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INTRODUCTION
Attentive vital sign monitoring is a key
component in caring for critically ill
patients. Rapid identification of physi-
ological derangement and timely action
are related to improved outcome.' In
high-income countries, this is achieved
using sophisticated continuous moni-
toring systems facilitated by high nurse
to patient ratios. In low-income and
middle-income countries (LMIC), lack of
staff and equipment means this is diffi-
cult to achieve.”® An alternative solution
for resource-limited settings, enabled by
recent advances in sensor technologies,
is the use of low-cost wearable devices.*
Some of these devices have the additional
advantage of being able to record contin-
uous data, which allow more complex
analysis and may facilitate even better risk
prediction.”™

There is, however, limited use of these
devices in the unique and challenging
environments of LMIC intensive care
units (ICUs).> The majority of validatory
data concerning wearables come from
community settings in relatively healthy
ambulatory individuals.*™® In hospital
environments, the accuracy of data derived
from unstable or critically ill patients is
less certain.'” Studies indicate a reason-
able correlation of wearable-derived heart
rate measurements with nurses’ manual
observations, but less when comparing
respiratory rate measurements.'' '* Simi-
larly, medical-grade wearable patches
in surgical patients showed good agree-
ment in heart rate but not respiratory
rate measurements when compared with

What are the new findings?

» Our study provides a unique comparison
of continuous vital sign data derived
from low-cost wearable devices with
those derived from conventional bedside
intensive care unit monitors in a resource-
limited setting.

» While we encountered several challenges
in the use of wearables, continuous
photoplethysmography and ECG data
were obtained from wearable devices
in a cohort of critically ill patients with
tetanus.

» Heart rate variability parameters derived
from wearable data mostly correlated
well with those derived from bedside
monitoring data.

How might it impact on healthcare in the

future?

» The ability to record vital sign data using
simple and low-cost equipment could be
a solution to the challenge of monitoring
critically ill patients in resource-limited
settings.

» Wearable devices could provide
continuous physiological data suitable
for training of machine learning systems,
enabling improved risk prediction thereby
facilitating improved patient outcomes.

‘gold standard” ICU monitors.'” ¥ The
suitability of low-cost wearables to record
continuous waveform data in critically
ill patients is even less certain, as these
systems may be limited by high levels of

noise, movement artefact and missing
141
data.”® 11
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In view of this, we aimed to pilot low-cost wearable
devices for continuous vital sign monitoring in criti-
cally ill patients with tetanus in a Vietnamese ICU,
using two medical-grade devices able to export contin-
uous waveform data: a patch ECG and a wrist-worn
pulse oximeter. We specifically selected patients with
tetanus as they have significant cardiovascular system
disturbance as well as muscle spasms and increased
sweating, thus posing a significant challenge for wear-
able monitors.'"® To evaluate quality of wearable-
recorded data, we computed and compared heart rate
variability (HRV) data with that from state-of-the-art
clinical monitors.

METHODS

The wearable devices used were ePatch ECG patch
monitor (ePatch V.1.0, BioTelemetry, USA) and Smart-
Care wrist-worn photoplethysmograph (PPG) pulse
oximeter (SmartCare Analytics, UK). The ePatch
records single-channel ECG output which is stored in
the device and exported at the end of the recording
period. The SmartCare uses a fingertip PPG sensor to
derive heart rate and oxygen saturation (SpO,), which
are displayed in real time on an attached wrist-worn
monitor. Heart rate, SpO_ and PPG waveform data can
also be transferred in real time from the SmartCare
device to a receiving device (either a tablet or a smart-
phone) via Bluetooth.

Patients included in this report were enrolled as part
of a larger study collecting vital sign monitoring data
from adults with tetanus =16 years old admitted to
the ICU at the Hospital for Tropical Diseases, Ho Chi
Minh City. Patients were enrolled within 48 hours of
admission to ICU and vital sign data were recorded on
enrolment and after 5 days for approximately 24 hours
using bedside monitors (Philips Intellivue MXS550,
Philips, Germany) and/or wearable devices described
above. Signals were obtained with patients in the
semirecumbent position. In this report we present data
of patients in whom wearable and bedside monitoring
data were collected simultaneously. The ePatch records
ECG at a sampling rate of 256 Hz, in two channels;
the SmartCare pulse oximeter records PPG and SpO
at 100 Hz; the Intellivue records five-lead ECG at 144
Hz, PPG 125 Hz and SpO, reported every second.
Raw data acquisition from the bedside monitor was
performed with the open-source VitalSignsCapture
(VSCapture, www.sourceforge.net) for Philips monitor
and with software provided by the manufacturer for
ePatch.

ECG signals from channel 1 of ePatch and lead II
of ICU monitors were used for analysis. No formal
time-stamp matching was performed between devices;
however, all recordings commenced within a few
minutes of each other. The first and the last § min of
each recording were trimmed to obtain stable signals.
Signal loss was defined as unrecorded amplitude (0 or
NA values) or unchanged amplitude for at least 300 ms

for PPG, fully noisy recording for ECG and values in
range (0-70) for SpO.. Signal loss ratio was computed
from usable and filtered durations in minute unit.

In a subset of three patients of similar disease
severity, receiving similar treatment, HRV parame-
ters were compared in § min segments. These param-
eters are measures of beat-to-beat variation in heart
rate, reflecting autonomic nervous system balance.
Calculation of these indices is based on mathemat-
ical evaluation of successive RR intervals and requires
good-quality waveform data, and thus in calculating
these we aimed to provide a clinically relevant indi-
cator of waveform quality which could eventually be
developed for disease prognostication. For this study
we chose standardised measures of HRV previously
found to be of value in patients with tetanus and other
cardiovascular syndromes.'® '’ Briefly these are divided
into time domain variables (if analysed according
to the distribution of RR intervals over time) and
frequency domain variables if analysed after Fourier
transformation (see figure 1 caption). RR intervals
were identified from QRS complexes in ECG record-
ings using the Pan-Tompkins algorithm'® implemented
in EDFBrowser (https://www.teuniz.net/edfbrowser/).
For PPG, RR intervals were judged to be the intervals
between systolic peaks, detected as the local maxima
from preprocessed signals (slope and dominant candi-
date peak extraction), using the Python library scipy.
The resulting RR interval series were filtered with a
heart rate range of 40-200 beats per minute (bmp) and
subject to HRV analysis using the R package RHRV."
We chose to use eight time domain measures and six
frequency domain measures (calculated using the
Lomb-Scargle periodogram) as described in Pichot et
al'” for comparison. For each derived HRV measure,
medians were tested with Wilcoxon rank-sum and the
similarity between distributions tested using Kullback-
Leibler divergence. To allow for multiple testing, q
values are given (ie, p values adjusted for the false
discovery rate).

All subjects or their legal representatives gave written
informed consent before study enrolment.

RESULTS

Between November 2018 and June 2020, we screened
345 patients with tetanus, of whom 110 were recruited
for the larger monitoring study. Due to limited avail-
ability of suitable bedside ICU monitors, there were
only 19 recording days where we were able to obtain
data from bedside monitors and both wearable devices
(ePatch and SmartCare PPG). Additionally, there were
eight recording days with data from bedside monitoring
and ePatch alone, and 10 recording days with bedside
monitoring and pulse oximeter data alone. Reasons for
this were wearable devices falling off, faulty devices,
self-removal by patients or wearable devices not being
available/charged sufficiently. Of the ePatch ECG
data, 7% were wholly noisy throughout the recording
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Figure 1

Similarities (overlap in purple) of monitor (orange) and ePatch (blue) logarithmic heart rate variability distributions by

Kullback-Leibler divergence (KLD).?° HF, high frequency; HFnu, high frequency normalised units; HR, heart rate; HRVi, integral of the
density of the RR interval histogram divided by height; IRRR, IQR of RR intervals; LF, low frequency; LFnu, low frequency normalised
units; LF:HF, low to high frequency ratio; MADRR, median of the absolute differences between RR intervals; pNN50, percentage of
successive RR intervals that differ by more than 50 ms; rMSSD, route mean square of successive RR interval difference; SDNN, SD of
NN intervals; SDSD, SD of successive RR intervals; TINN, baseline width of the RR interval histogram; VLF, very low frequency.

period due to faulty electrodes; this was not seen in
bedside monitor ECG recordings. Otherwise, sporadic
ECG noise sections were removable with bandpass
filtering. For PPG, signal loss was approximately 1%
for monitor PPG data, while only 24% of wearable
data remained for analysis after the two-stage filtering
described above. Remarkably, SpO, signal loss in
bedside monitor data was higher than that in wearable
monitor data (38% and 26%, respectively).
Comparison of HRV features between ECG and PPG
obtained by monitor and wearables is shown in table 1.
There was a small difference in median frequency
domain features obtained from monitors and wearable
devices, whereas small but significant differences were
seen in many of the time domain variables. Distribu-
tions of ECG-derived and PPG-derived HRV variables
using data obtained from either monitor or wearables
were similar, with Kullback-Leibler divergence mostly
close to 0 (ECG data shown in figure 1; PPG data not

shown). SpO. values between monitor and wearables
were similar (mean 99.08% and 99.89% for wearable
and monitor, respectively).

DISCUSSION

Our study demonstrates the feasibility of recording
high-quality continuous vital sign data from patients in
an LMIC ICU using wearable devices. Both heart rate
and SpO, measurements derived from wearable moni-
tors were similar to those derived from bedside moni-
tors, and the order of magnitude of any differences
was not of clinical significance. Our study also exam-
ined whether the data obtained from wearable devices
were of sufficient quality to allow more complex anal-
ysis. We observed that particularly frequency domain
parameters (indicators of spectral power) derived from
these devices were similar to those from bedside ICU
monitors. As time domain HRV variables should ideally
be assessed from complete 24-hour recordings,”” it is
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Table 1 Comparison of ECG HRV measures obtained from monitor and wearables

Feature Monitor ECG, n=836* ECG wearable, n=863* Q valuet Monitor PPG, n=775* PPG wearable, n=923* Q valuet
HR 100 (92-108) 103 (94-111) <0.001 105 (97-113) 103 (95-111) <0.001
Time domain
pNN50 .5(0.0-2.0) 0.6 (0.0-3.7) 0.007 2 (0-7) 1(0-6) 0.078
SDNN (18 56) 28 (17-47) 0.014 32 (22-52) 29 (19-48) 0.005
SDSD 5(8-51) 6 (9-41) 0.4 24 (13-45) 21 (14-39) 0.039
rMSSD 5(8-51) 6 (9-41) 0.4 24 (13-45) 21(13-39) 0.039
IRRR (16 1) 27 (20-39) 0.4 32 (24-48) 30 (20-41) 0.011
MADRR .10 (4.10-8.20) 3.91(3.91-7.81) <0.001 8.00 (8.00-8.00) 8.00 (8.00-9.00) <0.001
TINN 81 (61-109) 84 (64-117) 0.043 99 (77-131) 90 (69-119) <0.001
HRVi 5.16 (3.89-6.96) 5.38 (4.10-7.50) 0.043 6.32 (4.90-8.39) 5.73 (4.40-7.60) <0.001
Frequency domain
VLF 0.53(0.28-0.75) 0.55 (0.36-0.75) 0.072 0.46 (0.31-0.65) 0.47 (0.30-0.66) >0.9
LF 0 22 (0.13-0.29) 0.19 (0.10-0.30) 0.009 0.24(0.17-0.32) 0.24(0.16-0.33) >0.9
HF 5(0.05-0.47) 0.15(0.05-0.36) 0.5 0.24 (0.11-0.39) 0.24(0.10-0.39) >0.9
LFnu 0.59 (0.31-0.78) 0.57 (0.30-0.78) 0.3 0.49 (0.37-0.67) 0.49 (0.37-0.67) >0.9
HFnu 0.41(0.22-0.69) 0.43(0.22-0.70) 03 0.51(0.33-0.63) 0.51(0.33-0.63) >0.9
LF:HF 1.4 (0.4-3.4) 1.3 (0.4-3.6) 0.3 0.97 (0.58-2.06) 0.97 (0.58-2.08) >0.9

*Statistics presented: median (IQR).

tStatistical tests performed: Wilcoxon rank-sum test, adjusted for multiple testing.

HF, high frequency; HFnu, high frequency normalised units; HR, heart rate; HRV, heart rate variability; HRVi, integral of the density of the RR interval
histogram divided by height; IRRR, IQR of RR intervals; LF, low frequency; LF:HF, low to high frequency ratio; LFnu, low frequency normalised units;
MADRR, median of the absolute differences between RR intervals; pNN50, percentage of successive RR intervals that differ by more than 50 ms; PPG,
photoplethysmography; rMSSD, route mean square of successive; RR, interval difference; SDNN, SD of NN intervals; SDSD, SD of successive RR intervals;

TINN, baseline width of the RR interval histogram; VLF, very low frequency.

possible that our comparison using short segments
introduced some bias. It may also reflect the more
challenging process of R peak detection with data
from wearable devices where lower quality of wear-
able signal may have led to a worse performance in RR
detection, resulting in discrepancies with the monitor
‘gold standard’.

Our study agrees with previous studies using wear-
able devices in that significant amounts of signal loss
occurred.” Reasons for this may be both physical
(eg, poor quality or faulty devices) and contextual.
Our rationale in performing this study in patients
with tetanus was that they present many issues for
wearable devices. For example, muscle spasms and
sweating challenge the physical application of sensors,
producing motion artefact and variation in cardiovas-
cular parameters test accuracy of analytic algorithms.
Additionally, contextual factors we have not formally
examined, such as Wi-Fi internet and 3G/4G network,
may also affect signal quality and stability.

Practically, sensor loss was a common occurrence
for both patch and fingertip sensors. As all patients had
bedside ICU monitors for routine monitoring, loss of
additional sensors was likely to be unnoticed by nursing
staff. For ePatch devices where data are stored internally
during recording, this issue was further compounded as
study staff could not verify data recording in real time. In
view of this, we feel that real-time data visualisation and
quality feedback are likely to be an important factor in

maximising data quantity and quality collected from wear-
able devices.

In addition to these issues, perhaps the largest chal-
lenge we encountered was the limited choice of suitable
devices to use in this study as we required devices from
which continuous data could be exported. This applied
to both ICU monitors and wearables. In future, this may
be even more challenging as more device manufacturers
restrict data access. In high-income settings, there are
costly systems permitting access, but alternative solutions
are required for LMICs. While we have found there are
significant difficulties in the practical application of wear-
able devices in a real-world setting, advances in machine
learning technology offer potential to address issues of data
loss and compensate for signal quality, making wearable
systems a more realistic solution. Machine learning and
other artificial intelligence techniques could also be used
to perform rapid and complex analysis of the complex
physiological waveform data such as those recorded here.
In high-income settings, these methods have been shown
to better identify patients at risk of deterioration compared
with standard monitoring approaches,’ and could be used
similarly in our setting to improve risk prediction and
patient outcomes.

Twitter Khanh Phan Nguyen Quoc @phan189
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