may be analysed in a similar manner to wind turbines by

using LMADT. Although differences exist in the designs of wind and tidal turbines,

in principle, efficient tidal turbines should, like efficient wind turbines, extract energy

from the streamwise flow with minimal wasteful rotational momentum imparted in
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the wake. Actuator discs are therefore a convenient tool for analysing the dynamics

of the flow around turbines and determining the power available to turbines in tidal

flows.

Several differences exist between the physical regimes in which wind turbines and

tidal turbines operate. LMADT, as derived for wind turbines, assumes the flow

boundaries are far away from the actuator disc, and therefore the analysis developed

by Lanchester and Betz only applies to tidal turbines in similar operating condi-

tions (Fraenkel, 2002). When the flow boundaries are close to the turbine rotor the

assumptions in standard actuator disc theory are not applicable.

In the far wake, LMADT indicates that there is a reduction in the kinetic energy

due to energy extraction by the turbine, and therefore a decrease in the flow speed

in the wake. On the other hand, open-channel flow theory predicts that energy

extraction from a sub-critical flow results in a decrease in the free surface elevation and

acceleration of the flow downstream of the turbine (White, 1994). The assumptions

of LMADT work well for wind turbines, where the atmosphere is approximated as

infinitely tall, but are not appropriate for tidal turbines operating in an environment

where the free surface is within a few rotor diameters of the turbine. As a result,

the Lanchester-Betz limit and LMADT derived for wind turbines are not directly

applicable when assessing the flow around a tidal turbine.

Recognising that the analysis for wind turbines was not directly applicable to

tidal turbines, early work by Black & Veatch (2005) introduced a ‘Significant Impact

Factor’ (SIF), which was applied to the natural kinetic flux through the frontal area

of the turbine (Equation (2.5)), to account for the limiting effect the flow diversion

around the turbine has on the available power and other regulatory constraints.

Pd =
1

2
ρu3∞Ad SIF. (2.5)
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Although this simplistic approach recognised that the Lanchester-Betz limit was not

appropriate for tidal turbines, it did not provide insight into the physics of energy

extraction in tidal flows or distinguish between the physical and regulatory limitations

to energy extraction.

A number of extensions to the LMADT developed for wind turbines have been

proposed to provide an analysis more appropriate to turbines in tidal streams. These

extensions can broadly be classified into three main categories: analysis of turbines

completely spanning a tidal channel; a turbine in a volume constrained flow, also

called the rigid lid model; and a turbine in an open channel. The first of these

analyses, turbines completely spanning a tidal channel, was investigated by Garrett

and Cummins (2005), examined the response of a channel between two large bodies of

water to the introduction of an array of tidal turbines which completely spanned the

channel cross-section. Recognising that it would not be possible to occupy the entire

channel cross section with turbines, Garrett and Cummins (2007) considered a single

tidal turbine in a volume constrained flow, where the free surface could not deform,

but there was mixing in the wake between the core flow through the turbine and the

bypass flow around the turbine. This was further extended by Houlsby et al. (2008)

and Whelan et al. (2009) to consider a turbine in an open channel. Each extension

is reviewed below.

2.3 Energy Extraction in a Tidal Channel

The limitations of the kinetic flux approach to determining the available power was

investigated by Garrett and Cummins (2004), which showed that that there was

no simple relationship between the average kinetic flux and the average maximum

available power of a turbine. They also noted that the kinetic energy flux varies as

A−2, where A is the cross-sectional area of the channel, meaning that the resulting
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A(x)

Ae

xu

ue

Figure 2.2: Diagram of a generic tidal channel between two large tidal basins, after
Garrett and Cummins (2005).

power is sensitive to the location where it is evaluated (Garrett and Cummins, 2008).

Garrett and Cummins (2005) proposed an analytical model using the zero-dimensional

shallow water equations for an array of tidal turbines spanning a channel (Figure 2.2)

between two large bodies of water:

∂u

∂t
+ u

∂u

∂x
+ g

∂ζ

∂x
= −F, (2.6)

where ζ describes the free surface elevation and F is the opposing force on the flow,

per unit mass, associated with natural friction in the channel as well as resistance to

the flow by the presence of turbines. In order for the turbine force to be independent

of streamwise position in the channel it is necessary for the turbines to completely

span the cross-section of the channel. The current in the channel has a speed u,

which is a function of A(x), the cross sectional area of the channel, where x is the

streamwise position along the channel.

Garrett and Cummins assumed that the channel was sufficiently short compared

to the tidal wavelength that the volume flux was constant along the length of the

channel and that the tidal elevations in the basins were unchanged by changes which

occurred within the channel. Furthermore, it was assumed that the Froude number
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was sufficiently small so that, as a first order approximation, the depth and velocity

are functions of position only. Finally, Garrett and Cummins required that the chan-

nel length and cross-section did not change over time due to the tides. Using these

assumptions, integrating Equation (2.6) gives:

c
dQ

dt
− gζ0 = −

∫ L

0

Fdx− 1

2
ue|ue|, c =

∫ L

0

A−1dx, (2.7)

where Q is the flow rate in the channel, ζ0(t) is the difference in the water level in

the two basins, assumed to be ζ0(t) = a cos(ωt), where a is the amplitude of the head

difference with frequency ω, and ue is the exit velocity from the channel. The final

term of Equation (2.7) arises from the non-linear advection term in Equation (2.6),

and assumes that water is smoothly drawn into the channel at the inlet, but allows

for the flow to exit as a jet into the downstream basin.

Introducing the drag coefficient of the seabed Cd, and assuming that the drag was

quadratic in velocity, the last term of Equation (2.7) could be written as:

−
∫ L

0

Fdx = −
∫ L

0

Ftdx− αQ|Q|, α =

∫ L

0

Cd(hA
2)−1dx+

1

2
A−2

e , (2.8)

where Ae is the cross-sectional area of the channel exit and Ft is the force imposed by

the turbines on the flow. It was further assumed that force imposed by the turbines on

the flow was also quadratic in u, so that when the equation was non-dimensionalised,

a parameter λ1 could be used to describe the turbine thrust. Defining Q0 = ga(cω)−1,

the non-dimensionalised equation became:

dQ′

dt′
− cos t′ = −(λ0 + λ1)|Q′|Q′, (2.9)

where Q′ = Q−1
0 Q, t′ = ωt, and λ0 = gaα(cω)−2. The last term, λ0, represents the

ratio of drag losses and the velocity head at the channel exit to acceleration, and is
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normalised by the amplitude of the driving current, therefore describing the balance

between the different dynamic conditions in the channel. The driving head in the

channel is balanced by the combination of the acceleration, the velocity head at the

exit of the channel, and the natural drag of the sea floor and the imposed drag of the

turbines.

One particularly interesting condition may be observed when the acceleration is

negligible, leading to a quasi-steady flow through in the channel. The power available

to the turbines is:

ρQ

∫ L

0

Ftdx = ρQ(gζ0 − α|Q|Q). (2.10)

As Q is varied, this has a maximum 0.38ρgQ1ζ0, where the flux Q1 has the magnitude

|Q1| =
√

g|ζ0|/α and the same sign as ζ0. For ζ0 = a cosωt, Q1 can be written as

Qmax| cosωt|1/2, where Qmax is the maximum flux in the channel undisturbed by

turbines. Averaging over a tidal cycle, noting that | cos θ|3/2 = 0.56, the average

power in Equation (2.10) becomes:

P1 = 0.21ρgaQmax. (2.11)

Remarkably, the coefficient 0.21 changes to only 0.24 as the natural regime in the

channel progresses from one with negligible background friction to one dominated

by friction, as shown in Figure 2.3. This means that the average maximum power

of a quasi-steady channel can be estimated to within 10% accuracy by selecting a

coefficient γ = 0.22, without the need to understand the dynamical balance within

the channel.

A key outcome was that the available power is not related to the kinetic flux in

the channel in a simple way, and instead is determined by the work done by the tide.

Indeed, Garrett and Cummins noted that the power only becomes a constant fraction

of the kinetic flux in the limiting case where the separation effect at the channel outlet
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Figure 2.3: Variation of the multiplier γ giving the maximum average power as a
function of the natural friction parameter λ0 shown with the solid line and left axis.
The phase lag (degrees) of the undisturbed state, of the volume flux behind the
natural forcing, is shown with the dashed line and the right axis. From Garrett and
Cummins (2005).

dominates the natural friction and acceleration within the channel:

P1 = 0.38 · 1
2
ρAe|ue0|3, (2.12)

where ue0 =
√
2gζ0 is the instantaneous exit speed in the undisturbed channel.

Although the method proposed by Garrett and Cummins took the free surface of

the channel into account and showed that there was no simple relationship between

the kinetic flux through the turbine frontal area and the power available to the tur-

bine, their analysis assumed that the channel cross-section was completely spanned

by turbines. However, this will not be feasible in real turbine arrays, and the gaps

between turbines will present flow passages with lower resistance to the oncoming

flow, thus altering the flow and therefore the available power. As a result, although

the analysis by Garrett and Cummins offered an important step towards understand-

ing the dynamics of energy extraction by tidal turbines, further work was needed
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to understand the effect of bypass regions between turbines due to turbine spacing

requirements.

2.3.1 Electrical Analogy

An alternative method to study the flow in a tidal channel between two large basins

is to consider an electrical circuit equivalent to the tidal channel. Application of

equivalent circuit analysis to waves in harbours was pioneered by Miles (1971), and

Lighthill (1978) discussed its application to shallow flows in channels, in which the

alternating electric voltage is analogous to the time-varying hydrostatic pressure in

the flow and the electric current represents the volume flow rate through the chan-

nel. The electrical analogy was applied by Rainey (2009) to determine the optimum

position for a tidal barrage in the Severn Estuary to maximise its power, and then by

Atwater and Lawrence (2010) to determine the idealised power potential of an array

of tidal turbines completely spanning a sub-channel within a larger tidal channel.

More recently, the electrical analogy has been applied to estimate the available power

of the multiple channels of the Pentland Firth (Draper et al., 2014). An advantage of

the electrical analogy is that it allows sinusoidally varying flows to be analysed using

established analytical methods for electric circuit problems.

The equivalent circuit for energy extraction from a sub-channel of a larger tidal

channel between an open ocean and a bay is shown in Figure 2.4. The forcing of the

open ocean is represented as an alternating voltage, and it is assumed that the open

ocean is sufficiently large that the amplitude of the free surface oscillation is unaffected

by changes in the tidal channel being examined. Although the head difference across

the channel is assumed to remain constant, the flow through the channel may vary

according to the impedance of the channel. Each sub-channel is described in terms

of a resistance, representing the bed friction in the sub-channel, and an inductance,

representing the phase delay in the sub-channel due to the acceleration of the water
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Figure 2.4: Equivalent electrical circuit diagram for energy extraction from one sub-
channel in a tidal channel connecting a tidal basin with an open ocean. Adapted from
Cummins (2013).

as the tidal wave propagates through it. A tidal bay also requires a capacitance to

represent the storage and discharge of water that is π
2
out of phase with the driving

frequency. The tidal turbines are modelled as a variable resistance RT acting in a

sub-channel.

The solution of the electrical analogy often utilises Thévenin’s theorem for deter-

mining an equivalent circuit for the load resistance due to the turbines, RT (Cummins,

2013). The resulting equation has the general form:

V = LdI
dt

+RI + C
∫

Idt, (2.13)

where L is the circuit inductance, C is the circuit capacitance, and R comprises the

resistance due to the seabed and the turbines (Draper, 2011). For a given voltage drop

(head difference) across the turbines, a higher current (flow rate) results in greater

power available to the turbines, which may be maximised. However, the greater the

resistance imposed on the flow by the turbines, the lower the current will be in the
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circuit, giving rise to the balance between turbine resistance and flow rate discussed

earlier. It is also apparent that it is not possible to describe simply the available

power solely in terms of either the head difference or the flow rate in the channel.

The use of Thévenin’s theorem and other electrical methods to simplify and solve

the equivalent circuit require a number of assumptions to be made about the flow

through the channel. It is assumed that the current is constant throughout the

channel, and therefore the flow must be non-divergent. This requires the length of

the channel to be small compared to the tidal wavelength driving the flow through

the channel. A linear relationship between the resistance imposed by, and the current

passing through, the turbines is also assumed. This is a simplification of the real,

quadratic relationship that drag has with flow speed, and hence limits the electrical

analogy to first-order approximation of the resistance that the turbines impose on the

flow. Despite these simplifying assumptions, equivalent circuit analysis offers insights

into tidal flows in channels, and in particular multiply connected sub-channels, which

are difficult to solve directly from the momentum equations.

2.4 Actuator Disc Theory for Tidal Turbines

The zero-dimensional model proposed by Garrett and Cummins (2005) for turbines

in a tidal channel assumed that the turbine completely spanned the channel cross-

section. This assumption did not take into account individual turbines nor did it allow

passage of some of the flow around the turbines, commonly known as the bypass flow.

The bypass flow limits the available power as it is possible for the water to pass around

the turbine if the resistance to the flow is sufficiently large.

The flow around individual turbines has been analysed using extensions of Lanch-

ester and Betz’s actuator disc analysis of a wind turbine. These extensions may

broadly be divided into two categories; a volume-flux constrained (‘rigid lid’) model,
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due to Garrett and Cummins (2007), and an open channel model, due to Houlsby

et al. (2008) and Whelan et al. (2009). It is assumed in both models that the channel

walls are straight and parallel and that the channel seabed is flat.

The two classes of model have many similarities; it is assumed that there is a

constant inflow and static head at the upstream boundary of the problem, and that

the operation of the turbine, approximated as an actuator disc, does not affect the

conditions at this boundary. The flow passage around the actuator disc is divided

into two streamtubes, a core streamtube which encompasses the flow through the disc,

and a bypass streamtube, containing the flow which passes around the disc. The core

flow speed reduces and the static head increases as the upstream face of the actuator

disc is approached. The flow speed is necessarily constant across the disc, but there is

a static head discontinuity as a result of the thrust applied to the flow. In the wake of

the disc, the core flow slows down and static head is recovered, resulting in expansion

of the streamtube. Meanwhile, the bypass flow is accelerated, with an attendant drop

in static head, as a consequence of the expanding core streamtube. At some point

downstream of the actuator disc, the falling static head in the bypass and the rising

static head in the core flow equalise. The core and bypass flows mix downstream of

the hydrostatic pressure equalisation point to produce a uniform flow speed across

the depth of the channel and new hydrostatic pressure which is necessarily lower than

that at the inlet of the model.

The two classes of model differ principally in how they treat static head variation

along the channel. Open channel flow theory predicts that energy extraction from a

sub-critical flow results in a reduction in the water depth and acceleration of the flow

downstream of the energy extraction. This is explicitly modelled in the open channel

models of Houlsby et al. and Whelan et al.. However, if the change in flow passage

cross-sectional area is negligible, then the static head variation along the channel

may be considered simply as pressure variations along a channel with constant cross-
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Figure 2.5: Side view of the one-dimensional model of flow around a single turbine in
an open channel. After Houlsby et al. (2008).

section. This forms the basis of the volume-flux constrained, or rigid lid, model of

Garrett and Cummins (2007). Thus, the rigid-lid model is an approximation to the

open channel model which becomes exact as the change in water depth becomes

negligible.

2.4.1 Open Channel Actuator Disc Theory

Whelan et al. (2007), and later Whelan et al. (2009), adapted Lanchester and Betz’s

analysis of a wind turbine by considering the consequence of a deformable free-surface

on the flow through and around the turbine between the constant inflow boundary

far upstream of the actuator disc and the downstream position where the hydrostatic

pressure equalised in the core and bypass flows. However it was recognised by Garrett

and Cummins (2007) that further energy would be removed from the flow due to

the mixing of the core and bypass flows downstream of the hydrostatic pressure

equalisation position, and Houlsby et al. (2008) extended the open channel actuator

disc analysis to account for this downstream mixing on the power removed from the

channel.
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The static head variation along the channel in response to energy removal results in

the variation of the cross-sectional area along the channel. A diagram of the inviscid,

incompressible flow around a single actuator disc in a frictionless open channel of

width b is shown in Figure 2.5. It is assumed that there is a constant flow speed u1

and static head h1 far upstream of the actuator disc, and that the flow speed and

static head are not perturbed by the change in the flow in the channel due to the

action of the actuator disc. The flow is separated into two streamtubes; the core flow,

which encapsulates the flow through the disc, and the bypass flow, which contains the

flow around the actuator disc. The disc exerts a thrust Td on the flow, which results

in a static head difference h2 − h3 across the actuator disc. The velocity in the core

flow reduces to u2 immediately upstream of the actuator disc. The core flow velocity

is also u2 immediately downstream of the actuator disc as it is assumed that the cross-

sectional area of the core flow is constant immediately upstream and downstream of

the disc. The velocity in the core flow reduces in the wake of actuator disc to u4d as

the core flow streamtube expands to a cross-sectional area A4d and the static head

is recovers h4. Additionally, there may be a force X on the surface of the core flow

streamtube acting to confine the core flow. The flow in the bypass is accelerated from

u1 to u4b to conserve the mass flux in response to the expanding core streamtube and

confinement of the flow due to the deformable free surface. The static head in the

bypass reduces from h1 to the hydrostatic equalisation head h4 through conservation

of the total head in the bypass. The core and bypass flows mix viscously between

stations four and five downstream of hydrostatic pressure equalisation at station four

to yield a new hydrostatic head h5 and complementary uniform flow speed u5. The

static head reduces by δh between stations one and five as a result of energy extraction

from a sub-critical open channel flow. The flow speed at the outlet of the channel is

thus accelerated from u1 to u5 to maintain the mass flux through the channel.

Equations of conservation of mass, momentum, and energy are applied to the one-
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dimensional model to formulate a system of equations that can be solved in order to

determine the power available to the actuator disc. The power Pd is calculated as the

product of the thrust of the disc on the flow, Td, and the flow speed through the disc,

u2:

Pd = Tdu2. (2.14)

The thrust may be found by considering conservation of energy using the Bernoulli

equation between stations one and two, and three and four in the core flow, and

stations one and four in the bypass, noting that conservation of mass requires the

flow speed at stations two and three of the core flow to be equal, yielding:

h1 +
1

2g
u21 = h2 +

1

2g
u22, (2.15a)

h3 +
1

2g
u22 = h4 +

1

2g
u24d, (2.15b)

h1 +
1

2g
u21 = h4 +

1

2g
u24b. (2.15c)

The thrust applied by the actuator disc to the flow is equal to the static head

difference across the disc integrated over the surface of the disc:

Td =
1

2
ρgAd(h2 − h3), (2.16)

where Ad is the frontal area of the disc. Rearranging Equations (2.15a) to (2.15c) for

h2 − h3 and using the expression for the thrust on the disc in Equation (2.16) gives

an expression for the thrust in terms of the difference in the squares of the bypass

and core velocities at station four:

Td =
1

2
ρAd

(

u24b − u24d
)

. (2.17)

It is useful to be able to describe the importance of the turbine dimensions with
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regards to power extraction. The concept of blockage, the ratio of the turbine frontal

area to the cross-sectional area of the channel at the channel inlet, can be introduced

as:

B =
Turbine frontal area

Channel cross-sectional area
=
Ad

bh1
. (2.18)

Conservation of mass in the core flow requires that:

A1du1 = Adu2 = A4du4d, (2.19)

and across the entire water column at stations one and four that:

h4 = Bh1
u2
u4d

+ h1
(u1 − Bu2)

u4b
. (2.20)

Conservation of momentum between stations one and four requires the balance of

the streamwise static head gradient, applied thrust, and change in momentum of the

fluid between stations one and four:

1

2
ρgb

(

h21 − h24
)

− Td = ρAdu2 (u4d − u1) + ρ (bh1u1 − Adu2) (u4b − u1) . (2.21)

The static head terms are eliminated from Equation (2.21) by rewriting Equation

(2.15c) to yield an expression for h1 − h4, and eliminating h4 by using the definition

in Equation (2.20) and noting the definition for thrust in Equation(2.17), giving:

(

u24b − u21
)

(

u4b + u1
u4b

+ Bu2
u4b − u4d
u4bu4d

)

= 4

(

1

2
B
(

u24b − u24d
)

+Bu2 (u4d − u1) + (u1 −Bu2) (u4b − u1)

)

.

(2.22)

The through-turbine velocity, u2, may be found as:

u2 =
u4d
[

2Bu4b (u
2
4b − u24d)− (u4b − u1)

3]

B (u4b − u4d) [(u24b − u21) + 4u4bu4d]
. (2.23)
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The definition for h4 in Equation (2.20) and the expression for u2 may then be used

to express Equation (2.15c) as:

2Bu4b
(

u24b − u24d
)

− (u4b − u1)
3

=

[

(u4b − u1)−
1

2
u4bFr

2

(

u24b
u21

− 1

)]

[(

u24b − u21
)

+ 4u4bu4d
]

,
(2.24)

in which the Froude number is defined as Fr2 =
u2

1

gh1

. It is useful to non-dimensionalise

the velocities in this polynomial expression to eliminate u1. Expressing velocity non-

dimensionalisations as αi = ui

u1

in the core streamtube and βi = ui

u1

in the bypass

streamtube, the equation can be written as a quartic equation for β4 as a function of

α4, B, and Fr2:

Fr2β4
4 + 4α4Fr

2β3
4 + 2(2BL − 2− Fr2)β2

4 + 4(2− 2α4 − Fr2α4)β4

+ (8α4 − 4 + Fr2 − 4α2
4BL) = 0. (2.25)

The equation may be solved exactly if the flow is sub-critical, and the appropriate

root is determined by noting that it is required that 0 ≤ α4 ≤ α2 ≤ 1 and β4 ≥ 1 for

a physical solution of the system of equations.

It is assumed between stations one and four that the interface between the core

and bypass streamtubes is frictionless and therefore there is no mixing between the

two streamtubes. The difference in flow speed the develops drives the viscous mixing

process between stations four and five. The two flows mix downstream of the hy-

drostatic pressure equalisation position at station four, removing further energy from

the flow to produce a uniform flow speed u5 and water depth h5. The total energy

removed from the flow is therefore the sum of the energy extracted by the actuator

disc and the energy dissipated in the viscous mixing region.

The far field effects of the energy extracted by the actuator disc can be analysed

by considering the conservation of momentum across the channel between stations
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one and five:

1

2
ρgb

(

h21 − h25
)

− Td = ρbh1u1 (u5 − u1) . (2.26)

Continuity between stations one and five requires that h1u1 = h5u5, which can be

used to eliminate u5 from the equation above. Defining δh = h1−h5, Equation (2.26)

is rearranged to give:

1

2

(

2
δh

h1
−
(

δh

h1

)2
)

− Td
ρgbh21

= Fr2
(

δh/h1

1− δh/h1

)

. (2.27)

The thrust coefficient CT is defined as:

CT =
Td

1
2
ρAdu21

, (2.28)

which allows Equation (2.27) to be expressed as a cubic for δh
h1

in terms of the blockage

ratio, Froude number, and thrust coefficient:

1

2

(

δh

h1

)3

− 3

2

(

δh

h1

)2

+

(

1− Fr2
(

1− 1

2
CTB

))

δh

h1
− 1

2
Fr2CTB = 0. (2.29)

The far-field change in free surface elevation, δh
h1

, characterises the far-field impact

of energy extraction from the open channel and may be of interest with respect

to assessing the performance of tidal turbines. It is informative to introduce an

additional measure of efficiency, often called the ‘basin efficiency’ (see, for example

Belloni and Willden (2011)), which has been proposed to supplement the traditional

efficiency described by the power coefficient. The basin efficiency is the ratio of the

available power relative to the total energy removed from the flow, Ptot, rather than

relative to the flux across the disc as with the power coefficient:

η =
Power available to disc

Power available to disc and dissipated in mixing
=

Pd

Ptot

. (2.30)
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The total power removed between stations one and five is found from the difference in

energy flux between the two stations. The change in energy flux between stations one

and five can be expressed as the difference in total head H1 −H5 at the two stations:

Ptot = gṁ (H1 −H5) , (2.31)

where ṁ = ρbh1u1 is the mass flow rate through the channel, H1 = h1 +
1
2

u2

1

g
, and

H5 = h5 +
1
2

u2

5

g
. The total power removed from the channel can thus be expressed as:

Ptot = ρgbh1u1δh






1 +

1

2
Fr2

δh
h1

− 2
(

1− δh
h1

)2






. (2.32)

The power coefficient is defined as the available power normalised against the up-

stream kinetic flux projected onto the disc’s frontal area:

CP =
Pd

1
2
ρu31Ad

=
α2u1Td
1
2
ρu31Ad

= α2CT , (2.33)

which, in conjunction with Equation (2.32) allows the basin efficiency to be expressed

as:

η =
α2Fr

2BCT (1− δh
h1

)2

δh
h1

(

2(1− δh
h1

)2 + Fr2( δh
h1

− 2)
) . (2.34)

The basin efficiency expression may be simplified by neglecting small terms. For many

tidal channels it will be true that Fr2 ≪ 1, so that the total power removed from the

channel, to the first order, may be approximated as Ptot = ρgbh1u1δh. Defining the

available power as Pd = α2u1Td, the basin efficiency may be expressed as:

η =
α2u1Td

ρgbh1u1δh
. (2.35)
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Multiplying Equation (2.26) by u1 yields a second expression for u1Td:

u1Td = ρgbh1u1

(

δh− 1

2

δh2

h1
− Fr2

δh

1− δh
h1

)

. (2.36)

The basin efficiency may therefore be expressed as:

η = α2

(

1− δh

h1

)

(

1− 1
2
δh
h1

)(

1− δh
h1

)

− Fr2

2
(

1− δh
h1

)2

+ Fr2
(

δh
h1

− 2
)
. (2.37)

If Fr2 is small but finite, the basin efficiency may be approximated as:

η = α2

(

1− 1

2

δh

h1

)

. (2.38)

The basin efficiency may thus be expressed primarily in terms of α2 with a small

correction for the deformation of the free surface, which acts to reduce the basin

efficiency for a given α2. The consequences of this result shall be discussed further in

relation to the rigid-lid model in Section 2.4.2.

Confining Force

A force, X, acts on the surface between the core and bypass streamtubes between

stations one and four. Conservation of momentum requires:

X =
1

2
ρgbh21

(

(1−Bα2)−
h4
h1

(

h4
h1

− B
α2

α4

)

− 2Fr2 (1−Bα2) (β4 − 1)

)

. (2.39)

The force on the upstream boundary due to the upstream water depth is equal to:

b

∫ h1

0

ρgzdz =
1

2
ρgbh21, (2.40)
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which has been factorised out of the expression for X in Equation (2.39) so that X

can be considered in terms of the different magnitudes of the forces acting on the

core and bypass flows. Rearranging Equation (2.15c) for h4

h1

, Equation (2.39) yields

an equation with the Froude number to three different powers:

O(Fr0) :
X

1
2
ρgbh21

= B
α2

α4

(1− α4) , (2.41a)

O(Fr2) :
X

1
2
ρgbh21

= Fr2 (1− β4)

(

1

2
(1 + β4)

(

B
α2

α4

− 2

)

+ 2 (1−Bα2)

)

, (2.41b)

O(Fr4) :
X

1
2
ρgbh21

= −1

4
Fr4

(

1− β2
4

)2
. (2.41c)

The O(Fr0) term represents the area over which the hydrostatic pressure head

h1 far upstream of the actuator disc acts. This is a strictly positively valued term

for physical solutions of the open channel model, which requires 0 ≤ α4 ≤ α2 ≤

1, 0 ≤ B ≤ 1, as can be seen from Equation (2.41a). It is also required that Equation

(2.41c) be negative for all physical solutions, so that the O(Fr4) term represents the

adverse pressure gradient against which the core flow in the device wake must work to

maintain the mass flux downstream of the disc. The contribution of Equation (2.41b)

depends on the sign of:

χ =
1

2
(1 + β4)

(

B
α2

α4

− 2

)

+ 2 (1− Bα2) . (2.42)

For all physical solutions of the open channel model χ ≤ 0, with equality when

α2 = α4 = β4 = 1, as shown in Figure 2.6. This means that the O(Fr2) expression

for X in Equation (2.41b) is positive, and represents the additional force that acts on

the surface of the core flow streamtube due to the change in free surface elevation in

the channel. The O(Fr2) term dominates the O(Fr4) term for sub-critical flows, so

that the net contribution of the free surface deformation is to provide a force which

accelerates the flow in the core streamtube, increasing the flow speed through the
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Figure 2.6: Maximum χ values across the space of possible blockage ratios and sub-
critical Froude numbers in the open channel model.

tidal device and thereby increasing the available power more than one in which the

free surface does not deform.

Constraints of the Open Channel Model

The open channel actuator disc model is limited by the flow conditions at station

four. Equation (2.25) is not guaranteed to have a solution for general values of B

and Fr (Houlsby et al., 2008; Whelan et al., 2009). The lack of a physical solution

for an open channel flow often implies the onset of critical flow at some point in

the flow field. This can be shown by considering energy conservation in the bypass

streamtube:

E4 =
1

2

u21
g

+ h1 =
1

2

β2
4u

2
1

g
+ h4. (2.43)

Criticality of the bypass flow corresponds to the condition where the derivative of the

energy function with respect to h4 is zero, dE4

dh4

= 0, which defines the point where h4

is so small that energy is only just conserved in the bypass. Any further reduction in

h4 results in the backup of flow and the possibility of a hydraulic jump developing.
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Evaluating the derivative leads to:

d (β2
4)

d (h4/h1
)
= − 2

Fr2
, (2.44)

which corresponds to the point at which physically admissible solutions of Equation

(2.25) cease to exist, thus the onset of critical flow in the bypass is a limiting factor

to the existence of physical solutions.

2.4.2 Volume-flux Constrained Actuator Disc Theory

Actuator disc theory was applied to a volume-flux constrained flow by Garrett and

Cummins (2007). The relationship between the volume-flux constrained and open

channel actuator disc models can be examined through Equation (2.29). It is assumed

in the volume-flux constrained model that δh
h1

is small, so that the cross-sectional

channel area is constant along the length of the channel. Neglecting high order δh
h1

terms in Equation (2.29) yields an expression for δh
h1

:

δh

h1
=

Fr2BCT

2 + Fr2(BCT − 2)
. (2.45)

Taking Fr2 → 0, it can be seen that δh
h1

→ 0, and therefore the volume-flux con-

strained actuator disc model is the limit of the generalised open channel model when

Fr = 0. The Froude number represents the relative balance between dynamic and

static head in the flow, and thus Fr2 → 0 indicates that the dynamic energy in the

flow is negligible relative to the static energy. Therefore the effect of the turbine

thrust on the kinetic energy is negligible relative to the effect on static energy. Thus,

in the limit Fr2 → 0, only the hydrostatic pressure changes far downstream of the

actuator disc and there is no change in the flow speed between the channel inlet and

outlet.

Neglecting the free surface deformation and attendant change in the channel’s
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Figure 2.7: Plan view of the one-dimensional model of flow around a single turbine
in a volume-flux constrained channel. After Houlsby et al. (2008)

cross-sectional area allows a number of simplifications to be made to the generalised

model. If the channel’s cross-sectional area does not change, then it is convenient to

parameterise the inviscid and incompressible flow in the volume-flux constrained fric-

tionless channel in terms of the flow speed, u, and the pressure p, at five stations along

the channel length, as illustrated in Figure 2.7. The primary difference between the

two models is that static head is now expressed as pressure, and the constant channel

cross-sectional area means that the flow speed is u1 at the downstream boundary of

the model, with attendant hydrostatic pressure p5 ≤ p1.

The definition of blockage changes slightly in the volume-flux constrained actuator

disc model as the frontal area of the actuator disc is normalised against the constant

channel cross-section Ac, rather than the channel cross-section at station one, bh1, in

the open channel model:

B =
Disc frontal area

Channel cross-sectional area
=
Ad

Ac

. (2.46)

As in the open channel model, the system of equations describing the volume-flux

constrained model are found by considering conservation of momentum, mass, and
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energy to determine the available power. The volume-flux constrained actuator disc

model is derived below to highlight the differences between it and the general model.

Expressing Equations (2.15a) to (2.15c) in terms of pressure, the Bernoulli equations

in the volume-flux constrained model are:

p1 +
1

2
ρu21 = p2 +

1

2
ρu22, (2.47a)

p3 +
1

2
ρu22 = p4 +

1

2
ρu24d, (2.47b)

p1 +
1

2
ρu21 = p4 +

1

2
ρu24b, (2.47c)

The pressure difference across the actuator disc is equal to the thrust applied by the

disc:

Td = Ad(p2 − p3). (2.48)

Combining Equations (2.47a) to (2.48), the thrust of the disc can be expressed as the

difference in the squares of the bypass and core velocities at station four:

Td =
1

2
ρAd

(

u24b − u24d
)

. (2.49)

Conservation of mass for the core flow and the whole channel requires, respectively:

A1du1 = Adu2 = A4du4d, (2.50)

Ac (u4b − u1) = A4d (u4b − u4d) . (2.51)

Conservation of momentum between stations one and four is found by balancing the

streamwise pressure gradient, thrust, and momentum flux of the core and bypass

flows:

Td = (p1 − p4)Ac + ρAcu
2
1 − ρ (Ac − A4d) u

2
4b − ρA2

4du
2
4d. (2.52)
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Noting that the pressure difference p1−p4 may also be found by rearranging Equation

(2.47c), and using the conservation of mass relationship given in Equation (2.51), the

momentum balance may be rewritten as:

Td =
1

2
ρA4d (u4b − u4d) (u4b + 2u4d − u1) . (2.53)

Equating Equations (2.53) and (2.49), and noting the conservation of mass relation-

ship Equation (2.50) for A4d, yields an expression for the flow speed through the

actuator disc:

u2 =
u4d (u4d + u4b)

u4b + 2u4b − u1
. (2.54)

Using the definition of blockage, Equations (2.50) and (2.51) combine to give:

u4b (u4d − u1) = Bu2 (u4b − u4d) , (2.55)

which combined with Equation (2.54) gives:

(1−B) u24b − 2 (u1 − u4d) u4b + u21 − 2u1u4d + Bu24d = 0, (2.56)

a quadratic equation for u4b:

u4b =
u1 − u4d +

√

B(u1 − u4d)2 + (1−B)2u24d
1− B

. (2.57)

The positive root is required as it is expected that u4b should tend to 1 as B → 0.

When the blockage tends to zero, the Lanchester-Betz case is recovered, with the

optimal power calculated from Equation (2.14) being equal to 16
27
, or 0.59 times the

energy flux 1
2
ρAdu

3
1 of the undisturbed flow through the turbine, when the velocity

u4d =
1
3
u1.

The total power removed from the flow between stations one and five is found by
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considering the difference in energy flux at the two stations:

Ptot = Acu1

(

p1 +
1

2
ρu21

)

− Acu1

(

p5 +
1

2
ρu25

)

. (2.58)

As continuity requires u1 = u5 in the volume-flux constrained model, this simplifies

to:

Ptot = Acu1 (p1 − p5) . (2.59)

Conservation of momentum between stations one and five requires:

Td = Ac (p1 − p5) , (2.60)

so that the total power removed from the flow may be simply expressed as:

Ptot = Tdu1. (2.61)

The basin efficiency of an actuator disc in a volume-flux constrained flow may thus

be simply expressed as the ratio of the through-disc and upstream flow speeds:

η =
P

Ptot

=
Tdu2
Tdu1

=
u2
u1

= α2. (2.62)

Garrett and Cummins (2007) showed for very low blockage ratios (B ≪ 1), that

available power is maximised if u4d = 1
3
u1, leading to a ratio η = 2

3
. When blockage

is large however, such that (1−B) ≪ 1, then it was found that:

Pmax =
16

27
(1− B)−2 1

2
ρu31Ad, (2.63)

where the (1 − B)−2 factor , as compared to the Lanchester-Betz limit, arises from

the confining effect of the channel walls, increasing the pressure drop that can be
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Figure 2.8: Basin efficiency variation with thrust coefficient for the volume-flux con-
strained (solid lines) and open channel (dashed lines) models for varying blockage
ratios and Fr = 0.20 in the open channel model.

sustained across the turbine and thereby increasing the output power of the turbine.

This relationship means that turbines occupying a fraction greater than B = 0.23

of the channel cross-section would result in the 16
27
(1−B)−2 factor multiplying the

kinetic flux exceeding 1, a consequence of the streamwise pressure drop that develops

in the channel. It was found that, just as for the low blockage case, the optimal value

for the velocity in the wake of the turbine was u4d =
1
3
u1.

In comparison to the open channel model, it can be seen that the approximation

to the basin efficiency of a device in an open channel in Equation (2.38) is lower than

that of the same device in a volume-flux constrained channel by a factor of
(

1− 1
2
δh
h1

)

for the same non-dimensional flow speed through the disc plane, α2. The decrease in

basin efficiency is a consequence of the additional acceleration of the flow that occurs

in the open channel in response to the deformation of the free surface, resulting in

greater shear stresses between the core and bypass flows, thus introducing greater

mixing losses and reducing the basin efficiency.
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However, it is informative to compare the efficiency in the open channel and

volume-flux constrained models for a given thrust coefficient, as shown in Figure 2.8.

It can be seen that, for a given thrust level, a device in an open channel has a greater

basin efficiency than one in a channel in which the free surface does not deform. The

deformable free surface permits a higher velocity through the actuator disc to be

sustained for a given thrust level as the deformation of the free surface results in the

flow being less able to deflect around the disc, leading to a higher α2 for the same

thrust coefficient CT . The basin efficiency is therefore higher for the disc in an open

channel as the higher value of α2 means that the reduction in flow speed in the core

is lower, resulting in a lesser expansion of the core flow streamtube. This induces less

acceleration of the bypass flow, and thus the difference in flow speed in the core and

bypass flows at station four is smaller, hence reducing the shear stresses between the

core and bypass flow as compared to the volume-flux constrained case, resulting in a

lower level of mixing in the far wake, and thus a higher basin efficiency.

Confining Force

The confining force X that acts on the surface of the core streamtube was neglected

in the traditional LMADT analysis due to Lanchester and Betz, and the volume-

flux constrained analysis of Garrett and Cummins. The role of the confining force

in the volume-flux constrained analysis was examined by Houlsby et al. (2008) by

considering a momentum balance in the bypass flow between stations one and four:

Acp1

(

1− B
u2
u1

)

− Acp4

(

1− B
u2
u4d

)

−X = ρu21Ac

(

1−B
u2
u1

)(

u4b
u1

− 1

)

. (2.64)
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Equation (2.47c) is rearranged for p4, which can then be substituted into Equation

(2.64) to give:

p1BAc
u2
u4d

(

1− u4d
u1

)

= X

+
1

2
ρu21Ac

(

u4b
u1

− 1

)(

2

(

1− B
u2
u1

)

−
(

1− B
u2
u4d

)(

u4d
u1

+ 1

))

.

(2.65)

Houlsby et al. (2008) and Draper (2011) assume that p1 is at atmospheric pressure

and therefore neglect it. However, retaining this term for generality leads to an

expression for X as:

X = AcB
u2
u4d

(

1− u4d
u1

)(

p1 −
1

2
ρu21

(

u4b
u1

− 1

))

. (2.66)

Taking the pressure p1 to be zero and noting that u4b

u1

≥ 1 and u4d

u1

≤ 1, with equality

in the limit as B → 0, X is in fact required to be less than zero, opposite in sign to

that presented by Houlsby et al. and Draper. In those works, X was explained as

a confining force which acted to force a greater proportion of the flow through the

device, thereby enhancing power available to a device in a finite flow field as compared

to one in an infinitely large flow field. The physical intuition of this explanation is

correct, but relies on the condition:

p1 −
1

2
ρu21

(

u4b
u1

− 1

)

> 0. (2.67)

The positive relationship of X with p1 arises from the positive pressure gradient

in the x-direction that develops in the channel, as p4 < p1 when a device extracts

energy from the channel. However, the pressure behind the device rotor is lower

than this, i.e. p3 < p4, as the expansion of the core flow in the wake of the device

occurs due to the reduction in streamwise velocity the accompanies the recover of

pressure between sections three and four. The adverse pressure gradient in the core
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flow between sections three and four causes a constriction of the bypass flow, acting

on the surface between the core and bypass flows in the negative x-direction. This

provides the force to accelerate the velocity in the bypass flow from u1 to u4b between

stations one and four, the same result as in the open channel actuator disc model in

Section 2.4.1.

In the limit as B → 0 and the case examined by Lanchester and Betz of a turbine

in an infinitely large flow field is recovered, the force X → 0 as in that limit, the

pressure at station four is assumed to be the same as the pressure far upstream of

the device and hence there is no net pressure exerted on the streamtube of the core

flow, which agrees with the traditional analysis.

Model Constraints

Garrett and Cummins (2007) note that one of the principal assumptions of the

volume-flux constrained actuator disc model is that the cross-sectional area of the

channel is unchanged as the flow passes through and downstream of the actuator

disc. This requires that the change in height of the water in the channel is small in

comparison to the water depth h1, as discussed in the introduction to the section.

The change in elevation is given by the pressure divided by ρg. The deformation of

the free surface will be greatest at the section with the lowest pressure, p4, along the

channel, and this change will be small compared to the upstream h1 if:

u21
gh1

≪ 9

4

(1−B)2

B(3− B)
. (2.68)

The requirement that the Froude number is small is generally sufficient to ensure

that the channel cross-section is approximately constant along the channel, but this

requirement becomes more strict as blockage increases because the increasing value

of u4b is associated with an increasing drop in water level at section four.
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2.5 Turbine Fence Spanning a Tidal Channel

Garrett and Cummin’s analysis of energy extraction in a tidal channel discussed in

Section 2.3 showed that a dynamic balance exists between the energy extraction and

the flow in the channel. As more resistance is applied to the channel, the flow rate

through the channel reduces, limiting the maximum power that can be realised. How-

ever, this analysis assumed that the turbines spanned the entire channel cross-section,

thus did not consider the bypass flow that would form around discrete turbines. The

actuator disc models discussed in Section 2.4 considered the effect of such bypasses,

showing that the available power was controlled by the dynamic balance between the

resistance presented to the flow and acceleration of the flow in the bypass. The actua-

tor disc models assumed that the upstream flow was unaffected by turbine operation,

which is not consistent with the observation from the tidal channel analysis showing

that the flow rate through the channel is dependent on the resistance to the flow in

the channel.

Vennell (2010) combined the two problems by assuming that the wake recovery

length scale in the actuator disc model was small compared to the length scale of

the tidal channel, so that the actuator disc model could be considered within the

tidal channel problem, allowing the feedback between the resistance presented by the

turbines and the flow rate through the channel to be modelled. The non-dimensional

farm drag coefficient, λT , was related to the thrust coefficient for a row of turbines,

CT :

λT = N∗
RCT (B,α4), (2.69)

where N∗
R = αNR is the non-dimensional number of rows; the number of rows NR

non-dimensionalised by the parameter α = a
ω2L

, with a being an acceleration term

used by Vennell for conciseness. This allowed the two problems to be coupled and

the system of equations solved numerically.
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Vennell demonstrated that the maximum power available to a row of turbines

completely spanning the channel cross-section was dependent on the bottom friction

in the channel, which had the effect of reducing the channel’s maximum extractable

energy and shifting this point to higher applied farm thrust. It was shown that

α4 would increase from 1
3
in the case where blockage B = 0, towards α4 = 1 as

B → 1, corresponding an infinite number of turbines each extract an infinitesimal

amount of power from the flow. Although additional rows of turbines increased the

maximum available power of the entire farm, the increment in farm power decreased

with each additional row and α4 increased, leading to a trade-off between the overall

available power to the farm and the power available to each turbine, which would be

an important economic factor in farm design.

Vennell (2010) assumed all the turbines in the farm operated at a single wake

induction factor, α4. As this does not necessarily take into account the interac-

tions that exist between turbine rows and variations in channel cross-section, Vennell

(2011) generalised the combined turbine-channel model to allow for a varying channel

cross-section and varying wake induction factor α4,k in different turbine rows. The

parameter space of the model was expanded to allow for multiple wake induction fac-

tors in each row, yielding an optimisation problem to maximise the total farm power

by solving for the optimal α2,k for the kth row of turbines:

α2,k −
( −1

CF,k

∂CF,k

∂α2,k

)−1

=

(

−α
|U |3

¯∂|U |3
∂λ

NR
∑ α2,iCR,i

A′
i
2

)

, (2.70)

where CF,k is the farm drag coefficient based on the kth row, U = u(x,t)
A(x)

is the transport

along the channel, λ is the total drag in the channel, CR,i is the drag coefficient of

the ith row of turbines, and A′
i is the cross-sectional area of the channel at the ith

row. The right hand side of the equation is invariant across rows, so the variation

of optimal α2,k tuning (and then through the rigid lid model, α4,k) within a turbine
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array is dependent on the bracketed term on the left hand side of the equation. At

high blockage ratios, this term has very little variation, and thus all rows in high

blockage arrays have quite similar α2,k tunings, regardless of channel constrictions.

Vennell found that the optimal α4,k was consistent for rows of similar blockage B

where the channel cross-section had similar geometry, and almost completely inde-

pendent of the channel’s dynamic balance between driving head and seabed friction.

The optimal value increased if there was a constriction, such as that due to a head-

land projecting into the channel, and power production was biased towards turbines

placed within such a constriction. Farms with more turbines, and thus higher block-

age, in each row captured a greater proportion of the power available in the channel

than turbine farms with low blockage, which did not do much better than a farm of

turbines operating at α4,k = 1
3
. The problem could also be formulated as a turbine

placement problem; given a number of turbines, what is the most efficient way to

deploy the turbines between rows in order to maximise the farm’s power? Vennell

showed that, as expected intuitively, it is most efficient to maximise the number of

turbines in the row producing the most power, and then fill the second most efficient

row, and so on, i.e., minimising the number of rows, and maximising the number of

turbines in each row. This is to be expected, as energy is removed from the flow

across each turbine row, and thus the energy flux incident on downstream rows is

reduced, limiting the energy that is presented to downstream rows, thus limiting the

power available for extraction.

2.6 Conclusions

Despite the outward similarities in the appearance of wind and tidal turbines, the

dynamics of the flow around the turbines is significantly different due to the close

proximity of the free surface to tidal turbines. The flow confinement due to the
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free surface results in a feedback mechanism when evaluating the performance of

tidal turbines between the flow and the resistance imparted by the turbines. Gar-

rett and Cummins (2005) considered this mechanism in a tidal channel using the

zero-dimensional Navier-Stokes equation and showed that the power available to the

turbines depended on both how much the flow was reduced in the channel due to

the additional resistance and the natural dynamical balance in the channel between

the head difference driving the flow and energy losses on the seabed and channel

exit. The tidal channel model may also be considered through an electrical analogy,

where the circuit voltage represents the tidal amplitude across the channel and the

circuit current represents the flow through the channel, which allows the modelling of

multiple sub-channels where turbines are deployed only in a few of the sub-channels.

A second feedback mechanism that exists between the flow and the resistance

imparted on the flow by the turbines is that of flow diversion around individual

turbines. This is not captured in the tidal channel models, and requires a different

analytical approach. Actuator disc theory was successfully applied to wind turbines

by Betz and Lanchester to derive an upper bound on the fraction of the upstream

kinetic energy, CP,Betz = 0.593, that could extracted by a turbine in an unbounded

flow field. The analysis was adapted by Garrett and Cummins for an actuator disc

in a volume-flux constrained flow, and Houlsby et al. and Whelan et al. for an

actuator disc in an open channel. It was shown that the volume-flux constrained

model is recovered in the limit Fr2 → 0 from the more general open channel actuator

disc model. A pressure gradient develops in the channel and the maximum available

power increases as a result of energy extraction in a channel where the expansion of

the core flow is constrained. The power available to the actuator disc also increases

with Froude number, although to a lesser degree than with blockage.

Vennell (2010) combined the two approaches in order to examine the effect of

the two feedback mechanisms in a single model, and showed that turbine operation
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had to be optimised to balance the reduction in the flow through the channel with

increasing turbine drag with the generally increasing available power as the drag of

the turbines is increased. The available power also depended on the number of rows

of turbines in the channel, where it was shown that the greatest power is achieved

when rows of turbines are filled in order of decreasing efficiency, with a drop in the

incremental benefit of each additional row.

The analytical approaches considered in this chapter have assumed that rows of

turbines span the width of the channel cross-section, an assumption that will often

not be possible to achieve due to variations in channel bathymetry, navigational

requirements and competition with other marine commercial and defense activities.

The importance of the bypass flow around turbines was examined in the turbine-scale

models in Sections 2.4.1 and 2.4.2. These models assumed that there was a single

scale to the wake mixing behind the turbines in the channel. However, if a row of a

large number of turbines does not span the width of the channel, a bypass flow would

develop around the row, or array, of turbines, forming an additional scale of wake

mixing on the scale of the array rather than the scale of the constituent turbines.

The two scale model required to capture this effect is considered in Chapter 3.
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Chapter 3

Array Partially Spanning a

Channel

Algebra is the intellectual instrument which has been created for rendering
clear the quantitative aspect of the world

- Alfred N. Whitehead

A theoretical model is proposed to explore the power available to an array of tidal

turbines partially spanning a wide open channel. It is assumed that the flow has two

predominant scales; a turbine-scale flow, and an array-scale flow. The two scales are

each analysed as quasi-inviscid open channel flow problems, in which conservation

of mass, momentum and energy are considered. Kinematic and dynamic boundary

conditions couple the two scale problems and provide a single multi-scale model.

The available power is maximised by placing the turbines close together, which also

enhances the efficiency of energy extraction. The importance of the Froude number

is examined, and it is found that available power and efficiency are enhanced as the

Froude number increases. In an infinitely wide channel, it is found that the maximum

power coefficient depends on Froude number and local blockage only, with a clear peak

when the local blockage is approximately 0.4. The power coefficient increases from

the Lanchester-Betz limit of 0.593 to 0.798 at low Froude number, in accordance with

the rigid lid findings of Nishino and Willden (2012b), and increases further as the

Froude number is increased.
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3.1 Introduction

The importance of the blockage ratio, B, the ratio of device frontal area to channel

cross-sectional area, to the available power was discussed in Chapter 2. The simplified

one-dimensional model of a turbine in a volume-flux constrained channel proposed

by Garrett and Cummins (2007) showed that the maximum available power was

proportional to (1− B)−2. Although such as simple relationship cannot be derived

from models with free surface deformation, general agreement with this conclusion was

found as maximising available power was strongly related to the fraction of the channel

occupied by the actuator disc, amongst other factors (Whelan et al., 2009; Draper,

2011). These models do not account for environmental, technical and regulatory

factors that might restrict the permitted available power to some fraction of the

maximum available power. They also do not account for the reduction in the flow

that occurs as a consequence of the increased resistance to the flow due to the devices.

Garrett and Cummins (2005) and Vennell (2010) proposed models to account for

the change in the flow dynamics when energy is extracted by the tidal devices and

showed that the flow could be significantly reduced when the hydrodynamic drag of

the devices becomes significant relative to the resistance of the undisturbed channel,

which then reduces the total energy that may be extracted from the channel.

It may not be possible to deploy devices across the entire channel width due to

various economic and regulatory constraints, bathymetric variations, and the need to

allow passage for shipping and marine life. If the turbine array does not span the

entire channel, two principal scales exist: the first being flow phenomena that occur

close to each tidal device; and the second the much larger flow features that occur

on the scale of the array width. The acceleration of the array bypass flow due to

the aggregate thrust and corresponding reduction in flow speed results in a different

estimate of the available power, as compared to analyses in which the devices span

the entire channel width. As such, analyses assuming the devices span the entire
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Figure 3.1: Diagram of the turbine array partially spanning a wide channel: a) array-
scale flow expansion and mixing; b) device-scale flow expansion and mixing; and c)
cross-sectional view of the channel. From Nishino and Willden (2012b).

channel cross-section, even if inter-device spacing is allowed for, do not capture the

dynamics of flow diverting around the array.

Nishino and Willden (2012b) introduced the concept of a separation of scales, as

shown in Figure 3.1, in which array-scale flow events occur more slowly and over

longer distances than turbine-scale flow events, allowing the array-scale and turbine-

scale flows to be treated as loosely coupled problems. This allowed the application of

the volume-flux constrained model for an array of tidal turbines partially spanning a

wide channel. The array-scale problem provided boundary conditions for the turbine-

scale model, which was used in turn to determine the thrust applied to the flow, and

thus dynamic coupling to the array scale problem, and the available power.

Tidal channels are free surface flows, and as such the water depth in the channel

must change in order that energy be removed from the flow, increasing the Froude

number and accelerating the flow. The volume-flux constrained model assumes that

this effect is negligible, restricting its application to low Froude number channels

and to conditions where the impact of the turbine array on the flow is small. As
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discussed in Section 2.4.1, LMADT has been applied to turbines in constrained flow

with a deformable free surface by Whelan et al. (2009) and extended to consider

downstream mixing by Draper (2011) to allow analytic modelling of turbine arrays

where free surface deformation may be important and the arrays completely span the

width of the channel.

The model presented in this chapter incorporates a free surface into the scale

separation framework to develop an analytic model of a tidal turbine array partially

spanning a wide channel which allows the effects of free surface deformation on the

power available to the array to be analysed. It is assumed there is a constant mass flux

through the channel and therefore that turbine operation does not significantly affect

the upstream boundary. In practical situations, flow conditions may be altered by

power extraction, necessitating further extension of the analysis to consider variable

mass flux. Note, however, that the assumption becomes exact in the case of turbines

operating in an infinitely wide channel. It was further assumed that the flow is inviscid

and that no mixing of flows occurs in the channel other than in the mixing zones of

the two models.

3.2 Separation of Scales

The LMADT models in Chapter 2, in which the turbine array spanned the width of

the channel, allowed a bypass flow to form around each actuator disc in response to

the resistance imposed on the flow by the disc. After the static pressure in the bypass

and core flows equalised at some distance downstream of the disc, the two flows were

then assumed to mix and form a uniform flow far downstream of the device. As it

was assumed that the devices presented a uniform resistance to the flow, there was

only a single scale of wake mixing behind the turbines.

However, if the array of turbines does not completely span the channel there will be
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an additional flow around the array of a large number of turbines partially spanning

the channel. The flow in the streamtube encompassing the array slows down in

response to the aggregate thrust applied by the devices, and there will consequently

be an accelerated bypass flow which develops to ensure conservation of mass flux

through the channel. In a similar manner to the flow around individual devices, the

static pressure in the core and bypass flows will equilibrate some distance downstream

of the array, after which the two flows will mix to produce a uniform velocity far

downstream of the array.

There are therefore two scales of flow in the partial array problem; a turbine-scale

flow, and an array-scale flow, as illustrated in Figure 3.2. The array of width L is

composed of n turbines each of frontal area AL and diameter D partially spanning

a channel of width WC and upstream depth h0. There is a flow passage of width

b = d + s encompassing each actuator disc, such that L = nb. The incompressible

flow in the channel is assumed to be inviscid, except in the far-wake region of the

turbine-scale model between stations four and five (Figure 3.2a), and the array far-

wake region between stations six and seven of the array-scale model (Figure 3.2b).

The velocity u0 at the upstream boundary of the channel is assumed to be spatially

uniform and unaltered by turbine operation. The water depth is permitted to vary

along the length of the channel. It is furthermore assumed that the static pressure

is uniform across the channel cross-section at stations zero, six, and seven of the

array-scale model, in addition to the static pressure equalisation assumption in the

turbine-scale flow passages at stations one, four, and five.

Two principal length scales exist in the flow; the device diameter D, and the

array length L. Turbine-scale energy extraction and mixing scales on the device

diameter, whereas the flow around the array scales on the array width. If there are

many turbines in the array, then L≫ D and the three-dimensional turbine scale flow

occurs over a much shorter spatial and temporal scale than flow around the array,
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(a) Turbine-scale flow mixing and free surface change.
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(b) Array-scale flow mixing and free surface change.

Figure 3.2: The scale-separated partial array model: (a) turbine-scale, and (b) plan
view of the array-scale.

which will tend to being two-dimensional, as the array width is much greater than the

channel depth. The difference in the turbine and the array length scales is assumed to

be sufficiently large such that turbine-scale core and bypass wake mixing is completed

upstream of the cross-stream depth equalisation (hydrostatic pressure recovery) in the

array scale problem. The partial fence problem may thus be considered in terms of

the two loosely coupled quasi-inviscid problems shown in Figure 3.2; a turbine-scale

problem and an array-scale problem. Each problem is evaluated separately as an
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open channel flow, adapting the open channel analysis presented in Section 2.4.1 to

the two-scale partial fence problem. The array-scale problem thus provides upstream

boundary-conditions to the turbine-scale model, which then provides the internal

downstream boundary at station five required to close the pressure head and velocity

discontinuity between stations one and five of the array-scale model.

In the volume-flux constrained partial array model derived by Nishino and Willden

(2012b) these assumptions led to an array-scale model and a turbine-scale model de-

fined mathematically by the same equations, albeit with different variables to account

for different scales of the problem. The multi-scale open channel model, in contrast,

has two different systems of model equations defining the turbine-scale and array-

scale models. It is assumed in the open channel turbine-scale model that the velocity

through the actuator disc is equal just upstream and downstream in order to ensure

that the mass flux through the disc is conserved. Consequently a static discontinuity

develops across the actuator disc in the turbine-scale model in response to the thrust

applied to the flow by the turbine. However, in the array-scale problem, stations

one and five, encapsulating the turbine-scale problem, are collocated, enabling com-

plementary velocity and height discontinuities as well as a static head change. The

additional equations required to close the array-scale problem lead to a model with a

different, algebraically more complicated, system of equations than the turbine-scale

model.

3.2.1 Parameterisation of the Two Scale Model

The turbine-scale and array-scale problems are non-dimensionalised by scaling the

velocities and pressure heads in terms of the upstream height and velocity at station

zero in the array-scale problem and station one in the turbine-scale problem. In the

turbine-scale problem, non-dimensional heights are denoted with θi = hi/h1, and

non-dimensional speeds with αi = ui/u1 in the core and βi = ui/u1 in the bypass

61



flow regions. In the array-scale problem, ζi = hi/h0 denotes non-dimensional heights,

and σi = ui/u0 and τi = ui/u0 the core and bypass non-dimensional flow speeds

respectively.

Additional blockage ratios and thrust and power coefficients are required to de-

scribe the combined model in light of the multiple reference areas and velocities that

are present in the two models. At the device-scale, shown in Figure 3.2a, the local

blockage ratio BL is defined as the frontal area of the actuator disc AL to the cross-

sectional area of the surrounding flow passage of width b and upstream water depth

h1:

BL =
Turbine frontal area

Flow passage cross-sectional area
=
AL

bh1
. (3.1)

The device thrust coefficient CTL is defined as the device thrust TL normalised on the

upstream dynamic pressure of the flow in the turbine-scale problem projected onto

the device frontal area:

CTL =
TL

1
2
ρu21AL

. (3.2)

The power coefficient CPL is the product of the device thrust and the flow speed

through the actuator disc, and is normalised on the kinetic flux of the upstream flow

in the turbine-scale problem projected onto the device frontal area:

CPL =
α2u1TL
1
2
ρu31AL

= α2CTL. (3.3)

At the array scale, shown in Figure 3.2b, the array blockage, BA, is defined as the

fraction of the channel cross-section, WCh0, occupied by the frontal area of the array,

AA, which is the sum of the cross-sectional areas of the turbine-scale flow passages:

BA =
Array frontal area

Channel cross-sectional area
=

AA

WCh0
. (3.4)

The thrust imposed by the array, TA, is the sum of the thrust of the n devices in the
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array, leading to the definition of the array thrust coefficient CTA:

CTA =
TA

1
2
ρu20AA

=
nTL

1
2
ρu20nbh1

= σ2
1BLCTL. (3.5)

The power available to the array, PA, is the sum of the power available, PL, and

dissipated, PL,mix, in the wake of each actuator disc at the local scale. The array

power coefficient, CPA, is defined as the power available to the array normalised

against the upstream kinetic flux at station zero projected onto the frontal area of

the array:

CPA =
PA

1
2
ρu30AA

=
n(PL + PL,mix)

1
2
ρu30AA

. (3.6)

The array scale parameters are defined in terms of the cross-sectional area of the

turbine-scale flow passages, which incorporates the frontal area of the actuator disc

and the cross-sectional area of the bypass flow around the disc. It can be useful to

define a ‘global’ scale, normalised with respect to the sum of the frontal area of the

devices and which therefore more accurately reflects the proportion of the channel

cross-section physically occupied by the devices. The global blockage BG is therefore

defined as:

BG =

∑

Turbine frontal area

Channel cross-sectional area
=

nAL

WCh0
= BABL. (3.7)

The global thrust coefficient, CTG, is the sum of the thrust applied by each device

normalised by the dynamic pressure of the array-scale problem projected onto the

frontal area of each device:

CTG =
nTL

1
2
ρu20nAL

= σ2
1CTL. (3.8)

The global power coefficient, CPG, is the sum of the power available to each device

normalised by the kinetic flux at station zero projected onto the frontal area of each
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device:

CPG =
nPL

1
2
ρu30nAL

= σ3
1CPL. (3.9)

Specifying the local thrust coefficient CTL allows the non-dimensionalised array-

scale and turbine-scale models to be directly decoupled and solved separately. The

array-scale model determines the flow through the array which provides the upstream

boundary to the turbine-scale model which is solved to determine the available power

for the devices. Considering the two models individually is an efficient method of

solving the overall problem as it eliminates the need to solve the turbine-scale model

within the array-scale model, and allows the solution for the two scales to be easily

matched.

3.3 Turbine-scale Model

The turbine-scale model utilises the open channel actuator disc model presented in

Chapter 2 and illustrated in Figure 3.2a for a single actuator disc of frontal area AL

in a flow passage of centre-to-centre device spacing b. The flow is assumed to be

incompressible and inviscid, although it is assumed that a mixing region exists in the

far wake of the device. As the array scale model provides the upstream boundary to

the turbine-scale model, the water depth and uniform velocity at station one are the

same in the turbine-scale and the array-scale models. The flow speed reduces to α2u1

as it passes through the actuator disc, reducing further to α4u1 in the wake of the disc.

Energy is conserved through the core flow passage except across the actuator disc.

Meanwhile, the energy conserving flow bypassing the disc continuously accelerates to

reach β4u1 at station four, where hydrostatic pressure variation is recovered across

core and bypass flows resulting in a static head θ4h1. Downstream of station four,

the turbine-scale core and bypass flows remix, resulting in energy loss, leading to a

new uniform velocity α5u1, and water depth θ5h1.

64



Although not considered in Whelan et al.’s paper, the mixing region between

stations four and five is an important part of the model as it results in the uniform

velocity (and corresponding water depth) at station five that is required to close the

array-scale model. Energy extraction from the sub-critical open channel flow results

in the free surface at the outlet of the turbine-scale model being lower than that at

the inlet, with a corresponding increase in velocity to conserve mass flux. Thus the

power available to the device is a function of both the upstream flow speed and the

far field (from stations one to five) change in free surface elevation. The turbine-scale

downstream flow is then imposed on the array-scale model at station five, completing

the model coupling.

The turbine-scale model is used to determine the power available to the actuator

disc and the effect that this has on the flow. The available power, PL, is the product

of the disc thrust, TL, and the velocity through the disc, α2u1; i.e., PL = α2u1TL, or

can be expressed non-dimensionally as:

CPL = α2CTL (3.10)

Mathematically, it is convenient to non-dimensionalise the turbine-scale model as this

yields two sub-problems: a ‘near field’ problem describing the flow between stations

one and four, and a ‘far field’ problem, which describes the change in the flow between

stations one and five. The two problems are related through the local thrust coefficient

CTL, which parameterises the thrust the actuator disc applies to the flow. The near

field problem is solved to determine the available power and the far field problem is

solved to determine the downstream height change δθ = θ1 − θ5 (where it is noted

that θ1 ≡ 1) which provides the necessary equations to close the array-scale model.

The near field and the far field problems are described in terms of the turbine thrust

coefficient, blockage, and local Froude number, FrL = u1√
gh1

.
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3.3.1 Near Field Turbine-scale Problem

The near field problem is derived by considering conservation of mass and momentum

relationships and the Bernoulli equation between stations one and four in the core

and bypass flows. Although it is physically meaningful to specify the thrust coefficient

CTL as the parameter describing the effect of the resistance of the turbine on the flow,

it is simpler algebraically to use the wake induction factor α4 as the specified turbine

parameter instead, as shown in Section 2.4.1. In the context of the coupled array- and

turbine-scale models, although the specification of CTL as the turbine parameter does

lead to the solution of an equation with radicals in CTL, it also allows the decoupling

of the near field and far field problems in addition to the quasi-independent turbine

and array scale problems, which has advantages in solving the array-scale model.

The near-field turbine-scale model is defined by Equations (2.14) to (2.25) in

Section 2.4.1. Taking α4 as the mathematically convenient independent variable, a

quartic polynomial for β4 is found in terms of α4, BL, and Fr
2
L:

Fr2β4
4 + 4α4Fr

2β3
4 + 2(2BL − 2− Fr2)β2

4 + 4(2− 2α4 − Fr2α4)β4

+ (8α4 − 4 + Fr2 − 4α2
4BL) = 0. (2.25)

The device thrust is defined as:

CTL = β2
4 − α2

4, (3.11)

and the non-dimensional through-turbine flow speed may be expressed as:

α2 =
α4

[

2BLβ4 (β
2
4 − α2

4)− (β4 − 1)3
]

BL (β4 − α4) [(β2
4 − 1) + 4β4α4]

. (3.12)

The local power coefficient may be determined from Equation (3.3), completing the

near-field turbine-scale model.
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3.3.2 Far Field Turbine-scale Problem

The far field problem determines the downstream uniform flow speed and depth

boundary of the turbine-scale problem which is used as the inner upstream boundary

coupling to the array-scale mixing problem. The far field problem is found by con-

sidering conservation of mass and momentum relationships between stations one and

five, which gave rise to the cubic in δh
h1

expressed in Equation (2.27). Adopting the

non-dimensionalisations of the turbine-scale model, this becomes a cubic in δθ given

a specified local blockage ratio BL, local Froude number FrL, and thrust coefficient

CTL:

δθ3 − 3δθ2 +
(

Fr2L (BLCTL − 2) + 2
)

δθ − Fr2LBLCTL = 0. (3.13)

The head difference between stations one and five, h1−h5 = δθh1 = δζh0, is made

to be consistent between the array- and turbine-scale problems, and the coupling

between the two problems can be written by expressing Equation (3.13) in terms of

variables at station zero. Noting that the array-scale Froude number can be written

as FrA = u0√
gh0

, this yields:

δζ3 − 3ζ1δζ
2 +

(

σ2
1Fr

2
A (BLCTL − 2) + 2ζ1

)

ζ1δζ − ζ21σ
2
1Fr

2
ABLCTL = 0. (3.14)

3.4 Array-scale Model

The flow in the array-scale problem is assumed to be a two-dimensional shallow water

flow, as the cross-stream extent of the channel is much greater than the depth of the

channel. The array, composed of n turbines, is a fence of width L = nb which

extends the entire depth of the flow, has a frontal area AA = Lh1. It is therefore

required that n must be sufficiently large to satisfy the scale separation assumption.

Furthermore, the flow across the face of the fence is assumed to be uniform, thus

we neglect any array end effects. The flow in the array-scale problem is assumed to
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be a two-dimensional shallow water flow, as the cross-stream extent of the channel

is much greater than the depth of the channel. The requirement that this places

on n has been investigated by Nishino and Willden (2013) through comparison to

3D computed fence flows with the result that errors in analytic model prediction fall

below 6% for n ≥ 8.

In the array-scale model, the thrust imposed by the turbine array causes the invis-

cid flow to decelerate to σ1u0 in front of the array, providing the upstream boundary

to the turbine-scale model. There is a change in height and velocity due to the energy

extraction of the turbines, resulting in further acceleration and height reduction to

station five at the exit of the turbine-scale problem, which provides the internal up-

stream boundary condition to the array mixing problem. The array-scale wake then

expands further downstream until there is lateral hydrostatic pressure equalisation

between the array core and bypass flows at station six. The two array flows remix

and produce a uniform velocity σ7u0, greater than the inlet velocity due to mass flux

conservation in response to the decrease in water depth to ζ7h0 resulting from energy

removal from the sub-critical flow.

As with the turbine-scale model, both a ‘near field’ and a ‘far field’ problem can

be formulated for the array-scale model, where the near field model describes the

flow between stations zero and six, and the far field model describes the change in

the flow between stations zero and seven. The primary difference between the near

and far field problems in the turbine- and array-scale models is that the closure of

the array-scale near field problem requires the solution of the turbine-scale far field

problem due to the velocity and head discontinuity across the array.

3.4.1 Near Field Array-scale Problem

The flow speed in the array core flow decreases from u0 upstream of the array to σ1u0

in front of the array, and then decreases further from σ5u0 to σ6u0 in the wake of the
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array, as shown in Figure 3.2b. The static head increases from h0 to ζ1h0 in front of

the array, and then decreases from ζ5h0 to ζ6h0 in the array wake. As discussed in the

far-field turbine-scale model, there is a static head discontinuity and a complementary

velocity discontinuity between stations one and five due to energy extraction by the

turbine array. Applying the Bernoulli equations to the array core flow gives:

h0 +
1

2g
u20 = ζ1h0 +

1

2g
σ2
1u

2
0; ζ5h0 +

1

2g
σ2
5u

2
0 = ζ6h0 +

1

2g
σ2
6u

2
0. (3.15)

In the array bypass, the flow smoothly accelerates from u0 to τ6u0, and the pressure

head decreases from h0 to ζ6h0, so the Bernoulli equation is therefore:

h0 +
1

2g
u20 = ζ6h0 +

1

2g
τ 26u

2
0. (3.16)

Combining Equations (3.15) and (3.16) and recalling that FrA = u0√
gh0

, yields:

ζ1 − ζ5 =
1

2
Fr2A

((

σ2
5 − σ2

1

)

+
(

τ 26 − σ2
6

))

. (3.17)

Conservation of mass at station six requires:

ζ6 =
BAσ1u0
σ6u0

+
u0 − BAσ1u0

τ6u0
, (3.18)

and conservation of momentum in the core and bypass flows in the near field problem

between stations one and six requires:

(

1− ζ26
)

− Fr2ABACTA = 2Fr2A (BAσ1 (σ6 − τ6) + (τ6 − 1)) . (3.19)

The effect of the turbine array in the array-scale problem may be specified in terms of

one of a number of control parameters, such as CTA, σ6, or δζA = 1−ζ7. As the array

thrust is linked to the turbine thrust through Equation (3.5), it is convenient to specify
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CTA to solve the array-scale problem and then match the array thrust coefficient with

the appropriate device thrust coefficient to determine the power available to the array.

Substituting Equations (3.16) and (3.18) into Equation (3.19) yields an expression

for σ1 in terms of CTA, BA, σ6, and τ6:

σ1 =
σ6 (2τ6BACTA − (τ6 − 1)3)

BA(τ6 − σ6) ((τ 26 − 1) + 4τ6σ6)
. (3.20)

An expression for σ1 in terms of FrA, BA, σ6, and τ6 is found by substituting Equation

(3.18) into Equation (3.16):

σ1 =
σ6
(

(τ6 − 1)− 1
2
FrAτ6(τ

2
6 − 1)

)

BA(τ6 − σ6)
. (3.21)

Equating Equation (3.20) with Equation (3.21) yields an expression for σ6 as a func-

tion of FrA, BA, CTA, and τ6:

σ6 =
2BACTA + (τ6 − 1)2

(

1
2
Fr2A(τ6 + 1)2 − 2

)

4
(

(τ6 − 1)− 1
2
Fr2Aτ6(τ6 + 1)

) . (3.22)

Having developed a system of equations for σ1 and σ6 in terms of the array parameters

CTA, BA, and FrA, and the bypass induction factor τ6, it remains to express τ6 in

terms of the array parameters. The array thrust coefficient can be expressed as the

difference in the static head upstream and downstream of the array:

CTA =
2

Fr2A
(ζ1 − ζ5) . (3.23)

An expression for ζ1 − ζ5 is found by considering the Bernoulli equation in the array-

scale core and bypass flow, Equations (3.15) and (3.16):

ζ1 − ζ5 =
1

2
Fr2A

(

(τ 26 − σ2
6) + (σ2

5 − σ2
1)
)

. (3.24)

70



This equation is slightly different from the equivalent for the turbine-scale model, as

the velocity discontinuity across the array introduced in the array-scale model results

in the additional σ2
5 − σ2

1 term, whereas it is assumed that the velocity is continuous

through the actuator disc in the turbine scale model, such that α2 = α3 (the equivalent

of which would be σ1 = σ5 in the array-scale model). Continuity requires:

ζ1h0σ1u0 = ζ5h0σ5u0, (3.25)

which allows σ5 to be eliminated from Equation (3.24) to give:

ζ1 − ζ5 =
1

2
Fr2A

(

(τ 26 − σ2
6) + σ2

1(
ζ21
ζ25

− 1)

)

, (3.26)

and therefore the array thrust coefficient in Equation (3.23) may be expressed as:

CTA =

(

(τ 26 − σ2
6) + σ2

1(
ζ21
ζ25

− 1)

)

. (3.27)

Recalling the definition of δζ = ζ1 − ζ5 as the array-scale change in the static head

between stations one and five, ζ5 can therefore be expressed in terms of ζ1 and the

change in static head:

ζ5 = ζ1 − δζ. (3.28)

The far-field turbine-scale problem, defined in Equation (3.14), is a cubic for δζ in

terms of σ1, ζ1, BL, Fr
2
A, and CTL (from which CTA is defined). Equation (3.15) may

be rearranged to express ζ1 as:

ζ1 = 1− 1

2
Fr2A(σ

2
1 − 1). (3.29)
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These equations are combined to solve Equation (3.27) for τ6:

τ 26 = CTA + σ2
6 − σ2

1

[

(

1− 1
2
Fr2A(σ

2
1 − 1)

)2

(

1− 1
2
Fr2A(σ

2
1 − 1)− δζ

)2 − 1

]

, (3.30)

where it is noted that δζ = f1(σ1, ζ1, BL, CTL, F rA), σ1 = f2(σ6, τ6, BA, F rA), and

σ6 = f5(τ6, BA, CTA, F rA).

The system of equations is closed by substituting Equation (3.22) into Equation

(3.30), the result of which is used to solve for τ6 in terms of the model parameters, BA,

CTA, and Fr
2
A. The system of equations defining the near field array-scale problem,

cannot be solved analytically due to the static head and velocity discontinuity between

stations one and five. The equations must instead be solved numerically. As the

equations have a shallow gradient close to the physically admissible roots, a bounded

root-finding algorithm is required to solve the system. The Brent-Dekker method,

which combines the bisection, secant, and inverse quadratic interpolation methods

(Brent, 1973), was employed in MatLab to provide guaranteed convergence to the

roots of the system of equations.

3.4.2 Far Field Array-scale Problem

The far field effects of energy extraction are determined by considering the change in

momentum and conservation of mass between stations zero and seven. Conservation

of momentum requires:

1

2
ρgWC

(

h20 − (ζ7h0)
2
)

− TA = ρWCh0u0 (σ7u0 − u0) . (3.31)

As the free surface is permitted to deform between stations zero and seven, conser-

vation of mass requires:

h0u0 = ζ7h0σ7u0. (3.32)
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Figure 3.3: Effect of array and local blockage ratios on thrust and power coefficients
(left) and basin efficiency (right) for BG = 0.04 and FrA = 0.10.

Defining δζA = 1 − ζ7 as the overall change in free surface elevation in the channel

between stations zero and seven, the far field problem yields a cubic equation for

δζA in terms of the array thrust coefficient CTA, array blockage, BA, and array-scale

Froude number, FrA:

δζ3A − 3δζ2A +
(

Fr2A (BACTA − 2) + 2
)

δζA − Fr2ABACTA = 0. (3.33)

The far field effects of energy extraction can be determined from Equation (3.33) with-

out any further analysis of the problem. However, in order to determine the available

power, it is necessary to solve both scales of the problem in order to determine α2

and thus the power available at the turbine-scale.

3.5 Available Power

The effect of varying turbine spacing is shown in Figure 3.3, where the array blockage

may be interpreted as the fraction of the channel occupied by the turbine array, the

local blockage as the proportion of the array occupied by the turbines, and the global

blockage is the proportion of the entire channel area occupied by turbines (which is

kept constant) at BG = 0.04.
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As the local blockage increases and the array blockage decreases the thrust on the

turbines and the available power increases. When the turbines are placed very far

apart, as in the BA = 0.80, BL = 0.05 case, the peak CPA is relatively low, albeit

slightly greater than Betz, due to the array thrust, CTA, being relatively low. This

is because the flow is relatively free to divert around each turbine, and therefore

the thrust, a function of local through turbine plane flow speed squared, that can

be applied to the flow is limited as the velocity through each turbine drops quickly.

A greater power coefficient is achieved by increasing the local blockage ratio (which

necessitates a reduction in the array blockage to maintain the global blockage ratio

BG = 0.04), resulting in the peak array power coefficient approximately doubling from

CPA,max = 0.65 for BA = 0.80, BL = 0.05 to CPA,max = 1.27 when BA = 0.10, BL =

0.40. As the local blockage increases, there is greater resistance to flow diverting

around each turbine due to proximity of neighbouring turbines, so that the velocity

through the turbines is higher, thus the thrust and correspondingly the power remain

higher too.

Basin efficiency was introduced in Section 2.4.1 to compliment the traditional

efficiency used to parameterise turbines through the power coefficient. The basin

efficiency represents the fraction of the total energy removed from the flow that is

extracted by the actuator disc. Multiple definitions for basin efficiency are possible in

a scale-separated flow, depending on which powers are used to define the ratio. The

turbine-scale basin efficiency, ηL, is the ratio of the power available to a turbine, PL

to the power removed from the turbine-scale flow, PL,tot, (c.f. Equation (2.37)):

ηL = α2

1− 1
2
δθ − Fr2L

1
1−δθ

1 + 1
2
Fr2L

δθ−2
(1−δθ)2

. (3.34)

The array-scale basin efficiency, ηA, may similarly be calculated as the ratio of the
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power available to the array, PA, to the power removed from the channel, PA,tot:

ηA = α2

1− 1
2
δζ − Fr2A

1
1−δζ

1 + 1
2
Fr2A

δζ−2

(1−δζ)2

. (3.35)

The overall basin efficiency of the tidal array is the ratio of the aggregate available

power to the total power removed from the flow through the channel. This is simply

the product of the turbine-scale and array-scale basin efficiencies, and the following

results shall be presented in terms of the overall basin efficiency, the ratio of energy

extracted at the turbines to the energy removed from the flow:

η =
Power available to turbines

Power available to turbines and dissipated in mixing

=
CPA

(CPA + CPA,mix)
= ηLηA.

(3.36)

Increasing BL causes the basin efficiency to decrease at peak power coefficient, as

the larger thrusts imposed at higher BL cause greater shear between the turbine wake

and bypass flow, which in turn increases the energy dissipation in the mixing region.

The basin efficiency at the peak power coefficient CPA = 0.65 in the BA = 0.80, BL =

0.05 case is η = 0.64, so that 1MW extracted by the turbine removes about 1.6MW

from the flow. This contrasts with the case where BA = 0.10, BL = 0.40 for which

η = 0.50 when CPA = 1.27, so that 1MW extracted by the turbine removes 2MW

from the flow. However, higher local blockage ratios are more efficient for a given

array power coefficient, such that the basin efficiency for closely spaced turbines,

BA = 0.10, BL = 0.40, is η = 0.85 at CPA = 0.65 compared to η = 0.64 when widely

spaced BA = 0.80, BL = 0.05. For a given level of power delivery, the velocity through

the turbine is higher when the turbine blockage is higher due to the reduced deflection

of the flow, and therefore there is reduced shear stress between the bypass flow and

turbine wake, and thus less energy dissipation in the mixing region, improving the

basin efficiency. Equivalently, the same power is achieved with less thrust at closer
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Figure 3.4: Effect of increasing the array blockage on the maximum power coefficient
for a range of constant global blockage ratios at Froude number FrA = 0.10.

turbine spacings.

The general effect of the global blockage on the maximum power coefficient is

shown in Figure 3.4. In all cases, even the case of turbines uniformly distributed over

the channel width, i.e. BA = 1, it is possible to improve upon the Lanchester-Betz

limit due to the blockage of the channel. For a given global blockage, i.e. number of

turbines, as BA is reduced and the fence only partially occupies the channel width,

local blockage BL is increased and the flow is less able to deflect into the turbine

bypasses. Thus the turbines can support a greater pressure drop across them, in-

creasing the power and thrust at the peak operating point as local blockage increases.

This maximum power occurs at reduced velocity through the turbine plane as BL

increases and the bypass becomes more constrained, albeit achieving a higher flow

velocity. This leads to the decrease in η at maximum power with increasing block-

age noted in the previous figure. However, if CPA is specified, efficiency η is seen to

increase with BL, and for a fixed η, maximum CPA is delivered at maximum BL.
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Figure 3.5: Effect of increasing the Froude number on the thrust and power coefficients
(left) and basin efficiency (right) for BA = 0.20 and BL = 0.20.

The maximum blockage ratio that can be achieved is limited by how closely tur-

bines can be packed and clearance requirements from the seabed, other turbines and

the surface. A further constraint is imposed in the turbine-scale model to prevent the

bypass flow from becoming supercritical, which may occur when the acceleration of

the flow around the turbine causes the Froude number in the bypass to become greater

than 1. Hence, particularly at large global blockages, there is a limited subspace of

feasible solutions.

Figure 3.5 shows the effect of the Froude number on the thrust and power coeffi-

cients and the basin efficiency. Increasing the Froude number increases the maximum

power and thrust coefficients; in the case of BA = 0.2, BL = 0.2, CPA = 0.86 when

FrA = 0.05 rises to CPA = 0.89 for FrA = 0.20. The corresponding efficiency at peak

power is η = 0.536 at FrA = 0.05 and increases to η = 0.552 when FrA = 0.20.

The Froude number always appears as Fr2A in the model equations, and may be

interpreted as the ratio of dynamic to static head in the flow. The operation of a

turbine causes the relative balance of dynamic and static head to change, the extent of

which is determined by the upstream Froude number and its effect on the operation

of the turbine. At the turbine plane, there is a step change in static head, while

the flow speed is continuous across the turbine. The wake expansion region between
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stations three and four is characterised by the exchange of dynamic to static head,

resulting in a recovery of the static head at the expense of reducing the flow speed.

The volume constraint introduced by the free surface causes an acceleration of the

flow in the bypass region, which reduces the static head in the bypass. Station four is

defined as the point at which the falling static head in the bypass equalises with the

rising static head in the wake region after which the two flows mix between stations

four and five, resulting in a uniform outflow velocity at station five. The change in

free surface height at the outlet relative to the inlet is due to the energy extraction

by the turbine and the resulting transfer of static energy to dynamic energy as the

flow accelerates to conserve mass flux in the channel.

The rate of change of free surface height to total head removal is related to the

Froude number by (1 − Fr2A)
−1. Hence, as FrA is increased, downstream height

reduces more quickly for fixed total head removal, and thus the turbine bypasses are

further volume flux constrained leading to greater static head drop at station four.

For a given head drop, and therefore thrust, higher power is available to the turbine

because a higher flow speed is maintained through the turbine as less acceleration

is required of the flow in the bypass as Froude number increases. Correspondingly,

a given level of power is achieved with a lower thrust as Froude number increases

and thus lower overall power removed from the flow. Thus efficiency increases with

Froude number for a given CPA.

3.6 Special Cases

Two special cases of the general two-scale model of an array partially spanning a

wide channel are of particular interest for their consequences on energy extraction.

The first is the case where the change in elevation, δζ, tends to zero, in which case

the scale-separated volume-flux constrained model of Nishino and Willden (2012b)
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is recovered, and the second is the case where the channel width WC tends towards

infinity while the array width remains finite, such that the array blockage tends to

zero. These cases shall be investigated in further detail here.

3.6.1 Volume-flux Constrained Model

The analysis presented by Nishino and Willden (2012b) was for a volume-flux con-

strained flow, which is the limit of the present model when the Froude number tends

to zero. It is assumed in the volume-flux constrained case that the change in water

depth in the channel is negligible compared to the water depth, so that δθ, δζA ≈ 0,

and thus that in the far field, energy extraction from the flow results solely in a

change in the pressure field across the channel. The change in the pressure field how-

ever does not result in a change in the free surface elevation, and therefore there is

no acceleration of the flow far downstream of the devices.

Neglecting high order terms in δθ, Equation (3.13) may be rearranged for δθ,

yielding:

δθ =
Fr2LBLCTL

2 + Fr2L (BLCTL − 2)
. (3.37)

An equivalent expression is found for the array-scale model by neglecting higher order

terms in δζA in Equation (3.33), yielding:

δζA =
Fr2ABACTA

2 + Fr2A(BACTA − 2)
. (3.38)

Equations (3.37) and (3.38) show that in taking Fr2L → 0 and Fr2A → 0, δθ → 0 and

δζA → 0, and the volume-flux constrained case is recovered in the turbine-scale and

array-scale models. The volume-flux constrained models of the two scale-separated

problems therefore correspond to ones in which the Froude number of the flow is zero

and the effect of the free surface on the flow is neglected. This alters the calculation
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of the static pressure head, which in the generalised two-scale model is:

∫ h

0

ρgbzdz =
1

2
ρgbh2, (3.39)

but is simply the pressure p = ρgh multiplied by the cross-sectional area of the

channel, i.e. pAC , in the volume-flux constrained model. This reduces the order

of the pressure term in the model equations, and therefore leads to a solution to

the volume-flux constrained model of reduced algebraic complexity as compared to

the open channel model. Garrett and Cummins (2007) state that the volume-flux

constrained model is limited by the requirement that:

Fr2 ≪ 9

4

(1−B)2

B(3− B)
. (3.40)

Given the Froude number, Equations (3.37) and (3.38) thus allow the magnitude

of the change in free surface elevation to be evaluated and thereby determine the

magnitude of the acceleration of the flow far downstream of the device. If the flow

acceleration is small and the condition in Equation (3.40) holds, then the volume-flux

constrained model may be sufficient as the additional higher-order physics modelled

in the generalised model is negligible relative to the lower order physics captured with

the volume-flux constrained model.

As discussed in the previous section, the Froude number always appears as Fr2L

or Fr2A and represents the relative importance of dynamic to static head in the flow.

When Fr2L → 0, the kinetic energy is negligible relative to the static energy, and

therefore the effect of a device on the kinetic energy is negligible relative to the effect

on the static head. Equivalently, when Fr2A → 0, the effect of the turbine array on

the dynamic in the flow is negligible relative to its effect on the static head for the

same reason. Thus, in the limits of Fr2L → 0 and Fr2A → 0, only the hydrostatic

pressure changes far downstream of the device and the array, and there is no change
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in the flow velocity at the channel outlet, as is assumed in, and therefore recovering,

the models of Garrett and Cummins (2007) and Nishino and Willden (2012b).

3.6.2 Infinitely Wide Channel

When the channel width becomes large, WC → ∞, the array occupies a relative

region of the flow that becomes infinitesimally small, and therefore only the small

fraction of the flow close to the array is affected by the energy extraction of the

devices. When WC → ∞, the array-scale blockage ratio BA → 0, and therefore the

global blockage ratio BG → 0 also. The local blockage ratio, BL, however remains

finite, as two different length scales emerge in the conservation of mass and momentum

equations, one scaling on the device flow passage, and the other scaling on the channel

dimensions, as shown by the conservation of momentum equation between stations

one and six:

1

2
ρgWCh

2
0

(

1− ζ26
)

− TA = ρh0u
2
0 (Lζ1σ1 (σ6 − 1) + (WC − Lζ1σ1) (τ6 − 1)) . (3.41)

In the limit L
WC

→ 0, it can be shown from the conservation of mass equations that

τ6, ζ6 = 1, and therefore the array does not affect the far field flow. The O(WC) terms

in the momentum equation scaling on the channel dimension are therefore:

O(WC) :
1

2
ρgWCh

2
0

(

1− ζ26
)

− TA = ρh0u
2
0WC (τ6 − 1) , (3.42)

where it is currently unknown whether TA remains finite in size as L
WC

→ 0. However,

observing that conservation of mass requires τ6, ζ6 = 1 in the limit WC → ∞, it must

therefore be required that O(WC) TA = 0. Considering O(L) terms in the momentum

equation yields, again noting τ6 = 1:

O(L) : TA = ρLh0u
2
0ζ1σ1 (1− σ6) . (3.43)
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The O(L) scaling of the array thrust indicates that, although the array is made up of

many turbines, the aggregate effect of those devices is negligible on the far field flow

and that the flow is only altered in the vicinity of the array. Non-dimensionalising

Equation (3.43) gives a simple relationship for the array thrust coefficient:

CTA =
2σ1(1− σ6)

BL

. (3.44)

These equations complete the array scale model, and are solved in conjunction with

Equation (3.13) for the inner flow to determine the overall solution.

Figure 3.6 shows the effect of varying the Froude number on the maximum power

coefficient, with the results of the rigid lid case of Nishino and Willden (2012b) in-

cluded for comparison. Increasing the Froude number causes the maximum power

coefficient to increase from the results of the rigid lid case, where CPA,Max = 0.798

at BL ≈ 0.4 which increases by over 10% to CPA,Max = 0.888 at BL ≈ 0.45 when the

Froude number increases to FrA = 0.30. It should be noted that, even in the rigid

lid case, this represents an increase in the maximum power coefficient of almost 35%

from the Lanchester-Betz limit, CPA,Max = 0.593. Although the channel is infinitely

wide, the local blockage of the devices in the finite depth causes the Lanchester-Betz

limit, derived for an infinite flow field in all directions, to be surpassed. The maxima

in the CPA,Max curves indicate that, even when the array blockage is negligible, max-

imum available power occurs only when reasonably substantial local blockage ratios

are achieved. For maximum power, BL ≈ 0.4 which corresponds to a device of diam-

eter D operating in water of depth 2D with no inter-device spacing, i.e. a device flow

passage of area 2D2.
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Figure 3.6: Effect of local blockage and Froude number on the maximum power
coefficient, compared to the rigid lid case of Nishino and Willden (2012b) and the
Lanchester-Betz limit.

3.7 Conclusions

A theoretical model has been proposed to examined the energy extraction of an array

of tidal turbines partially spanning an open channel by assuming that the flow around

each device and the flow around the array occur on different spatial and temporal

scales. Flow mixing downstream of the device was assumed to occur much more

quickly than flow mixing downstream of the array due to the relative scale of the

dimensions of the device diameter and array width. The two scales were coupled

wherein the flow through the array provided the upstream flow speed and hydrostatic

pressure boundary conditions to the turbine-scale model. The aggregate thrust of the

devices and resulting change in flow speed and hydrostatic pressure at the downstream

boundary of the turbine-scale problem provided the internal boundary condition that

led to the array-scale mixing problem. The two models were investigated as open

channel flow problems following the open channel actuator disc model presented in
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Section 2.4.1.

It was found that an array partially spanning a channel could increase available

power above that achieved by the same number of devices placed homogeneously

across the channel. The power available to an array increases as the local blockage

increases as a result of increased resistance to flow diverting around each device due to

the presence of neighbouring devices. As the devices cause a change in the balance of

the dynamic and static head in the flow, it was also expected that the Froude number,

which may be expressed as the ratio of these two quantities, should be important.

Available power increases with Froude number as the deformation of the free surface

increases with increasing Froude number, constraining the volume-flux in the device

bypass and thus maintaining a higher flow speed through the turbines, resulting in a

greater available power.

Two limiting cases of the model were also investigated; the limit of an infinitely

wide channel, and the volume-flux constrained model. It was shown in the limit of

an infinitely wide channel there exists an optimal blockage ratio of approximately

BL = 0.4 to maximise energy extraction and that the rigid lid limit of 79.8% kinetic

energy extraction of Nishino and Willden (2012b) increases with increasing Froude

number. In channels of finite width, it is generally possible, for fixed global blockage

and thus number of devices, to increase the available power by increasing the local

blockage, although there are geometrical constraints to this. The volume-flux con-

strained models of Garrett and Cummins (2007) and Nishino and Willden (2012b)

are recovered in the limit Fr2A → 0 when the change in the downstream height of the

flow becomes negligible and the operation of the device changes only the static head

drop across the channel.
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Chapter 4

Dynamics of Shallow Water Flows

So far as the theories of mathematics are about reality, they are not cer-
tain; so far as they are certain, they are not about reality

- Albert Einstein

The ShallowWater Equations (SWEs) describe viscous, incompressible flows where

the vertical dimension is much smaller than the horizontal dimensions. Several ap-

proximations and assumptions are made in the derivation of the SWEs which may

have implications for depth-averaged simulations of tidal turbine arrays. The chapter

reviews the formulation of the Navier-Stokes equations, the three-dimensional gov-

erning equations for a viscous, incompressible fluid. The Reynolds-averaged Navier-

Stokes (RANS) equations, a temporally-averaged form of the Navier-Stokes equations,

are investigated further as they are most commonly implemented in fluid flow simu-

lations. The Boussinesq approximation is discussed as an approach often invoked to

simplify the turbulent terms to close the RANS equations.

The numerical solution of the shallow water equations is discussed in the second

part of this chapter. An open-source finite element solver TELEMAC-2D was selected,

and the implementation of the shallow water equations in a finite element framework

is reviewed. The finite element method discretises unknown functions with simple

interpolating basis functions and discretises equations with a series of test functions.

TELEMAC-2D uses the Galerkin finite element method, where the same functions

are used for the basis and test functions, allowing the shallow water equations to be

implemented as a linear system of equations with an appropriate choice of turbulence

model. The chapter concludes with a review of the turbulence model options in

TELEMAC-2D.
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4.1 The Navier-Stokes Equations

The Navier-Stokes equations describe three-dimensional viscous fluid motion, and

were derived by a number of researchers in the 19th century, representing a break-

through in the understanding of fluids. The key advance was the realisation that

intermolecular forces or internal stresses acted on fluid particles, giving rise to viscous

fluid motion. The generality of the Navier-Stokes equations has been demonstrated

through their application to many different fluids and flow regimes. However, they

are difficult to solve without the use of simplifying assumptions due to the broad

range of spatial and temporal scales that occur in real flows.

4.1.1 Origin of the Navier-Stokes Equations

The Navier-Stokes equations were independently derived by a number of researchers in

the first half of the 19th century, first by Navier (1823) and then Poisson (1831), based

on theories of action of intermolecular forces. This introduced second derivatives of

the velocity multiplied by some constant, a function of the spacing between molecules,

to the equations describing non-viscous fluids of Euler (1757).

Saint-Venant (1843) derived the equations for a viscous flow, considering internal

stresses rather than intermolecular forces (Anderson, 1997). Stokes (1845), unaware

of the progress made in France, derived the equations of motion for a moving fluid

with friction, obtaining the viscosity coefficient µ used today.

The equations derived by Navier and Poisson are equivalent to the equations of

Saint-Venant and Stokes because the physical interpretation for the viscosity coeffi-

cient of the latter two formulations derives from kinetic theory of gases, from which

it can be shown that the viscosity coefficient is directly proportional to the molecular

mean free path - the mean distance between collisions between molecules (Anderson,

1997). The hypotheses underlying the equations have largely been demonstrated to
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agree well with experimental evidence from fluid studies (Prandtl and Tietjens, 1934).

4.1.2 Formulation of the Navier-Stokes Equations

The Navier-Stokes equations can be derived from Newton’s second law of motion,

and are used to describe an incompressible Newtonian flow in three dimensions x =

(x, y, z)T , where u = (u, v, w)T . The key equations are outlined here, and a full

derivation may be found in texts such as Prandtl and Tietjens (1934) and Batchelor

(1967). Einstein subscript notation is adopted, where repeated indices in a term

denote summation over all the values of the index. Introducing i, j = 1, 2, 3, so that

x1 = x, x2 = y, and x3 = z, the continuity equation is given by:

∂ui
∂xi

= 0. (4.1)

The Navier-Stokes equations are:

∂ui
∂t

+ uj
∂ui
∂xj

= Fi −
1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (4.2)

where t is time, Fi is the acceleration due to the body force in the ith direction, ρ is

the fluid density, p is the pressure, and ν is the molecular viscosity. The terms on the

left hand side, the unsteady and advective accelerations, represent the inertia of the

fluid. Terms on the right hand side are the forces acting on an elemental volume of

fluid, namely body forces such as gravity, pressure and the dissipative viscous forces.

4.1.3 Reynolds Decomposition

Turbulent eddies in a flow have time scales that are much smaller than those of the

mean flow. The computational cost of directly solving for all the scales of motion

in a turbulent flow are prohibitively high in all but the smallest of domains, so it
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is desirable to restrict the scale of motions being solved to those of interest only.

Reynolds (1895) proposed a method for doing this in which a time-varying quantity

such as velocity, ui, is defined to be comprised of a time-averaged component, denoted

with an overbar, ūi, and a fluctuating component, denoted with a prime, u′i:

ui = ūi + u′i, (4.3)

The separation of an instantaneous quantity into time-averaged and fluctuating com-

ponents is known as Reynolds decomposition. The components are defined such that

ūi is the time-average of ui over some period T , which is large relative to the character-

istic time scale of the turbulent fluctuations but short compared to the characteristic

time scale of the mean flow, so that:

ūi =
1

T

∫ τ+T

τ

uidt, (4.4)

and therefore:

u′i =
1

T

∫ τ+T

τ

(ui − ūi) dt = 0. (4.5)

Substituting the Reynolds decomposition Equation (4.3) into the continuity equa-

tion, Equation (4.1), gives:

∂ui
∂xi

=
∂ (ūi + u′i)

∂xi
=
∂ūi
∂xi

+
∂u′i
∂xi

= 0. (4.6)

Assuming that ūi and u
′
i are continuous and differentiable, then time averaging Equa-

tion (4.6) yields:

1

T

∫ τ+T

τ

∂ūi
∂xi

dt+
1

T

∫ τ+T

τ

∂u′i
∂xi

dt =
∂ūi
∂xi

+ 0 =
∂ūi
∂xi

= 0, (4.7)
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where the definitions for ūi and u
′
i, have been applied. It follows that:

∂u′i
∂xi

= 0. (4.8)

A Reynolds decomposition for each instantaneous quantity may be substituted

into the momentum equation, Equation (4.2), to give:

∂ (ūi + u′i)

∂t
+
(

ūj + u′j
) ∂ (ūi + u′i)

∂xj
=

(

F̄i + F ′
i

)

− 1

ρ

∂ (p̄+ p′)

∂xi
+ ν

∂2 (ūi + u′i)

∂xj∂xj
,

(4.9)

which is then time-averaged to give, using the definitions in Equations (4.4) and (4.5):

∂ūi
∂t

+
(

ūj + u′j
) ∂ (ūi + u′i)

∂xj
= F̄i −

1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

. (4.10)

The advection term requires further investigation, as it is the spatial derivative of the

time-averaged product of two velocities, uiuj . Expanding the velocity product gives:

uiuj =
(

ūi + u′i

)(

ūj + u′j

)

= ūiūj + ūiu′j + ūju′i + u′iu
′
j = ūiūj + u′iu

′
j . (4.11)

From Equation (4.4) the time-average of the product of time-averaged velocities, ūiūj,

is simply the product of the time-averaged velocities. The time average of the prod-

uct of a time-averaged velocity and a fluctuating velocity is zero, following from the

definition given in Equation (4.5), that the time-average of a velocity fluctuation is

zero. The u′iu
′
j term remains because the turbulent fluctuations in the three spatial

directions may be correlated, in which case the time-average of the product of fluc-

tuations may not be zero. It is this term which introduces the turbulent stresses into

the RANS equations and is often simplified through the Boussinesq approximation,
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discussed below. The momentum equation thus is:

∂ūi
∂t

+ ūj
∂ūi
∂xj

+
∂u′iu

′
j

∂xj
= F̄i −

1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂xj∂xj

. (4.12)

4.1.4 Boussinesq Approximation

The Boussinesq eddy viscosity concept draws an analogy between momentum transfer

in a gas, described by the molecular viscosity, and the momentum transfer in a flow

due to turbulent eddies, which is assumed to be described with an eddy viscosity

ν
T
. The eddy viscosity is not a property of the fluid like the molecular viscosity, but

depends on the state of turbulence in the flow. Under this assumption, the Reynolds

stress term, u′iu
′
j is approximated as:

− u′iu
′
j = ν

T

(

∂ūi
∂xj

+
∂ūj
∂xi

)

− 2

3
Kδij, (4.13)

where K is the turbulent kinetic energy and δij is the Kronecker delta. The first

term is the shear stress of a Newtonian fluid; the product of the strain rate and the

molecular viscosity. The second term ensures that the normal stresses sum to 2K,

which is required by the definition of K. As this acts as a normal stress, a modified

pressure term is defined such that p∗ = p̄ + 2
3
ρK, thus it is not strictly necessary to

determine K in the Boussinesq approximation. The momentum equation therefore

becomes:

∂ūi
∂t

+ ūj
∂ūi
∂xj

= F̄i −
1

ρ

p∗

∂xi
+

∂

∂xj

(

ν
∂ūi
∂xj

+ ν
T

(

∂ūi
∂xj

+
∂ūj
∂xi

))

. (4.14)

It should be noted that p∗ is usually written as p̄ for convenience. Dispersive momen-

tum transport by turbulent eddies is generally much larger than laminar diffusion,
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therefore the eddy viscosity is generally much larger than the molecular viscosity:

νT >> ν, (4.15)

so that the laminar diffusion term ν ∂2ūi

∂xj∂xj
may often be neglected, yielding:

∂ūi
∂t

+ ūj
∂ūi
∂xj

= F̄i −
1

ρ

∂p̄

∂xi
+ ν

T

∂

∂xj

(

∂ūi
∂xj

+
∂ūj
∂xi

)

. (4.16)

The Boussinesq approximation does not provide a closure for the turbulence term

itself; instead it provides a framework for constructing a turbulence model to de-

termine νT (Rodi, 1980). The eddy viscosity analogy assumes that the mean free

path of the turbulent eddies is small compared to the dimensions of the flow, but

large compared to the eddy dimensions, as is the case for molecules in kinetic gas

theory. Unlike molecules, turbulent eddies are not small compared to the flow di-

mensions, and the interactions between eddies, which act to distort and rip eddies

apart, are not similar to discrete collisions between molecules. Bradshaw (1972) notes

that most basic fluid flows used as test cases for the Reynolds stress are in states of

local equilibrium or self-preservation, and the eddy viscosity and mixing length are

simply-behaved for dimensional reasons, thus they give good agreement with exper-

imental results. However, the analogy between turbulent and molecular viscosity is

not correct, particularly for more complicated flows. Furthermore, additional inaccu-

racies arise from the assumption and parameters involved in the transport equations

and linear constitutive equations used to determine νT (Schmitt, 2007), therefore the

following derivation of the shallow water equations shall not use the Boussinesq ap-

proximation in order to reduce modelling biases in the turbulent stress terms of the

Navier-Stokes equations.
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4.2 The Shallow Water Equations

The high Reynolds number of many tidal flows and the large domains over which they

occur means that there is a very broad range of spatial and temporal scales of fluid

motion, and it is therefore computational expensive to solve the full complement of

Navier-Stokes equations. Reynolds decomposition eliminates some small scale fluctu-

ations, but the three-dimensional problem remains very large and expensive to solve.

Furthermore, the large range of turbulent scales in the flow makes it difficult to select

and parametrise an appropriate turbulence model which accurately captures both the

smallest and largest scale turbulent eddies.

The RANS equations can often be simplified further in the case of tidal flows as

the wavelength of a tidal wave is very large compared to the depth of the fluid. As a

shallow water flow, average motions in the vertical dimension are small (and usually

negligible) compared to those in the horizontal dimensions, and therefore the problem

can be reduced to two dimensions. The shallow water equations are derived from the

three-dimensional Reynolds Averaged Navier-Stokes equations in the following section

to investigate the consequences for turbine modelling in depth-averaged simulations.

4.2.1 Deriving the Shallow Water Equations

The Reynolds-averaged continuity and Navier-Stokes equations derived in the previ-

ous section were:

∂ūi
∂xi

= 0, (4.17)

and

∂ūi
∂t

+ ūj
∂ūi
∂xj

+
∂u′iu

′
j

∂xj
= F̄i −

1

ρ

∂p̄

∂xi
, (4.18)

where the molecular viscosity term is negligible compared to the turbulent stress term

and an approximation has not been hypothesised for the Reynolds stress term. If
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the vertical velocities in these are typically small compared to those in the horizontal

direction, as for tidal flows, they are negligible compared to horizontal flow motions. If

the vertical pressure gradient is linear with gravity, the vertical momentum equation,

for which i = 3, noting that F3 = −g, reduces to:

1

ρ

∂p̄

∂x3
= −g. (4.19)

If the pressure at the fluid surface, x3 = ξ, is atmospheric, p̄(ξ) = Pa, integrating

Equation (4.19) over the depth yields the hydrostatic pressure distribution:

p̄ = ρg (ξ − z) + Pa. (4.20)

Depth integrating the continuity equation utilises Leibniz’s rule:

∫ ξ

−h0

∂ūi
∂xi

dx3 =
∂

∂xk

∫ ξ

−h0

ūkdx3 − ūk|ξ
∂ξ

∂xk
− ūk|−h0

∂h0
∂xk

+ ū3|ξ − ū3|−h0
= 0,

(4.21)

where the index k = 1, 2, and a|b denotes the value of a at x3 = b. There is a no-slip

boundary condition at the bottom of the flow and a kinematic boundary condition

at the free surface, which require:

ui|−h0
= 0, and

∂ξ

∂t
+ ūk|ξ

∂ξ

∂xk
= ū3|ξ , (4.22)

respectively. Substituting the boundary conditions in Equation (4.22) into Equation

(4.21) yields:

∂

∂xk

∫ ξ

−h0

ūkdx3 +
∂ξ

∂t
= 0. (4.23)
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Defining the depth- and time-averaged velocity Ūk as:

Ūk =
1

h

∫ ξ

−h0

ūkdx3, (4.24)

where h = ξ + h0, this simplifies to give the depth-averaged continuity equation:

∂ξ

∂t
+
∂Ūkh

∂xk
= 0. (4.25)

The procedure for depth averaging the RANS momentum equation is similar to

that for the continuity equation. The vertical (i = 3) momentum equation has already

been solved in Equation (4.20), allowing the index l = 1, 2 to be introduced to replace

the index j. Considering each term individually:

∂ūk
∂t

+ ūl
∂ūk
∂xl

+
∂u′ku

′
l

∂xl
= F̄k −

1

ρ

∂p̄

∂xk
. (4.26)

Expanding the first term with the Leibniz rule gives:

∫ ξ

−h0

∂ūk
∂t

dx3 =
∂

∂t

∫ ξ

−h0

ūkdx3 − ūk|ξ
∂ξ

∂t
− ūk|−h0

∂h0
∂t

, (4.27)

the last term of which may be eliminated with the no-slip boundary condition at

x3 = −h
0
to give:

∫ ξ

−h0

∂ūk
∂t

dx3 =
∂Ūkh

∂t
− ūk|ξ

∂ξ

∂t
. (4.28)

The Leibniz rule expansion of the second term in Equation (4.26) gives:

∫ ξ

−h0

∂ūkūl
∂xl

dx3 =
∂

∂xl

∫ ξ

−h0

ūkūldx3−ūk|ξ ūl|ξ
∂ξ

∂xl
− ūk|−h

0

ūl|−h
0

∂h0
∂xl

+ ūk|ξ ū3|ξ − ūk|−h
0

ū3|−h
0

,

(4.29)

which simplifies with the no-slip boundary condition and the definition of the depth-
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and time-averaged velocity to:

∫ ξ

−h0

∂ūkūl
∂xl

dx3 =
∂hŪkŪl

∂xl
− ūk|ξ ūl|ξ

∂ξ

∂xl
+ ūk|ξ ū3|ξ . (4.30)

The kinematic boundary condition, multiplied by ūk|ξ , is:

ūk|ξ
∂ξ

∂t
+ ūk|ξ ūl|ξ

∂ξ

∂xl
= ūk|ξ ū3|ξ . (4.31)

Summation of Equations (4.28), (4.30) and (4.31) yields the first two terms of the

depth-averaged equations:

∂Ūkh

∂t
+
∂ŪkŪlh

∂xl
. (4.32)

Leibniz’s rule expands the third term of Equation (4.26) as:

∫ ξ

−h0

∂u′ku
′
l

∂xl
dx3 =

∂

∂xl

∫ ξ

−h0

u′ku
′
ldx3−u′k|ξu′l|ξ

∂ξ

∂xl
− u′k|−h

0

u′l|−h
0

∂h0
∂xl

+ u′k|ξu′3|ξ − u′k|−h
0

u′3|−h
0

.

(4.33)

The terms in Equation (4.33) at the bottom of the flow can be parametrised in terms

of a bed shear stress τb,k, defined as:

− τb,k
ρ

= u′k|−h
0

u′l|−h
0

∂h0
∂xl

+ u′k|−h
0

u′3|−h
0

. (4.34)

The terms at the fluid surface can be treated in a similar manner to derive a wind

shear stress τw, but will be neglected for the sake of brevity. A depth- and time-

averaged velocity fluctuation product can be defined as:

U ′
kU

′
l =

1

h

∫ ξ

−h0

u′ku
′
ldx3, (4.35)
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so that the third term of Equation (4.26) becomes:

∫ ξ

−h0

∂u′ku
′
l

∂xl
dx3 =

∂U ′
kU

′
lh

∂xl
+
τb,k
ρ
. (4.36)

The treatment of the force term depends on the relevant body forces. On a rotating

body, the Coriolis force would result in a force vector:

F̄ =







2fū2

−2fū1






, (4.37)

where f is the Coriolis parameter. Depth-integration of the fourth term in Equation

(4.26) then results in:

Fda =

∫ ξ

−h0







2fū2

−2fū1






dx3 = 2f

∫ ξ

−h0







ū1

−ū2






= 2f







Ū1h

−Ū2h






. (4.38)

The depth-averaged form of the fifth term is determined using the pressure re-

lationship derived from the vertical momentum equation, Equation (4.20), which,

recalling h = ξ + h0, leads to:

1

ρ

∫ ξ

−h0

∂P̄k

∂xk
dx3 = g

∫ ξ

−h0

∂ξ̄

∂xk
dx3 = gh

∂ξ

∂xk
. (4.39)

Combining Equations (4.32), (4.36), (4.38), and (4.39) yields the depth-averaged

momentum equation:

∂Ūkh

∂t
+
∂ŪkŪlh

∂xl
+
∂U ′

kU
′
lh

∂xl
= Fda,k − gh

∂ξ

∂xk
− τb,k

ρ
. (4.40)
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4.2.2 Limitations of the Shallow Water Equations

Two scales of turbulent motion exist in shallow water flows; relatively small three

dimensional eddies, which have the scale of the water depth, and two dimensional

eddies which have a scale larger than the water depth. The velocity Ūk is averaged

spatially over the depth of the flow and temporally over a period T , which must be

large enough to encompass the three dimensional fluctuations, but not so large as to

obscure variations in the two-dimensional mean flow. The time step ∆t required to

achieve stable numerical solution of the equations may be smaller than T , leading

to a solution with misleading temporal accuracy. The capability of a depth-averaged

simulation to model rapid transient features in the flow is therefore limited.

The product U ′
kU

′
l is the depth integral of the velocity fluctuations u′ku

′
l, represent-

ing the stress on the flow due to the transfer of momentum by velocity fluctuations.

This stress does not vary in a linear manner as the magnitude will vary across the

water column according to the shear profile, and may also vary within the domain of

interest if there are features (such as changes in bathymetry) which alter its shape.

Consequently, the depth-averaged velocity does not necessarily represent the velocity

of elemental volumes of fluid in the water column. Velocity fluctuations near the

seabed were combined to give the bed shear stress term τb,k, as shown in Equation

(4.34). Similarly, shear stresses at the fluid surface, such as those due to wind, de-

pend on the product of velocity fluctuations at the surface of the fluid. However, the

depth-averaging process means that it is not possible to determine the magnitude of

these shear stresses in terms of the velocity fluctuations at their respective locations

- the depth-averaged velocity must be used instead.

Empirical models are used to relate the depth- and time-averaged velocity to the

friction coefficients needed to determine the shear stresses. These models attempt to

construct a relationship between the depth-averaged velocity and the shear stresses

induced by the velocity fluctuations, but as fluctuations are a flow phenomenon rather
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than a fundamental fluid property, the empirical models may not be accurate in flow

conditions dissimilar to those used to derive the model. This makes determination of

the appropriate shear stresses difficult for problems where the velocity shear profile

may be significantly altered from natural flow conditions, such as near tidal turbine

arrays. The effect of tidal turbines on the shear stress profile and turbulent mixing

needs to be better understood in order to parametrise better the shear stresses in the

shallow water equations.

The vertical pressure variation was approximated as hydrostatic, an assumption

which is satisfied provided accelerations in the vertical direction are negligible. Fur-

thermore, it was assumed that all the points on the free-surface, defined in Equation

(4.22), could be uniquely defined as a function of x, y, and t. This does not allow

breaking waves, and also assumes that the turbine rotor does not pierce the surface of

the flow. Numerical stability limitations may also impose a limitation on the turbine

thrust, as hydraulic jumps may be induced in an open channel flow if the thrust is

large (Draper, 2011).

A further assumption in the derivation of the shallow water equations is that

there is no mean current over the vertical direction during the depth integration. The

consequence of this assumption can be re-examined by considering the advection term

of the RANS equations:

∫ ξ

−h0

∂ūkūl
∂xl

dx3 =
∂

∂xl

∫ ξ

−h0

ūkūldx3 − uk|ξul|ξ
∂ξ

∂xl
− ūk|−h0

ūl|−h0

∂h0
∂xl

. (4.41)

Considering just the first term on the right hand side and introducing the appropriate

depth-averaged variables to ū1 and ū2:

∂

∂xl

∫ ξ

−h0

ūkūldx3 =
∂

∂xl

∫ ξ

−h0

(Ūk + ūk − Ūk)(Ūl + ūl − Ūl)dx3, (4.42)
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which, using the definition for the depth- and time-averaged velocities, simplifies to:

∂ŪkŪlh

∂xl
+

∂

∂xl

∫ ξ

−h0

(ūk − Ūk)(ūl − Ūl)dx3. (4.43)

The second term in the final statement is zero if the vertical velocity is homogeneous

over the depth (Draper, 2011). This term is dispersive, and is sometimes modelled as

an additional turbulent term, taking into account the fluctuations around the spatial

mean vertical velocity arising from currents in the flow, and are not due to a current

averaged over the vertical direction. Dispersive stresses in the flow near a turbine may

be increased by vertical motions imparted by the turbine, and will affect the length

of the wake behind the turbine. Such stresses need to be modelled in turbine-scale

simulations so they can be parametrised as an extra stress term in a similar manner

to the turbulence model.

4.3 Numerical Implementation

The shallow water equations are often solved numerically because of the complexity

of the bathymetry and coastlines in the regions of interest. Many software pack-

ages have been developed to solve the equations, such as Gerris and TELEMAC-2D

(Popinet, 2003; Hervouet, 2007). Numerical simulations in this thesis were performed

in TELEMAC-2D, an open-source program for solving the shallow water equations

using the finite element method (Hervouet, 2007). TELEMAC-2D was selected be-

cause custom functions, such as turbine thrust, are easily integrated into the code,

and it is well support by a consortium of institutions; BfW, EDF R&D, and HR

Wallingford.

The shallow water equations are discretised for implementation in a two-dimensional

mesh. Three main techniques exist for discretising equations; the finite difference

(FD), the finite element (FE), and the finite volume (FV) methods. The governing
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equations are discretised in such a way that derivatives in the function variables are

eliminated (usually) to yield a linear system of equations which can be solved com-

putationally. Each method has strengths and weaknesses, as summarised by Durbin

and Medic (2007), with FE and FV methods most commonly used in fluid simulations

due to their flexibility in dealing with complex meshes and regions of varying mesh

density. TELEMAC-2D discretises the shallow water equations using the FE method,

which are summarised below, and a more comprehensive account of the derivation

for the TELEMAC system may be found in Hervouet (2007).

4.3.1 Finite Element Method

Equations are implemented in the finite element method with an interpolation method

to discretise the unknown quantities, and a variational method (often ‘weighted resid-

uals’ is used) to discretise the equations. Under the interpolation method a function u

in infinite dimensional space is replaced with an approximate function uh constructed

from a finite number of dimensions n by introducing a basis function ψ:

uh =
n
∑

i=1

uiψi. (4.44)

The basis function, which is usually a simple low-order interpolating function, is

defined such that ψi has a value of one at i and is zero on all other degrees of freedom:

ψj =











1 j = i

0 j 6= i
. (4.45)

The basis function is often a piecewise constant, linear or quadratic function, and

exact representation of u is only possible if the basis function is of the same order as

u. If an exact representation of the function u, defined by the equation f(u) = g, the

true function value on a continuous domain Ω, is not possible, then f(uh) = g cannot
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be ensured, so it is necessary to minimise the difference between the interpolant and

the true function value f(uh)− g. This is done by determining the test functions φ:

∫

Ω

(f(uh)− g)φidΩ = 0. (4.46)

The basis functions ψ and test functions φ may in principle be two different functions.

However, it is often convenient to define ψi = φi to simplify the discretisation of the

equations. The FE method in which the weighting functions are defined such that

ψi = φi is called the (continuous) Galerkin finite element method.

4.3.2 Discretising the Shallow Water Equations

The shallow water equations are a set of partial differential equations which vary in

both time and space. Temporal discretisation in TELEMAC-2D is achieved using a

first-order forward differencing finite difference scheme where:

∂f

∂t
=
fn+1 − fn

∆t
, (4.47)

where ∆t is the time step, fn is the function value at the current (nth) time step,

and fn+1 is the function value at the n + 1st time step. The accuracy of the finite

differencing approach can be improved by using the method of fractional steps, in

which the function f̃ is assessed at intermediate positions between n and n + 1 to

develop an improved approximation to the function gradient. The fractional step

method requires discretisation of the other terms of the equation at the same moment

in time as the fractional step, which is not always possible with the advection terms.

Temporal discretisation becomes the process of solving:

f̃ − fn

∆t
+ advection terms = 0, (4.48)
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fn+1 − f̃

∆t
+ other terms = 0. (4.49)

Such a discretisation scheme is described as semi-implicit, and for numerical stability

the function f is expressed as:

f = θfn+1 + (1− θ)fn, (4.50)

where θ is a parameter, usually θ = 0.5, chosen to ensure stability of the numerical

solution in TELEMAC (Hervouet, 2007). Temporal discretisation of Equation (4.25)

leads to:

ξn+1 − ξn

∆t
+
∂
(

θŪk
n+1 + (1− θ)Ūn

k

)

(θhn+1 + (1− θ)hn)

∂xk
= 0. (4.51)

In the momentum equations it is necessary to introduce f ′n+1 as an estimate of

fn+1 for quantities in which the value fn+1 is required during a fractional step sub-

iteration. Within a fractional step f ′n+1 is equal to fn before the sub-iterations are

carried out, and then fn+1 as determined in the previous sub-iterations. Denoting

f ∗ = (θfn+1 + (1− θ) fn) and f † = (θf ′n+1 + (1− θ) fn), the momentum equations

are temporally discretised as:

Ūn+1
k − Ūn

k

∆t
+
∂Ū∗

k Ū
∗
l h

∗

∂xl
+
∂U ′

k
∗U ′

l
∗h∗

∂xl
= Fda,k − gh†

∂ξ∗

∂xk
− τb,k

ρ
(4.52)

Spatial discretisation is achieved using the Galerkin finite element method, in

which a function f is discretised as:

f =
m
∑

i=1

fiφi, (4.53)

where m is the number of discretisation points, fi is the function value at point i, and

φi is the Galerkin weighting function associated with that point. The equations are
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multiplied by the test function and integrated over the domain. For the continuity

equation this yields:

∫

Ω

(

ξn+1 − ξn

∆t

)

φn
i dΩ +

∫

Ω

(

∂Ū∗
kh

∗

∂xk

)

φn
i dΩ = 0. (4.54)

The impermeability boundary conditions are found by using the chain rule on the

second term and integrating the velocity derivative component by parts:

∫

Ω

(

h†
∂Ū∗

k

∂xk

)

φn
i dΩ =

∫

Γ

h†Ū∗
kφ

n
i dΓ−

∫

Ω

Ū∗
k

∂h†φn
i

∂xk
dΩ. (4.55)

The flux across the boundary Γ must be zero if the boundary is solid, otherwise the

flux across the boundary must be calculated as a boundary condition.

The number of degrees of freedom in the vertical and horizontal directions may

vary, so that the decompositions of h and Ūk may be expressed as:

h =

Nh
∑

i=1

hiφ
h
i and Ūk =

NU
∑

i=1

Ūk,iφ
U
i . (4.56)

After this decomposition, the continuity equation becomes:

Nh
∑

j=1

(ξn+1 − ξn)

∆t

∫

Ω

φh
i φ

h
j dΩ+

Nh
∑

j=1

hj

∫

Ω

Ū †
k

∂φh
j

∂xk
φh
i dΩ

+

∫

Γ

h†Ū∗
kφ

h
i dΓ−

NU
∑

j=1

Ū∗
k

∫

Ω

φU
j

∂h†φh
i

∂xk
dΩ = 0.

(4.57)

The momentum equations are similarly multiplied by φi and integrated over the
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domain. After decomposition of the depth and velocity variables, this becomes:

NU
∑

j=1

Ūn+1
k,j − Ūn

k,j

∆t

∫

Ω

φU
j φ

U
i dΩ +

NU
∑

j=1

Ū∗
k,jŪ

∗
l,j

∫

Ω

h†
∂φU

j

∂xl
φU
i dΩ

+

NU
∑

j=1

U ′
k,j

∗U ′
l,j

∗
∫

Ω

h†
∂φU

j

∂xl
φU
i dΩ =

∫

Ω

Fda,kφ
U
i dΩ

−
Nh
∑

j=1

gh†ξj

∫

Ω

∂φh
j

∂xk
φU
i dΩ−

∫

Ω

τb,k
ρ
φU
i dΩ.

(4.58)

As the weighting functions are known, allowing the integrals to be evaluated as

coefficients of a mass matrix:

Mi,j =

∫

Ω

φiφjdΩ etc, (4.59)

which enables the continuity and momentum equations to be expressed in the form

of AX = B, where the matrix A is made of combinations of the mass matrices

M and X is a vector comprised of ξ and Ūk. The final form of the linear system

of equations depends on the turbulence closure model used to eliminate the U ′
kU

′
l

term which remains unknown in the equations presented above, and the treatment

of the semi-implicit time discretisation parameter θ. Further details can be found in

Hervouet (2007). A number of options for resolving the turbulent stress term exist

in the TELEMAC system, and are briefly summarised in the following section.

4.4 Turbulence Closure Models

Elimination of the turbulent stress term, U ′
kU

′
l , is achieved usually with the Boussi-

nesq approximation, discussed in Section 4.1.4, in which the turbulent stress is written

in terms of the shear in the mean velocities, multiplied by a turbulent viscosity pa-

rameter. The turbulent viscosity parameter is modelled on the hypothesis of isotropic
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turbulence in the flow, and a range of models exist to close the problem. The most

common turbulence closure models for the RANS equations may be classified as zero,

one, or two equations models, which seek to determine the magnitude of the turbu-

lence eddy viscosity. Several alternative models exist, such as Smagorinksy’s large

eddy models (Hervouet, 2007), and Reynolds stress models. Both provide an alterna-

tive formulation of the Navier-Stokes equations which avoids the use of the Boussinesq

hypothesis, but required increased computational effort. Turbulence closures to the

RANS equations are less accurate, but with correctly calibrated parameters, it is

possible to get reasonably accurate approximations to a turbulent flow.

4.4.1 Zero Equation Models

Zero-equation models are the simplest form of eddy viscosity model and assume that

the viscosity is constant or directly dependent on known or easily calculable pa-

rameters. A common approach in large domains is to assume a constant turbulent

viscosity parameter, although the magnitude of this parameter varies significantly be-

tween sites, with documented values ranging from 0.12ms−1 in the Mackenzie River,

to 1500ms−1 in the Missouri River (Fischer, 1979).

The first zero-equation model was proposed by Prandtl (1925), which proposed an

algebraic relationship between the turbulent viscosity and the mixing length, and has

since been widely applied to parameterise turbulence. TELEMAC-2D implements the

Elder model, in which longitudinal and transverse diffusion coefficients are proposed,

and related to the eddy viscosity simply through the mean shear velocity in the

flow (Hervouet, 2007). Zero-equation models are popular, but do not explain the

relationship between turbulent energy production, convection, or dissipation, giving

rise to more complicated models. Zero equation models are easy to implement and

quick to compute, but are inadequate for describing flows in which the turbulent

length scales vary.

105



4.4.2 One Equation Models

Prandtl (1945) recognised the need to include previous flow history in the turbulent

viscosity by introducing a transport equation for the turbulent kinetic energy, mod-

elling its production, convection, diffusion, and dissipation. The one-equation model

more accurately reflects the spatially varying nature of turbulence rather than simply

assuming that the eddy viscosity is constant throughout the flow (Rodi, 1980). How-

ever, one equation models do not perform well in free shear flows or cases of decaying

turbulence.

4.4.3 Two Equation Models

Many two equation turbulence models have been proposed for the RANS equations,

comprised of two transport equations, one for the turbulent kinetic energy and another

for the turbulent length scale or an equivalent parameter. Local production and

dissipation of the turbulent kinetic energy are assumed to be approximately equal,

implying that turbulent and mean flow quantities are locally proportional at any

point in the flow (Celik, 1999). A key advantage of the two-equation models over

the zero- and one-equation models is that it is not necessary to know the turbulent

structure of a flow a priori. A large number of two-equation turbulence models have

been proposed, including the k − ǫ model, in which ǫ represents the dissipation and

destruction of turbulent kinetic energy, and the k − ω model, in which ω describes

only the dissipation of turbulent kinetic energy (Cebeci, 2004). However, the k − ǫ

model is the only two-equation turbulence model implemented in TELEMAC-2D.

Although the turbulence closures to the RANS equations are less accurate than DNS

or LES, there are significant computational savings achieved by solving the RANS

equations, and, with correctly calibrated parameters, it is possible to get reasonably

accurate approximations to a turbulent flow.
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4.5 Conclusions

The formulation of the Navier-Stokes equations and the derivation of the shallow wa-

ter equations has been outlined. The shallow water equations are an important tool

for determining the power potential of turbine arrays, as they offer a computation-

ally feasible method of simulating a large number of turbines and the surrounding

environment. However, the assumptions made during the derivation of the equations

means that depth-averaged simulations of tidal turbines are more restrictive than

three dimensional Navier-Stokes simulations. In particular, there are limitations on

the flow regimes which can be simulated, as hydraulic jumps, for example, cannot be

accurately represented in the shallow water equations. Furthermore, the empirical

relationships used to close the shallow water equations, by providing approximations

to the shear and turbulent stresses in the flow, may not be appropriate when tidal

turbines are operating and significantly affecting the shear profile in the flow.

The challenges that face tidal turbine modelling arising from the derivation of

the shallow water equations can be broadly categorised into two main areas: the

first being the role of turbulent mixing in the flow, in particular in the vicinity of

the turbines, and the second being the representation of three dimensional turbines

in a two dimensional simulation. The first of these challenges shall be addressed in

Chapter 5, and the second in Chapter 6.
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Chapter 5

Turbulence in the Shallow Water

Equations

Big whorls have little whorls
That feed on their velocity,
And little whorls have littler whorls
And so on to viscosity.
- Lewis F. Richardson

Turbulence is an important dissipative and diffusive phenomenon in many flows

which is responsible for the transfer of energy from the mean flow to the turbulent

cascade, where energy is eventually degraded to heat. Although turbulence is a

fundamentally three-dimensional process, in some flows with much greater horizontal

extent than vertical depth the turbulent dynamics may be approximated as being

two-dimensional. Turbulence behaves differently in two- and three-dimensional flows,

and this chapter begins by comparing the two types of turbulence and their physics.

The dynamics of two-dimensional turbulence have not been widely considered in the

context of simulating tidal arrays. A two-dimensional turbulence model for steady

turbulence in which the production, convection, and destruction of turbulence are

in equilibrium, is proposed based on the coherent structures, or turbulent eddies,

that are observed in turbulent flows. The chapter concludes with a discussion of the

modelling implications of a depth-averaged eddy turbulence model.
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5.1 Introduction

Turbulence is a largely chaotic state that describes many fluid flows and results in

interactions and the transfer of energy between a wide range of scales in the flow. It

is characterised by the Reynolds number, the ratio between non-linear inertial forces,

responsible for flow instability, and linear viscous forces, responsible for dissipative

damping and stabilisation of the flow. Fully developed turbulent flow occurs at high

Reynolds numbers, Re = O(107) in aeronautics, and Re = O(1010) in oceanographic

flows. Flows which are highly turbulent are typically characterised by large veloc-

ities, which give rise to strong advection, large turbulent length scales due to the

domain size, or low viscosity, corresponding to weak dissipation of energy in the fluid

(Farge et al., 1999). Although the transport processes which drive turbulence are

understood - the Navier-Stokes equations are an exact set of equations that apply

to turbulent fluids - the nature of turbulence is so strongly dependent on boundary

and initial conditions that it makes all but the simplest problems intractable (Rodi,

1980). Matters are further complicated by the lack of certainty about the existence

and uniqueness of solutions of the Navier-Stokes equations when non-linear advection

becomes dominant, as it does in highly turbulent flows (Farge et al., 1999).

5.1.1 Characteristics of Turbulence

The particular features of a flow that makes it turbulent are hard to define, although

such flows can be broadly described as including diffusive, dissipative, irregular con-

tinuum flows which have higher Reynolds numbers (Tennekes and Lumley, 1972).

The irregularity of turbulent flows makes deterministic approaches for their under-

standing difficult, and leads instead to the use of statistical methods for spatially- or

temporally-averaged representations of the flows. Turbulent flows are strongly dif-

fusive and tend to promote rapid transfer of momentum, heat and mass. Turbulent
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flows are also dissipative, and the viscous shear stresses that are generated increase

the dissipation of turbulent kinetic energy. Another key feature of turbulent flows

is that turbulence is a continuum phenomenon, dependent on the flow, rather than

a property of a particular class of fluids, and thus turbulence is strongly affected by

boundary and initial conditions. Analytic understanding of turbulence is made diffi-

cult as the time dependence of an averaged quantity in the Navier-Stokes equations

cannot be described by a finite number of differential equations as a result of the

non-linearity of the convective term (Batchelor, 1969).

Turbulence is often described in terms of eddies, or vortical structures, which

correspond to the swirling structures often seen in turbulent flows. The eddies can

be parameterised in terms of their length scale, l, velocity scale, u, and time scale,

l
u
. The eddies possess kinetic energy, and one feature of turbulent flows is that the

turbulent kinetic energy exists over a wide range of spatial scales. Kolmogorov (1941a)

proposed an energy spectrum scaling in the dissipation range of k
−5

3 where k is the

wave number of a turbulent fluctuation:

E(k) = Cǫ
2

3k
−5

3 , (5.1)

where C is the Kolmogorov constant. Conceptualising turbulent flows as consisting

of eddies or vortex filaments led to the description of the energy cascade as the result

of the vortex filaments being stretched, carrying turbulent kinetic energy to smaller

scales. Kolmogorov (1941b) hypothesised that the average energy dissipation rate,

〈ǫ〉, is independent of the fluid viscosity ν when the viscosity is small, and that

small scale fluctuations at high Reynolds numbers are statistically independent of the

large scales, and are locally homogeneous, isotropic and steady. These assumptions

have been shown to be reasonably satisfactory within the limits given by the theory

(Sreenivasan and Antonia, 1997).
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Figure 5.1: Diagram showing the turbulent energy cascade and turbulent length scales

Figure 5.1 shows how the energy spectrum results in a transfer of energy from

the largest scales, through Kolmogorov’s −5
3

power law cascade, to the dissipation

scales where the turbulent kinetic energy is finally dissipated as heat. The largest

scale of turbulent flows, based on the scale of the flow domain, contains most of the

turbulent energy and therefore dominates momentum, mass and heat transfer. The

integral scale is defined to be O(10−1) (often taken to be ≈ 0.2) of the largest scale,

and is an important region in the turbulent energy cascade due to its relationship

with the scale at which the turbulence is forced. The energy at the integral scale

cascades through the inertial scale with a −5
3

power law to the dissipation scale,

where the turbulent kinetic energy is finally dissipated as heat. In the limit Re→ ∞

(ν → 0), three-dimensional turbulence becomes independent of the viscosity and the

initial conditions of the flow, and is driven entirely by the rate at which energy is

transferred from the slower large eddies to the smallest eddies in the flow.

A strain rate field is required to sustain a turbulent flow. Eddies in a strain

rate field undergo stretching, destroying the eddies and forming smaller ones, which

eventually leads to viscous dissipation at the smallest scales. The energy cascade is

driven by the vortex stretching process and results in large eddies, which are strongly
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dependent on flow domain properties, being turned into progressively smaller eddies

which become increasingly homogeneous and domain-independent. The difference

between the smallest and largest scales increases as the flow becomes more turbulent,

making it very computationally expensive to resolve all the turbulent fluctuations

in a high Reynolds number flow. This necessitates the use of turbulence models to

reduce the complexity of the problem and make it more tractable.

5.1.2 Two-dimensional Turbulence

Under certain conditions some aspects of a flow may be regarded as almost two-

dimensional, such as those flows which are described by the shallow water equations.

In such flows, the horizontal dimensions are usually much larger than the vertical

dimension, and large-scale turbulence may therefore be described to a good approx-

imation as behaving as if it were two-dimensional. Turbulent processes are funda-

mentally three-dimensional, and thus the small-scale turbulence within these flows is

still three-dimensional. Two-dimensional turbulence is therefore necessarily locally

anisotropic (but may still be homogeneous), in contrast to the common assumption

in three-dimensional turbulence modelling of homogeneous isotropic turbulence. Fur-

thermore, the nature of turbulent processes ensures that the small and large scales of

the flow interact. Thus, although influenced by the dynamics of the small-scale, tur-

bulence in two dimensions is dominated by large-scale eddies in the flow (Davidson,

2004).

The two basic properties of turbulence, randomness and non-linearity, are present

in both two- and three-dimensional turbulence. However, two-dimensional turbulence

contrasts with the behaviour of three-dimensional turbulence described above in a

number of ways, the key differences being an inverse cascade of energy from the

smaller scales to the larger scales (Fjørtoft, 1953), the near conservation of energy in

a two-dimensional turbulent flow (Batchelor, 1969), and the persistence of coherent
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structures in the flow (Oetzel and Vallis, 1997; Davidson, 2004).

Two-dimensional turbulence may be described in terms of two quadratic invari-

ants, the kinetic energy, K, and the enstrophy, Z (Iwayama et al., 2002). Denoting the

flow velocity u(x) and angle brackets to define a spatial average, the kinetic energy

may be defined as:

K =
1

2
〈u(x) · u(x)〉, (5.2)

and, denoting the vorticity as ω, the enstrophy is defined as:

Z =
1

2
〈ω(x)2〉. (5.3)

Assuming that the kinetic energy is the unique invariant describing a two-dimensional

flow and that the turbulent eddies were self-similar, Batchelor (1969) found that two-

dimensional turbulence exhibited a dual cascade phenomenon, in which there was an

inverse cascade of kinetic energy and a direct cascade of the enstrophy. Batchelor de-

termined a k−3 scaling for the enstrophy decay, which does not agree very well to that

observed in three-dimensional flows, where the scaling k−n where n is slightly greater

than 3 (Davidson, 2004). In the limit Re → ∞, it was found that the dissipation of

K ≈ 0, and the dissipation of Z remains finite. The conservation of kinetic energy in

two-dimensional turbulence is in stark contrast to that observed in three-dimensional

where the dissipation of K is finite and of order u3

l
for Re→ ∞ (Davidson, 2004). In

conventional three-dimensional turbulence, the vortex filamentation process intensi-

fies the small scale vorticity, increasing viscous dissipation at the Kolmogorov scales.

The dissipation of energy in three dimensions is therefore driven by the rate at which

the large scale eddies break up (Davidson, 2004). In two-dimensional turbulence, on

the other hand, the invariance of the vorticity means that the vortex filamentation

process does not lead to an increase in overall vorticity and is instead fixed by the

initial conditions of the flow (Batchelor, 1969).
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One feature of two-dimensional flows that Batchelor did not fully appreciate was

the role of persistent coherent structures (vortices) which formed in two-dimensional

turbulent flows (Kraichnan and Montgomery, 1980). Coherent vortices are distinct

from turbulent eddies as the eddy turnover time for a coherent structure is much larger

than l
u
. Rather than being stretched through the filamentation process described for

turbulent vortex filaments, coherent vortices interact with each other as a collection of

point vortices (Davidson, 2004). The coherent structures emerge in the flow from the

randomness in the flow field in the initial conditions and grow through the merging of

like-signed vortices. Thus, over a long period of time the number of coherent vortices

reduces, they grow large in size, and may come to dominate the flow after a long period

of time if they are of sufficient strength relative to the background straining field that

develops in the flow (Oetzel and Vallis, 1997). The coherent vortices thus represent

the largest spatial scales of the system, and are driven through the inverse cascade

of energy from the intermediate scales in the flow, giving rise to the description of

two-dimensional turbulence as a self-organising system (Kraichnan and Montgomery,

1980).

The dual cascade of turbulent energy in two-dimensions means that the standard

diagram of the distribution of turbulent energy with respect to wave number in three-

dimensions in Figure 5.1 does not fully represent the distribution of energy in a two-

dimensional flow. Instead, both a −5
3
range and a −3 range exist in two-dimensional

turbulence, although the exact coefficients for energy and enstrophy transfer in these

ranges are less well established than for three-dimensional turbulence (Kraichnan,

1971). The dual cascade of two-dimensional turbulence is shown in Figure 5.2. If

energy and enstrophy enter the dual cascade over the wave number range (kK2 , k
Z

1 ),

where kK2 ≈ kZ1 , the energy and enstrophy inertial ranges can be defined as [kK1 , k
K

2 ] and

[kZ1 , k
Z

2 ] respectively. The smallest wave number in the domain, kmin, is kmin = 1, or

kmin = 0 if the domain is unbounded and hence large scale dissipation is not necessary.
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Figure 5.2: Diagram showing the dual energy and enstrophy cascade and wave number
for two-dimensional turbulence. Energy and enstrophy are injected in the range
(kK2 , k

Z

1 ). Adapted from Farazmand et al. (2011).

The largest wave number in the domain, kmax, corresponds to the Kolmogorov scale

and depends on the resolution of the model and the Reynolds number of the flow.

A further difference between two- and three-dimensional flows is that molecu-

lar viscosity does not exist in a strictly two-dimensional flow (Dorfman and Cohen,

1970), which leads to a breakdown in the eddy-viscosity representation of turbu-

lence presented in Section 4.4 (Kraichnan, 1976). This breakdown, in addition to

the dual energy and enstrophy cascade, means that turbulence modelling in shallow

water flows, in particular where energy and enstrophy are injected into the turbulent

cascade at some intermediate wave number, requires particular attention.

5.2 Turbulence Modelling in Numerical Simula-

tions

It is computationally challenging to solve completely all motions within a turbulent

flow, as the interaction of the vortex filaments in the flow generates rapid velocity

variations at unpredictable regions in the fluid, requiring fine numerical resolution to
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represent fully the entire range of length scales in the flow (Batchelor, 1969). This

has led to the development of a range of approaches for simulating turbulent flows.

These approaches broadly fall into three categories; RANS turbulence models, direct

numerical simulations, and large eddy simulations. The zero-, one-, and two-equation

models for the RANS equations presented in Section 4.4 have been widely used in both

three-dimensional and two-dimensional simulations. However, as discussed above, the

eddy viscosity approximation is not always an appropriate approach for modelling

turbulence, so some alternative approaches, firstly for three-dimensional, and then

two-dimensional simulations, are summarised below.

The most computationally intensive method of simulating three-dimensional flows

are Direct Numerical Simulations (DNS) of the Navier-Stokes equations, where all

the turbulent motions are explicitly resolved in the simulation. The success of DNS

depends on knowledge of the smallest length scales to be simulated, which may be

obtained through Kolmogorov’s theories presented in Section 5.1.1. DNS studies

require very fine grid resolution, which is a limiting factor in the use of DNS in

large, highly turbulent three-dimensional flows. Nieuwstadt (1990) demonstrate that

a further challenge with DNS is that the number of grid points N required to capture

all the motions in a flow scales as:

N ≈ Re
9

4 , (5.4)

where doubling the Reynolds number requires the grid resolution to be increased by

a factor of 4.76. The substantial computational requirements of DNS has limited the

technique’s use in fully turbulent flows and large domains, with the limit of recent

computational facilities having allowed resolutions of 40963 at Reynolds numbers of

105 (Ecke, 2005). These limits are generally too restrictive for coastal modelling, and

therefore sub-grid turbulence models are required.
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One approach to reduce the computational demand of simulating a turbulent

flow is to filter the turbulent motions so that the finest turbulent motions, which

are responsible for the expensive resolution requirements of DNS at high Reynolds

numbers, are not directly simulated and the effect that they have on the simulated

flow is modelled in a sub-grid turbulence model instead. This class of simulations

is known as Large Eddy Simulations (LES), first proposed by Smagorinsky (1963).

Smagorinsky related sub-grid scale turbulent eddies to the strain rate through:

τij =
1

3
τkkδij − 2νT S̄ij, (5.5)

where the isotropic part of the equation, τkk is usually incorporated with the pressure

term, νT is the eddy viscosity, and S̄ij is the strain rate tensor of the filtered velocity

field. The eddy viscosity is expressed as:

νT = (cs∆)2|S̄|, (5.6)

where cs is the Smagorinsky constant, ∆ is the grid size and S̄ =
√

S̄ijS̄ij. Large

eddies are affected by the boundary and initial conditions, whereas the small scale

turbulent fluctuations are believed to be homogeneous and isotropic, and therefore

independent of the anisotropy and heterogeneity of the large eddies. The Smagorin-

sky constant is hypothesised to reflect this universality of the sub-grid scale eddies.

However, different researchers have determined a number of different values for the

constant, suggesting that there may be some additional physics in small scale turbu-

lence (Zhai et al., 2007).

Large eddy simulations may also be undertaken for depth-averaged flows, although

the sub-grid scale model is different to that for three-dimensional flows on account of

the differences between two- and three-dimensional turbulence. One consequence of

depth-integration is that the smallest physically meaningful length-scale in the model
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is the depth h, and horizontal resolution ∆x ≤ h has little physical meaning (although

may be required for numerical stability). Madsen et al. (1988) identified that this gives

rise to four different scales of filtering in depth-averaged LES. The smallest of these

scales was the filtering of random molecular motion, which gives rise to molecular

diffusion and is parametrised with the molecular viscosity. The second smallest scale,

common to both two- and three-dimensional simulations, was the filtering of turbulent

motion below a given, unresolved, scale related to the numerical mesh, which gives rise

to the turbulent diffusion modelled with an eddy viscosity parameter. The second-

largest scale was the depth-average filter, which filters the vertical velocity profile,

and leads to the introduction of dispersion, bed shear stresses, and horizontal shear

stresses. The final, and largest scale was the horizontal averaging over a cell of size

∆x, which introduces additional dispersion and eddies into the simulation.

The largest scales are unique to depth-averaged models and are generally ac-

cepted to be the most significant of the scales (Hinterberger et al., 2007). Modelling

depth-averaged turbulence is challenging because the sub-grid turbulence is no longer

isotropic nor in equilibrium, as is often assumed in three dimensional LES (Nadaoka

and Yagi, 1998). Computing the sub-grid scale turbulence requires the parametri-

sation of the characteristic length scale of the sub-grid turbulence, lD, defined by

Nadaoka and Yagi (1998) as:

lD = αh (α < 1), (5.7)

where α is a parameter relating the characteristic sub-grid turbulence length scale

to the depth. The relationship between lD and the water depth is one of the key

features of two-dimensional turbulence, as the size of the largest sub-grid eddies is

constrained by the depth of the flow. The value of α is influenced by factors such

as the velocity shear profile and requires detailed knowledge about the state of the

118



turbulence in the flow. Nadaoka and Yagi suggest that α = 0.067 may often be

appropriate, although they note that general approaches to estimate α have yet to

be developed. The characteristic turbulent length scale is used to parameterise the

eddy viscosity and energy dissipation rate in the model in a similar approach to that

for three-dimensional LES.

5.2.1 Turbulence Models in Tidal Simulations

Two scales of flow may be identified in relation to tidal turbine arrays, as introduced

in Chapter 3. The turbine-scale flow events and mixing occur close to the tidal devices

and are characterised by a length scale on the order of the diameter of the tidal device.

Array-scale flow events and mixing occur over much larger spatial and temporal scales,

and are characterised by a length scale on the order of the array width. As the array

width is typically much larger than the depth of the flow, array-scale flow events

are predominantly two-dimensional, whereas turbine-scale flow events, characterised

by the device diameter which is less than the water depth, are three-dimensional.

As discussed in the previous section, the turbulence models used in two- and three-

dimensional simulations of tidal arrays should be different in order to reflect the

different turbulent phenomena in the different flows.

A common simplifying assumption made in numerical simulations of turbine arrays

is that the array spans the width of the channel, allowing the array-scale bypass to

be neglected and thereby allowing the simulation to be simplified to a single turbine

or small group of turbines. It is then feasible to analyse a single tidal device using

a high resolution three-dimensional simulation to study the evolution of the turbine-

scale wake. Three-dimensional RANS simulations with a k − ǫ turbulence model

closure have been widely used to simulate individual or small groups of turbines.

A staggered array of seven turbines was studied by Bai et al. (2009), which required

500,000 elements in a domain with a central symmetry boundary condition, such that
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it was only necessary to simulate half the domain. Turnock et al. (2011) studied a

single turbine in a range of inter-turbine spacing configurations, and comment that

satisfactory convergence of the solution for the flow requires at least six million cells,

with at least 40% of those within the turbine wake. Bai et al. (2013) followed the work

of Turnock et al. to study staggered pairs of turbines in a domain with symmetry

boundary conditions in order to simulate the array spanning the channel width. Large

eddy simulations have also been used in three-dimensional studies of pairs of turbines.

Churchfield et al. (2013) simulated staggered and non-staggered turbine arrangements

in a domain with periodic boundary conditions. Approximately twelve million cells

were required with a filter resolution of 0.5 metres, limiting the application of LES

to small numbers of turbines and domains.

The computational expense of simulating a large number of turbines and the as-

sociated array-scale bypass flow necessitates the use of two-dimensional simulations.

In contrast to three-dimensional simulations, grid resolution requirements in two-

dimensional simulations are driven predominantly by the need to resolve bathymetric

variations and the coastline rather than resolving fine turbulent fluctuations. Turbu-

lence modelling is less well established in depth-averaged simulations, with a number

of studies relying solely on dissipation within the numerical simulation to suppress

turbulent fluctuations (see McCombes et al. (2009), Divett et al. (2011), Funke et al.

(2014), for examples). The damping achieved in this manner is entirely dependent

on the discretisation technique used on the governing equations, and conflicts with

the general aim of using a discretisation scheme which introduces as little artificial

dissipation to the system as possible. Two-dimensional simulations which explicitly

include turbulence closure models tend to utilise simpler constant or zero-equation

turbulence closure models, such as those employed by Ahmadian et al. (2012), Ad-

cock et al. (2013), and Plew and Stevens (2013). An eddy-viscosity closure offers an

inexpensive way of introducing a turbulence parameter which may be tuned to get the
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desired eddy recirculation length in the wake of objects. A constant eddy viscosity,

such as that used by Garrett and Greenberg (1977), AH , is used to parameterise the

horizontal mixing processes only, and therefore neglecting the contribution of vertical

turbulent motions. Zu et al. (2007) use a value of AH = 100m2s−1 to generate smooth

solutions when simulating tidal dynamics in the South China Sea, whereas Hench and

Luettich (2003) use AH = 7m2s−1 for a shallow inlet, demonstrating the specificity

of a single viscosity parameter to a given problem and its inability to yield further

information about the turbulence.

Two-equation eddy viscosity models for two-dimensional flows have been formu-

lated by analogy to the two-equation models for three-dimensional flows (Mellor and

Yamada, 1982). The attractions of two-equation turbulence models are two-fold;

firstly, they offer, with suitable constants, a reasonably accurate model of the effect

of depth-averaged turbulence in a flow, and secondly, the two-equation models tend to

model correctly the dissipation of small-scale turbulent energy if the large-scale tur-

bulent eddies are correctly specified at the initial conditions. The second condition

arises from the fact that small-scale eddies are independent of the boundary condi-

tions that generate the anisotropic large-scale eddies, and therefore the small-scale

eddies over time tend to become more accurately modelled. Two-equation RANS

turbulence models show reasonable, but not completely satisfactory agreement with

experiments (Jirka, 2001). Although experimental agreement is improved through

the use of two-dimensional LES turbulence closures, the scheme has not been used as

a turbulence closure model in the context of tidal turbine modelling.

Tidal flows are often highly turbulent. Tidal turbines, with a length scale that is

a substantial fraction of the water depth but small compared to the horizontal extent

of a large turbine array, will have an important effect on the turbulent dynamics of

a tidal flow. Existing turbulence closure models can be, and have been, employed in

three-dimensional simulations of small numbers of tidal turbines to incorporate the
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effects of turbulence on the turbine-scale flow around the turbines. Two-dimensional

turbulence is less well understood, and the two-dimensional turbulence closure mod-

els that have been employed in simulations of tidal turbine arrays have not fully

reflected the dynamics of two-dimensional turbulence in the context of tidal turbines,

borrowing instead from oceanographic models. In the remainder of this chapter, a

two-dimensional turbulence closure model is proposed for depth-averaged tidal tur-

bine simulations.

5.3 Turbulent Eddy Model

Turbulent phenomena are characterised by four key stages; generation, advection, cas-

cade, and the final dissipation of turbulent kinetic energy. Simulation of the complete

spectrum of turbulent processes in a flow requires computationally expensive direct

numerical simulations, and these are limited to Reynolds numbers that are often lower

than those of interest in tidal flows. Turbulence models are required to characterise

some of the effects that the different stages of turbulence have on the mean flow below

the spatial (LES) or temporal (RANS) scales that are resolved within the numerical

model. In this section a turbulence model is proposed based on two-dimensional tur-

bulence theory to parameterise the effect of the unresolved turbulence on the mean

flow simulated in depth-averaged simulations.

5.3.1 Derivation of the Turbulent Eddy Model

A large part of the turbulent kinetic energy in turbulent flows is contained in dis-

cernible, self-sustaining structures, or eddies (Albukrek et al., 2002). These eddies

remove energy and enstrophy from the mean flow and transfer it, through the dual

turbulent cascade, to the scales where it is finally dissipated, as was illustrated in Fig-

ure 5.2. It is assumed for the majority of this process, the eddies are self-similar, and
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that the energy in the system approximately follows the −5
3

and −3 power law scal-

ing ratios with wavelength that has been analytically established for two-dimensional

turbulence. For the purposes of simplicity, it is further assumed that the transfer of

energy through the turbulent cascade is steady and therefore that the mechanism by

which momentum and energy are transferred across different turbulent scales does

not need to be explicitly modelled.

The shallow water equations were derived in Chapter 4 through the Reynolds

averaging and subsequent depth-averaging of the Navier-Stokes equations. The re-

sulting two-dimensional flow field is described in terms of a velocity time averaged

over a sufficiently long period T to allow turbulent fluctuations to be neglected over

the depth of the flow and further averaged over the depth of the flow. The depth-

and time-averaged Reynolds stress term is:

∂U ′
kU

′
lh

∂xl
, (5.8)

an expression for which must be found in order to close the system of equations.

As the Reynolds averaging process yields a mean velocity field devoid of turbulent

fluctuations, the turbulent fluctuations in the Reynolds stress term are assumed in

this model to produce a fluctuating velocity field that is superimposed on the mean

velocity field. At any point in the flow domain the fluctuation field has a time average

of zero over the period T .

A hypothetical eddy with diameter L and velocity components U ′ and V ′ is shown

in Figure 5.3. The velocity components are normalised against |U ′|max and |V ′|max

respectively in order to highlight the contribution each component of the eddy makes

to the velocity fluctuations. The eddies tessellate with neighbouring eddies to pro-

duce, in the absence of flow boundaries, an infinite field of eddies of different sizes.

The eddy is hypothesised to have a constant angular velocity, so that the rotational
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(a) Diagram of normalised velocity
U ′

|U ′|max
and normalised magnitude |U ′|

|U ′|max

for a turbulent eddy.
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(b) Diagram of normalised velocity
V ′

|V ′|max
and normalised magnitude |V ′|

|V ′|max

for a turbulent eddy.

Figure 5.3: Normalised velocity and magnitude components of a turbulent eddy with
diameter L. The dashed arrows represent the rotation of neighbouring eddies.

velocity of the eddies is greatest at the perimeter and reduces towards the centre of

the eddy. The angular velocity is an increasing function of turbulence intensity, such

that stronger eddies are associated with higher levels of turbulence. This means that

U ′ and V ′ are related through the rotation of the eddy, and therefore the correlation

between the two fluctuations means that the time-average of the fluctuation product

U ′
kU

′
l is not zero, satisfying the requirement originally introduced by Reynolds decom-

position in Chapter 4. Turbulence is strongly affected by the boundary conditions

of the domain, but these effects shall be neglected in the present study in order to

preserve the generality of the analysis.

In the x-direction, the magnitude of velocity U ′ is maximum when x = 0 and zero

when x = ±L
2
. This can be described as one cosine wavelength:

|U ′|
|U ′|max

=
1

2

(

1 + cos

(

2πx

L

))

. (5.9)

The sign of the U ′ velocity of an anti-clockwise eddy is negative for positive y, the top
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half of the eddy, and positive for negative y, the bottom half of the eddy, and reverses

for a clockwise eddy. The sinusoidal variation of the sign of U ′ between y = L
2
and

y = −L
2

occurs over half a wavelength, and the eddy sign has a period of two eddies

in the x-direction:

sgn(U ′) =
− sin

(

πy
L

)

cos
(

πx
L

)

| sin
(

πy
L

)

cos
(

πx
L

)

| . (5.10)

The magnitude of the velocity V ′ is maximum at y = 0 and zero when y = ±L
2

and can be described as one cosine wave:

|V ′|
|V ′|max

=
1

2

(

1 + cos

(

2πy

L

))

. (5.11)

The sign of velocity of V ′ is positive for positive x and negative for negative x, and

is a half sine wave between x = −L
2

and x = L
2
and has a period of two eddies in the

y-direction:

sgn(V ′) =
sin
(

πx
L

)

cos
(

πy
L

)

| sin
(

πx
L

)

cos
(

πy
L

)

| . (5.12)

The turbulent eddies are convected downstream by the mean flow at speed Ū∞.

Averaged over a time T which is much longer than the turbulent time scale, the

convection of turbulent eddies means that the time-average of the velocity fluctuations

at any point in the flow is zero. The time dependence of U ′ and V ′ is the same, as

they are both convected by the mean flow, therefore:

U ′(t) = V ′(t) = cos

(

Ū∞πt

L

)

. (5.13)

The magnitude of the eddy’s tangential velocity is the root of the product of the

magnitude of the velocities in the x- and y- directions:

√
U ′2 + V ′2 =

1

2

√

(

1 + cos

(

2πx

L

))2

+

(

1 + cos

(

2πy

L

))2

. (5.14)
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Consistent with the constant angular velocity assumption of the turbulent eddies, the

velocity is greatest at the edge of each eddy and decreases towards the centre of the

eddies. Adjacent eddies therefore are contra-rotating, with the signs determined by

the functions defined in Equations (5.10) and (5.12). It remains to find the amplitude

of the eddies.

Assuming a single forcing at an intermediate scale, denoted Lf , at which energy

and enstrophy enter the turbulent energy spectrum, enstrophy cascades from the

forcing scale to higher wave numbers where it is eventually dissipated by molecular

viscosity, and energy cascades from the forcing scale to lower wave numbers where it

is eventually dissipated by large scale structures in the flow. Eddy size is bounded by

the dimensions of the flow domain, and driven by the wave number at which forcing

occurs. The angular velocity ω of an eddy shall be defined as a function of the free

stream velocity U∞ and the forcing length scale:

ω = f

(

Ū∞
Lf

)

. (5.15)

It is assumed that the angular velocity represents the turbulence intensity in the flow,

and that the eddies are self-similar across the different length scales. Vigorous mixing

occurs in more turbulent flows due to the turbulent eddies rotating more quickly. The

tangential velocity of the eddies may be described as

U ′
i = f

(

L
Ū∞
Lf

)

, (5.16)

where L is the length scale of the eddy. If, to the first order, the function f is linear in

the free-stream velocity, then by introducing a coefficient λ = f
(

L
Lf

)

the magnitude

of the tangential velocity of the turbulent eddies is:

U ′
i = λŪ∞. (5.17)
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The forward enstrophy cascade and the inverse energy cascades are considered

separately, noting that the energy flux from the forcing is split roughly evenly between

the two cascades (Chertkov et al., 2007). Beginning with the forward enstrophy

cascade, non-dimensionalising the turbulent kinetic energy and the wave number on

those of the intermediate-scale forcing, the energy - wave number relationship in the

inertial range of the forward cascade becomes:

log

(

E(k)

E(kf )

)

= −3 log

(

k

kf

)

, (5.18)

where f denotes the wave number of the forcing. E(k) is the average fluctuating

kinetic energy per unit mass:

E(k) =
1

2
U ′
iU

′
i . (5.19)

Substituting the turbulent kinetic energy and the eddy length scales into (5.18), it

can be shown that:

U ′
iU

′
i

U ′
f,iU

′
f,i

=

(

k

kf

)−3

. (5.20)

The tangential velocity of the large eddy, U ′
f,i was given in (5.17), therefore the

amplitude of the fluctuation velocity is calculated to be:

U ′
i
Z = U ′

f,i

(

k

kf

)
−3

2

= λf Ū∞

(

k

kf

)
−3

2

, (5.21)

where the superscript Z is used to denote that the amplitude corresponds to the

forward enstrophy cascade. The relationship is subject to the condition that k > kf

in the forward enstrophy cascade.

Following the procedure for the forward enstrophy cascade, the energy - wave

number relationship in the inertial range of the non-dimensionalised inverse cascade

is given by:

log

(

E(k)

E(kf )

)

=
−5

3
log

(

k

kf

)

. (5.22)
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Substituting for the definition of the turbulent kinetic energy per unit mass therefore

gives:

U ′
iU

′
i

U ′
f,iU

′
f,i

=

(

k

kf

)
−5

3

, (5.23)

and therefore the amplitude of the velocity fluctuations in the inverse energy cascade

are given by:

U ′
i
K = U ′

f,i

(

k

kf

)
−5

6

= λf Ū∞

(

k

kf

)
−5

6

, (5.24)

in which the superscript K denotes the inverse energy cascade. k < kf in the inverse

energy cascade.

With expressions for the fluctuation amplitudes specified in Equations (5.21) and

(5.24), Equations (5.10), (5.13), and (5.14) are combined to give expressions for the

U ′ fluctuations due to turbulent eddies:

U ′ =− 1

2
U ′
amp

sin
(

πy
L

)

cos
(

πx
L

)

| sin
(

πy
L

)

cos
(

πx
L

)

|

1

2

√

(

1 + cos

(

2πx

L

))2

+

(

1 + cos

(

2πy

L

))2

cos

(

U∞πt

L

)

.

(5.25)

Similarly, the V ′ fluctuating velocity is found by combining Equations (5.12), (5.13),

and (5.14):

V ′ =
1

2
V ′
amp

sin
(

πx
L

)

cos
(

πy
L

)

| sin
(

πx
L

)

cos
(

πy
L

)

|

1

2

√

(

1 + cos

(

2πx

L

))2

+

(

1 + cos

(

2πy

L

))2

cos

(

U∞πt

L

)

.

(5.26)

U ′
amp and V ′

amp are determined according to:

U ′
amp = V ′

amp =











λf Ū∞

(

k
kf

)
−5

6

k < kf

λf Ū∞

(

k
kf

)−3

k > kf

(5.27)
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The contribution that the Reynolds stress term U ′
kU

′
l makes to the steady shallow

water equations requires some knowledge about the boundary conditions and forcing

that the flow experiences. The steady shallow water equations are:

∂ŪkŪlh

∂xl
+
∂U ′

kU
′
lh

∂xl
= Fda,k − gh

∂ξ

∂xk
− τb,k

ρ
. (5.28)

If they are to be significant in the shallow water equations, the turbulent stress terms

must be of a similar magnitude to the advection terms. The relative magnitudes of

the terms can be tested by substituting approximate scales into the equations to make

scaling arguments. Introducing the spatial scales κ = x
h
and χ = h

L
, the velocity scale

Uk = γŪ∞, and the temporal scale τ = Ū∞t
L

, the first two terms can be written as:

∂ŪkŪl

∂xl
≈ γ2Ū2

∞
κ

, (5.29)

∂U ′
kU

′
lh

∂xl
≈ − 1

16

U ′
amp

2

κ
(1 + cos (2κχπ))4 cos (τπ) , (5.30)

where

U ′
amp =











λf Ū∞

(

χ
χf

)
−5

6

k < kf

λf Ū∞

(

χ
χf

)−3

k > kf

(5.31)

The cosine terms remain bounded between zero and one for all χ and τ , so the relative

size of the turbulence terms is determined by the first terms in (5.30). Dividing

equation (5.30) by (5.29):

∂U ′

k
U ′

l
h

∂xl

∂ŪkŪl

∂xl

≈ − 1

16

λ2f
γ2

χ

χf

−2n

, (5.32)

where:

n =











3
2

k < kf

5
6

k > kf

. (5.33)
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Figure 5.4: Variation of the function χ
χf

−2n as χ
χf

increases which corresponds to

eddies becoming smaller.

The Taylor Series expansion of Equation (5.32) of δχ = χ
χf

− 1 about χ
χf

= 1 is

given by:
∂U ′

k
U ′

l
h

∂xl

∂ŪkŪl

∂xl

≈ − 1

16

λ2f
γ2

(

1 +
∞
∑

m=1

(1 +m)(−1)mδχmn

)

. (5.34)

This is a decreasing function in χ
χf
, as shown in Figure 5.4. This shows that the tur-

bulent kinetic energy, and therefore the contribution that the turbulent fluctuations

make to the shallow water equations, relative to the advection term, reduces as the

length scale of the fluctuations becomes smaller.

The dual cascade is forced at χ
χf

= 1, and the length scale corresponding to χf

is likely to be less than the flow depth, particularly in the context of tidal turbines

where the characteristic length scale is some fraction of the flow depth. The energy

of the turbulent eddies with a length scale half that of the turbine diameter represent

just over 10% of the turbulent energy of the forcing eddies, and therefore it is assumed

for simplicity that eddies of length scales less than that of the turbine diameter are,

to a first approximation, negligible. Turbulent fluctuations on the scale of the forcing

wave length reduce to 10% of the energy contained in fluctuations with a length
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scale of 4D. The size of the largest eddies is controlled by the extent of the flow

domain, and therefore the magnitude of the energy contained in the largest eddies

is constrained by the horizontal dimensions of the flow. This suggests that, even

for moderately-sized channels, the contribution of the Reynolds stress terms to the

shallow water equations is driven by the largest eddies in the flow rather than the

sub-grid scale forcing. This is in agreement with the general understanding that

the inverse energy cascade is responsible for transporting momentum to the largest

eddies in a two-dimensional flow, which dominate shallow water turbulent processes

(Davidson, 2004). It is therefore proposed that the largest eddies provide a good

approximation to the magnitude of turbulent stresses in a shallow water flow, and

shall be the focus of turbulence modelling.

The exact magnitude of the contribution made by the turbulent fluctuations relies

on knowledge of λ, the ratio of the turbulent fluctuation velocity to the mean flow

speed, a term which cannot be determined without experimental data. It may be

assumed that it is not negligible for all turbulent fluctuations as it is known that at

least some turbulent fluctuations are an important mechanism of momentum transfer

in the shallow water equations from experimental evidence. In lieu of experimental

data, a sensitivity study of the magnitude of λf has been conducted in TELEMAC-

2D. An array of eight 20m diameter turbines each applying 1.25 MW to the flow was

simulated. The inter-turbine spacing was 1 diameter, giving a total array width of

320 metres. Four different levels of λf were tested.

The results are presented in terms of the equivalent effective (molecular + tur-

bulent) viscosity of the levels of λf to aid comparison with established turbulence

models. Levels of λf were chosen to provide equivalent effective viscosities of 10−6

at level one, 10−4 at level two, 10−2 at level three, and 1 at level four. The spatial

average of the axial flow speed through the array, 〈u〉, where the angled brackets

denote the spatial average, and the available power, P , were assessed at the array
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Level 2 Level 3 Level 4 Level 1
〈∆u〉 6.7× 10−4% 2.4× 10−2% 1.3% 1.5061ms−1

∆P < ǫ 0.8% 3.98% 10MW

Table 5.1: Comparison of spatially averaged flow speed through array and power for
the four turbulence levels. 〈∆u〉 = 〈u|i〉 − 〈u|1〉, ∆P = P |i − P |1.

plane for each level of λf , and are reported normalised against the baseline level one

case in Table 5.1. The baseline 〈u〉 and P are reported in the right-hand column of

the table. The intermediate levels showed very little difference in flow speed to the

baseline, with relative differences in flow speed below 0.1%, and the relative difference

in flow speed was just over 1% for level four. The relative difference in power was less

than round off error for level two, less than 1% for level three, and less than 4% for

level four.

The results, which correspond to a range in effective viscosity of six orders of

magnitude, demonstrate that the flow speed through the array and the available

power are largely unchanged across a broad range of turbulence levels. The primary

difference between the different turbulence levels is the array wake length, which is

dependent on the thrust applied to the flow and the strength of the turbulent mixing

that occurs in the wake of the array. Numerical studies suggest that the length of

the wake is affected by the ambient level of turbulence, which is largely controlled by

site-specific processes (Nishino and Willden, 2012a). This indicates that further work

will be required to allow the application of the model to a specific tidal site. However,

the flow speed through, and the power available to an array are relatively insensitive

to the turbulence level, and therefore the work in the remaining chapters considering

generic tidal flows shall use an intermediate level of turbulence, corresponding to level

two here.

Two-dimensional turbulence is less well understood than three-dimensional tur-

bulence, and there is less certainty about the dynamics of the k−3 enstrophy cascade

than there is for the three-dimensional k
−5

3 energy cascade. Numerical experiments
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have suggested that the enstrophy cascade may indeed have an exponent that varies

between −3 and −6 (Tabeling, 2002). A number of factors contribute to this varia-

tion, chiefly the domain boundary conditions, the initial conditions of the flow, and

the time the flow evolves over. This variation indicates that further investigation is

required to understand fully the role of two-dimensional turbulence in the context

of depth-averaged simulations of tidal turbines. However, theoretical models suggest

that an exponent of −3 is appropriate, and experimental results suggest that this is

higher than occurs in practice. The decay of enstrophy will increase for more negative

exponents, reducing further the contribution of smaller turbulent scales to the tur-

bulent energy spectrum, supporting the hypothesis that only large scale turbulence

needs to be modelled as a first approximation.

5.4 Conclusions

Flows are fundamentally three-dimensional, and the interest in two-dimensional tur-

bulence has arisen as an artefact of the desire to approximate some flows as two-

dimensional, the key differences arising due to the invariance of both the energy and

vorticity in two-dimensional turbulence. If the production, convection, and destruc-

tion of turbulence is in equilibrium, turbulent energy is concentrated in large, coherent

structures, and the analysis of the energy contained within turbulent eddies suggests

that the effects of the Reynolds stress term on the flow may be modelled to a first

approximation by just considering the largest eddies. When spatial variation of the

turbulence intensity is reasonably low, then it may be possible to use a constant sim-

ilar to the eddy viscosity-type approximation, where the constant is calculated from

experimental data or assessed through a parametric study.

Although a flow may be relatively homogeneous on the large scale, turbulence in

the vicinity of tidal turbines may be non-homogeneous and have significant spatial
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structure. The assumption that production, convection, and destruction of turbulence

is in equilibrium probably is not valid in the near vicinity of turbines, necessitating

a more advanced turbulence model. However, the scale analysis suggests that local

turbulence production would soon be dominated by the larger eddies in the flow.

Indeed, given the uncertainties in sub-grid and sub-depth modelling of turbulent

flows, it may be preferable to employ a simpler turbulence model in the shallow water

equations, particularly in light of the approximations made in the depth-averaging

process.

Turbulence modelling in the SWEs is challenging because turbulence is a non-

homogeneous and transient flow phenomenon, depending on local flow conditions

which vary significantly in time and through the water column. The time- and depth-

averaged flow variables used to describe the SWEs are approximations to the real

conditions responsible for generating, diffusing and dissipating turbulent energy in a

flow, and it may be argued that it is most important to capture accurately the transfer

of energy from the mean flow, which can be simulated, into the turbulent energy

cascade, which must be modelled. It has been shown that the largest eddies, in which

much of the turbulent energy is concentrated, are the dominant form of eddies and

therefore a fairly good approximation may be made through capturing these eddies

accurately. However, this allows only a limited insight into the physical mechanisms

responsible for turbulence in shallow water flows. Resolving the turbine-scale flow to

develop a better understanding of the relationship between the depth-averaged flow

variables and the available power is discussed in the next chapter.
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Chapter 6

Scale Separation in a

Depth-Averaged Simulation

The art of doing mathematics consists in finding that special case which
contains all the germs of generality.

- David Hilbert

This chapter will first illustrate the differences between two- and three-dimensional

simulations and explain how an array’s power potential is erroneously calculated in

two dimensional simulations. A correction is proposed by deriving an analytical model

to more reflect accurately the power available to an array which can then be used to

correct the estimates of two-dimensional simulations. The basic model is extended to

include the deformation of the free surface due to energy extraction. The drag arising

from the support structure will be neglected, although this correction can be added

into the model with relative ease as an additional resistance to the flow.

6.1 Introduction

As discussed in Chapter 3, recent analytic models and numerical simulations of tidal

turbine arrays partially spanning wide channels have demonstrated that there are two

scales of flow to be considered: the device-scale flow, which consists of the flow around

an individual turbine and the wake of the turbine; and the array-scale flow, which

consists of the flow around the array and the array wake (Nishino and Willden, 2012b,

2013). One consequence of the diversion of flow around the array is the reduction
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of the mass flux through the array, and it is this reduced mass flux that provides

the upstream boundary condition to the device-scale flow problem. Two powers may

be defined for a partial array; the device power, which is the power available to a

single device; and the array power, the power removed from the flow, composed of

the power available to each tidal device as well as the power dissipated in the mixing

of the device-scale wakes. The array power is therefore necessarily greater than the

sum of the power available to the devices in the array.

At the turbine-scale, the flow through the disc experiences a resistive thrust force,

FD, which removes momentum from the flow and causes a static head difference to

form across the disc. Actuator disc theory suggests that two distinct streamtubes

can be identified in the flow: one containing the flow through the turbine, which

has reduced velocity relative to the upstream flow; and a bypass streamtube with

increased velocity relative to the upstream flow. The static pressure in these stream-

tubes equilibrates at some distance downstream of the device, after which the flow in

the streamtubes mixes viscously as a result of the shear stress generated by the mis-

matched flow speeds. The viscous mixing results in a further decrease in the overall

energy of the flow.

The energy removed from the flow by the actuator disc requires a force to be

applied to the flow, but no such force must be applied to extract energy lost in

mixing from the flow. The ‘mixing energy’ is removed by the viscous stresses that

arise from velocity gradients, and, ignoring bed friction, there can be no streamwise

forces acting in the mixing zone as there is no surface on which a force may act. This

is an important distinction to make, as it is significant in ensuring that the correct

energy and momentum are removed from the flow.

Estimation of the power available to an array of turbines thus requires both the

device-scale and the array-scale flows to be resolved. Three-dimensional simulations

have been used to study small groups of tidal devices, where the grid resolution en-
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sures that both the devices and the wake are resolved, thereby allowing the available

power to be estimated (see, for example Nishino and Willden (2012a)). However,

the computational expense of simulating many tidal devices in three-dimensions ne-

cessitates the use of two-dimensional simulations for large tidal arrays. The two-

dimensional simulations typically solve the shallow water equations, which describe

the flow in terms of depth-averaged quantities (for examples, see Walkington and

Burrows (2009); Draper et al. (2010)). Representing the flow around individual de-

vices can be challenging in depth-averaged simulations as the grid cells may be larger

than the size of a turbine and/or turbine farm (Plew and Stevens, 2013). It becomes

necessary in two-dimensional simulations to parameterise the relationship between

the array power removed from the simulated flow and the available device power.

One of the challenges of depth-averaged simulations is relating the total power re-

moved from the flow in the numerical simulation to the available power, the maximum

power that can be extracted at the turbine plane by the tidal devices, as a straightfor-

ward relationship does not exist between the available power of a turbine array and

the total power removed from the flow (Draper et al., 2010). The relationship between

array power, thrust, and the flow speed through the array may be determined through

a variety of methods. If a particular turbine design is being considered and turbine

data are available, the relationship between the flow speed through the array and de-

vice thrust and power can be determined through experiments, numerical simulation,

and/or analytic models. Alternatively, it is often of interest to establish the avail-

able power through the use of idealised actuator discs, which act as perfectly efficient

momentum extractors (examples include Elghali et al. (2007), Nishino and Willden

(2012b) and Plew and Stevens (2013)). The relationship between the through-array

flow speed and device thrust and power may be determined analytically or through

numerical simulations.

Analytic corrections to continuous Galerkin depth-averaged array simulations
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Figure 6.1: Sketches of the multi-scale flow of a tidal array: a) an array of tidal
turbines partially spanning a wide channel, and b) a single turbine and surrounding
flow passage inside the array. The array velocity ua provides the upstream boundary
condition to the device-scale model.

based on actuator disc theory are developed in this chapter to determine the maxi-

mum power available to an array of actuator discs. The chapter begins with a review

of the device- and array-scale flows and energy extraction and challenges in mod-

elling sub-grid device flow. Analytic corrections are developed, the first based on the

volume-flux constrained actuator disc analysis of Garrett and Cummins (2007), which

is then extended to include the open channel analyses of Whelan et al. (2009) and

Draper et al. (2010). Drag arising from the support structure is neglected, although

this can be added into the model as an additional resistance to the flow.

6.2 Scale Separation in Tidal Energy Extraction

The separation of array and device scales is shown in Figure 6.1. The overall energy

extraction by a tidal turbine array in a channel with an inlet velocity u∞ can be

separated into a number of key stages according to the spatial scale over which they

occur. The total power removed from the tidal channel, PTot, is the sum of the

available array, Pa, and the power dissipated in the array wake, Pa,Mix. The power

removed in a turbine-scale flow passage is the sum of the available device power, Pd,

and the power dissipated in device-scale mixing Pd,Mix. Each turbine exerts a thrust
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Td on the flow, and the thrust exerted by the array, Ta, is the product of the number

of turbines in the array, n, and their respective thrusts. The velocity through the

array is ua, and the velocity through each device is ud.

PTot = Tau∞ = Pa + Pa,Mix, Pa = Taua = nPd + nPd,Mix, and Pd = Tdud.

(6.1)

As discussed in Chapters 2 and 3, the mixing losses represent the transfer of energy

from the mean flow to viscous mixing processes that arise due to development of

shear stresses between the core and bypass flows as a result of differing flow speeds.

Although these losses cannot be converted into useful power, accurate prediction of

the available array power requires that these losses are accounted for, as they effect the

dynamics of the overall tidal resource. These effects were parameterised in previous

chapters with the basin efficiency, which in the multiple scale framework of a partial

array of tidal turbines may be defined as three ratios: the local efficiency of the device,

ηL; array efficiency, ηA; and global efficiency, η, where the global efficiency is equal to

the basin efficiency defined in the literature:

ηL =
Pd

Pa

, ηA =
Pa

PTot

, and η = ηLηA =
Pd

PTot

. (6.2)

The latter case is achieved when the cross section of a channel is completely blocked

by tidal devices, forcing all the flow through the turbines and not inducing any down-

stream mixing, so that there is no bypass flow and therefore no downstream mixing.

The efficiencies will generally lie somewhere between these two extremes as the accel-

eration of the bypass flow and deceleration of the core flow causes shearing between

the two velocities, resulting in dissipation through wake mixing.
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6.2.1 Matching the Array and Turbine Scales

Although the array-scale problem and the device-scale sub-problem may be analysed

separately, the thrust applied by the array, Ta, is the sum of the thrust, Td, applied

by each of the n turbines in the turbine array, i.e., Ta = nTd. However, the same

relationship does not hold between the power of the array and the devices as the array

power also includes the power dissipated in the wake of the devices, so that Pa 6= nPd.

Figure 6.2 compares depth-averaged analyses in which array thrust or array power

are specified with a 3D RANS simulation of eight 20m diameter, d, actuator discs

by Nishino and Willden (2013) in a channel with a uniform upstream flow speed of

2ms−1 and depth of 2d. The total available power of the 3D array is 8.8MW resulting

from the application of a total thrust of 7.3 MN.

A depth-averaged array with an available power of 8.8 MW, shown in Figure 6.2b,

requires a total thrust of only 5.5 MN. Underestimation of the thrust comes from the

erroneous assumption that the flow speed through the array is the same as the flow

speed through the actuator discs and therefore that the total energy flux through

the array is the same as that available to the discs. This fails to account for the

bypass flow around the discs which limits the available power, thus underestimating

the thrust required to achieve the desired power level. Figure 6.2c shows the case in

which the same total thrust is applied as in the 3D simulation, with a total available

power of 11 MW predicted. The overestimation again arises from the assumption

that the flow speed through the array is the same as that through the turbines, which

does not account for the device-scale bypass and corresponding reduction in mass

flow through the discs that limits the available power.

The mismatch between the power and thrust in the two- and three-dimensional

simulations arises because the unresolved flow in the turbine region is not correctly

modelled in the two-dimensional simulations. Strategies for the implementation of

actuator disc arrays in two-dimensional simulations may be summarised in three
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(a) Hub-height streamwise velocity contours
from three-dimensional RANS actuator disc
simulation of an eight rotor array, from
Nishino and Willden (2013).

(b) Depth-average streamwise velocity con-
tours from a depth-averaged simulation
matching total available array power to the
total available device power.

(c) Depth-average streamwise velocity con-
tours from a depth-averaged simulation
matching the thrust applied by array.

Figure 6.2: A comparison between the streamwise velocity contours at the hub-height
in a three dimensional actuator disc simulation and two depth-averaged simulations
matching the power and thrust coefficients of the turbine array.

categories:

1. Matching the thrust of the depth-averaged actuator discs to the thrust applied

by the array, which over-predicts the available power, as ua > ud, but does

simulate momentum removal from the flow correctly,

2. Matching the desired available power of the depth-averaged actuator discs to

the power of the array, which under-predicts the thrust which must be applied

in the SWE model thus incorrectly predicting the momentum removal from the

flow and consequent far-field changes,

3. Matching the thrust as in (1) such that the momentum removal is correctly

simulated, and modelling the device-scale flow field to determine the correct

total available power for a given thrust applied by the array.
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The only fully correct approach is (3). A correction is required so that the correct

available power is calculated from the applied thrust, which requires modelling of

the device-scale flow field. The array power, Pa is often known in a depth-averaged

simulation as it can be calculated from the thrust imposed on the flow by the array.

Therefore the array efficiency, ηA, defined in Equation (6.2) is known. The available

device power, Pd, must be determined in order to find the maximum available power

in order implement method (3).

Individual devices cannot be resolved within a depth-averaged simulation in a

way that is both numerically stable and preserves the blockage ratios of the three-

dimensional flow field around the device. One method to determine the available

device power is to use the definitions in Equation (6.2) to determine Pd through the

local efficiency, ηL, of the tidal devices, where ηL is determined analytically. The

correction, multiplying the local efficiency ηL by the array power, Pa, shall be derived

to obtain an expression for ηL for a given device thrust based on the analytical solution

of the flow around a turbine in a passage in Chapter 2.

6.3 Modelling Sub-grid Turbine-scale Flow

As discussed in Chapter 2, analytical solutions for the power available to an array of

turbines completely spanning a volume-flux constrained tidal channel by Garrett and

Cummins (2007), and an array spanning an open channel by Houlsby et al. (2008).

It is desirable to determine the correcting factor as a function of the thrust applied to

the flow, as this then allows the correction to be applied as a post-processing step of

the simulation. An analytical solution for ηL will thus be derived in the volume-flux

constrained framework for a specified turbine thrust. In the open channel framework

the basin efficiency is derived in terms of the change in free surface elevation so

that the correction factor may be applied to cases, such as an enhanced bed friction
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coefficient, where the thrust may not be directly specified.

6.3.1 Volume-flux Constrained Turbine-scale Flow

Three features are particularly important when assessing the power available to a

tidal device: the mass flux through the turbine, known as the core flow; the mass flux

around the turbine, known as the bypass flow; and the mixing region between stations

four and five. Hydrostatic pressure in the core and bypass flows equilibrate at station

four, although the flow speeds in the two streamtubes are not equal, developing a

shear stress between the two flows, resulting in viscous mixing downstream of the

hydrostatic pressure equalisation point. The total power removed from the tidal flow

at the turbine-scale is therefore the sum of the available power, Pd, and the power

dissipated in the mixing zone, Pd,Mix, as defined in Equation (6.1). The available

power of an actuator disc is the product of the thrust and the through-disc velocity

u2. The volume-flux constrained actuator disc model is used to determine u2, and

therefore the available power Pd, for a specified thrust.

The force on the actuator disc is equal to the pressure difference across the disc,

Td = (p2 − p3)Ad. The pressure difference may also be expressed as a function of the

difference in the flow speeds in the core and bypass flows by combining Bernoulli’s

equations in the core flow upstream and downstream of the turbine and the bypass

flow, which yields, following the derivation of Equation (2.49):

Td =
1

2
ρAd

(

u24b − u24d
)

. (6.3)

The non-dimensionalised form of Equation (6.3) is rearranged for the bypass induction

factor β4 in terms of the core wake induction factor α4 and the thrust coefficient CTL

to give:

β4 =
√

α2 + CTL. (6.4)
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Continuity between stations one and four in Equations (2.50) and (2.51), and conser-

vation of energy in the bypass flow (Equation (2.47c)), requires:

α4

α2

CTL = (β4 − α4) (β4 + 2α4 − 1) , (6.5)

Equations (6.4) and (6.5) may be combined to give an expression for α2 in terms of

α4 and CTL:

α2 =
α4

(

√

CTL + α2
4 + α4

)

√

CTL + α2
4 + 2α4 − 1

, (6.6)

where 0 ≤ α4 ≤ 1 is found from the solution of:

CTL (1−B) + (α4 − 1)2 + 2
√

CTL + α2
4 (α4 − 1) = 0. (6.7)

The available power of an actuator disc in a volume-flux constrained channel

CPL = α2CTL, is determined by solving Equation (6.7) for α4 and thus determining

α2 from Equation (6.6). The total power removed from the flow is the sum of the

available power and the power dissipated in turbine-scale mixing. The total power

removed from the flow is found by considering the change in energy between stations

one and five (Equation (2.58)), from which it was shown in Section 2.4.2 that the

basin efficiency is simply the core flow induction factor through the actuator disc in

the volume-flux constrained model:

ηL =
CPL

CPL,Tot

=
α2CTL

CTL

= α2. (6.8)

The effect of the local blockage ratio, BL, on the variation of local efficiency

ηL against local thrust coefficient CTL is shown in Figure 6.3. The local efficiency

decreases much more quickly at relatively low blockage ratios than at higher blockage

ratios. When CTL = 1.00, the local basin efficiency ηL = 0.96 when the blockage
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Figure 6.3: Plot of local efficiency, ηL, against local thrust coefficient, CTL, for eight
local blockage ratios, BL.

ratio is B = 0.80, representing the case where the flow passage around the turbines

is one diameter tall and one diameter wide. This contrasts sharply with a local basin

efficiency ηL = 0.65 at the same thrust coefficient when the blockage ratio is B = 0.05,

which is much more representative of current turbine array designs. Recalling that

the relationship between available device power and the array power is Pd = ηLPa,

it is clear that applying a correction to the available device power is particularly

important for low local blockage arrays.

The local efficiency is negatively correlated with the local thrust coefficient be-

cause an increment in thrust coefficient reduces the flux ud through the device, which

necessitates an acceleration of the bypass flow ub to conserve mass flux. The increased

velocity difference between the core and bypass flow speeds causes stronger shearing

between the two flows in the device wake, and hence more energy dissipated in the

wake mixing process. Local basin efficiency is particularly heavily penalised in low

local blockage arrays as the thrust coefficient increases because the flow around the
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turbine is relatively unconstrained and therefore there is little resistance to accelera-

tion of the bypass flow. Turbines operate in a relatively constrained flow field in high

blockage arrays and there is a much greater resistance to acceleration of the bypass

flow due to a unit increase in thrust. As a result, high blockage arrays operate with

higher local efficiency than low blockage arrays as the turbine thrust increases.

6.3.2 Open Channel Model for Turbine-Scale Flow

Section 2.4 discussed the differences in the modelling assumptions between the volume-

flux constrained and open channel actuator disc models. It was assumed in the

volume-flux constrained model that the pressure gradient established in the channel

as a result of the energy extraction from the flow does not significantly change the

channel’s cross-sectional area, and therefore that the flow speed recovered to the free

stream velocity far downstream of the actuator disc. Energy extraction from an open

channel, however, results in a deformation of the free surface and consequently an

acceleration of the flow in order to conserve mass flux through the flow passage. The

open channel actuator disc model may therefore be employed to determine the basin

efficiency from the observed free surface deformation in addition to a formulation in

terms of the device thrust. This has advantages for application of the correction fac-

tor to simulations in which enhanced bed roughness or some other factor that cannot

be directly linked to the device thrust.

The device thrust can be determined from a momentum balance between stations

one and five:

Td =
1

2
ρgb

(

h1
2 − h5

2
)

+ ρbhf1u
f
1 (u1 − u5) . (6.9)

Recalling the definition of the change in free surface elevation δh = h1 − h5 and that

conservation of mass requires h1u1 = h5u5, Equation (6.9) yields cubic in δh
h1

that can

be non-dimensionalised using the definitions in Section 2.4.1 and solved for the local
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thrust coefficient:

Cf
TL =

δh
h1

Fr2LBL

(

1− δh
h1

)

((

δh

h1
− 2

)(

δh

h1
− 1

)

− 2Fr2L

)

. (6.10)

The total power removed from the flow between stations one and five is the sum

of the power available to the turbine, Pd and the power dissipated in the turbine-scale

wake, Pd,Mix:

Pd + Pd,Mix =
1

2
ρu1

3bh1 −
1

2
ρu1

3bh1

(

h1
h1 − δh

)2

+ ρgbh1u1 (h1 − h5) . (6.11)

Defining the power coefficient for the total power removed at the turbine scale in a

flow passage with a free surface as CPL,Tot =
Pd+Pd,Mix
1

2
ρu1

2Ad
, this can be rearranged to give:

CPL,Tot =
1

BL



1−
(

1

1− δh
h1

)2

+
2

Fr2L

δh

h1



 . (6.12)

The local basin efficiency ηL for the free surface model is the ratio of the available

power of the turbine to the total power removed at the turbine scale:

ηL =
Pd

Pd + Pd,Mix

=
CPL

CPL,Tot

=
α2CTL

CPL,Tot

. (6.13)

Substituting the thrust coefficient calculated from the change in free surface elevation

in Equation (6.10) and the coefficient for the total power removed from the flow

CPL,Tot from Equation (6.12) into the local basin efficiency definition yields:

ηL =
α2

δh
h1

(

1− δh
h1

)

Fr2L

(

δh
h1

− 2
)(

δh
h1

− 1
)

− 2Fr2L
(

1− δh
h1

)2 (

1 + 2
Fr2

L

δh
h1

)

− 1
. (6.14)

The Froude number, FrL, and the relative change in free surface elevation, δh
h1

, are
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inputs from the depth-averaged simulation, leaving α2 as an unknown quantity. The

actuator disc induction factor can be found by solving the open channel actuator disc

model presented in Section 2.4.1 for a given δh
h1

ratio. Mathematically, it is simplest to

follow the approach of solving for α2 and
δh
h1

for a given α4 and matching the solution

with δh
h1

determined from the simulation. The induction factor α2 is expressed as a

function of α4 and β4 (c.f. Equation (2.23)):

α2 =
α4β4

BL(β4 − α4)

(

1− 1

2
Fr2L (β4 − 1)− 1

β4

)

. (6.15)

The bypass velocity is found by solving the quartic in Equation (2.25). Noting the

definition of the thrust coefficient CTL = β2
4 − α2

4, the cubic for δh
h1

derived from

the momentum balance across the turbine-scale flow between stations one and five is

solved in terms of α4 using the solution of the quartic in Equation (2.25) and Equation

(2.29).

The equations for α2 and δh
h1

can be solved for a range of α4 values so that the

correct turbine induction factor α2, and therefore local basin efficiency in Equation

(6.14) can be selected given the measured change in free surface elevation ratio δh
h1

from

the simulation. Although this method represents more accurately the physics of the

device scale flow, it is very sensitive to the location of the upstream and downstream

boundaries of the region in which the array is simulated, as the change in free surface

elevation is calculated at these points. It must be assumed that energy removal due

to the turbine dominates energy losses due to bed friction and ambient turbulence,

as these will also contribute to a change in free surface elevation.
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6.4 Numerical Implementation of the Turbine-scale

Correction Factor

Grid resolution constraints, particularly in coastal and continental shelf scale simula-

tions mean that the size of cells in a numerical simulation is often much larger than

the size of the tidal turbines being simulated. Furthermore, it is often necessary to

smear the turbine region over multiple adjacent cells in the streamwise direction in

order to achieve a numerically stable solution further abstracting the flow field in the

numerical simulation from the turbine-scale flow field.

The total power removed from the flow at the turbine-scale is the sum of the

available device power and the power dissipated by device-scale mixing for the n

turbines in the array. This was termed the array power, Pa, in Equation (6.1). The

thrust applied by the turbine array in the depth-averaged simulation is the sum of

the thrust applied by the turbines in the array, nTd if the turbines apply a uniform

thrust. If the turbine thrust is known the array thrust can thus then be specified as

a simulation parameter.

The array power, Pa, is the product of the streamwise velocity through the array,

ua, and the array thrust, Ta. The velocity ua is extracted as an output of the depth-

averaged simulation used to calculate the power removed from the flow by the array.

The analytical corrections derived in this chapter may be used to determine the

fraction of the array power that is available to the turbines by multiplying the array

power by the local basin efficiency, ηL, corresponding to the thrust applied by the

array.

A number of techniques exist to discretise the SWE solved in depth-averaged

simulations. The Discontinuous-Galerkin Finite Element Method (DG-FEM) permits

step discontinuities in the fluid depth and velocity across the boundary of adjacent

elements, such as those that might arise by applying the device scale model with a
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free surface along the edge of two elements (see, for example Draper et al. (2010)).

The flow depth and velocity in the upstream cell provide the upstream boundary

conditions to the device-scale model and are used to calculate the depth and velocity

in the element downstream of the turbine array.

The Continuous-Galerkin Finite Element Method (CG-FEM) is more widely used

to discretise the SWE in depth-averaged simulations, but does not allow step dis-

continuities in the depth and velocity of the flow between adjacent elements. It is

therefore necessary for the region over which the thrust is applied to be ‘smeared’ in

the streamwise direction of the flow to avoid numerical instabilities arising from the

application of the array thrust. The total available array power in a CG-FEM scheme

is:

Pa =
k
∑

i=1

l
∑

j=1

Ti,jui,j , (6.16)

where k and l are the number of nodes that the turbines are smeared across in the

streamwise and cross-stream directions respectively, Ti,j is the thrust applied at the

(i, j)th position, and ui,j is the streamwise velocity at the (i, j)th position. The local

basin efficiency multiplies the array power Pa to determine the total available power

of the turbine array.

The local thrust coefficient, CTL, is defined in terms of the array velocity ua. It is

often convenient to define the array thrust coefficient, CTA, in terms of the channel

velocity, u∞, in a tidal channel where u∞ is clearly defined at the channel inlet.

Defining the global thrust coefficient, CTG, as the thrust of n devices normalised by

the dynamic pressure defined by the channel velocity and the frontal area of the n

turbines, the relationship between the local thrust coefficient and the global thrust

coefficient is:

CTG =
nTd

1
2
ρAcu2∞

= α2
1BGCTL, (6.17)

where α1 = ua

u∞

, and BG = nAd

Ac
. This will shift the operating point on the local
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efficiency curves, such as those in Figure 6.3 to the right, worsening basin efficiency,

for a specified level of thrust.

6.5 Comparison to 3D RANS Simulation

The rigid lid analytic correction derived in Section 6.3.1 is applied to a depth-averaged

simulation of an eight turbine array of 20m diameter actuator discs with an inter-

turbine spacing of one diameter. The channel has an undisturbed flow speed of 2ms−1

and depth of two diameters. The channel is 80 diameters wide. The array is modelled

in TELEMAC-2D as a single area of increased resistance (due to the thrust applied to

the flow by the array) with a cross-sectional width of 16 diameters. The set up of the

simulation is designed to be the depth-averaged equivalent of the three-dimensional

rigid-lid RANS simulation of eight actuator discs by Nishino and Willden (2013). The

three-dimensional thrust-power curve is known and provides the benchmark against

which the depth-averaged modelling shall be compared.

The thrust-power curve of the three-dimensional RANS simulation is shown in

Figure 6.4, and compared to two analytic models and two numerical simulations of

the same channel. The array is modelled using open channel LMADT presented

in Chapter 2, corresponding to the assumption that the limit to available power is

governed only by the fraction of the channel cross section occupied by the array. The

theoretical power curve, with a peak power coefficient of CPG,max = 0.93, over predicts

the simulated power curve for the same assumptions (only array blockage is important

for available power), which has a peak power coefficient of CPG,max = 0.85. The over-

prediction arises because the analytic model does not consider the viscous mixing

effects which act to remove additional energy from the flow, and nor does it allow

for the cross-stream flux across the streamwise boundaries of the region in which the

array is simulated numerically. The second factor arises from the need to distribute
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Figure 6.4: Comparison of analytic and numerical solutions for array power with and
without device scale correction to three-dimensional numerical simulation of Nishino
and Willden (2013).

the energy extraction of the array over a small distance in the streamwise direction

to avoid numerical instabilities within the continuous Galerkin Finite Element code.

The analytic and numerical results indicate that it is insufficient to consider solely

the array blockage as the area ratio which constrains the available turbine power.

The local blockage is considered in addition to the array-scale blockage analyt-

ically, as presented in the two-scale analytic model in Chapter 3. The peak of the

thrust-power curve decreases in magnitude to CPG,Max = 0.79 because some of the

device scale flow bypasses the turbine, reducing the power available to the turbines.

The available device power is therefore necessarily less than the total power dissipated

by the array

The peak power of the simulated array with local blockage correction, CPG,max =

0.76, occurs at a lower thrust when the device-scale flow is included than the un-

corrected simulation because the reduction in flow speed through the turbine plane

due to the thrust at the device scale is compounded by the reduction in the velocity

through the array due to the array thrust. The two-scale analytic model predicts a
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slightly higher peak in the power curve than the corrected depth averaged simula-

tion because the analytical model assumes that the flow is inviscid. The corrected

simulation compares well to the three-dimensional RANS power curve, which has a

peak power coefficient of CPG,max = 0.73, a difference of 4% between the two sim-

ulations. This indicates that the two-scale blockage model captures the dominant

physics that governs the power available to an array of turbines that partially spans

a wide channel.

It is often of interest to specify a desired available power, and then determine

the necessary thrust to achieve the specified power. It has been demonstrated that

the available power is less than the power removed from the flow in depth averaged

simulations as implied by the product of the array thrust and flux through the array.

Indeed, a higher device thrust is required to achieve the specified total available power

once the analytical correction has been applied in order to account for the device-scale

bypass flow. The required device thrust can be found by solving for the analytical

correction, given the local blockage ratio, and then finding the thrust required for the

desired available power. This thrust may then be applied to the flow. It may not

necessarily be possible for an array of turbines to achieve the desired available power,

particularly at low blockages, where the flow may bypass the device as the thrust is

increased in order to achieve the desired power.

The relationship between the available device power and the array power is char-

acterised by the local efficiency, ηL. The reduction in the local efficiency of low local

blockage scenarios in comparison to those with higher blockage ratios arises from the

effect that changing the spacing between devices has on the bypass flow around the

turbines. In low blockage configurations, the large distance between devices permits

the formation of a large, relatively unconstrained bypass around each device. The

flow is accelerated in the bypass around the device to maintain the total mass flux

through the channel, and by considering the mass flux balance across the turbine
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plane, it can be shown that the change in the non-dimensionalised velocity in the

bypass, β2, relative to the non-dimensional through-turbine velocity, α2, is given by:

dβ2
dα2

=
BL

BL − 1
. (6.18)

For small blockage ratios (BL ≪ 1), β4 scales roughly as−BL with the non-dimensional

through-turbine velocity α2, so that a small decrease in α2 corresponds to a small in-

crease in β2. However, at higher blockage ratios, the (BL−1) denominator means that

small increases in the non-dimensional velocity α2 are associated with large increases

in β2. As the acceleration required in the bypass of higher blockage configurations is

much greater than that in low blockages, there is a greater resistance to flow in the

bypass, allowing greater pressure gradients to be sustained across the devices, and

consequently greater power is available for a given non-dimensional through-turbine

velocity. It was shown that the local efficiency is equivalent to α2 in the rigid lid case,

and therefore arrays with higher local blockage maintain a high local efficiency over

a greater range of thrust coefficient than do lower blockage arrays.

Over the range of global thrust coefficients that arrays are likely to operate at,

high blockage arrays have a local efficiency close to ηL = 1, and therefore depth aver-

aged simulations predict an available power which is, within the limits of modelling

uncertainties, a relatively accurate representation of the power potential of the array.

However, depth-averaged simulations of low blockage arrays may over predict the

available power by almost 40%, which significantly misrepresents the power potential

of the arrays, and therefore the analytic correction should be applied.

6.6 Comparison to Analytic Model

The correction method was compared to the partial array analytic model developed

in Chapter 3 for arrays in a rectangular channel 1600m wide and 40m deep with a
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Nturbs BG

BL π
10

π
16

π
32

4 0.0196 0.0624 0.0998 0.1996
8 0.0393 0.1251 0.2002 0.4003
16 0.0785 0.2499 0.3998 0.7669
32 0.1575 0.5013 0.8021 1.0000

Table 6.1: Table of array blockage ratio corresponding to the global, and local blockage
configurations for comparison of numerical results to analytic simulation.

uniform inflow speed of 2ms−1, neglecting bed friction. A total of twelve scenarios

were considered; three local blockage ratios, and four global blockage ratios. The

local blockage ratios were BL = π
10

≈ 0.32, BL = π
16

≈ 0.2, and BL = π
32

≈ 0.1. The

global blockages corresponded to arrays composed of four, eight, sixteen and thirty-

two turbines, and the blockage data for the simulations are summarised in Table 6.1.

Depth-averaged simulations with the rigid lid correction factor developed in Section

6.3.1 applied are compared to analytic solutions for the same local and array (and

hence global) blockage ratios.

The effect of the number of turbines on the CTG vs. CPG relationship for a fixed

local blockage ratio of BL = π
16

is shown for corrected depth-averaged and analytic

results in Figure 6.5. As the number of turbines increases, the peak CPG increases,

due to the effect longer arrays have on the array-scale flow phenomena. This can be

understood by considering the differences in flow past turbines near the ends of the

array (outboard turbines), and those in the centre of the array (inboard turbines).

Outboard turbines experience a cross-stream component of flow in the direction of

the array bypass, due to the reduced resistance to the flow of the array bypass as

compared to the inboard direction. If the turbine thrust is uniform across the array,

this asymmetric flow past the outer turbines results in a reduced axial flow through

the turbines, reducing their power, as compared to inboard turbines. Turbines close

to the centre of the array, in which the resistance to flow bypass around the turbines

is approximately uniform either side of the turbines do not suffer the same reduction
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Figure 6.5: Comparison between simulated (dashed lines) and analytically predicted
(solid lines) power coefficient CPG vs. thrust coefficient CTG for constant local block-
age BL = 0.2 for arrays of four (blue), eight (green), sixteen (red), and thirty-two
(cyan) turbines.

in power as outboard turbines.

The array-scale effect of flow diversion around the outboard turbines is more sig-

nificant for shorter arrays where a greater proportion of the turbines are affected by

the array-end flow diversion. The partial array analytic model does not account for

cross-stream variations in the flow, assuming that the flow is uniform across the ar-

ray. Agreement between the corrected depth-averaged simulations and the analytic

solutions for the thrust-power coefficient relationship improves as the number of tur-

bines in the array increases because the assumption of uniform flow, which is valid

for the inboard turbines, becomes a better approximation to what is simulated as

array length increases. The relative difference between the analytic and simulated

results decreases from approximately 20% for an array of four turbines to approx-

imately 5% for 32 turbines, where the remaining differences can be attributed to

viscous losses and other modelling differences between the idealised analytic solution

and the depth-averaged simulation.
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(a) Four turbine array.
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(b) Eight turbine array.
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(c) Sixteen turbine array.
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(d) Thirty-two turbine array.

Figure 6.6: Comparison between simulated and analytically predicted power coeffi-
cient CPG vs. thrust coefficient CTG for arrays of different length and three local
blockage ratios; BL = π

32
(red), BL = π

16
(green), and BL = π

10
(blue).

The effect of local blockage ratio on the thrust vs. power coefficient relationship

is investigated in Figure 6.6 for each of the different length arrays of turbines. The

peak power coefficients increase as the number of turbines in the array increases,

and agreement between the corrected depth-averaged simulations and the analytic

solutions is improved for all local blockage ratios as the number of turbines in the array

increases, for the reasons explained previously. For any given number of turbines, the

peak power coefficient is achieved at the closest local blockage ratio, BL = π
10
, because

at the device scale the turbines are able to apply a greater thrust to the flow due to the

greater pressure difference that can be established across the turbines as a result of

the reduced cross-sectional area of the turbine-scale bypass and greater confinement
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of the flow. This improves the local efficiency for a given thrust coefficient, improving

the performance of the array.

Figure 6.6 shows that the relative difference between the corrected depth-averaged

simulations and the analytic solutions is greater at higher local blockage ratios and

reduced at lower local blockage ratios for arrays of any length. Turbines at higher

local blockage ratios apply a greater thrust to the flow and are thus more significantly

affected by the cross-stream variation in flow that arises due to the finite length effect

of flow diversion past the simulated arrays. Turbines in lower local blockage arrays do

not benefit to the same extent from the mutual interactions which increase turbine

power in higher local blockage arrays, as the greater inter-turbine spacing provides

less resistance to the turbine-scale bypass of flow around the turbines. The lower

blockage turbines must therefore apply a smaller thrust to the flow. Lower local

blockage turbines are therefore less subject to the decrease in power experienced by

the outboard turbines of the array, and therefore relative agreement with the analytic

solution is improved, albeit for a lower peak power coefficient.

Agreement between the corrected depth-averaged simulations and analytic theory

improves substantially as an array is increased from four to eight turbines, and then

from eight to sixteen turbines, but is subject to diminishing returns as the array

length increases and the remaining differences are due to differences in modelling

the arrays and flow. The results are largely in agreement with those of Nishino and

Willden (2013), and indicate that analytic theory and numerical simulation give fairly

good agreement for arrays of at least eight turbines. The agreement is affected by

the local turbine blockage, and higher blockage arrays generally need to be longer

in order to reduce the impact of the outboard turbines on the overall array power

to improve agreement with analytic models. However, the reduction in power of

the outboard turbines is a necessary consequence of finite length arrays, and merits

further attention to minimise the impact it has on the total power of the array.

158



6.7 Conclusions

Analytic correction factors for depth averaged simulations of turbine arrays have been

developed using the local basin efficiency, which is determined as a function of the

device thrust coefficient. The power available to an array of turbines is significantly

over predicted when the turbine-scale flow is not included, with CPG,max = 0.85,

compared to the 3D RANS prediction of CPG,max = 0.73, an over prediction of 27%.

By comparison, applying the volume-flux constrained correction factor reduced the

peak power coefficient to CPG,max = 0.76, an error of 4%. The analytic correction

factor may be applied during the post-processing of the simulation.

Variation in local basin efficiency with thrust coefficient depends on the local

blockage ratio, and is negatively correlated with thrust coefficient, declining more

steeply for lower than higher blockage ratios. Within the bounds of the thrust coeffi-

cients that arrays are likely to be operated at, the analytic correction factor plays a

much more important role in correctly predicting the available power of low blockage

arrays rather than high blockage arrays, where the error is less than 10%.

Agreement between corrected depth-averaged simulations and the analytic theory

is affected by the number of turbines in the array and the local blockage ratio. The

assumption of uniform upstream flow works well for the inboard turbines, but does

agree well with the flow observed around the outboard turbines. Hence, as the array

length increases, and the ratio of inboard to outboard increases, agreement with ana-

lytic theory improves. Diversion around the outboard turbines is increased at higher

thrust coefficients, which occur at higher local blockage ratios, worsening agreement

with the analytic theory. Conversely, low local blockage arrays apply a lower level of

thrust to the flow, reducing the outboard turbine effect, thus improving agreement

with analytic theory, albeit at a lower overall peak power coefficient than a higher

local blockage array.
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Chapter 7

Volume-flux Constrained Blade

Element Momentum Theory

The essence of mathematics is not to make simple things complicated, but
to make complicated things simple.

- Georg Cantor

Blade element momentum theory has been successfully used in the wind turbine

industry. The theory relates turbine blade characteristics to the change in momentum

in the flow, allowing the performance of specific turbine designs to be assessed. The

theory has also been applied to the design of tidal turbines, embedded within numer-

ical simulations to account for the effect of blockage on the momentum equations.

A modified blade element momentum theory is proposed in which the momentum

equations are adapted for the volume-flux constrained flow around a tidal turbine.

This chapter begins by reviewing the motivation and current techniques used for

modelling tidal turbine rotors, outlining the potential contribution of a volume-flux

constrained blade element momentum theory. The modelling assumptions and theory

used to develop a blade element momentum model of a wind turbine are then reviewed

in order to highlight the differences between the analysis of wind and tidal turbines. A

volume-flux constrained blade element momentum model is then developed to account

for these differences. The semi-analytic model is compared to results from numerical

simulations of tidal turbines in unblocked and finite blockage conditions.
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7.1 Introduction

Many tidal turbines will be required to harness a significant fraction of the global tidal

resource; one estimate for extracting 1.9 GW from the Pentland Firth in the United

Kingdom requires thousands of turbines (Adcock et al., 2013). The scale separation

in such analyses has been discussed in Chapters 3 and 6, highlighting the importance

of blockage in predicting the power available to turbines. Analytic models provide a

useful basis to understand the dynamics of the flow around an array of turbines, but

they are restricted to idealized parameters to represent the turbines.

Numerical techniques, such as depth-averaged simulations, may be used to capture

more complex flow features; multi-scale flow, shear, etc. Depth-averaged simulations

provide a tractable means to determine the available power of an array of actuator

discs, as discussed in Chapter 6. Such studies are used to establish performance lim-

its and investigate flow dynamics around idealised turbines, but are not applicable

to specific turbine designs. Blade Element Momentum (BEM) theory has been de-

veloped in the wind industry to relate rotor design characteristics, such as the lift

and drag properties of the rotor blades, to the change in momentum in the flow,

allowing the power available to wind turbines to be modelled semi-analytically (Hau

and von Renouard, 2006). BEM models provide a means by which the power and

thrust characteristics, and the parameters required in depth-averaged simulations to

characterise turbine performance may be determined.

BEM theory has been utilised as a design tool for tidal turbines by embedding

the standard wind turbine analysis within three-dimensional computational models to

account for the flow expansion confinement due to blockage (see, for example Masters

et al. (2011) and Schluntz (2014)). Although this accounts for the effects of blockage

on turbine performance through the feedback established in the numerical simulations

between the thrust applied by the rotor to the flow and the flow speed through the

rotor, this is computationally expensive in comparison to the semi-analytical BEM
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analysis that may be conducted for wind turbine.

Volume-flux constrained BEM model is developed to account for the effects of

blockage on the flow through the turbine, allowing a relationship between thrust,

power, and flow speed to be established semi-analytically for a turbine operating in

non-zero blockage conditions. The results are compared to numerical simulations

for a rotor designed for unblocked flow tested in a number of blockage conditions,

demonstrating the capability of the modified BEM model to provide the necessary

power and thrust characteristics to parameterise a tidal turbine in depth-averaged

simulations.

7.2 BEM Theory in an Infinitely Large Domain

Glauert (1935) developed blade element momentum theory as a combination of blade

element theory and momentum theory out of the efforts of a number of aerodynami-

cists in the 1920s to understand better the behaviour and performance of wings and

propellers (Hau and von Renouard, 2006). BEM theory is an improvement over the

simple actuator disc analysis of Lanchester and Betz because it allows the lift and

drag generated by a particular rotor to be related to the change in momentum in the

flow. BEM theory also accounts for the effect of the rotation imparted on the flow

in its wake, which is important as the rotating flow increases the cost of extracting

energy, reducing the turbine’s power coefficient. As the turbine power coefficient de-

pends on the rotational and translation motion of the flow through the turbine, the

power coefficient is related to the tip speed ratio, the ratio of the tangential velocity

of the rotor tip to the free stream flow speed. Turbine design consequently becomes a

function of optimising both the power coefficient and the tip speed ratio. BEM theory

for wind turbines is briefly summarised below, and a full discussion and derivation

may be found in Burton et al. (2001) and Leishman (2006).
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Figure 7.1: Diagram of the flow past a rotor in the ith streamtube of width δr in the
standard BEM model.

7.2.1 Model Assumptions

A rotor is modelled as a series of concentric annuli of radial width δr in BEM theory,

as illustrated in Figure 7.1. It is assumed that there is no momentum transfer be-

tween adjacent annuli and hence there is no radial flow, thus allowing radial velocity

components to be neglected and each annulus to be treated separately. It is also

assumed that the rotor has infinitely many blades, so that every air particle passing

through the rotor at a given radial position experiences the same change in momen-

tum. This assumption allows the three-dimensional flow around individual blades to

be neglected.

Blade element momentum theory represents a combination of blade element the-

ory and momentum theory. The aerodynamic forces on a blade section in an annulus

are determined through blade element theory, and the resulting change in axial and

tangential flow speed is derived from momentum theory. The two theories, when com-

bined, lead to two equations, an axial momentum balance and an angular momentum

balance, which are solved iteratively to determine the flow speeds at the rotor plane

and the lift and drag forces on the rotor blades.

7.2.2 Momentum Theory

Momentum theory is applied to each of the annular streamtubes passing through

the rotor plane. The derivation of the axial momentum balance is similar to the
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derivation of actuator disc theory. However an additional angular momentum balance

is required in BEM theory to account for the rotation imparted on the flow by the

rotor. Denoting the free stream flow speed to be Ua, the axial flow speed ud,i through

the ith streamtube at the rotor plane may be defined as:

ud,i = (1− ai)Ua. (7.1)

Further defining the flow speed in the turbine wake to be uw,i = (1− bi)Ua, conserva-

tion of mass along each streamtube requires:

ρA1,iUa = ρAd,i(1− ai)Ua = ρAw,i(1− bi)Ua, (7.2)

where A1,i is the cross-sectional area of the streamtube far upstream of the rotor,

Ad,i is the cross-sectional area of the streamtube at the rotor plane, and Aw,i is

the cross-sectional area of the streamtube far downstream of the rotor when the

wake is no longer expanding. The rate of change in momentum far upstream and

downstream of the streamtube is due entirely to the force applied to the streamtube

by the actuator disc. Denoting the pressure immediately upstream of the rotor p+d,i and

the pressure immediately downstream of the rotor p−d,i, the rate momentum change

may be expressed as:

Ad,i

(

p+d,i − p−d,i
)

= (Ua − (1− bi)Ua)ρAd,iUa(1− ai). (7.3)

The pressure difference may also be found by applying the Bernoulli equation to the

upstream and downstream sections of the streamtube, yielding:

(

p+d,i − p−d,i
)

=
1

2
ρ
(

U2
a − (1− bi)

2U2
a

)

, (7.4)
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so that:

uw,i = (1− 2ai)Ua. (7.5)

Half the reduction in axial speed therefore occurs upstream of the rotor plane, and

half occurs in the wake of the rotor.

The cross-sectional area of the turbine streamtube at the rotor plane is, to the

first order, given by Ad,i = 2πriδr. The incremental thrust of an annular section may

be found from a force balance across an annular streamtube as:

δTi = Ad,i

(

p+d,i − p−d,i
)

= 4πρriU
2
aai(1− ai)δr. (7.6)

As the force is applied at the actuator disc, the rate of work done by the disc is δTiud,i,

giving the available power in the ith annulus:

δPi = δTiud,i = 4πρriU
3
aai(1− ai)

2δr. (7.7)

The rotating blades impart a torque on the flow, causing the air to rotate in the

opposite direction to that of the rotor. The acquisition of tangential motion from the

rotor occurs at the rotor plane and it is assumed that it does not change in the rotor

wake. The tangential flow induction factor, a′, is introduced to describe the change

in tangential motion of the flow. The tangential flow speed in the ith radial annulus

is thus given by:

uθ,i = (1 + a′i)Ωri, (7.8)

where Ω is the rotational speed of the rotor. The rate of change of angular momentum

in the ith streamtube is equal to the incremental rotor torque, δQi:

δQi = 4πρr3iUa(1− ai)Ωa
′
iδr. (7.9)
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Figure 7.2: Diagram of the velocities (left) and forces (right) acting on a the ith blade
element.

7.2.3 Blade Element Theory

Blade element theory assumes that the flow around the blade elements in each annulus

is two-dimensional. This allows the forces on each blade to be determined using

two-dimensional aerofoil lift and drag characteristics, where it is assumed that the

lift and drag coefficients, Cl and Cd respectively, are determined computationally

or experimentally for the aerofoil being studied. Given the number of blades, NB,

section blade chord, ci, section blade pitch angle βi, and the rotor speed Ω, the forces

and velocities on the blade may be resolved, as illustrated in Figure 7.2. The relative

velocity, urel,i is incident on the blade section at an angle φi to the direction of rotation

of the turbine, such that:

sinφi =
Ua(1− ai)

urel,i
, and cosφi =

riΩ(1 + a′i)

urel,i
. (7.10)

The angle of attack is given by:

αi = φi − βi. (7.11)
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Noting that the angle of attack, and therefore the lift coefficient, may vary across

annuli, the lift force on an annular section of blade is defined as:

δLi =
1

2
ρu2rel,iciCl,iδri, (7.12)

and the drag force as:

δDi =
1

2
ρu2rel,iciCd,iδri, (7.13)

The axial thrust on the ith annulus of the actuator disc is the sum of the lift and

drag components acting in the axial direction:

δTi = δLi cosφi + δDi sinφi =
1

2
ρu2rel,iNBci (Cl,i cosφi + Cd,i sinφi) δr. (7.14)

The torque on an annulus is the sum of the lift and drag components acting in the

direction of rotation:

δQi = δLi sinφi − δDi cosφi =
1

2
ρu2rel,iNBci (Cl,i sinφi − Cd,i cosφi) δr. (7.15)

7.2.4 Blade Element Momentum Theory

The combination of blade element theory and momentum theory provide sufficient

equations to describe completely the forces and velocities incident on the rotor. Com-

bining Equations (7.6) and (7.14) yields:

4πρriU
2
aai(1− ai)δr =

1

2
ρu2rel,iNBci (Cl,i cosφi + Cd,i sinφi) δr. (7.16)

Similarly, combining the expressions for blade torque yields:

4πρr3iUa(1− ai)Ωa
′
iδr =

1

2
ρu2rel,iNBci (Cl,i sinφi − Cd,i cosφi) δr. (7.17)
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Defining the blade solidity σi as:

σi =
NBci
2πri

, (7.18)

these equations may be expressed in forms convenient for solving the axial and angular

induction factors:

ai
1− ai

=
σi (Cl,i cosφi + Cd,i sinφi)

4 sin2 φi

, (7.19)

a′i
1 + a′i

=
σi (Cl,i sinφi − Cd,i cosφi)

4 sinφi cosφi

. (7.20)

Equations (7.19) and (7.20) are solved iteratively for given β and σ along the blade

and initial guesses for a and a′. The power extracted from the flow by the rotor may

be determined once the solution has converged as the product of torque and angular

velocity across the n annular streamtubes passing through the rotor:

P =
n
∑

i=1

δQiΩ. (7.21)

7.2.5 Empirical Corrections

Many empirical corrections have been proposed to improve the agreement of BEM

modelling with experiments, and a detailed study of corrections may be found in

Burton et al. (2001). Some corrections are related to the assumption of equilibrium

in the rotor flow field, where it is assumed that the flow instantaneously adjusts to

updated flow conditions. The response to such changes occurs over a finite time

period, requiring modification of the governing equations to better represent rotor

performance.

A further limitation is the assumption that the flow is two-dimensional across a

blade section and that any radial flow is negligible, implying that there is minimal

pressure variation in the radial direction. This is inaccurate for heavily loaded rotors
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where the radial pressure variation is significant and the outboard sections of blades

where tip-vortices are generated. Generation of tip-vortices impacts the induced ve-

locity at the blade tips, which affects the power extracted by the rotor. The accuracy

of BEM theory is also reduced at blade roots, where the impact of structures such

as the nacelle is significant. Empirical corrections are used to adjust the velocities

and forces acting on the blade to improve agreement with experimental data. The

Prandtl tip-loss model, is discussed in further detail in Section 7.3.3.

7.3 Volume-flux Constrained BEM Model

In an infinitely large flow field (where the turbine’s blockage ratio is zero) it is assume

that full recovery of the static pressure to the far upstream value occurs in the far

wake of a turbine, and that the change in momentum due to the thrust applied to

the flow is due entirely to the velocity deficit in the core flow far downstream of

the turbine. However, a pressure gradient forms between the far upstream and far

downstream positions of a volume-flux constrained turbine, allowing a larger thrust

to be applied by the turbine to the flow, leading to the improved turbine performance.

The pressure gradient that develops in the volume-flux constrained flow results in an

acceleration of the flow bypassing the turbine which must be considered in addition

to the flow through the turbine in order to close the system of equations that define

the BEM model.

Following standard BEM analysis, the swept area of the turbine is partitioned

into n concentric annular rings centred on the turbine’s axis of rotation with radial

width δr and cross-section δA, and conservation of momentum is considered along

the n streamtubes passing through these rings. The usual assumption is made that

there is no momentum transfer between adjacent streamtubes, so that the change

in momentum in each streamtube is a function only of the thrust applied to the

169



δr

p1 p4
(1-a2,i)Ua

Ua

(1-a4,i)Ua

δTi

(1+b4)Ua

(1+b4)Ua

ri

R

Figure 7.3: Diagram of the flow past a rotor in the ith streamtube of width δr in the
volume-flux constrained BEM model.

streamtube. The flow far upstream of the turbine has a uniform speed ua, and the

downstream boundary of the model is defined as the position at which the static

pressure in the annular streamtubes passing through the turbine has equalised with

the static pressure in the bypass flow around the turbine, as shown in Figure 7.3.

Denoting quantities that vary with radius by the subscript i, the induction factor

through turbine, a2,i, and the induction factor in the turbine wake, a4,i, are:

u2d,i = (1− a2,i)ua, (7.22a)

u4d,i = (1− a4,i)ua. (7.22b)

The bypass flow speed depends on the aggregate thrust applied by the annular

streamtubes to the flow and thus is independent of annular position. The bypass

induction factor, b4 is therefore defined as:

u4b = (1 + b4)ua. (7.23)

In unblocked BEM theory, a fixed relationship a4,i = 2a2,i may be used from

momentum theory between the two induction factors in the turbine core flow because

there is no acceleration of the flow bypassing the turbine. However, this assumption
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must be relaxed in the volume-flux constrained model, and hence it is necessary to

employ the volume-flux constrained model developed in Section 2.4.2 to provide a

general relationship between u2d, u4d, and u4b derived in Equation (2.54), which gives

a relationship for a2,i in terms of a4,i and b4:

a2,i =
b4 + (1− a4,i)(a4,i − b4)

2(1− a4,i) + b4
. (7.24)

7.3.1 Determining the Bypass Flow Speed

An expression for b4 is required to close the relationship between a2,i and a4,i. Al-

though the momentum change in each annular stream tube, and therefore the rela-

tionship between a2,i and a4,i, is determined by the incremental thrust δTi applied to

the streamtube, the flow speed in the bypass depends on the total thrust applied by

the turbine, and therefore b4 is found by considering the aggregate thrust applied by

the turbine to the annular streamtubes. Defining the total thrust to be:

T =
n
∑

i=1

δTi =
1

2
ρAdu

2
aCT , (7.25)

where Ad is the total frontal swept area of the turbine and CT is the overall thrust

coefficient of the turbine. For clarity of the derivation, the definitions for the velocities

at stations one and four in Equations (7.22) and (7.23) shall be substituted into the

following expressions at the end. The change in momentum between stations one and

four is found by considering the pressure difference across the turbine plane and the

Bernoulli equation in the core and bypass flows to be (c.f. Section 2.4.2):

T =
1

2
ρ
(

u24b − u24d
)

Ad, (7.26)

where it is noted that u4d is an averaged value of the annular wake velocities at

station four. The volume-flux constrained actuator disc model provides a quadratic
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relationship between u4d and u4b:

(1− B)u24b − 2(ua − u4d)u4b + u2a − 2uau4d +Bu24d = 0. (7.27)

Numerical stability of the solution as B → 0 is ensured by writing u4b in terms of

u4d, as this gives a (1 − B) term in the denominator. However, the quadratic may

also be rearranged to give an expression for u4d in terms of u4b, as is convenient in

the volume-flux constrained BEM model:

u4d =
ua − u4b ±

√

(1−B)(ua − u4b)2 + B2u24b
B

, (7.28)

in which the positive root is required to ensure u4d ≥ 0. Using the definitions for the

induction factors a4,i and b4, this may be equivalently written as:

a4,i = 1 +
b4
√

(1−B)b24 + B2(1 + b4)2

B
∀i = 1, · · · , n. (7.29)

The latter expression is used to determine an initial guess for a4,i that is consistent

with the initial guess for b4 when iterating through the volume-flux constrained BEM

model.

Eliminating u4d between Equations (7.26) and (7.28) gives:

TB2

1
2
ρAD

= B2u24b −
(

(ua − u4b) +
√

(1− B)(ua − u4b)2 +B2u24b

)2

, (7.30)

which, by expanding and simplifying the terms on the right hand side, noting the

definition for CT , eventually yields a quartic for β4 = (1+ b4) in terms of the blockage

ratio B and the total thrust coefficient CT :

3β4
4 −4β3

4 +2β2
4(CT (B−2)−1)+4β4(1+CT (2−B))− (1−BCt)

2−4CT = 0. (7.31)
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For appropriate values of CT and B, this equation has a single root for which β4 ≥ 1,

corresponding to b4 ≥ 0, which therefore allows the bypass induction factor to be

calculated at each iteration of the model.

7.3.2 Finite Blockage BEM Model

The finite-blockage BEM model considers the incremental thrust and torque of an

annular ring swept out by a blade element. The analysis follows the standard deriva-

tion of blade element momentum theory for wind turbines, such as that described in

Burton et al. (2001), noting that the relationship between a4,i and a2,i is no longer

constrained to a4,i = 2a2,i and instead can be found using Equation (7.24).

It is assumed that the static pressure at stations one and four is uniform across

all the annular streamtubes, so that conservation of axial momentum along the ith

annular stream tube requires:

(p1 − p4)δAi − δTi = −ρδAiu
2
a(1− a2,i)a4,i. (7.32)

The difference in the upstream and downstream static pressure, p1−p4, is eliminated

using the Bernoulli equation in the bypass flow:

p1 − p4 =
1

2
ρ
(

u24b − u21
)

=
1

2
ρu21

(

(1 + b4)
2 − 1

)

, (7.33)

where again it should be noted that the bypass induction factor b4 does not vary with

radius. This arises from the assumption that the static pressure is uniform across all

annuli and in the bypass flow at station four.

Equations (7.32) and (7.33) are combined to give an expression for the incremental

thrust in terms of the annulus core induction factors, the bypass induction factor, and
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the annulus cross-section, where it is noted that δAi = 2πriδri:

δTi = ρπriu
2
a

(

b24 + 2b4 + 2(1− a2,i)a4,i
)

δri. (7.34)

The incremental thrust on an annulus may also be expressed in terms of the lift

and drag forces on the blade element in the annulus. The angle of incidence between

the velocity relative to the blade and the direction of rotation is defined in Equation

(7.11). Thus, given aerofoil properties such as the lift and drag coefficients, Cl and

Cd respectively, which depend on the angle of attack, the number of rotor blades NB,

and the blade chord ci on the ith annulus, the incremental thrust can be found as:

δTi = (δLi cosφi + δDi sinφi)NB

=
1

2
ρu2rel,iNBc (Cl,i cosφi + Cd,i sinφi) δr.

(7.35)

Using the definition of annular solidity in Equation (7.18), the incremental thrusts

in Equations (7.34) and (7.35) are equated to give:

b24 + 2b4 + 2(1− a2,i)a4,i = σi
u2rel,i
u2a

(Cl,i cosφi + Cd,i sinφi) . (7.36)

Considering the components of velocity incident on the ith blade and their relative

angles, it is possible to show that:

(1− a2,i)ua = urel,i sinφi, (7.37)

which is used in Equation (7.36) to eliminate urel,i and give an expression for a4,i

in terms of the induction factors b4 and a2,i, the angle of incidence φi, and blade

parameters σi, Cl,i, and Cd,i:

a4,i =
σi (1− a2,i)

2 (Cl,i cosφi + Cd,i sinφi)− b4 (2 + b4) sin
2 φi

2(1− a2,i) sin
2 φi

. (7.38)
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The turbine is assumed to have a constant rotational speed Ω. Introducing a′i as

the rotational induction factor, the tangential velocity of the flow around the aerofoil

section is given by Ωa′iri. The incremental torque on an annular ring, δQi, is then

found by conserving angular momentum on the ring:

δQi = rate of change of momentum

= mass flow rate · change of tangential velocity · radius

δQi = ρδAiua(1− a2,i)2Ωa
′
ir

2
i . (7.39)

The torque may equivalently be found by resolving blades forces on the turbine in

the direction of rotation at distance ri from the centre of rotation:

δQi = ri (δLi sinφi − δDi cosφi)NB

=
1

2
ρu2rel,iNBcri (Cl,i sinφi − Cd,i cosφi) δr.

(7.40)

Eliminating the incremental torque in Equations (7.39) and (7.40), it is found that:

2ua(1− a2,i)Ωa
′
iri =

1

2
u2rel,i

NBci
2πri

(Cl,i sinφi − Cd,i cosφi) . (7.41)

Noting that, by resolving velocity components on the ith blade element:

urel,i =
ua(1− a2,i)

sinφi

=
riΩ(1 + a′i)

cosφi

, (7.42)

Equation (7.41) is used to give an expression for the tangential induction factor a′i:

a′i =
σi (Cl,i sinφi − Cd,i cosφi)

4 sinφi cosφi − σi (Cl,i sinφi − Cd,i cosφi)
. (7.43)

The angle of incidence φi of the relative flow velocity urel,i is found from the axial
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velocity through the rotor and the tangential velocity of the rotor blades:

tanφi =
(1− a2,i)ua
riΩ(1 + a′i)

, (7.44)

which then allows the improved estimate for the angle of attack αi to be found, as

the blade twist angle βi is known from the rotor design:

αi = φi − βi. (7.45)

7.3.3 Tip-loss Model

The analysis presented thus far assumes that all the fluid particles passing through

the swept area of the rotor blades undergo the same loss of momentum. This assumes

that there are sufficiently many blades in the rotor to ensure that all fluid particles

interact with a blade as they pass through the rotor plane. However, this is often not

the case, and a number of corrections have been proposed to address the effect that

this has on the change in axial momentum in the flow.

One such method, Prandtl’s tip loss model, has been widely applied to wind

turbines to correct this problem (Leishman, 2006). The effect of the tip loss model

is to reduce the axial induction factor a2,i to zero as the radial position approaches

the tip of the rotor blade so that the velocity (and corresponding momentum) deficit

reduces to zero towards the blade tips. This results in a proportional reduction in the

incremental thrust and power as a result of the reduction in the momentum deficit

at the tips. The Prandtl tip loss factor, F , is calculated as:

fi =
NB

2

R− ri
ri sinφi

(7.46)

Fi =
2

π
arccos e−fi , (7.47)
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where R is the radius of the blade. In contrast to the standard BEM model, where

the tip-loss model is applied to the turbine induction factor a and thus explicitly

reduces both the turbine and wake velocity induction factors at the blade tips, the

Prandtl tip-loss model is explicitly applied here only to a4,i, as it is used to calculate

a2,i (thus implicitly reducing the a2,i induction factor near the blade tips) and im-

proves the agreement of the thrust and power calculations along the blade span with

experimental tests of wind turbines.

7.3.4 Iterative Solution Procedure

Specifying blade and turbine parameters such as blade twist angle β, solidity σ, tip

speed ratio λ, turbine local blockage B, and lift and drag curves, Equations (7.29)

to (7.47) are sufficient to close the volume-flux constrained BEM model. An initial

guess is required for b4, with the choice of b4 = δ where δ is some small perturbation

from zero, and a′ = 0 sufficient to provide good convergence to the final solution.

The model is solved iteratively until convergence to ǫ is achieved, and it was found

that ǫ = 10−6 provided quick convergence to an accurate solution. The convergence

criterion was:

ǫ = max
(

|a′inew − a′i
old|, |anew4,i − aold4,i |

)

, i = 1, · · · , n (7.48)

where a′i
new and anew4,i are updated each iteration with a relaxation factor γ:

a′i
new =γ

σi (Cl,i sinφi − Cd,i cosφi)

4 sinφi cosφi − σi (Cl,i sinφi − Cd,i cosφi)

+ (1− γ)a′i
old

(7.49)

anew4,i =γ
σ(1− a2,i)

2 (Cl,i cosφi + Cd,i sinφi)− b4(2 + b4) sin
2 φi

2(1− a2,i) sin
2 φi

+ (1− γ)aold4,i

(7.50)
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Figure 7.4: Design blade twist angle and solidity ratio vs. radius for the unblocked
turbine designed by Schluntz (2014).

This improves convergence and stability. Typical values for γ are 0.2 initially, reducing

by a factor of two after 100 iterations.

7.3.5 Comparison to Numerical Simulation

The volume-flux constrained BEM model developed in this chapter is compared to

the results of numerical simulations of a turbine in different blockage configurations

by Schluntz (2014). The two bladed, five metre diameter turbine, using the Risø-

A1-24 aerofoil, was designed using a computational BEM design tool for operation

in unblocked conditions. The design achieves a peak power coefficient CP = 0.57 at

a tip-speed ratio λ = 5.1. The design blade twist angle and solidity are shown in

Figure 7.4.

Figure 7.5 compares the power coefficient vs. tip speed ratio curves of the un-

blocked design and the same turbine with a blockage ratio of B = 0.20. The peak

power coefficient is increased from the unblocked maximum of CP,max = 0.57 to a new

maximum of CP,max = 0.73 when the blockage ratio is B = 0.20. The tip-speed ratio

for peak power coefficient increases from λ = 5.1 to λ = 6.6. The tip-speed ratio is
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Figure 7.5: Comparison of the CP vs. λ performance of the turbine in its design
blockage ratio, B = 0, and in an off-design blockage ratio B = 0.20.

related to the thrust applied by the turbine and Figure 7.5 shows that deploying the

turbine, designed for unblocked conditions, into a flow with a blockage ratio B = 0.20

allows a greater thrust to be applied to the flow and consequently a higher power to

be removed from the flow. Deploying the turbine in higher blockage conditions, does

not achieve the full increase in peak power coefficient predicted by an actuator disc

model, which predicts a peak power coefficient of CP,max = 0.89 for a blockage ratio

B = 0.20, because it is not optimised for that blockage and therefore is unable to

generate sufficient torque to achieve the theoretical power limit. Furthermore, viscous

losses and vortex shedding mean that the power achieved by an optimally designed

rotor will be below the theoretical power limit for an actuator disc.

The volume-flux constrained BEMmodel is compared to Reynolds-Averaged Navier-

Stokes numerical simulations conducted by Schluntz (2014) for the same turbine de-

sign in Figure 7.6 for a range of spacing ratios (where s
d
is the spacing ratio normalised

by the rotor diameter). Overall, the volume-flux constrained model agrees well with

the RANS simulations, capturing both the trend of the numerical simulations and
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Figure 7.6: Comparison of the peak power coefficient vs. spacing ratio of the tur-
bine using the volume-flux constrained BEM model (blue) and the RANS numerical
simulations of Schluntz (2014) (red).

providing a very good approximation to the numerically determined peak power co-

efficient. It slightly underestimates the maximum power coefficient determined from

the RANS simulations as the simulations incorporated a nacelle at the centre of the

rotor, reducing the rotor swept area for a given blockage ratio (where blockage ratio

is calculated using the sum of the rotor swept area and nacelle cross-section). The

reduction in rotor swept area in the denominator of the power coefficient results in a

higher power coefficient for the same power removed from the flow. Furthermore, the

expansion of the wake in numerical simulations enhances the blockage effect in the

flow, thus slightly increasing the flow speed through the turbine and therefore the peak

power available to the turbine. Despite the small disagreement, the results indicate

that the volume-flux constrained BEM model provides a very good approximation to

the results seen in numerical simulations.
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7.4 Conclusions

Blade element momentum theory has proved to be a very useful design and analysis

tool for wind turbines. It has also proved to be useful in the design of tidal current

turbines, although it has been necessary to embed the blade element model within

a three-dimensional simulation of the flow around the turbine in order to model the

effect the constrained expansion of the turbine wake has on the overall performance of

the turbine. The key difference between the flows around a wind turbine and a tidal

turbine is that a pressure gradient develops across the tidal turbine as a result of the

volume-flux constraint imposed by the free surface and adjacent turbines. A volume-

flux constrained blade element momentum theory has been developed to account for

this dynamic, and the semi-analytic model has proved to agree very well with much

more computationally expensive numerical simulations.

The uses of the volume-flux constrained BEM model are twofold; it is possible

to utilise the theory to develop a design routine for volume-flux constrained tur-

bines, and, once a turbine design has been established, it allows the thrust and power

characteristics of the turbine to be determined in a variety of flow conditions. The

volume-flux constrained BEM model shall be used in Chapters 8 to determine turbine

characteristics when the turbine reaches rated power and the turbine performance has

to be altered in order to maintain a specified rated power. The turbine thrust and

power characteristics relative to upstream flow speed provide the necessary parame-

terisation of the turbine to conduct depth-averaged simulations of arrays of turbines

and investigate the effects of power capping on array performance.
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Chapter 8

Power Capping in a Tidal Array

Computers are useless. They can only give you answers.
- Pablo Picasso

The temporal variation in the strength of the tides that occurs due to the in-

teraction of tidal constituents means that it may be economically advantageous to

deliberately design a turbine array which does not maximise the peak power extracted

from the tides. The most common methods used to limit the power of wind turbines

are discussed, and the volume-flux constrained BEM model is used to determine the

performance of the unblocked tidal turbine design of Schluntz (2014) as the blades

are feathered during rated power operation.

The resultant thrust and power curves with respect to array flow speed are em-

ployed in depth-averaged simulations to investigate the performance of arrays with

turbine power capping. Firstly, arrays with increasing local blockage are investigated

in a channel with a fixed inflow speed, which shows that rated power is achieved at

lower flow speeds as local blockage increases. Arrays with and without power capping

are then simulated in tidal channels between two large basins to investigate the effect

that power capping has on the flow through tidal channels. Two channels are consid-

ered, the first forced by the M2 semi-diurnal tidal constituent only, and the second

by the M2 and S2 tidal constituents. The chapter concludes with a discussion of the

factors that contribute to the selection of the rated power.
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8.1 Introduction

Turbine operators wish to maximise the electrical power delivered to the grid over

a given time period of, which may be one month if only the primary M2 (lunar

semi-diurnal) and S2 (solar semi-diurnal) tidal constituents are considered. While

at low flow speeds it may be reasonable to assume that turbines operate at their

optimal power coefficient and tip speed ratio, this may not be the case at higher

flow speeds. An electric generator which allows the peak monthly flow speed to be

fully exploited would spend much of its lifetime operating significantly below its rated

capacity, and would also not be able to exploit some of the lower flow speeds, due to,

for example, the large inertia of the device. It would therefore be advantageous to

install a smaller generator which, although it would not be capable of harnessing the

full hydrodynamical power in peak flow conditions, would be able to harness more

of the power in the flow over a tidal cycle, as well as potentially costing less. A

consequence of using turbines with a rated power less than the peak power available

in the tidal flow is that the power extracted from the flow is no longer related in a

simple way to the cube of the flow speed, which requires the modelling of the turbines

to be reviewed.

The power available to tidal turbines both individually and in large arrays has

been estimated using a range of analytic and numerical methods. Analytic models,

such as those presented in Chapters 2 and 3 provide a convenient first approximation

to the power available to turbines. Such analytic models are based on actuator disc

theory, and necessarily simplify both the turbine characteristics and surrounding flow

field to provide a tractable model, and even more detail about the flow field can be

included in numerical simulations, and high resolution three-dimensional simulations

such as actuator line and blade resolved models. Detailed numerical simulations are

limited to relatively small numbers of turbines, with the result that simulations of

large arrays of turbines sacrifice some of the specificity of more detailed models of
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smaller groups of turbines.

One simplifying assumption commonly made in analytic models and numerical

simulations of large arrays of turbines approximated as actuator discs is that the tur-

bine performance characteristics such as thrust coefficient do not change in response

to varying flow conditions. Consequently the power output of the turbine is assumed

to be proportional to the cube of the flow velocity. This simplification is unlikely

to be feasible for many turbine designs, as it will be necessary to limit the power

capture of the turbine to avoid the design strength being exceeded. Furthermore,

the power capture of the turbine is likely to be limited by the generator capacity

as a result of the variation in the tidal resource due to the variation in strength of

the tides, as discussed in Section 1.1. The control of the turbine thrust and power

results in significant departures from the momentum theory assumption of quadratic

thrust and cubic power relationships with flow speed. It is therefore of interest to

develop techniques which allow changes in turbine performance characteristics to be

incorporated into large depth-averaged simulations.

Power capping will have a significant impact on how turbine arrays interact with

tidal flows and the power that is extracted from them. The impact of an array on

a tidal flow depends on the thrust it presents, which in turn depends on the rated

power of the turbines and the means by which that rated power is maintained. These

properties can be explored by considering the behaviour of the turbine during power

capping given the hydrodynamic properties of the turbine blades. The impact of

the turbine array will also depend on the inter-turbine spacing within the array, and

therefore the volume-flux constrained BEMmodel developed in Chapter 7 will be used

to determine the relationship between thrust, power, and flow speed when the turbine

blockage is non-zero. If the rated power and power control mechanism during power

capping of a turbine are known, then the volume-flux constrained BEM model can

subsequently be used to determine the relationship between turbine thrust and flow
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speed, which can then be used in numerical simulations of arrays of tidal turbines.

8.2 Turbine Power Capping

Two primary motivations for power capping exist: strength limitations in the turbine

structure, and optimisation of the economics of the turbine and generator subject

to the available tidal resource. The first motivation defines the flow speed at which

the turbine must be shut down to prevent excessive damage to the rotor and turbine

structure, whereas the second defines the maximum power that may be extracted from

the flow by the turbine and the flow speed at which rated power is first achieved. The

turbine must therefore have a hydrodynamically effective method for controlling its

rotational speed and power.

The hydrodynamic forces on the rotor can be reduced by changing one of, or some

combination of: the angle of attack of the blades, the swept area of the rotor, or the

effective velocity at the rotor blades (achieved by changing the rotational speed of

the rotor). The most effective of these methods for controlling the power of large

turbines is to change the angle of attack (Hau and von Renouard, 2006). The power

is reduced by decreasing the angle of attack (feathering) by rotating the blade around

its longitudinal axis, and turbine cut-out is achieved by aligning the blade chord

with the direction of the oncoming flow. Turbine power may also be controlled by

increasing the angle of attack, which can lead to separation of the flow over the

blade and the onset of stall. The increase in angle required to induce stall is generally

smaller than limiting the power by decreasing the angle of attack. Pitching the blades

toward stall tends to maintain a roughly constant load on the rotor blades, whereas

the loads reduce if the blades pitch to feather, which may have structural benefits.

However, limiting power through stall in wind turbines has not been found to be

provide as smooth control as in pitching the blades to feather, which has favoured
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Figure 8.1: Comparison of power (solid) and thrust (dashed) of a 200 kW turbine in
blocked (blue) and unblocked (red) conditions. The vertical dashed lines indicate the
respective rated flow speeds.

the development of feather-controlled wind turbines (Hau and von Renouard, 2006).

Smooth and continuous blade control also allows the output power to be controlled

effectively.

8.2.1 Application to Turbine

The volume-flux constrained BEM model developed in Chapter 7 is applied to the

turbine designed by Schluntz (2014) introduced in Section 7.3.5 to determine its

performance characteristics during rated power operation. The turbine is compared

in blocked (B = 0.20) and unblocked conditions in Figure 8.1, and it can be seen

that a rated power of 200 kW is achieved at a rated flow speed ur = 1.99ms−1 in the

blocked case, as compared to ur = 2.16ms−1 for the unblocked turbine. The rotor has

a cut-out flow speed of 4ms−1, above which the turbine shuts down. It can be seen

that the peak thrust in the unblocked case is slightly higher than the peak thrust

in the blocked case, although the exact relationship between thrust and flow speed

will depend on the method adopted for maintaining rated power. The minimum flow
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speed that must be achieved in order for the blades to start rotating (also known as

the ‘cut-in’ speed) is neglected for simplicity.

It shall be assumed in the remainder of the chapter that rated power is maintained

by pitching the blades to feather for the reasons discussed earlier. It shall further be

assumed that the control strategy holds the rotational speed of the turbine constant

while operating at rated power, consistent with the generator having an optimal

rotational speed. As the peak power coefficient is maintained until rated power is

achieved, the tip-speed ratio λ is also assumed to be constant until rated power is

achieved. Therefore the rotational speed Ω increases linearly from stationary until

rated power is achieved, beyond which Ω is constant with increasing flow speed and

λ reduces, as show in Figure 8.2.

The turbine power coefficient, proportional to velocity cubed, reduces during

power capping in order to maintain a constant overall rated power PR:

CP,R =
PR

1
2
ρu3rAD

1

γ3
= CP,peak

1

γ3
, (8.1)

where γ = ua

ur
≥ 1 is the ratio of the flow speed to the rated speed. CP,R thus reduces
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Figure 8.3: CP − λ trajectory (red) followed by turbine control algorithm during
power capping. The solid blue curve is the CP − λ curve with βS = 0◦ blade pitch,
and the dashed blue lines show the power curve for increasing blade pitch angles. The
blockage ratio is B = 0.20.

from the turbine’s peak power coefficient as γ−3. Utilising the assumption that the

rotational speed is fixed during the power capping regime, the tip speed ratio, which

depends linearly on rotational speed and free stream velocity, must also reduce as the

flow speed increases, as was illustrated in Figure 8.2:

λ =
RΩR

ua
= λR

1

γ
, (8.2)

where R is the radius of the rotor and λR is the tip speed ratio at the rated flow

speed.

Equations (8.1) and (8.2) describe the CP − λ trajectory that the turbine control

algorithm follows during power capping, shown in red in Figure 8.3. The solid blue

line in the figure is the design CP −λ curve in a blockage ratio B = 0.20. The dashed

blue lines give the power coefficient vs. tip speed ratio curves for increasing blade
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pitch-to-feather angles as labelled on the figure. It can be seen that pitching the blade

to feather, which reduces the angle of attack, reduces the turbine power coefficient as

blade pitch is increased. Peak power coefficient also shifts to lower tip speed ratios as

blade pitch is increased. The turbine operates at the peak power coefficient CP = 0.63

and corresponding tip speed ratio λ = 5.5 until rated power is achieved. The turbine

control algorithm then tracks towards the bottom left of the red curve, increasing the

blade pitch to approximately 25◦ before the cut-out flow speed is reached.

The thrust applied by the turbines to the flow can be specified in terms of two

separate phases, in a similar manner to that of the turbine power. Below the rated

flow speed, the turbine is assumed to operate constantly at the peak power coefficient

and corresponding thrust coefficient, which is related to the power coefficient by a

factor of the mean value 1−a2 as determined from the volume-flux constrained BEM

model. During the power capping phase, the thrust coefficient is the resultant axial

force vector determined from the blade lift and drag forces at a given blade pitch

angle. The thrust coefficient can be determined by matching the power coefficient

vs. tip speed ratio control curve (red) to the power curves (dashed blue) at different

feathering angles and determining the resultant thrust coefficient at those angles.

Matching the power coefficient vs. tip speed ratio relationship in power capping

operation to the performance of the turbine with feathered blades yields a curve of

thrust coefficient vs. flow speed, as shown in Figure 8.4. The thrust coefficient is

constant at CT = 0.97 until the new rated flow speed ur = 1.99ms−1 is achieved, after

which the thrust coefficient rapidly reduces as the blades are pitched towards feather,

ultimately reducing to CT = 0.11 at ua = 4ms−1.

The relationship between thrust coefficient and velocity is dependent on the lift-

drag ratio of the turbine blades at different angles of attack, and will therefore vary

for different turbine designs. If a pitch-to-stall power capping mechanism is employed

instead of the pitch-to-feather method proposed here, the thrust coefficient may not
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Figure 8.4: Thrust coefficient CT vs. array flow speed ua for the turbine in blockage
ratio B = 0.2.

reduce as significantly as demonstrated here, and indeed may even increase. The

higher thrust of pitch-to-stall devices may present sufficient impedance to the flow in

the channel so as to reduce the flow rate through the turbine array. The merits and

drawbacks of different control mechanisms are related closely to the specific turbine

hydrofoil, the ambient flow conditions, and the generator and turbine structure, and

should be carefully considered during the turbine design process, both for their effect

on an individual turbine and on a turbine array.

The thrust vs. power curves for the present rotor in blocked (BL = 0.2) and un-

blocked conditions are presented in Figure 8.5 in both dimensional and non-dimensional

form. CP vs. CT is presented in non-dimensional form in Figure 8.5a. The turbine

operates at top-right end of the blocked and unblocked curves from start-up until

rated power is achieved, at CP = 0.63, CT = 0.87 for the blocked rotor and CP = 0.5,

CT = 0.75 for the unblocked rotor. The rotors follow their respective trajectories to-

ward the bottom-left of the curves to a final power coefficient CP = 0.08 in both cases

when the cut-out flow speed of 4ms−1 is reached. The thrust coefficient at the cut-out

flow speed is different in the two cases, where the thrust coefficient of the blocked
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Figure 8.5: Comparison of turbine CP vs. CT (left) and P vs. T (right) for turbine
in blocked BL = 0.2 (blue) and unblocked (red) flows.

rotor, CT = 0.10, is approximately half that of the unblocked rotor, CT = 0.21. This

is a consequence of the thrust of the unblocked rotor at the cut-out velocity being

approximately double that of the blocked rotor for the specified power capping char-

acteristics. As expected, the gradient of the two curves is similar because the rotors

maintain rated power through the same control mechanism.

It is informative to investigate the differences in the dimensional thrust vs. power

curves of the rotor in blocked and unblocked conditions, as presented in Figure 8.5b.

The thrust and power both increase from zero to the rated power, 200kW, after

which the thrust is reduced whilst maintaining the power at 200kW. A number of

key differences are observed between the blocked and unblocked cases: firstly, the

gradient of the blocked curve is greater than that of the unblocked curve; secondly,

rated power is achieved at a lower thrust for the blocked rotor than the unblocked

rotor; and finally the thrust at cut-out is significantly lower for the blocked turbine

than the unblocked turbine. The higher gradient of the blocked thrust vs. power

curve is due to the greater power coefficient of the blocked turbine than that of the

unblocked turbine. Thus, for a given thrust level, the blocked turbine will achieve

a higher power than the unblocked turbine, hence the blocked turbine attains rated

power at a lower thrust than the unblocked turbine. Once the blocked turbine reaches
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rated power, its thrust begins reducing in order to maintain rated power, whereas

the thrust on the unblocked turbine must continue to increase until rated power is

achieved. As a result, the thrust of the blocked turbine is ultimately lower than that

of the unblocked turbine when the cut-out flow speed is reached as the thrust on the

blocked turbine has been reducing for a longer time.

The flow dynamics responsible for the differences between the thrust and power

curves of the blocked and unblocked turbines arise as a result of the effect the volume-

flux constraint has on the flow around the turbine. The wake expansion is increasingly

constrained as the local blockage ratio increases, resulting in higher streamwise flow

speeds in the wake and rotor plane. The higher streamwise rotor plane velocity means

that the relative flow speed incident on the blades increases, resulting in higher thrust

and torque along the blade span, and therefore increased thrust and power of the

rotor. Thus, for a given upstream flow speed, rotors in more highly locally blocked

flows are able to apply a greater thrust and extract a greater power from the flow

than the same rotor in a lower local blockage. The higher streamwise flow speed that

is developed in higher local blockages means that extracting a given power level may

be achieved with a lower thrust, the reduction in thrust coefficient being a function

of the lift and drag along the blade. The improvement in rotor performance in higher

blockage ratios may be optimised by choosing the angle of attack, blade twist, and

solidity in order to maximise power that is extracted from the flow in a specified

blockage condition.

8.3 Effect of Power Capping in a Channel with

Constant Flow Speed

The effect of turbine power capping on the power extraction of an array of sixteen 20m

diameter turbines partially spanning a rectangular channel with a constant upstream
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Figure 8.6: Turbine power P vs. array flow speed ua for six inter-turbine spacing
ratios.

flow speed is investigated for six different local blockage ratios. The channel has a

constant depth of two diameters and the width of the channel is varied to maintain

a constant array blockage of BA = 0.2 for each of the different local blockage ratios.

The upstream flow speed of the channel, ua, is varied between 0 and 3.2ms−1.

The turbines in the array are designed for operation in an unblocked flow with

a rated turbine power of 0.5 MW, and are tested in a range of inter-turbine spacing

ratios (corresponding to local blockage ratios between 0 and 0.4), parameterised by

the inter-turbine spacing s, and the device diameter d. The 0.5 MW turbines have a

rated flow speed of 2.86ms−1. Figure 8.6 compares the turbine power vs. flow speed

curves for a turbine near the centre of the array. The array flow speed at which the

rated power of 0.5 MW is achieved reduces as the inter-turbine spacing reduces (local

blockage increases), reducing to 2.37ms−1 when the inter-turbine spacing is reduced

to s = 0d, so that the turbine blades touch, which corresponds to a local blockage of

approximately BL = 0.40.
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Rated power is achieved at lower flow speeds when inter-turbine spacing is reduced

due to an increase in the flow speed through the turbine for a given level of thrust. The

increase in flow speed is achieved through the increased constraint on the expansion

of the turbine wake when inter-turbine spacing is reduced. Greater thrust may be

applied by turbines in more closely spaced arrays for a given flow speed, leading to

the steeper power curves in Figure 8.6 before rated power is achieved. The higher

thrust applied by the denser arrays allows rated power to be achieved at lower flow

speeds than for sparse arrays. The dynamics may also be considered in reverse; for

a given thrust, the through-turbine flow speed is higher for the more closely spaced

turbines, allowing a greater power to be removed from the flow than for turbines

spaced further apart.

It is consequently advantageous to minimise the inter-turbine spacing where possi-

ble in order to achieve the turbine rated power at lower flow speeds. Performance may

be further improved through optimisation of the turbine design for the intended oper-

ational blockage ratio. The blade pitch and solidity can be prescribed to fully exploit

the greater impedance of the constrained bypass flow that is achieved in closely spaced

turbine arrays. Further benefits of dense turbine arrays may include minimisation of

electrical cabling and more efficient use of support structures.

8.4 Effect of Power Capping in a Dynamic Tidal

Channel

As discussed in Section 1.1, the magnitude of the tides at the coast varies over time

due to the interaction of different tidal constituents. The strength of the tides at

a particular coastal site, and the dominant constituents, depends on the resonances

that develop from the interaction with the deep ocean, the continental shelf, and

the bathymetry and geometry of the coastal site. One consequence of the temporal
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Figure 8.7: Flow domain for the dynamic tidal channel simulations. Dimensions are
given in metres.

variability of the tides, as opposed to a flow in which there is a constant upstream flow

speed, is that it becomes important for the economics of an array of tidal turbines

to select an appropriate generator size for the available tidal resource. This section

investigates the power extracted from an idealised tidal channel between two large

bodies of water by an array of tidal turbine with turbine power capping, simulated in

TELEMAC-2D. The geometry of the idealised tidal channel, which is 8000m long and

1600m wide in the inner portion, is shown in Figure 8.7. The depth of the channel

and surrounding basins is constant at 40m. The channel expands smoothly into the

large basins at either end with rounded inlets and outlets with a radius of 2000m.

The flow in the channel is driven by a head difference that is applied to the east

and west boundaries of the model, corresponding to the open oceans. Two cases are

considered; forcing by the M2 tidal constituent only, to provide a simple comparison

case; and forcing by the M2 and S2 tidal constituents, which is more reflective of

real-world sites.

An eight turbine array is modelled in the centre of the inner portion the channel,
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Figure 8.8: Volume flow rate in a tidal channel driven by the M2 tide with no turbine
array (green), a turbine array without power capping (red), and a turbine array with
power capping (blue).

using the thrust vs. velocity and power vs. velocity characteristics determined for

the rotor considered previously in a blockage BL = 0.2. As the thrust and power

characteristics account for the effect of the unresolved flow around the turbine and

the local blockage, it is not necessary to apply the correction factor for depth-averaged

array simulations developed in Chapter 6 to these simulations. The rated power of

each turbine is 1.25 MW, for an array rated power of 10 MW.

8.4.1 M2 Tidal Constituent

The channel is forced with the M2 tidal constituent with a period of 12.42 hours and a

tidal range amplitude of 50 cm. Figure 8.8 shows the volume flux through the channel

over three tidal cycles for the natural case where there is no energy extraction from the

flow (shown in green), the array with turbine power capping (shown in blue), and the

array without turbine power capping (shown in red). The peak volume flux through

the channel in the natural case is 206600m3s−1, which reduces to 196000m3s−1 when

the array with power capping is simulated, reducing further to 184900m3s−1 when the
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(a) Thrust vs. time for the power capping
array.
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(b) Thrust vs. time for the array without
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Figure 8.9: Comparison of thrust vs. time curves for the turbine array with (blue)
and without (red) power capping implemented in a channel forced by the M2 tide.

array without power capping is simulated. The reduction in flow through the array

arises as a result of the thrust applied to the flow in the channel by the turbine array.

The total thrust applied by the turbine array with and without power capping is

shown in Figure 8.9. Turbine thrust in both cases increases at the same rate until

rated power is achieved by the power capping array. The array thrust for the non-

power capping array varies sinusoidally over time in constant proportion (through

the constant thrust coefficient) to the flow speed through the array. The thrust of

power capping array, by contrast, varies in a complicated manner over time as a

result of power capping. Before the rated flow speed is achieved through the turbine

array, the turbines in both arrays operate at the same thrust coefficient and thus

the thrust of both arrays increases at the same rate. Once rated power is achieved

the thrust of the non-power capping array continues to increase, whereas the thrust

on the power capping array reduces in order to maintain a constant level of power

extraction from the flow. The thrust reduces more quickly while the flow speed is

increasing in the channel than it is decreasing because the reduction in thrust creates

a positive feedback with the increasing flow speed in the channel. The higher flow

speed through the turbine results in a lower array thrust, which in turn increases
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(a) Power vs. time for the power capping
array.
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power capping

Figure 8.10: Comparison of power vs. time curves for the turbine array with (blue)
and without (red) power capping implemented in a channel driven by the M2 tidal
constituent.

the flow speed through the array. As the flow speed in the channel decreases, the

array thrust increases to maintain rated power. The thrust coefficient and the rate

of change of the thrust coefficient are both relatively small at the peak flow speed

through the channel, thus small changes in the flow speed through the array yield

only small changes in the thrust applied to the flow in order to maintain rated power.

As the flow speed decreases and approaches the rated flow speed, the rate of change

of thrust with flow speed increases, resulting in a negative feedback. The opposite

feedbacks between the flow speed and array thrust during the power capping regime

give rise to the asymmetric thrust-time curve.

The power extracted from the flow by the two arrays is shown in Figure 8.10. The

rated power of the array, 10 MW, is relatively small compared to the power that might

be extracted from the channel if it is assumed that the array power is proportional to

the cube of the flow speed through the array, as in the non-power capping array. As

the power capping array spends much of its time at rated power, the array applies a

relatively low thrust to the flow, and hence there is only a small impact on the flow

through the channel as compared to the natural case, as was shown in Figure 8.8.

The non-power capping array, which at peak extracts almost four times more
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Figure 8.11: Volume flow rate in a tidal channel forced by the M2 and S2 tidal
constituents with no turbine array (green), a turbine array without power capping
(red), and a turbine array with power capping (blue).

power from the flow than the power capping array, causes a significant change in the

flow through the array as compared to the undisturbed channel, and also significantly

reduces the flow speed through the array as compared to the rest of the channel, which

increases the mixing losses in the array wake. Stronger mixing in the array wake in

turn results in more dissipation of energy from the flow than the power capping case,

and hence the far field impact of power extraction is much greater when power capping

is not employed within the array.

8.4.2 M2 and S2 Tidal Constituents

The channel is now forced with the M2 and S2 tidal constituents. The M2 tidal

constituent is retained as in the previous channel, and the S2 tidal constituent, which

has half the tidal amplitude of the M2 tide and a period of 12 hours, is added.

The volume flux through the channels simulated with no power extraction, and then

simulated with turbine arrays with and without power capping are shown in Figure

8.11. The peak undisturbed volume flow rate at the spring tide is approximately
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(a) Thrust vs. time for the power capping
array.
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(b) Thrust vs. time for the array without
power capping

Figure 8.12: Comparison of thrust vs. time curves for the turbine array with (blue)
and without (red) power capping implemented in a channel forced by the M2 and S2
tidal constituents.

twice that at the neap tide in the idealised channel. The volume flux through the

channel is reduced in response to power extraction, by a relatively small amount for

the channel with the power capping array, and more significantly in the case of the

non-power capping array, where the volume flux is reduced by approximately 15% of

the natural flux.

The thrust applied to the flow by the capping and non-capping arrays is shown

in Figure 8.12. The thrust of the non-power capping array varies quadratically with

the flow speed in the channel, and the flow speed through the array is reduced to

approximately 75% of that at the upstream boundary of the channel at the spring

tide. At the neap tides where the undisturbed flow rate through the channel is

relatively small there is little reduction in the thrust applied by the power capping

array during the power capping phases. Rated power is achieved relatively quickly,

even for the majority of the neap tides due to the low level of power removed from

the flow relative to the total energy in the channel.

The power capping regime becomes more established as the flow approaches the

spring tide and the volume-flux through the channel increases. There are two main

effects on the thrust during the power capping regime. Firstly, the thrust reduces to
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(a) Power vs. time for the power capping
array.
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power capping

Figure 8.13: Comparison of power vs. time curves for the turbine array with (blue)
and without (red) power capping implemented in a channel forced by the M2 and S2
tidal constituents.

lower levels until it plateaus at approximately 2.5 MN. Secondly, the rate of decrease

in thrust described in Section 8.4.1 becomes greater as the volume-flux through the

channel increases. The first of these phenomena is the result of the reduction in the

incremental change in the thrust coefficient in Figure 8.4 at high flow speeds, and a

state of equilibrium is reached with the increasing flow speed and the reducing thrust

coefficient. The second dynamic is a result of the more rapid change in flow speed in

the channel as the tidal range and flow speed increase as the spring tide is approached.

The power extracted from the flow by the capping and non-capping arrays is shown

in Figure 8.13. The power extracted by the non-power capping array is cubically

proportional to the flow speed. Although the turbine array is relatively small, a peak

power extraction of approximately 90 MW is predicted in the channel, considerably

higher than the rated power of the 10 MW turbine array. The greater power extraction

can be sustained in the present channel as the energy in the flow is relatively high, and

suggests that it may be appropriate to install more than eight power capping turbines.

However, the impact of the non-power capping array on the flow is considerably

greater, as evidenced by the significant reduction in volume flux through the channel,

and there is stronger wake mixing downstream of the array.
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8.4.3 Discussion

It is informative to define a number of statistics about the arrays. The capacity factor

(CF) is the ratio of the power extracted by the array to the rated power over some

period of time; a capacity factor of one indicates that the rated power is extracted at

all times, and the capacity factor reduces as more time is spent below rated power.

The capacity factor, CFM2, of the power capping array in the channel forced with the

M2 constituent is CFM2 = 53.1%. In the case of the channel driven by the M2 and

S2 tidal constituents the capacity factor is slightly higher, at CFM2+S2 = 55.2%. The

relatively high capacity factors of the arrays indicate that they operate at the rated

power for a significant fraction of the tidal cycle, which is beneficial for the economic

operation of the arrays.

The capacity factor does not directly reflect the power available in a time-varying

flow, so the power factor is introduced as the ratio of the power extracted by the

power capping array to the power extracted by the non-power capping array to reflect

the maximum power that would be extracted from the flow at the optimal thrust

coefficient. The power factor of the array in the first channel was PFM2 = 47.4%,

indicating that the power capping array was extracting a substantial proportion of

the total power that might be extracted from the channel. In the second channel the

power factor was PFM2+S2 = 28.4%, indicating that less of the power available in the

second channel was extracted relative to that in the first. This occurs because the

flow speed in the channel is higher at the spring tide due to the superposition of the

M2 and S2 tides. The peak power, proportional to the cube of the flow speed, thus

increases in the M2 + S2 simulation. The relatively low power factor in the M2 +

S2 channel indicates that it may be appropriate to deploy more turbines to extract

more of the power available in the flow.

The power available to turbines in dynamically forced channels is a function of

the flow conditions in the channel and the thrust applied by the turbines on the
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flow. The minimal natural dissipation of the idealised channel presented in this

chapter meant that the volume flux through the channel was primarily influenced

by the array thrust in each simulation. However, Garrett and Cummins (2005) and

Vennell (2010) have analytically considered the dynamic balances in channels between

the tidal amplitude, bed friction and natural dissipation in the channel, and power

available to the turbines, and found different behaviour depending on the relative

magnitude of the different contributors. These factors, in conjunction with constraints

such as limitations on the far field reduction in flow speed and mixing in the array

wake, will play an important role in the optimal choice of the array’s rated power.

8.5 Conclusions

The volume-flux constrained blade element momentum theory model developed in

Chapter 7 has been applied to a rotor design where it was assumed that the pitch of

the blades was feathered to reduce the thrust on the flow and hence limit the turbine

power. It was further assumed that the tip speed ratio of the turbine reduced as the

flow speed increased beyond the rated flow speed in order to maintain a constant

rotational speed of the turbine. These conditions yield a control curve in CP − λ

space which are sufficient to define the turbine performance during power capping

and allow the device thrust to be determined. The parameterisation of the turbine in

terms of P vs. ua and T vs. ua curves provides the necessary input to depth-averaged

simulations to allow the effect of power capping on array performance to be studied.

Rated power is achieved at a lower flow speed and lower thrust as the local blockage

ratio increases. Equivalently, for a given thrust level, the flow speed through the

turbine, and hence the power, is higher as the local blockage ratio increases. The

thrust on a highly blocked turbine then reduces rapidly once rated power is achieved

as the thrust required to maintain rated power reduces.
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The thrust applied by the turbine to the flow reduces more quickly as the flow

speed in the channel increases than the thrust increases as the flow speed decreases

in the channel, as a positive feedback is established between the increasing flow speed

and decreasing thrust applied to the flow. Power capping may be implemented for a

number of reasons, such as limiting the impact of power extraction and economically

sizing turbine generators to the energy available in the flow. The optimal choice of

turbine which maximises the power extracted from the flow subject to constraints on

the impact on the flow and economic and financial considerations will require many

simulations of a wide range of parameters.

Removal of momentum from the flow results in a change in the volume flow rate

through the channel, as seen in the differences between the capping and non-capping

arrays. Analytic models have shown that the total power available in a channel is

dependent on the dynamical balance in the channel between the driving head and

the resistance to the flow through the channel of the bed friction, as well as other

features such as the flow at the exit of the channel (Garrett and Cummins, 2005;

Vennell, 2010). The impact of power extraction on the flow in a channel with a

substantial background friction will be considerably different to that in a channel

with little or no background friction, and this will alter the optimal rated power of

an array in the channel. Further work should be done to investigate the effect of bed

friction on array performance.
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Chapter 9

Conclusions

� � � � � 

� � � � � � �	 	 � 
 

How awful is a river without water!
- Ancient Egyptian proverb

This thesis has investigated the power that may be extracted from a flow by an

turbine array partially spanning a wide channel. A separation of scales has been

proposed in which a distinction has been made between turbine- and array-scale

phenomena. Provided that the array is composed of a sufficient number of turbines,

this conceptual distinction allows the two scales to be analysed quasi-independently

and allows a distinction to be made between the three-dimensional flow around a

device and the predominantly two-dimensional flow around the array. This has been

used to analyse the contributions individual turbines make to the power available to

the turbines as well as the aggregate response of the flow to the turbines.

The conclusions of this thesis are summarised in three parts: the scale separated

analytic models, summarising Chapters 2 and 3; the depth averaging process and the

role of turbulence modelling in depth averaged simulations, summarising Chapters 4

to 6, and finally those relating to turbine operation, summarising Chapters 7 and 8.

The chapter concludes with suggestions for future work.
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9.1 Conclusions

9.1.1 Scale Separation

An analytic model of an array partially spanning a wide channel is developed through

a separation of scales between the array-scale and turbine-scale flows. Three-dimensional

mixing downstream of the turbine is assumed to occur much more quickly than the

largely two-dimensional mixing downstream of the array due to the relative scale of

the device diameter and array width. The two problems are coupled wherein the

flow through the array provides the upstream boundary to the turbine-scale problem.

The turbine-scale model is solved to determine the available turbine power and the

downstream internal boundary to the array-scale problem, completing the coupling.

Energy extraction at the device-scale results in only a static head discontinuity across

the actuator disc, whereas array-scale energy extraction results in both a static head

and velocity discontinuity, requiring iterative solution techniques to solve the model.

The power available to an array may be increased above that achieved by ho-

mogeneously deploying the turbines across the channel cross-section by reducing the

inter-turbine spacing, thus increasing the local blockage ratio, to exploit the con-

finement of the flow passage around each turbine, thereby increasing the available

array power. Available power also increases with Froude number, although to a lesser

extent than increased blockage ratio.

Two special cases of the partial array model were considered; the infinitely wide

channel, and the volume-flux constrained channel. An optimal local blockage ratio

of BL ≈ 0.40 and increasing with Froude number exists for a turbine array in an

infinitely wide channel. The volume-flux constrained channel is a special case of the

open channel model in the limit that the change in cross-sectional area of the channel

tends to zero, and allows the volume-flux constrained partial array model of Nishino

and Willden (2012b) to be recovered.
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9.1.2 Depth-averaged Simulations and Turbulence Modelling

Two-dimensional turbulence behaves differently to better understood three-dimensional

turbulence in a number of ways, one key feature being a dual cascade in which en-

ergy is concentrated in large, coherent eddies and enstrophy cascades down to the

Kolmogorov micro scales where it is dissipated. A simple eddy model was proposed

to close the depth-averaged Reynolds stress term of the shallow water equations, and

it was shown that, to a first approximation, the depth-averaged Reynolds stresses

are dominated by the velocity fluctuations corresponding to the largest eddies in the

domain. Assuming that turbulence production, advection and dissipation are largely

in equilibrium in the flow, a simple constant relationship with the mean flow speed

and characteristic scaling of the eddies at the injection wave number was proposed.

A parameteric study was conducted for the turbulence model, which showed that the

thrust and power of the array was largely unaffected by the magnitude of the turbu-

lence intensity parameter, but that it did affect how quickly the wake was dissipated.

A further challenge of depth-averaged simulations is the accurate representation of

three-dimensional arrays in a two dimensional model. The importance of the bypass

flow for the array power has been established theoretically and experimentally, but

this cannot be easily represented within a two-dimensional model. One difficulty is

the depth-averaged representation of the turbine-, array- and global blockage ratios

that is consistent with the three-dimensional problem. A depth-averaged analytic

correction was proposed based on the scale separation principles presented in Chapter

3, to provide a sub-grid scale model defined in terms of the turbine thrust coefficient,

based on the local basin efficiency of the turbines, allowing the correction to be applied

as a simple post-processing step of a simulation. Agreement between the corrected

array simulations and partial array analytic models was shown to increase as the

number of turbines in the array increased and the local blockage ratio decreased.
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9.1.3 Turbine Operation Characteristics

Blade element momentum theory, which has been successfully used for wind turbines,

has been adapted to account for one of the key differences between tidal and wind

turbines, where a pressure gradient develops upstream and downstream of a tidal

turbine as a result of the constraint on the volume flux of the flow. The semi-

analytic volume-flux constrained BEM model has been shown to agree well with

three-dimensional numerical simulations.

The periodic variation in the strength of the tides and economic considerations

concerning the selection of tidal turbine generators for the available tidal resource

means that tidal turbines may depart from the cubic relationship assumed in actuator

disc theory for some period of the tidal cycle. A number of strategies may be adopted

to limit the turbine power to some maximum level, but experience in the wind turbine

industry suggests that feathering the turbine blades may be particularly efficient. The

volume-flux constrained BEM model was used, given a simple power control strategy,

to determine performance characteristics of a tidal turbine during power capping.

Rated power is achieved at lower flow speeds for more highly blocked turbines, as a

higher thrust may be applied to the flow. Arrays were simulated in a tidal channel

between two large basin forced by the M2 and M2 + S2 tidal constituents. The

reduction in thrust that is achieved while the turbines operate at rated power means

that the reduction in volume flux through the channel is less than that of an array

without power capping. Thrust reduces more quickly as the flow speed increases

than when it decreases due to a positive feedback that is established by the reducing

resistance to the flow and the reducing level of thrust that must be applied to the

flow as the flow speed increases, as opposed to the negative feedback that occurs as

the flow speed decreases.
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9.2 Future Work

9.2.1 Analytic Models

Actuator disc theory assumes that the flow passage around the disc is symmetric

and that the wake expands uniformly in all directions. However devices in low local

blockages typically have a lateral inter-turbine spacing greater than the depth of

the flow, and in high local blockages the lateral inter-turbine spacing is typically

considerably smaller than the vertical distance above and below the device. The

relative contributions of these dimensions to the confinement of the flow is believed

to affect turbine performance and may be of importance in predicting the power of

arrays in which the lateral and vertical spacing are significantly different.

9.2.2 Depth-averaged Modelling

The differences between three- and two-dimensional turbulence mean that three-

dimensional turbulence models have fairly limited applicability to two-dimensional

simulations. One key challenge in tidal turbine modelling is that a significant propor-

tion of the turbulence is generated at sub-grid length scales and needs to be modelled.

A depth-averaged turbulence model which considers the production, advection, and

dissipation of turbulence should be developed for tidal turbine modelling to account

for the sub-grid scale turbulence generation. Presently there is a limited number of

studies with which to parameterise such a model, and experimental and high resolu-

tion numerical work will be required to provide the necessary data.

9.2.3 Volume-flux Constrained BEM

A number of empirical and semi-empirical corrections are applied to blade element

momentum theory for wind turbines to account for the tip and hub losses that are

observed to occur along the span of the blades. These models have not been es-
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tablished for tidal turbines, and may require a different formulation, particularly for

flow near the tips where the influence of the domain boundaries may be particularly

important. Further work is also required to establish how the swirl induction factor

a′ varies in the wake of the rotor in a volume flux constrained flow, as this would

change elemental thrust and torque of the blade elements.

9.2.4 Power Capping

The dynamic balance that exists in tidal channels between the driving tidal amplitude,

the channel bed friction and flow dynamics, and the thrust applied by the turbines

has been studied analytically by Garrett and Cummins (2005) and Vennell (2010),

for example. The variation in the available power and fraction of the time spent at

rated power may change as a result of an altered dynamical balance in the channel,

and would be important in determining the optimal rated power of the channel. The

effect of the number of turbines and varying blockage ratios should also be explored

in more detail, as these would also alter the power extracted from the flow.

9.3 Contributions

Open Channel Partial Array Model

The open channel partial array model is the first general formulation of a turbine

array partially spanning a wide channel with a deformable free surface at both the

turbine and array scales. This results in differences between the turbine- and array-

scale model equations. Device-scale energy extraction results in only a static head

discontinuity across the actuator disc, whereas array-scale energy extraction causes a

static head and a velocity discontinuity to develop across the array, making the system

more challenging to solve than the volume-flux constrained partial array model. The

formulation in this thesis provides the first unified presentation of the more general
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open channel equations and the volume-flux constrained partial array model and the

limit of an infinitely wide channel.

Depth-averaged Modelling

Analysis of the role of two-dimensional turbulence in depth-averaged simulations of

tidal turbine arrays is presented, and a simple turbulence model developed that com-

bines two-dimensional turbulence theory with the concept of turbulent eddies. This

is combined with an analytic correction for depth-averaged simulations to ensure

that the local-, array-, and global blockage ratios of the array, as well as the thrust

and power, are consistent between two- and three-dimensions to ensure the accurate

depth-averaged simulation of turbine arrays.

Volume-flux Constrained BEM Theory

This thesis presents the volume-flux constrained BEM theory which allows traditional

BEM theory for turbines in an infinitely large flow field to be directly applied to

turbine in a volume-flux constrained flow field, such as tidal turbines. The theory

provides a simple means by which performance characteristics of a turbine may be

determined under different operating conditions and thereby allow a more accurate

representation of a turbine than an actuator disc.

Power Capping

Volume-flux constrained BEM theory is utilised to determine the performance of the

turbine under a power capping regime, given the turbine geometry and hydrodynamic

properties. This allows the effect of turbine power capping with realistic turbine

data on array performance to be assessed in a tidal channel. Arrays are simulated

in channels with constant inflow velocity in addition to channels driven by tidal

constituents to assess the impact on the array power and the flow in the channel.
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