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Abstract

Measurement of Human Lens Stiffness for Modelling Presbyopia Treatments
Geoffrey S. Wilde
Brasenose College, University of Oxford
A thesis submitted for the degree of Doctor of Philosophy
Hilary Term, 2011

Computational models of human accommodation hold the promise of an improved under-
standing of the mechanism and of the development of presbyopia. A detailed and reliable
model could greatly assist the design of treatments to restore accommodation to presbyopic
eyes. However, a large quantity of data is required for such an endeavour. Currently, the
details of the age-related increase in the stiffness of the lens is a major source of uncertainty
as the published data differ markedly depending on the form of testing employed.

A new version of the spinning lens test is presented, based on the method originated
by Fisher, R. F. (1971) ‘The elastic constants of the human lens’, Journal of Physiology,
212(1):147–180. This test assesses the stiffness of the lens substance by photographically
measuring the deformations induced by rotation of the lens about its axis of symmetry. The
principal changes introduced in the present version are the removal of the capsule from the
lens prior to testing, the synchronization of the photography with the orientation of the lens,
and the use of a hyperelastic finite-element model of the test coupled with a numerical op-
timization procedure to quantify the heterogeneous stiffness of the lens. These alterations,
together with further improvements, provide a substantially more accurate means of measur-
ing the stiffness of the lens ‘substance’.

Measurements made with the new test on a series of human lenses are reported. Good-
quality tests were obtained for 29 lenses aged from 12 to 58 years. The older lenses were
found to be much stiffer than younger lenses. In younger lenses the cortex of the lens is found
to be stiffer than the nucleus, but the nucleus stiffens more rapidly, surpassing the cortex by
about 44 years. These results differ substantially from those of the original spinning test.

The stiffness values calculated for the lens substance are used in a series of hyperelastic
finite-element models of the accommodation mechanism. Models corresponding to subjects
aged 29 and 45 years follow clinical measurements of the decline in accommodation am-
plitude between these ages. Adjusting the material parameters values indicates that it is the
increase in stiffness which is largely responsible for the modelled fall in accommodation am-
plitude. The 45-year model is adapted to represent the effect of laser lentotomy, a proposed
presbyopia treatment. Among the lentotomy options trialled, the best result is a modest 0.4D
increase in the modelled accommodation amplitude.
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1
Introduction

1.1 Physiological background

The human crystalline lens is one component of the optics of the eye. In conjunction with

the cornea, it focuses incoming light on the retina. In young subjects the lens can change

shape and thereby increase the optical power of the eye, bringing near objects into focus;

this process is called accommodation. The capacity of the lens to change shape diminishes

gradually with age and is usually negligible by an age of 50 years. This loss of accommo-

dation is known as presbyopia. The predominant causes of presbyopia remains a matter of

some contention.

There is currently considerable interest in establishing treatments to restore accommo-

dation to presbyopic subjects. A more quantitative description of the mechanics involved

in accommodation and a firm understanding of the development of presbyopia would be of

considerable benefit for guiding the development of such treatments.

1.1.1 The crystalline lens

The location of the crystalline lens within the eye is illustrated in figure 1.1. The crystalline

lens lies on the optical axis, immediately behind the iris. Its shape is roughly that of an oblate

spheroid with a diameter of 9–10mm and a thickness (along the optical axis of the eye) of

4–5mm in an adult. The constituents of the lens are illustrated in figure 1.2. The exterior

1
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Figure 1.1 – The principal structures of the eye globe.

of the lens is covered by the capsule, an extracellular membrane of around 10mm thickness

(though this varies with position and age, Fisher and Pettet, 1972; Barraquer et al., 2006).

The substance of the lens within the capsule is composed of specialized cells known as lens

fibres due to their long thin form. These are arranged in orderly concentric shells, with each

cell running from the vicinity of the anterior pole of the lens (closest to the cornea) to the

vicinity of the posterior pole (closest to the retina). Most cells do not reach the poles but meet

other cells of the same shell in a pattern of lines known as sutures. These patterns become

more complex towards the outside of the lens.

New shells of cells are added to the outside of the lens substance throughout life. The

new fibre cells are produced by the differentiation of peripheral members of a layer of cuboid

epithelial cells which lies inside the anterior surface of the lens capsule. The epithelial cells

are also responsible for the production and maintenance of the lens capsule. Once new fibre

cells have grown to form a complete shell, they lose their cellular nuclei and become largely

inert. Due to the pattern of shell growth, the age of the lens tissue increases gradually from

the outside to the core. The oldest, central portion of the lens is known as the nucleus and
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Figure 1.2 – The components of the lens and the surrounding structures.

the remainder the cortex. A demarcation between the two regions is visible using in vivo

slit-lamp photography (Brown, 1973; Dubbelman et al., 2003). This may correspond to a

barrier to diffusion, identified at a similar position within the lens (Sweeney and Truscott,

1998; Moffat and Pope, 2002).

The lens is held in place by the zonular fibres which run radially from the encircling

ciliary body to attachment points in the peripheral zone of the lens capsule. The ciliary body

is a ring of muscle and other tissue contiguous with the iris and in contact with the sclera (the

outer layer of the globe of the eye). The anterior of the lens is bathed in the aqueous humour

of the anterior chamber of the eye, while the posterior is surrounded by the more gelatinous

vitreous humour which fills the region between the lens and the retina.

The lens achieves a high degree of transparency due to the orderly arrangement of the

fibre cells, and their relative homogeneity. It contributes to the optics of the eye due to

its high refractive index compared to the surrounding aqueous and vitreous humours. This

is achieved by a high concentration of proteins within the lens fibre cells (about 35% of

wet weight according to Heys et al., 2004). The refractive index is not constant throughout

the lens, but increases gradually from about 1.37 at the surface to about 1.42 at the centre,

reflecting the variation in the protein concentration within the lens (Jones et al., 2005).
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Figure 1.3 – The disaccommodated and accommodated states of the anterior segment.
The left half of the diagram shows the disaccommodated configuration, in which light from a
far object is focused on the retina. The right half of the diagram shows the accommodated
configuration, in which light from a near object is focused on the retina.

1.1.2 The process of accommodation

The lens is the component which provides adjustable optical power to young eyes. This is

achieved by a shape change in the lens induced by the contraction of the ciliary muscle.

When the ciliary muscle is relaxed it has a relatively large radius which induces tension in

the zonular fibres and stretches the lens radially outward. This flattens the lens and reduces

its optical power, bringing distant objects into focus on the retina. When the ciliary mus-

cle contracts it moves radially inward which reduces the tension in the zonular fibres and

allows the lens to return to a more spherical form. The increased curvature increases its

optical power, bringing closer objects into focus on the retina. The process which induces

this second configuration is termed accommodation, and the eye and the lens are described

as accommodated when viewing near objects. The reverse process is disaccommodation and

the eye and the lens are disaccommodated (or unaccommodated) when viewing distant ob-
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jects. These two states are illustrated in figure 1.3. The gradient refractive index of the lens

substance means that the increase in power of the lens from disaccommodated to accommo-

dated does not depend only on the increase in the curvature of the surfaces of the lens, it also

depends on the changes in curvature of the contours of constant refractive index within the

lens (Garner and Smith, 1997), though this effect is difficult to measure directly. In addition

to the changes in lens shape the anterior surface of the lens tends to move forward with ac-

commodation, while the posterior surface effectively remains stationary. These movements

are sufficiently small that they contribute little to the change in power of the eye.

The above description of the accommodation is essentially that proposed by von Helmholtz

(1855). Alternative mechanisms have been suggested. For example Coleman (1970) adds

a crucial role for the pressure of vitreous humour on the posterior surface of the lens in

determining its accommodated and disaccommodated shapes. Meanwhile Schachar (1992)

argues that the increased curvature of the accommodated lens is achieved by an increase in

the zonular tension at the lens equator rather than the decrease which is suggested under the

Helmholtz mechanism. However, the bulk of the evidence favours the Helmholtz mecha-

nism so the alternatives will not be addressed in detail. For example Fisher (1982) rebuts the

Coleman mechanism and Wilson (1997) provides evidence against the Schachar mechanism.

1.1.3 Presbyopia and changes in the lens with age

The capacity of humans to accommodate diminishes with age, and is generally absent by

50 years. The condition of being unable to accommodate is known as presbyopia. The

progression of presbyopia can be measured by determining the the amplitude of accommo-

dation, that is the difference between the optical power of the eye when fully accommodated

and when fully disaccommodated, conventionally measured in diopters (D ≡ m−1). This

has been found to decline in an essentially linear fashion from youth until the eye is fully

presbyopic, as displayed in figure 1.4.

The loss of amplitude is due to a reduction in the optical power of the lens when maxi-

mally accommodated, so the closest point which can be brought into focus (the near point)

recedes with age. This only becomes noticeable when the near point approaches the small-
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Figure 1.4 – The subjective amplitude of accommodation measured for individuals of
different ages in three studies (Donders, 1864; Duane, 1912; Brückner et al., 1987),
averaged over 5-year intervals. (Adapted from figure 1 in Weale, 1990).

est working distance used by a person (for example 4D of accommodation is required to be

able to focus on a book at 250mm as well as on distant objects). Even when fully presby-

opic the depth of field provided by the pupil allows clear vision over a moderate range of

distances, depending on the lighting conditions. The depth of field causes differences be-

tween subjective and objective measurements of accommodation. Subjective measurements

of accommodation rely on the subject reporting whether a given visual target can be brought

into focus, while objective measurements directly determine the optical power of the eye

when given different accommodation stimuli. A large depth of field increases the range over

which subjective focus is achieved, while the objective optical power remains at a single

point within that range. The residual subjective accommodation measured in subjects older

than about 50 years (as seen in figure 1.4) is ascribed to depth of focus, and is not found

when accommodation is measured objectively (Hamasaki et al., 1956).
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The lens and surrounding tissues undergo a number of changes with age which could

plausibly contribute to the development of presbyopia. The most obvious potential cause

is the substantial stiffening of the lens substance with age which directly diminishes the

degree to which the lens will alter shape in response to a given change in zonular tension

(Fisher, 1971; Glasser and Campbell, 1998; 1999). However, the magnitude of the increase

in stiffness remains uncertain as differing test methods yield quite different results (compare

for example Fisher, 1971 and Heys et al., 2004).

Geometric changes in the lens, zonular fibres and ciliary body are also potential contrib-

utors to the development of presbyopia. Fisher (1973) suggested that the decline in accom-

modation amplitude is due to the increasing stiffness of the lens substance in combination

with the decreasing stiffness of the capsule and the flattening of the lens. A decrease in

the transmission of traction from the zonular fibres to the lens substance due to the increas-

ing thickness of the lens was proposed as a cause by Koretz and Handelman (1986), while

Strenk et al. (2005) implicated a forward and inward movement of the ciliary body with age,

resulting in less tension in the zonular fibres.

Decreasing contractility of the ciliary muscle with age would also diminish accommoda-

tion, but a number of studies have concluded that it remains capable of movement after all

accommodation is lost (for example Pardue and Sivak 2000).

1.1.4 Restoration of accommodation

The limitations imposed by presbyopia can be overcome in a number of ways. The usual

method at present is the use of reading or multifocal glasses, which provide the required

change in optical power without a change in the eye itself. It is also possible to treat the eye

in order to create a multifocal effect, or to induce monovision in which one eye is rendered

suitable for far vision and the other for near vision (see for example Leyland and Zinicola,

2003; Dexl et al., 2011). True restoration of accommodation, however, means allowing the

optical power of the aged eye to adjust in response to the neurological accommodation signal

in a manner comparable to the youthful eye. No currently available treatment provides signif-

icant restoration of objectively measured accommodation. However, a number of treatments
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have been proposed which do aim to restore accommodation (a recent review is provided by

Glasser, 2008).

One proposal, scleral expansion surgery is inspired by the questionable Schachar mech-

anism of accommodation (see section 1.1.2). The sclera is modified in order to increase the

diameter of the ciliary muscle. This is intended to correct the decline in zonular tension

that is thought to be responsible for presbyopia under the Schachar mechanism. A num-

ber of studies have found that the treatment does not restore accommodation (for example

Mathews, 1999; Malecaze et al., 2001).

The remaining proposals (which are generally assume a more conventional view of the

accommodation mechanism) can be grouped into three classes: implantation of accommo-

dating intraocular lenses (accommodating IOLs), lens refilling, and laser lentotomy.

The implantation of accommodating intraocular lenses represents a further development

of the current treatment of cataract. Typical cataract surgery involves the removal of the

clouded lens substance and its replacement by a thin artificial intraocular lens of fixed optical

power (a non-accommodating IOL). The IOL is usually placed within the remaining capsule.

Some existing IOLs are intended to provide some accommodation by translating axially

towards the cornea in response to ciliary muscle contraction and thereby altering the optical

power of the eye (for example the Crystalens from Bausch and Lomb and the 1CU lens from

Human Optics). However, the axial movement that these lenses achieve in vivo is found

to be small and unreliable. Objective measurements suggest that the IOLs do not generally

provide useful accommodation (Menapace et al., 2007). More complex designs intended

to provide substantial accommodation with the relatively small movements provided by the

ciliary muscle are currently being pursued (for example Hermans et al., 2008b).

A frequent complication for accommodating IOLs is the alteration in behaviour of the

lens epithelial cells following the removal of the lens substance (Wormstone et al., 2009).

The cells tend to proliferate over the whole capsule causing substantial light scatter when

they colonize the posterior capsule (posterior capsule opacification). This is also a prob-

lem for non-accommodating IOLs, but can be treated by removing the problematic portion

of capsule. Accommodating IOLs face a greater difficulty because removal of additional
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capsule material after implantation is likely to adversely affect the mechanical coupling be-

tween the ciliary muscle and the device. Accommodating IOLs generally face a greater

risk of posterior capsule opacification as their mechanical requirements limit the capacity to

adopt features from non-accommodating IOLs which have been found to reduce the risk of

epithelial cell proliferation.

Lens refilling also involves the replacement of the native lens substance. Rather than

inserting a preformed device, a material such as a polymer is used to completely fill the

emptied capsule (see for example Parel et al., 1986). The refilled lens is intended to be

geometrically and mechanically similar to a youthful lens, and to deform correspondingly

in response to ciliary muscle contraction. One of the challenges faced by lens refilling is

the need to obtain the desired optical properties with the limited control available from the

refilling process (Koopmans et al., 2006). This and the problem of polymer leakage can be

overcome by introducing an intraocular lens at the anterior surface of the refilled lens (Nishi

et al., 2008), though this reduces the mechanical equivalence to the youthful lens. Lens

refilling also faces the problem of posterior capsule opacification (Nishi and Nishi, 1998).

While accommodating IOLs and lens refilling are generally envisaged as possible im-

provements on existing cataract treatment, if either become a reliable method for restoring

accommodation they could be applied to clear lenses purely to treat presbyopia.

The laser lentotomy method leaves the native lens substance in place, in contrast to the

use of accommodating IOLs and lens refilling. A pulsing femtosecond laser is used to treat

the lens noninvasively to increase its compliance. The laser causes ablation of the lens sub-

stance in a small (∼ 10mm diameter) region at its focus. The repeated application of the laser

is used to create a pattern of ablated tissue designed to enhance the amplitude of accommo-

dation (see for example Schumacher et al., 2009). The ablated regions cause increased light

scatter within the lens, so to maintain visual clarity they must not encroach on the optically

active region surrounding the axis of the lens.

The three potential treatments for presbyopia described above all rely on the untreated

portion of the accommodation apparatus to transmit appropriate forces to the optically active

part to achieve the intended change in shape and optical power. Ensuring that the modified
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system will operate correctly requires an solid understanding of the mechanics of the native

system in addition to the changes caused by the treatment. Computational modelling of

the accommodation system can play an important role in developing this understanding and

informing the design of presbyopia treatments.

1.2 Objectives

The understanding of the mechanics of the accommodation system and of the development

of presbyopia can be improved through computational modelling. This is currently impeded

by the limited information on the material properties of the constituent tissues. The stiffness

of the lens substance has been measured to increase with age, and this is generally believed to

play a substantial role in the development of presbyopia. There is, however, no consensus on

those stiffness values or the rate at which they increase, as different tests produce markedly

different values.

This dissertation has two principal aims related to the mechanics of the human crystalline

lens:

1. To further the understanding of the stiffness of the lens substance and how it changes
with age. This is achieved through:

i. the development of procedures to test the stiffness of the lens substance

ii. the collection of new stiffness data from lenses over a range of ages relevant to
the development of presbyopia.

2. To demonstrate the application of the new stiffness data in computational modelling
of the accommodation mechanism. This encompasses:

i. the use of the new stiffness data in new models of the native accommodation
mechanism to examine the role of the lens substance in the development of pres-
byopia

ii. the modification of one of the new models of the native accommodation mecha-
nism to investigate the use of laser lentotomy as a treatment for presbyopia.



2
Literature: Stiffness of the lens

tissues

Information on the stiffness of the tissues involved in accommodation is important for under-

standing the details of the mechanism in young subjects and of the development of presby-

opia in older subjects. Computational modelling of the accommodation mechanism depends

on good-quality information on the constituent tissues. The focus of the current work is the

mechanics of the lens substance, but the capsule and zonular fibres are also relevant when

modelling the accommodation mechanism.

Tissues of animals other than primates are of only limited utility for understanding human

accommodation due to substantial differences between the lenses (Augusteyn, 2007) and

variation in capacity to accommodate (Ott, 2006). There is also evidence that causes of

presbyopia differ between humans and the common primate models used in research (Strenk

et al., 2005). On this basis, only tests on human specimens are reviewed below.

2.1 Stiffness of the lens substance

The source of the elasticity of the lens substance has not been established. It is a soft and

fragile tissue with a complex microstructure, so designing and interpreting tests to obtain

stiffness data relevant to in vivo accommodation poses some difficulty. A number of test

11
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methods have been used, leading to a wide range of values. The methods and their results

are discussed below.

2.1.1 A summary of test procedures

A number of approaches have been used to test the stiffness of the lens substance. The

method of testing a lens which most closely corresponds to its in vivo behavior is to extract

the whole accommodation system as a unit and apply radial tractions to deform it in a man-

ner similar to disaccommodation (Ziebarth et al., 2008). However, isolating the contribution

of the lens substance from that of the capsule is difficult in these circumstances and has not

been reported. An alternative is to remove the ciliary body and zonular fibres then deform

the isolated lens in a similar manner by different means: either by compressing it axially (Itoi

et al., 1965; Glasser and Campbell, 1999), or spinning it about its axis to induce radial forces

(Fisher, 1971). A more invasive approach is to conduct small-scale indentation tests on a

sectioned lens (Heys et al., 2004; 2007; Weeber et al., 2007) or on an isolated nucleus (Czy-

gan and Hartung, 1996). When applied to sectioned lenses this method has the advantage

of providing detailed information on the heterogeneity of lens stiffness, but the disadvantage

that the cells of the lens substance are disrupted in the process. Standard dynamic mechani-

cal analysis has also been applied to the lens substance (Weeber et al., 2005), providing data

on the viscous as well as elastic properties of the lens. This requires the specimen to be cut

into several pieces to conform to the apparatus and this may have a substantial influence on

the results. A method which allows local measurements without sectioning the lens is the

bubble-acoustic test (Hollman et al., 2007), in which a small bubble is created in an isolated

but intact lens and then probed with ultrasound.

Of the above tests, those of Fisher (1971), Heys et al. (2004), Heys et al. (2007), Weeber

et al. (2007) and Hollman et al. (2007) provide stiffness measurements for ages relevant to

the development of presbyopia and in a form that can be transferred to other contexts, such as

computational modelling, so these tests are examined in detail below. The compression test

of Glasser and Campbell (1999) is also considered as it provides an additional comparison to

the spinning test of (Fisher, 1971), which would otherwise be the only test examined which
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induced deformation in the whole lens at once.

2.1.2 The spinning test of Fisher (1971)

To conduct the spinning lens test a specimen is rotated about its axis of symmetry at a fixed

speed, inducing deformations which can be related to the apparent centrifugal forces expe-

rienced. The deformations can be measured using photography which provides information

on the form as well as the magnitude of deformation, allowing some assessment of lens

heterogeneity to be made.

The spinning lens test was devised by Fisher (1971), who advocated it in preference to

axial compression of the lens because the lens fibre cells appeared far less disturbed after

spinning than after compression. The test was applied to 40 lenses aged from 4 months

to 67 years, making use of the change in both the thickness and diameter when spun to

calculate a stiffness value for the nucleus and the cortex of each lens. The outcome indicated

that both the nucleus and the cortex stiffened about 8-fold over the age-range tested, with

the change in the cortex largely occurring up to 35 years and the change in the nucleus

largely after 35 years. The method used by Fisher (1971) to calculate stiffness values was

examined by Burd et al. (2006) who concluded that the approximations made in the analysis

had a substantial effect on the values obtained from the test and that the presence of the

capsule was not adequately addressed, as it was ignored based on the result of a test reported

for a single lens. The test is discussed in more detail in chapter 4 together with a set of

improvements which motivate the development of a new version of the test in the current

work.

The spinning lens test has subsequently been applied, either to estimate the force involved

in other forms of loading (Fisher, 1973; 1977), or to assess the change in deformability

caused by laser treatment of isolated lenses (Schumacher et al., 2009). However, values of

material stiffness were not reported in these cases.
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2.1.3 The compression test of Glasser and Campbell (1999)

Measuring the load required to compress a lens axially by some specific amount is perhaps

the most straightforward way to obtain stiffness information. As with the spinning test this

method has the advantages of keeping the lens intact and deforming it in a manner broadly

similar to in vivo disaccommodation. Taking account of the lens shape and the contact be-

tween the lens and the compressor is potentially complex, making it difficult to convert the

spring stiffness that is measured into data which can be transferred to other contexts. It is

also not suited to obtaining information on the heterogeneity of the mechanical response of

the lens.

Compression tests were conducted by Glasser and Campbell (1999) on 19 lenses aged 5

to 96. The relative peak force required to compress the lenses by 375mm was reported. This

showed a roughly exponential increase with age, with the oldest lenses requiring about 30

times more force than the youngest (see figure 2.1).

This stiffness measurement applies to the lens as a whole, rather than the lens material,

as it does not take into account the growth and change in shape of the lens with age; such

changes, however, are small compared to the rate of stiffening measured. It is not clear if

the reported results correspond to intact or decapsulated lenses (both tests were conducted

but only one reported), or whether the removal of the capsule made a notable difference in

the results. Perhaps a more important caveat: the relative force traces provided for a 41 and

96 year old lens (figure 12 a in Glasser and Campbell, 1999) indicate that the force at full

compression is outside the linear range of the response so may not be comparable to stiffness

measurements at smaller strains.

2.1.4 The indentation tests of Heys et al. (2004) and Heys et al.

(2007)

Indentation tests were performed by Heys et al. (2004) to determine the variation in lens

stiffness both with age between different lenses and with position within the lenses. These

data were used for comparison with corresponding measurements of water content. Eighteen

lenses aged from 14 to 76 years were tested. Each lens was sectioned through the equator
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Figure 2.1 – The relative lens stiffness values reported in Glasser and Campbell (1999),
replotted for comparison with figures 2.3 and 2.4. (Adapted from figure 12 c in Glasser and
Campbell, 1999).

then a central core of diameter 8.5mm was extracted with a trephine. The sample remained

within a metal ring from the trephine while a series of indentation tests were performed

across the sectioned surface. In each test a cylindrical probe of diameter 0.4mm was pressed

into the sample by a linearly increasing force. Shear modulus values were calculated from

the force-displacement measurements using the relation

F =
4GRd
1−ν

(2.1)

where F is the total load, G is the shear modulus of the specimen, R is the radius of the

probe, d is the depth of indentation, and ν = 1
2 is the Poisson’s ratio of the specimen. This

corresponds to an ideal small-strain indentation of a semi-infinite, incompressible, isotropic,

elastic solid.

The stiffness at the centre of the lenses was found to increase 450-fold over the age-

range tested, with a more modest 20-fold increase towards the outside of the sample. A



Chapter 2. Literature: Stiffness of the lens tissues 16

representative 64-year lens was reported to have a roughly linear increase in stiffness from

about 2.5kPa at the outermost measurement point to about 18kPa at the centre of the sample.

The outermost measurement points were 3.5mm from the centre of the lens, so no testing

was conducted on purely cortical material.

The indentation process was force-controlled, with the force applied increasing to 3mN

over 3 minutes. It is not clear how the soft young lenses were measured as equation 2.1

implies that the maximum force applied would have indented far deeper than the thickness

of the specimen. If the test were halted at the reported typical indentation depth of 750mm

this would correspond to a duration of about 3 seconds for a specimen of 40Pa, the value

reported as typical for the nucleus of a 20-year lens. Even an indentation depth of 750mm

must be considered large, since the specimens would be about 2.5mm deep at most. The

use of equation 2.1 when testing close to the metal ring housing the sample means that these

outer measurements must be viewed with considerable caution

The lenses reported in Heys et al. (2004) were frozen at −80◦C before being thawed

for the test, which may have affected the stiffness measurement. A second series of inden-

tation tests was performed on about 40 fresh human lenses aged from 0 to 88 years and

the shear modulus values measured at the centre of the lenses were plotted in Heys et al.

(2007). Among the youngest comparable lenses the fresh ones were about 5 or 6 times stiffer

than their frozen counterparts, while the oldest comparable lenses were of similar stiffness

whether fresh or frozen, and overall the fresh lens data displayed less scatter. The text of

Heys et al. (2007) states that the change in stiffness between 20 and 60 years remained sim-

ilar to the 450-fold increase reported for the frozen case, though the plotted data suggest the

corresponding increase for the fresh lenses is at most 80-fold. The data from the fresh lenses

appears preferable to that from the frozen lenses, but they have been reported in considerably

less detail.

2.1.5 The oscillatory indentation test of Weeber et al. (2007)

Weeber et al. (2007) also applied an indentation test to measure the stiffness variation across

sectioned lenses, though the conduct of the test differed in a number of respects from that
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Figure 2.2 – The shear modulus of the lens as a function of age and position, as calculated
by Weeber et al. 2007. The measurements extend to 4 mm from the lens centre, so the
region beyond this point is indicated as an extrapolation. (Adapted from figure 7 of Weeber
et al. 2007).

of Heys et al. (2004). At each test point in the equatorially sectioned lenses the probe was

inserted 500mm then oscillated at a range of frequencies and amplitudes (up to 50mm) to

obtain the dynamic response, with care being taken to limit the amplitude to the linear range

of the material. The shear modulus values obtained were then modified to take account of the

general shape of the lens and the effect of the implied gradient in stiffness at the test point.

Ten lenses aged from 19 to 78 years were tested. The centre of the oldest lens was found

to be 10,000 times stiffer than the youngest lens, while the periphery, at 4mm from the

centre, was reported to be 100 times stiffer. The younger lenses, (up to a lens aged 49 years),

exhibited a softer centre than periphery, while the reverse was true for the older lenses.

The principle summary of the shear modulus measurements from Weeber et al. (2007) is
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Table 2.1 – The values of the coefficients, cmn, of equation 2.2 which best reproduce the
curves of figure 7 of Weeber et al. (2007).

m

0 1 2 3

n

0 4.2459×100 -2.9055×10−1 8.5584×10−3 -6.0400×10−5

1 -3.0406×100 1.7185×10−1 -3.1631×10−3 1.8601×10−5

2 2.0923×100 -8.5154×10−2 1.1379×10−3 -5.1499×10−6

3 -3.8277×10−1 1.4995×10−2 -1.9391×10−4 8.2153×10−7

figure 7, replotted here as figure 2.2. The equation describing the stiffness profiles shown in

figure 2.2 are not reported by Weeber et al. (2007), but are well matched by fitting the plotted

curves with a function of the form

log10 (µ) =
3

∑
m=0

3

∑
n=0

cmnAmrn , (2.2)

where A is the age of the lens in years, r is the radial position in millimetres, and µ is the

shear modulus in pascals. The coefficients, cmn, which were found to best reproduce the

published figure are given in table 2.1.

2.1.6 The bubble-acoustic test of Hollman et al. (2007)

The bubble-acoustic test reported by Hollman et al. (2007) allows the local mechanical prop-

erties of lenses to be probed without the need to section the lens. In principle it could be

performed in vivo.

To conduct each bubble-acoustic test a small bubble (30–100mm diameter; Erpelding

et al., 2007) was induced at a target location within the lens using a laser pulse. An ultra-

sound probe was used to simultaneously apply an acoustic radiation force to the bubble and

to track its resultant displacement. The size of the bubble was also assessed by measuring

the back-scattered ultrasound. Tests were conducted on 5 lenses aged 40 or 41 years and 9

lenses aged between 63 and 70 years. Bubbles were created at points from 0 to 4mm from

the lens centre with a spacing of 1mm. The measurements of bubble displacement (adjusted

for bubble size) displayed very large variations even for measurements at the same position in

lenses of similar ages. This meant that the two age groups were not statistically distinguish-
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able. Nevertheless, the median Young’s modulus measured at each location for each group

were reported. The middle-aged lenses were mostly homogeneous with a Young’s modulus

of about 1.0kPa, except at the centre where the value was 5.6kPa (from just three measure-

ments). The Young’s modulus of the old lenses declined steadily from about 10.5kPa at the

centre to about 1.4kPa at 4mm from the centre.

The reason for the large variation in measurements was reported to be unclear, since tests

on porcine lenses were more consistent. If this issue is resolved, the bubble-acoustic test

should prove very useful. It has the potential, for example, to explore local anisotropy within

the lens. The scale of the test is approaching the typical lengths of the cellular microstructure

of the lens, so it may be necessary to assess how the behaviour at the test scale relates to

the bulk behaviour of the lens before applying bubble-acoustic measurements to models of

accommodation.

2.1.7 A comparison of stiffness measurements

Comparisons between the results of the different types of test are not straightforward as they

provide stiffness values for different locations within the lens. The spinning lens test of

Fisher (1971) provides data which approximately correspond to the nucleus and cortex of

the lens whereas the indentation tests of Heys et al. (2004), Weeber et al. (2007) and Heys

et al. (2007) and the bubble-base acoustic test of Hollman et al. (2007) each give essentially

local measurements at a number of points restricted to the equatorial plane of the lens. The

compression test of Glasser and Campbell (1999) provided a single relative stiffness value

for the whole lens, so only the rate at which stiffness increases with age can be compared to

the other tests.

The period most relevant to understanding the development of presbyopia is approxi-

mately from 20 years to 50 years. The shape of the lens develops in a consistent way from

about 20 years and the development of presbyopia is complete by 50 years. A large increase

in the stiffness of the lens substance over this span would suggest greater importance of this

aspect in the development of presbyopia than a smaller increase. This change can be summa-

rized by a stiffening index, Ê, which for a given measurement of lens stiffness is equal to the
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Table 2.2 – The relative increase in stiffness between 20 and 50 years calculated from the
age-stiffness relations obtained in the various tests. The values for the increase in stiffness
from Glasser and Campbell (1999) are calculated from the reported best-fitting exponential
(3.7) and cubic (4.9). The value for Weeber et al. (2005) is calculated from the slope
reported for J′ in figure 5 in that paper. The value for Heys et al. (2007) was calculated
using the best-fitting exponential for stiffness values obtained from figure 1 in that paper.

nucleus cortex whole lens

or 0.5mm or 3.5mm

Fisher (1971) 2.5 1.4

Glasser and Campbell (1999) 3.7 or 4.9

Heys et al. (2004) 63 7.9

Weeber et al. (2005) 6.9

Heys et al. (2007) 10

Weeber et al. (2007) 229 14.1

ratio of the typical value at 50 years to the typical value at 20 years. The stiffening indices

for the various tests are given in table 2.2. There is a large variation between the tests, but

the stiffening indices derived from Fisher (1971) are conspicuously low.

Representative stiffness values for the inner and outer regions of the lens are presented

in figure 2.3 and figure 2.4 respectively. It is clear from these figures, and a comparison

with figure 2.1, that the spinning lens test of Fisher (1971) produces values which differ

considerably from the more recent tests, especially the indentation tests.

The spinning and indentation tests do agree that the outer region of young lenses is stiffer

than the inner region, and that the inner region becomes stiffer with age, eventually reaching

or surpassing the outer stiffness. The age at which the lens has approximately uniform stiff-

ness differs between the tests, with Fisher (1971) indicating it occurs well after the lens is

presbyopic, at about 70 years, while Heys et al. (2004) and Weeber et al. (2007) indicate ages

of about 35 and 45 years respectively, prior to full presbyopia. The lenses tested by Hollman

et al. (2007) which were aged 40 to 41 years also display uniform stiffness if the central

measurement is discounted. The timing of the transition from a stiffer outside to a stiffer

inside of the lens is likely to be important in understanding the development of presbyopia

(Weeber and van der Heijde, 2007), especially in light of the gradient refractive index of the

lens which means that internal deformations of the lens during accommodation affect its op-

tical power in addition to the surface deformations. Slit lamp photography of lenses in vivo,
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comparison of
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in which internal features of the lens can be identified, indicate that the nucleus experiences

greater axial strains than the cortex during accommodation, supporting the notion that the

cortex is stiffer than the nucleus in lenses still able to accommodate (Patnaik, 1967; Brown,

1973; Dubbelman et al., 2003; Hermans et al., 2007).

The stiffness values, the rate of stiffness increase and the age at which the lens becomes

uniform all differ between the various tests, with the results of (Fisher, 1971) distinctly differ-

ent from the rest. It is not apparent which of the numerous differences between the methods

employed in the tests have a significant effect on the results. The different preparation of the

lenses (fresh or frozen, intact or sectioned) may play a role, though Hollman et al. (2007)

used fresh intact lenses and also found the nucleus of old lenses to be much stiffer than Fisher

(1971).

The spinning test is influenced by the stiffness of the cortex at the poles of the lens which

the indentation tests do not examine; however, the compression test of Glasser and Campbell

(1999) is also affected by the polar cortex yet shows a greater rate of stiffness increase. It is

also possible that a more complex material model for the lens substance, such as anisotropic

behaviour, would reconcile the measurements, but there is no indication of what form such

a model would take.

The spinning lens test has a number of attractive features, but it seems likely that a num-

ber of limitations in the conduct and analysis of the test reported by Fisher (1971) gave it a

muted response to the stiffness of the lens substance and hence an unrealistically low increase

in stiffness.

2.2 Stiffness of the capsule

The capsule is a form of basement membrane produced and maintained by the epithelial cells

which lie on the anterior surface of the lens substance. From a mechanical perspective the

primary constituent of the capsule is a mesh of type IV collagen fibrils.

Several tests have been conducted to measure the stiffness of the human lens capsule.

Two general methods have been adopted: biaxial inflation tests applied to some or all of the
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anterior capsule (Fisher, 1969; Danielsen, 2004; Pedrigi et al., 2007) and uniaxial extension

tests applied to excised rings of the anterior and posterior capsule (Krag et al., 1997; Krag and

Andreassen, 2003a;b). The capsule is capable of sustaining large strains, up to 100% linear

strains for very young specimens (Krag et al., 1997). During accommodation, however,

average area strains of about 5% are typical (Hermans et al., 2009), so it is the stiffness

measurements acquired at low strains which are of interest for understanding the usual in vivo

behaviour of the capsule.

2.2.1 Biaxial testing

Fisher (1969) devised a test in which a disc of anterior capsule material is clamped around

its edge, submerged in fluid, and caused to deform by increasing the pressure on the lower

surface. The relationship between the pressure and the volume enclosed by the capsule

material allows the stiffness of the capsule to be estimated using the assumptions that it

maintains the form of a spherical cap and deforms in an eqi-biaxial manner. The Young’s

modulus was found to decline from about 6MPa in childhood, to 3MPa by 60 years, and

to 1.5MPa in extreme old age. The Poisson’s ratio of the capsule material was determined

separately by measuring how its thickness changed as the capsule distended. This yielded a

value of 0.47, indicating the deformation of the capsule approximately conserved volume.

A similar test and analysis was used by Danielsen (2004) as part of a comparison of the

properties of the anterior lens capsule to Descemet’s membrane (a layer of the cornea). All

the human capsule specimens examined were aged over 56 years with mean age of 80 years.

These yielded an average stiffness consistent with the corresponding measurements of Fisher

(1969) at a linear strain of 10%, though a value for Young’s modulus was not calculated.

An alternative method of inflation was adopted by Pedrigi et al. (2007) to examine the

regional stiffness properties of capsules from normal and diabetic donors. In this approach

the capsule is left in place around the lens substance and a needle inserted through the capsule

to supply fluid at a pressure. The deformation of the capsule is measured by using two video

cameras to track a number of markers placed on its surface. The movement of sets of markers

are used to deduce the local stiffness using an inverse finite element method. The capsule
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material is described by a Fung-type constitutive model with four parameters. Six normal

lenses aged between 29 and 81 years (mean 67 years) were tested, and used to determine a

single set of parameter values for the constitutive model. Burd (2009) showed that the biaxial

behaviour of a Fung-type material with these parameter values is broadly consistent with the

measurements of Fisher (1969) for a linear strain of 10% or lower.

2.2.2 Uniaxial testing

A number of uniaxial stretching tests on the accommodation apparatus were reported by

van Alphen and Graebel (1991). In each test the ciliary body, zonular fibres, and lens were

removed from the eye as a unit. Two clamps (10mm wide) were applied to opposite sides

of the ciliary body in order to stretch the accommodation apparatus uniaxially. The applied

load was recorded and photographs were used to measure the extensions experienced by

each component of the specimen. Variations of the test in which different parts were cut

or removed were used to separate the influence of the various tissues. This form of uniaxial

stretching leads to complex loading and deformation of the specimen so only relatively rough

calculations of the properties of the tissues were possible. The Young’s modulus of the

capsule at 10% strain was calculated from 71 tests on samples aged from 0 to about 70 years.

The typical values were about 0.7MPa near birth and between 1.0 and 2.1MPa among older

samples, with a tendency to increased stiffness with age. The calculation of the stiffness of

the capsule took no account of the presence of the lens substance nor the variation in the

shape of the capsule along the axis of the test, so the results are broad approximations only.

A more refined method for determining the uniaxial response of samples from human

lens capsules was presented by Krag et al. (1997). A ring of capsule material was cut from

each specimen using a metal stencil and an excimer laser. The width and thickness of the ring

was measured microscopically. It was then placed over two pins, one connected to a force

transducer and the other to a motorized micropositioner and its load-elongation behaviour

was recorded as the pins were moved apart. This test was developed primarily to investigate

the mechanical properties of the capsule relevant during cataract surgery, in which a central

disc of the capsule is surgically removed and the remaining material is subjected to large
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strains. The secant Young’s modulus calculated at 10% strain was reported for 67 specimens

from the anterior portion of the capsule and 25 specimens from the posterior capsule by

Krag and Andreassen (2003a). The typical Young’s modulus of the anterior capsule was

reported to rise from 0.4MPa at birth to 1.45MPa by 35 years and then remain constant. The

values for the posterior capsule appear consistent with this relation, though with considerable

variation between samples.

2.2.3 Comparison of the measurements

Only the tests of Fisher (1969) and Krag and Andreassen (2003a) produce reliable results

for a substantial number of lenses over a wide range of ages. Both tests indicate that the

capsule is much stiffer than the lens substance. There is, however, a large difference in

the stiffness values obtained from the two tests in specimens up to 60 years and the values

exhibit opposite trends with age. Krag and Andreassen (2003a) suggested that the difference

may arise because the value from the inflation test corresponded to larger strains; however,

Burd (2009) calculated that the difference in strain was moderate and that the discrepancy

remained after this was taken into account.

Burd (2009) proposed a new constitutive model for the lens capsule which includes an

explicit representation of the collagen microstructure. This model of the collagen mesh be-

haves in a stiffer manner in response to biaxial traction than a homogeneous material with an

equivalent uniaxial response. Thus this form of constitutive model provides a possible expla-

nation for the differences seen between the tests of Fisher (1969) and Krag and Andreassen

(2003a).

2.3 Stiffness of the zonular fibres

The major constituent of the zonular fibres is fibrillin, though its elasticity may be influenced

by the reported presence of elastin or glycosaminoglycans (Bourge et al., 2007). Measure-

ments of the stiffness of the zonular fibres are apparently limited to two sets of tests.
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Fisher (1986) reported the Young’s modulus of the zonular fibres calculated from the

combined results of two tests applied to 12 specimens aged from 16 to 50 years. In the

first test the ciliary body, zonular fibres, and lens were removed from the eye as a unit and

stretched radially in a manner similar to in vivo disaccommodation. The changes in geometry

of the tissues were measured photographically. In the second test the ciliary body and zonular

fibres were removed from the lens, which was then subjected to a spinning test (as described

in Fisher, 1971). The spinning test was used to estimate the radial load applied in the first test,

under the assumption that the same magnitude of load will result in the same change in the

thickness of the lens, despite the differences in the distribution of the load. This assumption

is probably inaccurate as the deformation of the capsule is likely to be quite different in the

two cases. The material of the zonular fibres was determined to have a Young’s modulus of

350kPa, which was found not to vary with age.

The uniaxial stretching tests of van Alphen and Graebel (1991) discussed in section 2.2.2

were also used to assess the stiffness of the zonular fibres for 54 specimens aged from 0 to

about 70 years. The relation between the load applied to the clamps and the resulting exten-

sion of the zonular fibres was used to calculate their Young’s modulus. A typical value of

1.5MPa was calculated, though the individual measurements showed very large variations

(the standard deviations reported for individual measurements were of the same order as the

measurements themselves).

In many circumstances the total radial spring constant of all the zonular fibres considered

as a single entity is a more natural value to consider than the Young’s modulus of the tissue.

Indeed, both Fisher (1986) and van Alphen and Graebel (1991) calculated Young’s modulus

from a spring-constant value by making assumptions about the number and cross-sectional

area of zonular fibres. By examining these assumptions the total radial spring constant im-

plied by the experiments can be deduced. The calculations of Fisher (1986) imply a total

cross-sectional area of about 0.12mm2 for the zonular fibres (if the unextended length of the

zonular fibres is assumed to be about 2.5mm) and a radial spring constant of about 43mN.

The calculations of van Alphen and Graebel (1991) imply a total cross-sectional area of

about 0.24mm2 for the zonular fibres (if each clamp is assumed to engage about one sixth of
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the zonular fibres) and a radial spring constant of 360mN.

The two methods adopted for measuring the stiffness of the zonular fibres both involve

considerable uncertainties and lead to markedly different values for the Young’s modulus.

The values for the total radial spring constant display an even larger discrepancy. Fortunately,

in many cases when modelling of the accommodation mechanism it is possible to make use

of in vivo measurements (such as those of Strenk et al., 1999) to choose an appropriate value

for the stiffness of the zonular fibres or the forces they exert on the lens (Burd et al., 2002;

Hermans et al., 2008a).



3
Literature: Models of

accommodation

A range of mathematical models have been developed to examine a various aspects of the

accommodation process, most notably the development of presbyopia (for example Wyatt,

1993; van de Sompel et al., 2010). Such models allow the calculation of quantities not

readily available through in vivo observations or in vitro experiments, such as the additional

force exerted by the zonular fibres during the process of disaccommodation, or the internal

deformations of the lens. They can also examine situations not present in nature to examine,

for example, the importance of a particular feature to accommodation, or to assess a possible

treatment of presbyopia. The accuracy of such models inevitably depends on the validity of

the assumptions made and the quality of the data used in their construction.

3.1 Modelling methods

Several methods have been used to describe the mechanics of the accommodation apparatus.

Due to the variety of aspects of accommodation under investigation, models range from a

simple collection of springs and dash-pots characterizing the dynamics of the constituents

(for example Beers, 1996) to extensive finite-element models which include a detailed ge-

ometry and constitutive models to represent the lens and other structures (for example Burd

28
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et al., 2002). Only those models which include the geometric aspects necessary to represent

the optics of the system are considered further.

3.1.1 Single component models

Three models (O’Neill and Doyle, 1968; Schachar et al., 1993; Chien et al., 2006) have

examined just the capsule in an explicit manner, treating it as an axisymmetric membrane or

shell. The influence of the lens substance and the zonular fibres were imposed as a pressure

and a membrane traction respectively. O’Neill and Doyle (1968) only examined the anterior

portion of the capsule, while Schachar et al. (1993) and Chien et al. (2006) considered the

full capsule and required the enclosed volume to remain constant, effectively treating the lens

substance as an incompressible fluid. Schachar et al. (1993) used a linear-elastic formulation

leading to unrealistic deformations of the capsule, as demonstrated by Burd et al. (1999).

Koretz and Handelman (1986), by contrast, examined only the anterior portion of the

lens substance. Its deformation was dictated by in vivo measurements of lens curvature and

an assumption that spherical surfaces deformed to spherical surfaces. The lens substance

was assumed to be homogeneous but anisotropic on the basis of preliminary calculations of

stiffness reported by Fisher (1971). Reilly and Ravi (2010) adopted an even simpler series

of models in which the whole lens was assumed to deform from one shape to a similar shape

during accommodation (for example, from one ellipse to another ellipse) with the only other

constraint being an assumption of incompressibility. While such restrictions on the form

of the deformation can dramatically simplify calculations they entail substantial and opaque

assumptions regarding the behaviour of the lens substance, and so drawing substantial con-

clusions from such models is problematic.

3.1.2 Finite-element models

A model which includes a realistic geometry for the lens and represents the capsule and

the lens substance as distinct solid constituents is necessarily complex. The finite element

method has proved a useful tool for producing complex mechanical models in a range of

fields, and has become the mainstay for modelling the mechanics of accommodation. It
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does, however, require many data (and substantial assumptions where data are unavailable)

to construct a reasonable representation of the accommodation apparatus.

A preliminary finite-element model of the lens was developed by Burd et al. (1999),

adopting a large-strain formulation to properly describe the mechanics of the capsule. The

lens contents were treated as an incompressible fluid for comparison with Schachar et al.

(1993). Three more complex finite-element models corresponding to ages 11, 29, and

45 years were reported by Burd et al. (2002), incorporating geometric and material data

from a range of publications, in particular using Brown (1973) and Strenk et al. (1999) for

lens shape, Fisher (1971) for the stiffness of the nucleus and cortex, and Krag et al. (1997) for

the stiffness of the capsule. The accommodated configuration was assumed to be stress free;

it was characterized by fifth-order polynomials joined by a circular arc at the lens equator,

the same general form used by Schachar et al. (1993).

These models of Burd et al. (1999) have been adopted and adapted in a number of sub-

sequent publications. For example, Martin et al. (2005) added a pressure from the vitreous,

while Stachs et al. (2006) modified the geometry of the zonular fibres to reflect ultrasound

measurements. The stiffness values used in the model were examined by van de Sompel

et al. (2010).

Hermans et al. (2008a), building on the work of Hermans et al. (2006), constructed alter-

native geometries for lenses of the same ages as Burd et al. (2002). The outline of each lens

was described by four conic sections with parameters chosen using data from Strenk et al.

(1999), Dubbelman and van der Heijde (2001), and Dubbelman et al. (2005). The nuclei

were based on data from Koretz et al. (2001), Koretz et al. (2002) and Hermans et al. (2007).

Three alternative models were presented for each age, using the differing stiffness values

reported by Fisher (1971), Heys et al. (2004), and Weeber et al. (2007). The zonular fibres

were not included in this model, instead tractions were applied directly to the capsule at the

points where the zonular fibres would attach.

A model of the accommodation mechanism incorporating residual stresses in the capsule

and lens substance was presented by Weeber (2002). In this model, the unstressed state of

the capsule was chosen to correspond to the fully-accommodated state of the lens, while the
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unstressed state of the lens substance was chosen to correspond to the disaccommodated state

of the lens. This was achieved by starting with an unstressed model in the accommodated

state, simulating disaccommodation, then eliminating the stresses in the lens substance.

Weeber and van der Heijde (2007) presented a model in which the lens substance was

divided into 10 concentric shells with stiffness values from Weeber et al. (2007), rather than

the common division of nucleus and cortex. The outline of the lens was described by two

conic sections joined by an arc at the lens equator. The parameters used the data from Strenk

et al. (1999) and Dubbelman et al. (2005), and were chosen to correspond to the average over

a wide age range (16 to 51 years).

Ripken et al. (2006) adapted the 29-year model of Burd et al. (2002) to represent a spe-

cific laser lentotomy procedure. The model of the treated lens incorporated thin layers (5mm

) of very soft material corresponding to the regions subjected to ablation. Cuts that would

break the axisymmetry of the lens were not considered.

The typical model was extended to include the whole vitreous and a modified arrange-

ment of zonular fibres by Ljubimova et al. (2008). The vitreous was modelled as an incom-

pressible solid which resisted the posterior pull of the zonular fibres on the lens. This novel

arrangement performed poorly when compared to in vivo measurements of the shape of the

lens when disaccommodated.

3.2 Modelling results

3.2.1 Accommodation and presbyopia

The models for ages 11, 29 and 45 years described by Burd et al. (2002) were developed

to assess whether the existing data on the accommodation apparatus could produce a model

capable of reproducing the the behaviour of the accommodation mechanism and the progress

of presbyopia. The 29-year and 45-year models agreed well with the clinical measurements

of Duane (1922), while the 11-year model had less than half the expected amplitude of

accommodation. It was concluded that the older lenses may capture the causes of presbyopia,

but that additional data was required to ensure the models were appropriate.
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Martin et al. (2005) adapted the two older models from Burd et al. (2002) by introducing

a pressure on the posterior surface of the lens to represent the effect of the vitreous suggested

by Coleman and Fish (2001). It was determined that the pressure reduced the amplitude of

accommodation to unrealistically low levels, suggesting that the Coleman mechanism does

not contribute to accommodation. This conclusion is not supported, however, because in

the presence of the posterior pressure the fully-accommodated geometry of the lens models

differed from the in vivo state (so it could be the difference in geometry rather than the

presence of the pressure which is responsible for the low amplitude of accommodation).

A study reported by van de Sompel et al. (2010) also adapted the two older models of

Burd et al. (2002) in order to explore a wider range of values for the mechanical and geo-

metric parameters. A comparison between the role of geometry and stiffness in the decline

of accommodation amplitude suggested geometry was the dominant cause. Those models

with a very soft cortex displayed a small initial increase in optical power in response to radial

stretching, as seen in some other models (Chien et al., 2006; Abolmaali et al., 2007). A gra-

dient refractive index was considered when calculating the optics of the lens; however, when

the model was subjected to disaccommodation the form of the index profile was dictated by

the equatorial radius and the axial thickness of the lens rather than the deformation of the

lens substance, so it provides little insight.

Weeber and van der Heijde (2007) compared the amplitude of accommodation for mod-

els incorporating the age-dependent stiffness gradient measured by Weeber et al. (2007) to

the amplitude for similar models using age-dependent homogeneous stiffness values from

Fisher (1971) and Weeber et al. (2005). The gradient-stiffness models indicated a signif-

icantly greater decline in accommodation amplitude between the ages of 20 and 60 years

than the homogeneous models, and followed the clinical data more closely. The influence

of the stiffness gradient on the internal deformations of the lens was investigated by Weeber

and van der Heijde (2008), again using the data of Weeber et al. (2007). For the 20-year

model the greatest axial strain was found to be at the centre of the soft nucleus, in qualitative

agreement with Scheimpflug photography (for example Dubbelman et al., 2003). The total

thickness change and the proportion of this change occurring in the cortex were greater in
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the model than the in vivo measurements. The 40-year model behaved in a similar way to

the 20-year case when subjected to the same equatorial stretch, while the stiff nucleus of the

60-year model experienced a smaller axial strain than the cortex. These different internal

deformations may be of importance to the optics of the lens, due to the gradient that also

exists in the refractive index.

The model of a lens subjected to laser lentotomy, developed by Ripken et al. (2006),

was compared to an untreated lens to assess the effect of the treatment. The amplitude of

accommodation was found to increase by a modest 0.18D when the lentotomy cuts were

included, though the change in the axial thickness of the lens was more substantial. The

optical calculations are in doubt as the power of the lens is unrealistically low even in the

undeformed fully-accommodated state.

3.2.2 Sensitivity studies

Modelling can also be used to investigate which aspects of the in vivo accommodation ap-

paratus have a substantial influence on its behaviour. Weeber (2002) examined the effect

of residual stresses in the lens, and found that they had only a small influence on its opti-

cal performance despite a more pronounced effect on the overall shape adopted by the lens.

Similarly, Stachs et al. (2006) found that a more complex arrangement of zonular fibres had

little impact on the modelled behaviour of the lens on the optical axis, but resulted in a 22%

smaller displacement of the lens equator in response to the simulated movement of the ciliary

body. While the optical behavior of the lens is central to understanding the accommodation

mechanism, achieving better accuracy throughout a model is useful for comparison with

other in vivo measurements. Thus broader measures of the influence of such aspects of the

model are preferable.

3.2.3 Zonular fibre traction

The simple shell model of O’Neill and Doyle (1968) was used to estimate the membrane

traction required to deform the anterior capsule from an accommodated to a disaccommo-

dated form. A value of 12.3Nm−1was obtained, corresponding to a total force of 348mN for
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a capsule of radius 4.5mm. This is considerably higher than more recent calculations due to

the high stiffness adopted for the capsule which was derived from tests on feline specimens.

Burd et al. (2002) reported the force required to stretch the modelled accommodation

apparatus by the amount prescribed for full disaccommodation. The values ranged from

about 60mN for the 11-year model to about 100mN for the 45-year model.

The models of Hermans et al. (2008a) were used to determine the net force applied by

the ciliary body during disaccommodation by iteratively adjusting the applied tractions until

the expected disaccommodated lens geometry was achieved. The results ranged from 32mN

to 70mN depending on the age and stiffness data used form the model. These values were

used to inform the design of an accommodating IOL that would operate with a net force of

about 10mN (Hermans et al., 2008b).

3.3 The state of modelling

The bulk of recent models have used the finite element method. The accommodation appa-

ratus is treated in a broadly similar manner in most such models. Axisymmetry is generally

assumed, and models consist of the lens substance (often divided into a distinct nucleus

and cortex), the capsule, and usually the zonular fibres. The ciliary body is generally not

represented explicitly, but the effect of its outward movement during disaccommodation is

represented by prescribing the displacement of the of the outer ends of the zonular fibres.

Some refinements have been considered, such as residual stresses or the addition of the vit-

reous, but considering the large uncertainties which currently exist in the appropriate values

for basic mechanical properties of the lens substance and capsule, such further steps can

only be exploratory. Without improvements in the data available for models, they can only

provide limited insight into the accommodation mechanism.



4
Assessment of the spinning lens test

The spinning lens test is a useful means of determining the stiffness of the lens substance

as it provides loading which is broadly comparable to in vivo accommodation and does not

require the disruption of the structure of the lens fibre cells. However, the methods applied in

the original spinning lens test of Fisher (1971) have a number of clear limitations which in-

troduce substantial random and systematic errors. Some of these limitations are investigated

by Burd et al. (2006), jointly written by the author.

The current work seeks to improve the spinning lens test by reducing the major sources

of error and uncertainty that have been identified in the original test. This involves changes

to both the experimental arrangements and to the analysis used to determine the stiffness

from the raw results.

4.1 Details of the test of Fisher (1971)

The original spinning lens test of Fisher (1971) subjected human lenses to rotation about

their axis while resting on a ring shaped support. Lenses were obtained within 24 hours

of the death of the donor. The lens was extracted by cutting the zonular fibres with micro-

scissors. Photographs were taken of the lens, both stationary and spinning, using a flashgun

for illumination. These photographs were taken at random orientations unless the lens was

stationary, in which case the lens was rotated 15◦ between each photograph. A range of
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Figure 4.1 – A cross-section of the idealized lens geometry used in the calculation of
stiffness values by Fisher (1971). The symbols are described in the text.

rotational speeds were applied, from 250rpm to over 1000rpm with increments of 250rpm.

Between each test the lens was returned to warmed saline. Measurements of the equatorial

diameter and anterior axial thickness (the height of the anterior pole above the plane of the

equator) were obtained from the photographs.

The mean equatorial radius, a, and anterior axial thickness, b, were calculated from the

seven photographs of the lens when stationary. The changes in these dimensions were deter-

mined at each spinning speed to produce smoothed load-displacement plots. The unsigned

displacements of the equator and anterior pole at a spinning speed of 1000rpm were read

from these curves to give the values δa and δb. The displacement values were each used to

make an estimate the Young’s modulus of the lens using a simplified homogeneous model

of the spinning lens. As these two values disagreed in a systematic manner a similar, two-

material model was developed, illustrated in figure 4.1.

In this model the lens was treated as a spheroid with semi-axes a and b. The nucleus of

the lens was assumed to be a sphere of radius b at the centre of the lens possessing a different

stiffness from the surrounding cortex. Both components were represented as incompressible,

isotropic, and homogeneous materials. Vertical and shear stresses were taken to be negligible

during spinning and an approximation was used for the force transmitted from the cortex to

the nucleus. This model was used to calculate the stiffness of the nucleus and the cortex from

the intermediate values calculated using the homogeneous model of the lens. Equivalently
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they can be determined directly from the displacements:
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δb2 (4.1)
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where EN and EC are the Young’s modulus of the nucleus and cortex respectively, ρ is the

density of the lens (separately measured but not reported by Fisher, 1971), and ω is the an-

gular velocity of the lens. The individual values obtained for EN and EC were not presented,

but were instead summarized by polynomials describing the relationship between age and

stiffness.

4.2 Limitations of the original spinning lens test

4.2.1 Influence of the capsule

The stiffness measurements reported by Fisher (1971) appear to come from tests conducted

on lenses with intact capsules. The analysis of the tests, however, does not take account of

the presence of the capsule. The justification provided is that removal of the capsule has only

a small effect on the induced displacements: after removing the capsule there was reported

to be no change in the equatorial displacement and a 20% decrease in the magnitude of the

polar displacement. This observation, however, refers to a single 21-year lens so it is not

clear that it is either reliable or consistent across the range of ages tested.

If the capsule does restrict the deformation of the lens substance then the stiffness of the

substance will affect the magnitude of the restriction. Softer lens substance will experience

more restriction than stiffer lens substance, so the presence of the capsule will diminish the

range of stiffness values obtained from a set of lenses.

4.2.2 Accuracy of measurements

The methods used to photograph the lens and take measurements from those photographs

lead to relatively large errors in the calculated stiffness values. The standard deviation of the

dimensions a and b calculated from different sets of photographs of the same stationary lens
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(a)
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Figure 4.2 – Two photographs of the same lens from Fisher (1971). The lens is stationary
in photograph (a) in which the local details of the lens are visible. The lens is rotating at
900rpm in photograph (b) and the surface details have become blurred by the motion.

was reported to be 14mm. Since lenses are not exactly axisymmetric, and cannot be perfectly

aligned on the rotor, the difference in dimensions of the lens for different orientations is

likely to be a substantial contributor to this variation. If a similar standard deviation applies

to the measurements from the spinning lens then the standard deviation in the displacements,

δa and δb, would be about 20mm which is about 10% of the typical values for young lenses

and 30% for a 60-year lens.

The calculation of the stiffness of the nucleus and the cortex using equations 4.1 and 4.2

magnifies the effect of measurement errors. For typical values of the parameters the relative

error of EN and of EC is about twice the magnitude of the relative error in δa and δb if the

latter are assumed to be independent of each other. This means that with the measurement

variation given for a 60-year lens, the interval encompassing one standard deviation in each

stiffness value covers roughly a four-fold range.

The measurements taken from photographs of the lens when spinning introduce an ad-

ditional uncertainty as it is clear from the photographs reproduced by Fisher (1971) that the



Chapter 4. Assessment of the spinning lens test 39

lenses rotated substantially during the exposure period, leading to motion blur (see figure

4.2). The edges of the lens captured in the blurred photographs are the outermost points the

lens occupied during the exposure period so any misalignment of the lens would lead to ex-

aggerated measurements of the lens equator, and hence of δa. The anterior pole was reported

to be without blurring when viewed through a microscope so is unlikely to be affected.

4.2.3 Approximate analytical model

The model used by Fisher (1971) to describe the spinning test is necessarily highly simplified

to allow the analytical derivation of equations 4.1 and 4.2. The geometry of the lens is

approximate and that of the nucleus differs substantially from reality. Vertical and shear

forces are neglected and the potential restraint of the ring on which the lens sits is ignored.

Finally, the approximation of the mechanical link between the nucleus and the cortex was

chosen on the assumption that the nucleus was no stiffer than the cortex and it becomes

increasingly unrealistic the further a given lens is from satisfying this condition.

Each of these approximations may lead to a considerable error in the calculation of the

stiffness values. The neglect of the vertical and shear forces is examined as an example. An

exact solution exists for the rotation of a homogeneous linear-elastic spheroid , equivalent to

the homogeneous case of the model of Fisher (1971) with the inclusion of vertical and shear

forces. Burd et al. (2006) give equations for the displacements obtained from this solution:

δa =
ρω2a3

2E

(
4k4 +9k2 +12

23k4 +24k2 +48

)
(4.3)

δb =
ρω2a2b

E

(
7k4 +10k2 +8

23k4 +24k2 +48

)
, (4.4)

where E is the Young’s modulus and k = a
b is the aspect ratio of the spheroid. If displace-

ments are calculated using this model for values a = 4.5 and b = 2 (typical for a lens),

and then used in equations 4.1 and 4.2, the resulting stiffness values are EN = 0.73E and

EC = 1.54E. So just the neglect of vertical and shear forces in the model of Fisher (1971)

leads to a factor-of-two error in this estimate of the ratio of EC to EN .
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4.3 Improvements in the current work

The implementation of the spinning lens test used in the current work seeks to address the

limitations raised in section 4.1 and make further improvements. The problems relating to the

capsule and photography are addressed by modifying the experimental procedure, while the

remaining issues are countered by introducing a numerical model of the test for calculating

the stiffness parameters of the lens, in preference to the approximate analytical model used

by Fisher (1971).

4.3.1 Removal of the capsule

The most direct way to address the uncertain effect of the capsule during the spinning test is

to remove it before testing. This creates some difficulties during the experiment since addi-

tional care is required to avoid damage to the lens substance both during and following the

removal of the capsule. However, the elimination of the capsule means that no assumptions

on its influence need to be introduced into the analysis of the stiffness of the lens substance.

This is the approach adopted in the current series of spinning lens tests. The method used

to remove the capsule and the subsequent testing are described in section 6.4.3. Additional

spinning tests conducted on the intact lens prior to the removal of the capsule permit an as-

sessment of the influence of the capsule during the test (see section 8.1.3). These tests may

be used in future work to examine the properties of the capsule, making use of the stiffness

values obtained for the lens substance of the same specimen in the decapsulated tests.

4.3.2 Photography and illumination

The errors introduced by the random lens orientation in photographs and the possible sys-

tematic errors caused by motion blur can both be avoided using an improved illumination

scheme. The obvious solution to the former problem is to ensure that the lens is pho-

tographed at the same set of orientations when stationary and when spinning. By comparing

photographs of the lens at the same orientation the deformation of the lens can be assessed

without the differences in the overall form of the lens at different orientations causing scatter



Chapter 4. Assessment of the spinning lens test 41

in the results. This is implemented in the current spinning lens test by the timing system

described in section 6.3. Motion blur is also essentially removed by using an appropriately

brief flash duration when taking the photograph, made possible by bringing the flashgun

close to the lens.

4.3.3 Modelling the test numerically

The analysis of the test reported by Fisher (1971) made a number of substantial simplify-

ing assumptions to provide an analytical solution. Calculating the stiffness data from the

photographs using a numerical method involving fewer approximations would improve the

accuracy of the test. In the current spinning lens test, the finite element method is used to

model the test, and an iterative optimization procedure is employed to obtain stiffness data

from this model. The formulation used in the finite-element model is described in chapter 5,

while the methods employed to construct models of spinning lens tests and optimization

procedure are described in chapter 7.

The finite element method allows an essentially arbitrary geometry. This means that the

specific form of each lens can be modelled, making use of measurements over the full lens

outline rather than just the equatorial radius and anterior polar thickness. The deformation

of the full outline can then be used to compare the model to the experiment. In addition to

greater accuracy, this potentially provides greater sensitivity to the inhomogeneity of the lens

than two displacement measurements would give. The automated processing used to obtain

the lens outline is presented in section 7.2, and the method of comparing the deformed state

of the experimental and modelled outlines is given in section 7.6.1.

The form of stiffness inhomogeneity within the lens can also be chosen freely in a finite-

element model, though the choice requires additional information not available from the

spinning test itself. It is possible to include a discrete nucleus with a more realistic shape, or

to impose some form of continuously varying stiffness, as suggested by the indentation tests

of Heys et al. (2004) and Weeber et al. (2007). Both of these options are considered in the

current analysis, with details given in section 7.5.

A finite-element model of the spinning test naturally includes the effect of shear and ver-
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tical stresses that develop within the lens during spinning, in contrast to the analytical model

used by Fisher (1971). It also makes it practical to incorporate the effect of the lens sup-

port. The question of exactly how the support and the lens interact during spinning remains

uncertain, so the two extremes (the lens fully fixed at the support and the lens free to slide

over the support) are examined in the present analysis. Their respective implementations are

described in section 7.4, while a comparison of the results is presented in section 8.2.2.

4.3.4 Other changes

Some additional changes have been made to the experimental procedure. Rather than placing

the lens in warm saline after each test, the tests are conducted at room temperature and the

lens is enclosed in a humid box throughout spinning to reduce drying. This avoids repeated

repositioning the lens, which is certainly to be preferred once the capsule has been removed.

The number of speeds at which the lenses are tested has been reduced as the lowest speeds

generally do not induce enough deformation of the lens to be useful. One difference which

is not advantageous is that currently testing can generally only commence two or more days

after the death of the donor.



5
A framework for modelling lens

mechanics

The analysis adopted for the new version of the spinning lens tests and the application of the

resultant data to the in vivo accommodation system both require a computational model of the

mechanical behaviour of the lens. An axisymmetric hyperelastic finite-element formulation

has been identified as an appropriate approach. A summary of the mathematical approach

and the numerical procedures adopted in the current work is given below, including the

constitutive models used to describe the lens substance, the capsule and the zonular fibres.

The selection of the parameters required to characterize a particular material is detailed as it

arises in subsequent chapters.

5.1 Background

The computational models of the spinning lens test and the in vivo accommodation mech-

anism used in the current work owe their form to the use of the finite-element program

OXFEM_HYPERELASTIC. This program was written by Dr Burd to provide numerical so-

lutions for the large-strain elasticity problems typically encountered when modelling the

mechanics of the eye and particularly the lens. In general, the options already provided in

OXFEM_HYPERELASTIC have dictated the form adopted for the models, but where these

43
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were considered to be inadequate for the current work the author has made additions to the

program.

5.2 Kinematics

5.2.1 Large strain kinematics

The young lens deforms substantially during in vivo accommodation and disaccommodation.

For example, Strenk et al. (1999), using magnetic-resonance imaging, found that on average

for the subjects aged between 20 and 30 years the lens in a disaccommodated state had an

equatorial diameter 7% greater and an axial thickness 10% less than when accommodating

at 8D (approximately the maximal accommodation effort at that age). The spinning lens test

can also induce comparable changes in young lenses. The data plotted in Fisher (1971) and

tabulated in Burd et al. (2006) indicate that for the lenses aged between 20 and 30 years,

spinning at 1000rpm produced an increase in the equatorial diameter of 2% and a decrease

in axial thickness of 8% compared to the stationary state. A linear formulation, in which

strains are assumed to be infinitesimal, is inadequate when analysing deformations of this

magnitude. This is particularly true for models which include membranes such as the lens

capsule, as these generally require a change in shape to achieve equilibrium. The current

lens model is based upon the Lagrangian finite-deformation framework presented in Bonet

and Wood (1997) and Holzapfel (2000). In addition to representing large strains rigorously

this formulation allows the adoption of constitutive models that have been developed in other

areas of soft tissue mechanics.

In brief, if a continuous body is deformed from an initial material configuration Ω0 to a

subsequent spatial configuration Ω, then there is a motion function χ : Ω0→Ω which maps

material points X ∈Ω0 to their subsequent spatial location x ∈Ω. From this the deformation

gradient tensor, F, can by calculated as

F =
∂x
∂X

. (5.1)

The deformation-gradient tensor provides the fundamental description of the deformation of
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the body in the vicinity of a given point. In addition to information on the state of strain, the

deformation-gradient tensor also contains information on the local rotation of the material. F

can be decomposed into a rotational component, Q, and a symmetric pure stretch component,

U; that is F = QU. The right Cauchy-Green strain tensor, C = FTF = U2, is a measure of

strain which is independent of the rotational component of F and can be readily calculated.

Since the response of a material to a particular state of strain should not depend on how it has

rotated, the right Cauchy-Green strain tensor is commonly used as the independent variable

when defining such a response.

When considering an incompressible material, or a nearly-incompressible material such

as the lens substance, it is convenient to consider the volumetric strain and the isochoric

(volume-conserving) strain separately. The volumetric strain is equal to the determinant of

the deformation-gradient tensor: J = det(F), while the isochoric component is F̂ = J−
1
3 F.

The isochoric component of the right Cauchy-Green strain tensor is Ĉ = J−
2
3 C.

5.2.2 Axisymmetry

The lens is approximately axisymmetric in form and is subjected to axisymmetric deforma-

tions both in vivo during accommodation and in the spinning lens test. This means the lens

can be conveniently described by cylindrical coordinates (R, Z, Θ) in which the Z-axis is

aligned with the axis of symmetry of the lens. In this coordinate system the geometry and

loads, and consequently the resulting strains and stresses, do not vary with Θ (provided there

is no symmetry-breaking behaviour such as buckling). This reduces the description of the

lens geometry to two dimensions and greatly decreases the scale of the computations re-

quired to solve the problem numerically. Strains and stresses in the circumferential direction

(aligned with the unit vector Θ̂ΘΘ) still arise and must be included in the model.

5.3 Constitutive models

Three distinct components of the accommodation apparatus are modelled in the current

work: the lens substance, the capsule, and the zonular fibres. The lens substance is mod-
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elled during the analysis of the spinning lens test described in chapter 7, while all three

components are used in the models of the accommodation system specified in chapter 9.

The selection of parameters for the various materials are discussed in those chapters. Sec-

tions 5.3.1 to 5.3.4 discuss the most appropriate assumptions to make regarding the behaviour

of the various tissues in order to obtain useful models of the system given the limits of the

current state of knowledge.

5.3.1 Hyperelasticity

The large-strain formulation adopted encourages the use of hyperelastic constitutive models

of the tissues of the accommodation apparatus. A purely elastic material is one in which the

stresses at a given point depend only on the current state of strain at that point. If in addition

the work done by the stresses in reaching that state of strain also depends only the current

state of strain then the material is said to be hyperelastic. This allows the material to be

characterized by a scalar-valued function, Ψ, which maps the strain state to the corresponding

strain energy density (calculated with respect to the material configuration Ω0). Derivatives

of the strain energy function allow the stress and stiffness tensors to be calculated for any

state of strain. This leads to a relatively compact means of specifying material behaviours.

5.3.2 The lens substance

Previous measurements of lens stiffness have generally treated the lens substance as a nearly-

incompressible, isotropic, linear-elastic continuum. For example, Fisher (1971) and Heys

et al. (2004) both assume this form of constitutive model when interpreting their experimen-

tal results. The stiffness measurements of Weeber et al. (2005) and Weeber et al. (2007)

additionally incorporate viscoelasticity. Most existing models of the accommodation mech-

anism (such as Burd et al., 2002, Stachs et al., 2006, and Weeber and van der Heijde, 2007)

similarly consider the lens substance to be a nearly-incompressible, isotropic, linear-elastic

continuum. An exception is the model of Chien et al. (2006) which treats it as an incom-

pressible fluid continuum.

The large strain formulation used in the current modelling of the lens requires a hyper-
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elastic constitutive model for the lens substance. The nearly-incompressible neo-Hookean

constitutive model described in Bonet and Wood (1997) is adopted as this provides a sim-

ple isotropic material which can be characterized by two parameters, µ and κ , which are

equivalent at small strains to the shear and bulk modulus of linear elasticity respectively.

This permits a correspondence with previous measurements and models. The strain energy

function for this constitutive model is

Ψ =
µ

2

(
tr
(

Ĉ
)
−3
)
+

κ

2
(J−1)2 , (5.2)

where Ĉ is the isochoric component of the right Cauchy-Green strain tensor and J is the

volumetric strain. For a nearly-incompressible substance µ � κ . This constitutive model

represents essentially the simplest suitable model of the lens substance.

The assumption that the lens substance is nearly incompressible is reasonable in view

of its high water content (over 60% by weight according to Fisher and Pettet, 1973). It is

also supported by the observation that neither the nucleus nor the whole lens change volume

during accommodation (Hermans et al., 2007; 2009). These observations do not rule out the

possibility that the lens substance behaves in a poroelastic manner, with the water component

able to flow relative to the solid component. Equally, though, there is no evidence that the

mechanical behaviour of the lens depends on such flows and nor is there data to inform such

a constitutive model. An assumption that the lens substance is locally nearly incompressible

is therefore regarded as the most appropriate means of matching the observed large-scale

incompressibility.

The consistent orientation of the lens fibre cells mean the lens substance is not structurally

isotropic. If the cell membranes or related structures contribute significantly to the elasticity

of the lens then the elastic response in the direction aligned with the cells would be expected

to differ from that in the transverse directions (which might also need to be distinguished

from each other due to the anisotropic shape of cell cross-sections). However, it is not

currently known what constituents gives rise to the elasticity of the lens substance, and no

measurements of local elastic anisotropy within the lens exist. This leaves elastic isotropy as

the default assumption for the lens substance.

The viscoelastic nature of the lens will influence its dynamic response. However, when
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the lens is subjected to a sustained effort to accommodate in vivo and when its rate of rotation

is held constant for several seconds in the spinning lens test it is assumed that the response of

the lens will be dominated by its asymptotic elasticity. Thus it is appropriate to model these

situations using the considerably simpler option of a purely elastic material.

5.3.3 The lens capsule

The capsule is thin compared to the overall dimensions of the lens (the polar thickness of the

isolated lens is over 200 times the anterior capsule thickness; Rosen et al., 2006; Barraquer

et al., 2006). As such it can be modelled as a membrane described geometrically as a zero-

thickness surface, but with the appropriate thickness value incorporated into the constitutive

model. The mechanics of the capsule are therefore characterized by a function specifying

the strain energy per unit undeformed area rather than volume.

The capsule displays a markedly non-linear response at stretch ratios over about 1.15

in uniaxial tension (Krag and Andreassen, 2003a). However, during accommodation the

capsule strain is relatively small; for example Hermans et al. (2009) indicate that for young

subjects the surface area of the lens when disaccommodated was on average 5% greater than

when accommodated. The constitutive model for an elastic membrane given in equation 5

of Burd (2009) is used to represent the capsule, as this can broadly reproduce the behaviour

of the more complex structural model proposed in the same publication. The strain-energy

area-density function is

Ψ2D =
t0E

2
(
1−ν2

2D

) ((λ1−1)2 +(λ2−1)2 +2ν2D (λ1−1)(λ2−1)
)

, (5.3)

where t0 is the membrane thickness in the reference configuration, E is the Young’s modulus,

ν2D is the in-plane Poisson’s ratio, and λ1 and λ2 are the in-plane principal stretches of the

membrane, equal to the eigenvalues of the deformation gradient tensor F. The values of E

and ν2D are selected to reconcile the stiffness values reported for the capsule when tested uni-

axially by Krag and Andreassen (2003a) and biaxially by Fisher (1969) (see section 9.1.2).

The strain energy function is defined in terms of the principle stretches because in an ax-

isymmetric membrane they necessarily lie in the meridional and circumferential directions,

making their calculation straightforward. For large uniaxial stretch ratios (λ ∼ 1+ 1
ν2D

) the
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constitutive model becomes unphysical as the transverse stretch ratio falls to zero, but this is

not relevant for the stretch ratios that are encountered when modelling in vivo accommoda-

tion.

When subjected to compressive stresses a thin membrane will generally buckle, and

therefore exhibit greatly reduced stiffness. Buckling in the circumferential direction cannot

be represented explicitly in an axisymmetric model as the position of the buckled membrane

would have to vary circumferentially. Instead the constitutive model is adjusted to reproduce

the reduction in stiffness while maintaining symmetry. For a membrane that is free to buckle

in either direction the strain energy function becomes

Ψ2D =



t0E
2(1−ν2

2D)

(
(λ1−1)2 +(λ2−1)2 +2ν2D (λ1−1)(λ2−1)

)
λ1≥1−ν2D(λ2−1),
λ2≥1−ν2D(λ1−1)

t0E
2 (λ1−1)2

λ1≥1, λ2<1−ν2D(λ1−1)

t0E
2 (λ2−1)2

λ1<1−ν2D(λ2−1), λ2≥1

0 λ1,λ2<1

(5.4)

This function has continuous derivatives, but discontinuous second derivatives at the transi-

tions between unbuckled and buckled states, leading to sudden changes in stiffness, a feature

which can be problematic during simulation.

OXFEM_HYPERELASTIC includes an option to specify which buckling states are per-

missible for each membrane material included in a model. It also allows buckling to be pre-

scribed for cases where the membrane is already buckled in the reference geometry. These

features were implemented by the author for use with the lens capsule.

5.3.4 The zonular fibres

The zonular fibres are generally included in models of in vivo accommodation, as they trans-

mit the movement of the ciliary body to the lens capsule. As thin radial fibres they are best

modelled as bars. In an axisymmetric model the individual fibres are essentially combined

into a continuous ring. Unlike a membrane, however, no circumferential stresses exist in the

bars and the total cross-sectional area remains constant along the length of the bar element,
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rather than increasing with radius. The mechanics of the zonular fibres are therefore char-

acterized by a function specifying the strain energy per unit undeformed length rather than

volume.

A neo-Hookean constitutive model is adopted for the zonular fibres. The stretch ratios in

the directions orthogonal to the fibre are prescribed by an assumption of incompressibility,

leaving just the stretch ratio parallel to the fibre, λ , as a variable in the strain energy line-

density function. This takes the form

Ψ1D =
A0µ

2

(
λ

2 +
2
λ
−3
)

, (5.5)

where A0 is the total cross-sectional area of the fibres in the reference configuration and µ is

the shear modulus of the fibre material.

5.4 Finite-element formulation

5.4.1 Solution procedure

OXFEM_HYPERELASTIC is used to calculate an approximate solution to the elastic response

of the lens to a given set of loading conditions. The problem of finding the displacement field

which corresponds to an equilibrium point of the model is described by the weak formulation,

which in axisymmetry can be written as

2π

ˆ
A

δΨ(u)RdA−
ˆ

a

b·δurda

= 0 , (5.6)

where A is the undeformed axisymmetric cross-section, a is the deformed axisymmetric

cross-section, δ is the variational operator, Ψ is the strain energy density function, u is the

displacement field, b is the body-force field, R is the radial coordinate in the undeformed

configuration, and r is the radial coordinate in the deformed configuration.

The problem is discretized using the standard finite-element approach, in which the dis-

placement field is approximated by piece-wise polynomial components specified over a pre-

defined mesh of elements. Integration over each element is approximated using Gaussian

quadrature. The problem is then linearized in order to apply the Newton-Raphson method
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to find the correct discretized displacement field (to a specified tolerance for the maximum

remaining out-of-balance force). Each iteration in the Newton-Raphson procedure requires

the calculation of a tangent stiffness matrix which must be inverted to calculate the updated

displacement field. In OXFEM_HYPERELASTIC the matrix inversion is performed using a

direct frontal solver. The frontal solver avoids assembling the entire sparse matrix, but in-

stead obtains the contribution of each element in turn, eliminating any completed row from

the matrix before proceeding.

In general it is preferable to apply the loading conditions in a sequence of steps so that the

initial point in the Newton-Raphson procedure is not too far from equilibrium. The standard

option in OXFEM_HYPERELASTIC, ‘Newton1’, uses a specified number of equal sized

steps. The author added a second option, ‘Newton2’, in which the step size is adjusted

automatically depending on the number of iterations and the maximum out-of-balance force

that the previous step produced. Thus if the convergence of the previous application of the

Newton-Raphson procedure was slow, the following step will be decreased in size and vice

versa. The adjustable step size is particularly useful when using OXFEM_SEARCHER (see

section 7.6) where the same solution procedure is used to calculate the response for a range

of material properties, which generally can be solved most efficiently with different step

sizes. If the Newton-Raphson procedure fails to converge for some step then the Newton2

option also makes a second attempt at increasing the loading using a smaller step size.

OXFEM_HYPERELASTIC has an optional line-search procedure based on the algorithm

of Chrisfield (1991). The line-search seeks a scaling, η , to apply to the nodal displacements,

δu, calculated by the Newton-Raphson procedure after the first iteration of each step. A

scaling is sought which decreases the component of the nodal forces acting in the direction of

δu. Actual nodal displacements of ηδu are then imposed for the current iteration. In general

the line search algorithm sets η = 1 (thereby having no effect) unless significant non-linearity

is affecting the performance of the Newton-Raphson procedure. When there is such non-

linearity, the line-search procedure helps avoid inaccurate linear extrapolation. The author

made a minor modification to the line-search algorithm used in OXFEM_HYPERELASTIC,

adjusting the the interpolation-extrapolation procedure that selects candidate values of η so
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that more information from the previous candidate values is utilized.

5.4.2 Element selection

Axisymmetric finite-element models of incompressible and nearly-incompressible solids re-

quires care in the selection of the element used (Sloan and Randolph, 1982). Using more

elements in a given model generally allows for a more accurate solution as the discretized dis-

placement field can more accurately reflect the undiscretized form. For low-order elements,

however, the additional degrees of freedom provided by increasing the number of elements

are overwhelmed by the additional constraints imposed by incompressibility, leading to an

unreliable model. Fifteen-noded triangular elements (giving fourth-order displacements and

third-order strains) are the lowest-order elements acceptable for an axisymmetric model of

an incompressible substance when using full integration according to Sloan and Randolph

(1982). These are adopted as the basic element used to describe the lens substance. A

13-point Gaussian quadrature rule with a degree of precision of 7 is used to perform the

integration over these elements (Cowper, 1973).

Five-noded membrane elements are used to model the lens capsule as these match the

order of the elements of the lens substance. A 5-point Gaussian quadrature rule with a

degree of precision of 9 is used to perform the integration over these elements. The zonular

fibres are modelled as 2-noded bar elements



6
The spinning lens test: Experiment

The new version of the spinning lens test developed by the author is based on the method re-

ported by Fisher (1971), but incorporates the improvements discussed in section 4.3. During

early testing it was assumed that the lens would quickly deteriorate after removal from its

storage medium and especially after removal of the capsule. Hence, the procedures adopted

emphasize rapid testing over other concerns.

6.1 Background

The development of a new lens spinning test was initiated at Oxford University by Dr Burd

and Dr Judge, with the aim of addressing some of experimental and analytical limitations of

the original lens spinning test of Fisher (1971). Several undergraduate projects contributed

to the development of the test. Hirunyachote (2003) designed and commissioned the rotor,

frame, and speed control. Spinning tests were conducted on porcine lenses using that version

of the rig by Sorkin (2005). The contributions by the author to the experimental apparatus are

redesigning the lens support and containment box, writing the program LENSCAM to allow

the camera to be controlled from a laptop PC, and designing and programming the system

which controls the flashgun.

In preparation for performing tests on human lenses approval was sought from the Berk-

shire Research Ethics Committee by Dr Burd and Dr Judge on the 15th of September 2006.

53
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Following a meeting of the ethics committee on the 10th of October 2006 a favourable opin-

ion was granted on the 21st of February 2007. A safety statement for the experimental pro-

cedures was prepared. The most recent version of this statement is included in appendix A.

6.2 The spinning rig

The spinning rig (figure 6.1) consists of a vertical rotor which can be spun at an adjustable

speed, the lens support at the top of the rotor on which the test specimen sits and a box

enclosing the support and specimen. The rig was inherited from previous project (Hirunya-

chote, 2003). The rotor and speed control have not been changed, while the lens support and

box have been redesigned in the current work.

6.2.1 The rotor and speed control

The rotor shaft is aligned vertically, supported on two sets of bearings in a machined Dural

metal frame. It is driven by a direct current electric motor (Maxon A-Max 22mm diameter)

connected at the base through a plastic sleeve to reduce vibration. Power is provided by a

variable voltage supply (TTi EL301), allowing the rotational speed to be adjusted manually.

Two brass flywheels mounted on the rotor shaft provide the inertia needed to achieve a

steady speed. The lower flywheel (‘speed flywheel’ in figure 4.1) is also used to measure

the speed. It is painted alternately with 12 black and 12 white stripes and monitored by an

optical reflection sensor fixed to the frame (Honeywell HOA0708; omitted from figure 6.1

for clarity). When the flywheel rotates, the sensor produces a corresponding periodic signal.

This is fed into a digital counter which displays its frequency, allowing the voltage applied

to the motor to be manually adjusted until the desired speed is achieved. The value on the

display is 12 times the revolutions per second or one fifth of the revolutions per minute, so has

a precision of 5rpm. The process of adjusting the voltage to obtain the desired speed reading

can sometimes take over a minute as the delayed response of both the rotor and the counter

to their respective inputs makes fine adjustment slow. Higher speeds generally require more

time for adjustment than lower speeds. Once a target speed has been achieved it is generally
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stable; there is occasionally, however, a gradual drift in the speed reading of up to 20rpm

without further changes to the supplied voltage. When drift occurs after photographing has

commenced the voltage setting is not altered to avoid the danger of manual over-correction.

The position of the rotor is monitored by two further optical sensors. The upper flywheel

(‘reset flywheel’ in figure 6.1) is painted half black and half white, and monitored by a second

reflection sensor (Honeywell HOA0708; omitted from figure 6.1). A thin disc with eight

evenly spaced slots cut into its rim (‘orientation disc’ in figure 6.1) is attached to the rotor

and monitored by a transmission sensor housed within the frame (Honeywell HOA2001).

The signals from these two sensors are used in the timing system described in section 6.3.2.

6.2.2 The lens support and containment box

During a test the specimen sits atop the rotor, resting on an interchangeable support (fig-

ure 6.2) and enclosed in a Perspex box (figure 6.3). The lens support can be removed from

the rotor shaft for cleaning or in case of damage. A socket milled into the rotor shaft accepts

a pin projecting from the base of the support, which is then locked in place with two hori-

zontal grub bolts. Adjusting the grub bolts so that the support is well aligned with the rotor

axis is a time-consuming task, so the support is rarely removed from the rotor.

The standard support used for human lenses consists of a thin plastic ring glued to a

castellated brass cylinder, both of 6.5mm outer diameter (figure 6.2). The ring is fashioned

from Delrin plastic rather than metal to lower the risk of damaging the lens while it is being

positioned. The selected diameter allows a well positioned lens to spin at over 2000rpm

without being thrown off, while also allowing the equatorial region of the lens to deform

freely while spinning. The four castellations of the brass segment allow a good view of the

lower portion of the specimen at eight rotor orientations: four where there is a clear view

through the central region and four where there are two smaller regions of clear viewing

on each side. It is at these eight, evenly spaced ‘window orientations’ that photographs are

taken. Additional orientations could be usefully photographed, especially if the support were

blackened, but this has the cost of increasing the time to conduct the test, so only the eight

most useful orientations have been used.
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Figure 6.1 – Side view of the spinning lens rig drawn to scale. Optical sensors omitted for
clarity. (Adapted from Burd et al., 2011).
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Figure 6.2 – The lens support: (a) plan, (b) elevation, and (c) the support ring
cross-section. (Adapted from Burd et al., 2011).

Two other supports were used in some early tests on human lenses. A ring support

similar to the standard support but of 8mm outer diameter was used in the first day of tests

but this proved to be too large for human lenses, prompting the commissioning of the 6.5mm

version. A dish-type support was trialled with two lenses. It consists of a brass cylinder of

8mm diameter, with the top milled to a concave spherical surface having a radius of curvature

of 10mm. The dish support allows the lens to be repositioned with reduced risk of damage

and decreases the deformation of the lens by the support. However, the contact between the

lens and the support is hidden and the support provides less constraint on lens movement,

making accurate positioning of the lens more difficult. This, together with the time required

to reposition each support when used, meant no subsequent tests were conducted with the



Chapter 6. The spinning lens test: Experiment 58

Dural rotor
support

45 mm

cover glass
window

Figure 6.3 – Front view of the containment box. (Adapted from Burd et al., 2011).

ring support.

Once a specimen has been positioned on the support, the Perspex containment box is

placed over it to prevent contamination of the laboratory by the lens should it scatter aerosols

or come off the support during spinning. The containment box is also required so a humid

environment can be maintained around the lens to limit any drying during the test procedure.

The side of the box facing the camera has an open window. A microscopy cover glass

(thickness #1: about 140mm ) is slid into place over this window to provide a minimally

distorted view of the specimen. The box has a removable clear lid to allow illumination of

the lens from above. The inner sides of the box are lined with filter paper, kept moist during

the testing to enhance the humidity within the box; the paper also improves the illumination

of the specimen. The base of the box is covered in aluminium foil to reflect light onto the

underside of the specimen. A piece of black card is mounted at the rear of the box to provide

a dark background for the photographs. It is angled slightly downward with an overhanging

flap at the top to reduce direct illumination from the flash. The width of the card is just

enough to fill the frame of the photograph as a greater width diminishes the illumination

of the periphery of the specimen. On the first day of tests on human lenses a larger box
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was used, but this was cut down to the size indicated in figure 6.3 to allow the flashgun to

be brought closer for enhanced illumination. The smaller box size is also advantageous for

maintaining humidity.

6.3 Image acquisition

The data collected from the spinning lens test consist of digital photographs of the speci-

men, taken using a camera controlled by the program LENSCAM run on a connected laptop

PC. A custom electronic timing system synchronizes the exposure of the photographs so

they capture the specimen when the rotor is at the eight ‘window orientations’ (described in

section 6.2.2 above) which provide the most useful views through the lens support. These

aspects of the apparatus were developed by the author.

6.3.1 The camera

The photographs are acquired with a Nikon D70 digital single lens reflex camera fitted with a

Nikon Micro-Nikkor 55mm macro lens and three Nikon PK-13 extension rings. The camera

is mounted on a two axis travelling microscope stand with additional fittings to adjust the

third axis and tilt. For human lenses the macro lens is set to its most extended position, then

the whole camera is moved using the travelling microscope stand to bring the sample into

focus. This gives an image magnification of 1.95, and a resolution of 4mm per pixel. Thicker

specimens, such as porcine lenses, require a different camera lens position to photograph the

whole lens.

The camera is controlled from a Windows XP laptop via a USB-1 connection. The

custom program LENSCAM provides a graphical user interface to interact with the camera.

It primarily allows the operator to initiate the capture of a batch of photographs, but also

controls the downloading and naming of the resultant files and allows changes to the camera

settings such as the digital ISO. Its image viewer can be used to check the downloaded

photographs, but since photographs are usually only downloaded after a complete series of
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Figure 6.4 – The principal LENSCAM dialog.

tests on a lens, the thumbnails available via the camera storage dialog are more useful for

checking for problems during the test.

The camera is generally used at aperture stop f/22 with a digital ISO of 400. It is set to

a long exposure (typically 1.3 seconds) to ensure the specimen has time to reach the current

target orientation, even when rotating at low speeds. The specimen is unilluminated for

almost all of the exposure, with a flash triggered at a point in the exposure interval which

depends on the flash controller (see section 6.3.2). To avoid extraneous light during the long

exposure, the room lights are turned off during testing and a cardboard shroud is placed over

the apparatus. The communication time with the laptop together with the exposure time

dictate that successive photographs are taken at least 5 seconds apart. The photographs are

recorded as 3008× 2000 pixel, 24 bit colour, JPEG format images. The JPEG format is

used in preference to the raw Nikon NEF format as it allows faster camera operation when

connected to the computer, with no apparent loss of useful information.
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6.3.2 The illumination and timing system

The illumination system controls the timing and duration of the actual exposure to light

that forms the digital photograph, during the period when the camera shutter is open. The

specimen is illuminated by a flashgun (Nikon Speedlight SB 800) positioned directly above

the containment box of the spinning rig, aligned with a marked line to achieve good and

consistent lighting. It is used at its lowest-intensity and hence shortest-duration setting which

gives a flash of approximately 24ms (Nikon). For a typical lens rotating at 1000rpm, this is

about 12mm or 3 pixels of movement at the lens equator during the exposure.

The timing of the flash is controlled by an electronic system based around a programmable

microcontroller chip (Microchip PIC16F876; referred to as the PIC below). The flash con-

troller is housed in a metal box with three switches for manual input and seven light emitting

diodes to display information, as illustrated in figure 6.5. A schematic of the timing system

circuitry is included in Appendix B. The PIC is controlled by a short program written by

the author. The assembly language of the PIC was used so that the program can rely on the

instruction cycles of the PIC for precise timing of the flash. The program essentially oper-

ates so that when the flash controller receives the standard flash signal from the camera it

delays passing this signal on to the flashgun until signals from the sensors on the spinning

rig indicate the rotor is at the current target orientation. The timing system receives inputs

from a binary-coded decimal dial, the camera, the flashgun, and the sensors monitoring the

orientation disc and the reset flywheel. It provides outputs to the flashgun (the principal out-

put) and the camera. Seven light-emitting diodes (the display LEDs) provide information on

the state of the flash controller.

The binary-coded decimal (BCD) switch (see figure 6.5 and appendix figure B.1) allows

the selection of different modes of operation for the timing system. When set to a position

from 0 to 7 the timing system is in ‘fixed mode’ in which the current target orientation of

the rotor is the same as the dial position. When the dial is in position 8 the timing system

is in ‘increment mode’ in which the current target is initially set to orientation 0, but is

incremented each time the flashgun is triggered, with orientation 0 following 7. This is the

setting used for testing lenses on the rig to provide one photograph at each of the window
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Figure 6.5 – The front panel of the flash controller box.

orientations. When the dial is in position 9 the timing system is in ‘immediate mode’ in

which the flashgun is triggered with minimal delay after receiving the flash signal from the

camera. Thus the rotor orientation is ignored in this mode.

The camera communicates with the timing system via the standard flash interface. A

camera-to-flashgun cable (Nikon SC-29) was cut in half and the exposed ends fitted with

three pin plugs to connect with the timing system box. The camera signals for the flashgun

to fire by activating a thyristor (or equivalent) between the fire and ground terminals of the

first section of cable. This signal is diverted to the PIC and primes it to trigger the flashgun

once the rotor is in the correct position. To trigger the flashgun it activates its own thyristor

(Philips 2N5064, see figure B.1) between the fire and ground pins of the second segment of

cable. The third pin of the cable relays the ‘ready’ signal from the flashgun to the camera,

though the Nikon D70 camera appears to operate the same regardless of this signal.

In order to correctly time the firing of the flashgun, the PIC keeps track of the position

of the rotor by counting the rising-edge signals from the orientation sensor monitoring the

orientation disc (figure 6.6). This signal occurs each time one of the eight slots cut into the

orientation disc passes between the emitter and receiver of the sensor. To ensure that these

signals coincide with the window orientations of the lens support it is necessary to rotate the

orientation disc to the correct position every time the lens support is removed and replaced on

the rotor. The count maintained by the PIC is reset to zero every time a rising-edge signal is
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Figure 6.6 – The synchronization mechanism: (a) the orientation disc, (b) the reset
flywheel, and (c) the resultant signals and corresponding orientations.

received from the sensor monitoring the reset flywheel to ensure that spurious signals cannot

cause a persistent error in the calculated position.

There is a delay of approximate duration δTF = 70ms between triggering the flashgun and

the actual exposure, as judged from photographs of the support rotating at a range of speeds.

If the PIC were to simply trigger the flashgun when it received the signal from the orientation

disc the delay would cause a small but noticeable difference in the orientation of the support

in photographs taken at different rotational speeds. To avoid this difference in orientations

the PIC calculates the correct time to trigger the flashgun, making use of the timing of the

previous two orientation signals. To correctly trigger the flashgun for orientation N, the PIC

times (in instruction cycles of 1ms) the interval δTS = TN−1−TN−2 between the arrival of

orientation signal N− 2 at time TN−2 and orientation signal N− 1 at time TN−1. The PIC

then triggers the flashgun at time TN−1 +δTS−δTF so that the illumination provided by the

flashgun occurs with the arrival of orientation signal N regardless of the speed of rotation.

At low speeds the rotor moves with sufficient variability in speed that this approach

becomes unreliable, so below 115rpm the PIC simply triggers the flashgun when the target
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Table 6.1 – Meaning of the timing system LEDs.

binary-coded decimal position

0 – 7 8 9

fixed mode increment mode immediate mode

LE
D

0 target orientation, bit 0 flashgun ready signal

1 target orientation, bit 1 reset flywheel signal

2 target orientation, bit 2 orientation disc signal

3 off on off

4 off off on

5 always off

6 always on once the PIC has initialized

orientation signal is received. The particular threshold speed of 115rpm is selected because

it corresponds to the point at which the PIC register used to record δTS overflows before the

arrival of orientation signal N− 1, providing a simple speed test within the PIC program.

At such slow rotation speeds the rotor moves a negligible amount during the flashgun delay,

δTF ; there is still, however, a residual discrepancy of 0.004rad on average between the

orientation of the support in photographs taken using this mode compared to those taken at

higher rotor speeds using the delay adjustment mode. This is enough to be noticed, but has

very little effect on the shape of the lens outline captured in the photographs. The remaining

discrepancy is probably due to small differences in the angles between the orientation disc

slots, with the result that at speeds above 115rpm the predicted arrival of the signal from a

given slot corresponds to a consistent rotor orientation but does not agree exactly with the

actual arrival of the signal.

Information on the current state of the timing system is provided by the row of the seven

display LEDs. The meaning of some of the LEDs depends on the position of the dial, as

summarized in table 6.1. When the dial is fixed mode or increment mode (positions 0 to 8)

the three leftmost LEDs indicate the rotor orientation at which the flash will next be fired (in

binary, with the least significant bit to the left). When the dial is in position 9 these LEDs

instead display the state of the microcontroller inputs to allow diagnosis of problems; the

leftmost displays the ready signal from the flashgun, the second displays the signal from

the rotation optical sensor, and the third displays the signal from the position optical sensor.
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The fourth LED from the left is on when the flash controller is in increment mode, the fifth

is on when the flash controller is in direct mode, the sixth is unused and never on, and the

seventh is always on once the microcontroller has successfully initialized. This information

is summarized in table 6.1.

6.4 Experimental procedures

The basic unit of the spinning test is a sequence of eight photographs taken of a specimen

while the rotor is spinning at a given speed (the principal value being 1000rpm). One pho-

tograph is taken when the rotor is at each of the eight orientations dictated by the flash

controller set to increment mode. The process of adjusting the speed to the correct value and

taking eight photographs generally takes about two minutes.

For comparison with the photographs at the test speed, eight reference photographs of

the specimen are taken at low speed (always at 70rpm). Ideally the specimen would be

completely stationary for the reference photographs; this would, however, require a different

method to orient the rotor. In practice the difference between a stationary state and spinning

at 70rpm is negligible, smaller than the uncertainty in force at test speeds due to the 5rpm

precision of the speed reading (see section 7.3.2).

The lens is tested first with the capsule intact, then the capsule is removed and the lens

is retested. The sequence of speeds used varies between lenses. The time taken is an issue

of importance in the choice of test regime. It has not been established if the quality of the

lenses changes systematically over time

6.4.1 Initial state and preparation of lenses

The human lenses subjected to the spinning test are received from the Bristol Eye Bank where

the iris, ciliary body, zonular fibres, and lens are removed as a unit from the eye globe. They

are transported in Sigma Megacell Minimum Essential Medium Eagle (M4067) with Sigma

Antibiotic-Antimycotic Stabilized (A5955) at ambient temperature. In the testing laboratory

the lenses are kept in the same medium and at room temperature (generally 21-22˚C). The
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lenses are usually tested in the order in which they have been labelled by the Bristol Eye

Bank.

When a lens is selected for testing it is tipped into a Petri dish, along with its medium.

Any extraneous tissues are removed. An ophthalmic spear is brushed against the lens equator

to catch hold of remaining zonular fibres. Any zonular fibres which adhere to the spear are

stretched away from the lens by lifting and slightly rotating the spear and then cut close to the

lens with surgical scissors, care being taken to avoid any damage to the lens capsule. This

process is repeated until no more zonular fibres are caught by the spear around the whole

lens equator.

6.4.2 The test on the intact lens

Once the lens has been isolated it is transferred to the lens support using ophthalmic spears.

The lens is positioned with the anterior side up; the correct orientation can readily be judged

as the anterior-equator distance is smaller than the posterior-equator distance. Fluid remain-

ing on the lens is absorbed with a dry ophthalmic spear. The position of the lens is adjusted

until it appears well centred when the support is manually rotated. Once suitably positioned,

the Perspex box is placed over the lens, the flashgun moved into place above it, the room

lights are turned off and testing is begun. In some cases fluid remains on the lens, interfering

with the subsequent test. This is generally only apparent once the resulting photographs are

analysed, but when fluid is noticed during the test, it is halted and the lens is dried before

recommencing (see section 8.1.1 for further discussion of fluid on the lens).

The test starts with a set of reference photographs of the undeformed lens, then sets of

photographs are taken at a sequence of increasing test speeds, with another set of reference

photographs taken after each speed. The number of speeds applied has varied over the pro-

gramme of tests. All lenses are subjected to tests at 700 and 1000rpm (sequence A1 in

table 6.2). The latter speed is used to conform with the tests conducted by Fisher (1971).

The former speed induces apparent body forces of about half the magnitude of the latter; it

was originally included to increase the chance of usable results when the reliability of the

test was unknown and has been retained to apply a consistent preconditioning to the lenses.
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Table 6.2 – Sequences of speeds applied to intact lenses.

sequence speeds (rpm)

A1 70 700 70 1000 70

A2 70 700 70 1000 70 1400 70

A3 70 700 70 1000 70 1400 70 1680 70

A4 70 700 70 1000 70 1400 70 1730 70

A5 70 700 70 1000 70 1400 70 1730 70 2000 70

photo
set AR1 AT1 AR2 AT2 AR3 AT3 AR4 AT4 AR5 AT5 AR6

The majority of lenses have also been tested at 1400rpm to ensure that older, stiffer lenses

experience sufficient deformation for analysis (sequence A2 in table 6.2). Two lenses were

also tested at 1680rpm for comparison with tests at this speed conducted at Laser Zentrum

Hannover (sequence A3). Finally, for a number of lens pairs one of the pair are also sub-

jected to speeds up to 2000rpm to induce more substantial strains in the capsule, to enable

better analysis of the response of this component (sequence A4 and A5).

The resulting sets of photographs are referred to in the text by the label given in the last

line of table 6.2, with ‘R’ standing for ‘reference’ and ‘T’ standing for ‘test’. Following

the spinning test, some of the lenses were repositioned on the support with the posterior pole

uppermost and reference photographs taken. This provides additional information of the lens

geometry, in particular regarding the deformation caused by the support.

6.4.3 The test on the decapsulated lens

Following the tests on the intact lens, it is placed back in the Petri dish and taken to a dissect-

ing microscope, under which the capsule is carefully removed with two pairs of forceps. One

pair of forceps is used to pull up a ‘tent’ of capsule on the anterior surface but away from the

pole, then both pairs are used to tear the capsule and remove it from the lens. Occasionally

some of the lens cortex comes away with the capsule, usually a thin strip running roughly

from pole to pole, widening at the equator. The test is performed as usual in such cases as

the damage is only superficial. However, the tests from such damaged lenses are not used for

subsequent analysis in the current work (see section 8.1.1 for further discussion of damage
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Table 6.3 – The main sequences of speeds applied to decapsulated lenses.

sequence speeds (rpm)

B1 70 700 70 1000 70

B2 70 700 70 1000 70 1400 70

B3 70 700 70 1000 70 1400 70 1680 70

photo
set BR1 BT1 BR2 BT2 BR3 BT3 BR4 BT4 BR5

to the lens).

Once the capsule is removed, the lens is replaced on the support and positioned in es-

sentially the same way as the intact lens, though generally with fewer manipulations since

without the capsule the lens is much more fragile. In the absence of the capsule the lens

tends to deform more in the vicinity of the support during the test. The deformation ap-

pears greater where the castellations of the support meet the support ring apparently due to a

surface tension effect. This causes a slight disruption to the axisymmetry of the lens.

The same initial sequence of speeds is applied to the decapsulated lens as was applied

when intact. A lens subjected to sequence A1, A2, or A3 when intact is subjected to the

equivalent sequence when decapsulated (B1, B2, or B3 in table 6.3), while a lens subjected to

A4 or A5 when intact is subjected to B2 when decapsulated. When these tests are complete,

most lenses are subjected to some additional tests to examine time dependent behaviour,

listed in table 6.4. First, three sets of photographs are taken while the lens is being spun to

measure progressive deformation due to the sustained forces; these are followed by three sets

of reference photographs to measure progressive recovery. Final sets of test and reference

photographs are taken to assess the change in the response of the lens over the course of

the experiment, with the possibility of the surface of the lens drying out being a particular

concern. The timing of these photographs is not chosen precisely due to the manual nature

of the speed control and photograph initiation; however, the time each photograph is taken

is recorded in the resultant file. All these tests are conducted at the highest speed to which

each lens has been subjected while decapsulated. If it was tested with sequence B1 then

the additional tests are made at 1000rpm (sequence C1 in table 6.4), while if subjected to

sequence B2 the additional tests are made at 1400rpm (sequence C2). Lenses tested with the
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sequence speeds (rpm)

C1 1000 1000 1000 70 70 70 1000 70

C2 1400 1400 1400 70 70 70 1400 70

photo
set CT1 CT2 CT3 CR1 CR2 CR3 CT4 CR4

Table 6.4 – Sequences of additional speeds applied to decapsulated lenses.

longer sequence B3 are not subjected to these additional tests.

Just as for the intact lenses, some of the decapsulated lenses were repositioned with

the posterior pole uppermost and a set of reference photographs were taken of this orienta-

tion. The primary test used in the subsequent calculation of lens stiffness is the first test at

1000rpm on the decapsulated lens (BT2 in table 6.3).

6.4.4 The test on the isolated nucleus

A further test was performed on the nuclei of 27 lenses following the decapsulated test.

To isolate a central portion of the lens, it is submerged in water (rather than physiological

medium) and occasionally gently agitated with an ophthalmic spear. This causes the outer

layers lens fibre cells to gradually swell up and slough off over a period of about an hour (the

precise timing was dictated by the duration of the tests conducted on the whole lenses). Once

the remaining lens has a diameter of about 6–7mm it generally displays greater resistance

to the swelling and sloughing process. This resilient portion is assumed to correspond to

the lens nucleus. When an increased resilience is observed any remaining partially attached

material is gently brushed away with an ophthalmic spear and the nucleus is returned to the

lens support for further testing. Since the diameter is considerably smaller than a full lens

and the position of the ring support is more restrictive, higher spinning speeds are applied

to provide clear deformation. Initial tests on the nucleus used test speeds of 1000, 2000,

and 3000rpm (sequence D1 in table 6.5). The 1000rpm test was discontinued to reduce the

time required to conduct the test, producing sequence D2. The higher speeds of rotation

and greater difficulty in placing the nucleus symmetrically on the support mean it is prone

to come off during the test. This occurred for a number of lenses when spun at 3000rpm,
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Table 6.5 – Sequences of speeds applied to nuclei.

sequence speeds (rpm)

D1 70 1000 70 2000 70 3000 70

D2 70 2000 70 3000 70

D3 70 2000 70

D4 70 2000 70 2450 70 3000 70

photo
set DR1 DT1 DR2 DT2 DR3 DT3 DR4

resulting in the accidentally truncated sequence D3. An intermediate speed of 2450rpm was

introduced in sequence D4 to increase the chance that stiffer nuclei would be sufficiently

deformed for analysis. (A speed of 2450rpm induces forces of about 1.5 times those induced

at 2000rpm).

It must be noted that the lengthy exposure of the nucleus to non-isotonic water casts some

doubt on the relevance to the undisturbed nucleus. Also, if the isolated portion of the lens is

returned to water following testing further swelling and sloughing does occur over time, so

its geometry cannot be considered to mark some exact boundary.

6.4.5 Calibration photographs

In order to determine the scale of the photographs taken of the lenses, sets of calibration

photographs are taken before, and usually after, each day of testing. A steel ball bearing

is used as the subject of these photographs. Its diameter, as measured by a micrometer, is

7.93mm, approximately the same as the equator of the lens, but considerably thicker from

pole to pole. The same procedure is used for photographing the ball bearing as for the

reference photographs of a lens, including the speed of 70rpm.

The ball bearing photographs are also used to determine the position of the lens support

and in particular the top of the support ring which is often obscured when photographing a

lens. However, the presence of the ball bearing reduces the illumination of the support, so

additional photographs of the empty stand are taken in case they are needed.



7
The spinning lens test: Analysis

The analysis of the spinning lens test requires some quantification of the deformation of

the lens as captured in the photographs, and a method of inferring material properties from

that deformation. In the approach adopted here the reference photographs are processed to

obtain an initial geometry used to simulate each lens test. A target outline for the lens is

obtained in a similar manner from the photographs taken during the high-speed test under

examination. A simulation of the individual test is produced using the finite element method

and an iterative optimization process is used to find the material parameters with which the

simulated spinning lens best reproduces the target outline.

7.1 Background

The analysis applied in the original spinning lens test of Fisher (1971) took two measure-

ments from each lens photograph (the anterior axial thickness and the equatorial diameter),

and used an approximate analytical model of the test to determine the stiffness of the cortex

and nucleus of the lens. The prospect of improving the analysis, primarily by making use of

the huge increase in available computing power, was envisioned by Dr Burd and Dr Judge

prior to the start of this study. Both the analysis of the lens photographs and the model of the

test used to infer lens stiffness values have been markedly improved in the current project.

The author has written the MATLAB based image processing tools used to obtain data

71
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from the photographs, principally the initial lens geometry and the target outline used in the

simulation of the test. These tools include gradient-based edge and curve detection (sections

7.2.2 to 7.2.4) to locate features of a photograph, image correlation to detect camera move-

ment between pairs of photographs (section 7.2.6), and an implementation of basis splines

along with the process for fitting them to the lens outline (section 7.2.7). The meshing tool

Mesh2d (Engwirda, 2007), obtained from an online MATLAB code repository, is used to

generate triangular meshes. Additional procedures to translate the resulting mesh into the

correct form for simulation are the work of the author.

The hyperelastic finite-element program used to perform the simulation of the tests is

OXFEM_HYPERELASTIC, written by Dr Burd with this and other ophthalmic modelling in

mind. The author uses this as the basis for OXFEM_SEARCHER, which relies on the same

source code to perform forward finite-element calculations, but incorporates a number of it-

erative procedures used in the analysis of the spinning lens test. The most significant of these

is the optimization process used to determine material parameters which best match the ex-

perimental results (section 7.6), but also include the search for an unstressed geometry used

in trials involving the application of gravity (section 7.3.3) and the search for consistent con-

straints at the interface between the lens and the support ring when sliding is permitted (sec-

tion 7.4.2). The author made some additions to the core OXFEM_HYPERELASTIC program,

such as new material models used to apply heterogeneous stiffness distributions in the lens

substance and the alternative solution scheme ‘newton2’ for use with OXFEM_SEARCHER

(see section 5.4.1).

7.2 Image processing

The photographs obtained in the test are processed using a number of custom MATLAB func-

tions. Three general procedures are employed: detection of horizontal and vertical edges

such as the side of the support, detection of curves such as the outline of the lens, and corre-

lation between regions in two photographs to account for camera movement. The principal

result from analysing each photograph is a set of finely spaced points lying on the outline
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of the lens, with gaps where the lens is obscured by the support. These points are collected

and used to generate cubic splines which describe a smoothed and averaged outline, which

are in turn used to generate a finite-element mesh and the target outline used to estimate the

material parameters implied by the test.

7.2.1 Summary of the image processing procedure

Two sets of reference photographs and one set of spinning photographs are used to analyse

a single test, for example the analysis of test BT2 of table 6.3 makes use of the photographs

from BR2, BT2, and BR3. Those outline points obtained from the reference photographs

(BR2 and BR3 continuing the example) are combined and used to generate the reference

geometry of the lens, while those obtained from the photographs of the actual spinning test

(BT2) determine the target outline used in the optimization process. A set of calibration

photographs from the same day as the test in question are also used, primarily to determine

the length scale of the photographs.

The steps in the processing of the photographs from test BT2 are summarized below.

For a different test, the number subscripts are adjusted accordingly. The general procedure

used for each step is given in square brackets. These procedures are explained in detail in

subsequent subsections. The set of reference photographs taken after the test (from BR3)

are the primary reference set, used to find the support position as well as points on the lens

outline; the set taken before the test (from BR2) are the secondary reference set, used only to

find points on the lens outline.



Chapter 7. The spinning lens test: Analysis 74

Calibration (performed once for each day of tests)

• For each photograph in the calibration set

◦ find the top and sides of the support base [edge detection]

◦ find the top and sides of the support ring [edge detection]

◦ find the ball bearing sides [curve detection]

• Calculate the axis of rotation, the photograph scale, the ring radius, and the

offset of the support ring above the support base

Support locations of the primary reference set

• For each photograph from BR3 find the top and sides of the support base

[edge detection]

• Calculate the positions of the axis of rotation and the support ring (using the

calibration data for the latter)

Lens outlines of the primary reference set

• For each photograph from BR3 find points on the lens outline above the support

ring [curve detection]

◦ find the sides of the castellation window or windows [edge detection]

◦ find points on the lens outline below the support ring [curve detection]

Lens outlines of the secondary reference set

• For each photograph from BR2

◦ find the offset from the corresponding photograph of BR3

[image correlation]

◦ find points on the lens outline above the support ring [curve detection]

◦ find the sides of the castellation window or windows [edge detection]

◦ find points on the lens outline below the support ring [curve detection]
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Lens outlines of the test set

• For each photograph from BT2

◦ find offset from the corresponding photograph of BR3 [image correlation]

◦ find points on the lens outline above the support ring [curve detection]

◦ find the sides of the castellation window or windows [edge detection]

◦ find points on the lens outline below the support ring [curve detection]

Spline and mesh generation

• Generate the top reference spline approximating all the outline points above

the ring support from BR2 and BR3

• Generate the bottom reference spline approximating all the outline points

below the ring support from BR2 and BR3

• Generate the top target spline approximating all the outline points above the

ring support from BT2

• Generate the bottom target spline approximating all the outline points below

the ring support from BT2

• Construct a triangular finite-element mesh from the top and bottom reference

splines

7.2.2 Gradient based edge and curve detection

The features of interest in the photographs are transitions from the illuminated lens or support

to the dark background. Ideally the background would be uniformly black and the lens and

support distinctly brighter, but in reality some parts of a lens (especially a decapsulated lens)

do not reflect much light towards the camera; meanwhile, some background areas can be

bright due to scattered light, especially near well lit parts of the lens and when the cover

slip window is not perfectly clean. In light of these circumstances, the transitions from the

lens or support to the background are detected by first calculating an approximation to the
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Figure 7.1 – The process used to calculate the components of the gradient for each
photograph. The filters illustrated are the effective filters obtained by combining the
derivative-of-Gaussian and Gaussian components; for a standard deviation of two pixels
they are 17 by 17 pixels.

gradient of the pixel intensity, then finding the location where the component of the gradient

orthogonal to the edge or curve reaches a peak. This approach is preferable to a simple

intensity threshold or a gradient threshold as it is more tolerant of variations in illumination

over the photograph and less prone to changes in illumination between photographs causing

apparent movement of stationary edges.

To calculate the gradient, the photograph is first converted from colour to grey-scale.

An approximation to each Cartesian component of the gradient of the grey-scale image is
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calculated by convolving it with a derivative-of-Gaussian filter in the direction of the com-

ponent and a Gaussian filter in the orthogonal direction, using the built-in MATLAB function

conv2. This filtering is close to ideal for the detection of step edges (Canny, 1986). A

standard deviation of two pixel lengths is used for both filters, though this is increased to up

to three pixel lengths if the image quality is poor (a blurred edge is more easily detected with

a larger standard deviation, but this makes the edge location less precise).

There are small-amplitude peaks throughout the dark background as it is not uniform,

while internal details produce more prominent peaks within the lens and support regions. The

actual peaks of interest lie between the two and will exceed all of the background peaks, but

not necessarily all the internal peaks. The manner in which the peak of interest is identified

depends somewhat on whether it is part of a straight edge or a curve, as discussed below.

7.2.3 Edge detection

Analysis of the lens requires locating a number of nearly vertical and horizontal edges of

the lens support, as outlined in section 7.2.1. These edges are all found in the same general

way, so the method of finding the left edge of the support will be used as an example. In this

case it is known roughly where in the photograph the edge will fall and it is expected that the

horizontal component of the gradient will achieve a high value for a column of pixels lying

along the edge. The search is limited to a horizontal domain that spans the possible locations

of the edge. At each pixel position along that domain, the edge intensity is calculated as the

median value of the horizontal component of the gradient over a vertical band (100 pixels

near the bottom of the image in this case). The edge in question is taken to be the left-most

peak in the edge intensity which exceeds a proportion (0.3 in this case) of the maximum

peak in the domain. Using the median value reduces the influence of small but intense

anomalies in comparison to a true edge, taking the left-most peak ensures that peaks within

the support region will not be considered, and the restriction to 0.3 of the maximum edge

intensity excludes the small-amplitude peaks present in the background.

For the calibration photographs it is necessary to find the radius of the support ring and

its height above the support base so that these values can be used in determining lens outline.
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Figure 7.2 – Detection of edges of the support base. The search domains (blue) and
detected edges (red) are displayed with the corresponding gradient magnitude image of a
calibration photograph (zero gradient shown as white and the maximum gradient shown as
black). The edges are detected in the order indicated by the numbers.

The process is illustrated in figure 7.2). First, edge detection is used to find the left and right

sides of the support base (1 and 2 in figure 7.2) in each of the eight photographs, and the axis

of rotation is taken to be the mean of all sixteen values. The top of the support base is sought

along the line midway between the left and right sides if the orientation of the castellations

provide a single central window, or 500 pixels to the right if they provide two windows (3

in figure 7.2). The top of the support ring is sought at its left and right extremes using the

position of the support base as a guide (4 and 5 in figure 7.2), and the left and right sides of

the support ring are sought just below these heights (6 and 7). The former values are used

to calculate the mean height of the support ring above the support base which is needed for

the simulation of the test. The latter values were originally used calculate the mean radius

of the support ring, but the current method assumes a fixed radius for all tests using a given

support.

For the primary reference photographs, the axis of rotation and the top of the support

base are found in the same manner as for the calibration. The mean height of the support

ring above the support base in the calibration photographs is used to determine the position

of the support ring in the primary reference photographs, as the top is generally obscured by

the lens in the reference photographs.
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7.2.4 Curve detection

A curve detection algorithm developed by the author is used to find the outline of the lens

and the calibration ball bearing in respective photographs. An example of the process for the

lens is depicted in figure 7.3.

To find the outline of the lens, an origin is selected on the axis of rotation at the height

of the top of the support ring. The outside of the lens is sought along rays emanating from

the origin at finely spaced angles ( p

1000 radians apart). This approach is adopted as the lens

outline will subsequently be described by a cubic spline defined over polar coordinates.

The position of the outside of the lens along any particular ray is taken to be the last

substantial peak in the component of the gradient orthogonal to the outline. The orthogo-

nal direction is determined by extrapolating the outline from previously found outline points

when there are enough of these, or by assumption when there are not. A peak counts as sub-

stantial when it exceeds a proportion (generally 0.4) of the maximum peak over the domain

examined. The gradient values along the ray are calculated at points 0.1 of a pixel length

apart using bicubic interpolation from the surrounding square of 16 pixels. The domain

examined is restricted to the portion of the ray within 60 pixel lengths of the extrapolated

outline, partly to make the process faster, but also to avoid some of the irrelevant internal

edges.

The outline of the lens is found separately in four sections: the part above the support

ring to the left of the axis (section 1 in figure 7.3 a), the part above the support ring to the

right of the axis (section 2), the part below the support ring to the left of the axis (section 3),

and the part below the support ring to the right of the axis (section 4). The first point found

in section 1 lies on the axis of rotation, with subsequent points sought in an anti-clockwise

direction. For the first 15 points the horizontal component of the gradient is used to find

the outline, after which extrapolation is used to determine the direction, using up to 30 prior

points. Additional outline points are found for section 1 until the next point would be within

20 pixels of the top of the support ring. The same procedure is used for section 2, except that

it extends in a clockwise direction from the axis of rotation. The positions of the sections of

the lens outline below the support ring depends on the orientation of the support castellations.
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Figure 7.3 – Detection of the lens outline: (a) The sections of the detected lens outline
(red) displayed with the corresponding gradient magnitude image from the second
photograph of test AR3 for the decapsulated 33-year lens L038A (zero gradient shown as
white, the maximum gradient shown as black). (b) A close-up view of the start of section 1
of the outline, including the search rays along which the outline was sought; the
corresponding region is marked by a black square in figure (a).
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When there is a central window sections 3 and 4 are found in the same way as sections 1

and 2, with two variations: the first point is sought on a downward directed line segment with

the domain restricted to the section of the photograph above the support base, and the process

is halted when the next outline point is within 150 pixels of the top of the support ring, or

within 20 pixels of the side of the window (found using edge detection as in section 7.2.3).

When there are two windows, section 3 lies within the left window and section 4 lies within

the right window. The first points of these sections are no longer on the axis of rotation, but

are found in a similar way by first determining the first ray that will pass through the lens

outline at least 20 pixels from the inner side of the window in question, with the inner side

of the window also found using edge detection.

7.2.5 Calibration procedure

The outline of the ball bearing in the calibration photographs (described in section 6.4.5)

is identified in a manner similar to the lens (described in section 7.2.4) to determine the

appropriate length scale to use in the photographs.

For the outline of the calibration ball bearing an origin is selected on the axis of rotation,

half way between the top of the image and the top of the support ring. This lies roughly

at the centre of the ball bearing. The top of the ball bearing lies above the frame of the

photograph, while the portion of the ball bearing below the support ring is ignored as it

is generally poorly illuminated. As with the lens, the outline of the ball bearing is found

separately in four sections corresponding to the four quadrants relative to the chosen origin.

In each section, the first point of the outline of the ball bearing is found along a horizontal ray

from the origin rather than a vertical ray, but the process is otherwise similar to the process

for the lens. Once all the outline points have been found a circle is fitted to them using an

initial algebraic approximation, followed by a total least squares optimization.

In photographs taken before the 24th of July 2008 the reflective surface of the ball bearing

means its actual edges have little contrast with the background, so it is best to determine the

scale by hand. In these cases each photograph is imported into CORELDRAW and a circle

is constructed that coincides as well as possible with the ball-bearing edge, most clearly
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identified by dust on the surface.

Whichever method is used to find the circles, the diameter in pixel lengths of each is

recorded and the mean diameter from the eight calibration photographs is calculated. This

value is used in conjunction with the diameter of the ball bearing measured with a micrometer

to determine the appropriate conversion from pixel lengths to millimetres. An initial test

using gridded paper suggested there was little photographic distortion so the same scaling is

used for both axes and throughout the photographs.

7.2.6 Image correlation

Image correlation is used to account for camera movement between photographs taken at the

same rotor orientation. Only the support region is used for the calculation as the lens itself

is expected to differ between photographs. To calculate the offset between two photographs

the correlation between the two photographs is calculated in a region including all of the

support below the lens for different pixel offsets between the two photographs. Once an

offset has been found which gives a local maximum in the correlation that value is assumed

to represent the camera movement which occurred between the two photographs. The first

correlation calculation is made for no offset, then subsequent calculations are made at offsets

forming an orthogonal spiral, to limit the number of calculations needed if the optimum offset

is small.

For each photograph from the secondary reference set and the spinning set, the pixel off-

set relative to the corresponding photograph of the primary reference set is found. This offset

is then used to effectively bring the photograph into alignment with the primary reference

photograph before obtaining the lens outline. In this way all three of the photograph sets

should have the same effective axis of rotation and support ring position.

7.2.7 Lens outline splines

The image processing described above results in a set of points lying on the outline of the

lens in each photograph examined. The points are occasionally erratic where the edge is not

clear and there is some variation in the lens shape at each orientation, especially around the
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lens equator. The further analysis of the spinning lens test, in particular the finite-element

simulation, requires a smooth axisymmetric representation of the lens. A number of general

forms to describe lens outlines have been published: Fisher (1971) uses an ellipse; Burd

et al. (2002) use a combination of polynomials and circular arcs; Chien et al. (2006) use a

parametric description combining polynomial and trigonometric terms; Urs et al. (2010) use

a truncated Fourier series in polar coordinates. None of these methods seems ideal for the

present study, and all would require adaptation to take account of the presence of the lens

support which interrupts the smooth surface of the lens.

Polar coordinates seem a natural choice for describing a curve surrounding the origin

such as the lens outline, while a cubic spline representation has the advantage of being

smooth and adaptable without introducing high order terms. For these reasons cubic splines

specified in polar coordinates are used to describe the lens outline. The break in smoothness

caused by the presence of the lens support is handled by using a ‘top spline’ for the outline

above the support ring and an independent ‘bottom spline’ for the outline below. Figure 7.4

depicts an example of a pair of lens splines fitted to a set of outline points.

For the simulation of the spinning test to be fully axisymmetric the axis of rotation must

coincide with the axis of symmetry of the lens. This is ensured by requiring the two splines

to be symmetric about the axis of rotation. This means that only the portions of the splines

to the right of the axis need to be considered, with all the outline points lying on the left of

the axis reflected onto the right before determining the forms of the splines.

The top and bottom splines each have a zero slope condition where they meet the axis of

rotation as required for symmetry, and have fixed end points at the outside and inside corners

of the ring support respectively (see figure 7.4). In reality lenses meet the support at variable

locations below these corners, but a fixed end position is much simpler to formulate for the

splines and seems a reasonable approximation (originally it was assumed that the material

adhering to the side of the support was fluid, not lens substance, but this does not appear to

be true in general). The top spline is given seven internal knots with equal angular intervals

between them; the first knot is placed at half of this interval from the axis (that is, a full

interval from its own reflection if the spline were continued symmetrically past the axis),
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Figure 7.4 – The top and bottom splines for the decapsulated 33-year lens L038A, together
with the outline points used to generate the splines, all plotted in cylindrical coordinates.

while the last knot is placed at one-eight of the interval from the fixed end point. This small

final interval allows the spline to adapt to the required shape near the support without causing

significant distortion in the remainder of the curve. The bottom spline is given two internal

knots since it covers a smaller domain; the angular interval from each end point to the closest

knot is half the interval between the two knots (again, the knot closest to the axis is a full

interval from its own reflection).

Finding the specific spline which best fits the set of polar outline points in an ordinary

least squares sense is most easily formulated using a set of basis splines, {Bi(θ)}. For a

given spline order, sequence of knot positions, and end constraints the basis splines are a

set of such splines which have minimal support, that is which are each nonzero over the

smallest domain possible while maintaining internal smoothness. Any spline with the same

order, knot positions, and end constraints can be expressed as a linear combination of the
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Figure 7.5 – The basis splines used to generate the top spline of the lens outline. The
basis splines all have zero slope at the symmetric end and all but one have zero value at
the fixed end.

basis splines. Thus for such a spline, S(θ), there are coefficients, {ci}, such that

S(θ) = ∑ciBi(θ) . (7.1)

Evaluating the spline at a sequence of values
{

θ j
}

can be cast in the form of matrix multi-

plication: if s =
(
S(θ j)

)
, B =

(
bi j
)
=
(
Bi(θ j)

)
and c = (ci) then s = Bc. This means that the

coefficients of the spline which best fits a set of outline points
{
(θ j, r j)

}
can be found using

the pseudo-inverse of the matrix B: if r =
(
r j
)
, then c = B+r. This is a simple operation

in MATLAB.

The fixed end condition adds a small complication to this calculation. Only one of the

basis splines, Bk say, will have a nonzero value at the fixed end so its coefficient can be de-

termined without reference to the outline points, but the outline points must then be adjusted

so the correct coefficients are determined for the remaining basis splines. If the fixed end

point is at (θE , rE) then the coefficient of the nonzero basis spline is ck = rE/Bk(θE) and the

adjusted radius values are r′j = r j – ckBk(θ j).

The splines of the reference geometry are calculated from all the outline points identi-

fied in both sets of reference photographs. The top reference spline makes use of all these

points which lie above the support ring, while the bottom reference spline makes use of all

the points which lie below the support ring. Both sets of reference photographs are used on

the assumption that the average between the two is a reasonable representation of the hypo-
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thetical undeformed state of the lens midway through the spinning test. The splines of the

spinning configuration are calculated from all the outline points identified in the single set of

spinning photographs in a similar manner.

7.2.8 Lens mesh generation

The top spline and bottom spline found for the reference configuration are used to generate

the mesh used as the reference state for the finite-element simulation of the spinning lens test.

The construction of the mesh is performed by the MATLAB-based meshing tool Mesh2d

(Engwirda, 2007). An example of the resulting mesh is illustrated in figure 7.6. Mesh2d

takes a set of regions defined by boundary polygons and returns a triangular mesh within

these regions, with a number of options to control the size of the triangles produced. Three

regions of the lens are specified for Mesh2d to mesh: region 1 corresponds to the nucleus

region used in model D (see section 7.5.2), region 2 is the main cortex region between the

nucleus and the lens outline, and region 3 is a small area around the contact with the support

ring. Regions 1 and 2 are distinguished so that the discontinuity in shear stiffness which

occurs in model D coincides with element boundaries. Region 3 is included so that a smaller

element size can be specified in this potentially problematic area. All the curved sections

of these regions are approximated by connected line segments as required by the Mesh2d.

The line segments used are twice as long as the desired element size at the given boundary

to provide some flexibility to the meshing tool in node placement while remaining close to

the intended geometry.

Once Mesh2d has created a mesh for the three regions it is further modified using custom

MATLAB functions. All the nodes lying at the exterior of the nucleus or the cortex are

adjusted so that they lie exactly on the original curves defining those outlines, rather than on

the line segments supplied to Mesh2d, and the three-noded triangles generated by Mesh2d

are upgraded to the fifteen-noded elements used in OXFEM_HYPERELASTIC by adding the

required edge and internal nodes. The final mesh is written to a file in a format understood

by OXFEM_HYPERELASTIC. The final mesh uses fifteen-noded triangular elements as these

perform well in axisymmetric finite-element simulation of nearly incompressible materials
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Figure 7.6 – The mesh generated for analysis of test AT2 of the decapsulated 33-year lens
L038A. The three regions are described in the text. This mesh has 1420 elements and
11665 nodes.

compared to elements with fewer nodes, as discussed in section 5.4.2. The meshes used in

the analysis have approximately 12000 nodes.

The element density is determined by specifying the maximum length of the element

edges within each region, and separately on the outer boundary, when calling Mesh2d.

The maximum length is also limited by the length of the line segments used to specify the

regions, which constrains the spacing on the nucleus-cortex boundary. The meshes used for

the analysis consist of approximately 1400 elements and 12000 nodes. This was found to be

a sufficient number that further mesh refinement had negligible effect on the results of the

analysis (see section 8.3.1 for an examination of mesh refinement).
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7.3 The body forces acting on the lens

The analysis of the spinning lens test is conducted in the non-inertial frame of reference ro-

tating with the lens. In this frame of reference the lens experiences an apparent centrifugal

body force. Additionally, the lens is deformed from its unstressed configuration by a gravi-

tational body force throughout the testing procedure. The centrifugal body force is crucial to

the analysis of the spinning lens test, while the gravitational body force is a minor complica-

tion which has been examined but ultimately ignored. Both body forces are proportional to

the local density of the lens which is assigned a value based on past studies.

7.3.1 The density of the lens

The current study has made no attempt to measure the density of the lenses subjected to

testing; instead the analysis was performed using a single density value of 1058.98kgm−3 for

all lenses. This is the value for a 40-year lens according to the linear age-density regression

given by Burd et al. (2006), which uses data from Bellows (1944). The full relationship,

calculated for lenses between 20 and 70 years, is

ρ = c0 + c1A , (7.2)

where c0 = 1013.5kgm−3, c1 = 1.137kgm−3 yr−1 and A is the age of the lens in years.

This amounts to roughly a 5% increase in density from the youngest to the oldest lenses. If

this were incorporated into the analysis the stiffness values calculated for lenses older than

40 years would be slightly higher to compensate for the increased body force, while value for

younger lenses would be correspondingly lower. This is complicated somewhat by the spatial

variation of density within each lens, which is also not incorporated into the analysis of the

spinning lens test. This variation arises due to the differing protein concentrations through

the lens, so follows the form of the refractive index gradient which also depends on the local

protein concentration. Using values given by Augusteyn (2010) it can be calculated that the

outer cortex is approximately 5% less dense than the centre of the lens. The differences

in density with age and position are sufficiently small and inexact that the use of a single

density value seems reasonable.
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7.3.2 The centrifugal body force

In its rotating frame of reference the lens experiences an apparent centrifugal body force, fC,

which depends on the density of the lens substance, ρ , the angular velocity of rotation, ω ,

and the horizontal displacement from the axis of rotation, r, according to

fC = ρω
2r . (7.3)

The option to include such a radial force in OXFEM_HYPERELASTIC was implemented

by Dr Burd prior to the start of the current study. For a spinning test at 1000rpm, the cen-

trifugal body force experienced by the lens varies from 0Nm−3 at the axis of rotation to

about 50,000Nm−3 at its equator. In the reference tests the lens is slowly rotating at 70rpm,

corresponding to a centrifugal body force which varies from 0 to about 250Nm−3 through

the lens. This latter force is minuscule so is ignored in the analysis.

The lens is indeed largely axisymmetric and placed on the support so that its centre

of mass is close to the axis of rotation so the most substantial components of force and

deformation are axisymmetric in form. However, slight misalignment will lead to a net

horizontal force on the lens proportional to the distance of misalignment. If the centre of

mass of an axisymmetric object is displaced from the axis of rotation in some direction,

rM, then the centrifugal body force acting at a given point in the object can be decomposed

into two parts, one depending on the horizontal displacement of the point from the axis of

symmetry and one depending on rM. That is

fC = ρω
2 (r− rM)+ρω

2rM . (7.4)

The first is the axisymmetric component of the centrifugal body force and the second is

the misalignment component. Over the whole object the former is purely axisymmetric and

contributes no net force, while the latter contributes no net axisymmetric component, but

does contribute a net force of

FM = mω
2rM , (7.5)

where m is the mass of the object. In the case of the lens, this force must be opposed at the

contact between the lens and the support, or the lens will ultimately slide off the support.



Chapter 7. The spinning lens test: Analysis 90

Provided the deformations due to the misalignment component are small they will be effec-

tively removed by the averaging procedure applied to the lens outline (see section 5.2.7), so

will not affect the estimate of the stiffness as calculated from the axisymmetric component

of the body force.

7.3.3 The gravitational body force

The lens is deformed by a gravitational body force throughout the test. The conventional

gravitational acceleration is 9.810ms−2, yielding a body force of about 10,000Nm−3 which

is comparable to the volume average of the magnitude of the radial body force. The option

to include a vertical body force in OXFEM_HYPERELASTIC was implemented by Dr Burd

prior to the start of the current study. However, as the gravitational body force is present in

both the reference and spinning states it cannot be applied in a straightforward manner in the

simulation.

To include the effect of gravity it is necessary to replace the reference geometry that was

obtained from the experiment with a ‘prior geometry’, undeformed by either gravity or spin-

ning. An option to find such a prior geometry has been implemented in OXFEM_SEARCHER

by the author. When this option is used, a number of loading stages are specified as ‘prior

stages’. Before conducting the full simulation, a routine seeks an appropriate prior geometry,

ΓP, which deforms to the input geometry, ΓI , when subjected to the loads and displacements

specified in the prior stages, P (for the gravity case, P consists of the gravitational body force

fg and zero displacement conditions at the support and axis). The first trial geometry, Γ0, is

found by subjecting ΓI to the opposite of the loads and displacements of P . The routine then

iterates, applying P to the current trial geometry Γi to obtain the deformed trial geometry Γ
′
i.

An improved trial geometry is found by comparing Γ
′
i to ΓI , adjusting the nodal positions

according to

ni+1 = ni +
(

nI−n
′
i

)
, (7.6)

where nx is the position of a given node from Γx. The process terminates when all the

nodes of Γ
′
i are sufficiently close to the corresponding node of ΓI (within 1mm typically), or

once a specified number of iterations are completed. In either case the trial geometry which
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gave the smallest maximum discrepancy between the nodes of Γ
′
i and ΓI is selected as the

prior geometry ΓP and is then subjected to all the loading stages in turn, including those not

specified as prior stages (the radial body force in the case of the spinning test).

When this form of analysis is performed, the ultimate material parameters obtained are

similar to those from an analysis in which gravity is neglected, as would be expected if

the lens model is behaving in a roughly linear fashion. For example the shear modulus

calculated using model H for a 12-year lens (label L037A) is 180Pa ignoring gravity and

188Pa including gravity, a 4.4% difference. This is small compared to the overall variations

between lenses and any effect will be largest with a soft lens such as this due to the large

deformations it experiences.

Since each set of material parameters requires a new iterative calculation to find the

appropriate prior geometry, which must be repeated each time the material parameters are

modified, the inclusion of the effect of gravity slows the optimization procedure considerably

without a significant benefit to compensate. For this reason the standard analysis of the

decapsulated lenses is performed without considering gravity.

7.4 Contact conditions at the support

The presence of the support must be incorporated in some manner into the simulation of

the spinning test. At minimum the lens must be prevented from freely moving vertically to

provide a unique solution. An accurate characterization of the effect of the ring on the radial

movement of the lens is also desirable as it influences the overall accuracy of the test. In

principle the behaviour of the lens where it makes contact with the support could range from

frictionless sliding to fully-fixed adherence.

The current spinning lens test is not well suited to determining the true behaviour of the

lens in the vicinity of the support. Tracking surface details between the reference and the

spinning photographs could provide the information required; however, only serendipitous

details are available and these are rare on the transparent lens. As such, they cannot be used

to reliably determine the average axisymmetric behaviour of the lens. If the lens does slide
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it may only occur over a region of the support; also, a difference between the movement

of a surface detail and the simulated movement at that position may arise from the non-

axisymmetric misalignment force rather than an incorrectly simulated support.

Faced with this uncertainty each lens is analysed using two support conditions: the fixed

support constraint (F) where the nodes that start on the support are held in their initial po-

sition throughout the test, and the sliding support constraint (S), where the nodes can effec-

tively slide along the support. It is presumed that the true behaviour lies somewhere between

these two possibilities.

7.4.1 The fixed constraint (F)

The fixed constraint restricts all the nodes located at the contact with the support ring. The

nodes are prevented from moving either parallel to the support surface or orthogonal to it.

This is a simple option to specify in OXFEM_HYPERELASTIC. The solution procedure sim-

ply holds each node at its initial radial and vertical position and calculates the reaction force

required to maintain this.

The fixed constraint essentially represents a high friction interface. Since gravity is not

explicitly included in the simulation (see section 5.4.3) the orthogonal reaction force may be

directed towards the support ring without implying an adhesive interface, though no check

is made that the reaction force remains within the range permitted by gravity and friction

alone.

7.4.2 The sliding constraint (S)

The sliding constraint allows the nodes located at the contact with the support ring to move

freely in the tangential direction, but prevents them moving in the orthogonal direction.

When spinning is simulated the freedom to move means that the appropriate constraints for

some nodes will change between the initial and the final configuration. A method to handle

this complication has been implemented in OXFEM_SEARCHER by the author.

The approach adopted is as follows. The geometry of the support interface is specified as

a pair of line segments, S̄ and T̄ , corresponding to the slope and the top of the support ring.
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Figure 7.7 – A schematic of the handling of the sliding constraint. The constrained nodes
(NS, light grey; NT , dark grey) are forced onto the respective constraint lines (S, light grey;
T , dark grey) during the simulation. The final state depicted is consistent with the given
constraints because the unconstrained nodes are not in the constraint region while each
constrained node lies on the correct line segment (S̄ or T̄ ). In reality there are many more
nodes in contact with the support ring.

Nodes can be constrained so that at the end of the simulation of the spinning test they lie on

the line S passing through S̄, or the line T passing through T̄ (see figure 7.7). Such a line

constraint can induce a reaction force orthogonal to the constraint line, but not parallel to it.

Constrained nodes are free to move parallel to the line during the simulation, even if

they go beyond the corresponding segment, so an iterative process is used to determine the

correct nodes to constrain. A set of potentially constrained nodes, NP, is specified consisting

of nodes at the surface of the lens on or near the support interface, and two disjoint subsets

of this set, NS and NT , are given. The simulation is performed with the nodes of NS con-

strained to the line S, and the nodes of NT constrained to the line T . When the simulation

is completed, the final position of each node in NP is checked. If a node lies orthogonal

to the line segment S̄ then that node is assigned to a subset NS̄, and likewise for T̄ and NT̄

(though if a node is orthogonal to both segments it is only assigned to the latter subset). If

the constraints imposed on the nodes agree with their final positions, that is if NS = NS̄ and

NT = NT̄ (with a small tolerance in node position allowed, generally 1mm), then the initial

constraints are consistent with the deformation and the simulation is accepted as the correct
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outcome. Otherwise, the simulation is repeated with the subsets specifying the constraints

updated to NS = NS̄ and NT = NT̄ .

Between four and six simulations are generally required before consistent constraints

are found. This approach ensures the final configuration of the last simulation has suitable

constraints and is in equilibrium. However, the intermediate steps of the simulation no longer

reflect a physically meaningful progression as nodes may be constrained to points away from

the support interface prior to the final step.

An alternative approach in which the nodal constraints are updated following each step

of the simulation has also been trialled, as this maintains the physical relevance of the in-

termediate steps and avoids the need for multiple attempts at the simulation. The principal

difficulty is the sudden appearance of substantial unbalanced forces at nodes whenever their

constraints change. This is ameliorated by allowing additional steps when required to bring

the simulation back towards equilibrium. However, the resulting simulation is potentially as

slow as the iterative procedure due to the large number of additional steps required. It is also

more prone to failure than the iterative procedure so has not been adopted.

7.5 Stiffness models of the decapsulated lens

Calculation of lens stiffness from the spinning lens test requires some assumptions, since the

test only supplies limited information at the surface of the lens. The neo-Hookean model

used to describe the lens substance (see section 5.3.2) requires two parameters, µ and κ ,

equivalent at small strains to the linear-elastic shear modulus and bulk modulus respectively.

The lens is generally taken to be nearly incompressible since its water content is over 60%

(Fisher and Pettet, 1973). This is supported by the observation that the total lens volume

does not change during accommodation (Hermans et al., 2009). Hence the value of κ can

be assumed to be large compared to µ and need not be determined specifically. On the other

hand, indentation tests (Heys et al., 2004; Weeber et al., 2007) suggest dramatic variations

of shear modulus between the inner and outer regions of the lens, so characterizing µ for a

given lens will require at least two parameters if it is to capture this heterogeneity.
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With this in mind each lens is analysed using three stiffness models: a homogeneous

lens (model H), a model with distinct nucleus and cortex regions (model D), and a model

with stiffness varying continuously from the centre to the outside of the lens following an

exponential curve (model E). The first is used as it is the simplest stiffness model available,

while the second and third are used so that the expected heterogeneity can be examined.

Further parameters would be possible, such as a value describing the degree of anisotropy

related to the alignment of the lens fibre cells, but it is unlikely that the spinning lens test

alone can be used to determine more than two parameters reliably.

7.5.1 The homogeneous lens model (H)

The lenses are analysed first using the assumption that they have the same value of shear

modulus, µ , throughout. This is the simplest model of the lens stiffness. Its primary use is

to provide a check that the two parameter models do actually achieve a better match to the

experimental results.

Instead of specifying the bulk modulus directly a new material, matNEO_HOOKE_REL,

in which the bulk modulus is specified relative to the shear modulus was created for OXFEM-

_HYPERELASTIC by the author. For a relative bulk modulus, κ ′, the actual bulk modulus

is given by κ = κ ′µ . This arrangement makes it simpler to ensure that the lens remains

nearly incompressible for large values of µ while avoiding poorly conditioned finite-element

calculations for small values of µ . For the analysis of the spinning lens test a relative bulk

modulus of 100 was used. This ratio is equivalent to a consistent linear-elastic Poisson’s ratio

of 0.495. The same form of relative bulk modulus is adopted in the heterogeneous models D

and E.

7.5.2 The distinct nucleus and cortex model (D)

In the distinct nucleus and cortex model (D) the lens is divided into two regions with poten-

tially different values of shear modulus, the inner nucleus and the outer cortex, each of which

is homogeneous. This model is proposed as there is evidence for a demarcation in a number

of properties between the nucleus and the cortex, especially in older lenses. The formation
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Figure 7.8 – Published nucleus diameter and thickness measurements. Crosses represent
the measurement of one subject, boxes represent averages from a set of subjects of similar
age and lines represent a trend or mean over a range of ages.

of isolatable nuclear cataracts (Gullapalli et al., 1995) is the most directly relevant to lens

stiffness, but the existence of a barrier to diffusion (Sweeney and Truscott, 1998) and the

change in light scatter seen in slit-lamp photographs (Brown, 1973) also suggest a sudden

rather than gradual transition between the inner and outer regions of the lens. A separate

nucleus was also assumed in the analysis of the original spinning lens tests of Fisher (1971),

so its adoption in the current test allows comparison with the previous results.

Existing values for the dimensions of the nucleus vary depending on how it is defined and

measured. Published data include measurements from Scheimpflug photography (Brown,

1973; Dubbelman et al., 2003; Hermans et al., 2007), direct measurement of extracted catarac-

tous nuclei (Ayaki et al., 1993; Gullapalli et al., 1995), ex vivo diffusion measurements

(Sweeney and Truscott, 1998; Moffat and Pope, 2002), and in vivo magnetic resonance based
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Figure 7.9 – The form of heterogeneity in model D. The dimensions of the nucleus are the
same for all lenses, with rn = 3.45 mm, ta = 1.132 mm, tp = 1.698 mm; the thickness of the
cortex, tc, depends on the particular lens. (Adapted from Burd et al., 2011).

measurement of refractive index (Kasthurirangan et al., 2008). These are plotted for com-

parison in figure 7.8. The values reported by Gullapalli et al. (1995) for the lightest (least

severe) class of cataract, 2.83mm thickness and 6.90mm diameter, are adopted for model D

as they come from direct measurements, are related to material stiffness, and lie near the

centre of the whole collection of values. This last fact also suggests that it need not be a con-

cern that the measurements come from unhealthy lenses. The dimensions reportedly showed

no age dependence for the set of lenses measured, which were all older than 40 years. For

simplicity and consistency the same dimensions are also used in model D for lenses younger

than 40 years.

The form of the nucleus is illustrated in figure 7.9. Following Burd et al. (2002), the

nucleus is assumed to be formed by the intersection of two spheres (or the area between two

arcs in the cross-section). The distance from the anterior pole to the plane of the nucleus

equator, ta, is fixed at two thirds of the distance from the posterior pole to the plane of
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the nucleus equator, tp, to roughly agree with the lens as a whole when positioned on the

support. This fixes the respective values as ta = 1.132mm and tp = 1.698mm. The nucleus

is located within the lens such that the midpoint of the nucleus along the axis coincides with

the midpoint of the whole lens.

A body with two substances such as this can be modeled by dividing the finite-element

mesh into two areas and using a different material for each area. However, a new material,

matNEO_HOOKE_REL_ARC, was created for OXFEM_HYPERELASTIC by the author. This

material takes as parameters the relative bulk modulus, the nuclear shear modulus, the cor-

tical shear modulus, and subsidiary values defining the shape and position of the nucleus.

When assigning shear modulus values to the Gauss points used in the finite-element formu-

lation the appropriate value is selected according to whether the point in question lies within

the nuclear or the cortical region, as defined by the subsidiary material parameters. Such a

formulation makes it possible to vary the nucleus geometry without requiring a new mesh.

It is preferable in a finite-element calculation for such discontinuities to fall on element

boundaries and only one nucleus shape is used, so in practice the standard nucleus geometry

is included within the lens meshes used to analyse the spinning lens tests (as discussed in

section 7.2.8).

7.5.3 The exponential stiffness model (E)

The exponential stiffness model (E) prescribes that the stiffness varies continuously from the

centre of the lens to the outside, following an exponential curve. This allows for a closer

correspondence than the distinct model to the results obtained from indentation tests (Heys

et al., 2004; Weeber et al., 2007), and avoids the need to dictate the nucleus geometry. As for

model D above, there are two free parameters which characterize the stiffness of the lens.

The centre of the lens lies on the axis at the midpoint between the anterior and posterior

poles. To compute the value of stiffness at any point in the lens a line segment from the centre

to the lens exterior passing through the point in question is considered (see figure 7.10). If

ζ is the distance from the midpoint to the point in question and ζ0 is the length of the whole
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Figure 7.10 – The form of the exponential model E. The central point where the shear
modulus equals µ0 lies on the axis at the midpoint between the anterior and the posterior
poles. The shear modulus equals µ1 over the whole exterior of the lens. (Adapted from
Burd et al., 2011).

line segment, then the relative distance is

ζ̂ = ζ

ζ0
. (7.7)

At the centre of the lens ζ̂ = 0, while at the exterior ζ̂ = 1. The neo-Hookean shear modulus,

µ , is then given by the exponential equation

µ = µ
1−ζ̂

0 µ
ζ̂

1 , (7.8)

where µ0 is the central shear modulus and µ1 is the peripheral shear modulus. This arrange-

ment produces a model with concentric shells of equal stiffness each geometrically similar

to the lens exterior, roughly corresponding to the layers of equal-age tissue in the lens. In the

spinning lens test the exterior of the lens is deformed by the presence of the support, which

leads to a small distortion of the calculated stiffness from a realistic shell structure along the

lines from the lens centre to the support. This is a minor issue and is not addressed.

A new material, matNEO_HOOKE_REL_EXP, was created for OXFEM_HYPERELASTIC

by the author to allow the use of model E when simulating the spinning lens test. This mate-
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Figure 7.11 – An overview of the iterative search for material parameters.

rial takes as parameters the relative bulk modulus, the central shear modulus, the peripheral

shear modulus, and the position of the centre point. It also requires a separate specification

of all the nodes which lie on the surface of the lens in order to calculate the length ζ0. When

assigning shear modulus values to the Gauss points used in the finite-element formulation,

the appropriate value of µ is calculated for each point.

7.6 Estimation of material parameters

An iterative optimization procedure is used to determine which material parameters best re-

produce the results of the actual experiment. The objective function used in the optimization

procedure has two components: the finite-element simulation which takes the material pa-

rameters and calculates the expected geometry during the spinning test, and a comparison

function which takes the calculated geometry and determines how close it is to the geometry

measured in the actual experiment, as illustrated in figure 7.11.

The value of the objective function is used by an optimization routine, specifically the
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Nelder-Mead method (Nelder and Mead, 1965), to determine the material parameter values

for which the simulation most closely corresponds to the experiment. These optimal material

parameters provide an estimate of the true values.

7.6.1 Geometry comparison functions

A comparison function takes information about the outline of the simulated lens and compare

it to the corresponding information about the target outline obtained from the experiment.

If the simulation matches the experiment, the value of the comparison function should be

zero, and if not it should be a positive value which corresponds in some way to the degree

of disagreement. The simulation provides details of the displacements experienced at each

node, but such displacement information is not available from the experiment (even at the

surface) as it is not possible to track the movement of specific points in the photographs.

Thus the comparison function must depend only on the overall shape of the spinning lens

outline in the experiment and the simulation.

Two comparison functions have been implemented in OXFEM_SEARCHER. The first is

the extrema comparison function, QE , which uses only the maximal radius and thickness

of the lens outline. This corresponds to the method used in the original spinning lens test

(Fisher 1971). The value of the comparison function is

QE =

√
(RS−RT )

2 +(TS−TT )
2 , (7.9)

where RS and RT are the maximal simulated radius and maximal target radius respectively,

and TS and TT are corresponding thickness values. The target values are calculated from the

splines fitted to the experimental spinning lens outline (see section 7.2.7).

The second comparison function is the enclosed-area comparison function, QA, which

calculates the area between the experimental and simulated outlines. This approach makes

use of much more of the available information so is the comparison function used in the

analysis of the current spinning lens test. The simulated outline is the piecewise linear curve,

CS, formed by joining the displaced positions of adjacent surface nodes. This is compared

to the target outline, CT , a similar curve formed from points lying on the splines fitted to the

experimental spinning lens outline. The points of the target outline are selected with a spac-
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Figure 7.12 – A schematic for the enclosed-area comparison function, QA. For clarity the
simulated outline, CS, and target outline, CT have been simplified. The region enclosed by
the two outlines and the end segments is comprised by three simple polygons with signed
areas A1, A2, and A3, so QA = |A1|+ |A2|+ |A3|.

ing similar to the nodes of the simulation mesh. The method of calculation is summarized in

figure 7.12.

The two curves, CS and CT , together with line segments connecting their endpoints, form

a polygon. It is a simple matter to compute the signed area of such an object from its vertex

locations. A two-dimensional polygon with vertices at a sequence points {xi} in which the

first and last points are equal has a signed area of

A =
1
2 ∑

i
xi×xi+1 . (7.10)

However, it is the unsigned area that is required for the comparison function and the two

area values differ since the polygon intersects itself. To calculate the unsigned area, each

intersection between CS and CT is found so the original polygon can be decomposed into

multiple simple polygons, for which the unsigned area is simply the absolute value of the

signed area. The full comparison function is the sum of the unsigned areas of the constituent

simple polygons. That is, if the simple polygons have signed areas
{

A j
}

then the value of
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the enclosed-area comparison function is

QA = ∑
j

∣∣A j
∣∣ . (7.11)

If the curve which describes the outline of the reference geometry of the lens is CR then the

value of QA is bounded above by QA0 , the area enclosed between CR and CT . This allows the

definition of Q̂A , a dimensionless measure of how well the optimization process matches the

target outline:

Q̂A =
QA

QA0

. (7.12)

The value of Q̂A can range from 0 for an exact match between CS and CT to 1 if the

undeformed outline CR is the closest match that can be achieved. This permits a comparison

of the quality of the fit achieved for lenses which experience deformation of substantially

different magnitudes.

Additional comparison functions have been considered. One option is to calculate the

volume enclosed between the surfaces obtained by rotating the curves CS and CT about the

axis. This would be preferable if there was a substantial difference in volume enclosed by

the two surfaces, but this is not the case. Instead, the considerably greater weight that would

be given to discrepancies at the equator is undesirable as there is just as much confidence in

the measurements at the pole as at the equator.

Another option is to base the comparison on the full set of outline points for both the

reference and spinning configurations, rather than using the splines fitted to them. This

requires interpolation between nodes to find an appropriate displacement to apply to each

reference configuration point, as well as interpolation between spinning configuration points

to find an appropriate target position. Such a comparison function has been implemented

using MATLAB and found to give comparable results to the much simpler process using the

fitted splines, so the latter are used in the analysis.

7.6.2 The optimization routine

The principal search method used in analysing the spinning lens test is an implementation

of the direct-search Nelder-Mead method. For a search over n parameters, this method starts
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with n+ 1 points forming a simplex in the parameter space to be explored. It constructs

a new trial point in the parameter space from the points in the current simplex based on a

number of heuristics. If the value of the objective function at the trial point is better than

that at the worst point in the simplex then the former is included in the simplex and the

latter is removed. The method terminates if it fails to find a better point, or if the ranges

of the parameter and objective values at the current simplex points are sufficiently small.

For the current analysis the latter termination condition is set to be a ratio of 1.005 between

the maximum and minimum of each material parameter and 1.001 between maximum and

minimum objective function value. Depending on how close the starting values are to the

optimum the method generally requires 10–20 iterations for a single material parameter (for

stiffness model H) or 30–60 iterations for two material parameters (for stiffness models D

and E). An option is included in OXFEM_SEARCHER which allows the Nelder-Mead search

to be conducted in logarithm space. In this case the standard trial point constructions are

applied to the logarithm of the simplex parameter values, then the exponential is taken to

find the corresponding point in regular parameter space. This is advantageous as the effect of

changing a stiffness parameter is generally proportional to the relative change in value rather

than the absolute change; it also prevents the algorithm exploring non-physical negative

stiffness values.

The Nelder-Mead method was selected and implemented in OXFEM_SEARCHER be-

fore the final form of the comparison function was set. It was chosen in preference to a

gradient-based approach because the latter would require finite-difference approximations to

the gradient which are slow due to the finite-element calculation, and could be potentially

problematic should the objective function lack smoothness at small scales. The Nelder-Mead

method performs sufficiently well that the implementation of alternative optimization meth-

ods has not been warranted.

The only other search routine which has been implemented is a simple grid search which

computes the objective function over a specified grid of values in the material parameter

space. The principal use of the grid search is to determine the overall shape of the objective

function rather than the location of the optimum. As with the Nelder-Mead method, the grid
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search can be conducted in logarithm space, so that the material parameter values at the grid

points form a geometric rather than an arithmetic sequence.



8
The spinning lens test: Results

The principal results of the spinning lens test are the stiffness parameters obtained by apply-

ing the analysis described in chapter 7 to a set of 29 lenses which produced good quality tests

when decapsulated. These lenses are referred to as lens set G . Details of the tested lenses and

a preliminary description of their response to the spinning test are reported in section 8.1,

including the criteria used to select the lenses of set G . The values of stiffness parameters

of lens set G , calculated using the various forms of the spinning test analysis, are reported

in section 8.2. An analysis of the reliability of the main results is provided in section 8.3.

Finally, a comparison of the current results with the values obtained in the previous tests of

Fisher (1971), Heys et al. (2004), Heys et al. (2007) and Weeber et al. (2007) is given in

section 8.4.

8.1 The tested lenses

A total of 119 lenses from donors aged from 12 to 87 years were received from the Bristol

Eye Bank between the 23rd of August 2007 and the 13th of August 2009. Of these, 71 were

subject to a standard spinning test described in chapter 6. Nine lenses were not tested either

due to major damage to the lens or the absence of the author when they were received. The

remaining 39 lenses were obtained during the early stages of the project and were used to

refine the test procedure and experiment with differing supports and lighting arrangements.

106
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Individual lenses are referred to by a label consisting of ‘L’, followed by a three digit

number referring to the donor, then a suffix of ‘A’ or ‘B’ to distinguish the two lenses from

the same donor (for example lens L038A). The donor numbers differ from those assigned

by the Bristol Eye Bank, but maintain the same order. A summary of the received lenses

and the tests performed on them is given in table 1 of appendix A.2. The 29 lenses of the

good quality set G are aged between 12 and 58 years with a mean of 40.3 years. They

were enucleated at the Bristol Eye Bank 18± 5 hours after death (mean±s.d.) and tested

74±17 hours after death. All lenses in set G were tested within five days of the death of the

donor. Additional details and the stiffness parameters calculated for these lenses are given in

table 2 of appendix A.2. Three lenses are consistently used as examples in this chapter, the

33-year lens L038A, the 43-year lens L039B, and the 50-year lens L056B.

8.1.1 Selection of the good quality tests (G)

The set of lenses, G , from which the main results were obtained constitute a relatively small

proportion of the lenses received from the Bristol Eye Bank. The majority of the lenses that

were subjected to testing but excluded from G suffered from apparent swelling; a number

were also excluded due to problems during the experiment: either damage caused to the

lens substance or the presence of fluid on the surface of the lens when tested following the

removal of the capsule.

Swelling and aspect ratio Lenses are prone to swelling following death. If the tissue

of the cortex becomes swollen its mechanical response may differ from that in vivo. Due to

the constraint of the capsule, swelling tends to increase the axial thickness of a lens, T , and

decrease the equatorial diameter, D. The aspect ratio of a lens is defined by

α =
D
T

. (8.1)

This provides a rough proxy for the degree of swelling of each lens. According to Augusteyn

(2008), an isolated adult lens with an intact capsule typically has an aspect ratio between 2.2

and 2.3, with α < 2.0 suggestive of swelling in lenses older than 20 years. Younger lenses
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tend to have a lower aspect ratio even when not swollen (a typical 15-year lens would have

an aspect ratio of 1.93 according to Fisher, 1971).
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Figure 8.1 – Aspect ratios of the lenses in set G . Lenses with age and aspect ratio falling in
the grey region are excluded from G on the assumption that they have become swollen
following death.

In the current study the aspect ratio is used to judge if swelling has occurred, though the

threshold value is relaxed to an aspect ratio of 1.95 and only applied to lenses older than

25 years due to the uncertain influence of positioning the lens on the support ring. Being

smaller and softer, young lenses are more liable to experience a decrease in aspect ratio due

to the support. Twenty-one lenses were excluded from set G due to an aspect ratio indicative

of swelling. The aspect ratios of the lenses of set G are shown in figure 8.1.

The aspect ratio is calculated from the photographs of the first intact reference test (AR1

in table 6.2). In these photographs the capsule intact and the lens has not been subjected to

any spinning. In five cases (including L029B, L052B, and L055B from set G) the aspect

ratios are calculated from alternative reference photographs due to the presence of fluid in
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AR1. The diameter and thickness used to calculate the aspect ratio are obtained from the

splines fitted to the lens outlines identified from the photographs (see section 7.2.7).

Lens damage When conducting the spinning lens test, damage to a lens most frequently

occurs during the removal of the capsule. Generally a cohesive strip of cortex fibre cells

come away with the capsule leaving a depression in the surface of the lens substance running

in the meridional direction. Damage can also occur when positioning the lens on the support,

either by applying too much pressure or allowing the lens to fall.

All lenses which suffered apparent damage or were dropped a substantial distance were

excluded from set G . Eleven lenses with an acceptable aspect ratio were excluded on this

basis. Two lenses (L054B, 52 years, and L055A, 51 years) show some surface unevenness

but were not excluded from set G as they were not clearly damaged and were otherwise of

good quality.

Surface fluid The presence of fluid on the surface of the lens prevents accurate analysis

of the spinning test as it obscures the true outline of the lens and tends to move to the equator

when the lens is spun. Ophthalmic spears are used to absorb fluid from the lens surface

when it is positioned on the support ring, but in some cases fluid remains. When subjected

to spinning at 1000rpm or faster, fluid on the lens generally forms a characteristic bulge at

the lens equator which can be readily identified from the photographs of the test.

There are 10 tests which were of otherwise acceptable quality in which surface fluid

is evident on the lens and was not corrected during the test. These lenses are therefore

excluded from lens set G as a reliable analysis is impossible. Where fluid is only present

during the initial tests on the intact lens this does not affect the usefulness of the main test

on the decapsulated lens, though the calculation of the aspect ratio sometimes requires a

combination of two reference tests to construct a full fluid-free profile in these cases.

8.1.2 Load-deformation responses

When a lens is subjected to spinning the apparent centrifugal body force is proportional to the

square of the speed of rotation. The total radial load experienced by the lens also depends on
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its geometry, which differs between lenses and as a consequence of loading. The differences

in geometry are, however, modest so the square of the speed of rotation provides a useful

approximation to the relative load to which the spinning lens is subjected at each stage of

the test sequence. This approximate relative load is most naturally expressed as a proportion

of the load during the main test at 1000rpm. That is the relative radial load for a test at

rotational frequency f is given by

F̂ =
f 2

f 2
0

, (8.2)

where f0 is the reference rotational frequency of 1000rpm.

Spinning stretches the lens equatorially and flattens it axially, so the equatorial diameter,

D, and the axial thickness, T , provide two convenient measures of the magnitude of the

deformation experienced by the lens. The values at a given stage in the testing sequence

are readily obtained from the lens outline splines derived from the photographs taken during

that test (see section 7.2.7). The value of D or T from a given test are indicated with the

corresponding subscript from table 6.2 or 6.3 so DR1 is the diameter during the first reference

test, either with or without the capsule present.

The equatorial stretch, λE , at a given point in the testing sequence is the current diameter

divided by the diameter during the initial reference test. So, for example, the stretch during

the test BT2 is

λE =
DT2

DR1
. (8.3)

A simple relationship between load and deformation can be examined by comparing the

relative radial load to the equatorial stretch.

Examples of this load-deformation response are given for the three lenses L038A, L039B

and L056B in figures 8.2, 8.3, and 8.4 respectively. L038A and L039B were tested with

sequences A1 and B1 from tables 6.2 and 6.3, while L056B was tested with sequences A2

and B2. For a fixed lens and capsule state the loading slopes remain approximately the same

for each test speed, as do the unloading slopes, indicating that the lens responds in close to a

linear manner over the range of speeds used. In each case the removal of the capsule results

in a less stiff response for the equatorial diameter.
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These three lenses also display unrecovered deformation following each spinning test.

That is, the equatorial diameter is greater in the reference test following a spinning test than

in the preceding reference test. The unrecovered deformation is considerably larger once the

capsule has been removed from the lens. The lack of recovery indicates that lenses are not

deforming in a fully elastic manner. The magnitude of the unrecovered deformation after

spinning at 1000rpm can be characterized as λU , the change in diameter between reference

tests divided by the change in diameter during the spinning test. That is

λU =
DR3−DR2

DT2−DR2
. (8.4)

The mean value of λU for the tests on the lenses of G in the decapsulated state is 0.14. The

origin of the residual deformation is not clear from the current tests. It may result from some

combination of the following:
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i. a slow viscoelastic or poroelastic response of the lens material (as measured by Weeber

et al., 2005; 2007)

ii. the gradual failure of the material in the vicinity of the support

iii. unrecovered slippage of the lens at the support.

The current analysis of the spinning lens test examines the response on the assumption

that it is purely elastic as this is the dominant aspect and is also presumed to be of most

relevance to the behaviour of the lens during in vivo accommodation. The main analysis of

the spinning test uses an average of the reference tests before and after the test in question in

order to diminish the influence of the unrecovered deformation (see section 7.2.7).

8.1.3 Comparison of intact and decapsulated tests

In the current study the stiffness parameters describing the lens substance are derived from

the tests on decapsulated lenses, in contrast to the spinning lens test of Fisher (1971) in which

the capsule was left intact. The effect of using the decapsulated lenses can be assessed by

comparing the changes in diameter, D, and thickness, T , induced by spinning first with and

then without the capsule. For the intact lens, the changes in D and T experienced during the

test AT2 (at 1000rpm) are given by

δDA = DT2−
1
2
(DR2 +DR3) and δTA = TT2−

1
2
(TR2 +TR3) . (8.5)

The mean of the reference values is used for consistency with the main analysis in which

the reference geometry is calculated from the combination of both reference tests. For the

decapsulated lens the changes in each dimension, δTB and δDB, are calculated equivalently

for test BT2. The ratios between the intact and the decapsulated cases for the changes in each

dimension are

γT =
δTA

δTB
and γD =

δDA

δDB
. (8.6)

The changes in diameter and thickness plotted in figure 8.5 show a substantial and age-

varying difference between the values with capsule present and those when it has been re-

moved. The measurements for the 49-year lens L029A with capsule intact are not available

due to the presence of fluid on the lens during that test.
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The effect of the capsule varies considerably between lenses, with γT ranging from 0.5

to 4.5 and γT ranging from 0.5 to 1.6. The capsule has a consistently restrictive effect on the

younger lenses, with γT < 1 and γD < 1 for all 11 lenses aged 40 years or less. The value of

γT tends to increase with age, and also becomes more variable among older lenses. For the

lenses aged over 40 years γT > 1 for 12 of the 17 cases; thus the presence of the capsule often

enhances the axial compression of these older lenses. The value of γD also tends to increase

with age, but γD > 1 for only 3 of the 17 lenses aged over 40 years, so in the majority of

cases the capsule restricts the equatorial deformation of the lens substance to some extent.

The variability seen in the effect of the capsule indicates that it should be removed in

order to obtain accurate measurements of the stiffness of the lens substance from the spinning

test. Since the capsule has markedly different effects on lenses of different ages this is

particularly important when attempting to characterize relation between age and stiffness.
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The stiffness values reported by Fisher (1971) make no allowance for the presence of the

capsule during the spinning test, so the differences observed here between tests with and

without the capsule cast serious doubt on the accuracy of those values from the original

spinning test.

8.2 Stiffness parameters for the lens substance

The stiffness of the lens substance has been calculated for the lenses of set G by applying

the analysis procedures described in chapter 7. The principal results are those obtained

from the test conducted at 1000rpm on the decapsulated lens (test BT2 of table 6.3). The

two alternative support constraints (fixed (F) or sliding (S); see section 7.4) and the three

alternative stiffness models (homogeneous (H), distinct nucleus (D), and exponential (E);

see section 7.5) mean that six different descriptions of the stiffness of the lens substance

are generated from each test. The homogeneous stiffness values can provide only a very

approximate representation of the lens. Which of the remaining four representations of the

lens are useful must be determined. The properties of the analysis procedure and the optimal

values of the objective function, QA (used in the analysis of the test), are assessed for this

purpose.

8.2.1 Six descriptions of lens stiffness

The three stiffness models all indicate a substantial increase in the stiffness of the lens sub-

stance over the range of ages tested, with the most dramatic increase starting after about

30 years (see figures 8.6 to 8.11). The model D and model E both indicate that the stiffness

of the inner region of the lens (characterized by µN for model D and µ0 for model E) ex-

periences a particularly rapid increase from this age. The values of the stiffness parameters

for model E are generally more extreme than those for model D since they correspond to the

most extreme values within the lens. The stiffness of the outer region of the lens (character-

ized by µC for model D and µ1 for model E) shows a moderate increase up to about 40 years

in both heterogeneous stiffness models, after which it remains roughly constant or begins to
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decline after about 50 years. It seems unlikely that the decline reflects the physiological state

of the lens. Possibly it arises from the limitations of the stiffness models when representing

the very large difference in the stiffness calculated for the inner and outer regions of the older

lenses.

8.2.2 Comparison of support constraints

During the simulation of the spinning test the sliding constraint S provides a smaller restric-

tion on the movement of the lens than the fixed constraint F. Hence the stiffness for which

the simulated lens most closely matches the target outline would be expected to be higher

with constraint S. This is indeed the case, as can be seen by comparing the values calculated

for stiffness model H. The shear modulus, µ , calculated using constraint S is on average 1.12

times the stiffness calculated using the fixed constraint. This difference is small compared

to the span of stiffness values exhibited by lenses of different ages, which encompasses a

20-fold range.

A more dramatic effect of the choice of support constraint is seen in the partition of the

stiffness between the inner and the outer regions among young lenses (compare figure 8.8

with 8.9 and figure 8.10 with 8.11). For lenses younger than 30 years, the inner stiffness

(µN or µ0) is much greater under the sliding constraint S than the fixed constraint F, while

the outer stiffness (µC or µ1) is lower despite the overall increase in stiffness indicated by

model H. This same tendency is seen in the older lenses but to a lesser extent. Uncertainty

regarding the true conditions at the support leads to a large uncertainty in the stiffness dis-

tribution within the younger lenses. The ratio of µN calculated using constraint S to µN

calculated using constraint F has a geometric mean of 3.4 for the seven lenses younger than

30 years, with the 12-year lens labelled L043B having the maximum ratio of 4.8. The ratio

of the µC values has a geometric mean of 0.65 and a minimum ratio of 0.48, which also

occurs in the same lens.

As discussed in section 7.4, the photographs of the spinning test provide little direct

information that could be used to determine which constraint is the more appropriate for

modelling the contact with the support. However, the optimization procedure produces an
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assessment of how well the experiment was reproduced by each constraint for each lens in

the form of the optimum objective function value. If the quantity QC is defined as the ratio

of the optimal objective function value obtained using constraint S to that obtained using

constraint F, then a value of QC that is less than one indicates that constraint S provides

a better match, while a value greater than one indicates that constraint F provides a better

match. This ratio must be treated with caution as it will to some extent correspond to how

well the given constraint compensates for other deficiencies within the simulation, which has

no bearing on how accurate the constraint and corresponding stiffness values are. It does,

however, provide a means of assessing the two support conditions systematically.
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Figure 8.12 – The ratio, QC, of the constraint errors for lenses of set G . The values are the
ratio of the optimum objective function value obtained using constraint S to that obtained
using constraint F. The results for both model D and model E are included.

An examination of the objective function values for the two constraints produces a largely

consistent outcome: the constraint F provides a better match to the experiment for 12 of the

14 analyses applied to lenses younger than 30 years, while constraint S provides a better
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match for 43 of the 44 analyses applied to lenses of 30 years or older. This is illustrated in

figure 8.12. It is plausible that the younger, softer lenses would be more constrained by the

support ring as they sit lower and deform significantly around the support under the effect of

gravity.

The most appropriate conditions at the support probably lie somewhere between the ex-

tremes of constraint F and constrain S for each lens, but in the absence of better information

it is assumed that the stiffness parameters obtained using the fixed constraint are the most

representative for lenses younger than 30 years while the parameters calculated using the

sliding constraint are the most representative for lenses of 30 years or older. The combi-

nation of using results calculated with constraint F for lenses younger than 30 years and

constraint S for lenses of 30 years or older is referred to as using the preferred support con-

straints. The preferred support constraints are used in section 8.2.4 below when computing

age-stiffness relations for a typical lens from the individual measurements. Using the pre-

ferred support constraints also avoids the physically unlikely situation that the inner portion

of young lenses decreases in stiffness until an age of about 35 years, which is what adopting

support constraint S in conjunction with stiffness model E would imply (see figure 8.11).

8.2.3 Comparison of stiffness models

An examination of the stiffness profiles predicted by the three models for three example

lenses (figures 8.13, 8.14, and 8.15) shows that stiffness models D and E predict similar

stiffness profiles given the constraints of their respective forms, while model H provides

a value intermediate between these extremes (rather than, for example, approximating the

cortex value of model D).

The largest departure between the heterogeneous stiffness models in these examples is

seen in the central region of the 50-year old lens labelled L056B, where model E indicates

a value 8 times that of model D. This is an understandable limitation of the spinning lens

test. When the centre of the lens is substantially stiffer than the outer region the simulated

behaviour of the spinning lens will not depend heavily on the exact stiffness at the centre.

Once the deformation at the centre of the lens is small compared to the deformation in the
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outer region even a large increase in the central stiffness will only have a small effect on

the overall deformation. When the optimization process is applied to such a lens it will tend

to provide appropriate stiffness values for the outer and intermediate regions of the lens,

while the central value will be dictated by the form of the stiffness model. In the case of

model E this can produce a central stiffness value much greater than the actual value. If

the intermediate region of the lens is substantially stiffer than the outermost region then the

exponential function will rise rapidly as the lens centre is approached. Model D is more

conservative in that it may also produce an inaccurate central stiffness value when the centre

is much stiffer than the cortex, but the value will tend to be within the range of values which

are actually present in the lens rather than extrapolating beyond them.

This limitation of the spinning lens test is significant when making use of the stiffness
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values directly, such as when making comparisons with values calculated using other tests.

However, it is less of a problem when the stiffness values are used for modelling of the whole

lens, as in that case the sensitivity of the model results is comparable to the sensitivity of the

spinning test.
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Figure 8.16 – The ratio, QM, of the stiffness model errors for lenses of set G . The values
are the ratio of the optimum objective function value obtained using model E to that
obtained using model D. The results for both constraint F and constraint S are included.

The relative performance of the respective stiffness models can be examined in the same

manner as the support constraints in section 8.2.2. If the quantity QM is defined as the ratio of

the optimal objective function value obtained using model E to that obtained using model D,

then a value of QM that is less than one indicates that model E provides a better match, while

a value greater than one indicates that model D provides a better match. As illustrated in

figure 8.16, there is no apparent difference in the performance of the two stiffness models

when support constraint S is used, but model E generally performs better when constraint F

is used. In section 8.2.2 it is concluded that constraint F should be preferred for in the lenses
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younger than 30 years while constraint S should be preferred for older lenses. Limiting the

consideration to the preferred support constraints indicates that stiffness model E should be

preferred for the younger lenses, and both stiffness models are equally good for the older

lenses. The generally better performance of model E among the younger lenses is an indica-

tion that the form of the nucleus assumed in model D may be inappropriate for these lenses,

either because there is not a mechanically distinct nucleus at all, or because its size or shape

is incorrect.

8.2.4 Age-stiffness relations for the lens

The relations between age and the parameters of the three stiffness models H, D, and E can

be summarized effectively by calculating a function of best fit. Since the parameter values

range over several orders of magnitude performing such a fit in log-space is appropriate.

Examination of figures 8.6 to 8.11 suggests a linear fit in log-space (equivalent to a weighted

exponential fit) would generally provide a poor representation of the stiffness parameters, but

that a piecewise linear function with two segments can serve well. Such a function describing

a general stiffness parameter µx takes the form

log10 µx =


b1 (A−A0)+ c A≤A0

b2 (A−A0)+ c A>A0

, (8.7)

where A is the age variable and A0, b1, b2 and c are the four function parameters determined

by the fitting process. The parameters b1 and b2 are the slopes of the two linear segments, A0

corresponds to the age of transition from one linear segment to the other, and c is the value

of log10 µx at this age.

On the basis of the discussion in section 8.2.2, the stiffness parameter values used for

each lens in the fitting procedure are composed of those calculated using the fixed support

constraint F for lenses younger than 30 years, and those calculated using the sliding support

constraint S for lenses of 30 years and older. The MATLAB utility cftool was used to

calculate the best-fitting parameters and the corresponding 95% confidence intervals for the

fitted function.
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Table 8.1 – The parameters of the model H age-stiffness relation. The function parameters
of equation 8.7 are calculated for the homogeneous stiffness model (H) with the preferred
support constraints. The values are for an age, A, specified in years and the homogeneous
shear modulus, µ, specified in pascals. The parameters and 95% confidence intervals are
calculated by the MATLAB utility cftool.

value 95% interval

A0 23.843 18.7 – 29.0

b1 0.00322 -0.0139 – 0.0204

b2 0.04242 0.0367 – 0.0481

c 2.2421 2.08 – 2.40
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Table 8.2 – The parameters of the model D age-stiffness relation. The parameters of
equation 8.7 are calculated for the distinct nucleus stiffness model (D) with the preferred
support constraints. The values are for an age, A, specified in years and stiffness
parameters, µN and µC, specified in pascals. The parameters and 95% confidence intervals
are calculated by the MATLAB utility cftool.

nucleus (µN) cortex (µC)

value 95% interval value 95% interval

A0 27.451 22.9 – 32.0 43.000 39.0 – 47.1

b1 0.00562 -0.0162 – 0.0275 0.02348 0.0189 – 0.0280

b2 0.07671 0.0661 – 0.0874 -0.00932 -0.0212 – 0.0026

c 1.8379 1.58 – 2.10 3.1286 3.05 – 3.20
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Figure 8.19 – The
age-stiffness
relations for
model E.
Piece-wise linear
functions are fitted
to the stiffness
parameters
calculated for
model E using the
preferred support
constraints of each
lens. The dashed
lines indicate the
95% confidence
bounds for the fitted
function calculated
by cftool.

Table 8.3 – The parameters of the model E age-stiffness relation. The parameters of
equation 8.7 are calculated for the exponential stiffness model (E). The values are for an
age, A, specified in years and stiffness parameters, µ0 and µ1, specified in pascals. The
parameters and 95% confidence intervals are calculated by the MATLAB utility cftool.

centre (µ0) exterior (µ1)

value 95% interval value 95% interval

A0 35.594 30.1 – 41.1 43.166 39.5 – 46.8

b1 0.04154 0.0140 – 0.0690 0.01910 0.0120 – 0.0263

b2 0.15222 0.1228 – 0.1816 -0.03796 -0.0566 – -0.0193

c 1.8357 1.20 – 2.47 3.1772 3.07 – 3.28
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The individual shear modulus values for model H and the corresponding age-stiffness

relation are plotted in figure 8.17, while the values of the relation parameters and corre-

sponding confidence intervals are presented in table 8.1. Likewise, the model D and model E

parameter values and age-stiffness relations are plotted in figures 8.18 and 8.19, while the

corresponding relation parameters given in tables 8.2 and 8.3. The age-stiffness relations

for model D and model E indicate that younger lenses have a softer inner region than outer

region, while for older lenses the reverse is the case. Both age-stiffness fits suggest that this

transition occurs at an age of about 44 years.

8.3 The reliability of the measurements

The spinning lens test is a delicate operation on a fragile material and the analysis required to

interpret the results is substantial, so the reliability of the measurements is open to question.

The most prominent issues are addressed below. The influence of the form of the mesh is

examined by comparing the results of more refined meshes. An assessment of the repeata-

bility of the test and a check that the lens substance responds in a roughly linear manner are

made by examining some of the tests conducted at speeds other than 1000rpm. The precision

with which the analysis can determine the stiffness parameters is examined for three exam-

ple lenses with differing stiffness profiles. The influence of any swelling among the lenses

is assessed by comparing lenses with a range of aspect ratios. Finally, the possibility that

drying of the lens affects its mechanical response is checked by examining the response of

three lenses to secondary tests conducted about ten minutes after the main test at 1000rpm.

8.3.1 Mesh refinement

The form, and particularly the density, of mesh used for a finite element analysis has some

effect on the outcome. For accuracy the analysis should be performed with a mesh that

is sufficiently dense that further subdivision of the elements will result in no appreciable

change. In the current work, extreme accuracy of the finite element analysis is not required

as other aspects of the analysis process introduce unavoidable uncertainties. In order to
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Table 8.4 – The results obtained using more refined meshes. A refinement factor of 1
corresponds to the refinement used in the main analysis of the spinning lens test. The
analyses were performed for lens L038A using stiffness model D and support constraint F.

refinement number of max.
element

µN µC

factor elements edge (mm) (Pa) (Pa)

1 1420 0.500 8.89×101 9.77×102

2 3478 0.250 8.91×101 9.78×102

3 7697 0.167 8.92×101 9.76×102

demonstrate that the mesh densities used in the current analysis are sufficiently dense, the

analysis of lens L038A using stiffness model D and support constraint F was repeated with

more refined meshes. The results are summarized in table 8.4.

The small differences seen in the stiffness parameters calculated using the three meshes

examined are less than 0.5%, so are negligible compared to other sources of uncertainty (for

example the precision of the optimization procedure discussed in section 8.3.3 below). Thus

the mesh density used in the analysis is adequate for the purpose.

An area of particular concern within the mesh is the equator of the nucleus in model

D, as a sharp angle such as this can lead to stress concentration and cause an over-stiff

response from the finite element simulation. The very small changes seen in the results

when the whole mesh is refined suggest that any inaccuracy of the simulation in this area in

the unrefined mesh has little influence on the overall behaviour of the lens.

8.3.2 Analyses at other speeds

In addition to the main tests at 1000rpm, similar analyses have been performed for additional

tests for some lenses from the set G . The majority of the lenses of 40 years or older were

tested at 1400rpm to ensure they experienced large enough deformations for useful analysis

(test B2T3 and B3T3 in table 6.3), though in five cases these tests were not conducted. Ad-

ditionally, the lenses younger than 40 years experience sufficient deformations when spun at

700rpm to render those tests useful (test B1T1); indeed the large deformations such young

lenses experience at 1000rpm may exaggerate some inaccuracies of the analysis, such as

the assumption that the lens behaves as a neo-Hookean material and the selected constraints
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Figure 8.20 – A comparison of stiffness parameters calculated at different speeds. The
parameters are for model D using the preferred support constraint for each lens. Values
have been calculated for 9 lenses at 700 rpm (test BT1), 29 lenses at 1000 rpm (test BT2),
and 15 lenses at 1400 rpm (test BT3).

imposed at the contact with the support.

The stiffness parameters obtained from the analysis of these additional tests broadly agree

with the parameters obtained from the main test at 1000rpm, as illustrated in figure 8.20

for stiffness model D. For this analysis the stiffness parameters obtained from the 700rpm

tests are all lower than those from the corresponding 1000rpm tests, with the value for µN

being 0.81 of the main result on average, and the value for µC being 0.85 of the main result

on average. The behaviour at 1400rpm does not differ from that at 1000rpm in the same

systematic manner. The average value of µN at 1400rpm coincides with that at 1000rpm

and the value for µC at 1400rpm is 1.07 times the value at 1000rpm on average.

The variation in the calculated stiffness parameters for the tests at different speeds is
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relatively small compared to the change in the parameters with age, and even compared to the

effect of changing the support constraint used in the analysis. The response of the substance

of the older lenses appears to be essentially linear up to 1400rpm, while the substance of

the younger lenses may be displaying a slightly non-linear response, though the form of the

experiment does not enable this to be distinguished from a preconditioning effect, as the test

at 700rpm always preceded the test at1000rpm.

8.3.3 Precision of the optimization procedure

The optimization procedure provides a precise value for the stiffness parameters which best

reproduce the observed behaviour a given lens during testing. Such precision is not actually

justified due to the substantial approximations and assumptions incorporated into the simula-

tion of the spinning test. An estimate of all the plausible stiffness parameters implied by the

observed behaviour of the lens can be made by examining the form of the objective function

in the vicinity of the optimum. The set of points in parameter-space where the objective

function is close to the optimal value can be considered plausible since a small improvement

in the simulation of the spinning test could alter the objective function enough to make such

a point the optimum.

The threshold of the objective function value below which a point can be considered

plausible depends on the accuracy of the simulation. This can be approximated by the op-

timal value: if the simulation closely matches the observed behaviour then it is more likely

that it corresponds closely to the experimental situation (though it is always possible that two

inaccuracies compensate for each other to some extent). Thus the region of plausible stiff-

ness parameters can be estimated as the region for which the objective function lies between

the optimal value and some multiple of the optimal value.

Contours of the objective function in parameter-space are illustrated for the 33-year lens

L038A in figure 8.21. The optimal stiffness parameters for this lens using stiffness model D

and support constraint S are µN = 0.19kPa and µC = 0.93kPa, so the nucleus is consider-

ably softer than the cortex. In these circumstances the stiffness of the nucleus is not tightly

constrained by the spinning lens test. If an objective function value of 1.2 times the optimum
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Figure 8.21 – Contours of the objective function for a 33-year lens. The contours were
calculated for the lens labelled L038A, analysed using model D and constraint S. The
contour values are relative to the optimum value of the objective function (QA= 0.059 mm2;
Q̂A = 0.075).

is taken to delineate the region of plausible stiffness values, then µN can be assumed to lie

between 0.13 and 0.24kPa, about a two-fold range (see figure 8.21). For a given nucleus

stiffness, the optimal cortex stiffness varies somewhat, with an increase in µN being com-

pensated for by a slight decrease in µC and vice versa. Using the same objective function

contour as for the nucleus, µC should lie between 0.8 and 1.1kPa, a considerably tighter

interval.

The 43-year lens labelled L039B has a substantially poorer optimum objective function

value than L038A when analysed using the stiffness model D and support constraint S, lead-

ing to a considerably larger region within which the objective function is below 1.2 times

the optimum, as depicted in figure 8.22. The calculated stiffness parameters of this lens are

µN = 1.28kPa and µC = 1.41kPa, so it is roughly homogeneous. For such a lens the stiffness

of the nucleus is somewhat more constrained by the spinning test than the cortex. In this case
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Figure 8.22 – Contours of the objective function for a 43-year lens. The contours were
calculated for the lens labelled L039B, analysed using model D and constraint S. The
contour values are relative to the optimum value of the objective function (QA= 0.060 mm2;
Q̂A = 0.186).

µN can be assumed to lie between 0.80 and 1.9kPa, while µC can be assumed to lie between

0.8 and 2.4kPa.

When the nucleus is considerably stiffer than the cortex the spinning lens test once again

provides less constraint on the former value than on the latter, as can be seen in the case

of the 50-year lens labelled L056B in figure 8.23. This lens has stiffness parameters of

µN = 7.48kPa and µC = 1.07kPa calculated using stiffness D and support constraint S. For

this lens the region within 1.2 times the optimum objective function value gives a range for

µN from 6 to 9kPa, and a range for µC from 0.9 and 1.2kPa.

As can be seen in the above examples, the spinning lens test is not sufficient to tightly

constrain the parameters of a heterogeneous stiffness model. Fortunately the parameters

change sufficiently with age that the the trend can be discerned despite the likelihood that

individual measurements are somewhat scattered. A more problematic aspect of the loose
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Figure 8.23 – Contours of the objective function for a 50-year lens. The contours were
calculated for the lens labelled L056B, analysed using model D and constraint S. The
contour values are relative to the optimum value of the objective function (QA= 0.011 mm2;
Q̂A = 0.104).

constraints is that a modest change in the model used to simulate the test can lead to a

large relative change in the calculated stiffness profile, as seen with the younger lenses when

subjected to different support constraints (see section 8.2.2).

8.3.4 Swelling of the lenses

It is possible that some of the lenses included in the main lens set G have altered mechanical

properties due to the absorption of fluid. The aspect ratio, α , of lenses tends to decrease

when they swell (see section 8.1.1), so this can be used as a proxy for swelling. If fluid is

absorbed by the lens substance it is likely to first be apparent in the cortex, so the parameter

µC calculated for stiffness model D is the mechanical property of greatest concern. Both the

aspect ratio and µC have a positive correlation with age for the lenses of set G , so identifying

any separate contribution from swelling is problematic.
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Figure 8.24 – An examination of lens swelling. The cortical stiffness, µC, (calculated for
model D using constraint S) is plotted for lenses older than 30 years, grouped by aspect
ratio, α. Only lenses older than 30 years are included. The lenses of GA satisfy α ≥ 2.2,
those of GB satisfy 2.1 ≤ α < 2.2, and those of GC satisfy α < 2.1.

The lenses for which α ≥ 2.2 are assumed to be unaffected by swelling as they are

well within the expected range for unswollen lenses. These lenses are grouped together as

a subset, GA. The 11 lenses of subset GA are aged between 33 and 58 years, so are best

compared with other lenses in this age range (no lens in set G is aged over 58 years). The

11 lenses aged 33 years or more which are not in GA are assigned to two further subsets,

GB consisting of the 6 lenses for which 2.1 ≤ α < 2.2, and GC consisting of the 5 lenses

for which α < 2.1, which are the lenses most likely to be affected by swelling. There is no

evident distinction in the cortical stiffness of the lenses in these three subsets as illustrated

in figure 8.24. This suggests that any influence of swelling on the mechanical response of

these older lenses is small compared to the variability in the measurement between individual

specimens.

A similar examination of the seven lenses younger than 33 years is not informative as
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Table 8.5 – An examination of lens drying. The stiffness parameters for model D using
constraint S are calculated from two tests on each of the example lenses. The comparison
test is the first on the decapsulated lens at the same speed as the final test (see tables 6.3
and 6.4).

comparison test final test

lens age test µN µC time test µN µC time

(years) (kPa) (kPa) (min) (kPa) (kPa) (min)

L038A 33 B1T2 0.19 0.93 8 C1T4 0.21 1.00 19

L039B 43 B1T2 1.28 1.41 8 C1T4 1.27 1.57 20

L056B 50 B2T3 7.35 1.16 9 C2T4 7.06 1.27 18

the aspect ratio of these lenses is more variable, both with age and due to the softness of

the lenses. It is therefore not possible to identify any younger lenses which are clearly not

swollen to provide a comparison. This unfortunately leaves unanswered the question of

whether some or all of the younger lenses are affected by swelling.

8.3.5 Drying of the lens

Despite the measures taken to limit drying of the lens during the test it may have some effect

on the stiffness measurement. The final test performed on the decapsulated lens (CT4 in

table 6.4) provides a means of assessing the effect of drying to some extent, as it is generally

performed after the lens has been exposed to the air for about twice as long as the main

test (BT2). The stiffness parameters obtained from the final tests for lenses L038A, L039B,

and L056B are presented in table 8.5, along with the parameters obtained from the first test

conducted at the same speed (1000rpm for lenses L038A and L039B, and 1400rpm for lens

L056B).

It can be anticipated that drying will tend to increase the stiffness of the exterior of the

lens. This is indeed reflected in the stiffness parameters obtained for the example lenses

where the cortex is about 1.09 times stiffer in the final test than in the comparison test at

the same speed. The difference cannot be unambiguously attributed to the drying of the

lens since the unrecovered deformation seen in figures 8.2, 8.3, and 8.4, or preconditioning

effects may also play a role in the changing response of the lenses. It does, however, suggest

that drying has at most a modest effect on the stiffness parameters obtained from the main
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tests when compared to the substantial variation seen between lenses.

8.4 Comparisons with published measurements

The relationships presented in section 8.2.4 provide three descriptions how the stiffness of a

typical lens changes with age: the model H age-stiffness relation based on the homogeneous

model of the lens, the model D age-stiffness relation based on the distinct nucleus model,

and the model E age-stiffness relation based on the exponential stiffness model. These can

be compared to the results reported by Fisher (1971), Heys et al. (2004), Heys et al. (2007),

and Weeber et al. (2007), with the choice of model for comparison depending on the form of

the reported data.

Two main factors complicate comparisons between the tests. First, the comparisons de-

pend on the accuracy of the constitutive model adopted for the lens substance, as this is used

to relate the different sorts of measurements to common mechanical parameters. Second,

the description of the heterogeneity of the lens differs between the tests, requiring selection

of appropriate values for comparison. The spinning lens test is suited to characterizing the

response of the whole lens rather than the stiffness at particular points, so these values will

only broadly follow the locally measured stiffness values.

8.4.1 Comparison with Fisher (1971)

In the original spinning lens test of Fisher (1971) the lens is assumed to consist of a nucleus

and cortex as in the current model D. However, the nucleus is simplified to a sphere by

Fisher (1971), unlike the more realistic shape employed in model D. Figure 8.25 provides a

comparison of the stiffness values reported for the nucleus and cortex by Fisher (1971) with

those obtained from the model D age-stiffness relation (see figure 8.18 and table 8.2).

The general forms of the curves are similar: the stiffness of the nucleus changes little up

to 30 years then increases substantially, while the increase in the stiffness of the cortex is

greater in the earlier period and levels off or declines slightly from 40 years. However, the

magnitude of the changes, especially in the nucleus, are much greater in the model D relation.
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Figure 8.25 – A comparison with the stiffness values of Fisher (1971). The model D
age-stiffness relations (dashed lines) are compared to the age-stiffness relations for the
nucleus and the cortex reported by Fisher (1971) (solid curves). The latter curves have
been translated from Young’s modulus to shear modulus assuming incompressibility and
plotted on a log10 scale.

The relative stiffness of the two components is also substantially different, with the model D

relation suggesting that the nucleus becomes stiffer than the cortex after 44 years (during the

development of presbyopia), rather that at 70 years (well after presbyopia is established).

The lower stiffness in younger lenses seen in the model D relation could be anticipated

given that the analysis used by Fisher (1971) did not incorporate the restrictions on the de-

formation of the lens imposed by the lens capsule and the lens support. Such restrictions will

naturally have a greater influence on the value of the stiffness calculated for softer young

lenses. Additionally, the more dramatic changes calculated for the nucleus in the current

work can be explained in part by the different choice of nucleus shape. Fisher (1971) ap-

proximated the nucleus by a sphere occupying the full height of the lens so a smaller increase

in stiffness with age will have a greater influence on the deformation towards the poles of



Chapter 8. The spinning lens test: Results 140

the lens than the less extensive nucleus of model D. There are of course a number of other

differences which must also influence the alternate stiffness values to some extent, though

not in such an obvious way (see chapter 4 and Burd et al., 2006).

8.4.2 Comparison with Heys et al. (2004) and Heys et al. (2007)

Heys et al. (2004) obtained stiffness measurements by applying an indentation test at several

locations across each lens. The published age-stiffness relations are apparently derived from

measurements at two locations: points 0.5mm from the lens axis, here labelled point H1,

and points 3.5mm from the lens axis, here labelled point H2. Further stiffness values from

point H1 are reported for individual lenses by Heys et al. (2007), but not combined into an

age-stiffness relation.

A comparison can be made between the indentation measurements at point H1 and H2

and the corresponding stiffness values from the age-stiffness relations calculated for model D

and model E. In reality the indentation results depend to a degree on the stiffness of the

material in the whole volume deformed during the test; however, for simplicity it is assumed

that the value at a fixed point within this volume is representative. The indentation probe had

a diameter of 0.4mm and this was inserted a typical distance of 0.75mm into the substance

during the measurement. Thus the centre of the deformed volume, and therefore points H1

and H2, all lie some way below the lens equator. For ease of comparison with model E,

points H1 and H2 are assumed to lie on the plane passing through the midpoint of the lens

(according to values given by Rosen et al., 2006 this plane generally lies about 0.4mm below

the equatorial plane for an isolated lens, so this is a reasonable approximation).

For model D, point H1 corresponds to the nucleus region while point H2 corresponds to

the cortex region, though it lies very close to the border with the nucleus. For model E, it is

necessary to determine the relative distance, λ , from the lens midpoint to the measurement

points. Rosen et al. (2006) report a linear relation for the equatorial diameter of isolated

lenses:

D = 8.7+0.0138A , (8.8)

where A is the age of the lens in years and D is the diameter in millimetres. It is assumed
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that this is also a reasonable approximation for the diameter of the lens in the plane passing

through the midpoint since the diameter does not vary rapidly in this region. On this basis,

the relative distances for points H1 and H2 are taken to be

ζ̂H1 =
1
D

and ζ̂H2 =
7
D

, (8.9)

where D is given by equation 8.8.

The various values for the stiffness at point H1 are presented in figure 8.26. The model D

age-stiffness relation agrees reasonably well with the relation given by Heys et al. (2004),

with the former being on average 1.4 times stiffer. The model E fit gives a more rapid

increase in stiffness with age at point H1 than the other relations. It suggests lenses aged

around 20 years are about half the stiffness indicated by the relation reported by Heys et al.

(2004), and that lenses aged around 50 years are about three times stiffer. As discussed in

section 8.2.3, the stiffness values implied by model E near the centre of older lenses are not

reliable since the spinning lens test is not sensitive to the value once the inner region becomes

much stiffer than the outer region.

The stiffness values reported by Heys et al. (2007) for lenses younger than about 35 years

are considerably greater than the values from either Heys et al. (2004) or the current age-

stiffness relations. The principal difference reported between Heys et al. (2004) and Heys

et al. (2007) is that the former tested lenses previously frozen at −70◦C, while the latter

tested fresh lenses. The current spinning test also uses fresh lenses so this factor does not

explain the substantial difference seen between the current measurements and those of Heys

et al. (2007) in figure 8.26. Interestingly, the stiffness values reported by Heys et al. (2007)

for point H1 (close to the centre of the lens) in these younger lenses are similar to the cortical

stiffness values, µC, of the model D age-stiffness relation. This may be an indication that

for lenses with a very soft interior the testing of Heys et al. (2007) was somehow influenced

more by the stiffness of the outer region of the lens than by the inner region. The indentation

procedure used by both Heys et al. (2004) and Heys et al. (2007) is force controlled, so the

full indentation distance in lenses with a soft inner region would be considerably greater than

the reported typical value of 0.75mm, and possibly enough that the outer region of the lens

had a substantial effect. This does not explain why the same effect is not seen in Heys et al.
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(2004).

Both the model D and model E age-stiffness relations suggest considerably higher stiff-

ness values at point H2 than the relation reported by Heys et al. (2004), as shown in fig-

ure 8.27. The model D fit suggests lenses aged up to 45 years are about four times stiffer at

point H2 than the Heys et al. (2004) relation, while the model E fit suggests they are about

three times stiffer. The discrepancy diminishes for older, stiffer lenses. A possible cause of

the disagreement lies in the the analysis of the indentation test which ignores proximity of

the boundary of the sample (see section 2.1.4). The analysis of the spinning lens test also

entails considerable uncertainty in the appropriate stiffness values for young lenses due to

the contact with the support (see section 8.2.2). However, the variation in the stiffness values

calculated at point H2 using the two support constraints is modest; most of this uncertainty

relates to the stiffness calculated towards the centre of the lens.

8.4.3 Comparison with Weeber et al. (2007)

Weeber et al. (2007) provide a description of the stiffness profile from the axis of the lens to

4mm and for ages from 20 to 70 years calculated by fitting a surface to the individual stiffness

measurements from 10 lenses (see section 2.1.5). The profile for a given age can be compared

to the corresponding stiffness profiles obtained from the model D and model E age-stiffness

relations. The lenses tested by Weeber et al. (2007) were sectioned at the equatorial plane.

At each test point the probe was inserted 0.5mm into the lens substance before performing

the oscillatory test so, just as for Heys et al. (2004), the stiffness values correspond to a

point posterior of the equatorial plane. It is assumed for the purposes of comparison that the

measurements reported by Weeber et al. (2007) correspond to points located on the plane

through the midpoint of the lens, as discussed in section 8.4.2. For model D the transition

from the nucleus to the cortex is calculated to occur at a radius of 3.10mm in this plane.

Consistent with section 8.4.2, the relative position for a given location in this plane is taken

to be

ζ̂ =
2r
D

, (8.10)

where r is the distance from the lens axis and D is the age-varying diameter given by equa-
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tion 8.8.

Within the limitations of the respective representations the stiffness profiles reported by

Weeber et al. (2007) and the current age-stiffness relations are broadly similar at least for the

inner region of the lens, as shown in figures 8.28 and 8.29.

The stiffness of the nucleus of model D lies within (or at 50 years close to) the range

covered by the corresponding portion of the profile for the same age from Weeber et al.

(2007). The same is not true for the cortex, where at several ages the model D stiffness is well

outside the range covered by the whole indentation profile of the same age. The stiffness of

the cortex region of model D shows a far smaller increase with age than the indentation tests,

largely due to the slight decline in stiffness after 43 years in the former. The discrepancy

between the profiles towards the outside of the lens may reflect uncertainty in the behaviour

at the interface between the lens and its holder when performing indentation, although unlike

Heys et al. (2004) a trephine was not employed and the effect of the lens shape was included

in the analysis of Weeber et al. (2007).

In the interior of younger lenses, the form of model E allows closer agreement with the

profiles of Weeber et al. (2007) than the form of model D. If the stiffness of the inner region

of the lens is well represented by the indentation profiles then the capacity of model E to

more closely match that form provides an explanation for its better performance at matching

the experimental results of the spinning lens test for lenses younger than 30 years, as seen

in section 8.2.3. In the interior of the older lenses, model E departs more dramatically from

the indentation profiles than model D in a similar manner to the comparison with Heys et al.

(2004) at point H1 discussed in section 8.4.2. In the outer region of the lens the difference

between the indentation profiles and model E is similar to the difference seen in the cortex

for model D, with the results from the spinning test showing considerably smaller variation

with age, especially for older lenses.

8.4.4 Summary of comparisons

The stiffness values calculated for the inner region of the lens using both model D and

model E bear more similarity to the results reported for the indentation tests of Heys et al.
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Table 8.6 – The relative increase in stiffness between 20 and 50 years calculated from the
age-stiffness relations obtained in previous and current tests. The values for Glasser and
Campbell (1999), Weeber et al. (2005), and Heys et al. (2007) are as described in the
caption of figure 2.2.

nucleus cortex whole lens

or 0.5mm or 3.5mm

Fisher (1971) 2.5 1.4

Glasser and Campbell (1999) 3.7 or 4.9

Heys et al. (2004) 63 7.9

Weeber et al. (2005) 6.9

Heys et al. (2007) 10

Weeber et al. (2007) 229 14.1

model H relation 13

model D relation 59 3.0

model E relation 335 6.4

(2004) and Weeber et al. (2007) than to the original spinning test of Fisher (1971). This ap-

plies both to the low stiffness values obtained for younger lenses and the dramatic increase

in stiffness with age. The differences between the spinning tests are consistent with the

expected results of improvements made to the current version which suggests that the val-

ues obtained for the nucleus in the original spinning test are not accurate. The comparison

between model E and both indentation tests indicates that it is unlikely to provide realistic

stiffness values for the inner region of lenses beyond about 45 years, as was also suggested in

section 8.2.3. The model D age-stiffness relation should therefore be preferred for describing

such lenses.

The situation for the outer region of the lens is more ambiguous. The stiffness values

obtained in the current spinning test largely lie between those of the original spinning test

of Fisher (1971) and the indentation tests, but closer to the former. However, the rate of

increase in stiffness up to about 40 years is similar to the indentation tests. The current

spinning test is likely to be better able to determine the stiffness of the outer region of the

lens than indentation tests as this is usually where the uncertainties of a spinning test are

smallest and the uncertainties of an indentation tests are greatest. The spinning test of Fisher

(1971) does not have the same advantage due to the presence of the capsule.
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The stiffening indices introduced in section 2.1.7 are repeated in table 8.6 with the addi-

tion of the values from the model H, D, and E age-stiffness relations. These values provide

a summary of the increase in stiffness over the ages during which presbyopia develops. The

values confirm the impressions given by figures 8.25 to 8.29. For the inner region of the lens,

the model D fit is similar to Heys et al. (2004) while the model E fit indicates considerably

more stiffening than even Weeber et al. (2007). For the outer region of the lens the model D

fit lies between Fisher (1971) and Heys et al. (2004), while the model E fit is similar to Heys

et al. (2004).

Three test methods characterize the mechanical response of the lens substance by a single

value: Glasser and Campbell (1999), Weeber et al. (2005), and model H. These tests each

mobilize the lens substance in a different manner so the evident non-homogeneity of the lens

substance will naturally lead to different outcomes from each method. This can be expected

to extend to the calculated change in stiffness with age, since Model D and E suggest that this

also varies with position. Over the range of ages tested in the current work, the typical values

for shear modulus obtained using model H are on average about 40% of the equivalent values

obtained from figure 5 of Weeber et al. (2005). The differences the the change in stiffness

with age for these tests can be most easily compared using the values reported in table 8.6.

Model H indicates a greater increase in stiffness over this range than Weeber et al. (2005),

and greater still than Glasser and Campbell (1999). For lenses younger than about 24 years,

though, model H indicates very little change in stiffness.



9
Modelling accommodation

The measurements of the stiffness of the lens substance using the spinning lens test presented

in chapters 6, 7, and 8 are primarily intended for use in computational models of in vivo ac-

commodation. Such models allow an improved and more quantitative understanding of the

development of presbyopia, and also permit an examination of the efficacy of treatments

intended to reverse it. In this chapter models of the accommodation mechanism at 29 and

45 years are described, making use of the age-stiffness models described in section 8.2.4.

The treatment of the capsule is also novel, attempting to mimic the behaviour suggested by

Burd (2009) and also incorporating a possible effect of residual stresses in the lens, suggested

by Dr Burd. The remaining details of the models reflect previously published methods. The

finite element method, outlined in chapter 5, is used to simulate the process of disaccommo-

dation in the models, and their resulting mechanical and optical performance is examined

and compared to in vivo measurements. The 45 year model is further adapted to explore

the possibility of using a laser treatment to increase the flexibility of the lens substance and

thereby increase the amplitude of accommodation.

9.1 Models for 29 and 45 years

The accommodation apparatus is examined at two ages within the range covered by the age-

stiffness models calculated in section 8.2.4. The ages of 29 and 45 years are adopted as they

148
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have been used in a number of previously published models (for example Burd et al. 2002;

Hermans et al. 2008a). At 29 years the eye has a subjective accommodation amplitude of

about 8D, sufficient for most tasks. By 45 years this has typically fallen to 4D, indicating

considerable changes in the behaviour of the accommodation apparatus over this interval.

This is also about the age at which loss of accommodation amplitude generally becomes a

practical difficulty.

9.1.1 Model geometry

Distinct geometries are used for the 29 and 45 year accommodation models, denoted by

the labels A29 and A45 respectively. The two geometries are derived from a number of

in vivo measurements of the lens, using a mixture of the methods and data sources of Burd

et al. (2002) and Hermans et al. (2008a). Each model is composed of the lens substance,

the capsule and an idealized representation of the zonular fibres. The whole accommodation

apparatus is essentially axisymmetric and is modelled as such. The initial configuration of

each model is constructed to correspond to the fully-accommodated state for a typical lens

of the same age. The finite-element mesh used for model A29 is illustrated in figure 9.1;

the mesh used for model A45 is of the same general form but with differing dimensions.

The principal differences from previous models of accommodation are the application of the

stiffness values obtained from the current spinning lens test in modelling the lens substance,

and the manner in which the lens capsule is modelled.

Lens shape The exterior shape of the lenses of A29 and A45 are taken from the models

of the same age presented by Hermans et al. (2008a). In this formulation the axisymmetric

outline of each lens is divided into four segments each of which is described by a conic

section. The parameters of the conic sections were chosen to agree with selected published

measurements of in vivo lenses (Strenk et al., 1999; Dubbelman and van der Heijde, 2001;

Dubbelman et al., 2005; Rosen et al., 2006), and are also constrained to ensure a smooth

transition between the segments. For both ages the fully-accommodated shapes specified by

Hermans et al. (2008a) are adopted. The geometry of the 29 year lens is stated to correspond

to 8D of accommodation, and that of the 45 year lens to 4D of accommodation.
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Figure 9.1 – The mesh used to simulate accommodation for the 29-year model A29. The
measurements rCB and dZA determine the geometry of the zonular fibres. For the distinction
between capsule region 1 and capsule region 2, see the text.

Capsule The capsule is modelled as a thin membrane conforming to the exterior of the

lens substance. It is assumed to fully adhere to the underlying lens substance during defor-

mation. The capsule is divided into two regions, as illustrated in figure 9.1. These regions

are distinguished in order to reflect plausible effects of residual stresses in the lens when it

is fully accommodated without requiring an explicit inclusion of such stresses in the model,

as discussed in detail below. The method of modelling the effect of residual stresses were

proposed by Dr Burd and implemented by the author.

There is understandably no information available on residual stresses in the lens in vivo;

however, Pedrigi et al. (2007) report a residual strain of about 3% in the anterior capsule

within partially dissected eye globes. The presence of residual stresses would have little

impact on the model of the lens substance due to its approximately linear behaviour, but

may have a significant effect on the behaviour of the capsule due to geometric non-linearity.

One likely implication of residual stresses is the presence of an equatorial zone in which the
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Figure 9.2 – A small element of an axisymmetric membrane. The principal radii of
curvature of the membrane are r1 and r2, corresponding to the meridional direction and the
orthogonal direction respectively. If the membrane is subjected to a pressure, p, then
membrane tractions Tϕ and Tθ arise.

capsule is slack in the circumferential direction. This possibility arises from consideration

of the simplest residual stress for the lens, in which the lens substance experiences a uniform

pressure balanced by residual stresses in the capsule.

If an axisymmetric membrane such as the capsule is inflated by a uniform pressure, p,

then its state of stress can be determined directly from its geometry. At a given point the

membrane tractions in the meridional and circumferential directions are given by

Tϕ =
pr2

2

Tθ =
pr2

2

(
2− r2

r1

)
, (9.1)

where r1 and r2 are the principal radii of curvature, as illustrated in figure 9.2, (see for ex-

ample Irvine, 1981). The centre of curvature corresponding to r2 must lie on the axis of

symmetry since those lines normal to the membrane that pass through equivalent points on

adjacent meridians intersect on that axis. The second equation of 9.1 requires the circumfer-

ential membrane traction to be negative wherever r2 > 2r1. This geometric condition holds

for typical lens geometries in a band about the equator. Since the capsule cannot sustain

compressive loads it is liable to become buckled in this region. If this occurs, subsequent

stretching of the capsule will not engage its circumferential stiffness until the buckling has

been removed.

It has not been established that the capsule does become buckled in a band about the
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equator. However, the results of the spinning lens test suggest that the capsule offers an

unexpectedly small constraint on the lens substance around the equator. The equatorial dis-

placements for the tests on intact lenses at 1000rpm are in all cases at least 47% of the

displacements obtained in the corresponding decapsulated tests, with 60% being typical (see

figure 8.5). This is substantially higher than the value of 21% found by Burd et al. (2006)

using a finite-element model of the spinning lens test applied to a 22 year lens (with stiffness

values from Fisher, 1971). Circumferential buckling about the equator is tentatively adopted

as a contributor to this observation, and further is assumed to apply in vivo.

OXFEM_HYPERELASTIC does not allow for residual stresses in the initial configuration,

so the effect of a buckled region is achieved by imposing a slack condition in the circumfer-

ential direction in capsule region 2 of figure 9.1 (between the anterior and posterior zonular

fibres). In this region the strain area-density function does not depend on the stretch ratio in

the circumferential direction, λ2, but becomes

Ψ2D =


t0E
2 (λ1−1)2

λ1≥1

0 λ1<1

. (9.2)

This corresponds to the second and fourth components in equation 5.4. Capsule region 2 is

limited to the region between the anterior and posterior zonular attachments for both the A29

and the A45 model. This is somewhat smaller than the zone for which equation 9.1 would

imply compressive circumferential stresses. This reduced region is adopted because the

response of the lens to zonular traction is sensitive to the size of the gaps between capsule

region 1 and the anterior and posterior zonular attachments. Using equation 9.1 to define

capsule region 2 might introduce a substantial but essentially arbitrary difference between

A29 and A45 models which would complicate comparisons between them.

Zonular fibres and ciliary body The geometry of the zonular fibres is set in accor-

dance with Burd et al. (2002), since the models of Hermans et al. (2008a) do not include the

fibres explicitly. The zonular fibres are substantially idealized in the models, as illustrated in

figure 9.1. All fibres start at a point corresponding to the ciliary body, located in the plane of

the lens equator and at an age-dependent radius, rCB. They are divided into three groups, the
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anterior, equatorial, and posterior zonular fibres, which each meet the lens capsule at distinct

attachment points. The equatorial zonular fibres meet the capsule at the lens equator, while

anterior and posterior attachment points are taken to lie at an age dependent radial distance,

dZA, inside the lens equator. The equations used to determine rCB and dZA are those derived

by Burd et al. (2002) from the data of Strenk et al. (1999) and Farnsworth and Shyne (1979)

respectively:

rCB = 6.735−0.009A

dZA = 0.0311+0.0124A , (9.3)

where A is the age of the subject in years and rCB and dZA have units of millimeters. Burd

et al. (2002) also used the data of Strenk et al. (1999) to derive an equation for the displace-

ment of the ciliary body that occurs with disaccommodation, as follows:

δCB = 0.5129−0.00525A , (9.4)

where once again A is the age of the subject in years and δCB has units of millimeters. This

is the radial displacement applied to the ciliary body anchor of the zonular fibres in order to

simulate disaccommodation in the current models.

9.1.2 Material parameters

Lens substance The lens substance is represented in OXFEM_HYPERELASTIC by 15-

noded triangular elements, as in the models of the spinning lens test. It is modelled as a

neo-Hookean continuum, as described in section 5.3.2. The three alternative stiffness mod-

els (homogeneous, H; distinct nucleus, D; exponential, E) used in the analysis of the spin-

ning lens test are applied to the models of accommodation. The stiffness parameters for

the 29-year and 45-year materials are calculated from age-stiffness relations given in sec-

tion 8.2.4; these values are tabulated in table 9.1 and illustrated in figure 9.3. Each of the

stiffness models is used in conjunction with the lens geometry of corresponding age, leading

to six main models of accommodation: A29H, A29D, A29E, A45H, A45D, and A45E. In

addition two mixed-age models are considered: model B29D is identical to A29D except that

the stiffness parameters of the lens substance correspond to those of a 45-year lens, while
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Table 9.1 – The parameter values for stiffness models H, D and E at ages 29 and 45. The
values are calculated from the age-stiffness relations of section 8.2.4.

material age model H model D model E

(years) µ (kPa) µN (kPa) µC (kPa) µ0 (kPa) µ1 (kPa)

29 0.28996 0.09052 0.63113 0.03646 0.80662

45 1.37922 1.52775 1.28991 1.85118 1.28106

model B45D is identical to A45D except that stiffness parameters of the lens substance cor-

respond to those of a 29-year lens. These models are used to assess the influence of the

differing stiffness of the lens substance independent of the other changes which occur with

age.

All the stiffness models are defined in the same manner as for the spinning lens test. In

particular the geometry of the nucleus in model D has the form given in section 7.5.2 rather

than the form specified by Hermans et al. (2008a).

The bulk modulus, κ , of the material is set to 1000 times the shear modulus. This differs

from the factor of 100 used for the models of the spinning lens test as on the one hand the

models of accommodation do not have a numerically challenging region like the contact with

the lens support, while on the other hand the presence of the capsule makes maintaining the

correct lens volume more important in obtaining the correct mechanical response.

Capsule The capsule is represented in OXFEM_HYPERELASTIC by 5-noded membrane

elements. It is modelled using the elastic membrane constitutive model specified by equa-

tion 5.3 in section 5.3.3. This requires the specification of the thickness of the unstrained

capsule, t0, its Young’s modulus, E, and its in-plane Poisson’s ratio, ν2D. In all the current

models the thickness is set to a single spatially varying profile reported by Barraquer et al.

(2006), namely that of lens group A, which is reproduced in figure 9.4. Lens group A con-

sists of lenses aged from 30 to 42 years, with a mean age of 36 years. Of the three available

age groups, this is the most appropriate for both the 29-year models and the 45-year mod-

els. The process of assigning the varying thickness values is handled automatically within

OXFEM_HYPERELASTIC when a lens-capsule material is specified. Linear interpolation is

used to set the thickness at points between those plotted by Barraquer et al. (2006).
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Figure 9.3 – Stiffness profiles for the six stiffness models. The position of the step indicated
for A29D and A45D is the average location of the transition from nucleus to cortex.

The Young’s modulus and in-plane Poisson ratio of the capsule are chosen to reconcile

the uniaxial tests of Krag and Andreassen (2003a) with the biaxial tests of Fisher (1969), in a

manner proposed by Dr Burd and calculated by the author. In the former test, the circumfer-

ential Young’s modulus of the capsule was essentially measured directly. The secant values

obtained at 10% strain are described by the piece-wise linear function

E =


b(A−A0)+ c A≤A0

c A>A0

, (9.5)

where A0 = 35years, b= 30kPayear−1, and c= 1450kPa. In the biaxial test of Fisher (1969)

the Young’s modulus was found to decline from about 6MPa in childhood to about 3MPa by

60 years. These values are considerably higher than those of Krag and Andreassen (2003a),

as illustrated in figure 9.5. The calculation used by Fisher (1969) makes the assumption
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Figure 9.4 – The thickness of the capsule along a meridian of the lens. The values are for
lens group A and a normalized position, both as defined by Barraquer et al. (2006).
(Adapted from figure 7 of Barraquer et al., 2006).

that the in-plane Poisson’s ratio is equal to the volumetric Poisson’s ratio (measured to be

about 0.47). This choice of in-plane Poisson’s ratio is only justified if the capsule behaves

isotropically, an unlikely situation given the laminar arrangement seen in young capsule

specimens (Krag and Andreassen, 2003a). If the assumption of full isotropy is dispensed

with then the measurements of Fisher (1969) can be used to determine an in-plane Poisson’s

ratio which is consistent with the Young’s modulus measurements of Krag and Andreassen

(2003a).

The response of a linear-elastic membrane to uniform biaxial loading does not depend

on the Young’s modulus or the in-plane Poisson’s ratio independently, but on the combined

value E
1−ν2D

. Thus, if EF is the Young’s modulus of the capsule determined by Fisher (1969)

using an in-plane Poisson’s ratio of νF , then the same experimental biaxial response would

be obtained with the Young’s modulus, E, equal to that measured by Krag and Andreassen

(2003a) provided the corrected in-plane Poisson’s ratio is given by

ν2D = 1− (1−νF)
E
EF

. (9.6)

Figure 9.6 displays the values of ν2D which would reconcile each measurement plotted in
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Table 9.2 – The parameters used in the elastic-membrane constitutive model of the
capsule.

t0 (mm) E (kPa) ν2D

A29 Barraquer et al. (2006) 1270 0.870339

A45 lens group A profile 1450 0.814195

figure in figure 8 of Fisher (1969) with the Young’s modulus implied by equation 9.5. A

piece-wise linear function is fitted to the points to estimate ν2D and obtain values for use in

the 29-year and 45-year lens models. This function is given by

ν2D =


b1 (A−A0)+ c A≤A0

b2 (A−A0)+ c A>A0

, (9.7)

where A0 was chosen to be 60 years by inspection, and the fitting process yielded the values

b1 = −0.003509year−1, b2 = −0.017224year−1, and c = 0.76156. The parameter values

calculated from equation 9.5 and 9.7 used in model A29 and model A45 are given in table 9.2.

Zonular fibres The zonular fibres are represented in OXFEM_HYPERELASTIC by 2-

noded bar elements. They are modelled using the neo-Hookean bar constitutive model de-

scribed in section 5.3.4. The published values for the stiffness of the zonular fibres span a

broad range, from 350kPa reported by Fisher (1986) to a typical value of 1.5MPa reported

by van Alphen and Graebel (1991). It seems the most reliable way to obtain a realistic re-

sponse from the lens is to apply the method used by Burd et al. (2002). In this approach it

is assumed that the relative abundance of zonular fibres is in the ratio 6:1:3 for the anterior,

equatorial, and posterior groups respectively, while the overall stiffness of the zonular fibres

must be such that the ciliary body displacement given by equation 9.4 induces a displace-

ment at the lens equator, δLE , consistent with the measurements reported by Strenk et al.

(1999). To achieve these outcomes the total cross-sectional area, A0, is set to 0.6, 0.1, and

0.3mm2 for the respective groups, while the shear modulus of the zonular material, µ , is

adjusted until the target displacement is obtained at the lens equator. The value of µ is the

same for all three groups. The product A0µ is physically meaningful in this scheme, while

the constituent parameters are not.
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Table 9.3 – The parameters of the zonular fibre groups used in the neo-Hookean bar
constitutive model. The same values are adopted in all the present lens models.

A0 (mm2) µ (kPa)

anterior 0.6 763.1

equatorial 0.1 763.1

posterior 0.3 763.1

In the current set of simulations a single model, A29D, is used to determine the stiffness

of the zonular fibres, then this value is applied in all other models. The target equatorial

displacement for this lens is δLE = 0.2903mm, also taken from Burd et al. (2002). This

value is obtained from a linear fit to the data of Strenk et al. (1999). The resulting parameters

used for the zonular fibres of all the accommodation models are given in table 9.3.

9.1.3 Physical response of the models

The process of disaccommodation is simulated in the models by radially displacing the cil-

iary body anchor of the zonular fibres by the amount specified by equation 9.4: 0.36065mm

for the 29-year models and 0.27665mm for the 45-year models. The effect of this displace-

ment is calculated using OXFEM_HYPERELASTIC. The lens becomes radially stretched

and axially compressed, and the radius of curvature of the lens surface at the anterior and

posterior poles increases. It is the increase in the radii of curvature which is central to dis-

accommodation as these changes decrease the optical power of the lens. Figures 9.7 and 9.8

illustrate the disaccommodated shape of model A29D and A45D, while table 9.4 summa-

rizes the main physical measurements of these models in their initial accommodated and

final disaccommodated states. The same data for all the accommodation models are given

in the appendix in table D.1. The change in lens radius, δLE , of the models, particularly the

45 year models, is somewhat exaggerated by the local stretching in the vicinity of the equa-

torial zonular fibre group. If the traction on the capsule were less concentrated this effect

would be diminished.

The radii of curvature, rA and rP, of the anterior and posterior surfaces of the lens are cal-

culated for the accommodated and disaccommodated lens states. Since the surfaces are not

spherical there is some ambiguity in the values. In the current work rA and rP are calculated
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disaccommodated
state of model
A45D. The radial
displacement of the
ciliary body, δCB, is
0.27665 mm, while
the resultant radial
displacement of the
lens equator, δLE , is
0.2306 mm.
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Table 9.4 – The physical effect of disaccommodation on A29D and A45D.

ciliary
radius

rCB (mm)

lens
radius

rLE (mm)

lens
thickness

dL (mm)

anterior
radius
rA (mm)

posterior
radius
rP (mm)

initial 6.47 4.31 3.98 7.10 -5.09

A29D final 6.83 4.60 3.37 12.49 -7.28

change 0.36 0.29 -0.61 5.40 -2.19

initial 6.33 4.49 4.17 8.13 -5.32

A45D final 6.61 4.72 3.86 9.93 -6.04

change 0.28 0.23 -0.31 1.80 -0.73

by fitting a circular arc to the nodes of the finite-element model located on the surface up to

1.5mm from the axis of symmetry. The contribution of the individual nodes is weighted in

proportion to their distance from the axis, so the result is equivalent to fitting a spherical cap

to the surface of revolution. A total least squares procedure is used to find the radius and

centre of the best fitting arc. This method is adopted in preference to calculating the local

curvature at the axis as the larger zone is relevant to the optical performance of the lens. The

further refinement of determining the appropriate zones for arc fitting by considering the op-

tical effect of a realistic pupil is, however, not felt to be warranted. The fitting zones would

then vary in size with both age and accommodation state, and would differ at the anterior and

posterior surfaces. While providing more precise optical results such a method would com-

plicate comparison of the physical differences between models and between accommodation

states. The calculated radii of curvature are signed values leading to the posterior curvature

to have a negative value, in accordance with the usual convention in optics.

The calculated radii of curvature and the changes with disaccommodation of models

A29D and A45D are reported in table 9.4. These values are in good agreement with the

in vivo measurements of Dubbelman et al. (2005), except for the change in the posterior

curvature of model A29D which experiences a greater magnitude of change than most of the

in vivo measurements. This may reflect an inaccuracy of the distribution of traction between

the anterior and posterior segments of the capsule in the model.

The change in thickness of both lens models are much greater than the measurements

of Dubbelman et al. (2003) using Scheimpflug photography, and towards the high end of
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the ranges obtained by Strenk et al. (1999), Jones et al. (2007), and Hermans et al. (2009)

using magnetic resonance imaging. If this change in thickness is excessive it may reflect

that the model has either an excessive radial movement of the lens equator, or an incorrect

final shape in the equatorial region of the lens due to the particular form of the capsule and

zonular fibres. Since the former was chosen to agree with the data of Strenk et al. (1999),

the latter possibility is most likely.

Another discrepancy between the models and the measurements of Dubbelman et al.

(2003) is found in the change in thickness of the cortex along the axis of the lens. The

Scheimpflug photographs suggest that typically just over 10% of the thickness change occurs

within the cortex, including in lenses of 43 and 49 years. In model A29D almost 20% of

the thickness change occurs within the cortex, even though the shear modulus of the cortex

is about seven times greater than that of the nucleus. This behaviour and the larger than

expected change in total axial thickness are also seen in the model of Weeber and van der

Heijde (2008). Decreasing the shear modulus of the nucleus further does not bring the model

much closer to the experimental measurements. Once the nucleus is much softer than the

cortex the high bulk modulus of the lens substance means that the axial compression of

the nucleus is primarily limited by the confinement provided by the cortex around the lens

equator. This suggests that to match the behaviour reported by Dubbelman et al. (2003) the

form of the stiffness model would need to change. Three possible changes are:

i. to distinguish between the cortex in the axial region (where the ends of the lens fibre

cells meet) and the cortex in the equatorial region (where the outer layer includes

immature lens fibre cells)

ii. to introduce anisotropy into the constitutive model of the cortex, reflecting the align-

ment of the lens fibre cells

iii. to use a poroelastic model for the lens substance, permitting fluid to flow from the

nucleus to the cortex in the vicinity of the axis.

The observation of Hermans et al. (2007) that the volume of the nucleus is conserved during

accommodation argues against the last of these. These three options are all beyond the scope
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Table 9.5 – The diameter-load response of groups of lenses tested in a mechanical
stretcher by Manns et al. (2007), converted to mm N−1.

lens groups from Manns et al. (2007)

lens group mean age
(years)

age range
(years)

mean response
(mmN−1)

response range
(mmN−1)

group 1 14.0 8 – 19 7.0 5.0 – 10.3

group 2 39.5 38 – 41 3.7 2.8 – 4.4

group 3 62.7 55 – 70 4.6 3.0 – 6.4

of the current work.

The total radial force required at the ciliary body anchor to induce the required displace-

ment is 104mN for A29D and 82mN for A45D. The average change in the diameter of the

lens for a given load is 5.6mmN−1 for each lens. These values can be compared to results

from Manns et al. (2007), who applied a mechanical stretcher to partially dissected eyes in

order to approximate in vivo accommodation. The reported diameter-load response of the

three groups of human lenses that were tested are given in table 9.5 (converted to units of

mmN−1). The experimental values are of a similar magnitude to the values from the models.

The diameter-load response of model A29D lies between the mean response of the younger

group 1 and older group 2. Model A45D is bracketed in age by group 2 and group 3 but

these two groups both show a generally stiffer response than the accommodation model. The

measurements from the mechanical stretcher include the effect of circumferential stresses

developed in the ciliary body which are not present in the accommodation model, so are not

directly comparable.

The previous computational models of Burd et al. (2002) and Hermans et al. (2008a)

both require a somewhat smaller total radial force than the current models. Reducing the

Poisson’s ratio of the capsule in the current models to 0.47 (in line with the previous models)

decreases the total radial force to 47mN for A29D and 52mN for A45D, values which are

similar to those of Hermans et al. (2008a) when using the data of Heys et al. (2004) for the

stiffness of the lens substance. This indicates that it is the higher biaxial stiffness of the

current model of the capsule which results in the higher total radial force.

In general in vivo measurements of the lens display considerable variation between in-

dividuals and often come from a relatively small number of measurements. This means a
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degree of latitude should be permitted when comparing models of accommodation to mean

or typical experimental measurements. However, the models are themselves constructed us-

ing parameters generally equal to mean or typical values, so should lie towards the centre of

a population of measurements, rather than towards an extreme.

9.1.4 Optical response of the models

The physical changes induced in the accommodation models produce optical changes. The

optical power of the lens models can be calculated using the thick lens formula:

PL =
nL−nA

rA
+

nV −nL

rP
− dL

nL

(nL−nA)(nV −nL)

rArP
, (9.8)

where dL, rA, and rP are the thickness, anterior radius of curvature and posterior radius

of curvature obtained from the simulated lens in a given state, while nL, nA, and nV are

the refractive indices of the lens substance, the aqueous humour and the vitreous humour

respectively. The values of the refractive indices are adopted from the schematic eye of

Bennett and Rabbetts (1998) and given in table 9.6. The value assigned to the lens is an

effective refractive index which for typical lens geometries gives approximately the same

optical power as the gradient refractive index which actually exists within the lens.

The relationship between the optical power of the lens and displacement of the ciliary

body anchor are plotted in figure 9.9 for the six main lens models. All the models of the

29-year lens exhibit a change in power which is more than double the models of the 45-year

lens. All three stiffness models for the lens substance produce similar optical outcomes for

the relatively homogeneous 45-year models. The two heterogeneous stiffness models for the

29-year models also produce similar optical outcomes, while model H results in an optical

power change which is about 1D smaller. This suggests that the spatial variation in stiffness

of the lens has some impact on the optical performance, but that the precision achieved using

the spinning lens test analysed using a heterogeneous stiffness model is sufficient for this

relatively simple assessment of the accommodation mechanism.

Within the small variation exhibited by the different stiffness models it is noticeable

that lower stiffness values in the central region of the lens consistently correlate with greater

changes in power. At 29 years model E is the stiffness model with the lowest central stiffness
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Figure 9.9 – The optical power of the modelled lenses in response to the displacement of
the ciliary body anchor.

and provides the greatest change in power, followed by model D then model H. At 45 years

model H is the stiffness model with the lowest central stiffness and provides the greatest

change in power, followed by model D then model E.

Weeber and van der Heijde (2007) obtained broadly equivalent results when comparing

the homogeneous stiffness data of Weeber et al. (2005) to the heterogeneous stiffness data

of Weeber et al. (2007). At 20 and 40 years the heterogeneous stiffness values indicate the

centre was the softest location within the lens, and the models using that data resulted in a

change in lens power which was about 0.5D greater than the corresponding models using the

homogeneous stiffness data. At 60 years, though, the heterogeneous stiffness data indicate

that the centre of the lens is about 15 times stiffer than the exterior and the model using that

data change in lens power which was about 3D smaller than the homogeneous case.

Figure 9.10 compares the optical power of the mixed-age models B29D and B45D to

the corresponding single-age models A29D and A45D. The change in optical power of the
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Figure 9.10 – The optical power of the mixed-age model lenses in response to the
displacement of the ciliary body anchor.

mixed-age models most closely resembles the single-age model with the same lens substance

parameters. This indicates that the decline in performance from A29D to A45D is mostly

due to the differences in the lens substance rather than the differences in geometry and cap-

sule stiffness of the two models. Most of the decline in performance not explained by the

lens substance can be largely accounted for by the difference in the displacement applied to

the ciliary muscle anchor. In the models this displacement is prescribed according to age;

in reality, however, this may also partly depend on the stiffness of the lens if the outward

movement of the ciliary body is impeded by the constraint of the lens and zonular fibres.

To compare the optical performance of the accommodation models to clinical data it is

necessary to place them in the context of the whole eye. This is achieved here by modifying

the schematic eye of Bennett and Rabbetts (1998), which specifies three optical surfaces (the

cornea, the anterior lens surface and the posterior lens surface) and the image plane of the

retina. To assess the effect of a particular accommodation model in a particular state, the
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Figure 9.11 – A modified schematic eye, adapted from the schematic eye of Bennett and
Rabbetts (1998).

Table 9.6 – The values used for the modified schematic eye.

parameter value parameter value

dS (mm) 12.0 rC (mm) 7.8

dA +dL (mm) 7.3 rA (mm) from model

dL (mm) from model rP (mm) from model

A29 dV (mm) 17.369 nA 1.336

A45 dV (mm) 16.986 nL 1.422

nV 1.336

original lens of the schematic eye is replaced by the modelled lens, positioned so that its

posterior pole is in the same position as for the original lens. A schematic eye, modified by

the inclusion of model A29D, is illustrated in figure 9.11. The values dS, dA + dL, rC, nA,

nL, and nV are all taken from Bennett and Rabbetts (1998), and are listed in table 9.6. The

values of dL, rA, and rP are calculated from a particular state of the accommodation model

of interest. The length of the vitreous, dV , and therefore the position of the retina, is chosen

so that each lens in its fully-accommodated state achieves the accommodation specified by

Hermans et al. (2008a) (8D for A29 and 4D for A45), as measured from the spectacle plane.

That is, an object 125mm from the spectacle plane will form an image on the retina for the

reference geometry A29, while an object 250mm from the spectacle plane will do the same

for the reference geometry A45.
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Table 9.7 – The accommodation amplitude of the models of accommodation, including the
mixed-age models B29D and B45D. The amplitude is measured with respect to the
spectacle plane.

AS (D) AS (D)

A29H 7.50 A45H 3.15

A29D 8.15 A45D 2.99

A29E 8.32 A45E 2.84

B29D 4.88 B45D 5.70

Duane
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Figure 9.12 – The objective accommodation amplitude, AS, calculated for models A29D
and A45D, and the subjectively measured accommodation amplitude calculated for
individuals of different ages in three studies (Donders, 1864; Duane, 1912; Brückner et al.,
1987), averaged over 5-year intervals. (The latter adapted from figure 1 of Weale, 1990).

The accommodation amplitude for the eye is calculated with reference to the spectacle

plane, in accordance with usual clinical practice (Bennett and Rabbetts, 1998). For each

accommodation model, the object point which is conjugate to the retina is calculated for its

fully-accommodated state and its fully-disaccommodated state. If these near and far points

lie respectively at positions lN and lF with respect to the spectacle plane, then the accommo-
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dation amplitude of the model is

AS =
1
lF
− 1

lN
. (9.9)

Figure 9.12 displays the objective accommodation amplitude calculated for models A29D

and A45D in comparison to clinical measurements of subjective accommodation. Both mod-

els lie close to the clinical measurements of similar age. This suggests that the accommoda-

tion amplitude of the models is actually excessive, since subjective measurements generally

overestimate the objective value by about 1.75D due to the effect of depth of field in subjec-

tive measurements (Hamasaki et al., 1956). If the capsule or zonular fibres were modified to

more closely match the in vivo measurements of the change in lens thickness as mentioned in

section 9.1.3, a smaller accommodation amplitude for both models would also be expected,

bringing the values closer to the expected results.

Despite the slightly excessive amplitudes of accommodation, the 29-year and 45-year

models appear to capture the development of presbyopia. The difference in optical perfor-

mance of the two lens models is largely explained by the increase in the stiffness of the lens

substance, supporting the view that this is the major contributor to presbyopia.

9.2 Modelling accommodation after laser lentotomy

One proposed method for treating presbyopia is the use of a laser to modify the lens sub-

stance to increase its flexibility, a process termed lentotomy. The light of a pulsing fem-

tosecond laser system can be precisely focused within the lens so that nonlinear absorption

processes at the focal point cause local optical breakdown of the tissue (Schumacher et al.,

2009). The repeated application of the laser in a specified pattern can produce partial or

complete separation of the lens substance at surfaces within the lens, essentially creating a

series of cuts (Stachs et al., 2009). Schumacher et al. (2009) used this technique on isolated

human lenses to create a ‘steering-wheel pattern’, made up of the constituent cuts illustrated

in figure 9.13. This modification of the lens substance was found to increase the deformation

experienced by treated lenses when subjected to a spinning test. The form of the steering-

wheel pattern is primarily influenced by the need to avoid treating the optically active central



Chapter 9. Modelling accommodation 170

portion of the lens, since the cuts introduce significant light scatter within the lens tissue

which would affect visual performance in vivo. The peripheral portion of the lens also re-

mains untreated since the presence of the iris in vivo prevents laser access.

annular
cuts (A)

cylindrical
cuts (C)

radial
cuts (R)

equatorial
section

axial
section

Figure 9.13 – The three types of cuts which make up the ‘steering-wheel pattern’ of
lentotomy used by Schumacher et al. (2009).

In order to examine the possible effects of the steering-wheel pattern on in vivo accom-

modation, model A45H from section 9.1 is modified to represent the presence of the various

cuts. The 45-year lens is used as this is the anticipated age for lentotomy treatment. The stiff-

ness model H is chosen as the homogeneous value differs little from stiffness model D at this

age, and the absence of a distinct nucleus considerably simplifies the process of specifying

the presence of lentotomy cuts within the lens.

9.2.1 Modelling lentotomy cuts

A typical single femtosecond laser pulse focused within the lens ablates the material approx-

imately contained within a spheroid with an axial length of about 20mm aligned with the lens

axis and a equatorial diameter of about 5mm. The material in this zone is vaporized, form-

ing a gas bubble which subsequently dissolves into the surrounding fluid. The lens is left

with an ablation zone in which the usual solid constituents of the lens substance have been

disrupted. These individual ablation zones created in the lens by laser lentotomy are too

small to represent explicitly in a typical finite-element model of the lens. Instead, the effect

on the macroscopic behaviour of the lens substance in the regions subjected to ablation are

approximated by adjusting the material properties of all of the lens substance in that region.
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Figure 9.14 – The influence of fluid flow on the efficacy of a lentotomy ablation zone. A
small ablation zone of low stiffness has limited effect if no fluid flow is possible, but becomes
more influential if fluid can move from the surrounding tissue into the ablation zone.

When modelling the lentotomy cuts it is not sufficient to simply determine the region

directly modified by ablation and reduce its stiffness accordingly. The neo-Hookean consti-

tutive model treats the macroscopic lens substance as an amorphous nearly-incompressible

solid. However, this is unsuitable for characterizing the behaviour of the tissue at the scale of

the ablation zone. At this level the lens fibres provide an ordered structure and the possibility

of local fluid flow (presumably enhanced by lentotomy) means that the deformation of the

solid component of the tissue need not conserve volume locally.

Figure 9.14 illustrates the possible difference in behaviour depending on whether fluid

is free to flow into the reduced-stiffness ablation zone. With no fluid flow the ablation zone

decreases the overall stiffness of the material, but its effect is limited by the restriction on

its volume. When fluid flow is possible the potential for the ablation zone to expand in

preference to the stiffer surrounding tissue allows a larger influence on the overall stiffness.

There is little information available to inform a constitutive model that might capture these

details so instead it is necessary to use models which can approximate the macroscopic

deformation of the lens substance without attempting to represent the details of the behaviour

at the ablation zones.
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Annular and cylindrical cuts In order to model the annular and cylindrical cuts the

stiffness of the surrounding area of the lens substance is reduced substantially. The reduced-

stiffness region is a strip 0.1mm wide, centred on each cut. In this region the shear modulus,

µ , of the lens substance is 10% of the value in the uncut lens. The same bulk modulus, κ ,

is assigned to the reduced-stiffness region as the original material so that the lens as a whole

remains nearly incompressible.

The reduced-stiffness region extends well beyond the zone directly affected by abla-

tion since the nearly-incompressible nature of the material would otherwise heavily limit

the effect that a cut could have on the overall deformation of the lens. For a very thin in-

compressible region the deformations parallel to the cut surface must essentially match the

deformations in the neighbouring full-stiffness material, which implies that deformations in

the orthogonal direction are also similar due to conservation of volume. Thus the effect of

such a cut would be limited to reducing shear stresses. Local fluid flows would avoid this

limitation, but these cannot be modelled directly with OXFEM_HYPERELASTIC.

Radial cuts The radial cuts of the proposed lentotomy pattern break the axisymmetry of

the lens. A full three dimensional model is not possible using OXFEM_HYPERELASTIC,

so an approximation which maintains axisymmetry is adopted. The radial cuts are assumed

to be sufficiently numerous that the variation in material properties in the circumferential

direction does not need to be imposed at the macroscopic level, but instead can be modelled

by introducing anisotropy into the constitutive model.

The principal effect on the in vivo lens of numerous radial cuts is expected to be a re-

duction of the tensile stiffness of the material in the circumferential direction, provided local

fluid flow allows the volume of the low-stiffness zones to increase in preference to the sur-

rounding full-stiffness tissue. The cuts will also reduce the resistance to shearing in parallel

directions, but since the lens only deforms axisymmetrically this is not a property which

needs consideration. Finally, the presence of the radial cuts will slightly reduce the stiffness

of the lens material radially and axially since the volume of full-stiffness tissue has been

reduced by ablation.

The material of the radially cut region of the lens is modelled with an anisotropic con-
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stitutive model derived from a strain-energy function that is a modified version of the neo-

Hookean material discussed in section 5.3.2. The strain-energy function of an isotropic hy-

perelastic material can only depend on the three invariants of the right Cauchy-Green tensor,

C (Holzapfel, 2000). These invariants are

I1 = tr(C)

I2 =
1
2

(
tr(C)2− tr

(
C2))

I3 = det(C) = J2 . (9.10)

The strain energy of the neo-Hookean material depends only on I1 and I3. The strain-energy

function of a transversely isotropic material can additionally depend on the two pseudo-

invariants of the combination of the right Cauchy-Green tensor and the unit vector, a0,

aligned with the direction of anisotropy (in the material configuration) (Holzapfel, 2000).

These pseudo-invariants are

I4 = a0 ·Ca0

I5 = a0 ·C2a0 . (9.11)

The pseudo-invariant I4 is the square of the stretch ratio in the direction of the anisotropy.

For a transversely isotropic material consisting of parallel fibres in a matrix the strain-energy

function is generally formed as the sum of an isotropic strain-energy function representing

the matrix and an anisotropic function representing the additional strain-energy of the fibres.

The current situation is similar, with the neo-Hookean material playing the role of the matrix.

However, for the radial cuts, the anisotropic component contributes a decrease in the strain

energy, and must be chosen so that the strain energy does not become negative for any state

of strain. A suitable function for the anisotropic component has the following form

Ψα =


−αµ

2

(
Î4 +2Î

− 1
2

4 −3
)

Î4≥1

0 Î4<1 ,

(9.12)

where Î4 = J−
2
3 a0 ·Ca0 is the fourth pseudo-invariant of the isochoric component of the

right Cauchy-Green strain tensor and µ is the shear modulus of the isotropic component of
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the strain energy. The parameter α takes a value between 0 and 1, with 0 corresponding

to isotropy and 1 corresponding to no initial stiffness in the direction of a0. The second

Piola-Kirchhoff stress and the stiffness of the material are dictated by the first and second

derivatives of the strain energy function with respect to C.

∂Ψα

∂C
= −αµ

3

(
1− Î

− 3
2

4

)(
3J−

2
3 a⊗a− Î4C−1

)
∂ 2Ψα

∂C2 = −αµ

36

[
27J−

4
3 Î
− 5

2
4 a⊗a⊗a⊗a−6

(
Î4− Î

− 1
2

4

)
∂C−1

∂C

+J−
2
3

(
2+ Î

− 3
2

4

)(
Î4C−1⊗C−1−3

(
C−1⊗a⊗a+a⊗a⊗C−1))](9.13)

In OXFEM_HYPERELASTIC, the response of the anisotropic material is calculated by first

obtaining the isotropic response from equation 5.2, then augmenting this with the anisotropic

component obtained from the equations 9.13.

For the radial cuts a0 is the unit vector in the circumferential direction, the isotropic shear

modulus, µ , of the region subjected to cuts is set to 0.9 times the value in the uncut region,

and α is set to 0.5, so the stiffness in the circumferential direction is initially half the value in

the axial and radial directions. The bulk modulus, κ , which appears in equation 5.2 is given

the same value in the region subjected to radial cuts as the uncut region.

9.2.2 Lentotomy geometry

A 45-year lens geometry, assigned the label C45, is used to model the effect of lentotomy.

This geometry is illustrated in figure 9.15. The exterior of the lens and the zonular fibres

of C45 are identical to the geometry of A45, while the region subjected to laser ablation is

divided into multiple materials which can be assigned properties corresponding either to a

cut or an uncut state.

Eight models of accommodation following lentotomy are considered, all using the same

finite-element mesh. Three are each subjected to one of the individual components of the

steering-wheel pattern: C45H-A has annular cuts, C45H-C has cylindrical cuts, and C45H-

R has radial cuts. Three are subjected to pairs of components: C45H-AC has both annular

and cylindrical cuts, C45H-AR has both annular and radial cuts, and C45H-CR has both

cylindrical and radial cuts. The full steering-wheel pattern is present in model C45H-ACR.
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Figure 9.15 – The mesh used used to simulate accommodation following lentotomy. The
cylindrical cuts are at radii of ar = 1.0 mm and br = 2.5 mm. The anterior annular cut is
az= 0.75 mm anterior of the lens equator and the posterior annular cut is bz = 1.25 mm
posterior from the lens equator. The width of the reduced-stiffness region surrounding each
cut is c = 0.1 mm and also extends 0.05 mm beyond the end of the cut. The radial cuts
occupy the region bordered by the annular and cylindrical cuts.

Finally, model C45H-F is an extreme case in which the whole cutting region is assigned a

shear modulus that is 10% of the value in the uncut region.

9.2.3 Effect on accommodation

The performance of each lentotomy model is assessed in the same manner as the models

with native lenses in section 9.1.4. Figure 9.16 plots the optical power of the lens during

the process of disaccommodation in models A45H, C45H-A, C45H-R and C45H-F, as these

models showed the most clearly distinct responses.

The accommodation amplitude of all the models are provided in table 9.8; complete de-

tails are tabulated in appendix D. The effects of the annular and cylindrical cuts are modest,

with annular cuts causing a slight reduction in accommodation amplitude and cylindrical
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Figure 9.16 – The optical power of models with different lentotomy cuts. Model A45H is not
subjected to lentotomy, C45H-A includes annular cuts, model C45H-R includes radial cuts),
and model C45H-F has a reduced stiffness throughout the cutting region.

Table 9.8 – The accommodation amplitude, AS of the models of lentotomy compared to the
corresponding untreated model A45H. The change in accommodation amplitude, ∆AS, is
with respect to the untreated lens. The amplitude is measured with respect to the spectacle
plane.

AS (D) ∆AS (D) AS (D) ∆AS (D)

A45H 3.15 C45H-AC 3.04 -0.11

C45H-A 3.00 -0.16 C45H-AR 3.36 0.21

C45H-C 3.22 0.06 C45H-CR 3.56 0.40

C45H-R 3.55 0.40 C45H-ACR 3.36 0.20

C45H-F 1.47 -1.68

cuts causing a slight increase. The radial cuts cause a moderate improvement in perfor-

mance, providing 0.4D of additional accommodation amplitude. This is not sufficient to be

clinically useful, though it is enough to encourage further investigation of similar cutting

patterns to optimize the performance. The combination of all of the steering-wheel cuts in

model C45H-ACR is less effective than the radial cuts alone.
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Softening the whole cutting region has a large detrimental effect on accommodation.

Model C45H-F induces greater compression on the axis of the lens during disaccommo-

dation than A45H which on its own would be favourable for accommodation amplitude.

However, the influence of the soft region is greater further from the axis, resulting in a

smaller decrease in the optical power during disaccommodation. The requirement that the

axial region of the lens substance remains untreated means that a good cutting pattern must

primarily enhance the transmission of force from the equatorial region where the zonular

fibres act to the untreated axial region, but not induce larger deformations in the intermediate

region. This increased transmission of force is exactly what the present model of the radial

cuts achieves by reducing the constraining effect of the circumferential stiffness.

The method adopted for modelling the cuts may not capture important effects within the

lens substance, so the limited influence of the steering-wheel pattern on accommodation am-

plitude suggested by the current models could be misleading. In particular the 0.1mm width

assigned to the reduced-stiffness regions of the annular and cylindrical cuts is apparently in-

sufficient to significantly overcome the limitations imposed by the neo-Hookean constitutive

model. On the other hand the effect of the most promising component of the pattern, the

radial cuts, may be exaggerated by the form of the anisotropic representation. This constitu-

tive model introduces changes in the response of the lens substance which do not exist in the

simple reduced-stiffness representation of the annular and cylindrical materials. The major

detrimental effect of model C45H-F is less subject to question and provides a useful indica-

tion that simply increasing flexibility within the lens does not necessarily lead to improved

accommodation amplitude.

One aspect of lentotomy which the current model cannot address at all is the possibility

that the cuts induce a change in the fully-accommodated state of the lens. If the capsule

is in a state of tension when the lens is fully accommodated, as suggested by Pedrigi et al.

(2007), then using lentotomy to making the lens substance more flexible would allow the

capsule to deform it towards a more spherical form with higher optical power. Increasing

the power of the lens when accommodated is preferable to decreasing the power of the lens

when disaccommodated, as the disaccommodated state is usually appropriate for distance
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vision without treatment. In order to model this behaviour it would be necessary to explicitly

include residual stresses in the fully-accommodated lens.

9.3 Summary of results

The models of the natural accommodation apparatus presented in this chapter use the new

age-stiffness relations given in chapter 8 to describe the lens substance and also treat the lens

capsule in a substantially different manner than previous models. The single-age models

(A29H, D, E and A45H, D, E) provide a reasonable representation of the accommodation

mechanism and the decline in accommodation amplitude with age, while the mixed-age mod-

els (B29D and B45D) indicate that the bulk of this decline is due to the increase in stiffness of

the lens substance. This suggests that treatments directed at the lens substance, such as lens

refilling and laser lentotomy, have the potential to restore some measure of accommodation.

There is good agreement between the models and a number of independent experimental

measurements, such as the force required to induce disaccommodation. However, some as-

pects, particularly the change in the thickness of the lens during disaccommodation, indicate

that the current models incorporate some substantial inaccuracies.

One of the models of the natural accommodation apparatus (A45H) has been adapted to

investigate the potential of laser ablation to treat presbyopic lenses. The models suggest that

a series of radial cuts is the most effective of the patterns considered, providing a modest

increase of 0.4D in the amplitude of accommodation. Further improvement may be possible

by adjusting the location of the cuts. It is not clear how well the modelled cuts represent

the actual effect of laser ablation within the lens. This is unavoidable without further ex-

perimental work, as the mechanical behaviour of the lens substance at the scale of the laser

ablations is not known in any detail. In particular, a poroelastic constitutive model of the

lens substance may be required to properly describe the effect of the laser ablation.



10
Concluding remarks

10.1 Summary of work

The work described in this dissertation consists of the development of an improved method

of determining the stiffness of the substance of human lenses based on the spinning lens

test devised by Fisher (1971), the use of the improved test to obtain new data characterizing

the relationship between age and the stiffness of the lens substance, and the development of

models of the in vivo accommodation mechanism, making use of the new data, to investigate

the development of presbyopia and to assess the efficacy of laser lentotomy as a treatment of

presbyopia.

The spinning lens test provides an excellent means of applying known body forces to the

fragile lens substance in order to determine its mechanical response. The original spinning

lens tests conducted by Fisher (1971) suffered from a number of limitations, including the

presence of the capsule in the tests, the modest accuracy of the photographic measurements,

and the substantial approximations introduced in the calculations used to obtain stiffness

values. Nevertheless, the reported stiffness values have been widely used to inform the un-

derstanding of accommodation and the development of presbyopia. The form of the spinning

lens test presented in this dissertation addresses these limitations by testing the lens after the

capsule has been removed, using a more precise photographic system, and adopting a de-

tailed computational model of the test to determine the stiffness of the lens substance.

179
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The current series of tests has established that the behaviour of a spinning lens with

intact capsule differs substantially from the behaviour of the same lens when the capsule has

been removed, and that the typical difference in behaviour varies with the age of the lens.

Thus obtaining accurate results from the spinning lens test either requires the removal of

the capsule, the approach adopted in the current work, or the inclusion of the capsule in the

analysis of the spinning lens test, an approach liable to introduce its own uncertainties or

inaccuracies.

The photographic system developed for the current series of tests ensures the deformation

of the outline of the lens is recorded with high precision. In particular the synchronization

of the photographs with the rotor orientation removes one source of random errors from the

experiment.

The analysis of the spinning lens test makes use of custom image processing software to

determine the location of the lens outlines in the sequences of photographs obtained during

the experiment. These outlines are used to construct a finite-element model of each test,

from which the stiffness parameters are obtained by applying an iterative inverse method.

This approach requires an assumption regarding the form of the heterogeneity of stiffness

within the lens. Three alternatives have been considered: a homogeneous model, a model

with distinct nucleus and cortex, and a model with an exponential stiffness profile. Because

of this imposition the data obtained are appropriate for determining the behaviour of the lens

as a whole, such as when in vivo accommodation, rather than for determining the stiffness at

a particular point within the lens.

The stiffness data obtained from the current spinning lens test indicate that the stiffness

of the lens substance increases dramatically with age. When the distinct nucleus and cortex

model is adopted, the stiffness of the former is calculated to increase 59-fold between 20

and 50 years, while the stiffness of the latter is calculated to increase 3-fold over the same

range of ages. The change seen in the nucleus is far greater than found using the original

spinning test (Fisher, 1971), but comparable to the results obtained applying indentation tests

to sectioned lenses (Heys et al., 2004; Weeber et al., 2007).

The new stiffness data obtained from the spinning lens test have been integrated into mod-
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els describing the mechanism of accommodation for typical subjects aged 29 and 45 years.

These models also incorporate a novel method of modelling the capsule. The physical and

optical changes displayed by the models have been compared to a range of published mea-

surements. The degree of agreement between models and measurements is mixed. Several

aspects compare well, but some, such as the change in the thickness of the lens, differ notice-

ably from in vivo data. The accommodation amplitude and its decline with age are similar to

clinical results, suggesting that the models are broadly representative of the accommodation

mechanism and the development of presbyopia. An investigation of the effect of the increase

in the stiffness of the lens substance with age was conducted. This demonstrated that the dif-

ference in stiffness is the dominant cause of the decline in accommodation amplitude from

the 29-year model to the 45-year model. This provides some support for a largely lens-based

explanation for the development of presbyopia.

A model of the 45-year accommodation mechanism has been adapted to represent the

effect of applying a laser lentotomy to the lens substance. The components of the ‘steering-

wheel pattern’ (Schumacher et al., 2009) and their combination were examined in separate

models. These models suggest that the most effective component is the set of radial cuts,

which could provide a modest increase of about 0.4D in accommodation amplitude. This

might be further enhanced by optimizing the location of the cuts. However, there remains

considerable uncertainty in how best to represent the effects of laser lentotomy, primarily

due to the lack of information on the mechanics of the lens substance at the small scale at

which the lentotomy process operates.

10.2 Future directions

The principal data presented in this dissertation are obtained from the tests conducted on

lenses following the removal of the capsule. Lenses were also tested with the capsule intact

and in a number of cases the nucleus of the lens was isolated and tested. The photographs

from these tests can be analysed using the same general method presented here to obtain

further information. Tests on an intact lens can be used to examine the behaviour of the
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capsule by making use of the stiffness of the lens substance reported for the given lens in

this dissertation. This has not been attempted as part of the current analysis as it is not at

present clear how to treat the capsule in such a model. Tests on an isolated nucleus can be

used to examine the stiffness of the inner portion of the lens without the obscuring effect of

the cortex, making use of the tools developed by the author. This work has been conducted

by Mr Chai while at the University of Oxford as a visiting student in the summer of 2010,

and compiled in an unpublished report.

The current experimental apparatus could be improved in a number of respects. A lens

support with a wider outer radius would allow more of the lens outline to be visible at all

orientations of the rotor. The containment box could be further reduced in size and equipped

with active temperature and humidity controls. It may also be preferable to replace the cur-

rent flashgun with a set of suitable LEDs built into the containment box to illuminate the

specimen from multiple directions. Automation of the speed of the rotor and the initiation

of photography would allow more precisely defined spinning regimes and facilitate investi-

gation of the time-dependent properties of the lens. This would require a different system to

trigger the camera as the control from the laptop PC is slow and imprecise. Finally, a system

allowing a magnified image of the lens to be viewed throughout the experiment would assist

the identification of poorly aligned specimens and the presence of fluid.

One limitation of the current analysis is the difficulty in determining the appropriate con-

straint to apply at the contact between the lens and the support. This leads to uncertainty

in the distribution of stiffness within young lenses in particular. This could be addressed

by modifying the test to allow direct measurement of the displacements of the lens in that

vicinity. A set of markers or a random pattern on the surface of the lens would allow indi-

vidual points to be tracked, rather than just the position of the lens outline. For this approach

to be accurate the small discrepancies in angular orientation between reference and high-

speed tests would also have to be addressed. If this method of tracking were extended to the

whole surface of the lens a more precise method of matching analysis to experiment would

be possible, though it is not clear to what extent this would improve the accuracy of the test.

There remains a great deal of scope for improving the modelling of the accommodation
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apparatus, though this largely depends on the collection of additional data on the geometry

and mechanics of the system. The models presented in this dissertation highlight two aspects

which would benefit from further consideration.

The first is the method adopted for representing the capsule, which is derived from a

quite speculative synthesis of a number of observations. A study examining how a range of

alternative capsule models perform compared to the available in vivo measurements of the

behaviour of the accommodation apparatus may be informative for future modelling. A rig-

orous implementation of residual stresses in the lens substance and capsule is also desirable.

This is of particular relevance to laser lentotomy as the presence of residual stresses in the

treated lens substance would lead to changes in the accommodated geometry of the lens, in

addition to the changes in the disaccommodated geometry investigated in this dissertation.

The second aspect is the discrepancy noted between the accommodation models and

the Scheimpflug photography of Dubbelman et al. (2005) regarding the compression of the

nucleus and cortex along the axis of the lens during disaccommodation. It is not clear how

the discrepancy would be resolved; however, investigation of the in vivo deformation may

shed additional light on the behavior of the lens substance.



Appendix A

Safety statement

Mechanics of Presbyopia Project, University of Oxford

Version 3 incorporating limited updates by G. S. Wilde on 21th of April 2011

(Version 2 by H. J. Burd and S. J. Judge on 6th of May 2008)

A.1 Safety issues

The principal Health and Safety issue associated with the project is the (very small) possibil-

ity that lenses supplied to the project may be infected (for example with HIV or hepatitis B).

This provides a potential hazard to the researchers handling the tissue. The likely exposure

route would be percutaneous or by splashing of the eyes or mucous membranes.

A.2 Minimize risk at source

Standard protocol at the Bristol Eye Bank excludes donors with indications of eye infections,

and who (for reasons of lifestyle etc.) are judged to belong to a relatively high-risk group

with respect to HIV or hepatitis. Tests for HIV and hepatitis are conducted but the results

will not be routinely available to us at the time we test the lenses as we need to be able to test

lenses as soon as possible after death (previous work by others has shown that it may not be

straightforward to prevent post-mortem changes in lens properties). In the highly unlikely

event of a positive result an appropriate indication of the hazard would be communicated to

us. It should be noted that the standards adopted at the eye bank are sufficiently rigorous to

ensure the safety of corneas harvested for transplant purposes.

184
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A.3 Adopt appropriate personal protection

Dissection and tissue handling will be conducted by operators wearing lab coats and good

quality (for example Touch’n’Stuff) nitrile gloves. Gloves will be changed regularly and

when thought to be contaminated. Protective eyewear will be provided for operators with-

out spectacles and worn when possible. Operators will be registered with the University’s

Occupational Health Department so they can be offered hepatitis B vaccination.

A.4 Dissection procedure

The lenses will be removed from the donor eyes by the Bristol Eye Bank, and will be supplied

with the zonule attached to minimize the risk of inadvertent damage to the lens capsule.

Tissue will be handled only by forceps or ophthalmic spears. Prior to spinning the lenses,

the zonular fibres (the very fine radial fibres that hold the lens in place and attach to the lens

capsule near its equator) and any attached ciliary body tissue are removed with ophthalmic

spears and scissors. After the encapsulated lens has been tested on the spinning rig, the

capsule is removed. This generally only requires the use of forceps. Before and after use, the

pointed instruments will be placed in a separate dish so that the points cannot inadvertently

come into contact with the hand of the operator. Scalpels will not be used at any point.

A.5 Design of test rig

The rig has been designed to ensure that the lens is spun within a secure enclosure (see

figure A.1), preventing the possibility of any tissue or fluid from the lens going any further

than the inside of the enclosure. It is known from the work of Fisher (1971) that encapsulated

lenses are not damaged by rotation at 1000 rpm and we wish to have the possibility of using

higher speeds with the stiffest lenses.

A.6 Disinfecting test rig and dissecting equipment

After each test session, the top part of the rig (lid, casing, lens mount), dissecting instruments,

and all other potentially contaminated surfaces are cleaned with Virkon disinfectant (Du
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lens support

removeable
Perspex box

Dural
supportDC motor

cover slip
window

Figure A.1 – Enclosed test compartment on spinning lens rig.

Pont), in accordance with the policy of the Botnar Research Centre at which the tests are

generally conducted.

A.7 Avoid cross-contamination

Ideally two operators will conduct each test. Dissection and manipulation of the human

tissue will be conducted by Operator 1, wearing a lab coat, and gloves. Certain components

of the experimental set up (camera, laptop computer, power pack) are regarded as ‘clean’

and will be operated by Operator 2. Operator 2 will not have physical contact with the lens

or dissection equipment.

When only one operator is available all manipulation of the human tissue is conducted
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while wearing gloves. Whenever it becomes necessary to handle ‘clean’ components the

gloves are removed and disposed of before doing so. A new pair of gloves is worn if further

manipulation of human tissue is necessary.

A.8 Avoid risks to others

Tests will be conducted in a containment level 2 laboratory. Tissue will be tested immediately

on delivery to the laboratory. Disposal of human tissue and disposable gloves will be via the

clinical waste stream.

A.9 Accidents

1. In the event of an accident resulting in a wound immediately, encourage it to bleed,

wash thoroughly with soap and water but do not scrub, and cover with waterproof

dressing.

2. In the event of contamination of skin, conjunctiva or mucous membrane immediately

wash thoroughly.

3. Contact the University Occupational Health Service immediately (01865 282676),

or, outside working hours, the on-call microbiologist via the John Radcliffe Hospi-

tal (01865 741166).

4. All accidents and incidents must be reported using the accident report book.

A.10 Supervision and training

Dr Harvey Burd, a co-holder of the Wellcome Trust grant funding the work, will take overall

responsibility for ensuring that the operators are fully trained and conversant with the risks

and precautions. While not medically qualified, he is a chartered civil engineer (MICE)

with experience of the importance of rigorous attention to safety procedures in dangerous

environments, and he will be able to draw on the expertise of Mr Paul Rosen FRCOS, a

practising ophthalmic surgeon who is also a co-holder of the grant.
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Spinning test data
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Table C.3 – Equatorial diameter in millimeters of intact lenses of set G during the sequence
of spinning tests up to AR4. The initial intact tests of L052B and L055B were affected by
fluid, so additional tests were conducted starting from AR2, which are reported here. Lens
L054A was subjected to sequence A2 twice due to technical difficulties in the initial
sequence, so the aspect ratio reported in table C.2 is calculated from the first AR1 while the
diameter from the second is reported here. The aspect ratio reported in table C.2 for lens
L029B is calculated using the fluid free portions of the outlines of the lens from AR1 and
AR2.

test AR1 AT1 AR2 AT2 AR3 AT3 AR4

L021A 9.463 9.498 9.462 9.544 9.467 9.628 9.481

L022B 8.732 8.808 8.737 8.890 8.749

L027A 9.337 9.358 9.327 9.376 9.322

L027B 9.346 9.375 9.346 9.433 9.354

L029A 9.425 9.444 9.427 9.472 9.430 9.508 9.433

L029B fluid present in all tests

L030B 9.812 9.856 9.827 9.933 9.847 9.998 9.859

L033A 8.367 8.468 8.379 8.569 8.395

L037A 8.352 8.448 8.371 8.573 8.401

L038A 9.531 9.590 9.537 9.657 9.546

L039B 9.654 9.682 9.653 9.707 9.656

L040A 8.591 8.667 8.597 8.732 8.601

L040B 8.572 8.647 8.578 8.767 8.598

L043A 8.382 8.469 8.387 8.557 8.393 8.728 8.413

L043B 8.333 8.423 8.335 8.511 8.341

L044B 9.163 9.190 9.163 9.231 9.173

L047B 9.543 9.566 9.542 9.598 9.547 9.675 9.556

L050A 9.304 9.321 9.305 9.339 9.308 9.378 9.315

L050B 9.325 9.338 9.322 9.348 9.319 9.400 9.334

L051A 9.015 9.051 9.018 9.085 9.020 9.166 9.035

L052B – – 9.502 9.607 9.524 9.766 9.553

L053A 9.308 9.323 9.309 9.345 9.314 9.392 9.312

L054A 9.233 9.254 9.240 9.283 9.246 9.313 9.253

L054B 9.305 9.319 9.307 9.337 9.309 9.366 9.313

L055A 9.225 9.244 9.229 9.268 9.237 9.319 9.246

L055B – – 9.221 9.285 9.237 9.337 9.252

L056A 9.324 9.339 9.326 9.353 9.328 9.390 9.330

L056B 9.338 9.353 9.341 9.367 9.342 9.409 9.346

L057B 9.087 9.098 9.088 9.114 9.093 9.156 9.102
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Table C.4 – Axial thickness in millimeters of intact lenses of set G during the sequence of
spinning tests up to AR4. See the caption of table C.3 for discussion of some anomalous
tests.

test AR1 AT1 AR2 AT2 AR3 AT3 AR4

L021A 4.072 4.015 4.078 3.954 4.069 3.833 4.046

L022B 4.478 4.329 4.464 4.160 4.440

L027A 4.125 4.082 4.121 4.039 4.110

L027B 4.115 4.058 4.114 4.017 4.099

L029A 4.273 4.226 4.271 4.204 4.253 4.167 4.241

L029B fluid present in all tests

L030B 4.333 4.230 4.306 4.209 4.268 4.170 4.261

L033A 4.664 4.509 4.645 4.359 4.627

L037A 4.296 4.111 4.268 3.932 4.237

L038A 4.244 4.135 4.245 4.027 4.235

L039B 4.281 4.244 4.282 4.208 4.274

L040A 4.340 4.193 4.331 4.051 4.317

L040B 4.450 4.302 4.433 4.155 4.417

L043A 4.585 4.436 4.573 4.273 4.559 3.972 4.529

L043B 4.785 4.638 4.775 4.484 4.764

L044B 4.249 4.160 4.245 4.093 4.220

L047B 4.084 4.032 4.098 3.977 4.098 3.854 4.093

L050A 4.271 4.250 4.273 4.240 4.275 4.211 4.271

L050B 4.285 4.253 4.293 4.226 4.296 4.190 4.288

L051A 4.381 4.315 4.383 4.243 4.381 4.082 4.357

L052B – – 4.205 3.983 4.176 3.788 4.151

L053A 4.530 4.506 4.535 4.483 4.535 4.433 4.538

L054A 4.687 4.654 4.682 4.621 4.678 4.562 4.673

L054B 4.665 4.650 4.669 4.630 4.667 4.593 4.660

L055A 4.317 4.301 4.317 4.283 4.314 4.249 4.309

L055B – – 4.376 4.315 4.370 4.256 4.364

L056A 4.013 3.986 4.012 3.961 4.012 3.914 4.007

L056B 3.968 3.945 3.969 3.922 3.967 3.892 3.962

L057B 4.366 4.333 4.362 4.302 4.360 4.242 4.355
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Table C.5 – Equatorial diameter in millimeters of decapsulated lenses of set G during the
sequence of spinning tests up to BR4. Lens L053A was repositioned following BT1, so
values for BR1and BT1 are not included here.

test BR1 BT1 BR2 BT2 BR3 BT3 BR4

L021A 9.328 9.388 9.341 9.468 9.359 9.623 9.398

L022B 8.567 8.713 8.605 8.900 8.652

L027A 9.161 9.206 9.165 9.249 9.167

L027B 9.147 9.196 9.159 9.249 9.171

L029A 9.379 9.406 9.385 9.449 9.393 9.533 9.416

L029B 9.225 9.256 9.235 9.284 9.240 9.342 9.251

L030B 9.641 9.668 9.650 9.714 9.660 9.828 9.681

L033A 8.241 8.452 8.302 8.726 8.389

L037A 8.275 8.494 8.344 8.646 8.375

L038A 9.434 9.523 9.448 9.626 9.462

L039B 9.538 9.580 9.552 9.654 9.566

L040A 8.398 8.575 8.451 8.756 8.505

L040B 8.401 8.586 8.448 8.776 8.506

L043A 8.286 8.528 8.360 8.748 8.428

L043B 8.171 8.390 8.225 8.606 8.284

L044B 9.061 9.121 9.082 9.180 9.095

L047B 9.349 9.396 9.367 9.448 9.381 9.548 9.401

L050A 9.191 9.211 9.194 9.239 9.199 9.291 9.207

L050B 9.218 9.242 9.225 9.273 9.232 9.324 9.242

L051A 8.899 8.960 8.914 9.034 8.931 9.151 8.955

L052B 9.446 9.532 9.468 9.677 9.495 9.846 9.530

L053A – – 9.175 9.227 9.186 9.285 9.196

L054A 9.100 9.124 9.108 9.150 9.113 9.196 9.123

L054B 9.191 9.211 9.197 9.240 9.203 9.283 9.209

L055A 9.123 9.152 9.131 9.192 9.140 9.275 9.156

L055B 9.089 9.116 9.096 9.154 9.105 9.227 9.119

L056A 9.234 9.259 9.245 9.287 9.252 9.357 9.261

L056B 9.247 9.275 9.258 9.305 9.264 9.357 9.271

L057B 8.958 8.976 8.964 9.006 8.968 9.060 8.976
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Table C.6 – Axial thickness in millimeters of decapsulated lenses of set G during the
sequence of spinning tests up to BR4. See the caption of table C.5 for discussion of lens
L053A.

test BR1 BT1 BR2 BT2 BR3 BT3 BR4

L021A 4.053 3.974 4.043 3.890 4.024 3.745 3.983

L022B 4.337 4.041 4.276 3.791 4.209

L027A 4.015 3.968 4.013 3.920 4.002

L027B 4.047 3.993 4.035 3.937 4.028

L029A 4.140 4.113 4.137 4.093 4.135 4.054 4.125

L029B 4.145 4.124 4.144 4.103 4.140 4.060 4.133

L030B 4.153 4.125 4.134 4.116 4.132 4.093 4.129

L033A 4.370 4.039 4.300 3.699 4.200

L037A 3.905 3.589 3.845 3.377 3.810

L038A 4.117 3.942 4.095 3.782 4.072

L039B 4.241 4.192 4.229 4.144 4.221

L040A 4.395 4.095 4.326 3.830 4.261

L040B 4.307 4.010 4.254 3.737 4.182

L043A 4.381 4.044 4.302 3.737 4.216

L043B 4.535 4.191 4.475 3.866 4.397

L044B 4.030 3.966 4.023 3.904 4.010

L047B 3.950 3.901 3.944 3.848 3.926 3.751 3.902

L050A 4.199 4.179 4.199 4.160 4.197 4.123 4.189

L050B 4.227 4.202 4.221 4.181 4.217 4.141 4.211

L051A 4.236 4.144 4.216 4.046 4.188 3.910 4.149

L052B 4.146 3.963 4.113 3.822 4.087 3.600 4.044

L053A – – 4.308 4.293 4.309 4.275 4.306

L054A 4.491 4.468 4.484 4.449 4.480 4.413 4.470

L054B 4.555 4.535 4.549 4.517 4.545 4.491 4.541

L055A 4.250 4.213 4.230 4.185 4.221 4.145 4.212

L055B 4.234 4.216 4.233 4.197 4.228 4.160 4.220

L056A 3.872 3.864 3.872 3.853 3.869 3.830 3.865

L056B 3.878 3.864 3.873 3.851 3.868 3.830 3.862

L057B 4.175 4.164 4.173 4.153 4.169 4.133 4.165
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Table C.7 – Stiffness parameters for lenses of set G calculated from test BT2 (1000 rpm)
using support constraint F. If this is the preferred constraint for a given lens it is marked in
that column.

model H model D model E preferred

µ (Pa) µN (Pa) µC (Pa) µ0 (Pa) µ1 (Pa) constraint

L021A 7.52×102 4.11×102 1.21×103 1.71×102 1.51×103

L022B 1.80×102 7.40×101 4.15×102 3.02×101 4.45×102 •
L027A 1.06×103 7.54×102 1.47×103 4.34×102 1.65×103

L027B 9.04×102 7.46×102 1.17×103 4.72×102 1.34×103

L029A 2.06×103 3.30×103 9.77×102 1.22×104 6.21×102

L029B 2.28×103 3.07×103 1.53×103 5.69×103 1.31×103

L030B 3.30×103 8.41×103 1.07×103 1.34×105 3.30×102

L033A 1.49×102 5.88×101 2.70×102 1.42×101 3.67×102 •
L037A 1.80×102 6.44×101 3.50×102 7.41×100 5.38×102 •
L038A 4.37×102 8.89×101 9.77×102 1.97×101 1.55×103

L039B 1.22×103 1.09×103 1.42×103 8.81×102 1.52×103

L040A 1.76×102 7.05×101 3.86×102 1.60×101 5.16×102 •
L040B 1.85×102 5.50×101 3.90×102 8.79×100 5.91×102 •
L043A 1.62×102 6.43×101 2.68×102 9.93×100 4.26×102 •
L043B 1.46×102 4.52×101 2.82×102 8.26×100 4.17×102 •
L044B 8.72×102 4.14×102 1.66×103 1.45×102 2.13×103

L047B 1.25×103 7.83×102 1.97×103 3.87×102 2.33×103

L050A 2.26×103 2.73×103 1.74×103 3.72×103 1.63×103

L050B 2.19×103 2.69×103 1.58×103 3.79×103 1.51×103

L051A 6.71×102 3.77×102 1.15×103 1.68×102 1.35×103

L052B 4.52×102 1.14×102 9.87×102 2.76×101 1.52×103

L053A 3.02×103 1.38×104 8.61×102 1.55×105 3.36×102

L054A 2.81×103 3.63×103 1.90×103 5.47×103 1.73×103

L054B 2.71×103 4.71×103 1.48×103 1.02×104 1.21×103

L055A 1.98×103 3.59×103 8.47×102 1.13×104 6.28×102

L055B 1.94×103 3.58×103 8.99×102 1.11×104 6.82×102

L056A 3.31×103 6.03×103 1.19×103 3.61×104 6.97×102

L056B 3.19×103 6.60×103 1.06×103 3.90×104 6.42×102

L057B 3.64×103 7.29×103 1.16×103 3.90×104 7.43×102
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Table C.8 – Stiffness parameters calculated for some lenses of set G from test BT1
(700 rpm) using support constraint F. If this is the preferred constraint for a given lens it is
marked in that column.

model H model D model E preferred

µ (Pa) µN (Pa) µC (Pa) µ0 (Pa) µ1 (Pa) constraint

L022B 1.54×102 5.42×101 2.93×102 6.08×100 5.77×102 •
L033A 1.31×102 5.24×101 2.45×102 1.13×101 3.54×102 •
L037A 1.45×102 4.39×101 2.81×102 5.04×100 4.12×102 •
L038A 2.97×102 8.79×101 7.99×102 2.54×101 1.09×103

L040A 1.69×102 5.68×101 3.36×102 7.56×100 5.37×102 •
L040B 1.66×102 4.78×101 3.19×102 6.34×100 5.08×102 •
L043A 1.28×102 3.93×101 2.55×102 9.30×100 3.19×102 •
L043B 1.19×102 4.21×101 2.33×102 8.89×100 3.32×102 •
L052B 2.92×102 5.78×100 1.22×103 1.90×101 1.18×103

Table C.9 – Stiffness parameters calculated for some lenses of set G from test BT3
(1400 rpm) using support constraint F. If this is the preferred constraint for a given lens it is
marked in that column.

model H model D model E preferred

µ (Pa) µN (Pa) µC (Pa) µ0 (Pa) µ1 (Pa) constraint

L029A 2.17×103 2.96×103 1.30×103 8.79×103 8.92×102

L029B 2.21×103 2.90×103 1.44×103 5.09×103 1.27×103

L030B 3.95×103 7.14×103 1.35×103 5.76×105 2.20×102

L047B 1.27×103 7.46×102 2.13×103 3.17×102 2.65×103

L050A 2.41×103 2.99×103 1.64×103 4.47×103 1.55×103

L050B 2.33×103 2.67×103 1.86×103 3.30×103 1.83×103

L051A 7.67×102 4.09×102 1.38×103 1.62×102 1.70×103

L053A 2.96×103 1.35×104 8.56×102 1.53×105 3.31×102

L054A 2.71×103 4.33×103 1.44×103 9.77×103 1.15×103

L054B 2.88×103 5.68×103 1.45×103 1.35×104 1.16×103

L055A 2.10×103 3.92×103 8.86×102 1.33×104 6.38×102

L055B 2.12×103 3.98×103 9.36×102 1.29×104 6.99×102

L056A 3.48×103 6.02×103 1.15×103 3.49×104 7.18×102

L056B 3.36×103 6.32×103 1.18×103 3.33×104 7.58×102

L057B 3.67×103 7.55×103 1.20×103 4.98×104 6.86×102
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Table C.10 – Stiffness parameters for lenses of set G calculated from test BT2 (1000 rpm)
using support constraint S. If this is the preferred constraint for a given lens it is marked in
that column.

model H model D model E preferred

µ (Pa) µN (Pa) µC (Pa) µ0 (Pa) µ1 (Pa) constraint

L021A 8.11×102 6.53×102 1.06×103 4.65×102 1.15×103 •
L022B 2.38×102 2.02×102 3.27×102 1.80×102 2.98×102

L027A 1.13×103 1.08×103 1.26×103 9.77×102 1.28×103 •
L027B 1.01×103 9.50×102 1.12×103 8.72×102 1.11×103 •
L029A 2.17×103 4.02×103 8.98×102 1.74×104 5.53×102 •
L029B 2.50×103 3.70×103 1.37×103 8.84×103 1.09×103 •
L030B 3.55×103 9.59×103 1.03×103 1.41×105 3.30×102 •
L033A 1.80×102 2.02×102 1.57×102 3.23×102 1.38×102

L037A 2.21×102 2.11×102 2.36×102 2.79×102 1.95×102

L038A 4.75×102 1.92×102 9.33×102 6.19×101 1.27×103 •
L039B 1.33×103 1.28×103 1.41×103 1.23×103 1.40×103 •
L040A 2.41×102 1.91×102 3.16×102 1.67×102 2.92×102

L040B 2.30×102 1.96×102 2.72×102 2.19×102 2.54×102

L043A 1.87×102 2.16×102 1.57×102 3.70×102 1.36×102

L043B 1.79×102 2.18×102 1.36×102 3.63×102 1.28×102

L044B 9.45×102 7.34×102 1.40×103 5.13×102 1.46×103 •
L047B 1.34×103 1.10×103 1.76×103 7.13×102 1.99×103 •
L050A 2.55×103 3.34×103 1.53×103 5.87×103 1.36×103 •
L050B 2.36×103 3.25×103 1.38×103 6.05×103 1.22×103 •
L051A 7.14×102 5.13×102 1.11×103 3.01×102 1.20×103 •
L052B 4.81×102 2.29×102 9.30×102 8.28×101 1.23×103 •
L053A 3.50×103 1.84×104 8.30×102 2.01×105 3.13×102 •
L054A 3.02×103 4.45×103 1.63×103 8.41×103 1.42×103 •
L054B 2.89×103 6.04×103 1.29×103 1.57×104 9.97×102 •
L055A 2.14×103 4.27×103 7.96×102 1.48×104 5.74×102 •
L055B 2.08×103 4.06×103 8.60×102 1.56×104 5.95×102 •
L056A 3.61×103 7.23×103 1.10×103 5.31×104 6.15×102 •
L056B 3.57×103 7.48×103 1.07×103 5.96×104 5.54×102 •
L057B 3.98×103 8.19×103 1.12×103 5.16×104 6.76×102 •
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Table C.11 – Stiffness parameters calculated for some lenses of set G from test BT1
(700 rpm) using support constraint S. If this is the preferred constraint for a given lens it is
marked in that column.

model H model D model E preferred

µ (Pa) µN (Pa) µC (Pa) µ0 (Pa) µ1 (Pa) constraint

L022B 2.11×102 1.69×102 2.72×102 2.06×102 2.15×102

L033A 1.56×102 1.92×102 1.13×102 3.38×102 1.07×102

L037A 1.60×102 1.61×102 1.63×102 3.75×102 1.08×102

L038A 3.47×102 1.77×102 8.27×102 9.13×100 1.93×103 •
L040A 1.98×102 1.56×102 2.63×102 1.47×102 2.27×102

L040B 1.90×102 1.65×102 2.18×102 2.41×102 1.65×102

L043A 1.41×102 1.77×102 1.06×102 5.00×102 7.96×101

L043B 1.41×102 2.30×102 6.50×101 3.80×102 8.88×101

L052B 3.53×102 2.12×102 8.32×102 4.68×101 1.36×103 •

Table C.12 – Stiffness parameters calculated for some lenses of set G from test BT3
(1400 rpm) using support constraint S. If this is the preferred constraint for a given lens it is
marked in that column.

model H model D model E preferred

µ (Pa) µN (Pa) µC (Pa) µ0 (Pa) µ1 (Pa) constraint

L029A 2.38×103 3.39×103 1.19×103 1.51×104 7.03×102 •
L029B 2.39×103 3.58×103 1.26×103 8.06×103 1.04×103 •
L030B 4.35×103 8.26×103 1.29×103 1.03×106 1.81×102 •
L047B 1.35×103 9.35×102 2.21×103 5.01×102 2.57×103 •
L050A 2.65×103 3.56×103 1.46×103 6.68×103 1.31×103 •
L050B 2.55×103 3.26×103 1.61×103 5.32×103 1.49×103 •
L051A 8.23×102 5.36×102 1.43×103 2.82×102 1.60×103 •
L053A 3.19×103 1.77×104 8.28×102 2.09×105 3.02×102 •
L054A 2.89×103 5.32×103 1.27×103 1.32×104 1.04×103 •
L054B 3.10×103 7.00×103 1.33×103 1.90×104 1.01×103 •
L055A 2.28×103 4.62×103 8.38×102 1.72×104 5.86×102 •
L055B 2.32×103 4.50×103 9.06×102 1.69×104 6.38×102 •
L056A 3.86×103 6.41×103 1.14×103 5.80×104 5.92×102 •
L056B 3.74×103 7.35×103 1.16×103 4.99×104 6.64×102 •
L057B 4.04×103 8.84×103 1.14×103 7.73×104 5.88×102 •
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Table C.13 – Optimum objective function values for lenses of set G from stiffness
calculations for test BT2(1000 rpm).

constraint F constraint S

initial
QA0 (mm2)

model H
QA (mm2)

model D
QA (mm2)

model E
QA (mm2)

model H
QA (mm2)

model D
QA (mm2)

model E
QA (mm2)

L021A 0.409 0.091 0.064 0.058 0.053 0.040 0.040

L022B 1.159 0.243 0.166 0.104 0.161 0.147 0.152

L027A 0.277 0.044 0.034 0.029 0.026 0.025 0.024

L027B 0.319 0.054 0.050 0.048 0.034 0.034 0.034

L029A 0.195 0.053 0.039 0.039 0.059 0.038 0.038

L029B 0.147 0.023 0.019 0.018 0.027 0.016 0.016

L030B 0.150 0.085 0.065 0.061 0.089 0.061 0.058

L033A 1.457 0.244 0.088 0.117 0.259 0.256 0.250

L037A 1.082 0.231 0.085 0.063 0.224 0.224 0.221

L038A 0.787 0.268 0.139 0.142 0.193 0.059 0.063

L039B 0.320 0.072 0.071 0.071 0.060 0.060 0.060

L040A 1.146 0.277 0.242 0.137 0.207 0.195 0.200

L040B 1.209 0.236 0.145 0.068 0.213 0.210 0.212

L043A 1.367 0.255 0.119 0.084 0.291 0.290 0.279

L043B 1.209 0.258 0.130 0.087 0.306 0.305 0.296

L044B 0.326 0.064 0.035 0.028 0.040 0.030 0.030

L047B 0.250 0.051 0.036 0.032 0.036 0.032 0.030

L050A 0.152 0.030 0.029 0.029 0.031 0.026 0.026

L050B 0.157 0.022 0.019 0.019 0.027 0.017 0.017

L051A 0.406 0.093 0.072 0.060 0.060 0.045 0.042

L052B 0.776 0.247 0.136 0.136 0.177 0.070 0.075

L053A 0.116 0.049 0.025 0.025 0.054 0.023 0.023

L054A 0.131 0.024 0.021 0.020 0.027 0.020 0.019

L054B 0.135 0.027 0.020 0.020 0.031 0.019 0.018

L055A 0.175 0.045 0.026 0.028 0.052 0.025 0.027

L055B 0.164 0.039 0.020 0.019 0.046 0.017 0.018

L056A 0.100 0.035 0.018 0.018 0.039 0.017 0.017

L056B 0.102 0.035 0.011 0.012 0.039 0.011 0.010

L057B 0.097 0.040 0.026 0.025 0.044 0.025 0.024
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Table C.14 – Optimum objective function values from stiffness calculations for test BT1
(700 rpm)..

constraint F constraint S

initial
QA0 (mm2)

model H
QA (mm2)

model D
QA (mm2)

model E
QA (mm2)

model H
QA (mm2)

model D
QA (mm2)

model E
QA (mm2)

L022B 0.738 0.226 0.128 0.131 0.235 0.235 0.233

L033A 0.777 0.160 0.075 0.057 0.185 0.181 0.185

L037A 0.682 0.164 0.056 0.035 0.175 0.170 0.174

L038A 0.445 0.148 0.084 0.084 0.103 0.071 0.070

L040A 0.651 0.144 0.040 0.088 0.154 0.154 0.152

L040B 0.693 0.152 0.041 0.073 0.168 0.167 0.167

L043A 0.797 0.184 0.075 0.042 0.231 0.220 0.229

L043B 0.813 0.189 0.074 0.066 0.240 0.235 0.236

L052B 0.461 0.170 0.102 0.092 0.138 0.114 0.111

Table C.15 – Optimum objective function values from stiffness calculations for test BT3
(1400 rpm).

constraint F constraint S

initial
QA0 (mm2)

model H
QA (mm2)

model D
QA (mm2)

model E
QA (mm2)

model H
QA (mm2)

model D
QA (mm2)

model E
QA (mm2)

L029A 0.355 0.073 0.055 0.054 0.083 0.052 0.051

L029B 0.307 0.040 0.026 0.025 0.051 0.021 0.021

L030B 0.258 0.140 0.093 0.072 0.148 0.090 0.067

L047B 0.490 0.112 0.084 0.077 0.083 0.067 0.063

L050A 0.281 0.038 0.031 0.031 0.048 0.025 0.026

L050B 0.283 0.031 0.029 0.029 0.041 0.025 0.026

L051A 0.705 0.176 0.138 0.116 0.117 0.082 0.076

L053A 0.232 0.098 0.050 0.049 0.106 0.045 0.045

L054A 0.258 0.050 0.030 0.030 0.060 0.028 0.031

L054B 0.249 0.051 0.031 0.031 0.060 0.028 0.028

L055A 0.329 0.091 0.044 0.049 0.106 0.043 0.049

L055B 0.306 0.079 0.041 0.039 0.093 0.036 0.035

L056A 0.200 0.075 0.036 0.034 0.083 0.035 0.034

L056B 0.102 0.036 0.014 0.014 0.041 0.014 0.013

L057B 0.184 0.081 0.048 0.046 0.088 0.046 0.045
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Table D.1 – The physical effect of disaccommodation on accommodation models of type A
and B.

ciliary
radius

rCB (mm)

lens
radius

rLE (mm)

lens
thick-
ness

dL (mm)

anterior
radius
rA (mm)

posterior
radius
rP (mm)

initial 6.47 4.31 3.98 7.10 -5.09

A29H final 6.83 4.60 3.41 11.78 -6.96

change 0.36 0.29 -0.57 4.69 -1.87

initial 6.47 4.31 3.98 7.10 -5.09

A29D final 6.83 4.60 3.37 12.49 -7.28

change 0.36 0.29 -0.61 5.40 -2.19

initial 6.47 4.31 3.98 7.10 -5.09

A29E final 6.83 4.60 3.37 12.69 -7.38

change 0.36 0.29 -0.61 5.60 -2.29

initial 6.33 4.49 4.17 8.13 -5.32

A45H final 6.61 4.72 3.85 10.06 -6.09

change 0.28 0.23 -0.32 1.92 -0.78

initial 6.33 4.49 4.17 8.13 -5.32

A45D final 6.61 4.72 3.86 9.93 -6.04

change 0.28 0.23 -0.31 1.80 -0.73

initial 6.33 4.49 4.17 8.13 -5.32

A45E final 6.61 4.72 3.87 9.82 -5.99

change 0.28 0.23 -0.30 1.68 -0.68

initial 6.47 4.31 3.98 7.10 -5.09

B29D final 6.83 4.57 3.60 9.64 -5.98

change 0.36 0.26 -0.38 2.54 -0.89

initial 6.33 4.49 4.17 8.13 -5.32

B45D final 6.61 4.74 3.64 12.24 -7.28

change 0.28 0.25 -0.53 4.10 -1.96
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Table D.2 – The physical effect of disaccommodation on the models of lentotomized lenses.

ciliary
radius

rCB (mm)

lens
radius

rLE (mm)

lens
thickness

dL (mm)

anterior
radius
rA (mm)

posterior
radius
rP (mm)

initial 6.33 4.49 4.17 8.13 -5.32

C45H-A final 6.61 4.72 3.85 9.96 -6.02

change 0.28 0.23 -0.32 1.83 -0.71

initial 6.33 4.49 4.17 8.13 -5.32

C45H-C final 6.61 4.72 3.84 10.16 -6.09

change 0.28 0.23 -0.33 2.02 -0.77

initial 6.33 4.49 4.17 8.13 -5.32

C45H-R final 6.61 4.72 3.82 10.40 -6.21

change 0.28 0.23 -0.35 2.27 -0.90

initial 6.33 4.49 4.17 8.13 -5.32

C45H-AC final 6.61 4.72 3.84 10.04 -6.02

change 0.28 0.23 -0.33 1.90 -0.70

initial 6.33 4.49 4.17 8.13 -5.32

C45H-AR final 6.61 4.72 3.82 10.27 -6.13

change 0.28 0.23 -0.35 2.14 -0.82

initial 6.33 4.49 4.17 8.13 -5.32

C45H-CR final 6.61 4.72 3.82 10.45 -6.19

change 0.28 0.23 -0.35 2.31 -0.88

initial 6.33 4.49 4.17 8.13 -5.32

C45H-ACR final 6.61 4.72 3.82 10.30 -6.11

change 0.28 0.23 -0.35 2.17 -0.80

initial 6.33 4.49 4.17 8.13 -5.32

C45H-F final 6.61 4.72 3.80 8.96 -5.54

change 0.28 0.23 -0.37 0.83 -0.23
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