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ABSTRACT

Objective: To compare Cox models, machine learning (ML), and ensemble models combining both approaches,

for prediction of stroke risk in a prospective study of Chinese adults.

Materials and Methods: We evaluated models for stroke risk at varying intervals of follow-up (<9 years, 0–3

years, 3–6 years, 6–9 years) in 503 842 adults without prior history of stroke recruited from 10 areas in China in

2004–2008. Inputs included sociodemographic factors, diet, medical history, physical activity, and physical

measurements. We compared discrimination and calibration of Cox regression, logistic regression, support

vector machines, random survival forests, gradient boosted trees (GBT), and multilayer perceptrons, bench-

marking performance against the 2017 Framingham Stroke Risk Profile. We then developed an ensemble ap-

proach to identify individuals at high risk of stroke (>10% predicted 9-yr stroke risk) by selectively applying ei-

ther a GBT or Cox model based on individual-level characteristics.

Results: For 9-yr stroke risk prediction, GBT provided the best discrimination (AUROC: 0.833 in men, 0.836 in

women) and calibration, with consistent results in each interval of follow-up. The ensemble approach yielded

incrementally higher accuracy (men: 76%, women: 80%), specificity (men: 76%, women: 81%), and positive pre-

dictive value (men: 26%, women: 24%) compared to any of the single-model approaches.

Discussion and Conclusion: Among several approaches, an ensemble model combining both GBT and Cox

models achieved the best performance for identifying individuals at high risk of stroke in a contemporary study

of Chinese adults. The results highlight the potential value of expanding the use of ML in clinical practice.
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INTRODUCTION

Stroke is a leading cause of death and disability worldwide, with

about three-quarters of all stroke cases occurring in low- and

middle-income countries (LMICs).1 China has the largest stroke

burden in the world, and accounts for approximately one-third of

global stroke mortality with 34 million prevalent cases and 2 million

deaths in 2017.2,3 Current guidelines for primary prevention of

stroke advocate the use of risk prediction models to identify individ-

uals at high risk of cardiovascular disease (CVD) including stroke.4–

6 It has been estimated that with early intervention, half of all

strokes could be prevented by controlling modifiable risk factors in

such individuals.7

Commonly used risk scores include the Pooled Cohort Equa-

tions8 and QRISK9–11 for CVD, as well as the Framingham Stroke

Risk Profile12,13 for stroke. Such risk scores are typically derived us-

ing Cox proportional hazards models and have been validated

mainly in high-income countries (HICs).14–16 However, the clinical

utility of such models for risk prediction of stroke in contemporary

populations of LMICs such as China is uncertain, and novel risk

scores should be developed for use in such populations.17–19

Machine learning (ML) techniques have been increasingly used

in recent years for a variety of healthcare applications, and have

demonstrated superior predictive value compared with traditional

Cox models for predicting risk of stroke or overall CVD.20–23 How-

ever, these ML models have still not been widely adopted in clinical

practice and little is known about the utility of such risk scores for

prediction of stroke risk in a contemporary Chinese population.24

OBJECTIVES

The aims of this study were to (i) compare Cox and ML models for

prediction of risk of stroke in China at varying intervals of follow-

up (ie, stroke within 9 years, 0–3 years, 3–6 years, 6–9 years); (ii)

identify individuals for whom ML models might be superior to con-

ventional Cox-based approaches for stroke risk prediction; and (iii)

develop and evaluate an ensemble model combining both

approaches to identify individuals at high risk of stroke.

MATERIALS AND METHODS

Study population
The China Kadoorie Biobank (CKB)25,26 is a prospective cohort

study of 512 726 participants enrolled from 10 geographically di-

verse areas (5 urban, 5 rural) of China in 2004 to 2008. In each

area, all permanent residents without disability aged 35–74 years

were invited to participate. An interviewer-administered electronic

questionnaire was used to collect data on sociodemographic factors,

lifestyle factors (eg, smoking, alcohol, dietary habits), medical his-

tory and current medication, and physical activity. Physical meas-

urements included height, weight, hip and waist circumference, bio-

impedance, blood pressure, and heart rate. All participants provided

a blood sample, and random blood glucose tests were conducted to

screen for diabetes.26,27 All follow-up data were collected by linkage

to death registries, established registries of major diseases, and

health insurance records (covering >97% of participants); local resi-

dential records; and annual home visits for uninsured participants

through January 1, 2018.26 All stroke cases were verified and ad-

justed by trained medical staff using the International Classification

of Diseases 10th revision (ICD-10) (Supplementary Methods S1).28

The present analyses were restricted to 205 293 men and

298 549 women with no prior history of stroke or transient ischemic

attack at baseline (8884 individuals excluded), and all incident cases

of first stroke that were recorded for up to 9 years after the baseline

survey for each individual were included (19 587 strokes in men;

23 647 strokes in women). After data preprocessing, including ac-

counting for missing values, the dataset included 143 risk factor

indicators in addition to incident stroke cases and a time-to-event

for each stroke event (Supplementary Methods S2). Ethical approval

for CKB was obtained from the Oxford University Tropical Re-

search Ethics Committee and the Chinese Center for Disease Con-

trol and Prevention Ethical Review Committee, and all participants

provided written informed consent.

Model development and validation
CKB individuals were randomly assigned to a training set (85%;

174 498 men with 16 649 strokes; 253 766 women with 20 100

strokes), a validation set (12.75%; 26 174 men with 2467 strokes;

38 065 women with 3014 strokes), and test set (2.25%; 4620 men

with 471 strokes; 6718 women with 533 strokes), with all subse-

quent analyses performed separately by sex (Figure 1). Cox, random

survival forest (RSF), logistic regression (LR), support vector ma-

chine (SVM), gradient boosted tree (GBT), and multilayer percep-

tron (MLP) models were derived in the training set for risk

prediction of stroke within 9 years of the baseline survey. To explore

differences in performance and major risk factors for short-term and

long-term risk prediction, models were also derived for follow-up

intervals of 0–3 years, 3–6 years, and 6–9 years after baseline. Fea-

tures were selected and hyperparameters tuned in each model using

k-fold cross-validation within the training set (Supplementary Meth-

ods S3), and the final models were evaluated in the validation set.

All models were benchmarked against the 2017 Framingham Stroke

Risk Profile (FSRP),13 both with and without recalibration and refit-

ting to the CKB cohort. Atrial fibrillation was not recorded in CKB

and was excluded from the FSRP model.

Survival analysis approaches (FSRP, Cox, RSF) differ from bi-

nary classifiers (LR, SVM GBT, MLP) in their ability to account for

censored individuals and yield time-to-event probabilities for stroke.

Consequently, stroke-free individuals who died or were lost to

follow-up before 9 years (5.4% of all participants) were included in

the training set for development of survival models but not in the bi-

nary classification models. These right-censored individuals were

further excluded from the validation set and test set for all models,

since it was unknown if they could have suffered a stroke within the

time interval of interest. Furthermore, while a single Cox and RSF

model could be used for risk prediction at all time scales, separate

binary classification models were derived for each prediction task.

After comparing model discrimination and calibration, the pre-

dictions of the Cox model and best-performing ML model were

used to identify individuals at high risk of stroke (defined as having

>10% predicted risk of stroke in 9 years) in the validation set.

Agreement between the Cox model and best-performing ML model

was assessed qualitatively using t-Distributed Stochastic Neighbor

Embedding (t-SNE)—an unsupervised, nonlinear technique for visu-

alizing high-dimensional data. A second training set was generated

by restricting the validation set to the individuals for whom the Cox

model and best ML model disagreed (Table 2), and a decision tree

was derived from this training set (Supplementary Methods S3) to

predict which model would yield a better classification (ie, “high-

risk” if the individual had a stroke or “not high-risk” if the individ-
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ual did not have a stroke) based on individual-level characteristics.

Feature importance for the decision tree was analyzed using the Gini

importance metric.29 Screening approaches to identify individuals at

high risk of stroke were then compared in the test set, including a

Cox-only approach, best ML-only approach, and an ensemble ap-

proach that used the trained decision tree to select a model in cases

of disagreement between Cox and the best ML model.

Statistical analysis
The Cox and ML models were assessed for risk discrimination and

calibration performance in the validation set. Risk discrimination

refers to the ability to correctly discriminate between individuals

with and without stroke,30 and was evaluated using the area under

the receiver operating characteristic curve (AUROC), with higher

AUROCs indicating better risk discrimination. Calibration refers to

the similarity between observed and predicted numbers of stroke

events for each predicted risk decile,30 and was evaluated using chi-

squared test statistics (v2) from the Hosmer-Lemeshow test (for bi-

nary classification models) and Nam-D’Agostino test (for survival

models), with lower v2 values indicating better calibration.31,32 The

95% confidence intervals were estimated for AUROC and v2 values

using 1000 bootstrapped samples from the validation set.

Risk screening approaches were evaluated in the test set, using

sensitivity, specificity, positive predictive value (PPV), negative pre-

dictive value (NPV), and accuracy. Agreement between approaches

was assessed using Cohen’s kappa (j). For the ensemble screening

approach, the decision tree to select between Cox and the best ML

model was evaluated for accuracy as well as discriminatory perfor-

mance using AUROC in the test set.

Statistical analyses were performed using Python version 3.7.0

and R version 3.6.1. Cox models were implemented using the life-

lines package33 version 0.21.1 with LASSO variable selection per-

formed in R using the glmnet package34 version 3.0-2. RSF models

were implemented using the ranger package35 version 0.12.1. LR,

SVM, and GBT models were implemented using scikit-learn tool-

kit36 version 0.19.2, and MLP models were implemented using

keras37 version 2.3.1. tSNE visualizations were implemented using

the Rtsne package version 0.15.38

RESULTS

Among the included study participants, the mean (SD) age was 51.9

(10.6) years and 59% were women (Table 1). During 9 years of

follow-up, a total of 43 234 individuals had a first stroke (Supple-

mentary Figure S1). The incidence of stroke was higher in men than

in women (9.5% vs 7.9%) and varied by more than 5-fold between

the 10 study areas. Compared with those who had no stroke, indi-

viduals who had a first stroke were older and more likely to have

prior history of CHD, diabetes, or hypertension (Table 1). Overall,

men and women had similar proportions with prior history of CHD

(2.5% vs 3.0%), diabetes (5.3% vs 6.0%), and use of blood

pressure-lowering medication (9.9% vs 11.4%), but the prevalence

of current smoking was much higher in men than in women (67.7%

vs 3.2%).

Comparisons of cox versus ML models to predict risk of

stroke
The Cox model and ML models all outperformed the 2017 Framing-

ham Stroke Risk Profile (FSRP) with and without recalibration and

refitting and achieved similar discrimination for 9-year risk of

stroke, with GBT yielding marginally higher AUROCs than other

models for both men and women (Table 2, Supplementary Figure

S2). However, calibration performance varied substantially between

models. RSF, LR, and GBT all yielded lower v2 values than Cox

Figure 1. Cox and machine learning (ML) model development and validation. All analyses were performed separately for men and women. Included individuals

were divided into a training set (85%), validation set (12.75%), and test set (2.25%). Risk prediction models were developed in the training set and assessed in the

validation set, with a best ML model selected. The traditional Cox model and best ML model were then used for screening high-risk individuals in the validation

set using a 10% predicted risk threshold. A second training set was created from a subset of the validation set wherein the Cox model and best ML model dis-

agreed on risk classification, and a decision tree was trained to predict which model would yield a better risk classification for each individual. Screening

approaches, including a (i) Cox-only approach, (ii) best ML-only approach, and (iii) an ensemble approach, were assessed and compared using the held-out test

set.
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models in both men and women, with GBT showing significant

improvements in calibration performance (Table 2, Supplementary

Figure S3). MLP and SVM (after isotonic regression) were observed

to yield good calibration for women but were poorly calibrated for

men. Nevertheless, all models were significantly better calibrated

than the original FSRP, which severely underestimated stroke risk in

the CKB cohort (Figure 2, Supplementary Figure S3). Calibration

plots (Figure 2) indicated that calibration for all models was better

in women than in men, with models underestimating risk of stroke

in men compared with women. Furthermore, deviation from perfect

calibration was more extreme in those at highest risk of stroke (Fig-

ure 2) and in older individuals (Supplementary Figure S4). Due to its

high AUROC and improvements to calibration over the traditional

Cox model, GBT was identified as the best-performing ML model

and was selected for further risk screening analyses.

Evaluation of risk prediction models at varying intervals of

follow-up (0–3 years, 3–6 years, 6–9 years) demonstrated compara-

ble relative performance between models (Figure 3, Supplementary

Tables S1–S3). However, binary classification models (LR, SVM.

GBT, and MLP), which were retrained for each prediction task,

yielded substantial improvements over survival models (FSRP, Cox,

RSF) at all intervals of follow-up and for both sexes (Figures 3A and

3B). The AUROCs for all models decreased monotonically for later

intervals of follow-up. For most models, calibration also declined at

later intervals of follow-up, but was less sensitive to changes in times

scales than discrimination performance (Figures 3C and 3D). At all

intervals of follow-up, MLP and SVM (after isotonic regression) had

a tendency for poor calibration in men, but were well-calibrated in

women. Once again, the FSRP without recalibration and refitting,

yielded the worst calibration, substantially underestimating stroke

risk at all intervals of follow-up.

GBT remained among the best-performing of the ML models

based on discrimination and calibration metrics. Additional analyses

of the most important GBT features for later intervals of follow-up

(Supplementary Table S4) indicated comparable performance in

men and women with emphasis on risk factor indicators related to

Table 1. Distribution of established risk factors for stroke in men and women by presence or absence of stroke during follow-up

Men Women

Risk factors in 2017 Framingham

Stroke Risk Profilea

No Stroke (n¼ 185 706) Stroke (n¼ 19 587) No Stroke (n¼ 274 902) Stroke (n¼ 23 647)

Age, mean, year 51.8 60.7 50.6 59.6

Current smoking, % 68.5 59.9 3.1 4.8

Coronary heart disease, % 2.1 6.4 2.5 9.4

Age 65 yrsþ, % 13.8 39.9 10.7 34.0

Diabetes at age <65 yrs, % 3.7 6.5 4.0 8.1

Diabetes at age 65þ yrs % 1.1 4.8 1.3 6.0

BP-lowering treatment, % 8.6 22.3 10.1 26.3

SBP-untreated, mean, mmHg 130 142 126 138

SBP- treated, mean, mmHg 148 153 150 155

Note: “No Stroke” column includes individuals who remained stroke-free until being censored, even if lost to follow-up before 9 years.
aAtrial fibrillation is a part of the Framingham Stroke Risk Profile but was not recorded in CKB.

Table 2. Discrimination and calibration performance for prediction of 9-year risk of stroke. Comparisons included the 2017 Framingham

Stroke Risk Profile (FSRP), a recalibrated and refitted FSRP, Cox, random survival forest (RSF), logistic regression (LR), support vector ma-

chine (SVM), gradient boosted tree (GBT), and multilayer perceptron (MLP) models

Men Women

Model Type Discrimination Calibration Discrimination Calibration

AUROCs v2 AUROCs v2

[95%CI] [95%CI] [95%CI] [95%CI]

FSRP 0.781 5541 0.772 19402

[0.772-0.790] [4996-6107] [0.764-0.780] [17784-21019]

Recalibrated and refitted 0.824 138 0.825 140

FSRP [0.816-0.831] [96-185] [0.819-0.833] [97-186]

Cox 0.829 122 0.831 129

[0.822-0.837] [83-166] [0.824-0.838] [89-172]

RSF 0.826 61 0.832 62

[0.818-0.834] [36-90] [0.824-0.839] [36-95]

LR 0.831 56 0.832 57

[0.823-0.838] [31-86] [0.825-0.838] [34-85]

SVM 0.830 712 0.831 24

[0.823-0.838] [582-852] [0.824-0.838] [11-41]

GBT 0.833 44 0.836 47

[0.825-0.840] [24-67] [0.829-0.843] [30-69]

MLP 0.831 515 0.833 19

[0.824-0.839] [410-627] [0.826-0.841] [8-35]
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age, blood pressure, physical activity, and geographic area. How-

ever, characteristics, such as retirement and number of children, be-

came relatively more important at later intervals of follow-up (3–6

years and 6–9 years) than at 0–3 years from baseline.

Prediction of best model for risk screening
After identifying GBT as the best-performing ML model, risk predic-

tions estimated using the Cox and GBT models were used to screen

individuals at high risk of stroke in the validation set in order to

train a decision tree to select which model to use for a particular in-

dividual, given disagreement about the individual’s risk classifica-

tion. For the purposes of this study, individuals were classified as

“high-risk” if they had >10% predicted risk of stroke in 9 years. In

cases of disagreement between models, either the Cox or GBT model

was identified as the better classifier if it classified an individual

with stroke as “high-risk” or classified a stroke-free individual as

“not high-risk”.

The t-SNE visualizations of individuals in the validation set and

test set (Figure 4) indicated high levels of agreement between both

the Cox and GBT models for stroke risk prediction in both men and

women. Disagreements occurred in only 5% of men and women, of

whom 10% of men and 12% of women would go on to experience

a stroke event.

Among the 4281 men and 6441 women in the test set (after ex-

cluding stroke-free, right-censored individuals), sex-specific decision

trees were used to resolve 590 disagreements (219 in men, 371 in

women) and selected GBT as the better classifier 31% of the time

(34% for men, 29% for women). Among individuals in the test set

for whom the Cox and GBT models disagreed, the decision trees

(Supplementary Figures S5–S6) yielded good discrimination for

model selection (AUROC: 0.71 in men, 0.74 in women) and cor-

rectly selected the better classifier with an accuracy of 73% in men

and 70% in women. The most important features for selecting the

better classifier included blood pressure, age, and geographic area-

related risk factor indicators for both sexes—in addition to addi-

tional features reported in the online supplement (Supplementary

Table S5).

Comparison of risk screening approaches
In both men and women, the ensemble approach yielded a higher ac-

curacy (76% in men, 80% in women) and specificity (76% in men,

81% in women) compared with either Cox-only or GBT-only

approaches (Table 3). The ensemble approach also yielded the high-

est PPV in men (26%). The GBT-only approach yielded the highest

sensitivity (80% in men, 74% in women), and the Cox-only ap-

proach did not provide the best performance using any metric. Dif-

ferences in performance were incremental for all metrics with

overlapping 95% confidence intervals. The confusion matrices for

each screening approach are reported for both sexes in the online

supplement (Supplementary Table S6). Good agreement was ob-

served between all models with j values ranging from 0.85 to 0.96

(Supplementary Table S7).

DISCUSSION

In this study, involving almost a 100-fold larger population than the

original Framingham Study,13 we developed novel risk scores for

prediction of stroke in a contemporary Chinese cohort. Previous

population-based prospective studies17–19 highlighted the need for

novel risk scores for use in Chinese adults and proposed new Cox-

derived models based on these populations. However, the models

derived in the present study were based on a substantially larger (5-

fold compared to the China-PAR study17) and more contemporary

population.

In contrast to previous studies of risk prediction of stroke in Chi-

nese adults, we compared both conventional Cox model-based

approaches and ML techniques for risk prediction to assess the po-

tential of ML techniques for improved risk prediction. Consistent

Figure 2. Calibration plots for the 2017 Framingham Stroke Risk Profile (FSRP), a recalibrated and refitted FSRP, Cox, random survival forest (RSF), logistic regres-

sion (LR), support vector machine (SVM), gradient boosted tree (GBT), and multilayer perceptron (MLP) models in (A) men and (B) women. Each point represents

a decile of predicted risk.
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with findings for cardiovascular risk prediction,20 we demonstrated

that ML techniques improved 9-yr risk prediction of stroke over

Cox models, with GBT providing the best discrimination and cali-

bration performance. Improvements over the Cox model were par-

ticularly evident for binary classification models that predicted

stroke at narrower intervals of follow-up (0–3 years, 3–6 years, and

6–9 years from baseline). This may be due to the fact that survival

models, such as Cox and RSF are optimized across the overall 9-

year follow-up period, while binary classification models are able to

be retrained for optimal performance in each particular time interval

of interest. All models substantially outperformed the 2017 Fra-

mingham Stroke Risk Profile, which greatly underestimated stroke

risk in CKB.

While the discrimination improvements of ML over Cox models

were marginal, such incremental improvements can translate to

meaningful population health benefits. For example, a recent analy-

sis of 100 000 UK adults reported that polygenic risk scores for

CVD with improvements of just 0.012 in the C-index could help to

prevent 7% more CVD events than conventional risk scores alone.39

Moreover, the substantial calibration improvements of ML

approaches, such as GBT, over Cox models are highly relevant for

clinical practice, in which decisions on initiation of drug treatment

may be informed by defined risk thresholds. Contemporary clinical

guidelines recommend using absolute risk predictions from Cox

models to screen individuals at high risk of stroke, who are then pri-

oritized for initiation of drug treatments. For example, the 2013

guidelines of the American College of Cardiology and the American

Heart Association (ACC–AHA)40 recommend initiation of statin

therapy for those with a�7.5% 10-year CVD risk as assessed by

the Pooled Cohort Equations, while in the UK, the cutoff is �10%

risk as assessed by QRISK3.41 In such settings, underestimation of

stroke risk due to poor calibration of models could result in failure

to identify high-risk individuals who would benefit from statins or

other preventative drug treatments.

Using a threshold of �10% 9-year stroke risk, we found that an

ensemble approach that combined Cox and GBT models had

a higher accuracy, specificity, and PPV for stroke prediction than

either the Cox-only or GBT-only approaches. However, such

improvements were marginal and warrant assessment for reproduc-

ibility in external validation studies. We have provided statistical

Figure 3. Discrimination (subplots A and B) and calibration (subplots C and D) performance in men and women, respectively, for risk prediction of stroke at vari-

ous time scales (0–3 years, 3–6 years, 6–9 years after baseline). Comparisons made between the 2017 Framingham Stroke Risk Profile (FSRP), a recalibrated and

refitted FSRP, Cox, random survival forest (RSF), logistic regression (LR), support vector machine (SVM), gradient boosted tree (GBT), and multilayer perceptron

(MLP) models.
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code in the online Supplementary Material to enable others to repli-

cate these findings in other populations.

In contrast with typical ensemble approaches that use voting or

averaging of base model outputs, a major strength of our ensemble

approach is its default reliance on the Cox model. Cox model-based

approaches to risk prediction are widely used in clinical practice,

and their relative simplicity and interpretability have been challenges

to the adoption of novel ML-based methods.42 We found that the

component Cox and GBT models failed to agree on risk prediction

for stroke in about 5% of individuals, and of these, our proposed en-

semble approach selected GBT as the better-performing model

about one-third of the time. This suggests that, in practice, our en-

semble approach would override the risk classification of the Cox

model for only a small proportion (1%–2%) of individuals. Mean-

while, clinicians could continue to use the output from Cox model-

derived scores, without any loss of predictive performance for the

vast majority of individuals at high risk of stroke. Rather than

changing the existing paradigm of stroke risk prediction, our pro-

posed ensemble approach has been designed as an incremental

change to clinical practice, which could help to facilitate more wide-

spread use and trust of ML methods for health risk prediction.43

Other barriers to the adoption of complex high-dimensional

models for application in clinical practice include the availability of

certain risk factor data and the need for regular updating and recali-

bration of such models. However, as electronic health records

(EHRs) become more detailed and widespread, they may mitigate

these issues by providing detailed individual-level data and enabling

automatic updating and recalibration of complex ML models to lo-

cal practices.43

This study had several limitations. First, atrial fibrillation (AF),

which is commonly included in risk scores for CVD and stroke ,10,13

was not recorded in the CKB and could not be included in the mod-

els. However, other population-based studies of comparable age

groups in China indicated that the prevalence of AF was substan-

tially lower in China than in the Framingham Stroke Risk Profile co-

hort (1.7% vs 7.1%).13,44 Hence, omission of AF is unlikely to have

had a material impact on stroke risk prediction in CKB. Second, the

exclusion of right-censored data is an inherent limitation of training

the binary classification models presented in this study. Although

few participants in CKB were lost to follow-up, and exclusion of

these individuals did not lead to a reduction in model performance,

care should be taken when developing similar models in other study

Figure 4. t-Distributed Stochastic Neighbor Embedding (t-SNE) visualizations of CKB individuals in validation set and test set. Individuals are colored by agree-

ment between Cox and GBT risk prediction models for screening of high-risk individuals. High-risk individuals were defined as individuals with >10% predicted

9-yr risk of stroke. t-SNE plots were created using Rtsne package version 0.15 with perplexity ¼ 50, theta ¼ 0.5, and max iterations ¼ 3000.

Table 3. Summary metrics from screening of high-risk individuals in test set using (i) a Cox-only approach, (ii) a GBT-only approach, and

(iii) an ensemble approach in which a decision tree selects between Cox and GBT in cases of disagreement over an individual’s risk classifi-

cation

Men Women

Metric Cox-Only GBT-Only Ensemble Cox-Only GBT-Only Ensemble

[95% CI] [95% CI] [95% CI] [95% CI] [95% CI] [95% CI]

Sensitivity 76% 80% 76% 68% 74% 67%

[72%–80%] [76%–84%] [72%–80%] [64%–72%] [70%–78%] [64%–71%]

Specificity 75% 74% 76% 80% 78% 81%

[74%–77%] [73%–76%] [75%–78%] [79%–81%] [77%–79%] [80%–82%]

PPV 25% 25% 26% 24% 23% 24%

[23%–27%] [23%–28%] [23%–28%] [22%–26%] [21%–25%] [22%–26%]

NPV 97% 97% 97% 97% 97% 97%

[96%–97%] [96%–98%] [96%–97%] [96%–97%] [97%–98%] [96%–97%]

Accuracy 75% 75% 76% 79% 77% 80%

[74%–77%] [74%–76%] [75%–77%] [78%–80%] [76%–78%] [79%–81%]
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populations. Finally, the risk equations outlined in the present report

were not designed for immediate implementation in clinical practice.

Further work is needed to validate and refine the proposed risk pre-

diction models and screening approaches from this study in indepen-

dent populations in China, and potentially other LMICs, since the

CKB cohort may not be representative of the overall Chinese popula-

tion or other populations. Additional work should also compare the

cost and benefits of implementing such approaches over existing

care guidelines before implementing them in clinical practice.

CONCLUSIONS

Novel risk scores for stroke have been developed using data from a

contemporary cohort of 0.5 million Chinese adults. Use of ML tech-

niques improved risk prediction over traditional Cox model

approaches, with GBT providing the best discrimination and cali-

bration performance. An ensemble approach was also proposed to

screen for individuals at high risk of stroke who may benefit from

more intensive treatment. The ensemble approach identified high-

risk individuals with marginal improvements to accuracy, specific-

ity, and PPV over either Cox or GBT models alone. By identifying a

small portion of individuals who would benefit from ML predic-

tions, our ensemble approach provides an incremental benefit be-

yond current clinical practice that has potential to translate into

important benefits for population health and facilitate the adoption

of ML-based risk calculators in clinical practice.
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