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Abstract—With the soaring development of body sensor
network (BSN)-based health informatics, information secu-
rity in such medical devices has attracted increasing at-
tention in recent years. Employing the biosignals acquired
directly by the BSN as biometrics for personal identifica-
tion is an effective approach. Noncancelability and cross-
application invariance are two natural flaws of most tradi-
tional biometric modalities. Once the biometric template is
exposed, it is compromised forever. Even worse, because
the same biometrics may be employed as tokens for differ-
ent accounts in multiple applications, the exposed template
can be used to compromise other accounts. In this work, we
propose a cancelable and cross-application discrepant bio-
metric approach based on high-density surface electromyo-
gram (HD-sEMG) for personal identification. We enrolled
two accounts for each user. HD-sEMG signals from the
right dorsal hand under isometric contractions of different
finger muscles were employed as biometric tokens. Since
isometric contraction, in contrast to dynamic contraction,
requires no actual movement, the users’ choice to login to
different accounts is greatly protected against impostors.
We realized a promising identification accuracy of 85.8%
for 44 identities (22 subjects x 2 accounts) with training
and testing data acquired 9 days apart. The high identi-
fication accuracy of different accounts for the same user
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demonstrates the promising cancelability and cross-
application discrepancy of the proposed HD-sEMG-based
biometrics. To the best of our knowledge, this is the first
study to employ HD-sEMG in personal identification appli-
cations, with signal variation across days considered.

Index Terms—Biometrics, high-density sEMG, machine
learning, cross-application discrepant identity recognition.

|. INTRODUCTION

HE wide application of body sensor network (BSN)-based
health informatics has contributed to an increasing demand
for information security in smart healthcare [1]. For example,
authentication systems in tele-healthcare monitoring devices [2],
[3] can give a binary “yes/no” output to verify if the identity
of an individual matches a specific person. Identification sys-
tems can also label an individual within an enrolled database.
Normally, the latter task is more challenging and complicated.
Furthermore, the biosignals of multiple individuals acquired
by BSN devices are sent to a central server for further anal-
ysis in remote health monitoring, where personal identifica-
tion is required. Compared with knowledge-based identification
methods, such as a personal identification number (PIN) and
password, biometrics-based ones such as DNA [4], face [5]
and fingerprint [6], are relatively difficult to forge and re-
produce if stolen. Previous studies have employed fingerprint
recognition technique in implantable medical devices to ensure
information security [7]. However, the noncancelability and
cross-application invariance are two natural flaws [8]. Once
the biometric template is exposed, it is compromised forever
because users cannot volitionally replace it. Whilst it is highly
encouraged to use different passwords in different accounts or
applications. Considering the same biometrics may be employed
in different healthcare devices or in multiple application scenar-
ios, the exposed template can thus threaten all other accounts.
Moreover, one user may need to login to different accounts
using multiple identities to shift between different modes of
healthcare service. In this case, traditional biometrics cannot
discriminate the different roles of the same person. For decades,
researchers have put great effort into addressing these natural
flaws of biometrics-based personal identification.
At the intersection of information security and biomedical
informatics, previous studies have proposed new biometric
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modalities based on physiological biosignals, such as the elec-
troencephalogram (EEG) [9] and electrocardiogram (ECG) [10].
Although these modalities are relatively theft-resistant com-
pared with traditional ones, they have their own flaws. For
example, ECG is vulnerable to the heart rate fluctuations caused
by physiological and emotional factors, which may not be under
the volitional control of the subject. Therefore, it is still not a
cancelable or cross-application discrepant modality. EEG is a
widely used modality in brain-computer interface (BCI) fields
to discriminate different intention-driven mental states such as
motor imagery [11]. The volitionally-controlled shift between
different mental states indicates its potential cancelability and
cross-application discrepancy. However, the discrimination of
multiple mental states is quite challenging due to the low signal-
to-noise ratio (SNR) of scalp EEG. Moreover, the apparatus
for EEG acquisition is quite cumbersome and inconvenient. All
these factors limit the application of EEG-based biometrics in
real life scenarios.

By contrast, surface electromyogram (sSEMG), with a more
convenient acquisition procedure, has been widely applied in
human-machine interface (HMI) techniques [12]. EMG sig-
nals have also shown inter-individual variation in multi-user
HMI [13], indicating its potential as a possible biometric modal-
ity. Furthermore, BSN-based health monitoring devices using
SEMG have been applied in a wide range of fields such as
daily activity monitoring and fall detection [ 14]. In more general
application, SEMG-based interfaces have also been embedded
in a wearable gesture sensing device to manipulate a mobile
phone in real life scenarios [15]. With increasingly diverse
applications in our daily life, employing SEMG as a biometric
modality may be a promising and effective approach. So far,
very few studies have investigated the performance of SEMG
as a biometric modality [16], [17], or as a complement to
other biometric modalities, such as keystroke dynamics [18]
and ECG [19]. However, between-day signal variability was not
taken into account in all these studies. The SEMG signals were
acquired under a specific hand gesture [16], [17] or keyboard
typing [18], which is observable to impostors, making them
easier to spoof by imitating users’ gestures and motions to
generate a similar SEMG pattern. The identification performance
of SEMG signals under muscle isometric contractions, which is
difficult to observe for impostors, have not been well studied.
Moreover, the cancelability and cross-application discrepancy of
SEMG biometrics have not been investigated in previous studies.

In this work, we improve upon existing EMG-based meth-
ods. First, personal identification with signal variation across
different days was considered to validate its potential as a
biometric modality. Training and testing data were collected
9 days apart on average. Second, we employed high-density
SEMG (HD-sEMG) for personal identification. Compared with
conventional SEMG signals, HD-sEMG with its high spatial
resolution improves identification accuracy. Wearable, modular
and smart HD-sMEG acquisition techniques [20] also support
practical use of HD-sEMG in both BSN-based medical devices
and more general real life situations. Third, HD-sEMG acquired
during isometric contractions of individual finger muscles was
selected as the biometrics for identification. This modality has
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Fig. 1.

Experimental setup.

three main advantages: 1) HD-sEMG patterns vary significantly
during different finger muscle contractions [21], indicating its
cancelability and cross-application discrepancy, 2) For the case
of multiple accounts, the user can set different biometric pass-
words for different accounts by simply using different finger
muscle contraction patterns, and 3) During isometric contrac-
tion, muscle tension can be changed with no joint movement.
Therefore, it is hardly observable to impostors. Overall, these
unique properties allow the self-encoding of one’s HD-sEMG
biometrics patterns based on users’ choice, which is difficult to
observe and hence undisclosed to impostors. Experimental re-
sults showed that the identification accuracy of 44 identities (22
subjects x 2 accounts) using the proposed approach was 85.8%.
To the best of our knowledge, this is the first study to evaluate
the performance of HD-sEMG in the personal identification task
with signal variation across days considered. This is also the
first study to evaluate the cancelability and cross-application
discrepancy of HD-sEMG biometrics in personal identification
task.

[I. MATERIALS
A. Data Acquisition

HD-sEMG signals from the right dorsal hand of 22 subjects
(aged 21 to 31 years; 10 males, 12 females) were acquired at
using the TMSi SAGA 64+ system (sampling rate fs: 4000 Hz;
common mode rejection ratio: 100 dB; resolution: 24 bits; input
impedence: > 1G(2, passband of system filter: 10-900 Hz).
Each subject was informed about the experiment purpose and
procedure. Written informed consent was obtained from each
subject. The experiment protocol was reviewed and approved
by the ethics committee of Fudan University (approval number:
BE2035).

Before the experiment, the right dorsal hand of the subject
was cleaned using abrasive gel and alcohol cotton, to reduce
the skin-electrode impedance. An 8 x 8 flexible HD-sEMG
electrode array (Ag/AgCl electrode) with 3.8-mm electrode
diameter and 8-mm inter-electrode distance was placed on the
right dorsal hand. We placed the center of the electrode array
at the center of the hand while keeping the right edges of both
electrode array and dorsal hand parallel to each other at the
same time, as shown in Fig. 1. The reference Ag/AgCl electrode
was placed on the head of the ulna. We only made limited
efforts to visually inspect the acquired signals for quality before
data recording. No efforts were made to achieve an extremely
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Sequence:
ﬁ ( 7
Task 1  Task2  Task3 Task4 Task5 Task6  Task7 Task8
1 Trial x 10 Repetitions
1 2 8
Pre-rest Task Rest Task Rest Task Rest
10s 3s 3s 3s 3s 3s 3s
Fig. 2. Sequence of 8 tasks in each trial.

low skin-electrode impedance, so that the obtained results can
evaluate the performance of our proposed method in a real world
application scenario with acceptable, but not necessarily perfect,
signal quality.

During the experiment, subjects sat in a comfortable chair,
following the experiment instruction shown on a computer
screen in front of them. Subjects were asked to perform isometric
muscle contractions of different fingers or finger combinations
following the experiment instructions shown in the sequence
diagram of Fig. 2. During each trial, subjects had a 10-s pre-trial
rest and then performed 8 task-rest pairs. Each task-rest pair
consisted of a 3-s isometric contraction task and a 3-s rest.
Ten repeated trials were performed. Subjects were required
to inform the experiment assistant if they missed any task or
performed a wrong task. To avoid the influence of disruption in
performance caused by awareness of a wrong or missed task to
successive tasks, the whole trial was removed from the dataset
if one task was incorrect. On average, 9.25 out of 10 trials
were performed correctly. Two independent sessions (session 1
and 2) with the same experimental procedures were performed
several days (3-23 days, 9 £ 6.67 days on average) apart. Data
acquired in sessions 1 and 2 were used as training and testing
sets, respectively. In session 2, the electrode array was replaced
without referring to any picture of the electrode placement in
session 1. Therefore, the effect of electrode shift on personal
identification performance was considered in this study.

B. Data Preprocessing

HD-sEMG signals can be interfered by diverse noises, such
as noise from electronic equipment (from 0 Hz to thousands
Hz) and noise from motion artifacts (from O Hz to 10 Hz) [22].
Because the spectrum range of noises normally overlaps that
of clean HD-sEMG signals, to trade off retention of clean HD-
sEMG signals vs. removal of all kinds of noises, the acquired raw
signals were first bandpass filtered at 10-900 Hz by an 8-order
Butterworth filter. This same filter pass band was also selected
by a previous study [23]. Then, a notch filter was applied to
remove the 50 Hz power line interference. We evaluated the
SNR of the preprocessed HD-sEMG signals using the variance
of signals during a performed task as the signal power and the
variance of signals during the rest period before the task onset

as the residual noise power. The SNR of signals in each channel
of each session during each task was calculated separately. The
average of all calculated SNR values was used to represent the
signal quality. The average SNR of the preprocessed data was
8.25 dB. After signal preprocessing, the HD-sEMG signals in
each task within a trial were segmented into eight 3-s tasks for
further analysis.

IIl. METHODS OF ANALYSIS

Temporal-spectral-spatial domain features were extracted
from each HD-sEMG array channel from each 3-s task as
the representation of HD-sEMG biometrics. The feature were:
waveform length (WL), frequency median (FMD) and spatial
synchronization (SS). For each feature, a feature vector was
constructed. These feature vectors were concatenated together
to obtain a combined high-length feature vector. An energy
constraint technique was applied to balance the contribution of
each of the three features. The combined feature vector was
then fed into a K-Nearest Neighbor (KNN) classifier to give
the identity label of a specific subject. Detailed identification
method will be elaborated in this section.

A. Feature Extraction

Let z;(5) be the 5" sample from channel i of the HD-sEMG
array. There are 7' = 12000 samples and N = 64 channels.
Unless noted otherwise, features are computed for each channel
using the full 3-s task.

1) Waveform Length: WL is a parameter reflecting the am-
plitude and frequency of the signal waveform, taking the follow-
ing form:

T-1

>l + 1) — (i)l )

Jj=1

fs
T-1

WL(i) =

2) Frequency Median: The FMD [24] feature was extracted
based on power spectral density (PSD) of signal z;, namely
P;(k), where k € 1,2, ..., K is the index of P;(k) correspond-
ing to a specific frequency. In our work, the PSD was obtained
via Welch’s overlapped segment averaging estimator using
Hamming window with 50% segment overlap, a length of 2666
samples in each segment (a total of 8 overlapped segments), and
a Discrete Fourier Transform (DFT) length of 4096 points (the
next power of two greater than the length of each segment). Each
data segment was zero-padded to match the DFT length. FMD
splits the signal PSD into two equal parts, given by the following
formula:

FMD(3) 1 K
Y. Pk) =35> Pik). )
k=1 k=1

Each of the above two features (WL and FMD) was extracted
from HD-sEMG signals in all channels, constructing a 8§ x 8
feature map. The resolution of the 8 x 8 feature map was tripled
in all directions (up-sampled to 24 x 24) through bicubic inter-
polation. The up-sampled feature maps were then vectorized to
576-length feature vectors, one per task per trial.
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3) Spatial Synchronization: During muscle activations, the
synchronization between each channel pair may show a dis-
tinct pattern, due to both the synchronization between motor
units (MUs) and the cross-talk between adjacent channels. In
our work, SS features of HD-sEMG signals were extracted to
recognize a subjects’ identities. To calculate the synchroniza-
tion between each channel pair, we first performed eigenvalue
decomposition on the covariance matrix C' € R?*2 of the two
channels:

C’uk = Akuk (3)

where Ai (k € {1,2} and A1 > A2) and uy, are eigenvalues and
eigenvectors of C, respectively. The synchronization £ between
two channels is defined as:

A

vy
We calculated the synchronization between each channel pair.
The 64 channels generate 223’:1 k =2016 distinct channel pairs,
constructing a 2016-length SS feature vector.

“)

B. Concatenating Features With an Energy Constraint

We extracted three feature vectors for each task. Due to the
different lengths of each feature vector, we applied an energy
constraint to balance the contribution of each individual feature
vector. Specifically, a feature vector v of length length(v) was
normalized to v by the following formula:

- v —mean(v)

U= (&)
std(v) - \/length(v)

where mean(v) and std(v) denote the mean value and stan-
dard deviation of feature vector v, respectively. The normalized
feature vectors were then concatenated together to construct
the combined feature vector. Accordingly, constituent feature
vectors with different lengths contribute the same to the distance
between the combined feature vectors of different tasks. As
a comparison, we also evaluated the performance of feature
combination without energy constraint in select analyses, in
which case, each feature vector was normalized simply by:

~ v —mean(v)
v std(v) ©
The resulting 3168-length (576 x 2 +2016) combined feature
vector represents each task. The combined feature vector was fed
in to a KNN classifier to give the corresponding identity label.
A KNN [25] classier sets the label of a testing sample to the
category with the largest sample number among its K nearest
training samples in the feature space, measured by Euclidean
distance. In our work, K = 1 was selected. Accordingly, the
label of a testing sample was set to the label of its nearest training
sample in the feature space.

C. Validation Methodologies

A series of progressive validation procedures was conducted
to evaluate the effect of different factors on identification
accuracy.

Protocol 1: In protocol 1, we performed personal identifica-
tion of 22 subjects with training and testing data acquired in

different trials on the same day (session 2 only). Leave-one-out
cross-validation was employed (using all retained trials for each
subject). Note that in this protocol, the HD-sEMG signals of
the same task were employed as the biometric template of each
subject. The accuracy of personal identification was calculated
separately for each of the eight individual tasks shown in Fig. 2.

Protocol 2: In protocol 2, the HD-sEMG signal variation
across days was taken into consideration. We performed per-
sonal identification of 22 subjects with data from session 1 and
2 used for training and testing, respectively. As in protocol 1,
the biometric templates of all subjects were acquired from the
same task. Personal identification was performed separately on
each individual task shown in Fig. 2.

Protocol 3: As discussed previously, a significant advan-
tage of the proposed HD-sEMG biometrics is that it allows
self-encoding via performing isometric contractions in different
ways which require no actual movement. In protocol 3, we
evaluated these effects. In a real world scenario, each subject
can choose any their manner of self-encoding (e.g., any finger
contraction task) arbitrarily, which is difficult to observe and
unknown to impostors. Accordingly, we employed HD-sEMG
of one uniformly and randomly selected task as the biometric
token of each subject. The selected tasks of all subjects were
hence not necessarily the same. Data from sessions 1 and 2
were used as training and testing, respectively. Random task
selection was repeated 200 times. The average performance of
all 200 repetitions were used to evaluate the performance of the
proposed method.

Protocol 4: Cancelability and cross-application discrepancy
benefit from different self-encoding manners of HD-sEMG bio-
metrics. Discrimination between different accounts of the same
subject is a desirable but scarce trait of a biometric modality. In
protocol 4, we evaluated the cancelability and cross-application
discrepancy of HD-sEMG biometrics. We enrolled two accounts
for each subject. HD-sEMG signals during different tasks (ran-
domly selected) were employed as the biometric tokens of differ-
ent accounts for the same subject. 44 identities (22 subjects x 2
accounts) were identified in this protocol. The tasks of different
subjects were likewise not necessarily the same or different
due to the random selection. The tasks of different accounts
for the same subject were also randomly selected but set to be
different, which is in line with the real world situation. Data from
sessions 1 and 2 were used for training and testing, respectively.
Random task selection was repeated 200 times and the average
performance was reported.

Protocol 5: In protocol 5, we evaluated the effect of different
self-encoding lengths on identification accuracy. We randomly
selected N distinct tasks in each trial to construct an encod-
ing sequence (N € {1,2,3,4,5,6,7,8}). Features extracted in
each task were concatenated together in the order of the se-
quence to represent the biometrics of each account of each
subject. Specifically, for the encoding length NV, the length of
the combined feature vector is 3168 x V. Data from sessions 1
and 2 were used for training and testing, respectively. Similar
with protocol 4, the task sequences of different subjects were
randomly selected hence not necessarily the same or differ-
ent. The sequences corresponding to different accounts of the
same subjects were set to be different (also randomly selected).
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TABLE |
IDENTIFICATION ACCURACY IN DIFFERENT PROTOCOLS

Task 1

Task 2 Task 3 Task4 Task5 Task6 Task7 Task 8

100%
50.7%

Protocol 1 (22 subjectsx 1 account, same day)

Protocol 2 (22 subjectsx 1 account, different days)
Protocol 3 (22 subjectsx 1 account, encoding length:1)
Protocol 4 (22 subjects X2 accounts, encoding length:1)
Protocol 5 (22 subjectsx2 accounts, encoding length:8)

99.5%
59.5%

99.5%
45.9%

100% 100%
59.5%  62.9%
68.3%+4.9%
57.9%+4.2%
85.8%40.5%

100%
48.8%

99.5%
49.3%

100%
55.6%

For Protocols 3, 4 and 5, average accuracy and standard deviation of 200 repetitions were reported.

Random task selection was repeated 200 times and the average
performance was reported. In protocol 5, we also evaluated
the necessity and contribution of each individual component
employed in the proposed method (i.e., WL feature, FMD fea-
ture, SS feature, bicubic interpolation of 8 x 8 feature maps,
and energy constraint). Specifically, we conducted an ablation
experiment, dropping only one of the five components per time
and keeping the remaining four components. For example, if
the bicubic interpolation component is dropped out, the only
difference is that the length of WL and FMD feature vectors
changes from 576 (with bicubic interpolation) to 64 (without
interpolation). If energy constraint component was dropped out,
all feature vectors (576-length bicubic interpolated WL and
FMD feature vectors and 2016-length SS feature vector) were
simply normalized using equation (6) without energy constraint.
The performance variation was used to evaluate the necessity and
contribution of a specific component.

Additionally, we evaluated the variation of identification ac-
curacy with inactive channel number increasing in protocol 5.
High-density SEMG with a higher channel number (both in
total and on each skin area over a specific muscle part), pro-
vides sufficient high-resolution muscle activation information
compared with traditional SEMG, but also adds to the risk of
inactive channels. The noise in those inactive channels may
influence the identification accuracy of the proposed method.
In protocol 5, channels were randomly selected to be inactive
(inactive channel number: from 1 to 32). We simulated inactive
channels in the feature domain. The features extracted from the
selected inactive channels in the feature vector v were assigned
arandom number within the range from mean(v) — 3 x std(v)
to mean(v) + 3 x std(v). We selected this range because fea-
ture values out of this range can be easily detected as outliers
and smoothed (replaced) by calculating the average value of
its neighbor channels. For WL and FMD features, a random
value was assigned to each feature extracted from the inactive
channels. For the SS feature, a random value was assigned to
the feature extracted from each channel pair including at least
one inactive channel. To better simulate practical scenarios,
the inactive channels of different sessions (training and testing
sessions), different subjects and different trials were selected in-
dependently thus not necessarily the same. The random inactive
channel selection (for each number from 1 to 32) was repeated
200 times and the average performance was reported.

D. Statistical Analysis

To quantify performance differences in the ablation experi-
ment in protocol 5, statistical analysis is required. Because the

20

-20 -10 0 10 20

Fig. 3. Data visualization via t-SNE, showing distribution of Task 5 of
session 2. Each single point represents a specific trial. Different colors
represent different subjects.

obtained data in our work do not follow a Gaussian distribution,
the Kruskal-Wallis test [26], a non-parametric method, was em-
ployed. To avoid multiple comparison errors, Bonferroni-Holm
correction [27] was performed.

IV. RESULTS
A. Results of Protocol 1

As shown in Table I Row 1, when the training and testing data
were drawn from the same session (session 2) acquired on the
same day, identification accuracies for all tasks are equal to or
higher than 99.5%. For Tasks 1, 4, 5, 6 and 8, the identification
accuracy is 100%.

To intuitively view the discrimination of different subjects,
t-Distributed Stochastic Neighbor Embedding (t-SNE) [28] was
employed to visualize the distribution of the combined features
in a 2-dimensional space, with the data structure preserved at
the same time. Fig. 3 presents this data visualization. Each
single point represents a specific trial. Different colors represent
different subjects. As expected, repeated trials from the same
subject clustered together, intuitively showing the separability
of HD-sEMG features of different subjects without any physio-
logical meaning.

B. Results of Protocol 2

As shown in Table I Row 2, if we employ separate training
(session 1) and test (session 2) sets, the identification accuracy
varies with different tasks. For Task 5 (isometric contraction
of middle finger muscle), the identification accuracy for 22
identities is 62.9%. However, for Task 3 (isometric contraction of
thumb finger muscle), the identification accuracy is only 45.9%.
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TABLE II
IDENTIFICATION ACCURACY (%) VARIATION IN ABLATION EXPERIMENT

Encoding Length 1 2 3 4 5 6 7 8

Keep All Components 57.9+4.2 74.7£3.0 80.942.5 83.9+1.5 85.0£1.1 85.5+0.8 85.7£0.5 85.8+0.5
Drop WL Feature 58.24+4.31 74.942.91 80.44+2.3)  83.0+1.6)* 843£1.3)* 851£09]* 85440.7)* 85.6+0.5]*
Drop FMD Feature 49.7+£4.4)*%  69.0£3.8)*  77.4£3.0{* 81.7+£2.2]* 83.9+1.6/* 84.8+1.3|* 853+1.0)* 85.6+0.7)*
Drop SS Feature 56.1+4.3)*%  743+3.1] 80.94+2.4) 83.7£1.6) 84.8+1.1)  85440.7)*  85.6+0.6] 85.7+0.5)
Drop Bicubic Interpolation  48.4+4.3|*  68.1+3.5]*  75242.9)* 789+22]* 81.54+2.1)* 83.0£1.8)* 84.0+1.5]* 84.8+1.2)*
Drop Energy Constraint 55.244.6)*%  72.74£330%  79.14£2.7)*  82.441.8)* 84.0+1.60* 84.8+1.2]* 85340.9)* 85.6+0.7)*

Symbols 1 and | denote improved and reduced identification accuracy, respectively, compared with that using all components.
Symbol * denotes a significant difference (based on Kruskal-Wallis test with Bonferroni-Holm correction) of identification accuracy compared with
that using all components.

C. Results of Protocol 3

Although identification accuracy using HD-sEMG of the
same task is not satisfactory (as demonstrated in Protocol 2),
performance can be promisingly improved via self-encoding,
which is a natural superiority of HD-sEMG biometrics. After
we employed HD-sEMG during a randomly selected task as the
biometric token of each subject, the identification accuracy was
improved to 68.3%+4.9% (average of 200 repetitions).

D. Results of Protocol 4

In Protocol 4, we aim to discriminate both different subjects
and different accounts of the same subject. The identification
accuracy of 44 identities (22 subjects x 2 accounts) was 57.9%
+ 4.2% (average of 200 repetitions). We further evaluated the
discrimination between the two enrolled accounts within each
subject, achieving an average identification accuracy of 88.6%
=+ 8.7% for the two-identity recognition tasks. The high identifi-
cation accuracy between different accounts for the same subject
demonstrates the promising cancelability and cross-application
discrepancy of the proposed HD-sEMG biometrics.

E. Results of Protocol 5

We evaluated the relationship between identification accuracy
and encoding length, shown in Table II Row 1. Average identi-
fication accuracy improved when encoding length increased. In
particular, the average identification accuracy at encoding length
N = 81is 85.8%. Moreover, the standard deviation reduced with
a longer encoding length, demonstrating that a longer encoding
length can also improve the robustness of the proposed method.
Table II also presents the results of our ablation experiment,
dropping one component in our method each time and keep the
remaining four components. With each component dropped out
separately, we can clearly see if all components are necessary
to achieve a high identification accuracy. As shown in Table II,
when a particular component dropped out, the average accuracy
reduced in almost all cases, with most of these cases showing a
statistically significant difference (p < 0.05 for Kruskal-Wallis
test with Bonferroni-Holm correction). Only for the encoding
length of 1 and 2 with WL features dropped out, the average
identification accuracy improved — but with no significance.
In contrast, the remaining cases (with the encoding length>3)
when WL features dropped out showed a significantly reduced
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Fig. 4. Identification accuracy between two accounts of the same
subject vs. encoding length.
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increasing.

Identification accuracy with inactive channel number

identification accuracy. Moreover, with FMD features and bicu-
bic interpolation dropped out, the identification accuracy at an
encoding length of 1 reduced by 8.2% and 9.5%, respectively,
demonstrating the effectiveness of these components in the
proposed method.

To validate the cancelability and cross-application discrep-
ancy of HD-sEMG biometric modality, we evaluated the dis-
crimination between the two enrolled accounts of each subject
with different encoding length. The identification accuracy for
all these two-identity recognition tasks is shown in Fig. 4.
At encoding lengths N > 4, average identification accuracy is
higher than 98%.

Fig. 5 shows the variation of identification accuracy vs. inac-
tive channel number. Even with 18 (out of 64, 28.13%) inactive
channels (independently and randomly selected for training
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number increases from 2 to 22 with two accounts enrolled for each
subject. The total identity number increases from 4 to 44. For symbol
plotting of encoding lengths of 5 and 7, we add a slight shift (shift value
= 0.2) on the x-axis to avoid overlap of sample points corresponding to
encoding length of 6 and 8, respectively.

and testing sessions, different subjects and different trials), the
proposed method can achieve a high identification accuracy of
80.64%. The result demonstrates that HD-sEMG-based biomet-
rics shows a high robustness to inactive channels.

F. Performance Variation With Increasing
Subject Number

We also progressively increased the subject number (from 2
to 22 with an increment of 1) with two accounts enrolled for each
subject (identity number: from 4 to 44 with an increment of 2),
to investigate the performance variation with different identity
number. For each subject (identity) number, the subject and the
encoding task order were randomly selected and repeated for 200
times. The average result of the 200 repetitions was presented in
Fig. 6. According to Fig. 6, an encoding length of 1 results in a
larger identification error when the subject number increases. By
contrast, simply increasing the encoding length to 2 contributes
to a high robustness with the identity number increasing (up to
44 identities).

V. DISCUSSION
A. Components Employed in the Proposed Method

In the proposed identification method, we employed five key
components, i.e., WL features, FMD features, SS features, bicu-
bic interpolation of 8 x 8 feature maps, and energy constraint.
WL features reflect the EMG standard deviation, representing
the temporal characteristics of HD-sEMG biometric template.
FMD and SS features characterize HD-sEMG signals in spectral
domain and spatial domain, respectively. The temporal-spectral-
spatial domain features can provide sufficient information of
user’s identity.

Bicubic interpolation can also contribute to a higher iden-
tification accuracy. Possible explanations fall into two parts.
First, bicubic interpolation can increase the spatial resolution

of 8 x 8 feature maps constructed by signals in each channel
of the 8 x 8 HD-sEMG electrode array, adding to predictable
information and robustness of related features. Second, through
bicubic interpolation, interpolated values are given by taking
all their neighbor values into consideration at the same time,
further suppressing noise to a certain extent. The results obtained
in this work indicate the high potential of super resolution
(SR) technique [29] in HD-sEMG applications. Advanced SR
techniques have been applied to improve resolution of medical
images [30]. HD-sEMG is a type of medical image reflecting
muscle activation patterns, and is expected to benefit from SR
algorithms.

An energy constraint can balance the contribution of each
constituent feature vector. Simply concatenating constituent
feature vectors with different lengths without energy constraint,
the classifier may distribute uniform attention to each element
in the combined feature vector. Therefore, the constituent fea-
ture vector with a longer length (e.g., the SS features in our
work) will dominate in the classification procedure because it
can gather more attention with more elements. Applying an
energy constraint technique can assign more attention to those
elements corresponding to the constituent feature vector with a
relatively shorter length. Accordingly, the contribution of each
constituent feature vector can be balanced. Recently, attention
mechanism-based neural networks [31] have attracted enormous
interest in a wide range of machine learning fields. Properly
assigning attention to different features can contribute to better
performance.

B. Comparison With Other Modalities

Noncancelability and cross-application invariance are two
natural flaws of traditional biometric modalities. Another hidden
privacy risk arising from these natural flaws is that users may
be tracked if several companies or organizations collude and
share their biometric databases. Previous studies have described
efforts to address these flaws via secure schemes to protect
biometric templates [32], [33]. The main strategy is to employ
a one-way function to transform the original biometric template
to an encrypted one. The transformed template, instead of the
original one, is stored in the database. Different applications use
different transformation functions. In most cases, it is impossible
or computationally difficult to recover the original biometric
template using a transformed one. Further, if the transformed
template is compromised, users can re-enroll the new biomet-
ric template using a new transformation function. However,
the original templates of many traditional biometrics are not
confidential. For instance, DNA [4], face [5], gait [34] and
fingerprint [6] can be captured via lost hair, high-resolution pho-
tography, depth camera and any touched surfaces, respectively.
Once the original biometric template is stolen, it is compromised
forever in all applications.

The proposed HD-sEMG biometric modality can overcome
these flaws, owing to both diversity and difficulty to observe.
First, the HD-sEMG biometric patterns vary sensitively with
diverse entry modes at users’ choices so that users can enroll and
login to different accounts representing different identities using
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TABLE IlI
COMPARISON OF BIOMETRIC MODALITIES

DNA Face  Fingerprint Iris Gait ECG EEG HD-sEMG

Cancelability Low Low Low Low Low Low Acceptable High
Cross-Application Discrepancy Low Low Low Low Low Low Acceptable High
Theft-Resistance Low Low Low Low Low Acceptable High High
Convenience to Use Low High High High High Acceptable Low Acceptable
User Protection Low Low Low Low High High High High
Voluntariness Low Low Low Low High Low Acceptable High
Privacy Preservation Low Low High High High High High High
Identification accuracy Across Days  Very High  High High High  Acceptable  Acceptable  Acceptable  Acceptable

different entry modes. Second, the users’ entry modes to login to Spontancous Force

different accounts via muscle isometric contraction are difficult Channel®

to observe so that impostors have no way to match the accounts Channel @

with entry modes. HD-sEMG promises to be employed as a Spontaneous Channel

cancelable and cross-application discrepant biometric modality Force Channel@

in real life scenarios. Comparisons between HD-sEMG and
other widely studied biometric modalities in more aspects are
summarized in Table III and elaborated as follows.

1) Comparison With DNA, Face, Fingerprint and Iris: Tradi-
tional biometrics such as DNA, face, fingerprint and iris can
achieve a high identification accuracy compared with most
other modalities, and have been widely applied in numerous
real world scenarios. These biometric modalities show a high
robustness over time. The relatively low identification accuracy
of HD-sEMG biometric modality tested on the second day may
be largely due to the signal variation over time and the inevitable
electrode shift. However, a more diverse encoding tasks (not
only limited to the 8 alternative tasks) involving various muscles
can promisingly compensate the performance degeneration over
time. Besides, biometrics such as DNA, face, fingerprint and iris
are all noncancelable and cross-application invariant. HD-sEMG
is also much more theft-resistant compared with the listed four
biometric modalities. To acquire HD-sEMG, the electrode array
needs to be in close contact with skin. Therefore, it is almost
impossible for impostors to steal users’ HD-sEMG without
their knowledge. Further, the self-encoding manner via muscle
isometric contractions are difficult to observe and hence secret to
impostors. In addition, user protection is another superiority of
HD-sEMG biometrics. HD-sEMG as a type of bioelectrophysi-
ological signals, can be detected only when users are alive and
in a normal physiological state, in contrast to DNA, fingerprint,
face and iris. Therefore, impostors have to ensure users’ life
and health to acquire valid HD-sEMG biometrics. Moreover,
for the listed four biometric modalities, users can be forced
to enter their biometric template. For example, identification
systems cannot discriminate between a spontaneous fingerprint
and a compulsive one. HD-sEMG, however, is the summation
of MUAPs generated from muscle contraction which cannot be
forced by anyone else. As shown in Fig. 7, Compulsive force
does not generate any SEMG signals. For the privacy preserva-
tion concern, DNA and face show their respective drawbacks.
For example, exposed face can be used to identify the user
just using naked eyes, which may disturb the user in a partic-
ular situation (e.g., affecting users’ social life if recognized by
their acquaintances). Exposed DNA can be maliciously used to
acquire detailed and highly sensitive information about a specific

Channel @

Compulsive Force

Channel(

Channel @

Compulsive
Force

Channel G

Channel &

Channel &

Force

Fig. 7. Comparison between spontaneous and compulsive force.

user (e.g. congenital disability and possible diseases). Also,
DNA measurement normally takes longer time and requires
specialized and high-cost equipment, so it is not convenient to
use in most daily life applications even though it can achieve an
extremely high identification accuracy.

2) Comparison With Gait: Gait identification also shows ad-
vantages in aspects of user protection and voluntariness because
users can deliberately walk in an abnormal gait when forced to
enter their gait biometrics. Also, users can walk in a normal gait
only when they are alive and healthy. However, users’ normal
gait is noncancelable and cross-application invariant, and is
easily stolen via video recordings.

3) Comparison With ECG: ECG can be detected only when
users are alive so it can protect users. However, discriminating
between compulsive and spontaneous ECG is quite challenging
so users may be forced to enter their ECG tokens in particular
situations. Additionally, with the development of noncontact
ECG measurement [35], an ECG biometric template is relatively
easier to steal compared with HD-sEMG. The noncancelability
and cross-application discrepancy are also two flaws of ECG
biometrics.

4) Comparison With EEG: EEG biometrics can also protect
users because it can be detected only when users are alive and
in a normal physiological state. As for voluntariness, the use of
intention-driven thought activity EEG as a biometric modality
has been investigated [36]. Although users cannot be forced to
perform any thought activity, the characteristics of thought activ-
ity EEG and baseline resting EEG share a high similarity because
our brain is engaged in numerous background activities all the
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Fig. 8. Examples of complex encoding manners.

time. The same factor also leads to a relatively low cancelabil-
ity and cross-application discrepancy of EEG compared with
HD-sEMG, because discrimination between EEG in different
patterns is more challenging. Moreover, HD-sEMG acquisition,
by simply putting a HD-sEMG electrode array on the dorsal
hand, is also much more convenient than EEG acquisition.

C. Future Work

As the first study to investigate the cancelability and cross-
application discrepancy of HD-sEMG in personal identification
tasks, we achieved a promising identification accuracy of 85.8%
for a 44-identity (22 subjects x 2 accounts) task. It is expected
that identification accuracy can be improved in future studies.
Also, the key real world factors need to be investigated in future
work. Here we provide some research directions:

1) Investigate HD-sEMG biometrics in more complex en-
coding manners. The vast majority of activities in daily
life are largely enabled by the dexterity of our hand.
The versatile but precise muscle contractions in the hand
allow more complex encoding processes of HD-sEMG
biometrics. In our work, only 8 different tasks were
used for HD-sEMG encoding. Therefore, the encoding
processes of different subjects share a high similarity. In
practical use, encoding is not limited to a few options.
Fig. 8 shows several examples of complex encoding,
including isometric contraction of muscles correspond-
ing to different parts of the palm and exerting different
force level for different fingers. With more alternative
encoding processes, HD-sEMG biometrics can achieve
better performance.

2) Investigate HD-sEMG biometrics acquired from more
muscles in different parts of the body. Although measure-
ment of HD-sEMG of the hand is quite convenient in prac-
tical use, the forearm is also a good alternative choice. In
fact, sSEMG signals acquired from the forearm have shown
great inter-individual difference in previous studies [37].
Moreover, the forearm extensor muscle is cylindrically
shaped, oriented along the proximal-distal direction. In
the extensor muscle, different muscle compartments have
fascicles which obliquely overlap between compartments
instead of running parallell [38]. The extremely complex
anatomical structure of the forearm may contribute to
better performance.

3) Investigate new features and methods for HD-sEMG
biometrics identification. As the first study to employ
HD-sEMG in personal identification, the aim of our

research is to prove the cancelability and cross-
application of HD-sEMG biometrics. We believe that fu-
ture studies exploring advanced features and methods can
improve identification accuracy to support its practical
application in the near future.

4) Investigate the variation of identification accuracy on a
large population and on populations with diverse mus-
cle conditions. In this work, we validated the concept
of cancelable HD-sEMG-based biometrics. To facilitate
practical applications of the proposed method in daily life,
key real world factors need to be considered. For example,
the performance of the HD-sEMG-based biometrics need
to be validated on a large population. Besides, although
we have evaluated the proposed method with training and
testing data acquired 9 days apart to evaluate the impact
of HD-sEMG signal variation across days, future work
needs to include subjects undergoing a fitness program
with considerable muscle condition change. Subjects with
neuromuscular diseases should also be included to vali-
date the universality of HD-sEMG-based biometrics.

5) Investigate the risks of information loss due to encod-
ing task order. Isometric contractions, compared with
dynamic contractions, require minimally observable mo-
tions, which greatly reduce the risk of information loss
due to peeping. The isometric contraction based biomet-
rics encoding approach contributes to high identification
accuracy to a large extent. However, subtle motions due
to muscle contractions cannot be completely avoided.
Recent studies also employed computer vision techniques
to estimate muscular effort [39]. Future work should
investigate possible risks regarding this issue.

VI. CONCLUSION

In this work, we demonstrated novel HD-sEMG-based bio-
metrics for personal identification. The HD-sEMG biometric
modality addresses the natural flaws of traditional biometrics,
namely noncancelability and cross-application invariance. We
enrolled two accounts for each subject. The identification accu-
racy of 44 identities (22 subjects x 2 accounts) is 85.8% with
encoding length N = 8. To the best of our knowledge, this is
the first study to employ HD-sEMG in personal identification
tasks. This study is also the first to evaluate the cancelability and
cross-application discrepancy of HD-sEMG-based biometrics
via identifying different enrolled accounts for each subject. HD-
SEMG is a novel alternative biometric modality with promising
cancelability and cross-application discrepancy.
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