
GREEN SOFTWARE ENGINEERING

Prof Michèle Weiland

m.weiland@epcc.ed.ac.uk

mailto:m.Weiland@epcc.ed.ac.uk

The rise and rise of HPC

1 Exaflop/s

100 Petaflop/s

10 Petaflop/s

NetDRIVE workshop, Edinburgh10th October

Figure SPM.10 in IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K.
Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY,USA, pp. 3−32, doi: 10.1017/9781009157896.001

NetDRIVE workshop, Edinburgh10th October

Electricity

• Operation

• Cooling

Manufacturing

• Computer hardware

• Infrastructure equipment

Construction

• Data centres

CO2 emissions from HPC & AI infrastructure

NetDRIVE workshop, Edinburgh10th October

Progress in hardware energy efficiency in the past 10 years…

Frontier

1.1 Eflop/s &

21.1MW

Tianhe-2A

33 Pflop/s &

17.8MW

June’13: 2 flop/s/W

June’22: 52 flop/s/W

→ 25x improvement in energy efficiency in less than 10 years

NetDRIVE workshop, Edinburgh10th October

Green software engineering

• Hardware is becoming more efficient – what about software?

1. Minimising power draw?

2. Minimising energy use?

3. Minimising emissions?

4. Maximising science throughput & utilisation?

➔ Different targets, which require different approaches

10th October NetDRIVE workshop, Edinburgh

The di↵erence between power and energy

T
H
E

U
N I V E R

S

I
T
Y

O
F

E
D
I N B

U

R
G
H

• Power is measured at an instant in t ime

• Energy is measure over a period of t ime
• Energy = Power ⇥ t ime
• Joules = Watts⇥seconds

2

Energy = Power × time

Joules = Watts × seconds

1. Minimising power draw

• Reason: power cap (e.g. infrastructure limitations)

• Applications should draw as little power as possible

• Even at the expense of using more energy

• Avoid power-hungry operations

• E.g. vector instructions where there is no performance benefit

• Moving data is cheap in terms of power (compared to compute)

10th October NetDRIVE workshop, Edinburgh

The di↵erence between power and energy

T
H
E

U
N I V E R

S

I
T
Y

O
F

E
D
I N B

U

R
G
H

• Power is measured at an instant in t ime

• Energy is measure over a period of t ime
• Energy = Power ⇥ t ime
• Joules = Watts⇥seconds

2

Energy = Power × time

Joules = Watts × seconds

2. Minimising energy use

• Reason: operational cost reduction

• Applications use as little energy as possible to get result

• Even at the expense of using more power

• Optimising runtime is a key (though not the only) factor

• E.g. recomputing data preferrable to moving data

10th October NetDRIVE workshop, Edinburgh

The di↵erence between power and energy

T
H
E

U
N I V E R

S

I
T
Y

O
F

E
D
I N B

U

R
G
H

• Power is measured at an instant in t ime

• Energy is measure over a period of t ime
• Energy = Power ⇥ t ime
• Joules = Watts⇥seconds

2

Energy = Power × time

Joules = Watts × seconds

3. Minimising emissions

• Reason: sustainability

• Becoming more complex now…

• Emissions do not only depend on the application, but where/when

it is run

• However, an efficient application will inherently incur lower

emissions than an inefficient one

10th October NetDRIVE workshop, Edinburgh

The di↵erence between power and energy

T
H
E

U
N I V E R

S

I
T
Y

O
F

E
D
I N B

U

R
G
H

• Power is measured at an instant in t ime

• Energy is measure over a period of t ime
• Energy = Power ⇥ t ime
• Joules = Watts⇥seconds

2

Energy = Power × time

Joules = Watts × seconds

4. Maximising science throughput

• Reason: getting the most out of investment

• Applications use as much energy as they need to get results fast

• Power and energy use are secondary to runtime

• Optimising runtime & parallel efficiency are key factors

• Requires understanding of scaling behaviour

10th October NetDRIVE workshop, Edinburgh

The di↵erence between power and energy

T
H
E

U
N I V E R

S

I
T
Y

O
F

E
D
I N B

U

R
G
H

• Power is measured at an instant in t ime

• Energy is measure over a period of t ime
• Energy = Power ⇥ t ime
• Joules = Watts⇥seconds

2

Energy = Power × time

Joules = Watts × seconds

Pre-requisites to green software engineering

10th October NetDRIVE workshop, Edinburgh

• Impossible to understand how to

improve efficiency without performance

and power data

• But can be tricky to get access to

accurate power readings

• Especially on new architectures or in Cloud

environments

• Consistency of data is not guaranteed

➔ This must be made simpler

MLPerfHPC - Cosmoflow

0

2000

4000

6000

8000

10000

12000

0 8 16 24 32 40 48 56 64

TI
M

E
(S

)

OF CPUS/GPUS

mean epoch time

Nvidia V100 GPUs AMD EPYC Rome CPUs

• 3D CNN that estimates initial conditions of

the universe based on simulations of

distributed matter

• TensorFlow with Keras, uses Horovod for

distributed training

• Full dataset is 1.7 TB

• 524,288 training samples and 65,536

validation samples

• Comparing two systems

• HPE EX with AMD EPYC Rome CPUs

• Two 64-core CPUs per node

• Average power consumption: ~220W per CPU

• Power measurements for full node

• HPE ICE XA with Intel Skylake CPUs and Nvidia V100
GPUs

• Four GPUs per node

• Average power consumption: 320W per GPU

• Power measurements do not include CPUs

NetDRIVE workshop, Edinburgh10th October

MLPerfHPC - Cosmoflow

0

2000

4000

6000

8000

10000

12000

0 8 16 24 32 40 48 56 64

TI
M

E
(S

)

OF CPUS/GPUS

mean epoch time

Nvidia V100 GPUs AMD EPYC Rome CPUs

0

50

100

150

200

250

300

0 8 16 24 32 40 48 56 64

EN
ER

G
Y

(M
J)

OF CPUS/GPUS

total energy for 10 epochs

Nvidia V100 GPUs AMD EPYC Rome CPUs

• GPU system: better initial performance, but worse scaling

• CPU system: close to GPU performance at scale → better network, better I/O

➔ Is it a reasonable comparison? Full node power (ARCHER2) vs GPUs only (Cirrus)

NetDRIVE workshop, Edinburgh10th October

Measuring power & energy

10th October NetDRIVE workshop, Edinburgh

27-point stencil, 400^3, 10 iterations

10th October NetDRIVE workshop, Edinburgh

10th October NetDRIVE workshop, Edinburgh

No amount of green

software engineering

can change the idle

power/energy

10th October NetDRIVE workshop, Edinburgh

Idle power Idle energy

No amount of green

software engineering

can change the idle

power/energy

Choice of algorithms

10th October NetDRIVE workshop, Edinburgh

o CFD application – performs

reordering on the mesh

o Taylor-Green Vortex on 400^3

mesh

o 10 nodes of ARCHER2

o Different algorithms available

for reordering

o RCM

o zcurve

Reverse Cuthill-McKee

Space-filling curve (zcurve)

Choice of algorithms – the full picture

10th October NetDRIVE workshop, Edinburgh

Reverse Cuthill-McKee

Space-filling curve (zcurve)

o RCM is much faster than

zcurve

o ~40s vs ~157s

o Case dependent

Efficient software ≠ efficient use

10th October NetDRIVE workshop, Edinburgh

o Node-level power measurement

o Each line represents power draw for 1 node

o Full system, 34 nodes in total

o Idle power draw: 213W

o Two identical aerodynamics simulations

with OpenFOAM using 32 nodes

o On the left: no I/O

o On the right: excessive I/O

Efficient software ≠ efficient use

10th October NetDRIVE workshop, Edinburgh

o Node-level power measurement

o Each line represents power draw for 1 node

o Full system, 34 nodes in total

o Idle power draw: 213W

o Two identical aerodynamics simulations

with OpenFOAM using 32 nodes

o On the left: no I/O

o On the right: excessive I/O

Efficient software ≠ efficient use

10th October NetDRIVE workshop, Edinburgh

o Node-level power measurement

o Each line represents power draw for 1 node

o Full system, 34 nodes in total

o Idle power draw: 213W

o Two identical aerodynamics simulations

with OpenFOAM using 32 nodes

o On the left: no I/O

o On the right: excessive I/O

Efficient software ≠ efficient use

10th October NetDRIVE workshop, Edinburgh

o Node-level power measurement

o Each line represents power draw for 1 node

o Full system, 34 nodes in total

o Idle power draw: 213W

o Two identical aerodynamics simulations

with OpenFOAM using 32 nodes

o On the left: no I/O

o On the right: excessive I/O

o Excessive I/O means network contention &

frequent stalling

530W &

20mins

220-530W

& 200mins

Even highly efficient software can be misused to be extremely inefficient

Green software engineering - dos and don’ts

• Do capture requirements & write software
that serves its intended purpose

• Do use CI systems and rigorous testing

• Do ensure users understand how to use
your software correctly

• Do profile performance, find hotspots and fix
them

• Do consider if algorithms are appropriate

• Do choose programming models based on
performance, usability and maintainability

• Do design your code to be modular

• Don’t jump on band wagons without
justification

• Don’t be afraid to test new/different
techniques

• Don’t forgo testing in favour of speed of
development

• Don’t forgo testing at scale because it uses
compute cycles

• Don’t believe software development for
HPC is not a specialist skill

• Don’t blindly use code generated by
ChatGPT

10th October NetDRIVE workshop, Edinburgh

Green software engineering - dos and don’ts

• Do capture requirements & write software
that serves its intended purpose

• Do use CI systems and rigorous testing

• Do ensure users understand how to use
your software correctly

• Do profile performance, find hotspots and fix
them

• Do consider if algorithms are appropriate

• Do choose programming models based on
performance, usability and maintainability

• Do design your code to be modular

• Don’t jump on band wagons without
justification

• Don’t be afraid to test new/different
techniques

• Don’t forgo testing in favour of speed of
development

• Don’t forgo testing at scale because it uses
compute cycles

• Don’t believe software development for
HPC is not a specialist skill

• Don’t blindly use code generated by
ChatGPT

10th October NetDRIVE workshop, Edinburgh

None of this differs from good

software engineering practice in

general!

Final thoughts

Green software engineering is mostly just good software engineering

• Efficient, well written software that serves a purpose is inherently “green”

• Survey of widely used applications?

• Education is key – targeting developers and users alike

10th October NetDRIVE workshop, Edinburgh

Significantly reducing scientific throughput is a false economy

“Green” software engineering therefore must target maximum throughput!

HPC systems are scientific instruments that are used to find solutions to many of the problems humanity faces

→ to discover new vaccines

→ to design new renewable energy solutions

→ to model the climate, in order to more accurately predict climate change & its impact

	Slide 1: Green Software Engineering
	Slide 2: The rise and rise of HPC
	Slide 4
	Slide 5: CO2 emissions from HPC & AI infrastructure
	Slide 6: Progress in hardware energy efficiency in the past 10 years…
	Slide 7: Green software engineering
	Slide 8: 1. Minimising power draw
	Slide 9: 2. Minimising energy use
	Slide 10: 3. Minimising emissions
	Slide 11: 4. Maximising science throughput
	Slide 12: Pre-requisites to green software engineering
	Slide 13: MLPerfHPC - Cosmoflow
	Slide 14: MLPerfHPC - Cosmoflow
	Slide 15: Measuring power & energy
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Choice of algorithms
	Slide 20: Choice of algorithms – the full picture
	Slide 21: Efficient software ≠ efficient use
	Slide 22: Efficient software ≠ efficient use
	Slide 23: Efficient software ≠ efficient use
	Slide 24: Efficient software ≠ efficient use
	Slide 25: Green software engineering - dos and don’ts
	Slide 26: Green software engineering - dos and don’ts
	Slide 27: Final thoughts

