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Graph representation learning is an effective tool for facilitating graph analysis with machine learning
methods. Most GNNs, including Graph Convolutional Networks (GCN), Graph Recurrent Neural
Networks (GRNN), and Graph Auto-Encoders (GAE), employ vectors to represent nodes in a deterministic
way without exploiting the uncertainty in hidden variables. Deep generative models are combined with
GAE in the Variational Graph Auto-Encoder (VGAE) framework to address this issue. While traditional
VGAE-based methods can capture hidden and hierarchical dependencies in latent spaces, they are limited
by the data’s multimodality. Here, we propose the Gaussian Mixture Model (GMM) to model the prior
distribution in VGAE. Furthermore, an adversarial regularization is incorporated into the proposed
approach to ensure the fruitful impact of the latent representations on the results. We demonstrate
the performance of the proposed method on clustering and link prediction tasks. Our experimental
results on real datasets show remarkable performance compared to state-of-the-art methods.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Graphs can model and represent the majority of complex sys-
tems across a wide range of domains [1]. These structures play a
critical role in many applications, including biological protein–pro-
tein interaction networks [2], social media [3], transportation net-
works [4], and citation networks[5]. Recently, many studies have
emerged on learning representations to encode structural informa-
tion of the graph [6–10]. These graph representation learning algo-
rithms convert graph data into a low-dimensional space.
Downstream machine learning tasks such as node classification,
link prediction, and clustering employ these representations [11].

Graph representation learning approaches can be divided into
two categories: shallow embedding and deep embedding. Despite
their popularity in recent years, the shallow embedding
approaches suffer from some limitations. Some of these limitations
can be mentioned as follows: 1) Lack of parameter sharing, 2) Inca-
pability to handle node features efficiently, and 3) Inability to
apply in an inductive manner [12,13]. On the other hand, the emer-
gence of deep embedding approaches, aided by the introduction of
the Graph Neural Network (GNN) paradigm, assists in overcoming
these shortcomings. GNNs can generate representations of nodes
based on the graph’s structure and any feature information [14,12].

GNNs ignore the data distribution, leading to poor representa-
tions and overfitting [6,15]. Combining them with deep generative
models to learn data distribution has significantly improved gener-
ated representations. Variational Graph Auto-Encoder (VGAE)
framework and adversarial approach are widely studied in this
scope. VGAE is an unsupervised framework based on deep genera-
tive and variational inference models [16,17]. This framework con-
siders the distribution of the encoder’s latent representation,
which leads to complex data reasoning and, as a result, efficient
embedding [18]. Adversarial Graph Auto-Encoder framework
enforces the latent representation to match a prior distribution
during the training process [12].

This paper considers some assumptions about observed data
distribution for use in unsupervised clustering tasks. To accom-
plish this, we concentrate on modeling the multimodality of
observed data in clustering. Probabilistic modeling is mostly per-
formed by considering simplified assumptions about data. Each
sample is generated from one well-known distribution like Gaus-
sian, named unimodality assumption. This assumption has some
major drawbacks and is too limited for some certain phenomena.
Researchers are usually faced with complex data where each
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sample may come from one of the multiple known (or unknown)
distributions named multimodal distribution. Intuitively, multi-
modal data contain several regions with a high amount of
probability.

Technically, these models are called mixture models as a princi-
pled modeling approach to deal with such complex data. This
paper uses Gaussian Mixture Model (GMM) in Graph Variational
Auto-Encoder to model the prior distribution. This combination
improves the interpretability of the proposed model. Along with
modelling with multimodality through GMM, the proposed
method introduces a regularizer based on the adversarial mecha-
nism concept to improve the results. The outline of our contribu-
tions is as follows,

� We leverage the VGAE framework by considering the Gaussian
Mixture Model (GMM) to model the prior distribution of
observed data.

� We introduce a regularization based on the adversarial mecha-
nism concept to ensure that the latent embeddings boost our
results.

� We demonstrate our model’s performance on clustering and
link prediction tasks on real datasets.

2. Related Work

Deep learning methods have sparked widespread interest due
to their high performance, efficiency, and ease of use. As a result,
deep graph embedding approaches, based on the GNN paradigm,
have become the main focus of graph representation learning
methods. GNNs can use parameter sharing and generate node
representations based on the graph’s structure and any feature
information. They can also appear inductively. GNNs are useful
and widely used structures for the reasons stated above
[14,12,13].

Graph Convolutional Network (GCN) [19] is one of the first GNN
structures which generalizes the concept of convolutions to graph-
structured data [20,19]. Graph Auto-Encoder (GAE) is another
approach introduced following the GCN which is an unsupervised
approach that generalizes the auto-encoder framework. GAE is a
straightforward and robust framework comprised of an encoder
and a decoder. A GCN model, which generates latent representa-
tions, is frequently used as the encoder. The decoder then recon-
structs the input data, which is frequently an inner product of
the latent variables [17].

Multi-Task Graph Auto-encoder (MTGAE) [21] is an auto-
encoder-based method that can learn a joint representation of local
graph structure and available node features. This method aims to
learn link prediction and node classification simultaneously. There
are some other studies based on GAE framework such as [22–26].
Although GAE-based methods are effective, they disregard data
distribution, leading to poor representations and overfitting
[6,15]. The GAE framework and deep generative models are com-
bined for this purpose. By accounting for data distribution, deep
generative models can represent complex dependencies and inter-
actions between input and output data[27].

VGAE approach originates from deep generative concepts that
generalizes the Variational Auto-Encoder (VAE) [17,27] method
on graph structure data. In VGAE, the encoder and the decoder
are probabilistic. The main idea behind VGAE is that it embeds
input data into a distribution rather than a point. A random sample
Z is drawn from the distribution rather than generated directly by
the encoder[28]. Using the VGAE framework, Xie et al. [29] pro-
vided a representation learning method for networked documents
to model document contents and relations. Their proposed method
reached from the Higher-order Graph Attention Network (HGAT),
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which examines and shuffles the document’s neighborhood infor-
mation in each order.

Multiresolution Graph Networks (MGN) and Multiresolution
Graph Variational Autoencoders (MGVAE) are presented by [30]
for using multiresolution and equivariant methods to learn and
generate graphs. MGN performs higher-order message passing
while designing graph encoders to cluster the graph and coarsen
it to a lower resolution. They have encoded the hierarchy of coars-
ened graphs by MGVAE, which develops a hierarchical generative
model based on MGN. NetVAE developed by Jin et al. [31] is a net-
work embedding approach that addresses the orthogonality of net-
work topology information and node attributes. Here, network
structure compression and node attributes share the same enco-
der. On the other hand, a dual decoder, supported by GMM, is
introduced for reconstructing network topologies and node attri-
butes separately.

Adversarial-based approaches leverage alternative deep gen-
erative frameworks. Adversarially Regularized Variational Graph
Autoencoder (ARVGAE) generalizes the adversarial autoencoder
framework [32] to graph data [6]. In the ARVGAE, the latent rep-
resentation is enforced to match a prior distribution by exploit-
ing a min–max game strategy [6]. Random Walk Regularization
for Graph Auto Encoders (RWR-VGAE) is a VGAE with a regular-
izer based on Random Walk with Restarts (RWR). This regular-
izer is used to capture the information of the immediate
neighbour of each node [33]. Lu et al. [34] proposed MRGAE, a
network embedding approach to model network consistency
across different views. MRGAE generates a second view of the
input network based on node content capturing the relationship
between them. By incorporating a multiview adversarial regular-
ization module, they ensure consistency between the two views
of the network.

Most of the earlier works assumed a Gaussian distribution to
model prior uncertainty of the observed data. This assumption suf-
fers from the inefficiency of modeling complex data with proper-
ties like multimodality. Some works employed other
distributions rather than the traditional Gaussian assumption.
Davidson et al. [35] introduced a method called S-VGAE, which
considered the von Mises-Fisher (vMF) unimodal density to model
the prior distribution to result in a better representation.

Zheng et al. [36] proposed DBGAN, a method for estimating the
prior distribution of latent representation in a structure-aware
manner. The prior distribution of the latent embedding in this
method implicitly connects the graph and feature space through
prototype learning, in contrast to the widely used Gaussian distri-
bution assumption. As a result, discriminative and robust represen-
tations are generated for all nodes. The CGCN proposed by Hui
et al. [37] consists of two main modules, an attributed graph clus-
tering module and a semi-supervised node classification module.
This approach investigates a mixture of Gaussian in the clustering
module to assign pseudo-labels to unlabeled samples. CGCN
ignores the benefits of the adversarial mechanism.

Our proposed method is based on the VGAE framework and
uses a variant of the adversarial mechanism. Along with our pri-
mary aim of clustering tasks, we consider the multimodal assump-
tion on the observed data through a theoretically and practically
well-known GMM model. More specifically, the correspondence
of Gaussian density for each presumed cluster results in a more
efficient approach. Furthermore, a regularization based on a vari-
ant of the adversarial mechanism is proposed to improve the
result.

Focusing on positive and negative encoder samplings, we pre-
sent a novel perspective on the adversarial technique. Unlike the
conventional adversarial-based approaches [6,33,34] which trea-
ted encoder-generated representations as negative samples, we
address them as positive samples. Following our shift from nega-
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tive samples to positive ones and changing the nature of the
regularizer, we appraise the overall loss function. The inverse of
KL-divergence is added to the loss function, whereas traditional
methods use the min–max technique.

3. Problem Statement

3.1. Notation

A graph G is represented as G ¼ V ; Eð Þ, where V ¼ v1; . . . ;vNf g
denotes a set of N nodes and E represents a set of e edges in this

graph. v 2 RN�d denotes a feature matrix where each row shows
a d-dimensional feature vector for each node v i in the graph.
A 2 RN�N represents the adjacency matrix where Ai;j ¼ 1 if ei;j 2 E,
otherwise Ai;j ¼ 0. The goal is to map the nodes v i 2 V to low-

dimensional vectors zi 2 RF . The mapping function is as follows:
f : A;vð Þ ! Z, where Z 2 RN�F . Each node embedding zi 2 Z is an
F-dimensional vector in latent space, where F � d. Table 1 summa-
rizes the notations used in this paper.

4. Preliminaries

4.1. Variational Graph Auto-Encoders

VGAE was introduced by [28]. This framework is a generaliza-
tion of the VAE framework [27,17] to graph structure data. There
are two values z (embeddings) and x (input data), in the VAE
framework. Based on the Bayes theorem, the posterior distribution
is calculated as shown in Eq. 1.

ph zjxð Þ ¼ ph xjzð Þph zð Þ
ph xð Þ ¼ ph xjzð Þph zð ÞR

ph zð Þph xjzð Þdz ð1Þ

Since the true posterior density, shown in Eq. 1, is mostly
intractable, Rezende et al. [27] introduced a recognition model
q/ zjxð Þ as an approximation for the posterior distribution. The
recognition model commonly chooses Gaussian distribution with
a diagonal covariance structure. Consequently, the recognition
model (or inference model), q/ zjxð Þ is the probabilistic encoder of
VAE, and the generative model, ph xjzð Þ is the probabilistic decoder
of VAE. A Graphical model for VAE is shown in Fig. 1.

Inference model of VGAE. In VGAE, the inputs are the adja-
cency matrix A, and the feature matrix v. Each node in these inputs
maps to a latent vector as shown in Eq. 2.
Table 1
The summary of notations.

Symbols Meaning

A The adjacency matrix of graph G
N Number of nodes in the graph
v The features matrix of G
F Number of features in v
DKL qjjpð Þ KL-divergence between q and p
z The latent variable in Variational Inference
X;W;C The latent variables in the proposed method
X0;W0;C0 The latent variables in the proposed method of fake data for

regularization part
/ The set of parameters of the neural network in the encoder part
h The set of parameters of the neural network in the decoder part
b The set of parameters of the GNN related to each GMM component

in the proposed method
/C The set of parameters of the GNN related to C in variational factors

in the proposed method
/W The set of parameters of the GNN related to W in variational

factors in the proposed method
K Number of components in GMM
p Mixing probability of GMM
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q/ ZjA;vð Þ ¼
YN
i¼1

q/ zijA;vð Þ;

q/ zijA;vð Þ ¼ N zijli;Ri
� � ð2Þ

Here l represents a matrix of mean vectors and R denotes
covariance matrix. li and Ri denote i-th vector of these matrices.
The distribution of the recognition model is parameterized by
two GNNs as presented in Eq. 3.

l ¼ GNNl A;vð Þ
R ¼ GNNR A;vð Þ ð3Þ

Here, GNNl and GNNR are two GNNs that produce l and R.
These GNNs can be any of the different types of GNNs such as
GCN [19], GCN with Chebyshev filters [38], GAT (Graph Attention
Network)[39], and GraphSAGE [40]. The two-layer GCN shown in
Eq. 4 is commonly used for this purpose [28].

GCN A;vð Þ ¼ bAReLU bAvW0

� �
W1 ð4Þ

Here, W0 and W1 are the weight matrices of each layer, and W0

is shared in the first layer of two GCNs. bA is the normalized adja-
cency matrix introduced as follows,eA ¼ Aþ IeDii ¼

X
j

eAij

bA ¼ eD�1
2 eA eD�1

2

ð5Þ

In Eq. 5, I represents the identity matrix of size A, and D repre-
sents degree matrix of the graph.

Generative model of VGAE. After inferring the latent vectors,
the adjacency matrix can be reconstructed with sampling from
ph AjZð Þ. The generative model can be any kind of GNN, but most
of the time an inner product between latent variables as shown
in Eq. 6, is used for this purpose.

p AjZð Þ ¼
YN
i¼1

YN
j¼1

p Aijjzi; zj
� �

p Aijjzi; zj
� � ¼ Sigmoid zTi zj

� � ð6Þ

Here, zi and zj are the ith and jth vectors of Z and Sigmoid
denotes the logistic sigmoid function.

Learning of VGAE. To learn the model, the approximate poste-
rior, which is parameterized by variational parameters /, should be
close to the true posterior. The Kullback–Leibler divergence (KL-
divergence) is used for this purpose. KL-divergence is a metric that
measures the distance between two distributions. The goal is to
minimize this KL-divergence as shown in Eq. 7 [28].

/ ¼ argmin/DKL q/ ZjA;vð Þjjph ZjA;vð Þ� � ð7Þ
In this equation, DKL indicates KL-divergence, / represents the

parameters of posterior estimation (q/ ZjAð )), and h denotes param-
eters of real posterior (ph ZjA;vð Þ). Calculation of KL-divergence
depends on log marginal likelihood, which is intractable. Instead,
maximizing the Evidence Lower Bound (ELBO), shown in Eq. 8, is
used for the learning process [28].

LELBO ¼ Eq/ log
ph AjZð Þ

q/ ZjA;vð Þ

 !
ð8Þ

Which can be rewritten as,

LELBO ¼ Eq/ ZjA;vð Þ logph AjZð Þ½ � � DKL q/ ZjA;vð Þjjph Zð Þ� � ð9Þ
LELBO denotes the ELBO loss function, which has two terms. The

first term is associated with data reconstruction in a generative
model. The second term (the KL-divergence term) is a loss function



Fig. 1. Graphical models for Variational Auto-Encoders. a. The recognition or
inference model, which maps input data to the latent variable z. b. The generative
model, which reconstructs the input data by the latent variable.
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regularizer that measures the distance between the posterior esti-
mation q/ ZjA;vð Þ and the prior distribution ph Zð Þ. This equation
should be optimized concerning h and / by some optimization
method such as SGD (Stochastic Gradient Descent), Adagrad,
Adam, or mini-batch stochastic gradient descent [41,42].

4.2. Gaussian Mixture Models

GMM belongs to the parametric probability density function
family. It is a weighted sum of K components. Each of these com-
ponents follows a multivariate Gaussian distribution. The weight
of mixing, also known as mixture probability or mixture coeffi-
cient, is denoted by pi for i-th component, where

PK
i¼1pi ¼ 1. The

components of GMM can capture the multimodal nature of the
data [43].
5. The proposed model

5.1. Gaussian Mixture Variational Graph Auto-Encoder

In regular VGAE, the prior distribution over the latent variables
is assumed to be a Gaussian distribution [28]. While VGAE is
applied to many domains, it suffers from facing multimodality
Fig. 2. Comparison of the general framework of Variational graph auto-encoder (VGAE)
input data as an adjacency matrix A maps to a unimodal latent space. The inference m
generative model (decoder), with parameter /, reconstructs the input data by the latent v
space comprises three latent variables X;W , and C, which follow a GMM. The inference m
to C and W in variational factors of the encoder, respectively. The decoder with parame
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observed data. Fig. 2 shows the general framework of the regular
VGAE and our proposed method, called Gaussian Mixture Varia-
tional Graph Auto-Encoder (GM-VGAE). There is a set of latent vari-
ables X;W, and C in the GM-VGAE instead of just one latent
variable in VGAE.

Generative model of GM-VGAE. The definition of the genera-
tive model, based on the latent variables and the observed sample,
is shown in Eq. 10.

W � N 0; Ið Þ
C � Mult pð Þ

XjW;C �
YK
k¼1

N lck
W; bð Þ;Rck W;bð Þ

� �ck ð10Þ

Here, K represents the number of components in the mixture
model. This parameter is defined as a hyperparameter of the
model. W follows a Gaussian distribution with mean zero and
covariance matrix I. Eventually, C is a one-hot vector, which repre-
sents the mixing coefficient of the Gaussian mixture components.
This vector is sampled from the mixing probability, which is
denoted by p. Here, p is equal to 1

K so that, it is uniformly
distributed.

In this model, there is a GNN parameterized by b, which W
feeds to it as input. This GNN produces a set of K numbers of
(lck

) and (Rck ). Here, each of lck
and Rck computed with a GCN with

parameter sharing. Finally, according to the definitions provided,
XjW is a Gaussian mixture. The adjacency matrix A is recon-
structed from another GNN parameterized by h. The generative
model is shown in Eq. 11.

AjX � N l X; hð Þ;R X; hð Þð Þ ð11Þ
In this study, the choice of decoder is followed by [28] to avoid

complexity. So we use an inner product between latent variables to
reconstruct the adjacency matrix instead of a GNN. This decoder is
shown in Eq. 12.

p AjXð Þ ¼
YN
i¼1

YN
j¼1

p Aijjxi;xj
� �

p Aijjxi;xj
� � ¼ Sigmoid xT

i xj
� � ð12Þ
and Gaussian mixture Variational graph auto-encoder(GM-VGAE). a) In VGAE, the
odel (encoder), with parameter /, maps input data to the latent variable Z. The

ariable. b) In GM-VGAE, input data (A) maps to a multimodal latent space. This latent
odel maps input data to the latent variables. /C and /W are GNN parameters related
ters h and b reconstructs the input data..
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Here Aij represents the elements of the adjacency matrix. Note
that in this case, the decoder, which generates the reconstruction
of observed data, lacks parameters.

Inference model of GM-VGAE. Based on the mean-field varia-
tional family,

q X;W;CjA;vð Þ ¼
YN
i¼1

q/X
xijAi;vi

� �
q/W

wijAi;vi

� �
pb cijxi;wið Þ ð13Þ

In this equation, b represents the set of GNN parameters related
to each GMM component, /X demonstrates the set of GNN param-
eters related to X in variational factors, and /W shows the set of
GNN parameters related to W in variational factors. The z-
posterior is as follows,

pb cj ¼ 1jX;W� � ¼ p cj¼1ð Þp Xjcj¼1;Wð ÞPK

k¼1
p ck¼1ð Þp Xjcj¼1;Wð Þ ¼

pjNðXjlj W;bð Þ;rj W;bð ÞXK
k¼1

pkN Xjlk W;bð Þ;rk W;bð Þð

ð14Þ
The graphical illustration of generative and inference models of

our method is demonstrated in Fig. 3.
Learning of GM-VGAE. The ELBO of the proposed model is

shown in Eq. 15.

LELBO ¼ Eq
p A;X;W;Cð Þ
q X;W;CjA;vð Þ
� 	

ð15Þ

in which,

p A;X;W;Cð Þ ¼ p Wð Þp Cð Þp XjW;Cð Þp AjXð Þ ð16Þ

Based on Eq. 13 and Eq. 16 the ELBO can be written as,

LELBO ¼ Eq XjA;vð Þ log p AjXð Þ½ �
� Eq WjA;vð Þp CjX;Wð Þ KL q/X

XjA;vð Þjjpb XjW;Cð Þ
� �h i

� KL q/W
WjA;vð Þjjp Wð Þ

� �
� Eq XjA;vð Þq WjA;vð Þ KL pb CjX;Wð Þjjp Cð Þ� �� � ð17Þ

Here i indices have been dropped to more simplify the notations
and presume one node at each time. In this equation, the first term
is the reconstruction term and the following are X-conditional
prior term, W-prior term, and C-prior term [44] in order. The
reconstruction term is used to calculate the difference between
the input and the reconstruction. This term has the same form as
the VGAE’s ELBO reconstruction term. It can be estimated using
Monte-Carlo samples from q XjA;vð Þ. The conditional prior term
Fig. 3. Graphical models for Gaussian mixture variational graph autoencoder. a. The
recognition or inference model, which maps input data to the latent variables X;W,
and C. b. The generative model reconstructs the input data by the latent variables..
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has a negative sign and a positive value. This term should be small
to maximize the objective function. As a result, the conditional
prior term serves as a regularizer. To approximate this term, Monte
Carlo can be used as shown in Eq. 18.

Eq WjA;vð Þp CjX;Wð Þ KL q/X
XjA;vð Þjjpb XjW;Cð Þ

� �h i
� 1

M

XM
j¼1

XK
k¼1

pb ck ¼ 1jxj;wj
� �

KL q/x
XjA;vð Þjjpb Xjwj; ck ¼ 1

� �� �
ð18Þ

The W-prior term in the ELBO equation is also a regularizer and
can be computed analytically. C is a discrete latent variable in our
model. C-posterior measures how far X is from each cluster posi-
tion created by W to determine cluster assignment probability.
ELBO’s C-prior term tries to reduce the KL divergence between
the C-posterior and the uniform prior. It would aim to bring the
clusters together by maximizing overlap and bringing the means
closer together. This term has a positive value and appears with
a negative sign in the ELBO equation, indicating that it is a regular-
izer. Fig. 4 shows a high-level overview of our proposed method.

5.2. Regularizer based on adversarial mechanism concept

This paper introduces an additional regularizer inspired by the
adversarial mechanism concept. In the adversarial mechanism, a
generator provides fake data and tries to deceive a discriminator.
For this purpose, the cost function is changed in such a way to
involve the competition between the generator and the discrimi-
nator. Here, to generate fake data, the feature matrix of input data
(v) and the hidden variables inferred from the input data (X and
W) concatenate together as concat X;W;vð Þ. Then a shuffling pro-
cess performs on them as Shuffle concat X;W;vð Þð Þ. After that, these
fake data are fed to the inference model, and hidden variables of
fake data are inferred (X0;W0;C0). In the following, the regulariza-
tion part of the ELBO is calculated by these fake latent variables,
and the negative inverse of that is added to the ELBO. Thus, if
KL-divergence cannot detect the difference between the fake and
real, the denominator is low, so the fraction is high, and an addi-
tional negative burden is added to the ELBO. This part acts as the
discriminator. The process is shown in Fig. 4. Using the loss func-
tion defined for our model and the newly introduced regularizer,
the ELBO can be rewritten as LRELBO as shown in Eq. 19. To simplify
the equation, subscripts have been removed.

LRELBO ¼ LELBO � E KL q X0jA;v0� �jjq XjA;vð Þ� ���
þKL q W0jA;v0� �jjq WjA;vð Þ� �
þE KL p C0jX0;W0� �jjp CjX;Wð Þ� �� �� �1ð Þ ð19Þ

A summary of the main steps of GM-VGAE is as follows:

� Encoder

– Inferring latent variables (X;W;C) from real data

� Regularizer

– Concatenating (X;W;v) named Temp
– Generating Fake Data by Shuffling Temp
– Inferring latent variables from Fake Data (X0;W0;C0Þ

� Decoder

– Reconstructing the input data based on latent variables
inferred from real data
– Evaluating the objective function: 1) Reconstruction term,
2) Regularization terms based on (X;W;C), and 3) Additional
regularization terms based on (X0;W0;C0)

6. Experiments

In this section, the results of our experiments are given. These
experiments are performed to compare the proposed method



Input Encoder Latent space Decoder Output

Additional Regularizer

Fig. 4. A high-level overview of our method. In the upper half of the figure, the adjacency matrix and the feature matrix are fed into the GCN-based probabilistic encoder.
X;W, and C are the latent variables inferred from the encoder. The decoder reconstructs the adjacency matrix using these latent variables by the inner product of latent
vectors. The lower half of the figure is related to the additional regularizer that needs to generate fake data. The cost function consists of three parts, the first part measures
the reconstruction error, and the second part is the KL-divergence-based regularizer. The third part is related to the discriminator, in which the fake data is generated from the
shuffled combination of the adjacency matrix, X and W..

Table 2
Summary of the citation network datasets.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3
Cornell 183 295 1703 5
Wisconsin 251 499 1703 5
Texas 183 309 1703 5
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versus the state-of-the-art algorithms. We demonstrate the
efficiency of our approach in two downstream machine learning
tasks, clustering, and link prediction.
6.1. Datasets

Experiments on six graph datasets were performed. The first
three of them, Cora, Citeseer, and Pubmed, are three well-known
citation networks [45,46]. Furthermore, we utilized Cornell, Wis-
consin, and Texas (WebKB dataset) datasets following [47]. Table 2
reports a summary of these datasets.

Citation networks. Cora, Citeseer, and Pubmed fall into this
category. The datasets include sparse bag-of-words feature vectors
for each document and a list of document-to-document citation
links. In these datasets, nodes correspond to publications and
(undirected) edges to citations, i.e., there would be an undirected
connection between them whenever a document cites another
document. Using the citation links as edges, we create a binary,
symmetric adjacency matrix A. A class label was assigned to each
document.

WebKB. Cornell, Wisconsin, and Texas are webpage datasets.
Carnegie Mellon University collected these datasets from computer
science departments of different universities. Nodes denote web
pages, and edges represent hyperlinks between these web pages.
The datasets include bag-of-words feature vectors for each web
page. The web pages are divided into five classes, project, student,
staff, course, and faculty.
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6.2. Baselines and state-of-the-art methods

We compared the performance of our method with state-of-
the-art algorithms:

Spectral Clustering [48]: This approach seeks to learn social
embedding, which generates representations from eigenvectors
of the normalized graph Laplacian of G.

DeepWalk [49]: This approach learns latent representations,
which these representations encode social relations in a continu-
ous vector space. To do so, Deepwalk learns structural regularities
present within short random walks.

SEAL[50]: This approach is a link prediction framework that
creates a local subgraph around each target link and uses GNN to
learn a function to convert the patterns of the subgraph into link
existence.

GAE[28]: This approach is an unsupervised framework for
graph structure data, consisting of an encoder and a decoder. This
approach leverages both topological and content information.

VGAE [28]: This approach is based on the GAE framework,
which consists of a probabilistic encoder and a probabilistic
decoder.

ARGA [6]: This approach is based on the GAE. This method
enforces the latent representation to match a prior distribution
via an adversarial training scheme.

ARVGA [6]: This approach is VGAE based version of ARGA.
RWR-GAE [33]: This approach is based on the GAE, which uses a

random walk-based method to regularize the representations
learned by the encoder.

RWR-VGAE [33]: This approach is VGAE based version of RWR-
GAE.

S-VGAE [35]: This approach is based on VGAE, which consider
the von Mises-Fisher (vMF) distribution as the prior distribution
for link prediction purpose.

DGI [51]: In this method, there are some graph patch represen-
tations obtained by the robust convolutional graph architecture.
Maximization of local mutual information in these graph patch
representations can be used to obtain node embeddings that
account for the graph’s global structural properties. As the number
of hidden units has a significant impact on the performance of this



Fig. 5. AP and AUC Scores on Cornell, Wisconsin and Texas Datasets.

Table 4
Performance comparison of different models for the Clustering task on Cora.

Model Acc NMI F1 Precision ARI

SC 36.7 12.7 31.8 19.3 3.1
DW 48.4 32.7 39.2 36.1 24.3
GAE 59.6 37.4 59.5 59.6 27.4
VGAE 62.5 37.1 62.5 62.5 31.9
ARGA 66.8 48.9 66.8 66.8 42.2
ARVGA 54.4 43.3 54.4 54.4 31.0
RWR-GAE 59.3 43.1 57.7 57.7 34.1
RWR-VGAE 57.7 43.1 57.7 57.7 37.2
CGCN 71.5 54.4 67.7 71.5 48.2
DGI-128 59.0 38.6 60.6 59.0 33.6
DGI-512 71.3 56.4 67.2 71.3 51.1
GIC 72.5 53.7 69.2 72.5 50.8
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method, we employ the technique in two settings: once with 128
hidden units (DGI-128) and once with 512 hidden units (DGI-512).

GIC [52]: This approach is an unsupervised learning technique
for representation learning in graphs. GIC recognizes nodes with
similar representations, clusters them, and maximizes mutual
information based on the DGI technique.

HGCAE-P [53]: This approach is a GAE-based representation
learning method that derives its representation from a geometry-
aware message passing auto-encoder. All operations in auto-
encoding are performed in hyperbolic space.

CGCN [37]: CGCN consists of an attributed graph clustering
module and a semi-supervised node classification module that
enhances the learning ability of semi-supervised node classifica-
tion using samples with clustering assignments.

6.3. Tasks

In this study, we perform two tasks, clustering and link predic-
tion. In the link prediction task, the edges and non-edges among
the test set nodes are predicted after reconstructing the input
graph using a decoder. On the other hand, the K-means clustering
algorithm is performed on learned node embeddings to specify the
clusters.

6.4. Metrics

In this paper, in order to evaluate the efficiency of clustering,
the following criteria were used by [54]: Average rand index
(ARI), normalized mutual information (NMI), precision, F-score
(F1), and accuracy (ACC). On the other hand, the average precision
(AP) and the area under a receiver operating characteristic curve
(AUC) were used following [28] to evaluate the link prediction task.

6.5. Settings

Our model is initialized using Glorot initialization [55] and
trained with an initial learning rate of 0.01 for a maximum of
100 epochs using Adam optimizer [56]. We terminate the training
if the validation accuracy does not improve for 10 consecutive
steps; as a result, most runs finish in less than 200 steps. It applied
a fixed dropout rate [57] of 0.5 to the input and hidden layers. Also,
we considered L2 regularization of 0.0005 on the weights. We use
a two-layer GCN model as an encoder with the parametric ReLU
(PReLU) [58] no-linearity. For training the VAE, we use hyper-
parameters provided by [28] and apply full-batch gradient descent
while using the reparameterization trick [17].
Table 3
Performance comparison of different models for the Link Prediction task.

Model Cora Citeseer Pubmed

AUC AP AUC AP AUC AP

SC 84.6 88.5 80.5 85.0 84.2 87.8
DW 83.1 85.0 80.5 83.6 84.4 84.1
SEAL 91.8 92.9 87.5 88.7 95.4 95.5
GAE 91.0 92.0 89.5 89.9 96.4 96.5
VGAE 91.4 92.6 90.8 92.0 94.4 94.7
ARGA 92.4 93.2 91.9 93.0 96.8 97.1
ARVGA 92.4 92.6 92.4 93.0 96.5 96.8
RWR-GAE 92.9 92.7 92.1 91.5 96.2 96.3
RWR-VGAE 92.6 92.7 92.3 92.4 95.3 95.2
s-VGAE 92.7 93.2 90.3 91.5 97.1 97.1
DGI 89.8 89.7 95.5 95.7 91.2 92.2
GIC 93.5 93.3 97 96.8 93.7 93.5
CGCN 96.38 96.25 96.01 96.25 96.9 95.56
HGCAE-P 95.6 95.5 96.7 97 96.2 96
GM-VGAE 99.0 98.7 99.2 99.1 98.7 98.5

HGCAE-P 74.6 59.9 71.73 74.3 52.0
GM-VGAE 74.8 59.7 73.9 74.8 52.2

Table 5
Performance comparison of different models for the Clustering task on Citeseer.

Model Acc NMI F1 Precision ARI

SC 23.9 5.6 29.9 17.9 3.1
DW 33.7 8.8 27.0 24.8 24.3
GAE 41.2 14.2 41.2 41.2 9.7
VGAE 39.1 13.3 39.1 39.1 7.0
ARGA 50.8 26.9 50.8 50.8 21.4
ARVGA 59.7 33.9 59.7 59.7 33.0
RWR-GAE 44.0 25.2 44.0 44.0 18.0
RWR-VGAE 51.9 28.9 51.9 51.9 25.7
CGCN 67.4 42.3 63.2 66.4 43.5
DGI-128 57.9 30.9 53.4 57.2 27.9
DGI-512 68.8 44.4 64.3 67.8 45
GIC 69.6 45.3 65 69.6 46.5
HGCAE-P 71.5 45.3 67.2 69.5 46.9
GM-VGAE 69.5 43.2 69.1 59.1 45.5
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Table 6
Performance comparison of different models for the Clustering task on Pubmed.

Model Acc NMI F1 Precision ARI

GAE 67.2 22.4 67.2 67.2 24.5
VGAE 67.3 22.5 67.3 67.3 24.5
ARGA 61.8 21.4 61.8 61.8 19.7
ARVGA 41.8 4.5 41.8 41.8 1.9
RWR-GAE 66.4 26.8 65.1 68.1 26.7
RWR-VGAE 67.2 26.4 67.2 67.3 27.3
CGCN 71 30.2 69.7 71 32.4
DGI-128 49 15.1 45 48.2 14.5
DGI-512 53.3 18.1 47.4 53.1 16.6
GIC 67.3 31.8 65.2 67.3 29.1
HGCAE-P 74.8 37.7 73.2 73.2 35.9
GM-VGAE 74.8 37.5 74 74.2 36.9

Fig. 6. t-SNE embeddings of the nodes in the Cora, CiteSeer, and Pubmed datasets from t
learned GM-VGAE model’s representations are clearly defined.
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We employ the embedding dimension of 16 for our proposed
method. The settings for other methods are as follows. The [59]
implementation for SC with an embedding dimension of 128 is
used. For DW, we used the implementation provided by [49] with
the same settings as in their paper, namely an embedding dimen-
sion of 128, 10 random walks of length 80 per node, and a context
size of 10, trained for a single epoch. Pytorch implementation of
[28] with an embedding dimension of 16 is used for GAE and VGAE.
For ARGA and ARVGA, we use the [6] implementation with an
embedding dimension of 16.

We use an implementation of [33] with hyper-parameters pro-
vided by [28] for the autoencoder in RWR-GAE and RWR-VGAE. For
the RandomWalk Regularization network’s hyper-parameters, the
number of walks is set to 50, and the window size and walk length
are set to 30. CGCN embedding dimension is set to 16 in [37]
he raw features (left) and features from a learned model (right). The clusters of the
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implementation. DGI implementation is used in two modes, with
embedding sizes of 128 and 512. For GIC, we use the implementa-
tion of [60] with an embedding size of 16. Eventually, we use the
implementation of [53] for HGCAE with embedding size 16.
6.6. Complexity

In terms of time complexity, when N is the number of nodes, F is
the representation size, and d is the dimension of each node’s fea-

tures, the encoder has a time complexity of O N2dF
� �

. An encoder

with a complexity of O NdFð Þ is possible if we deem the adjacency
matrix sparse. The time complexity of expectation–maximization
steps is O Nð Þ. We may change this to O NKð Þ for large sample sizes.

Using an inner product decoder, it has an O N2
� �

time complexity.

Overall, O NdFð Þ þ O Nð Þ þ O N2
� �

represents the temporal complex-

ity for one epoch.
Fig. 7. t-SNE embeddings of the nodes in the Cora from th
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6.7. Results

For three citation datasets, Cora, Citseer, and Pubmed, Table 3
shows the mean AP and AUC for the link prediction task over 10
runs. Our proposed method achieves best-in-class results across
all three datasets for two assessment criteria. The most promising
outcomes are bolded. The comparison methods for the link predic-
tion task can be considered as representative of four categories.

Spectral Clustering and DeepWalk belong to the shallow
embedding approaches. SEAL, DGI, and GIC are GCN-based deep
embedding approaches. GAE, ARGA, and RWR-GAE are auto-
encoder-based methods. VGAE, ARVGA, RWR-VGAE, S-VGAE,
HGCAE-p, and CGCN are deep generative-based methods. In a gen-
eral analysis, it can be seen that deep embedding approaches have
improved the results of shallow embedding approaches. Auto-
encoder-based approaches have improved the outcomes of deep
embedding approaches. DGI and GIC have an implicit auto-
encoder structure, which has led to good results. Finally, deep
e learned features by some of the baseline methods.
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generative-based techniques have improved the results of auto-
encoder-based approaches. The proposed method has improved
the results of all groups. According to Table 3, the comparison
between the proposed method and the best results for each group
is as follows: GM-VGAE increases AUC by 14.4% and AP by 10.2%
compared with Spectral Clustering in Cora, AUC by 18.7%, and AP
Table 7
Effect of parameter k on the result of clustering.

Dataset Metric K = 1 K = 2 K = 3

Cora ACC 65.72 73.5 74.8
NMI 48.27 55.3 59.7
F1 65.72 73.9 73.9
Precision 65.72 73.5 74.8
ARI 41.82 52.2 52.2

Citeseer ACC 46.20 59.5 69.5
NMI 22.93 33.2 43.2
F1 46.20 59.1 69.1
Precision 46.20 59.1 59.1
ARI 18.26 32.5 45.5

Pubmed ACC 68.83 72.6 74.8
NMI 32.0 34.5 37.5
F1 65.72 72.2 74
Precision 68.83 73.2 74.2
ARI 30.91 35.9 36.9

Table 8
Effect of parameter k on the result of Link prediction.

Dataset Metric K = 1 K = 2 K = 3

Cora
AUC 93.61 98.5 99
AP 93.17 98.22 98.7

Citeseer
AUC 93.82 98.75 99.2
AP 93.10 98.39 99.1

Pubmed
AUC 95.38 98.2 98.7
AP 95.72 98.0 98.5

Fig. 8. Impact of the regulariza
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by 14.1% in Citeseer, AUC by 14.5%, and AP by 10.7% in Pubmed.
The analysis of GM-VGAE and GIC demonstrates 5.5% and 5.4%,
2.2% and 2.3% improvement in AUC and AP in the Cora and Citeseer
datasets, respectively, and 5% enhancement in both AUC and AP in
Pubmed dataset.

GM-VGAE outperforms AUC by 6.1%, 7.1%, 2.51%, and AP by 6%,
7.6%, 2.2% in Cora, Citeseer, and Pubmed datasets, respectively,
compared with RWR-GAE. The superior result of previous methods
belongs to CGCN. Our proposed method evinces 2.62% and 2.4%,
3.19% and 2.85%, and 1.8% and 2.94% progress in AUC and AP in
Cora, Citeseer, and Pubmed, respectively, in contrast to CGCN.

In general, it can be said in the link prediction task that our
method showed notable performance on all three benchmarks
compared to all state-of-the-art techniques. We repeated the link
prediction task on three webpage datasets, Cornell, Wisconsin,
and Texas, to further investigate. The results of this experiment
are presented in Fig. 5. These results show that our method on
these datasets also achieved good results. It can also be seen that,
by increasing the number of runs, the model showed more
improvement and better performance compared to other methods.

Tables 4–6 show how our model works on three different cita-
tion datasets when it comes to node clustering. After 10 runs of
each experiment, we announce the mean of the clustering metrics.

Our proposed method shows notable performance on the clus-
tering problem regarding the clustering results on the Cora dataset.
The GM-VGAE approach increases accuracy by 38.1%, NMI by 47%,
F1 by 42.1%, precision by 55.5 %, and ARI by 49.4% contrary to Spec-
tral Clustering. The maximum results of clustering among the com-
parative methods on the Cora dataset are provided by HGCAE-P.
Our proposed method augment accuracy by 2.2%, F1 by 2.17%, pre-
cision by 0.5%, and ARI by 0.2% against HGCAE-P.

In general, the results of our proposed method on Cora and
PubMed showed a significant superiority over other methods in
the clustering task. Moreover, our method also represented
remarkable performance on CiteSeer in this task over all of the
methods but HGCAE-P; however, our results slightly vary with this
model.
tion on Datasets for k ¼ 1.



Fig. 9. Impact of the regularization on Datasets for k ¼ 3.

G. Niknam, S. Molaei, H. Zare et al. Neurocomputing 523 (2023) 157–169
6.8. Qualitative Analysis

t-SNE is a variant of Stochastic Neighbor Embedding that pre-
serves the data’s local structure while revealing some important
global structures. It visualizes high-dimensional data in a two- or
three-dimensional space. Fig. 6 shows a variety of regular t-SNE
plots [61] of the representations learned by the GM-VGAE algo-
rithm on the Cora, CiteSeer, and Pubmed datasets to help under-
stand the efficacy of GM-VGAE. Colors indicate the document’s
type. Compared to the raw features, the trained representations
in 2D space show noticeable clustering proportional to the number
of topic classes in each dataset. For better comparison, Fig. 7 shows
the plots of some of the baseline methods in the Cora dataset. We
plotted the representations learned by DW from shallow embed-
ding approaches, DGI from GCN-based approaches, ARGA and
RWR-GAE from auto-encoder-based approaches, and CGCN from
deep generative-based approaches.
6.9. Ablation Study

Tables 7 and 8 show the results of comparing the values 1, 2,
and 3 for the hyperparameter k in clustering and link prediction
tasks. As can be noticed, the best value of k for all datasets is 3.
However, the best value of k can be varied depending on the
new diverse datasets. The first column of tables shows the affected
results of the GMM method. As demonstrated, at k ¼ 2 with apply-
ing the GMM, remarkable progress in the results is achieved which
regarding clustering results on the Cora dataset (Table 7), GM-
VGAE with k ¼ 2 increases accuracy by 7.78%, NMI by 7.03%, F1
by 8.18%, precision by 7.785 %, and ARI by 10.68% against GM-
VGAE with k ¼ 1. This boost indicates the validity of our claim that
using GMM positively affects results.

To evaluate the effectiveness of adversarial regularization, the
proposed method is investigated in two modes: with and without
regularization. Fig. 8 shows the effectiveness of the adversarial reg-
ularization without considering GMM to further emphasize the
impact of adversarial regularization. The analysis illustrates the
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definite effect of regularization on the results of both the clustering
and link prediction tasks on all datasets. Fig. 9 highlights the
potency of the adversarial regularization for k ¼ 3 to verify the
effect of regularization on improving the results of both clustering
and link prediction tasks.
7. Conclusion

In this paper, we proposed a variant of the VGAE. In this pro-
posed framework, we assume a GMM to model the prior distribu-
tion instead of adopting a Gaussian distribution in a regular VGAE.
This assumption intends to perform a specific task. Here, this par-
ticular task is unsupervised clustering. Moreover, inspired by the
adversarial mechanism concept, a regularization was introduced.
Eventually, we examined the performance of the proposed method
based on clustering and link prediction tasks on six open graph
datasets, Cora, Citseer, and PubMed, which are well-known citation
networks, and Cornell, Wisconsin, and Texas, which are webpage
datasets. Our proposed method demonstrated remarkable perfor-
mance on these tasks compared to state-of-the-art algorithms.
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