
1

The Flexible Open-Source Networking Platform

Noa Zilberman
University of Cambridge

2

I. Overview

II. Hardware overview

III. Research projects

IV. Teaching

V. Community and Events

VI. Conclusion

3

Section I: Overview

4

NetFPGA = Networked FPGA

A line-rate, flexible, open networking

platform for teaching and research

5

NetFPGA consists of…

Four elements:

• NetFPGA board

• Tools + reference designs

• Contributed projects

• Community

6

NetFPGA Family of Boards

NetFPGA-1G (2006)

NetFPGA-1G-CML (2014)

NetFPGA-10G (2010)

NetFPGA SUME (2014)

7

FPGA

Memory

10GbE

10GbE

10GbE

10GbE

NetFPGA board

PCI-Express

CPU Memory

PC with NetFPGA

Networking

Software

running on a

standard PC

A hardware

accelerator

built with Field

Programmable

Gate Array

driving 1/10/

100Gb/s

network links

8

Tools + Reference Designs

Tools:

• Compile designs

• Verify designs

• Interact with hardware

Reference designs:

• Router (HW)

• Switch (HW)

• Network Interface Card (HW)

• Router Kit (SW)

• SCONE (SW)

9

Community

Wiki

• Documentation

– User’s Guide “so you just got your first NetFPGA”

– Developer’s Guide “so you want to build a …”

• Encourage users to contribute

Forums

• Support by users for users

• Active community - 10s-100s of posts/week

10

International Community

Over 1,000 users, using 3,115 cards at

150 universities in 40 countries

11

NetFPGA’s Defining Characteristics

• Line-Rate
– Processes back-to-back packets

• Without dropping packets

• At full rate

– Operating on packet headers
• For switching, routing, and firewall rules

– And packet payloads
• For content processing and intrusion prevention

• Open-source Hardware
– Similar to open-source software

• Full source code available

• BSD-Style License for 1G and LGPL 2.1 for 10G

– But harder, because
• Hardware modules must meeting timing

• Verilog & VHDL Components have more complex interfaces

• Hardware designers need high confidence in specification of modules

12

Test-Driven Design

• Regression tests
– Have repeatable results

– Define the supported features

– Provide clear expectation on functionality

• Example: Internet Router
– Drops packets with bad IP checksum

– Performs Longest Prefix Matching on destination address

– Forwards IPv4 packets of length 64-1500 bytes

– Generates ICMP message for packets with TTL <= 1

– Defines how to handle packets with IP options or non IPv4
… and dozens more …

Every feature is defined by a regression test

13

Who, How, Why

Who uses the NetFPGA?
– Researchers
– Teachers
– Students

How do they use the NetFPGA?
– To run the Router Kit
– To build modular reference designs

• IPv4 router
• 4-port NIC
• Ethernet switch, …

Why do they use the NetFPGA?
– To measure performance of Internet systems
– To prototype new networking systems

14

Section II: Hardware Overview

15

NetFPGA-1G-CML

• FPGA Xilinx Kintex7

• 4x 10/100/1000 Ports

• PCIe Gen.2 x4

• QDRII+-SRAM, 4.5MB

• DDR3, 512MB

• SD Card

• Expansion Slot

16

NetFPGA-10G

• FPGA Xilinx Virtex5

• 4 SFP+ Cages
– 10G Support

– 1G Support

• PCIe Gen.1 x8

• QDRII-SRAM, 27MB

• RLDRAM-II, 288MB

• Expansion Slot

17

NetFPGA SUME
• FPGA Xilinx Virtex7

• 4 SFP+ Cages
– 10G Support

– 1G Support

• 18x13.1Gb/s Additional Serial Links

• PCIe Gen.3 x8

• QDRII+-SRAM, 3x72Mb, 500MHz

• DDR3 SoDIMM, 2x4GB, 1866MT/s

• Expansion Slot

• Micro-SD

18

Beyond Hardware

• NetFPGA Board

• Xilinx EDK based IDE

• Reference designs with

ARM AXI4

• Software (embedded

and PC)

• Public Repository

• Public Wiki

Reference Designs AXI4 IPs

Xilinx EDK

MicroBlaze SW PC SW

GitHub, User Community

19

Section III: Research Projects

20

OpenFlow

• The most prominent NetFPGA success

• Has reignited the Software Defined

Networking movement

• NetFPGA enabled OpenFlow

– A widely available open-source development

platform

– Capable of line-rate and

• was, until its commercial uptake, the

reference platform for OpenFlow.

21

Contributed Projects

Platform Project Contributor

1G OpenFlow switch Stanford University

Packet generator Stanford University

NetFlow Probe Brno University

NetThreads University of Toronto

zFilter (Sp)router Ericsson

Traffic Monitor University of Catania

DFA UMass Lowell

10G Bluespec switch MIT/SRI International

Traffic Monitor University of Pisa

NF1G legacy on NF10G Uni Pisa & Uni Cambridge

Simple/better DMA core Stanford RAMcloud project

22

Some Ongoing Projects

• Computing

– Stand alone computing unit (CHERI soft core)

– Security and capabilities over NetFPGA-10G

(Cambridge & SRI)

• Measurements

– Open Source Network Tester (6 contrib groups)

– Accurate Internet measurements (Cambridge &

TAU)

• SDN

– OpenFlow switch 1.4

(Cambridge & SRI)

23

FPGA

Soft processors: processors in the FPGA fabric

User uploads program to soft processor

Easier to program software than hardware in the FPGA

Could be customized at the instruction level

Processor(s)DDR controller

Ethernet MAC

Soft Processors in FPGAs

24

Open Source Network Tester

• Open-source hardware platform

• For research and teaching community

Long development cycles and high cost create a
requirement for open-source network testing

www.osnt.org

• high-performance (40GbE support)

• low-cost ($1600, cost of NF board)

• flexible

• scalable

• open-source community

25

OSNT Use Cases

OSNT flexibility provides support for a wide range of
use-cases

• OSNT-TG (Traffic Generator)
– A single card, generating packets on four 10GbE ports

• OSNT-MON (Traffic Monitor)
– a single card, capturing packets from four 10GbE ports

• Hybrid OSNT
– the combination of OSNT-TG and OSNT-MON

– On a single card

• Scalable OSNT
– Coordinating multiple generators and monitors

– Synchronized by a common time-base

26

NetFPGA SUME

A Technology Enabler

Stand Alone Device

PCIe Host Interface

100Gb/s Switch

PHY & MAC

Interconnect

27

100Gb/s Aggregation

• Need a development platform that can

aggregate 100Gb/s for:

– Operating systems

– Protocols beyond TCP

• NetFPGA SUME can:

– Aggregate 100Gb/s

as Host Bus Adapter

– Be used to create large scale switches

Cost: ~$5000

Non-Blocking

300Gb/s Switch

28

Power Efficient MAC

• Need for 100Gb/s power-saving MAC

design (e.g. lights-out MAC)

• Porting MAC design to SUME permits:

– Power measurements

– Testing protocol’s response

– Reconsideration of power-saving mechanisms

– Evaluating suitability for complex architectures

and systems

29

Interconnect

• Novel Architectures with line-rate

performance

– A lot of networking equipment

– Extremely complex

• NetFPGA SUME allows

prototyping a complete

solution

Camcube

N x N xN Hyper-cube

30

• Build an accurate, fast, line-rate NetDummy/nistnet element

• A flexible home-grown monitoring card

• Evaluate new packet classifiers
– (and application classifiers, and other neat network apps….)

• Prototype a full line-rate next-generation Ethernet-type

• Trying any of Jon Crowcrofts’ ideas (Sourceless IP routing for example)

• Demonstrate the wonders of Metarouting in a different implementation (dedicated
hardware)

• Provable hardware (using a C# implementation and kiwi with NetFPGA as target
h/w)

• Hardware supporting Virtual Routers

• Check that some brave new idea actually works
e.g. Rate Control Protocol (RCP), Multipath TCP,

How might we use NetFPGA?
Well I’m not sure about you but here is a list I created:• Build an accurate, fast, line-rate NetDummy/nistnet element

• A flexible home-grown monitoring card
• Evaluate new packet classifiers

– (and application classifiers, and other neat network apps….)

• Prototype a full line-rate next-generation Ethernet-type
• Trying any of Jon Crowcrofts’ ideas (Sourceless IP routing for example)
• Demonstrate the wonders of Metarouting in a different implementation (dedicated hardware)
• Provable hardware (using a C# implementation and kiwi with NetFPGA as target h/w)
• Hardware supporting Virtual Routers
• Check that some brave new idea actually works

e.g. Rate Control Protocol (RCP), Multipath TCP,

• toolkit for hardware hashing
• MOOSE implementation
• IP address anonymization
• SSL decoding “bump in the wire”
• Xen specialist nic
• computational co-processor
• Distributed computational co-processor
• IPv6 anything
• IPv6 – IPv4 gateway (6in4, 4in6, 6over4, 4over6, ….)
• Netflow v9 reference
• PSAMP reference
• IPFIX reference
• Different driver/buffer interfaces (e.g. PFRING)
• or “escalators” (from gridprobe) for faster network monitors
• Firewall reference
• GPS packet-timestamp things
• High-Speed Host Bus Adapter reference implementations

– Infiniband
– iSCSI
– Myranet
– Fiber Channel

• Smart Disk adapter (presuming a direct-disk interface)
• Software Defined Radio (SDR) directly on the FPGA (probably UWB only)
• Routing accelerator

– Hardware route-reflector
– Internet exchange route accelerator

• Hardware channel bonding reference implementation
• TCP sanitizer
• Other protocol sanitizer (applications… UDP DCCP, etc.)
• Full and complete Crypto NIC
• IPSec endpoint/ VPN appliance
• VLAN reference implementation
• metarouting implementation
• virtual <pick-something>
• intelligent proxy
• application embargo-er
• Layer-4 gateway
• h/w gateway for VoIP/SIP/skype
• h/w gateway for video conference spaces
• security pattern/rules matching
• Anti-spoof traceback implementations (e.g. BBN stuff)
• IPtv multicast controller
• Intelligent IP-enabled device controller (e.g. IP cameras or IP powermeters)
• DES breaker
• platform for flexible NIC API evaluations
• snmp statistics reference implementation
• sflow (hp) reference implementation
• trajectory sampling (reference implementation)
• implementation of zeroconf/netconf configuration language for routers
• h/w openflow and (simple) NOX controller in one…
• Network RAID (multicast TCP with redundancy)
• inline compression
• hardware accelorator for TOR
• load-balancer
• openflow with (netflow, ACL, ….)
• reference NAT device
• active measurement kit
• network discovery tool
• passive performance measurement
• active sender control (e.g. performance feedback fed to endpoints for control)
• Prototype platform for NON-Ethernet or near-Ethernet MACs

– Optical LAN (no buffers)

31

How might YOU use NetFPGA?
• Build an accurate, fast, line-rate NetDummy/nistnet element
• A flexible home-grown monitoring card
• Evaluate new packet classifiers

– (and application classifiers, and other neat network apps….)

• Prototype a full line-rate next-generation Ethernet-type
• Trying any of Jon Crowcrofts’ ideas (Sourceless IP routing for example)
• Demonstrate the wonders of Metarouting in a different implementation (dedicated hardware)
• Provable hardware (using a C# implementation and kiwi with NetFPGA as target h/w)
• Hardware supporting Virtual Routers
• Check that some brave new idea actually works

e.g. Rate Control Protocol (RCP), Multipath TCP,

• toolkit for hardware hashing
• MOOSE implementation
• IP address anonymization
• SSL decoding “bump in the wire”
• Xen specialist nic
• computational co-processor
• Distributed computational co-processor
• IPv6 anything
• IPv6 – IPv4 gateway (6in4, 4in6, 6over4, 4over6, ….)
• Netflow v9 reference
• PSAMP reference
• IPFIX reference
• Different driver/buffer interfaces (e.g. PFRING)
• or “escalators” (from gridprobe) for faster network monitors
• Firewall reference
• GPS packet-timestamp things
• High-Speed Host Bus Adapter reference implementations

– Infiniband
– iSCSI
– Myranet
– Fiber Channel

• Smart Disk adapter (presuming a direct-disk interface)
• Software Defined Radio (SDR) directly on the FPGA (probably UWB only)
• Routing accelerator

– Hardware route-reflector
– Internet exchange route accelerator

• Hardware channel bonding reference implementation
• TCP sanitizer
• Other protocol sanitizer (applications… UDP DCCP, etc.)
• Full and complete Crypto NIC
• IPSec endpoint/ VPN appliance
• VLAN reference implementation
• metarouting implementation
• virtual <pick-something>
• intelligent proxy
• application embargo-er
• Layer-4 gateway
• h/w gateway for VoIP/SIP/skype
• h/w gateway for video conference spaces
• security pattern/rules matching
• Anti-spoof traceback implementations (e.g. BBN stuff)
• IPtv multicast controller
• Intelligent IP-enabled device controller (e.g. IP cameras or IP powermeters)
• DES breaker
• platform for flexible NIC API evaluations
• snmp statistics reference implementation
• sflow (hp) reference implementation
• trajectory sampling (reference implementation)
• implementation of zeroconf/netconf configuration language for routers
• h/w openflow and (simple) NOX controller in one…
• Network RAID (multicast TCP with redundancy)
• inline compression
• hardware accelorator for TOR
• load-balancer
• openflow with (netflow, ACL, ….)
• reference NAT device
• active measurement kit
• network discovery tool
• passive performance measurement
• active sender control (e.g. performance feedback fed to endpoints for control)
• Prototype platform for NON-Ethernet or near-Ethernet MACs

– Optical LAN (no buffers)

32

Section IV: Teaching

33

NetFPGA in the Classroom

•Stanford University
•EE109 “Build an Ethernet Switch”

Undergraduate course for all EE students

http://www.stanford.edu/class/ee109/

•CS344 “Building an Internet Router” (since ‘05)
Quarter-long course targeted at graduates

http://cs344.stanford.edu

•Rice University
•Network Systems Architecture (since ‘08)

http://comp519.cs.rice.edu/

•Cambridge University
•Build an Internet Router (since ‘09)

Quarter-long course targeted at graduates

http://www.cl.cam.ac.uk/teaching/current/P33/

•University of Wisconsin
•CS838 “Rethinking the Internet Architecture”

http://pages.cs.wisc.edu/~akella/CS838/F09/

•University of Bonn
•“Building a Hardware Router”

http://bit.ly/Kmo0rA

See: http://netfpga.org/teachers.html

http://cs344.stanford.edu/
http://comp519.cs.rice.edu/
http://www.cl.cam.ac.uk/teaching/0910/P33/

34

Components of NetFPGA Course

• Documentation
– System Design

– Implementation Plan

• Deliverables
– Hardware Circuits

– System Software

– Milestones

• Testing
– Proof of Correctness

– Integrated Testing

– Interoperabilty

• Post Mortem
– Lessons Learned

35

NetFPGA in the Classroom

• Stanford CS344: “Build an Internet Router”
– Courseware available on-line

– Students work in teams of three
• 1-2 software

• 1-2 hardware

– Design and implement router in 8 weeks

– Write software for CLI and PW-OSPF

– Show interoperability with other groups

– Add new features in remaining two weeks
• Firewall, NAT, DRR, Packet capture, Data

generator, …

36

CS344 Milestones

software
hardware

Switching
Forwarding

Table

Routing
Table

Routing
Protocols

Management
& CLI

Exception
Processing

InteroperabilityBuild basic router Routing Protocol

(PWOSPF)

Integrate with H/W

Emulated

h/w in VNS

Routing
Table

Routing
Protocols

Management
& CLI

Exception
Processing

Emulated

h/w in VNS

Routing
Table

Routing
Protocols

Management
& CLI

Exception
Processing

Emulated

h/w in VNS

Routing
Table

Routing
Protocols

Management
& CLI

Exception
Processing

Command Line

Interface

1 2 3 4 5 6

• Innovate and add!

• Presentations

• Judges

4-port non-learning

switch

4-port learning

switch

IPv4 router

forwarding path

Integrate with S/W Interoperability

Switching
Forwarding

Table

Learning Environment

Modular design

Testing

Final Project

37

Typical NetFPGA Course Plan
Week Software Hardware Deliver

1 Verify Software Tools Verify CAD Tools Write Design

Document

2 Build Software Router Build Non-Learning

Switch

Run Software Router

3 Cmd. Line Interface Build Learning Switch Run Basic Switch

4 Router Protocols Output Queues Run Learning Switch

5 Implement Protocol Forwarding Path Interface SW & HW

6 Control Hardware Hardware Registers HW/SW Test

7 Interoperate Software & Hardware Router Submission

8 Plan New Advanced Feature Project Design Plan

9 Show new Advanced Feature Demonstration

38

Presentations

http://cs344.stanford.edu

Stanford CS344

Cambridge P33

http://www.cl.cam.ac.uk/teaching/0910/P33/

39

Section VI: Where Next?

40

To get started with your project

1. New Software ideas? get familiar with the host-
systems of the current reference (C and java)

2. replace them at will; no egos will be hurt

OR

1. New Hardware ideas? get familiar with
hardware description language

2. Prepare for your project
a) Become familiar with the NetFPGA yourself

b) Go to a hands-on event

Good practice is familiarity with hardware and

software…. (and it isn’t that scary - honest)

41

Support for NetFPGA enhancements provided by

Scared by Verilog? Try our

Online Verilog tutor (with NetFPGA

extensions)
www-netfpga.cl.cam.ac.uk

42

Go to a hands-on camp

Stanford

Cambridge

Check out http://www.netfpga.org/events.html

43

Get a hands-on tutorial

Events

NetFPGA website (www.netfpga.org)

44

Start with a board….

For US Universities (donations available)
• http://netfpga.org/donation_request.html

For Non-US Universities (donations

available)
• http://www.xilinx.com/member/xup/donation/request.htm

For Non-Universities
• http://www.hitechglobal.com/Boards/PCIExpress_SFP+.htm

• http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1

228&Prod=NETFPGA-1G-CML

http://www.hitechglobal.com/Boards/PCIExpress_SFP+.htm
http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1228&Prod=NETFPGA-1G-CML

45

Nick McKeown, Glen Gibb, Jad Naous, David Erickson,

G. Adam Covington, John W. Lockwood, Jianying Luo, Brandon Heller, Paul

Hartke, Neda Beheshti, Sara Bolouki, James Zeng,

Jonathan Ellithorpe, Sachidanandan Sambandan, Eric Lo

Acknowledgments (I)
NetFPGA Team at Stanford University (Past and Present):

NetFPGA Team at University of Cambridge (Past and Present):

Andrew Moore, David Miller, Muhammad Shahbaz, Martin Zadnik

Matthew Grosvenor, Yury Audzevich, Neelakandan Manihatty-Bojan,

Georgina Kalogeridou, Jong Hun Han, Noa Zilberman, Gianni Antichi, Marco

Forconesi

All Community members (including but not limited to):

Paul Rodman, Kumar Sanghvi, Wojciech A. Koszek,

Yahsar Ganjali, Martin Labrecque, Jeff Shafer,

Eric Keller , Tatsuya Yabe, Bilal Anwer,

Yashar Ganjali, Martin Labrecque

Kees Vissers, Michaela Blott, Shep Siegel

46

Acknowledgements (II)

Disclaimer: Any opinions, findings, conclusions, or recommendations expressed in these materials do not
necessarily reflect the views of the National Science Foundation or of any other sponsors supporting this
project.
This effort is also sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-11-C-0249. This material is approved for public release,
distribution unlimited. The views expressed are those of the authors and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

46

47

Thank You!

48

Appendix I: Example

49

Operational IPv4 router

Control Plane

Data Plane
per-packet

processing

S
o
ftw

a
re

H
a
rd

w
a
re

Routing

Table

Routing

Protocols

Management

& CLI

SCONE

Switching
Forwarding

Table
Queuing

Reference router

Java GUI

50

Streaming video

51

Streaming video

PC & NetFPGA
(NetFPGA in PC)

NetFPGA running

reference router

52

Streaming video

Video streaming

over shortest path

Video

client
Video

server

53

Streaming video

Video

client
Video

server

54

Observing the routing tables

Columns:

• Subnet address

• Subnet mask

• Next hop IP

• Output ports

55

56

Review

NetFPGA as IPv4 router:

•Reference hardware + SCONE software

•Routing protocol discovers topology

Demo:

•Ring topology

•Traffic flows over shortest path

•Broken link: automatically route around

failure

57

Appendix II: Example II

58

Buffers in Routers

Rx

Rx

Rx

Tx

Tx

Tx

• Internal Contention

• Pipelining

• Congestion

59

Buffer Sizing Story

2T ´C
2T ´C

n
O(logW)

60

Using NetFPGA to explore buffer size

• Need to reduce buffer size and measure

occupancy

• Alas, not possible in commercial routers

• So, we will use the NetFPGA instead

Objective:

– Use the NetFPGA to understand how large a

buffer we need for a single TCP flow.

61

Reference Router Pipeline

• Five stages

– Input interfaces

– Input arbitration

– Routing decision and

packet modification

– Output queuing

– Output interfaces

• Packet-based

module interface

• Pluggable design

MAC

RxQ

CPU

RxQ

MAC

RxQ

CPU

RxQ

MAC

RxQ

CPU

RxQ

MAC

RxQ

CPU

RxQ

Input Arbiter

Output Port Lookup

MAC

TxQ

CPU

TxQ

MAC

TxQ

CPU

TxQ

MAC

TxQ

CPU

TxQ

MAC

TxQ

CPU

TxQ

Output Queues

62

Extending the Reference Pipeline

MAC

RxQ

CPU

RxQ

MAC

RxQ

CPU

RxQ

MAC

RxQ

CPU

RxQ

MAC

RxQ

CPU

RxQ

Input Arbiter

Output Port Lookup

MAC

TxQ

CPU

TxQ

MAC

TxQ

CPU

TxQ

MAC

TxQ

CPU

TxQ

MAC

TxQ

CPU

TxQ

Output Queues

Rate

Limiter

Event Capture

63

Enhanced Router Pipeline

Two modules added

1. Event Capture
to capture
output queue
events (writes,
reads, drops)

2. Rate Limiter to
create a
bottleneck

MAC

RxQ

CPU

RxQ

MAC

RxQ

CPU

RxQ

MAC

RxQ

CPU

RxQ

MAC

RxQ

CPU

RxQ

Input Arbiter

Output Port Lookup

MAC

TxQ

CPU

TxQ

MAC

TxQ

CPU

TxQ

MAC

TxQ

CPU

TxQ

MAC

TxQ

CPU

TxQ

Output Queues

Rate

Limiter

Event Capture

64

Topology for Exercise 2

Iperf

Client
Iperf

Server

Recall:

NetFPGA host PC is life-support:

power & control

So:

The host PC may physically route its

traffic through the local NetFPGA

PC & NetFPGA
(NetFPGA in PC)

NetFPGA running

extended reference router

nf2c2

eth1

nf2c1

eth2

65

66

Review

NetFPGA as flexible platform:

•Reference hardware + SCONE software

•new modules: event capture and rate-limiting

Example 2:

Client Router Server topology
– Observed router with new modules

– Started tcp transfer, look at queue occupancy

– Observed queue change in response to TCP ARQ

