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The rise and rise of HPC
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Figure SPM.10 in IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental 
Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. 
Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY,USA, pp. 3−32, doi: 10.1017/9781009157896.001
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Electricity

• Operation

• Cooling

Manufacturing

• Computer hardware

• Infrastructure equipment

Construction

• Data centres

CO2 emissions from HPC & AI infrastructure
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Progress in hardware energy efficiency in the past 10 years…

Frontier

1.1 Eflop/s & 

21.1MW

Tianhe-2A

33 Pflop/s & 

17.8MW

June’13: 2 flop/s/W

June’22: 52 flop/s/W

→ 25x improvement in energy efficiency in less than 10 years
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Green software engineering

• Hardware is becoming more efficient – what about software?

1. Minimising power draw?

2. Minimising energy use?

3. Minimising emissions?

4. Maximising science throughput & utilisation?

➔ Different targets, which require different approaches 
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The di↵erence between power and energy
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• Power is measured at an instant in t ime

• Energy is measure over a period of t ime
• Energy = Power ⇥ t ime
• Joules = Watts⇥seconds

2

Energy = Power × time

Joules = Watts × seconds 



1. Minimising power draw

• Reason: power cap (e.g. infrastructure limitations)

• Applications should draw as little power as possible

• Even at the expense of using more energy

• Avoid power-hungry operations

• E.g. vector instructions where there is no performance benefit

• Moving data is cheap in terms of power (compared to compute)
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2. Minimising energy use

• Reason: operational cost reduction

• Applications use as little energy as possible to get result

• Even at the expense of using more power

• Optimising runtime is a key (though not the only) factor

• E.g. recomputing data preferrable to moving data
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3. Minimising emissions

• Reason: sustainability

• Becoming more complex now…

• Emissions do not only depend on the application, but where/when 

it is run

• However, an efficient application will inherently incur lower 

emissions than an inefficient one
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4. Maximising science throughput

• Reason: getting the most out of investment

• Applications use as much energy as they need to get results fast

• Power and energy use are secondary to runtime

• Optimising runtime & parallel efficiency are key factors

• Requires understanding of scaling behaviour
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Pre-requisites to green software engineering
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• Impossible to understand how to 

improve efficiency without performance 

and power data

• But can be tricky to get access to 

accurate power readings

• Especially on new architectures or in Cloud 

environments

• Consistency of data is not guaranteed

➔ This must be made simpler



MLPerfHPC - Cosmoflow
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• 3D CNN that estimates initial conditions of 

the universe based on simulations of 

distributed matter

• TensorFlow with Keras, uses Horovod for 

distributed training

• Full dataset is 1.7 TB

• 524,288 training samples and 65,536 

validation samples

• Comparing two systems

• HPE EX with AMD EPYC Rome CPUs

• Two 64-core CPUs per node

• Average power consumption: ~220W per CPU

• Power measurements for full node

• HPE ICE XA with Intel Skylake CPUs and Nvidia V100 
GPUs

• Four GPUs per node

• Average power consumption: 320W per GPU

• Power measurements do not include CPUs
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MLPerfHPC - Cosmoflow

0

2000

4000

6000

8000

10000

12000

0 8 16 24 32 40 48 56 64

TI
M

E 
(S

)

# OF CPUS/GPUS

mean epoch time

Nvidia V100 GPUs AMD EPYC Rome CPUs

0

50

100

150

200

250

300

0 8 16 24 32 40 48 56 64

EN
ER

G
Y 

(M
J)

# OF CPUS/GPUS

total energy for 10 epochs

Nvidia V100 GPUs AMD EPYC Rome CPUs

• GPU system: better initial performance, but worse scaling

• CPU system: close to GPU performance at scale → better network, better I/O

➔ Is it a reasonable comparison? Full node power (ARCHER2) vs GPUs only (Cirrus) 
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Measuring power & energy
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27-point stencil, 400^3, 10 iterations
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No amount of green 

software engineering 

can change the idle 

power/energy
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Idle power Idle energy

No amount of green 

software engineering 

can change the idle 

power/energy



Choice of algorithms
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o CFD application – performs 

reordering on the mesh

o Taylor-Green Vortex on 400^3 

mesh

o 10 nodes of ARCHER2

o Different algorithms available 

for reordering

o RCM

o zcurve

Reverse Cuthill-McKee

Space-filling curve (zcurve)



Choice of algorithms – the full picture
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Reverse Cuthill-McKee

Space-filling curve (zcurve)

o RCM is much faster than 

zcurve

o ~40s vs ~157s

o Case dependent



Efficient software ≠ efficient use
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o Node-level power measurement

o Each line represents power draw for 1 node

o Full system, 34 nodes in total

o Idle power draw: 213W

o Two identical aerodynamics simulations 

with OpenFOAM using 32 nodes

o On the left: no I/O

o On the right: excessive I/O
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Efficient software ≠ efficient use
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o Node-level power measurement

o Each line represents power draw for 1 node

o Full system, 34 nodes in total

o Idle power draw: 213W

o Two identical aerodynamics simulations 

with OpenFOAM using 32 nodes

o On the left: no I/O

o On the right: excessive I/O

o Excessive I/O means network contention & 

frequent stalling

530W & 

20mins

220-530W 

& 200mins

Even highly efficient software can be misused to be extremely inefficient



Green software engineering  - dos and don’ts

• Do capture requirements & write software 
that serves its intended purpose

• Do use CI systems and rigorous testing

• Do ensure users understand how to use 
your software correctly

• Do profile performance, find hotspots and fix 
them

• Do consider if algorithms are appropriate

• Do choose programming models based on 
performance, usability and maintainability

• Do design your code to be modular

• Don’t jump on band wagons without 
justification

• Don’t be afraid to test new/different 
techniques

• Don’t forgo testing in favour of speed of 
development

• Don’t forgo testing at scale because it uses 
compute cycles

• Don’t believe software development for 
HPC is not a specialist skill

• Don’t blindly use code generated by 
ChatGPT
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None of this differs from good 

software engineering practice in 

general!



Final thoughts

Green software engineering is mostly just good software engineering

• Efficient, well written software that serves a purpose is inherently “green”

• Survey of widely used applications?

• Education is key – targeting developers and users alike
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Significantly reducing scientific throughput is a false economy

“Green” software engineering therefore must target maximum throughput!

HPC systems are scientific instruments that are used to find solutions to many of the problems humanity faces

→ to discover new vaccines

→ to design new renewable energy solutions

→ to model the climate, in order to more accurately predict climate change & its impact
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