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DuKA: A Dual-Keyless-Attention Model for
Multi-Modality EHR Data Fusion and

Organ Failure Prediction
Zhangdaihong Liu , Xuan Wu , Yang Yang , and David A. Clifton

Abstract—Objective: Organ failure is a leading cause of
mortality in hospitals, particularly in intensive care units.
Predicting organ failure is crucial for clinical and social
reasons. This study proposes a dual-keyless-attention
(DuKA) model that enables interpretable predictions
of organ failure using electronic health record (EHR)
data. Methods: Three modalities of medical data from
EHR, namely diagnosis, procedure, and medications, are
selected to predict three types of vital organ failures: heart
failure, respiratory failure, and kidney failure. DuKA utilizes
pre-trained embeddings of medical codes and combines
them using a modality-wise attention module and a medical
concept-wise attention module to enhance interpretation.
Three organ failure tasks are addressed using two datasets
to verify the effectiveness of DuKA. Results: The proposed
multi-modality DuKA model outperforms all reference and
baseline models. The diagnosis history, particularly the
presence of cachexia and previous organ failure, emerges
as the most influential feature in organ failure prediction.
Conclusions: DuKA offers competitive performance,
straightforward model interpretations and flexibility in
terms of input sources, as the input embeddings can be
trained using different datasets and methods. Significance:
DuKA is a lightweight model that innovatively uses dual
attention in a hierarchical way to fuse diagnosis, procedure
and medication information for organ failure predictions.
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It also enhances disease comprehension and supports
personalized treatment.

Index Terms—Multimodal EHR fusion, neural network
with keyless attention, organ failure prediction.

I. INTRODUCTION

ORGAN failure is the main cause of death in the Intensive
Care Units (ICUs) [1], [48]. The heart, kidneys and the

respiratory system are vital organs with high failure prevalence
which leads to unplanned ICU admissions. Heart failure (HF) af-
fects over 20 million people globally and has one-year mortality
of around 20% [6], [44]; kidney failure (KF) has a similarly high
one-year mortality rate and much higher incidence (over 50%)
of patients who require dialysis. Moreover, KF patients also have
prolonged hospital stays [22], [36]. Respiratory failure (RF) has
the highest incidence rate in ICU and the in-hospital (short-term)
mortality can rise 40% depending on the aetiology [20], [45].
Therefore, early identification of these vital organ failures not
only has clinical significance but also alleviates national health
expenditure burdens. However, current works mostly focus on
single-organ failure prediction [3], [21], [32], [52]; little research
is available on the multiple-organ failure states.

Electronic health record (EHR) systems store rich medical
information of patients during their hospital admissions includ-
ing medical histories, diagnoses, surgeries, etc. In particular,
diagnosis information has been shown to have strong predictive
power for diseases such as heart failure, mortality or readmission
in multiple studies [9], [10], [21], [47], [51]. To improve the
prediction accuracy, other information is added to the model
input such as procedures [8], [46], [49], medications [50], [55]
and demographics [21].

With such multi-modal high-complex data embedded in EHR,
extracting informative representations for these medical con-
cepts is a key for clinical tasks. Advances in representation
learning methods for natural language processing have stim-
ulated the development of models such as Word2Vec [33],
GloVe [41], Transformers [53] and BERT [11], which have been
successfully applied to clinical settings [9], [21], [47]. The learnt
representations can be used directly as input features or in model
initialisation for different kinds of downstream tasks.

Another critical part of these successes comes from the appli-
cation of deep learning models. These models can further con-
struct non-linear representations which are specifically tuned for
the downstream tasks [4]. However, their lack of interpretability
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is the main limiting factor preventing widespread application
of deep learning models to popularise in the clinical settings.
Attention mechanisms emerged as a consequence [7], [37].
With attention integrated into a neural network, we are able
to see interpretable results at the same time highly achieving
models [9], [31], [46].

In this work, we incorporated the aforementioned modalities
in EHR, the medical concepts of diagnoses, procedures and
medications, as well as demographics to predict organ failures.
We further designed a neural network model DuKA (DUal
Keyless Attention) that facilitates the fusion of data at both
the modality and concept levels. This model leverages attention
mechanisms to learn the contributions of different modalities
and concepts to the clinical tasks. DuKA employed attention
modules in a hierarchical fashion that are designed specifically
for modeling structured multi-modal EHR data. Notably, these
attention modules enable straightforward interpretability of the
model’s predictions, allowing for ease of application in clinical
practice across various levels of data granularity.

Most of the previous works require multiple historical hospital
visits of patients for prediction which is demanding for data
storage/collection. In our setting, we simplified the tasks to
be one-time-step predictions, i.e. only information within one
hospital visit is needed for prediction. This setting is more
applicable for use in low/mid-income countries where health
records systems are typically not connected between hospitals,
making it difficult to track the full medical records of patients
treated at different hospitals.

We validated our model on the MIMIC-IV [18] and eICU
Collaborative Research Database [43] datasets with three organ
failure tasks: a multi-class prediction task, predicting the organ
failure type among organ failure patients, and two binary predic-
tion task, predicting organ failure among essential hypertension
patients and ICU patients. Being able to distinguish the three
organ failure types requires a comprehensive background in the
medical specialty of each organ failure and is clinically challeng-
ing. This is the motivation for designing the first task. Moreover,
essential hypertension is highly prevalent in our population and
the dataset. It is also regarded as a risk factor of the considered
organ failures [17]. Therefore, the second task aims to identify
the risk of essential hypertension patients developing organ
failures. The third task validates the model on a different dataset
and targets at ICU patients which is a group of patients with
high probabilities to suffer organ failures, especially respiratory
failure [26], [39].

In practical applications, clinical datasets often pose chal-
lenges due to their limited sample sizes and complex struc-
tures. These challenges can lead to the over-parameterization
of large models or models that are not well-suited to the data.
Furthermore, neural network models with intricate architectures
often lack interpretability. In light of these issues, this study
demonstrates how DuKA addresses these challenges in the
context of three important clinical tasks. The contributions of
our work can be summarized in three main aspects: 1) Intro-
duction of DuKA: We propose DuKA as a dedicated model for
modeling multi-modal EHR data. DuKA is designed to be a
lightweight model that enables the fusion of medical concepts,

modalities, and offers interpretability. 2) Dual-keyless attention
incorporation: We are the first to incorporate keyless attention
in a dual manner for the purpose of EHR data fusion. This
innovative approach allows for the effective integration of in-
formation from various modalities in a cohesive manner. The
resulting attention scores can aid clinical practice by indicating
the information that holds greater importance for organ failure
predictions. 3) Novelty in predicting vital organ failures: To the
best of our knowledge, this work represents the first attempt
at predicting multiple vital organ failures simultaneously by
utilizing fused information from diagnoses, procedures, and
medications.

II. RELATED WORK

There are two key components in DuKA: the medical concept
representation learning and interpretable multi-modal fusion
using neural attention. The second component in fact has two
fundamentals, multi-modal fusion and interpretable neural net-
work.

Previous works have shown that simple multi-hot encoding of
the medical codes may be inferior to the pre-trained dense vector
embeddings due to the pre-trained embeddings’ ability of cap-
turing local/global information [25], [56]. Therefore, extracting
informative representations from EHR data is vital for clinical
tasks, therefore, has been extensively studied in recent research.
One highly-cited early work used GloVe [41] to train diagno-
sis code embeddings (representations) and gained success in
several downstream tasks including heart failure prediction [9].
GloVe is a context-free representation learning method that
is particularly good at capturing global information since it
uses global co-occurrence of codes to generate embeddings. In
clinical settings, the co-occurrence information is a valuable
source of information for learning medical code embeddings
since relationships between diseases are complicated and the
co-occurrence of diseases reveals the latent pattern to some
extent. Therefore, GloVe has been widely-applied in recent
studies [24], [56]. BERT [11] is another popular method for
training medical concept embeddings due to its huge success in
natural language processing. Studies such as [21], [47], [50] all
adapted BERT for medical code pre-training and downstream
tasks. BERT gained its popularity in clinical applications due
to its strong ability to extract contextual information, allow-
ing patterns hidden between medical codes/concepts to be uti-
lized. Moreover, the high complexity of the model architecture
brings superior performance to the tasks. Other methods such
as Word2Vec [34] and ELMo [42] are also widely applied in
learning concept/code representations. Comparatively, GloVe
and BERT have the most competitive performance and can
be considered as good representatives for the context-free and
contextual model categories, respectively [19], [56].

Neural network models have shown promising performances
in tackling clinical tasks such as disease prediction/classification
and achieved high accuracies. Since clinical applications are
demanding for interpretability, attention mechanisms were in-
vented for improving the interpretability of neural network mod-
els. Both [9] and [50] proposed graph-based attention models to
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pre-train medical code embeddings; [10] used recurrent neural
network with attention to pre-train medical code embeddings.
Another way to embed attention is to directly use it in predictive
models. Models like the Transformers and BERT have in-house
attention modules. Although BERT models can achieve high per-
formance, having multiple attention heads at each layer requires
integration approach for attention interpretation and thus, is not
straightforward. Moreover, they work on sequential data and are
computationally expensive. Notably, all attention mechanisms
applied in the aforementioned works require a key-value pair or
key-query-value triplet. There are application scenarios where
such requirements can not be satisfied.

Many previous studies used multi-modal EHR data as input
for clinical prediction tasks. One early work [8] used diagnosis,
procedure, and medication codes to predict diagnosis and/or
medications, however, these codes were simply put together
and treated equally. We lose the modality-specific information
contained between these codes. [10] used diagnosis codes and
treatment (medication/procedure) codes in a hierarchical fashion
to predict heart failures. [50] used medication, diagnosis codes
and their ontologies to predict medications. The more recent
work [21] incorporated diagnosis and demographics together
to predict diagnoses. Almost all works that utilized medical
codes used pre-trained or randomly initialised embeddings to
represent them. If embeddings from different modalities are
pre-trained using different methods or trained separately, they
cannot be fused directly since the embeddings learnt represent
different latent spaces. When the embeddings from different
modalities/data spaces were concatenated, which was a common
choice in most of the multi-modal works, it was assumed that
these modalities contribute equally to the task which is also a
limited way of achieving fusion [16], [27]. Attention mechanism
is a good remedy for multi-modal fusion and has been widely
applied for this purpose in the areas of computer vision, natural
language processing as well as biomedical engineering [16],
[23], [27], [35], [57].

III. METHOD

A. Embedding Pre-Train

Taking MIMIC dataset as an example, for each hospital visit,
we extracted three sets of medical codes/concepts representing
the diagnoses, procedures and medications that a patient ac-
quired during a visit. In particular, for diagnosis and procedure,
we used ICD-9-CM (International Classification of Diseases,
Ninth Revision, Clinical Modification) codes; we used the
medication names directly instead of any drug codes so that
they can be easily matched to any coding system. Notably, the
pre-trainings for diagnosis and procedures were performed over
the whole MIMIC-IV cohort that used ICD-9 codes; the dataset
used for pre-training medication embeddings was the whole
MIMIC-IV cohort.

1) GloVe: For each of the three modalities, we further con-
structed a co-occurrence matrix based on each set of the medical
codes/concepts separately. Taking diagnosis as an example, the
training data was D = [v1,v2, . . .,vk], where vi represents
a hospital visit and k is the total number of hospital visits in

the dataset. Moreover, vi = [c1, c2, . . ., cd] where ci represents
a diagnosis code and d is the total number of codes occurred
in that visit. If two codes occurred together within a visit, the
value at the corresponding entry in the co-occurrence matrix got
updated. Lastly, we applied GloVe [41] separately to the three
co-occurrence matrices and set the embedding dimensionality
as 128.

2) BERT: For each of the three modalities, the BERT
model received patients’ visiting sequences encoded in this
modality as patient-level pre-training data. Specifically, the
pre-training data was Dpatient = [p1,p2, . . .,pk], where pi =
[vi,1, . . .,vi,ik ] represents the chronically ordered ith patient’s
visit sequence; i ∈ [1, k], ik is the length of his visit sequence,
and eachvi,j , j ∈ [1, ik] is a training-sample in GloVe described
above. We adopted the structure of the model in Med-BERT [47]
pre-trained with masked language model (MLM) objective.
Dpatient was augmented by adding ‘[SEP]’ token between two
visits and ‘[CLS]’ token in the beginning of each pi. 15% of
codes in each pi sequence were masked, 80% of which were
replaced with ‘[MASK]’ token, 10% were replaced with random
token except ‘[MASK]’, and the rest part remained unchanged.
Each patient’s visit sequence was then embedded into two
embeddings – code embedding and segment embedding. In
particular, codes belonging to the same visit would have the
same segment embedding, e.g. codes in vi1 were all embedded
with the first segment embedding, for all i ∈ [1, k]. Through
training, the MLM objective led the code embedding to learn
the contextual information in each patient’s visits and to predict
the co-occurrence between these codes. The dimensionality of
code embedding was also set as 128.

Similarly, we used the aforementioned methods to pre-train
medical concept embeddings for the eICU dataset following the
same processing pipeline. Notably, for procedure information,
we selected the surgeries/operations from the ‘treatment’ table
and used the procedure names directly rather than ICD codes.1

B. Dual Keyless Attention Model

DuKA aims to model the multi-modal EHR data by utilizing
medical concept/code embeddings that have been pre-trained
using the methods discussed in the previous section. It then
outputs the probability of a clinical event based on the specific
task. In this study, the inputs consists of embeddings from
three medical modalities (diagnosis, procedure, and medication)
that occurred within a patient’s hospital visit/ICU admission,
and the output is the probability of experiencing organ failure
during the patient’s subsequent hospital visit or ICU admission.
This scenario involves two levels of complexity. Firstly, within
each modality, there are numerous medical codes, resulting in a
large number of high-dimensional embeddings that need to be
integrated. Secondly, the embeddings from different modalities
cannot be integrated (e.g. by taking the average) directly since
they are pre-trained in the context of the single modality and
therefore not in a shared common space. To address the first
level of complexity, the code-wise keyless attention mechanism

1[Online]. Available: https://eicu-crd.mit.edu/eicutables/treatment/

https://eicu-crd.mit.edu/eicutables/treatment/
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Fig. 1. Illustration for the Dual Keyless Attention (Duka) Model. The e in the Model Input box represents the pre-trained embeddings and its
subscriptions d, p and m represent the number of diagnosis, procedure and medication codes in a visit, respectively. Notably, the age and gender
embeddings are randomly initialised which follows the practices implemented in [21].

is employed to fuse multiple code embeddings into a single
representation that captures the information of the modality to
which the codes belong. To tackle the second level of complexity,
the modality-wise keyless attention mechanism is utilized to
integrate all modality-level embeddings into a unified represen-
tation that captures cross-modality information.

As illustrated in Fig. 1, DuKA fuses multi-modality input and
simultaneously offers interpretation at two different data levels,
code/concept-level and modality-level. DuKA takes in three sets
of pre-trained embeddings that are matched with the visit-level
information (the three sets of codes occurred during a visit).
They are then fed into keyless attention modules separately to
generate modality-level embedding and learn the code impor-
tance. Notably, since this study incorporates three different data
modalities, the keyless attention mechanism is invoked three
times at the code-level, once for each data modality. Secondly,
the modality-level embeddings are further fed into a second at-
tention module to generate visit-level embedding which is lastly
used to perform the task. This completes the dual attentions. The
keyless attention module handles missing modality/code by us-
ing masked attention, attending the non-empty modalities/codes
only. Moreover, we can also choose to include patients’ age and
gender as predictors. Finally, the model input features are the
pre-trained embeddings for diagnosis, procedure, medication
and random initialised, trainable age and gender embeddings.

1) Keyless Attention: We adopted a keyless attention
mechanism in DuKA to fuse embeddings from different modal-
ities and learn embedding importance. The original attention
that was first proposed in LSTM (Long-short term memory) [2],
[30] requires a key/anchor to calculate the attention scores.
More recently, a popular attention mechanism was proposed in

the Transformer work [53] which requires a key-query pair to
learn attention scores. These different attention mechanisms are
illustrated in Fig. 2. More detailed differences are explained in
Appendix II.

Specifically, the keyless attention is calculated as follows:
taking the code-level attention as an example, the attended output
embedding which we denote as the modality-level embedding,
z, is computed as

z =
∑

i

αiei, (1)

where ei is the pre-trained code embedding within a modality;
αi is the attention score and calculated as

αi =
exp(hi)∑
j exp(hj)

. (2)

hi is a function of ei and has the same form as the paper that first
proposed attention ([2]), a multi-layer perceptron (MLP) with
tanh as the activation function, specifically,

hi = f(ei) = v�i tanh(w�
i ei), (3)

where wi and vi are the trainable weight vectors of the two
hidden layers in the MLP. Note that function f(·) in (2) now
acts only on one object ei, instead of a pair or a triplet which the
usual attention mechanisms operate on.

Similarly, the second-level (modality-level) of attention is
computed in the same way using (2) and (3). The attended
embedding z in (2) is now the visit-level embedding (the top grey
dotted box in Fig. 1), and the input ei become the modality-level
embeddings, i.e. the z output from the previous attentions.
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Fig. 2. Illustration of the different attention mechanisms, (a) shows the keyless attention adopted in this work which learns the attention score
by operating on the input data itself, (b) is a form of key-value attention in which the attention score is calculated by requiring a Key matrix,
(c) illustrates the self-attention introduced in the Transformer model [53] where the attention score is obtained via the key-query relationship and
then mapped to the Value matrix. Together, the key-query pair can be regarded as the ‘key’ in the attention mechanism. (a) Keyless. (b) Key-value.
(c) Key-query-value.

We found similar usage of the keyless attention in the area of
computer vision [27], [29]. In our use cases, complex models
such as BERT that employs the key-value-query attention strug-
gled to converge, potentially due to over-paramerization. Large
and complex models typically involve a large number of param-
eters, which can make them challenging to train and optimize
on smaller datasets. The key-value-query attention mechanism,
while powerful, may exacerbate this problem by introducing
additional parameters and increasing model complexity. In con-
trast, keyless attention offers a more efficient alternative for
modeling smaller clinical datasets. By eliminating the need for
explicit keys, values, and queries, keyless attention reduces the
parameter overhead. This streamlined approach simplifies the
model architecture and improves its ability to generalize to
limited data.

The computational complexity is detailed in Appendix III.

C. Ablation Study

For ablation studies, we compared DuKA with the single-
modality single-attention models. The model input is simply the
pre-trained embeddings of diagnosis/procedure/medication. The
model naturally becomes a single-attention model since it does
not require modality-level attention. Notably, not every visit has
all three modalities’ information. We trained the single-modality
models using data without missingness. Therefore, the sample
size for the single-modality models is different.

D. Baseline Models

We also tested several baseline models including random for-
est classifier (RFC), gradient boosting classifier (GBC), stochas-
tic gradient descent classifier (SDGC) and one versus the rest
classifier (OVRC). The model input is the concatenation of the
averaged embeddings of each modality.

E. Model Assessments

To assess the above model, we split the respective dataset
into training, test and validation sets. The test set separation is
at the patient level to avoid leaking of intra-subject patterns:
we split the patients into a training + validation cohort and
a test cohort at the ratio of 0.8:0.2. The training + validation
cohort is further unwrapped to visit-level samples and split into

training and validation sets with the same ratio (0.8:0.2). Finally,
the test cohort is unwrapped to visit-level samples to allow
model testing. The class distributions between the three sets
were ensured to be similar.

We assessed the model performance using the weighted and
macro averages of precision, recall and F1-score of each class,
area under receiver operating characteristic (AUROC) and con-
fusion matrix. We ran each set of experiments 10 times to obtain
the mean and standard deviation of the assessment measures.
All results will be reported for the test set only, and all models
were trained and tested on the same splits of data.

IV. MIMIC TASK1: MULTI-CLASS ORGAN FAILURE TYPE

PREDICTION

A. Data and Task Setting

We set the task to predict which one of the three organ failures
will occur on the next visit. We further constrained that the
next visit happens within six months. We labelled each visit
based on the diagnosis code and the label can be one of the
three organ failure types, HF, RF or KF. Notably, we did not
consider patients with multiple organ failures. To simplify the
application in the real world, we assumed that the most recent
visit has the strongest impact on the next visit for organ failure
patients, therefore, only information in the most recent visit was
used to predict the organ failure label of the next visit. The
task is thus visit-based and we further enlarged the dataset by
unwrapping patients’ visits. For example, a patient with three
visits can construct two training samples: visit 1 to predict the
label of visit 2 and visit 2 to predict the label of visit 3.

In MIMIC-IV, we selected hospital admissions whose diagno-
sis codes are stored using the ninth version of ICD (ICD-9). To
identify patients with the three types of organ failure, we worked
with clinicians and selected 28 ICD codes related to these three
organ failures (a full list of ICD codes can be found in Appendix
Table V). The data pre-processing pipeline is shown in Fig. 7(a).
For the purpose of prediction, we selected patients with at least
two hospital visits and excluded patients with multiple organ
failures.

The data summary is shown in Table I and the pre-processing
pipeline is shown Appendix Fig. 7. We denote these patients
as the target cohort. We later found that if we process the data
following the pipeline in Fig. 7(a), every of the 8306 visits has
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TABLE I
DATA SUMMARIES FOR THE TWO DATASETS AND THREE TASKS. ‘#’ REPRESENTS THE ‘NUMBER OF’

TABLE II
ORGAN FAILURE TYPE PREDICTION RESULTS FOR THE BASELINE (RFC, XGB, SGDC, AND OVRC), DUKA AND ABLATION STUDY (THE BOTTOM BLOCK).

THE WEIGHTED SCORES ARE WEIGHED BY THE NUMBER OF LABELS IN EACH CLASS; THE MACRO SCORES ARE THE ARITHMETIC MEANS OF THE
INDIVIDUAL CLASSES. ‘DIAGNOSES’, ‘PROCEDURE’ AND ‘MEDICATION’ INDICATE THE SINGLE-MODALITY SINGLE-ATTENTION MODELS IN THE ABLATION STUDY.
DUE TO THE POOR PERFORMANCE OF BERT EMBEDDINGS FROM THE BASELINE AND DUKA MODELS, THEY WERE NOT TESTED FOR FURTHER ABLATION

STUDY. THE AUROC FOR THIS MULTI-CLASS SETTING IS CALCULATED BY THE ‘ONE VERSUS REST’ APPROACH DUE TO THE IMBALANCE OF THE CLASS
LABELS. THE NUMBERS SHOWN IN THE TABLE ARE THE AVERAGE AND STANDARD DEVIATION (IN BRACKETS) OF THE 10 RANDOM REPETITIONS. ‘*’: THERE

IS NO RANDOMNESS INVOLVED IN XGB, THEREFORE, NO STANDARD DEVIATION IS SHOWN

an organ failure diagnosis, i.e. we have no negative samples.
Label-wise, the dataset is very imbalanced with HF:RF:KF ≈
15:1:13.

The model implementation details can be found in Ap-
pendix III.

B. Results

We show the results without adding demographics to inputs in
Table II, since adding demographics did not improve model per-
formance in this task. We attach the results with demographics in
Appendix Table VI. Table II also gives the comparison between
GloVe and BERT embeddings. For all baseline models and
DuKA, GloVe embeddings outperformed BERT embeddings
based on the AUROCs. Therefore, BERT embeddings were not
further tested in the ablation study. DuKA model with GloVe
embedding as input gives the best results with the mean AUROC
being 90.978 which is significantly better than the second best
– the diagnosis single-modality single-attention model (p-value
= 0.009 in one-tail t-test). Moreover, among all single-modality
models, using procedure information on its own has the worst
predictive power.

By investigating the code-level attention scores, we found
that cachexia, endoscopic retrograde cholangiopancreatography
(ERCP) and furosemide are the heaviest-loaded variables for
diagnosis, procedure and medication, respectively. Cachexia is a
complex syndrome that is associated with many severe diseases
such as heart failure, chronic pulmonary and kidney diseases
and cancer [13], [54]. ERCP is a procedure used to treat the bile
ducts and main pancreatic duct, and furosemide is a common

Fig. 3. Confusion matrix and modality-wise attention score for Task 1.
These results are drawn from the DuKA model with the highest AUROC.
(a) Confusion Matrix. (b) Modality-wise attention score.

medication used to treat heart failure, liver or kidney diseases.
We attach the code-wise attention scores in Appendix Fig. 8.

We extracted the DuKA model with the highest AUROC and
show its interpretations as an example. The confusion matrix
in Fig. 3(a) and the modality-wise attention is shown Fig. 3(b).
Due to the small sample size in RF, it has the worst perfor-
mance among the three organ failures. The modality rank of
the attention scores is in line with the single-modality models’
performances with diagnosis having the most predictive strength
and procedure having the least.

V. MIMIC TASK2: ORGAN FAILURE PREDICTION FOR

ESSENTIAL HYPERTENSION PATIENTS

A. Data and Task Setting

The second task we performed is a binary classification task –
predicting organ failures among essential hypertension patients.
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TABLE III
TASK 2 RESULTS FOR DUKA (TOP BLOCK) AND ABLATION STUDY (BOTTOM BLOCK). THE WEIGHTED SCORES ARE WEIGHED BY THE NUMBER OF LABELS IN
EACH CLASS; THE MACRO SCORES ARE THE ARITHMETIC MEANS OF THE INDIVIDUAL CLASSES. ‘DIAGNOSES’, ‘PROCEDURE’ AND ‘MEDICATION’ INDICATE THE

SINGLE-MODALITY SINGLE-ATTENTION MODELS. DUE TO THE INFERIOR PERFORMANCE OF BERT AND DEMOGRAPHIC EMBEDDINGS, THEY WERE NOT
TESTED FOR THE ABLATION STUDY. THE BEST MODEL AND AUROC ARE HIGHLIGHTED WITH BOLD FONT

Fig. 4. Average AUROC for the four baseline models. We compared
four sets of input, GloVe embeddings without demographics (‘GloVe
w/o Demo’), GloVe embeddings with demographics (‘GloVe w/ Demo’),
BERT embeddings without demographics (‘BERT w/o Demo’) and BERT
embeddings with demographics (‘BERT w/ Demo’).

We identified patients with essential hypertension if any of their
diagnosis codes start with ‘401’ (Essential Hypertension). The
data selection was very similar to the first task apart from using
the essential hypertension ICD rather than organ failure ICD
codes (Appendix Fig. 7(b)). The prediction is still visit-based.
We labelled a patient’s visit as an organ failure instance if the
visit contains any of the organ failure ICD codes that were used
in Task 1 without specifying which kind of organ failure.

Table I shows the data summary for this dataset and the pre-
processing pipeline is shown Appendix Fig. 7. More specifically,
the positive rate is about 25.9% – 5792 out of 23223 total visits
are organ failure visits.

Same with Task 1, we fed both GloVe and BERT embeddings
with and without trainable age and gender embeddings as input
to the models. The model implementation details are shown in
Appendix III.

B. Results

Notably, the baseline models yielded closer results for the
settings with and without using demographic measures. Fig. 4
shows that apart from SVM, all other models have GloVe embed-
dings with demographics as the best input setting, and Logistic
Regression with GloVe embeddings and demographics has the
highest AUROC.

For DuKA, unlike the baseline models, we found that with-
out using demographic embeddings gave better performance
(Table III). Therefore, they were not tested in the ablation study.

Fig. 5. Top 20 code-wise attention scores for diagnosis averaged
across 10 repetitions of DuKA.

In the ablation study, single-modality model using only diagno-
sis codes has shown competitive performance with DuKA, the
second-best in AUROC. However, it is still significantly worse
than DuKA (p-value = 0.009 in one-tail T-test).

1) Attention Scores Interpretation: We extracted the at-
tention scores for the two attention modules of DuKA. The
mean attention scores for diagnosis, procedure and medication
are 0.604, 0.223 and 0.173, respectively. We notice that the
contribution of diagnosis is significantly higher than procedure
and medication, and the order of contribution between procedure
and medication has changed from Task 1.

For the code-level attention scores, we take diagnosis as an
example. Fig. 5 shows the top 20 most-weighted diagnosis codes.
The top code is ‘unspecified essential hypertension’ which is
not surprising since the target cohort in this task is patients with
essential hypertension and it is indicative towards organ failure.
We also see many organ failure-related historical diagnoses such
as ‘congestive heart failure’ and ‘unspecified acute renal failure’,
which suggests patients with organ failure histories are more
likely to develop organ failure again. Moreover, high-prevalence
chronic diseases such as diabetes, hyperlipidemia and anaemia
also appear at the top of the list which is suggested by litera-
ture to have correlations with HF and KF [5], [14], [15]. The
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Fig. 6. Diagnosis attention score interpretation by different groups
of patients. (a) shows the top ten diagnosis codes for patients that
develop organ failures; (b) are the top ten diagnoses for patients without
organ failure. (a) Patients with organ failures. (b) Patients without organ
failures.

attention scores also reveal ‘tobacco use disorder’ as a highly-
weighted diagnosis, which is reported to be related to RF [12].
Interestingly, ‘unspecified depressive disorder’ appears on the
list which indicate its associations with organ failures.

The attention scores for procedure and medication are listed
in Appendix Fig. 9. Notably, furosemide is the most attended
medication again which is the same in the Task 1.

We further separated the organ failure positive and negative
patients and interpreted their attention scores. Fig. 6 presents
the top 10 most-weighted diagnosis codes for patients that
developed organ failures (Fig. 6(a)) and did not develop organ
failures (Fig. 6(b)). From these attention scores we can see that
although the top diagnoses overlap largely between the two
groups of patients, for patients that developed organ failures,
having a congestive heart failure history is regarded as being
most important by the model whereas for organ failure negative
patients, congestive heart failure ranks sixth, weighing much
lower than having hypertension.

We attach the same attention scores for procedure and medi-
cation in Appendix Figs. 10 and 11.

Notably, the subject-specific attention scores can be extracted
from the model (illustrated in Appendix Figs. 12 and 13). These
scores can assist with personalized treatment by guiding clini-
cians to prioritize specific diagnoses, procedures, or medications
that play a more crucial role in precipitating organ failure.

VI. DUKA VALIDATION ON EICU DATABASE

Lastly, we tested the DuKA model on the eICU database.
This dataset contains only ICU admissions over multiple cen-
tres in the US. Similar to the previous two tasks, we selected

patients with one of the three organ failures based on the ICD-9
diagnostic codes. We further removed patients with only one
ICU admissions. The data processing pipeline is shown in Fig. 7.
The task is to predict whether a patient would experience one
of the three organ failures in their next ICU admission, utilizing
information collected from their previous ICU admission. The
data summary is shown in Table I. Notably, more than 95% of
the organ failures happened in ICU were respiratory failures.
Given the nature of this dataset, the training unit was defined as
the ICU admission rather than the hospital visit. The same model
architecture and training pipeline used for the MIMIC datasets
were maintained.

The results are shown in Table IV. Overall, DuKA shows
satisfying performance on the independent eICU dataset in
predicting organ failures in ICUs. The average modality-level
attention weights across 10 random repetitions for diagnosis,
procedure and medication are 0.54, 0.23, 0.24, respectively. The
importance ranking between the three modalities remains similar
to the two tasks on the MIMIC dataset.

VII. DISCUSSIONS

The construction of DuKA takes two important factors into
account. Firstly, DuKA is designed to fuse pre-trained medical
code/concept embeddings originating from different modalities,
which are trained separately. Leveraging pre-trained embed-
dings is a widely adopted approach due to their ability to provide
meaningful data representations. By incorporating embeddings
trained from diverse datasets or tasks, the model gains flexibility
and facilitates transfer learning. Secondly, DuKA aims to main-
tain a simple model structure while maximizing interpretability.
This is crucial for clinical applications where model inter-
pretability holds significant value. By offering straightforward
and simple feature importance, we prevent ’over-modeling’ of
relatively small clinical datasets by neural networks. Hence,
instead of employing the multi-head module, we embed the
keyless attention mechanism into DuKA. The resulting attention
scores could aid the personalized treatment and specific task un-
derstanding in clinical practice. Additionally, we conducted an
investigation into the attention scores from different repetitions
and observed high stability. Overall, the proposed DuKA model
addresses the challenges specific to modeling tabular EHR data.

However, we did not explore/optimise the form of the keyless
attention. For example, one can try other forms such as taking the
inner product of the feature itself. Moreover, we can use different
attention forms/dimensions for the two attention modules. We
are confident that these can improve the performance of DuKA
and are interesting future directions to explore.

Another emphasis of this work was to compare two popular
presentation learning methods and their pre-trained embeddings.
We found that in almost all models we considered, GloVe em-
beddings had better performance than BERT. We found similar
results in another work that performed representation learning
comparison [56]. The poor performance of BERT might be
caused by that we used BERT to pre-train the embeddings with
the masked language model only and did not fine-tune it using
the downstream tasks. Besides, although this pre-train enables
BERT to capture the contextual information within a patient’s
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TABLE IV
DUKA VALIDATION RESULTS ON THE EICU DATASET. SINCE THE PREVIOUS TASKS SHOWED THAT GLOVE EMBEDDINGS WITHOUT DEMOGRAPHIC FEATURES

HAVE SUPERIOR PERFORMANCE. THIS TABLE SHOWS THE RESULTS FOR THIS SETTING ONLY. THE EXPERIMENT WAS REPEATED FOR 10 RANDOM
INITIALISATIONS. THE MEAN SCORES ARE SHOWN FOR EACH ASSESSMENT MEASURE WITH THE STANDARD DEVIATIONS IN THE BRACKETS

visit sequence, the global information about the medical codes
of pathology is limited. By comparison, GloVe explicitly models
the global co-occurrence information, which can give results that
are more consistent with intuition.

We worked with clinicians and selected three types of vital
organ failures to perform the tasks. We designed two prediction
tasks, a multi-class organ failure type prediction and a binary
organ failure prediction. These tasks only use information in
one time step to predict the event in the next time point. We
are aware that using less historical information may reduce
the model’s performance. However, this setting reduces the
requirement for data acquisition and better suits the real-world
scenarios in low to middle-income countries where no advanced
EHR systems are in place or the EHR systems are not connected
among hospitals and therefore, it is harder to track people’s
health history. Moreover, we also tried adding trainable age
and gender embeddings using the same way with [21]. It is
surprising to find that in most cases, adding them did not bring
extra gain to the model performance, especially for DuKA.
It may indicate that this way of incorporating demographic
embeddings is not suitable for these tasks. It is also possible
that for the tasks we conducted, age and gender are confounded
with the diagnosis/procedure/medication information. We only
considered two of the demographic measures. Future work can
take more demographic/clinical features into consideration and
apply more sophisticated approaches to handle them such as
learning pre-trained embeddings.

In the conducted ablation studies, we observed that using
single diagnosis modality as input achieved similar levels of
performance in AUROC compared with the proposed DuKA
model. However, through T-tests, we still identified significant
improvements by employing DuKA. Moreover, one significant
advantage offered by DuKA is that it allows clinicians to
trace the contribution of variables from different sources of
input (diagnosis/procedure/medication), which is meaningful
in clinical practice. The modality-level attention scores offer
valuable guidance to clinicians, encouraging them to prioritize
diagnosis information when dealing with organ failure patients.
This advice becomes especially crucial in time-constraining
scenarios, such as admitting/treating patients in ICUs. The pre-
sented average code-level attention scores (e.g. Fig. 5) could
help with specific task understanding. The model can also gen-
erate subject-specific attention scores (Appendix Figs. 12 and
13), facilitating personalized treatment. This enables healthcare
providers to proactively address the prioritized diagnostic, pro-
cedural, or medication requirements of each patient.

DuKA also allows incorporation of other data modalities
which could potentially increase the performance gap from the
single-modality models. This is a worthwhile direction for future

investigations. One other limitation of this work is the selection
of the target cohort. Although we worked closely with two
clinicians to select the ICD codes, it is possible that some organ
failure patients are omitted. This may cause biased data labelling
and model results.

VIII. CONCLUSION

In this work, we introduce the Dual-Keyless Attention
(DuKA) model for modeling tabular Electronic Health Record
(EHR) data. The effectiveness of DuKA is demonstrated
through its application on two datasets and three clinical tasks.
The AUROCs received over these tasks range from 0.800 to
0.910. DuKA could further offer diagnostic, procedural and
medication-related clinical interpretations that are relevant to
the organ failures considered. Its ability to fuse embeddings
from diverse EHR data modalities, provide interpretable results,
and maintain simplicity in model architecture while maximiz-
ing interpretability showcases its potential value in clinical
applications.
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