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Abstract—Mutual knowledge distillation (MKD) is a technique
used to transfer knowledge between multiple models in a
collaborative manner. However, it is important to note that not all
knowledge is accurate or reliable, particularly under challenging
conditions such as label noise, which can lead to models that
memorize undesired information. This problem can be addressed
by improving the reliability of the knowledge source, as well
as selectively selecting reliable knowledge for distillation. While
making a model more reliable is a widely studied topic, selective
MKD has received less attention. To address this, we propose
a new framework called selective mutual knowledge distillation
(SMKD). The key component of SMKD is a generic knowledge
selection formulation, which allows for either static or progressive
selection thresholds. Additionally, SMKD covers two special cases:
using no knowledge and using all knowledge, resulting in a unified
MKD framework. We present extensive experimental results to
demonstrate the effectiveness of SMKD and justify its design.

I. INTRODUCTION

"What knowledge to be selected for distillation" is an
essential question of mutual knowledge distillation (MKD)
but has received little attention. In this work, we study it for
two reasons: (i) Existing MKD methods treat all knowledge of a
deep model equally, i.e., all knowledge is distilled into another
model without selection. (ii) There are two contradictory
findings of label smoothing(LS). One is that in clean scenarios,
when a network (a teacher) is trained with LS, distilling its
knowledge into another model (a student) is much less effective
[1]. Another finding is that in noisy scenarios, LS improves both
teacher and student. In their contradictory studies, they only
focus on the knowledge source, e.g., how a source (teacher)
model is trained. There was no study on the knowledge
selection, which could be a key, as empirically indicated in
Table I. This research question can also be expressed as:
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Should all knowledge or partial knowledge of a model be
distilled into another model?

In clean scenarios, the knowledge source is generally reliable.
Thus, simply distilling all knowledge is reasonable, and it
has widespread use in existing KD works. However, in label-
noise scenarios1, the knowledge source is less reliable. The
distilled incorrect knowledge would mislead the learning rather
than help. Therefore, it is vital to note "not all knowledge
is created equal" and identify "what knowledge could be
distilled?". We work on this problem from two aspects: (i)
making the knowledge source more reliable. (ii) selecting
the certain knowledge to distill. For the first aspect, many
algorithms have been proposed, e.g., Tf-KD [3] and ProSelfLC
[2]. For simplicity, we exploit them and focus more on the
second aspect: selective knowledge distillation.

To explore the knowledge selection problem, we design a
selective mutual knowledge distillation (SMKD) framework,
which is shown in Figure 1. We propose to only distill confident
knowledge. Specifically, we design a generic knowledge
selection formulation, so that we can either fix the knowledge
selection threshold (SMKD-Static, shortened as SMKD-S) or
change it progressively as the training progresses (SMKD-
Progressive, abbreviated as SMKD-P). In SMKD-P, we leverage
the training time to adjust how much knowledge would be
selected dynamically considering that a model’s knowledge
improves along with time. SMKD-P performs slightly better
than SMKD-S, according to our empirical studies, e.g., Table I.

We summarise our contributions as follows:

• We study what knowledge to be selected for distillation in
MKD. Correspondingly, we propose a generic knowledge

1We remark that the label-noise setting is typical and challenging in real-
world machine learning applications, where the given datasets have non-perfect
annotations. Additionally, in some recent work, it is shown that the performance
gap of different approaches is relatively small in clean scenarios [2], [3], [4],
[5]. Therefore, we study selective knowledge distillation and evaluate our
design of knowledge selection mainly under the setting of robust deep learning
against noisy labels.
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TABLE I: The interactions between how each model is trained
(i.e., Lable smoothing (LS), Confidence penalty (CP), ProS-
elfLC, and our proposed variant MyLC) and what knowledge
should be distilled (zero knowledge, all knowledge, and our
proposed SMKD-S/P). From each column, we observe the
effectiveness of SMKD for MKD (SMKD > ALL > Zero,
more detail in Section IV-C). Experiments are done on CIFAR-
100 using ResNet34. The symmetric label noise rate is 40%.
The average final test accuracies (%) of two models are
reported. The performance difference between the two models
is negligible.

Distilled Knowledge LS CP ProSelfLC MyLC

Zero 51.53 51.09 64.07 65.04
All 53.63 53.18 59.26 61.11
SMKD-S(ours) 55.10 53.86 67.26 68.45
SMKD-P(ours) 56.73 56.47 68.29 69.09

selection formulation, which covers the variants of zero-
knowledge, all knowledge, SMKD-S, and SMKD-P.

• Thorough studies on the models’ learning curves, knowl-
edge selection criterion’s settings, and hyperparameters
justify the rationale of our selective MKD design and its
effectiveness.

• Our proposed SMKD outperforms previous MKD algo-
rithms in the presence of label noise.

II. BACKGROUND

We give an introduction about knowledge distillation and
learning with label noise methods.

A. Notations

For a multi-class classification problem, x is a data point,
and q ∈ RC is its annotated label distribution, also seen as
annotated knowledge. C is the number of training classes. In
the traditional practice, q is a one-hot representation, a.k.a.,
hard label. Mathematically, q(j|x) = 1 only if j = y, and
0 otherwise. Here, y denotes the semantic class of x. f is
a deep neural network that predicts the probabilities of x
being different training classes. We denote them using a vector
p ∈ RC , which can be seen as a model’s self knowledge.

B. Knowledge Distillation

KD is an effective method for distilling the knowledge of
complex ensembles or a cumbersome model (usually named
teacher models) to a small model (usually named a student)
[6], [7]. Recently, many deep KD variants have been proposed,
e.g., self knowledge distillation (Self KD) which trains a
single learner and leverages its own knowledge [2], [3],
MKD with knowledge transfer between two learners [8], [9],
[10], ensemble-based KD methods [11], [12], and born-again
networks with knowledge distilling from multiple student
generations [13]. Since we focus on training two learners,
Teacher→Student KD (T2S KD) and MKD are more relevant,
we briefly present them as follows.

(a) Conventional MKD.

(b) Selective MKD.

Fig. 1: Comparison of conventional MKD and our SMKD.
Dotted frames represent components from model A and solid
frames represent components from model B. pA and pB are
predictions from mode A and model B, respectively. In (b),
q̃A and q̃B represent the refined labels by a self distillation
method, and χ is the threshold to decide whether the prediction
is confident enough or not. H(p) denotes the entropy of p,
and H(q,p) is the cross entropy loss between q and p.

T2S KD [7] transfers knowledge from a teacher model to a
student model and be formulated as:

LT2SKD(q,p,pt) = (1− ϵ)H(q,p) + ϵDKL(pt,p), (1)

where q is the given one-hot label, p is the predicted
distribution by a student model and pt is the output of a teacher
model. H(q,p) represents the cross entropy loss between target
q and prediction p. DKL(pt,p) denotes the Kullback–Leibler
(KL) divergence of pt from p.

MKD [8] trains two models A and B, making them learn
from each other as follows:

LA(q,pA,pB) = (1− ϵ)H(q,pA) + ϵDKL(pB,pA)

LB(q,pB,pA) = (1− ϵ)H(q,pB) + ϵDKL(pA,pB)

LMKD = LA(q,pA,pB) + LB(q,pB,pA).

(2)

Other ensemble-based and feature-map-based KD methods,
e.g., knowledge distillation via collaborative learning (KDCL)
[11] treats all models as students, while the teacher model
is an ensemble of all students. Peer collaborative learning
(PCL)[12] assembles multiple subnetworks as a teacher model.
FFL[14] integrates feature representation of multiple models
and AFD[15] transfers prediction and feature-map knowledge
together.
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C. Learning with Label Noise

We compare recent methods for learning with noisy labels,
including: selecting confident samples: Co-teaching [16] and
Co-teaching+ [17] maintain two identical networks simulta-
neously and transfer small-loss instances to the peer model.
Providing a curriculum: MentorNet [18] provides a curriculum
for StudentNet to focus on the examples with likely-correct
labels. Correcting training loss: Joint [19] and Forward [20]
correct training loss through the calculation of the noise
transition matrix. Sample reweighting: T-revision [21] reweights
samples based on their significance. Designing robust loss
function: DMI [22] introduces an information-theoretic loss
function, and APL [23] combines two robust loss functions
that mutually boost each other. Early stopping: CDR [24]
reduces the side effect of noisy labels before early stopping.
Label modification, which is an important technique related
to our topic, will be discussed in more detail in the following
subsection.

D. Label Modification

Label modification is used to improve the accuracy of a
model by correcting the labels of the training data. This can be
done by identifying and correcting errors in the labels, or by
actively relabeling a subset of the data to improve the overall
performance of the model. As mentioned in [3], the learning
target modification is to replace a one-hot label representation
by its convex combination with a predicted distribution p̃:

q̃ = (1− ϵ)q+ ϵp̃. (3)

ϵ measures how much we trust the prediction, and it can be
fixed in Label smoothing(LS) [25], Confidence penalty (CP)
[26], Boot-soft [27], Joint-soft [19], or adaptive by training
time e.g., [2] and [3]. In Section IV-B, we also present an
alternative label modification approach, MyLC, in which ϵ is
updated by model confidence. p̃ can originate from various
sources, such as uniform distributions, a current model, a model
that has been pretrained, etc. By adding a uniform distribution,
for example, LS reduces the confidence in annotated label. CP
reduces the credibility of annotated labels by penalizing high
confidence predictions. By incorporating a related prediction,
Boot-soft, Tf-KD, ProselfLC and MyLC refine the learning
target.

III. METHOD

We design a generic knowledge selection formulation that
unifies zero knowledge, all knowledge, and partial knowledge
selection in a static and progressive fashion (SMKD-S and
SMKD-P). The pseudocode of the algorithm is provided at the
end of Section III.

A. Learning Objectives

To distill model B’s confident knowledge into model A, we
optimise A’s predictions towards B’s confident predictions:

LB2A =

{
H(q̃B,pA), H(pB) < χ,

0, H(pB) ≥ χ.
(4)

We use the entropy H(pB) to measure the confidence of
pB. Low entropy indicates high confidence, and vice versa
[26], [25], [7], [28]. χ is a threshold to decide whether a
label prediction is confident enough or not. Specifically, only
when H(pB) < χ, the model B’s knowledge w.r.t. x is
confident enough. q̃B is the model B’s learning target, which
can be generated by a self label modification method as it is
more reliable. Note that instead of directly distilling confident
predictions pB, we transfer targets (refined labels) q̃B that
produce confident predictions.

Analogously, we distill model A’s confident knowledge into
model B:

LA2B =

{
H(q̃A,pB), H(pA) < χ,

0, H(pA) ≥ χ.
(5)

The final loss functions for models A and B are:

LA = LAselfKD
+ LB2A

=

{
H(q̃A,pA) + H(q̃B,pA), H(pB) < χ;

H(q̃A,pA), H(pB) ≥ χ;

LB = LBselfKD
+ LA2B

=

{
H(q̃B,pB) + H(q̃A,pB), H(pA) < χ;

H(q̃B,pB), H(pA) ≥ χ;

B. A Generic Design for Knowledge Selection

As aforementioned, we use an entropy threshold χ to decide
whether a piece of knowledge is certain enough or not. We
design a generic formation for χ as follows:

χ =
H(u)

η
∗ 2h( t

Γ
− 0.5, b2), (6)

where h(·, ·) is a logistic function. u is a uniform distribution,
thus H(u) is a constant. t and Γ denote the current epoch and
the total number of epochs, respectively. For a wider unification,
we make the design of Eq. (6) generic and flexible. Therefore,
we use η to control the starting point. While b2 controls how the
knowledge selection changes along with t. χ has two different
modes:

• Static (SMKD-S). The confidence threshold χ is a
constant when b2 = 0. Concretely, 2h( t

Γ − 0.5, 0) =

1 → χ = H(u)
η . This mode covers two special cases:

(i) One model’s all knowledge is distilled into the other
when η ∈ (0, 1] → χ ≥ H(u), which degrades to be the
conventional MKD.
(ii) Zero knowledge is distilled between two models when
η ∈ {+∞,R−} → χ ≤ 0.

• Progressive (SMKD-P). When b2 ̸= 0, χ changes as the
training progresses. To make it comprehensive, χ can be
either increasing or decreasing at training:
(i) If b2 > 0, χ increases as t increases. Since the
knowledge selection criteria is relaxed, more knowledge
will be transferred between the two models at the later
learning phase.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on May 30,2024 at 14:34:33 UTC from IEEE Xplore.  Restrictions apply. 



20 40 60 80 100
Epoch

0

20000

40000

60000

80000

100000
Kn

ow
le

dg
e 

co
m

m
un

ica
tio

n 
fre

qu
en

cy

SMKD-P (b2 =  8) 
SMKD-S (b2 =  0) 
SMKD-P (b2 = -8)

Fig. 2: Knowledge communication frequency is measured by
the sum of the number of distilled knowledge (training labels)
from A to B and that from B to A. All experiments are done on
CIFAR-100 with η = 2 under 40% symmetric noise. CIFAR-
100 has 50,000 training examples in total and most of the
training samples are exploited in the late training processing.

(ii) On the contrary, χ gradually decreases when setting
b2 < 0. This only allows knowledge with higher confi-
dence (lower entropy) to be distilled.

It is worth highlighting that compared to sample selection
methods, such as [16], SMKD can correct the supervision in
loss computation and optimisation stages when the supervision
(label) is noisy. In other word, instead of discarding noisy
samples, SMKD can correct supervision and distill reliable
knowledge. Both models’ knowledge becomes more confident
at the later stage even the knowledge selection criterion
becomes stricter (i.e., b2 < 0). And we can clearly observe
that almost all the training samples are distilled in the later
training phase in Figure 2. In our empirical studies (e.g.,
Figure 3, Figure 4), in the noisy scenario, SMKD-P with
b2 < 0 performs the best. Therefore, when comparing with
prior relevant methods, we use SMKD-P with b2 < 0 by
defaults.

IV. EXPERIMENTS

In this section, we first demonstrate that SMKD is effective
in robust learning against an adverse condition, i.e., label noise
(Section IV-C). Then we empirically verify that SMKD, as
a selective MKD, outperforms prior MKD approaches for
training two models collaboratively no matter whether they are
of the same architecture or not (Section IV-D). We subsequently
present a comprehensive hyper-parameters analysis (Sections
IV-E). Different network architectures are evaluated. For all
experiments, we report the final results when the training
terminates. For a more thorough comparison, we also provide
an alternate self-training method called MyLC in IV-B.

A. Experimental Setup

a) Datasets and Data Augmentation:

• CIFAR100 [29] has 50,000 training images and 10,000
test images of 100 classes. The image size is 32 × 32
× 3. Simple data augmentation is applied following [30],
i.e., we pad 4 pixels on every side of the image and then
randomly crop it with a size of 32×32.

• Food-101 [31] has 75,750 images of 101 classes. The
training set contains real-world noisy labels. In the test
set, there are 25,250 images with clean labels. For data
augmentation, training images are randomly cropped with
a size of 224 × 224.

• Webvision [18] has 2.4 million images crawled from the
websites using the 1,000 concepts in ImageNet ILSVRC12
[32]. For data augmentation, we first resize the training
images to 320 × 320 and then randomly cropped with a
size of 299 × 299.
b) Implementation Details: We train on the CIFAR100,

Food-101, and Webvision datasets using various architectures
and settings. On CIFAR100, we use 90% of the training
data (corrupted in synthetic cases) for training and 10% as a
validation set to search for hyperparameters, and retrain the
model on the entire dataset before reporting accuracy on the
test data. We train on three architectures including ResNet34,
ResNet50, and ShuffleNetV2, using an SGD optimizer with a
momentum of 0.9, a weight decay of 5e-4, and a batch size
of 128. On Food-101, we use 90% of the training data for
training and 10% for validation, reporting accuracy on the
clean test data. We train ResNet50 (initialized by a pretrained
model on ImageNet) with a batch size of 32, and use an SGD
optimizer with a momentum of 0.9 and a weight decay of
5e-4. On Webvision, we follow the "Mini" setting in [18],
using the first 50 classes of the Google resized image subset
as the training set and the same 50 classes of the ILSVRC12
validation set as the test set, training with the inception-resnet
v2 architecture with a batch size of 32, and an SGD optimizer
with a momentum of 0.9 and a weight decay of 5e-4.

B. MyLC: An Alternative for Label Modification

MyLC is designed for demonstrating the effectiveness and
extensiveness of SMKD, which serves as an alternative to
label modification methods. Note that MyLC is different from
ProselfLC methods in terms of working principle. Furthermore,
MyLC solves a significant drawback of ProselfLC that the
model always has to be trained from scratch, since ProselfLC
relies on training time. MyLC is obviously more suitable if we
want to do fine-tuning or incremental learning tasks based on
pretrained models. Specifically, without considering training
time, MyLC defines the global model confidence according
to a model’s predictive confidence w.r.t. all samples and is
computed as follows:

g(r) = h(r − ρ, b1), where r = 1−
∑n

i=1 H(pi)

n ∗H(u)
. (7)

h(λ, b1) = 1/(1+ exp(−λ× b1)) is a logistic function, where
b1 is a hyperparameter for controlling the smoothness of h. This
is widely used in semi-supervised learning[33], [34] and label
noise learning [2]. r represents a model’s overall certainty of
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Algorithm 1 SMKD: PyTorch-like Pseudocode

class SMKDWithLoss(nn.Module):
def __init__(self):

super(SMKDWithLoss, self).__init__( )

def forward(self, qA, qB, pA, pB, th):
# qA, a refined label from model A
# qB, a refined label from model B
# pA, knowledge/prediction from model A
# pB, knowledge/prediction from model B
# th, the threshold for knowledge selection

hpA = torch.sum(-pA * torch.log(pA + 1e-6), 1) # calculate the entropy of pA
hpB = torch.sum(-pB * torch.log(pB + 1e-6), 1) # calculate the entropy of pB

indexB = (hpB < th).nonzero( ) # select the low entropy sample from model B
indexA = (hpA < th).nonzero( ) # select the low entropy sample from model A

lossB2A = cross_entropy(qB[indexB], pA[indexB]) # distill knowledge from model B to model A
lossA2B = cross_entropy(qA[indexA], pB[indexA]) # distill knowledge from model A to model B

lossB2A = sum(lossB2A) / len(indexA) # average loss over all confident samples from model B
lossA2B = sum(lossA2B) / len(indexB) # average loss over all confident samples from model A

return lossB2A, lossA2B

all examples. A higher r implies that a model is more reliable.
Intuitively, if r is higher than a threshold ρ, we should assign
more trust to the model. We simply set ρ = 0.5 in all our
experiments. Consequently, Consequently, ϵ = g(r) × l(p).
And the loss becomes:

LMyLC = H(q̃MyLC,p),where q̃MyLC = (1− ϵ)q+ ϵp.
(8)

C. SMKD for Robust Learning Against Noisy Labels

1) Label Noise Generation: We verify the effectiveness of
our proposed SMKD on both synthetic and real-world label
noise. For synthetic label noise, we consider symmetric noise
and pair-flip noise [16]. For symmetric label noise, a sample’s
original label is uniformly changed to one of the other classes
with a probability of noise rate r. The noise rates are set to
20%, 40%, 60%, and 80%. For pair-flip noise, the original
label is flipped to its adjacent class with noise rates of 20%
and 40%, respectively.

2) The Interaction Between SMKD and Self Label mod-
ification: As shown in Tables I and II, SMKD, as a new
selective MKD method, can be easily combined with existing
self training methods as a collaborative mutual enhancer.

In Table I, we explore to train each model using self label
modification methods (LS, CP, ProselfLC [2] and MyLC). At
the same time, we try four types of knowledge communication:
Zero/no knowledge is distilled into the peer model and two
models are trained independently; All knowledge is distilled
without selection, as SyncMKD does; our proposed methods
including SMKD-S and SMKD-P. Vertically, from the selective
knowledge distillation perspective, we clearly observe that
SMKD methods (SMKD-S and SMKD-P) are better than “Zero”
and “All” consistently no matter how each model is trained. This
empirically demonstrates that selecting confident knowledge

for distillation is better. In addition, SMKD-P is slightly better
than SMKD-S, mainly due to the fact that a model’s knowledge
upgrades and becomes confident as the training progresses.

Table II is an extension of Table I. Results of different noise
types and rates are present. Since ProSelfLC and MyLC always
performs better than the other approaches, therefore we only
apply SMKD over them to explore how much SMKD can
enhance stronger baselines.

3) Comparison with Learning with Noisy Labels Methods:
In this subsection, our objective is to compare with recent
methods for addressing label noise. For simplicity, we only
train SMKD-P together with ProSelfLC and MyLC, which
are demonstrated to be the best in Section IV-C2. Table III
(CIFAR-100) shows results of training ResNet50 on CIFAR-
100. SMKD-P+ProSelfLC and SMKD-P+MyLC outperform all
the recent label-noise-oriented methods under both pair-flip and
symmetric noisy labels. Notably, their improvements are more
significant when noise rate rises. We also presents the results
on two real-world noisy datasets, Webvision and Food-101 in
Table III. For Webvision, we follow the “Mini” setting in [18].
The first 50 classes of the Google resized image subset is treated
as training set and evaluate the trained networks on the same 50
classes on the ILSVRC12 validation set. The results of SMKD-
P+ProSelfLC and SMKD-P+MyLC are around 5-6% higher
than the latest methods including Co-teaching, APL, CDR,
and ProselfLC. Due to the increased difficulty of Food-101,
the performance gap across techniques is narrower. SMKD-
P+ProSelfLC and SMKD-P+MyLC regularly outperform all
compared algorithms.

D. Comparing with Recent MKD Methods

In Table IV, we present the results of the baseline CE, self
KD methods (Tf-KDreg [3], ProselfLC and MyLC), and mutual
distillation algorithms (MKD, KDCL, SMKD-P+ProSelfLC,
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TABLE II: Results on CIFAR-100 clean test set. All methods use ResNet34 as the network architecture. The top two results of
each column are bolded.

Method Pair-flip label noise Symmetric label noise Clean
20% 40% 20% 40%

CE 63.52 45.40 63.31 47.20 75.58
LS 65.15 50.02 67.45 51.53 76.33
CP 64.97 49.01 65.97 51.09 75.29
Boot-soft 64.04 48.85 63.25 48.41 75.37
ProSelfLC 74.13 69.49 71.49 64.07 75.73

SMKD-S+ProselfLC 75.68 74.22 72.11 67.26 76.25
SMKD-P+ProselfLC 75.76 74.55 72.58 68.29 77.32
MyLC 73.12 62.29 71.04 65.04 75.20
SMKD-S+MyLC 75.39 74.32 72.20 68.45 75.92
SMKD-P+MyLC 75.89 74.72 73.22 69.09 76.42

TABLE III: Recent state-of-the-art approaches for label noise are compared. All methods apply ResNet50 as the network
architecture. For Food-101, we use a ResNet50 pre-trained on ImageNet. For Webvision, we follow the "Mini" setting in [24],
[18], [35], [23]. The top two results of each column are bolded.

Method
CIFAR-100 Real-world noise

Pair-flip label noise Symmetric label noise Food-101 Webvision (Mini)

20% 40% 20% 40% ∼20% ∼50%

CE 64.10 52.77 63.93 56.82 84.03 57.34
GCE [36] 62.32 55.03 65.62 57.97 84.96 55.62
Co-teaching [16] 58.11 48.46 61.47 53.44 83.73 61.22
Co-teaching+ [17] 56.31 38.03 64.13 55.92 76.89 33.26
Joint [19] 67.35 52.22 54.88 45.64 83.10 47.60
Forward [20] 58.37 39.82 66.12 59.45 85.52 56.33
MentorNet [18] 54.73 45.31 57.27 49.01 81.25 57.66
T-revision [21] 62.69 52.31 64.67 57.15 85.97 60.58
DMI [22] 58.77 42.89 62.77 57.42 85.52 56.93
S2E [37] 58.21 41.74 64.21 43.12 84.97 54.33
APL [23] 59.77 53.25 59.37 51.03 82.17 61.27
CDR [24] 71.93 56.94 68.68 62.72 86.36 61.85
ProSelfLC [2] 73.11 69.49 71.17 60.38 86.97 62.40

SMKD-P+ProselfLC 75.16 73.36 73.25 64.09 87.54 67.40
MyLC 72.25 70.84 69.92 62.80 86.70 64.44
SMKD-P+MyLC 74.38 73.86 72.23 64.30 87.60 67.48

and SMKD-P+MyLC) under noisy scenarios. For self KD
methods, we train each model individually (i.e., without mutual
distillation) while for MKD methods, we train them together
(i.e., with mutual distillation).

• MKD for two networks of the same architecture. In
Table IV (same), SMKD-P+MyLC achieves 17%-18%
absolute improvement compared to MKD and KDCL. All
experiments are trained for 100 epoch.

• MKD for two networks of different architectures. In
Table IV (difference), we demonstrate SMKD’s effective-
ness for training two different networks, ResNet18 and
ShufflenetV2. SMKD improves MyLC for around 3% for
ResNet18 and 1-3% for ShuffleNetV2. Each experiment
is trained for 200 epoch.

E. Hyper-parameters Analysis

1) Analysis of b2: Mathematically, according to section III-B,
b2 decides how the knowledge selection threshold changes
along with the training epoch t. In Figure 3, we fix η = 2 and
study the effect of b2 under different noise rates. We observe

TABLE IV: The performance of SMKD under different
settings, two distinct architectures, and the same architectures.
SMKD+MyLC outperforms other MKD methods.

Method Difference Same

ResNet18 ShufflenetV2 ResNet34

Baseline CE 50.63 44.06 47.20

Self KD
Tf-KDreg [3] 51.05 44.70 47.39
ProselfLC [2] 58.51 58.89 64.07

MyLC 55.94 61.21 65.04

MKD
MKD [8] 60.38 47.72 51.42

KDCL [11] 55.45 46.10 51.20
SMKD+MyLC 68.10 64.37 69.09

that the accuracy increases as b2 decreases for all noise rates.
The trend becomes more obvious as the noise rate increases.
This empirically verifies the effectiveness of confident knowl-
edge selection again. Furthermore, progressively increasing the
confidence criterion leads to better performance. In Figure 4,
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TABLE V: The results of SMKD-S with different η. We train
on CIFAR-100 using ResNet-34.

SMKD-S Symmetric label noise
20% 40% 60% 80%

H(u) (η = 1) 70.37 59.26 36.18 16.17
1/2 H(u) (η = 2) 72.11 65.04 46.15 18.62
1/3 H(u) (η = 3) 72.83 66.42 51.34 19.84
1/4 H(u) (η = 4) 73.25 67.26 54.34 22.45

we further study b2 under different η. The accuracy keeps
increasing as b2 decreases for all η. Additionally, the trend is
more significant when η becomes smaller.
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Fig. 3: Under different noise rates. We fix η = 2.
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Fig. 4: Under different η. Symmetric label noise rate r = 60%.

2) Analysis of η: As presented in section III-B, η is a
parameter to linearly scale the knowledge selection criteria. To
study η, we first analyze the static mode. Table V shows the
results of SMKD-S with different η. We can see that a lower
threshold (i.e., larger η) has higher accuracy for all noise rates.
This further demonstrates the effectiveness of distilling more
confident knowledge. We then analyse the dynamic mode. In
Figure 4, the green line (η = 4) has the highest accuracy for

most b2 values. Overall, the blue line (η = 3) is the second
best, while the red line (η = 2) has the lowest accuracy.
Therefore, we conclude that a smaller η is better in both static
and progressive modes.

V. CONCLUSION

We are investigating knowledge selection in MKD and
proposing an unified framework for knowledge selection called
SMKD. SMKD improves MKD by distilling only confident
knowledge to the peer model. Extensive experiments illustrate
the effectiveness of SMKD empirically. In addition, our sug-
gested SMKD outperforms comparable MKD algorithms in the
presence of label noise and achieves competitive performance
in clean circumstances.
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