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INTRODUCTION
Attentive vital sign monitoring is a key 
component in caring for critically ill 
patients. Rapid identification of physi-
ological derangement and timely action 
are related to improved outcome.1 In 
high- income countries, this is achieved 
using sophisticated continuous moni-
toring systems facilitated by high nurse 
to patient ratios. In low- income and 
middle- income countries (LMIC), lack of 
staff and equipment means this is diffi-
cult to achieve.2 3 An alternative solution 
for resource- limited settings, enabled by 
recent advances in sensor technologies, 
is the use of low- cost wearable devices.4 
Some of these devices have the additional 
advantage of being able to record contin-
uous data, which allow more complex 
analysis and may facilitate even better risk 
prediction.5–7

There is, however, limited use of these 
devices in the unique and challenging 
environments of LMIC intensive care 
units (ICUs).3 The majority of validatory 
data concerning wearables come from 
community settings in relatively healthy 
ambulatory individuals.8–10 In hospital 
environments, the accuracy of data derived 
from unstable or critically ill patients is 
less certain.10 Studies indicate a reason-
able correlation of wearable- derived heart 
rate measurements with nurses’ manual 
observations, but less when comparing 
respiratory rate measurements.11 12 Simi-
larly, medical- grade wearable patches 
in surgical patients showed good agree-
ment in heart rate but not respiratory 
rate measurements when compared with 

‘gold standard’ ICU monitors.10 13 The 
suitability of low- cost wearables to record 
continuous waveform data in critically 
ill patients is even less certain, as these 
systems may be limited by high levels of 
noise, movement artefact and missing 
data.7 8 14 15

Summary box

What are the new findings?
 ► Our study provides a unique comparison 
of continuous vital sign data derived 
from low- cost wearable devices with 
those derived from conventional bedside 
intensive care unit monitors in a resource- 
limited setting.

 ► While we encountered several challenges 
in the use of wearables, continuous 
photoplethysmography and ECG data 
were obtained from wearable devices 
in a cohort of critically ill patients with 
tetanus.

 ► Heart rate variability parameters derived 
from wearable data mostly correlated 
well with those derived from bedside 
monitoring data.

How might it impact on healthcare in the 
future?

 ► The ability to record vital sign data using 
simple and low- cost equipment could be 
a solution to the challenge of monitoring 
critically ill patients in resource- limited 
settings.

 ► Wearable devices could provide 
continuous physiological data suitable 
for training of machine learning systems, 
enabling improved risk prediction thereby 
facilitating improved patient outcomes.
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In view of this, we aimed to pilot low- cost wearable 
devices for continuous vital sign monitoring in criti-
cally ill patients with tetanus in a Vietnamese ICU, 
using two medical- grade devices able to export contin-
uous waveform data: a patch ECG and a wrist- worn 
pulse oximeter. We specifically selected patients with 
tetanus as they have significant cardiovascular system 
disturbance as well as muscle spasms and increased 
sweating, thus posing a significant challenge for wear-
able monitors.16 To evaluate quality of wearable- 
recorded data, we computed and compared heart rate 
variability (HRV) data with that from state- of- the- art 
clinical monitors.

METHODS
The wearable devices used were ePatch ECG patch 
monitor (ePatch V.1.0, BioTelemetry, USA) and Smart-
Care wrist- worn photoplethysmograph (PPG) pulse 
oximeter (SmartCare Analytics, UK). The ePatch 
records single- channel ECG output which is stored in 
the device and exported at the end of the recording 
period. The SmartCare uses a fingertip PPG sensor to 
derive heart rate and oxygen saturation (SpO

2
), which 

are displayed in real time on an attached wrist- worn 
monitor. Heart rate, SpO

2
 and PPG waveform data can 

also be transferred in real time from the SmartCare 
device to a receiving device (either a tablet or a smart-
phone) via Bluetooth.

Patients included in this report were enrolled as part 
of a larger study collecting vital sign monitoring data 
from adults with tetanus ≥16 years old admitted to 
the ICU at the Hospital for Tropical Diseases, Ho Chi 
Minh City. Patients were enrolled within 48 hours of 
admission to ICU and vital sign data were recorded on 
enrolment and after 5 days for approximately 24 hours 
using bedside monitors (Philips Intellivue MX550, 
Philips, Germany) and/or wearable devices described 
above. Signals were obtained with patients in the 
semirecumbent position. In this report we present data 
of patients in whom wearable and bedside monitoring 
data were collected simultaneously. The ePatch records 
ECG at a sampling rate of 256 Hz, in two channels; 
the SmartCare pulse oximeter records PPG and SpO

2
 

at 100 Hz; the Intellivue records five- lead ECG at 144 
Hz, PPG 125 Hz and SpO

2
 reported every second. 

Raw data acquisition from the bedside monitor was 
performed with the open- source VitalSignsCapture 
(VSCapture, www. sourceforge. net) for Philips monitor 
and with software provided by the manufacturer for 
ePatch.

ECG signals from channel 1 of ePatch and lead II 
of ICU monitors were used for analysis. No formal 
time- stamp matching was performed between devices; 
however, all recordings commenced within a few 
minutes of each other. The first and the last 5 min of 
each recording were trimmed to obtain stable signals. 
Signal loss was defined as unrecorded amplitude (0 or 
NA values) or unchanged amplitude for at least 300 ms 

for PPG, fully noisy recording for ECG and values in 
range (0–70) for SpO

2
. Signal loss ratio was computed 

from usable and filtered durations in minute unit.
In a subset of three patients of similar disease 

severity, receiving similar treatment, HRV parame-
ters were compared in 5 min segments. These param-
eters are measures of beat- to- beat variation in heart 
rate, reflecting autonomic nervous system balance. 
Calculation of these indices is based on mathemat-
ical evaluation of successive RR intervals and requires 
good- quality waveform data, and thus in calculating 
these we aimed to provide a clinically relevant indi-
cator of waveform quality which could eventually be 
developed for disease prognostication. For this study 
we chose standardised measures of HRV previously 
found to be of value in patients with tetanus and other 
cardiovascular syndromes.16 17 Briefly these are divided 
into time domain variables (if analysed according 
to the distribution of RR intervals over time) and 
frequency domain variables if analysed after Fourier 
transformation (see figure 1 caption). RR intervals 
were identified from QRS complexes in ECG record-
ings using the Pan- Tompkins algorithm18 implemented 
in EDFBrowser (https://www. teuniz. net/ edfbrowser/). 
For PPG, RR intervals were judged to be the intervals 
between systolic peaks, detected as the local maxima 
from preprocessed signals (slope and dominant candi-
date peak extraction), using the Python library scipy. 
The resulting RR interval series were filtered with a 
heart rate range of 40–200 beats per minute (bmp) and 
subject to HRV analysis using the R package RHRV.19 
We chose to use eight time domain measures and six 
frequency domain measures (calculated using the 
Lomb- Scargle periodogram) as described in Pichot et 
al17 for comparison. For each derived HRV measure, 
medians were tested with Wilcoxon rank- sum and the 
similarity between distributions tested using Kullback- 
Leibler divergence. To allow for multiple testing, q 
values are given (ie, p values adjusted for the false 
discovery rate).

All subjects or their legal representatives gave written 
informed consent before study enrolment.

RESULTS
Between November 2018 and June 2020, we screened 
345 patients with tetanus, of whom 110 were recruited 
for the larger monitoring study. Due to limited avail-
ability of suitable bedside ICU monitors, there were 
only 19 recording days where we were able to obtain 
data from bedside monitors and both wearable devices 
(ePatch and SmartCare PPG). Additionally, there were 
eight recording days with data from bedside monitoring 
and ePatch alone, and 10 recording days with bedside 
monitoring and pulse oximeter data alone. Reasons for 
this were wearable devices falling off, faulty devices, 
self- removal by patients or wearable devices not being 
available/charged sufficiently. Of the ePatch ECG 
data, 7% were wholly noisy throughout the recording 
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period due to faulty electrodes; this was not seen in 
bedside monitor ECG recordings. Otherwise, sporadic 
ECG noise sections were removable with bandpass 
filtering. For PPG, signal loss was approximately 1% 
for monitor PPG data, while only 24% of wearable 
data remained for analysis after the two- stage filtering 
described above. Remarkably, SpO

2
 signal loss in 

bedside monitor data was higher than that in wearable 
monitor data (38% and 26%, respectively).

Comparison of HRV features between ECG and PPG 
obtained by monitor and wearables is shown in table 1. 
There was a small difference in median frequency 
domain features obtained from monitors and wearable 
devices, whereas small but significant differences were 
seen in many of the time domain variables. Distribu-
tions of ECG- derived and PPG- derived HRV variables 
using data obtained from either monitor or wearables 
were similar, with Kullback- Leibler divergence mostly 
close to 0 (ECG data shown in figure 1; PPG data not 

shown). SpO
2
 values between monitor and wearables 

were similar (mean 99.08% and 99.89% for wearable 
and monitor, respectively).

DISCUSSION
Our study demonstrates the feasibility of recording 
high- quality continuous vital sign data from patients in 
an LMIC ICU using wearable devices. Both heart rate 
and SpO

2
 measurements derived from wearable moni-

tors were similar to those derived from bedside moni-
tors, and the order of magnitude of any differences 
was not of clinical significance. Our study also exam-
ined whether the data obtained from wearable devices 
were of sufficient quality to allow more complex anal-
ysis. We observed that particularly frequency domain 
parameters (indicators of spectral power) derived from 
these devices were similar to those from bedside ICU 
monitors. As time domain HRV variables should ideally 
be assessed from complete 24- hour recordings,20 it is 

Figure 1 Similarities (overlap in purple) of monitor (orange) and ePatch (blue) logarithmic heart rate variability distributions by 
Kullback- Leibler divergence (KLD).20 HF, high frequency; HFnu, high frequency normalised units; HR, heart rate; HRVi, integral of the 
density of the RR interval histogram divided by height; IRRR, IQR of RR intervals; LF, low frequency; LFnu, low frequency normalised 
units; LF:HF, low to high frequency ratio; MADRR, median of the absolute differences between RR intervals; pNN50, percentage of 
successive RR intervals that differ by more than 50 ms; rMSSD, route mean square of successive RR interval difference; SDNN, SD of 
NN intervals; SDSD, SD of successive RR intervals; TINN, baseline width of the RR interval histogram; VLF, very low frequency.
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possible that our comparison using short segments 
introduced some bias. It may also reflect the more 
challenging process of R peak detection with data 
from wearable devices where lower quality of wear-
able signal may have led to a worse performance in RR 
detection, resulting in discrepancies with the monitor 
‘gold standard’.

Our study agrees with previous studies using wear-
able devices in that significant amounts of signal loss 
occurred.7 Reasons for this may be both physical 
(eg, poor quality or faulty devices) and contextual. 
Our rationale in performing this study in patients 
with tetanus was that they present many issues for 
wearable devices. For example, muscle spasms and 
sweating challenge the physical application of sensors, 
producing motion artefact and variation in cardiovas-
cular parameters test accuracy of analytic algorithms. 
Additionally, contextual factors we have not formally 
examined, such as Wi- Fi internet and 3G/4G network, 
may also affect signal quality and stability.

Practically, sensor loss was a common occurrence 
for both patch and fingertip sensors. As all patients had 
bedside ICU monitors for routine monitoring, loss of 
additional sensors was likely to be unnoticed by nursing 
staff. For ePatch devices where data are stored internally 
during recording, this issue was further compounded as 
study staff could not verify data recording in real time. In 
view of this, we feel that real- time data visualisation and 
quality feedback are likely to be an important factor in 

maximising data quantity and quality collected from wear-
able devices.

In addition to these issues, perhaps the largest chal-
lenge we encountered was the limited choice of suitable 
devices to use in this study as we required devices from 
which continuous data could be exported. This applied 
to both ICU monitors and wearables. In future, this may 
be even more challenging as more device manufacturers 
restrict data access. In high- income settings, there are 
costly systems permitting access, but alternative solutions 
are required for LMICs. While we have found there are 
significant difficulties in the practical application of wear-
able devices in a real- world setting, advances in machine 
learning technology offer potential to address issues of data 
loss and compensate for signal quality, making wearable 
systems a more realistic solution. Machine learning and 
other artificial intelligence techniques could also be used 
to perform rapid and complex analysis of the complex 
physiological waveform data such as those recorded here. 
In high- income settings, these methods have been shown 
to better identify patients at risk of deterioration compared 
with standard monitoring approaches,5 and could be used 
similarly in our setting to improve risk prediction and 
patient outcomes.

Twitter Khanh Phan Nguyen Quoc @phan189
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Table 1 Comparison of ECG HRV measures obtained from monitor and wearables

Feature Monitor ECG, n=836* ECG wearable, n=863* Q value† Monitor PPG, n=775* PPG wearable, n=923* Q value†

HR 100 (92–108) 103 (94–111) <0.001 105 (97–113) 103 (95–111) <0.001
Time domain
  pNN50 0.5 (0.0–2.0) 0.6 (0.0–3.7) 0.007 2 (0–7) 1 (0–6) 0.078
  SDNN 30 (18–56) 28 (17–47) 0.014 32 (22–52) 29 (19–48) 0.005
  SDSD 15 (8–51) 16 (9–41) 0.4 24 (13–45) 21 (14–39) 0.039
  rMSSD 15 (8–51) 16 (9–41) 0.4 24 (13–45) 21 (13–39) 0.039
  IRRR 25 (16–41) 27 (20–39) 0.4 32 (24–48) 30 (20–41) 0.011
  MADRR 4.10 (4.10–8.20) 3.91 (3.91–7.81) <0.001 8.00 (8.00–8.00) 8.00 (8.00–9.00) <0.001
  TINN 81 (61–109) 84 (64–117) 0.043 99 (77–131) 90 (69–119) <0.001
  HRVi 5.16 (3.89–6.96) 5.38 (4.10–7.50) 0.043 6.32 (4.90–8.39) 5.73 (4.40–7.60) <0.001
Frequency domain
  VLF 0.53 (0.28–0.75) 0.55 (0.36–0.75) 0.072 0.46 (0.31–0.65) 0.47 (0.30–0.66) >0.9
  LF 0.22 (0.13–0.29) 0.19 (0.10–0.30) 0.009 0.24 (0.17–0.32) 0.24 (0.16–0.33) >0.9
  HF 0.15 (0.05–0.47) 0.15 (0.05–0.36) 0.5 0.24 (0.11–0.39) 0.24 (0.10–0.39) >0.9
  LFnu 0.59 (0.31–0.78) 0.57 (0.30–0.78) 0.3 0.49 (0.37–0.67) 0.49 (0.37–0.67) >0.9
  HFnu 0.41 (0.22–0.69) 0.43 (0.22–0.70) 0.3 0.51 (0.33–0.63) 0.51 (0.33–0.63) >0.9
  LF:HF 1.4 (0.4–3.4) 1.3 (0.4–3.6) 0.3 0.97 (0.58–2.06) 0.97 (0.58–2.08) >0.9
*Statistics presented: median (IQR).
†Statistical tests performed: Wilcoxon rank- sum test, adjusted for multiple testing.
HF, high frequency; HFnu, high frequency normalised units; HR, heart rate; HRV, heart rate variability; HRVi, integral of the density of the RR interval 
histogram divided by height; IRRR, IQR of RR intervals; LF, low frequency; LF:HF, low to high frequency ratio; LFnu, low frequency normalised units; 
MADRR, median of the absolute differences between RR intervals; pNN50, percentage of successive RR intervals that differ by more than 50 ms; PPG, 
photoplethysmography; rMSSD, route mean square of successive; RR, interval difference; SDNN, SD of NN intervals; SDSD, SD of successive RR intervals; 
TINN, baseline width of the RR interval histogram; VLF, very low frequency.
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