
P4Pi: P4 on Raspberry Pi for Networking Education
Sándor Laki

Eötvös Loránd University
lakis@inf.elte.hu

Radostin Stoyanov
University of Oxford

radostin.stoyanov@eng.ox.ac.uk

Dávid Kis
Eötvös Loránd University

kidraai@inf.elte.hu

Robert Soulé
Yale University

robert.soule@yale.edu

Péter Vörös
Eötvös Loránd University

vopraai@inf.elte.hu

Noa Zilberman
University of Oxford

noa.zilberman@eng.ox.ac.uk

ABSTRACT
High level, network programming languages, like P4, enable stu-
dents to gain hands-on experience in the structure of a switch
or router. Students can implement the packet processing pipeline
themselves, without prior knowledge of circuit design. However,
when choosing a P4 programmable target for use in the classroom,
instructors face a lack of options. On the one hand, software so-
lutions, such as the behavioral model (BMv2) switch, are overly
simplified and offer low performance. On the other hand, existing
hardware solutions are closed source and expensive.

In this paper, we present P4Pi, a new, low-cost, open-source
hardware platform intended for networking education. P4Pi allows
students to design and deploy P4-based network devices using
the Raspberry Pi board, which has a price tag of less than many
academic textbooks. We describe the high-level design of the P4Pi
platform, offer some suggestions for how P4Pi could be used in the
classroom, and present some additional use-cases for applications
and functionality that could be developed using P4Pi.

1 INTRODUCTION
The networking community has long sought better ways to teach
networking concepts. The introduction of the P4 language [4] and
programmable network devices has provided an exciting opportu-
nity for pedagogy—students can gain hands-on experience with
the structure of a switch or router by implementing the packet
processing pipeline themselves.

The P4 language provides a high-level programming abstraction
for programmable network devices. The language is small enough,
and similar enough to C, that the main concepts can be covered
in one or two lectures. P4 significantly lowers the barrier to entry
for students without prior knowledge of circuit design, which was
historically a requirement for studying network devices, such as
switches, routers, and NICs. Moreover, as programmable network
hardware has seen increased adoption in both academia and indus-
try, learning P4 itself can be a practical skill. There are now a large
number of research projects, open-source projects, and production
systems written in P4.

Nevertheless, while using P4 in the classroom is appealing, there
are a limited number of available options for P4-programmable
target devices. At one end of the spectrum, students can use the
actual programmable ASIC-based hardware deployed in production
settings. However, the cost of these devices presents a significant
financial challenge. Purchasing even one device can be expensive,
and it is impractical to provide every student with a dedicated

device for development. While students can time-share access to a
few devices, it is not an ideal solution.

At the other end of the spectrum, students can use software
solutions, such as the behavioral model (BMv2) switch [1] com-
bined with a network emulator, such as Mininet [16]. While several
universities have successfully adopted this approach, programming
on simulators or emulators lacks the realism that engages students.
Additionally, as others have argued [6], network devices must in-
tegrate with existing systems and infrastructure, and therefore an
important part of understanding network hardware is coping with
interoperability. While possible, it is difficult for students to test
interoperability in a software-only test environment.

Other solutions have been proposed that try to balance these ex-
tremes, such as NetFPGA [6, 10], an open source hardware platform
for rapid prototyping of network devices. However, with a cost of
around $1500 USD per board, it is still expensive to run a large
class with NetFPGA. Moreover, using NetFPGA requires additional
tools, servers, and FPGA design knowledge. It can be very time
consuming for TAs and faculty to support students using FPGA
devices, when those students have no prior FPGA experience.

In this paper, we describe P4Pi, a new, low-cost, open-source plat-
form for teaching and research. With P4Pi, students can design and
deploy P4-based network devices using the Raspberry Pi hardware
device. Because Raspberry Pi boards are relatively inexpensive, with
a price tag of less than many textbooks (under $100), it is feasible for
every student in the class to have their own device. This provides
students with the opportunity to gain hands-on experience with
developing network hardware that they can use in practice (e.g.,
develop their own WiFi access point). These devices also readily
lend themselves to projects that require interoperability.

P4Pi is developed as part of the P4 Education Working Group
activities. The Education Working Group aims to provide educators
and practitioners the knowledge and tools required to use P4Pi
in class and at home, including tutorials, sample code, tools and
community support. Furthermore, as P4Pi is based on the popu-
lar Raspberry Pi board, it appeals to other communities, such as
hobbyists, and does not depend on a single-source provider.

This paper describes the high-level design of the P4Pi platform,
offers some suggestions for how P4Pi could be used in the classroom,
and proposes additional use-cases for applications and function-
ality that could be developed using P4Pi. Of course, P4Pi is really
intended to be an enabling technology. So, all of the software related
to P4Pi is publicly available under an open-source license, and we
actively seek contributions from the community.

2 P4PI REQUIREMENTS AND OVERVIEW
Requirements. In designing P4Pi, we looked for a target platform

that met the following requirements:
• Low Cost. The platform must be low cost, such that it would be
feasible for a department to set up a lab with tens of platforms
or for a student to purchase a platform as part of the required
materials.

• Availability.The platformmust bewidely available for purchase,
worldwide. This requirement rules out designing a custom board.

• Open Source. Because the goal is education and outreach, and
not commercialization, both the hardware and software should
be open-source.

• Easy to Use. The platform must be easy for students to learn,
and ideally, have training resources available for educators and
students to consult.

• Wired/Wireless Connectivity. There must be at least one Eth-
ernet port for wired connectivity. Although not a strict require-
ment, we viewed wireless connectivity as a soft requirement,
since it would be easier for students to connect to the device
using their laptops.

Given our expected use and deployment, we also identified non-
requirements, by which we mean features that are typically im-
portant for network hardware, but not relevant for our particular
setting.
• Performance.While the design of commercial ASICs is driven
by performance requirements, we did not view high-performance
as necessary for this project. An acceptable level of performance
would be one that supports typical home usage (e.g., browsing
the Internet, streaming media, etc.).

• Scale. While commercial networks (data center networks, Inter-
net service providers) may need to support tens of thousands of
connected nodes and millions of user addresses, our goal is to
support connectivity of a class-size or home-size network.

Overview of Main Components. With these requirements in mind,
we considered a number of potential hardware targets. We eventu-
ally converged on the Raspberry Pi single-board computer. At the
time of writing, a Raspberry Pi 4 Model B, with 4GB of RAM costs
between $40-$80 USD, and is widely available for purchase from
a number of vendors worldwide. It includes a 1GbE RJ-45 (Ether-
net) port and on-board WiFi. The hardware is open-source, and
was designed with the goal of supporting basic computer science
education. Moreover, there is a large community of hobbyists who
use Raspberry Pi for their projects, meaning that there are a wide
selection of resources and tutorials available for students who seek
help.

With the Raspberry Pi as the target hardware, the P4Pi platform
includes the following components:
(1) Compiler. P4Pi uses the T4P4S [2, 20] compiler as an open-

source, multi-target compiler for P4. The front end of the T4P4S
compiler is based on P4.org’s p4c reference design. The backend
of the compiler generates a high-performance software switch
from a P4 program.

(2) Software Switch. P4Pi uses a DPDK-based software switch
that can fully utilize the CPU cores dedicated to the execution
of the P4 packet processing pipeline.

(3) Reference Designs. As instructive examples, P4Pi includes a
set of reference designs for L2/L3 forwarding, network teleme-
try, and access control lists (ACLs).

(4) Supporting materials. P4Pi is hosted on the P4 Language
Consortium’s repository (https://github.com/p4lang/p4pi), pro-
viding both the source code for the platform, and training ma-
terials.
Using this platform, students can quickly and easily develop

packet processing pipeline themselves written in P4, and deploy
them in practical settings (e.g., connect their laptop, phone, or tablet
to a personal WiFi access point).

We describe the P4Pi components in more detail in Section 4.
First, though, we describe some ways in which P4Pi can be used
for networking education.

3 USING P4PI FOR EDUCATION
Possible Deployments. We envision that P4Pi will be used in a

practical class or lab. Students may be asked to purchase a Rasp-
berry Pi themselves, as part of the required materials for a course.
Some institutions may purchase the boards for students. Alterna-
tively, a department or a group of principal investigators (PIs) could
purchase a number of P4Pi platforms once and set up a lab.

While setting up a lab is often expensive, we note that twenty
P4Pi platforms can be purchased for about the same price as a single
smart NIC. Thus, P4Pi is an affordable option for a department or
multiple PIs working together. Moreover, the cost for equipping a
lab can be amortized by using P4Pi platforms in multiple courses,
spread vertically across the degree (i.e., in both introductory and
advanced courses).

Setting up a lab of P4Pi platforms has practical benefits, famil-
iar to everyone teaching hands-on courses. First, not all students
may have computing platforms suitable to run practical exercises,
either due to cost or because they use incompatible platforms (e.g.,
tablets). Second, there is often a significant overhead for supporting
students with installing and running suitable environments on their
machines. A similar overhead is associated with running lab ma-
chines with networking equipment (e.g., NIC, FPGA), which need
to be maintained and updated. P4Pi alleviates these concerns by
providing a common platform, with a prepared image that can be
easily cloned or updated from year to year, creating the equivalent
of a “plug and play” teaching environment.

Example Uses in Courses. In an introductory networking course,
students might first use P4Pi to capture and view packets, and
later to interact with other students, e.g., setting up a network,
implementing a simple protocol, and communicating with other
P4Pi platforms.

In a longer introductory or more advanced course, lecturers
can introduce P4 and assign projects in which students implement
programs on their programmable devices. A natural first project
is basic forwarding. Basic forwarding can be made more complex
by extending the data plane with additional functionality, such
as in-band network telemetry [11] or switch-assisted congestion
control [3, 17].

At the postgraduate level, it is quite common for seminar courses
on advanced networking to include a project in which students are
asked to reimplement a system from a contemporary research paper,

2

https://github.com/p4lang/p4pi

Core1 Core2

Core3 Core4

T4P4S slowpath
OS + P4RT CP

Isolated cores

T4P4S fastpath

Data traffic
going through the P4 pipeline

Management traffic
via VLAN or WiFi (e.g., ssh, grpc)

Raspberry PI 4 (Quad-core ARM64)

BR1
1GE
RJ45

dtap1 dtap0

et
h0

vl
an

10
0

WIFI
APw

la
n0BR0

Figure 1: Overview of the P4Pi architecture

or implement some novel functionality of their choice. P4Pi is an
ideal platform for students to explore such “cutting edge” topics in
networking. In addition to implementing data plane functionality,
students might also investigate more performance-driven topics,
such as the use of kernel bypass (e.g., DPDK) and hardware/software
co-design for acceleration.

P4Pi platforms can be further used in labs beyond traditional
computer networks, such as in security and IoT related courses.
Given the abundance of recent works on programmable devices in
this area [13, 15, 19], this is likely to be an attractive solution.

4 P4PI DESIGN
Below, we discuss the main components of the P4Pi design in more
technical detail. The initial P4Pi release uses Raspberry Pi 4 Model B
as the base hardware platform. For a compiler and software switch,
P4Pi extends the open-source T4P4S framework with Raspberry
Pi-specific code hidden by an abstraction layer library.

The Raspberry Pi 4 Model B comes with a quad-core ARM64
processor and can be configured with 2GB, 4GB, or 8GB of RAM.
Our prototype is tested with the 4GB configuration. The device
also includes a wired Gigabit Ethernet port and on-board wireless
networking (both 2.4 and 5GHz), enabling the device to act as a
wireless access point or a simple WiFi router.

Figure 1 provides a high-level overview of the P4Pi architecture.
As the figure shows, the architecture is divided into a fast path and
a slow path. On the fast path, two CPU cores are isolated and dedi-
cated for executing the packet processing pipeline. These two cores
receive all traffic arriving from the two ports, the Gigabit interface
and the wireless interface. The wireless interface is configured in ac-
cess point mode and all the traffic received on this interface except
the management traffic is bridged through the packet processing
pipeline. On the slow path, the two remaining cores are used for
running the operating system, the P4Runtime server, and the local
control plane application, if needed.

4.1 Compiler
The initial release of P4Pi uses T4P4S [2, 20], an open-source, multi-
target compiler that generates a high-performance software switch
from a P4 program. T4P4S supports P416, and both v1model and
PSA architectures. The front-end of T4P4S uses the p4c reference
compiler. The back-end of the compiler generates target-agnostic
switch code using the Data Plane Development Kit (DPDK) [9]
and a hardware abstraction library, named Network Hardware
Abstraction Library (NetHAL). In the generated code, all target-
dependent operations are abstracted away by NetHAL. The NetHAL
library must be ported to each specific hardware target.

We chose to use T4P4S for P4Pi because of its support for a DPDK-
based software switch. It would also be possible to run the BMv2
software switch on the Raspberry Pi platform, but the performance
is unacceptably slow for practical use. The p4c reference compiler
does offer an alternative DPDK backend. However, at the time
of writing, T4P4S provides more complete language support. An
added advantage of T4P4S is that the NetHAL library does allow for
increased portability to other hardware platforms, if a user wants
to deploy their P4 program on another device.

4.2 Switch
P4Pi uses T4P4S to generate a DPDK-based software switch that
executes a given P4 program. The switch also includes a P4Runtime
server that enables control plane applications, like ONOS [18], to
connect to the switch via the standard GRPC-based API.

Using DPDK on Raspberry Pi has two key advantages. First, it
fully utilizes the CPU cores dedicated to packet processing. Sec-
ond, it provides advanced memory support (e.g., hugepages). The
switch’s fast path applies a run-to-completion execution model.
Packets are processed on the same thread from parsing, through
the application of the match-action pipeline, to the deparsing phase.
Recently, DPDK has been extended with support for a Software
Switch (SWX) pipeline aligned with the P4 language, and we foresee
an increased use of P4 with DPDK.

In the current setup of P4Pi, the generated switch program cre-
ates two virtual interfaces (e.g., TAP, PCAP or KNI) that are bridged
with either the wireless interface or the Gigabit Ethernet port of
the Raspberry Pi as shown in Figure 1. For bridging the interfaces,
we use Linux bridges with the MAC learning feature disabled. This
ensures that all L2 frames are directed to the P4 switch and not the
Linux networking stack. Note that other settings are also possible,
depending on the use case.

4.3 Reference Designs
To demonstrate teaching scenarios, we consider four popular use
cases supported on P4Pi as reference designs: simple switch, simple
calculator, network telemetry, and access control.

Simple switch. The simple switch implements basic L3 forward-
ing. Upon receiving a packet, the switch updates the source and
destination MAC addresses, decrements the time-to-live (TTL) in
the IP header, and forwards the packet out of the appropriate port.
The switch has a single forwarding table, which the control plane
populates with static rules. In a classroom setting, students can
use their laptop to connect to their P4Pi node via the WiFi access

3

point. The generated switch forwards their traffic either to another
laptop connected to the P4Pi node or to the next-hop router via
the wired Ethernet interface. Note that the next-hop could also be
a P4Pi node and students can use standard networking tools (e.g.,
ping, traceroute, iperf) to generate test traffic.

Calculator. This design implements a simple, two function calcu-
lator in P4. It is used to teach the basic operation of programmable
network devices. A custom protocol header, P4Calc, includes header
fields for two operands and one operator. The switch performs the
calculation, saves the result into a result field, swaps the hardware
addresses, and sends the packet back to the sender through the
incoming port. In the classroom, students can send P4Calc mes-
sages to the P4Pi node via either wireless or wired interfaces. The
packets can be generated by, e.g., a python script using Scapy to
send P4Calc requests and capture the replies.

In-band Network Telemetry. This design extends basic L3 for-
warding with a scaled-down version of In-Band Network Telemetry
(INT). The telemetry functions allow users to track the path and the
size of queues that packets travel through. The P4 program appends
an ID and queue length to the header stack of every packet. At the
destination, the sequence of switch IDs correspond to the path,
and each ID is followed by the queue length of the switch’s port.
In a classroom setting, students can monitor the statistics of their
P4Pi nodes, e.g., by connecting two laptops to the same P4Pi node
and sending traffic between them. In a more complex classroom
scenario, INT along multiple P4Pi nodes can be executed.

Access Control. This design implements a stateful firewall using a
bloomfilter. The firewall can be used to separate an internal network
from the external network, and prohibit external-network hosts
from establishing connections to hosts on the internal network. In
classroom settings, the P4Pi node’s wired interface is connected
to a L3 router in the lab. The P4Pi node acts as a wireless access
point, bridging all the local traffic towards the gateway router.
The laptops connected to the P4Pi access point are considered as
a private network domain, while the wired interface represents
the untrusted public domain, emulating a realistic home-network
scenario.

Although the P4 language was originally intended for forward-
ing plane configuration [5], researchers and developers quickly
found creative applications of the language and hardware tech-
nology. Several projects explored using P4 to offload or accelerate
services that traditionally live outside the network. Some examples
include consensus protocols [7, 8], in-network caching [12], and
conflict resolution for transaction processing [14]. We hope that
P4Pi will inspire similar creativity, especially influenced by having
a P4-programmable device that can be used for a home network.
Some initial ideas for potential applications could be implementing
parental controls, QoE/QoS, or telemetry for IoT devices.

5 CONCLUSION
P4Pi provides a platform for education that is low-cost, open-source,
and runs on the widely available Raspberry Pi single-board com-
puter. This paper provides a brief, technical overview of the main
components of P4Pi, and describes a few ways in which we imag-
ine P4Pi can be used for network education. Our hope is that the

network community will find P4Pi useful and interesting, and will
contribute to the project.

ACKNOWLEDGMENTS
P4Pi is developed as an activity of the P4 EducationWorking Group,
one of five working groups within the Open Networking Founda-
tion (ONF) P4 Infra Project. We thank the Network Programming
Initiative (NPI) for their generous support, which allows us to pur-
chase and distribute Raspberry Pi boards to early adopters.

REFERENCES
[1] 2021. Behavioral Model (bmv2). https://github.com/p4lang/behavioral-model.

(2021).
[2] 2021. T4P4S source. https://github.com/P4ELTE/t4p4s. (2021).
[3] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan, B. Prabhakar, and

M. Seaman. 2008. Data Center Transport Mechanisms: Congestion Control The-
ory and IEEE standardization. In Annual Allerton Conference on Communication,
Control, and Computing.

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
SIGCOMM Computer Communication Review 44, 3 (July 2014).

[5] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Mar-
tin Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamor-
phosis: Fast Programmable Match-Action Processing in Hardware for SDN. In
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication.

[6] Martin Casado, Greg Watson, and Nick McKeown. 2005. Reconfigurable Net-
working Hardware: A Classroom Tool. In Symposium on High Performance Inter-
connects.

[7] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. 2016. Paxos
Made Switch-y. SIGCOMM Computer Communication Review 44 (April 2016).

[8] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. 2015. NetPaxos: Consensus at Network Speed. In ACM SIGCOMM Sympo-
sium on SDN Research.

[9] DPDK 2021. DPDK. http://dpdk.org/. (2021).
[10] Glen Gibb, John W. Lockwood, Jad Naous, Paul Hartke, and Nick McKeown. 2008.

NetFPGA—An Open Platform for Teaching How to Build Gigabit-Rate Network
Switches and Routers. IEEE Transactions on Education 51, 3 (Aug. 2008).

[11] Inband Network Telemetry 2021. Inband Network Telemetry (INT). https:
//github.com/p4lang/p4factory/tree/master/apps/int. (2021).

[12] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores with
Fast In-Network Caching. In ACM Symposium on Operating Systems Principles.

[13] Mário Kuka, Kamil Vojanec, Jan Kučera, and Pavel Benáček. 2019. Acceler-
ated DDoS Attacks Mitigation Using Programmable Data Plane. In ACM/IEEE
Symposium on Architectures for Networking and Communications Systems.

[14] Jialin Li, Ellis Michael, and Dan R. K. Ports. 2017. Eris: Coordination-Free Consis-
tent Transactions Using In-Network Concurrency Control. In ACM Symposium
on Operating Systems Principles.

[15] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon
Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. 2021. Jaqen: A
High-Performance Switch-Native Approach for Detecting and Mitigating Volu-
metric DDoS Attacks with Programmable Switches. In USENIX Security.

[16] Mininet 2019. Mininet. http://mininet.org. (2019).
[17] Peter Newman. 1993. Backward Explicit Congestion Notification for ATM Local

Area Networks. In IEEE Global Telecommunications Conference.
[18] ONF. 2021. Open Network Operating System. https://opennetworking.org/onos/
[19] Qiaofeng Qin, Konstantinos Poularakis, and Leandros Tassiulas. 2020. A Learn-

ing Approach with Programmable Data Plane Towards IoT Security. In IEEE
International Conference on Distributed Computing Systems.

[20] Péter Vörös, Dániel Horpácsi, Róbert Kitlei, Dániel Leskó, Máté Tejfel, and Sándor
Laki. 2018. T4P4S: A Target-Independent Compiler for Protocol-Independent
Packet Processors. In IEEE International Conference on High Performance Switching
and Routing.

4

https://github.com/p4lang/behavioral-model
https://github.com/P4ELTE/t4p4s
http://dpdk.org/
https://github.com/p4lang/p4factory/tree/master/apps/int
https://github.com/p4lang/p4factory/tree/master/apps/int
http://mininet.org
https://opennetworking.org/onos/

	Abstract
	1 Introduction
	2 P4Pi Requirements and Overview
	3 Using P4Pi for Education
	4 P4Pi Design
	4.1 Compiler
	4.2 Switch
	4.3 Reference Designs

	5 Conclusion
	Acknowledgments
	References

