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In-network computing provides significant performance benefits, load reduction, and power savings. Still,
an in-network service’s functionality is strictly limited to a single hardware device. Research has focused on
enabling on-device functionality, with limited consideration to distributed in-network computing. This paper
explores the applicability of distributed computing to in-network computing. We present DINC, a framework
enabling distributed in-network computing, generating deployment strategies, overcoming resource constraints
and providing functionality guarantees across a network. It uses multi-objective optimization to provide a
deployment strategy, slicing P4 programs accordingly. DINC was evaluated using seven different workloads
on both data center and wide-area network topologies, demonstrating feasibility and scalability, providing
efficient distribution plans within seconds.

1 INTRODUCTION
In-network computing services, offloading applications to the programmable data plane, have been
explored for purposes such as caching [25], inference [7, 29], and compression [45]. Its benefits
include line-rate throughput, lower latency, power efficiency and data reduction.
However, scaling in-network services is hard, as programmable network devices are intended

for high-efficiency packet processing, with limited resources (e.g., memory, operations, and stages)
comparedwith CPUs. One approach is to optimize algorithms’ design for a single-device deployment,
yet resource constraints remain a limitation. An alternative solution is moving to distributed in-
network computing, jointly utilizing resources of programmable network devices.
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Fig. 1. Distributed in-network computing paradigm.

Distributed in-network computing raises
multiple implementation challenges, especially
where resource-heavy applications are consid-
ered, such as large machine learning (ML) mod-
els. Figure 1 illustrates the challenges: (1) De-
composing the single program into multiple
segments. (2) Distributing the program’s seg-
ments across multiple devices without affecting the correctness of its functionality. (3) Satisfying
the program’s and network’s set of constraints, such as latency and resource constraints. (4)
Providing the program’s functionality for any set of paths within the network without routing
rules changes. This last challenge is possibly the hardest, as in a network packets may travel from
any node to any node, and operators may use different routing optimization methods.
In a software-defined network, a controller has a centralized view of the network, including

device information, and potential routes through the network. Building upon this information, a
controller can be designed to provide a joint resource provisioning plan for distributed in-network
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computing. It can utilize unused network resources, splitting a single in-network computing service
across several devices.
Network service chains provide heuristic solutions for segment placement and distributed

planning [47]. However, there are intrinsic and significant differences between it and distributed
in-network computing, both in terms of the type of devices used and their location. Unlike CPU-
and GPU-based service chains, deployed at the server level, in-network computing service segments
are deployed physically within the network, on switch-ASIC [5], FPGA [20], or network interface
cards (NICs) [44]. The architecture, resource constraints, communication models and performance
requirements are inherently different to traditional service chains (see §2).

Preliminary efforts toward distributed in-network computing [8, 9, 32, 43] focused on the distri-
bution problem. Some of these works [8, 9] distributed multiple programs, rather than slicing a
single program, or partitioned Match-Action tables using manual directives [32]. Flightplan [43]
was the only one to disaggregate and place a distributed program. Yet little effort has attended to
the challenge of routing through the network, from any node to any node, without routing rules
modifications or at the scale of a wide area network (WAN).

In this paper, we present DINC, Distributed In-Network Computing. DINC efficiently plans and
implements P4-based service partitions on multiple network devices. DINC’s planner supports any-
to-any routing and is able to distribute and deploy program segments across network devices while
providing full, correct functionality. To ensure co-existence with normal network functionality,
DINC co-designs a code slicer and generator, extracting and generating P4 program slices in
accordance with the planner’s strategy. DINC is a scalable, flexible, and easy-to-deploy modular
framework. In summary, our key contributions are:

• Introducing a distributed in-network computing solution for in-network services.
• Developing a mathematical model for distributed in-network computing programs deploy-
ment within many-paths networks. The model is simple, efficient, and extendable.

• Presenting a mechanism ensuring the full execution of each program.
• Implementing DINC, a modular framework for slicing data plane programs and deploying
them on a distributed set of programmable network devices. DINC is easily extensible with
new deployment strategies, devices, and architectures, and co-exists with normal network
functionality without changes to routing rules.

• Demonstrating the applicability for three in-network computing services (load-balancing,
telemetry and ML), showing scalability to large networks. These are prototyped and evaluated
both on a switch-ASIC and in an emulation environment, using a large ISP (Internet service
provider) wide area network and Folded-Clos data center topologies.

2 MOTIVATION
Programmable network devices are resource-constrained due to their performance-driven design
logic [17]. For example, Intel Tofino switch [16] can guarantee Tbps-scale throughput, but has only
12 processing stages and Mb-scale memory. These resource constraints are a main challenge for
offloading applications to the network. Still, in-network computing prototypes (e.g., caching [25], ag-
gregation [28, 40], ML inference [48, 57], resource scheduling [4], and consensus [13]) demonstrated
real-time processing, offloading computing tasks from servers and achieving high performance.
While the performance on a single device is high, resource contention between in-network

computing applications and network functionality is a barrier for adoption. To illustrate the
challenge, Figure 2 shows the resource consumption of the RARE open source router [33] when
deployed on Tofino. As shown in Figure 2, the router consumes more than half of the pipeline
stages with only basic functionality. Using more features of the RARE router exhausts and even
exceeds Tofino’s resources.
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Fig. 2. Resource consumption of a RARE Router with
basic functionality on Intel Tofino. The color bar indi-
cates the percentage of utilized resources.

Deploying an in-network computing pro-
gram on the same device as RARE, is hard or
impossible without stage sharing. Figure 3(a)
shows the feasibility of deploying example ML
models (using Planter [57]) on Tofino, stan-
dalone and coexisting with RARE. As a model’s
size increases to improve its performance, re-
source consumption increases too, as shown in
Figure 3(b).

Types SVM NB RF XGB
Stages 9 8 6 15
Entries 0.1M 0.1M 0.3M 1.4M
Alone ✓ ✓ ✓ ✗
Coexist ✗ ✗ ✗ ✗
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Fig. 3. ML models (a) resource consumption and (b)
scaling with model’s hyper-parameters. 𝑁𝐵 - Naïve
Bayes, SVM - Support Vector Machine, RF - Random
Forest, XBG - XGBoost. The hyper-parameter used for
XGB is depth and for NB is number of features.

Consider the case where the ML models
shown in Figure 3 are used to implement a
cyber-security service, detecting and dropping
malicious traffic. In a wide area network (WAN),
such malicious traffic may come from any user,
pass through any switch, and go to any desti-
nation. The cyber-security service will need to
be deployed in a manner that guarantees that
no matter the path taken through the network,
malicious packets will be detected and dropped.
To support both normal network function-

ality, and the ML-based service, distributing
programs across several devices is needed. However, it is not easy to distribute an in-network
application across multiple devices, for the following reasons: 1. There is no agreed model of the
network used for distributed in-network computing. Intuitively, in-network computing should not
affect existing network functions, nor the routing rules used to forward packets. 2. After program
segmentation, there are parameters shared across segments of the application, and the data passing
model is undefined. 3. Application splitting and coexistence with network functions is error-prone,
as well as guaranteeing segmentation execution order. To address these challenges, this work
explores efficient methods for deploying in-network computing services in a distributed manner.

3 THE CONCEPT OF DINC
To explain how in-network computing can be distributed and deployed, we first discuss common
properties of algorithms using an example in-network computing application, and then demonstrate
the many-paths nature of the network using a sample network topology.

3.1 In-network Computing Example
In-network computing provides application functionality by mapping computation tasks to pro-
grammable data planes on network devices. These data planes use match-action pipelines, where
values are looked-up in a table, and the result of the lookup is an action. Typically, every match-
action pair consume a processing state within the pipeline. Sequential dependencies between
operations lead to a series of stages used on the device, with metadata used to pass shared informa-
tion between stages (metadata is stored in a packet header vector (PHV) [5], which is initialized
per packet). Despite the high performance of existing work [2, 13, 18, 25, 28, 51–53, 57], resource
limitations remain a constraint. As demonstrated in Figure 3, scaling up computing complexity leads
to exhaustion of resources. We use Naive Bayes (NB) as an example of a classical ML classification
algorithm that uses typical in-network ML mapping and faces resource constraints.

Equation 1 shows the in-network Bayes mapping used by [57]. Different from traditional Naive
Bayes, the log(#) operation converts multiplication into addition (as multiplication is not supported
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on a switch). Themap(#) operation ensures that used intermediate values are covered with minimal
accuracy loss.

𝑦 = argmax
𝑦

[map(log2 𝑃 (𝑦)) +
𝑛∑︁
𝑖=1

map(log2 𝑃 (𝑥𝑖 | 𝑦))] (1)
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Fig. 4. Data plane implementation of Bayes based
on [57] and Equation 1.

Figure 4 shows the data plane realization
of the above equation. Step ❶ shows the ex-
traction of 𝑛 features (fields) from the packet
header, and storing them in metadata fields as
𝑓𝑥1 to 𝑓𝑥𝑛 . Next, the probability of each class
map(log2 𝑃 (𝑦)) is read from a table called read
probability (RD Prob) into metadata fields as
𝑚𝑐1 to𝑚𝑐𝑚 (given a classification problem with
𝑚 classes) in Step ❷. For every input feature 𝑖 ,
Steps ❸ and ❹, look up an intermediate value map(log2 𝑃 (𝑓𝑥𝑖 | 𝑐 𝑗)) and add it to its respective
class 𝑗 . The prediction probability of all𝑚 classes will be𝑚𝑐1 to𝑚𝑐𝑚 , and the final pipeline stage
(marked compare) finds the class with the maximum probability through comparison, and sets it as
the output label (Step ❺).

While mapping details vary between applications, this example is representative in terms of its
common stage-based structure and metadata passing. The distributed deployment strategy of this
example on a sample network topology, and the challenges it faces, will be explained in Section 3.3.

3.2 Network Scenario
In this work, we consider a distributed in-network computing deployment scenario in a network
with many-paths, using multiple ingress and egress nodes. Data can originate from any ingress
node and terminate at one or more egress destinations. Beyond this any-to-any or many-to-many
connectivity, techniques such as load balancing or routing redundancy mean packets from the
same service may be routed through multiple paths, for a given source-destination pair.
Distributed in-network computing should not affect existing network protocols (e.g., IS-IS)

nor services (e.g., load balancing). Given a deployment scenario and underlying routing rules,
distributed in-network computing should find best-effort service deployment within the given
network constraints, without changes to routing rules. In this manner, packets from any source
node should be fully processed before reaching their destination along any possible path.

3.3 Distributed Deployment Example
DINC enables the deployment of large in-network computing programs, as its framework is able to
slice a program into segments and deploy these segments within network devices given resource
constraints (e.g. memory, operations, stages).

Output
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Fig. 5. An example deployment of an in-network algo-
rithm (Bayes) on network topology (Folded-Clos).

Figure 5 shows a sample deployment of a
Bayes classification algorithm (explained in Fig-
ure 4) using three-features on a Folded-Clos
topology (assuming all network devices are
programmable). Two inputs (core switches)
and four outputs (edge switches) are assumed1.
Packets can through any downstream pathwith
minimal changes. Segments on each device are
shared among multiple paths flowing through the node.
1This is a simplified scenario, traffic is presumably generated outside this network.
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This figure shows an ideal example of a distributed deployment, where Extraction (E) and read
probability (RD Prob) are deployed in the first hop (core switches), feature tables 1 & 2 (𝑓1, 𝑓2) in
the second hop, and feature tables 3 (𝑓3) and Compare (C) in the last hop (edge switches). The
deployment may be obvious, as the network is symmetric and well structured. For larger or more
complex networks and programs, the deployment is complicated, as demonstrated in §9.

4 DINC OVERVIEW
To provide an ideal deployment of in-network computing program segments on complex network
topologies, DINC answers three key questions:

• How to plan and distribute segments across multiple paths in a given network? (§5)
• How to ensure functionality when programs are distributed inside a network? (§6)
• How to make distributed in-network computing easy to deploy? (§7)

Before answering these questions, we first provide an overview of the DINC framework’s
operation, shown in Figure 6. DINC is given an in-network computing program with both data
plane and control plane code components (shown in ❶), and a network topology (shown in ❷).
DINC’s P4 slicer (§7.1) extracts the program resource requirements (shown in ❻), dependencies
(shown in ❸), and metadata information. The network controller provides the routing table, with
all paths identified either by the controller or DINC (shown in ❹) and the resources available on
each network device (shown in ❺). DINC’s planner (§5) uses the outputs from steps ❸ to ❻ to craft
an integer linear programming (ILP) problem and outputs a deployment strategy in step ❼. This
guides the P4 generator (§7.2) for data plane and control plane codes generation in step ❽.
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Fig. 6. DINC workflow overview (steps ❶ to ❽).

5 PLANNING
Most previous distributed in-network computing works focused on single-planned paths [12, 26,
46]. In this section, we address the absence of distributed planning for in-network computing
across multiple paths, without influencing the routing rules of the original network. To tackle
this, the problem is formulated within the DINC planner as an ILP problem and we introduce a
solution with reduced complexity. In subsection 5.1, we introduce the network model and algorithm
partition and formally define a deployment strategy. Subsections 5.2 and 5.3 model the deployment
optimization mathematically into an integer linear programming problem. An ILP solver is given
in the subsection 5.4. Terms used in this section are summarized in Appendix B.

5.1 Network Model
We focus on the in-network computing tasks planning problem among the programmable devices
and hence ignore undeployable nodes after edge contraction. A set of network devices with order
and without duplication along a data trace connecting the input and output nodes is referred to
as an In-Out Path. A network with 𝑁𝑑 deployable devices can be represented by tuple (D,P),
where D := {1, · · · , 𝑁𝑑 } is the set of devices and P contains 𝑁𝑝 := |P | paths. Each element
𝑃𝑖 ∈ P,∀𝑖 = 1, · · · , 𝑁𝑝 is an ordered set of size 𝑙𝑖 , i.e., 𝑃𝑖 = {𝑝1𝑖 , · · · , 𝑝

𝑙𝑖
𝑖
}. The chain 𝑝1𝑖 → · · · → 𝑝

𝑙𝑖
𝑖
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represents a path from an input device 𝑝1𝑖 to an output device 𝑝𝑙𝑖
𝑖
, where 𝑙𝑖 is the total number

of devices in path 𝑖 . There are 𝑁𝑟 types of resources in the programmable device networks (e.g.,
storage), and we use 𝑅𝑟

𝑑
to denote the available resource type 𝑟 ∈ [𝑁𝑟 ] on device 𝑑 ∈ D.

Assume that the target in-network computing algorithm can be decomposed into 𝑁𝑒 elements.
Let E := {1, 2, · · · , 𝑁𝑒 } be the set of all the algorithm’s element indices. For any DINC planner, let
𝑋𝑒→𝑑 ∈ {0, 1},∀𝑒, 𝑑 be the deployment decision (strategy), where 𝑋𝑒→𝑑 = 1 indicates algorithm
element 𝑒 is deployed on device 𝑑 . If 𝑋𝑒→𝑑 = 1, by running element 𝑒 , device 𝑑 will cost𝑂𝑟

𝑒 units of
resource 𝑟 (e.g., CPU running time or storage).

The goal is to design a deployment strategy, i.e., {𝑋𝑒→𝑑 }, that can achieve application objectives
(e.g., low latency) and a small number of duplicated deployed segments while consuming little
resources on the programmable devices.

5.2 Constraints
A successful deployment strategy should typically satisfy dependency, integrity, and resource
constraints, which are explained as follows:

5.2.1 Dependency: Assume that the 𝑁𝑒 elements have to be completed in order among each in-out
path. For every path, any elements 𝑒 in the in-network computing algorithm should appear at
least once before its successor 𝑒′. Mathematically, if element 𝑒′ is deployed on device 𝑝 𝑗

𝑖
, i.e., the

𝑗-th device of the 𝑖-th path, the deployment decision variable 𝑋
𝑒→𝑝

𝑗

𝑖
= 1 and element 𝑒 has to be

deployed on at least one node in set {𝑝1𝑖 , · · · , 𝑝
𝑗−1
𝑖

}, i.e.,
𝑗−1∑︁
𝑘=1

𝑋𝑒→𝑝𝑘
𝑖
≥ 𝑋

𝑒′→𝑝
𝑗

𝑖
,∀𝑒 < 𝑒′, 𝑖 ∈ [𝑁𝑝 ], 𝑗 ∈ [𝑙𝑖 ], (2)

5.2.2 Integrity: All the segments should be executed on each in-out path to satisfy the integrity of
the algorithm. Therefore, on every path 𝑖 , every element 𝑒 ∈ E should appear at least once, i.e.,

𝑙𝑖∑︁
𝑘=1

𝑋𝑒→𝑝𝑘
𝑖
≥ 1,∀𝑖 ∈ [𝑁𝑝 ] . (3)

5.2.3 Resource Constraints: The type 𝑟 resource on each device 𝑑 must be sufficient for all deployed
elements. Therefore, ∑︁

e∈𝐸
𝑂 𝑟
𝑒 𝑋𝑒→𝑑 ≤ 𝑅 𝑟

𝑑
.∀𝑑 ∈ [𝑁𝑑 ], 𝑟 ∈ [𝑁𝑟 ] . (4)

5.2.4 Other Potential Constraints: The above constraints can be extended, encompassing addi-
tional and customized requirements, such as limitations on hops and latency for specific services,
constraints on throughput, and variations in resource constraints using heterogeneous devices. The
specific constraint conditions applied can be adjusted based on the specific deployment scenario.

5.3 Objective
We expect our deployment strategy to optimize the following three major objectives in distributed
in-network computing: minimize the resource consumption, minimize the computation delay and
minimize duplicate deployed segments. Quantifying the aforementioned objectives is as follows:

5.3.1 Resource Consumption. A good deployment strategy should minimize the total resource
consumption of all types of resource 𝑟 . Let OR,𝑟 be the total type 𝑟 resource cost in the network.
Recall that𝑂𝑟

𝑒 is the type 𝑟 resource overhead if element 𝑒 is deployed, for each deployment strategy
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{𝑋𝑒→𝑑 }, then OR,𝑟 can be computed as follows:

O𝑅,𝑟 :=
𝑁𝑑∑︁
𝑑=1

𝑁𝑒∑︁
𝑒=1

𝑂 𝑟
𝑒 𝑋𝑒→𝑑 . (5)

5.3.2 Latency. Assume that the transmission delay on each path is fixed regardless of the execution
task. We then focus (as an example objective) on minimizing the execution latency. The execution
latency on each in-out path 𝑗 ∈ [𝑁𝑝 ] can be computed by accumulating the execution time of each
element 𝑒 . Suppose 𝐿𝑒

𝑑
is the execution time of element 𝑒 deployed on device 𝑑 . The execution delay

O𝐿,𝑖 on path 𝑖 can be computed by:

O𝐿,𝑖 =

𝑙𝑖∑︁
𝑗=1

𝑁𝑒∑︁
𝑒=1

𝐿
𝑝
𝑗

𝑖
𝑒 𝑋

𝑒→𝑝
𝑗

𝑖
(6)

5.3.3 Multi-objective Optimization. We aim at designing a deployment strategy that can optimize
resource consumption and performance objectives (e.g., latency) at the same time. Such a problem
can be formulated as a multi-objective optimization problem, where there may exist multiple Pareto
optimal points (i.e., the execution latency cannot be minimized without consuming fewer resources).
To find such Pareto optimal points, we took a linear scalarization approach [19]. The ultimate
objective function is a weighted linear combination of the execution latency on all in-out paths
and all types of resource consumption. i.e.,

O := 𝑤𝑅

𝑁𝑟∑︁
𝑟=1
O𝑅,𝑟 +𝑤𝐿

𝑁𝑝∑︁
𝑖=1
O𝐿,𝑖 , (7)

where𝑤𝑅,𝑤𝐿 ∈ R+ are the weights of resource consumption and execution latency, respectively.
The above optimization objectives can be flexibly adjusted based on varying service requirements
and deployment environments.

5.4 ILP Solver
Recall that deployment decision 𝑋𝑒→𝑑 are binary decision variables. Minimize the scalarized objec-
tive function (7) under constraints (2), (3) and (4) can be rewritten as an integer linear programming
problem (ILP). The constraints (§ 5.2) and objectives (§ 5.3) in this section are the most common
ones and can be amended or replaced (§ 7) for different applications.
Searching for the optimum solution of an ILP is NP-hard. We tackle this problem using the

branch-and-cut method [36] that combines the cutting plane method and brand-and-bound method.
The solving details can be found in Appendix C.

6 DISTRIBUTING SEGMENTS TO NODES
The previous section presented a theoretical solution in DINC for planning the program distribution
strategy, while questions still remain on how to effectively deploy the program element into a
programmable network topology based on the deployment strategy. In order to clearly address
these questions, we provide a brief introduction to how typical in-network computing programs
are executed. Figure 7 shows a sample in-network computing program. When packets come in,
features 𝑓1 and 𝑓2 are extracted from the packet header to packet header vector (PHV) as metadata.
Together with𝑚1,𝑚2, and 𝑓3, all metadata conveys intermediate results between segments 𝑒1, 𝑒2,
and 𝑒3, where the output is feature 𝑓3. The output 𝑓 3 from the last segment 𝑒3 is put back into the
packet header as a result. Through this process, PHV will be cleared between packets and metadata
will reset. For the distributed deployment of such a sample program, each segmentation should be
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sequentially executed and each segment requires metadata from dependent segments in order to
function correctly.

m1 m2 f3f2 m2 e3e2f1f1 f2 f3 m1e1e2e1 e3

Fig. 7. In-network computing program, encode-based
ML model as an example [57], and the sliced segments
of the program.

To realize this, two key questions should be
addressed. 1. How to encode and pass metadata
among segments? 2. How to ensure all program
elements are being executed in order and without
duplication? These two questions are solved by
using the DINC header (§ 6.3), which is a dedicated header for distributed in-network computing
algorithms.

A

B CInputs Output

e1 e3e2A

B CInput Output

Input e2e1 e3

Output Output

Fig. 8. The sample in-network computing programs
deployment on the programmable network with two
in-out path.

A simple toy example shown in Figure 7
and Figure 8 is used to better demonstrate
these two problems. Considering given con-
straints when deploying this algorithm in pro-
grammable network devices, one possible de-
ployment strategy is plotted in Figure 8. In this
case, there are three in-out paths within the
topology {{𝐵}, {𝐵 → 𝐶}, {𝐴 → 𝐶}}. The two problems addressed in this case are:

1. Along path {𝐴 → 𝐶}, metadata from segment 𝑒1 on device 𝐴 should be able to be well
encoded and passed to device 𝐶 for element 𝑒2 and 𝑒3. At the same time, besides the input
and output of element 𝑒1, the system should recognize 𝑓2 (input of 𝑒2 on device 𝐶) as part of
the input and output on device 𝐴. (§ 6.1)

2. Along path {𝐵 → 𝐶}, after packets execute 𝑒1, 𝑒2, and 𝑒3 on device 𝐵, the element 𝑒2 and 𝑒3
on device 𝐶 should not be activated. While these two elements should be activated when it
receives the packet along the path {𝐴 → 𝐶} from the device 𝐴. (§ 6.2)

6.1 Metadata Passing
Any used metadata should be well encoded and passed to the target segmentation from its pre-
decessor segmentation. There are several options to convey information from one node to the
other. The first option is to mirror and send the packet independently [1]. However, this option is
not realistic without synchronizing arrival time and will not give a guaranteed metadata delivery.
Another option is to pass through the control plane, the control plane cannot guarantee conveying
of metadata and has a limited bandwidth of data transfer. In DINC, we choose to store metadata in
a predefined header. Although a larger header will increase the average packet size and influence
the packet rate, the evaluation shows the influence is minor and the program generated by DINC is
able to reach the full line rate. Most importantly, it can guarantee the runtime metadata passing.
Once the metadata are marked as the output of the segment, DINC will break and store it in several
32 bits chunks. In the parser of the following dependent segment, the auto-generated encapsulate
logic will help to restore the metadata. To guarantee the consistency of metadata passing over
segments, and ensure transmission reliability when it is not used in some of the segments, DINC
designed a checking process to auto-complement missing metadata on markers.

6.2 Segment Traversing
In the distributed scenario, it is possible that segments are being duplicated especially whenmultiple
paths join together as shown in Figure 8. To ensure every segment is executed once and only once,
a bit map is held by each packet. Before the execution of any segmentation, it will check if the
packet is fully processed by the predecessor-dependent segments. Once passing this check, along
with the execution of the segment, the bitmap will be updated with the current segment. With the
help of this per-segment bitmap checking process, no matter which path the packet comes from
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or which set of segments the packet has been passed, they can share the same set of segments
without being duplicated and executed. All the checking processes and segment bitmap IDs are
auto-generated by the DINC framework.

6.3 DINC Header Design

Protocol header model

Version             Program ID          Num features       Num segments
0                                                                          8                                                 16                                                                        24                              31

Bitmaps

Intermediate features

Num segments × 4 bytes

Num features × 4 bytes

Fig. 9. The DINC header design.

No matter what the type of deployment strategy
is, if there are intermediate metadata traversing
between segments, data and segment informa-
tion should be able to traverse among devices.
Thus, a standard DINC protocol header is de-
signed to meet requirements and allow services like intra-metadata encoding and passing (§ 6.1)
and segment traversing (§ 6.2).

As shown in Figure 9, beyond the DINC version, the protocol contains three types of information:
1. program related, 2. metadata related, and 3. segment related. The program-related information
shows which one or several in-network computing programs are currently executed and included
in the packet, mainly based on the Program ID field. The metadata-related contains information on
the number of intermediate features included and their values. The bitmap information indicates
the set of segments already executed. The overhead of DINC is limited to 16B if the program is
sliced into 32 segments or less, and the metadata traversing between two segments is within 8B.
Given the header in Figure 9 was designed with redundancy for future extensions (e.g., version,
number of features, number of segments, 32 bits bitmap), the used DINC header can be smaller.
The header size can be further minimized by adding constraints and objectives in the planner [9].

7 DINC FRAMEWORK DESIGN
The deployment of distributed in-network computing is challenging for two reasons. The first is
the complexity of the data plane program. It is hard to correctly extract information from a given
data plane program according to user expectations. The second is the complexity of data plane
program generation. Reconstruction of a valid data plane program under a certain architecture,
coexisting with its use case, and with an embedded DINC header is difficult, especially when the
slice is complex.
The DINC framework is designed to tackle these two challenges. DINC contains a data plane

program Slicer, a strategy Planner, a code Generator, and a Tester, allowing the generation of sliced
data plane programs and their deployment on target hardware nodes. The detailed workflow of
the framework shown in Figure 10 is as follows: ❶ User input: The target data plane program
and slicer markers are required as user inputs for DINC configurations. ❷ Network configuration:
The network topology and its related resources are required and stored in DINC configurations,
which can generate directly from the network controller or emulate by using the DINC framework.
❸ DINC slicer: The network slicer slices the target program based on the markers, builds the
dependency between each segment, and digs the resource information of each segment. ❹ DINC
planner: The planner is used to generate deployment strategies for the target program. Based on
the input network topology, segment dependency, remaining resources for each network device,
and the resource overhead of each segment from previous steps, the planner applies the ILP (§
5) to formulate the plan. ❺ P4 generator: The code generator generates data plane codes for all
programmable network devices. To generate the codes, the generator jointly combines the selected
architecture and use case based on the DINC configurations, and combines the program segments
of the input program from the deployment strategy. ❻ Synthetic test: Before loading the generated
code to the real hardware, a synthetic test is implemented by the framework. The framework will
activate a test environment with the same topology as the input network, and load the generated
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Fig. 10. The DINC framework components and workflow steps (❶ to ❼).

model for each node. The test can then be easily done within the environment while the content
varies by use cases. P4 debugging tools can be used in the field to trace and correct bugs in each
generated segment [42, 59]. ❼ Segment loader: When the test is finished, the generated data plane
programs with sliced segments are to be sent to the controller for deployment.

Among the seven key components mentioned above, the DINC planner has been introduced in
Section 5. The other two key components that simplify the process of distributing segments to
nodes are introduced: the DINC specialized P4 code slicer (§ 7.1) and P4 code generator (§ 7.2). The
rest four components are used as auxiliaries for the evaluation and functionality tests where the
results will be presented in Section 9.

7.1 Code Slicer

1 control Ingress(...){

2 // @!S,0!@ @!P,control!@

3 table e_1{...}
4 action e_1(...){...}

5 // @!E,0!@

6 // @!S,1!@ @!P,control!@
7 table/action...
8 // @!E,1!@
9 apply{

10 // @!S,0!@ @!Pre,none!@ \

11 @!P,control-apply!@

12 e_1.apply();

13 // @!E,0!@

14 // @!S,1!@ @!Pre,none!@

@!P,control-apply!@↩→
15 e_2.apply();
16 // @!E,1!@
17 } }

Table 1. Sample in-network ML P4 code
(DT) with markers to show a sliced pat-
tern as in Figure 7. Segment information
like End, Slice, Previous, and Position are
included between markers @! and !@.

The DINC slicer is used to segment the input data plane
program and extract information from it. There are two
design options, the first is a compiler-like module that
is able to auto-detect and extract information. Despite
its good intentions, this design needs extra configuration
efforts, limits the scope of input programs and informa-
tion types and can lead to errors. The second, used by
DINC’s slicer, is to use manually added markers to slice
the program and extract the information. This solution
is lightweight and flexible.

A functional slicer needs to support several properties
of the program: 1) The code is between different parts
of the pipeline (e.g., parser, ingress, egress). 2) The de-
pendency of each segment is complex. 3) The required
resources may change between cases.
Manually added markers enable solving these chal-

lenges. We use a fragment of a sample-sliced program
in Table 1 to show how it works. In the program, markers
@! and !@ are used to notify the slicer where the infor-
mation should be extracted. The marker design is flexible
and can be customized in the framework. The markers
are written in comments and do not affect the execution
of the original program. Further information related to
slicer design is provided in Appendix D.

7.2 Code Generator
The design objective for the code generator is to generate the data plane program that can be
directly applied to each node. The key problem is How can we most reuse the resources during the
generation process?
To solve this, the DINC generator is designed based on a controller plus multiple architectures

and uses case building blocks. Before generating any node, the controller will invoke the selected



DINC: Toward Distributed In-Network Computing 11

architecture and use case block based on the network controller or the DINC configurations.
Besides writing the skeleton of the data plane program, the selected architecture folder will call
the respective use case function for writing use case codes at each position of the program. The
deployment strategy will also be applied in the architecture block to drive the regeneration of
the sliced segment at the right position. Functions that can auto-generate P4 codes dealing with
metadata embedding and extraction as well as bitmap checks are applied and can be called by any
nodes or segments during the generation process.

7.3 Modular Framework Design
The new architecture and target design appear frequently, and a design that allows iteration is
required. The DINC framework applies a modular design, where a centralized controller is used to
provoke corresponding modules according to the input DINC configurations. When a module is
selected, all the functions under this module will be loaded to the controller. DINC currently are
designed to support modular topology generators, solvers, architectures, targets, slicers, use case
generators, and testers. With this modular framework design, DINC can be adapted to the required
case easier and with strong customized capacity.

7.4 Multi-Program Deployment and Resource Fairness
DINC is primarily designed to distribute a single large program across multiple devices when it
cannot fit on a single device. However, it does not currently support the automatic distribution
of multiple programs provided incrementally; it only supports iterative deployment. To ensure
fairness, limitations should be imposed within the planner, such as allocating available resources
evenly or adding upper constraints on the total resources for each resource type. Further elaboration
related to fairness can be found in Appendix E.

8 IMPLEMENTATION
The DINC framework is implemented in Python 3.10. The ILP solver is based on milp, a mixed-
integer linear programming solver in SciPy v1.10.0. The topology is stored using NetworkX 3.0.
The framework is open and available on the DINC’s GitHub repository [54]. DINC supports a
range of predefined modules, including topologies, solver, slicer, architectures, targets, and tester.
Under topologies, DINC currently supports Fat-Tree, Folded-Clos, and BT ISP. The P4 slicers
currently support manual configuration inputs, where inputs come from manual marking or are
auto-generated by a data plane automation framework like Planter. DINC supports two architectures:
v1model [35] and TNA [21] and coexists with simple forwarding, RARE [33], and Intel’s switch.p4.

9 EVALUATION
Our evaluation focuses on three key questions: (i) does DINC enable deployment of large in-network
computing algorithms that were not previously feasible (§ 9.2)? (ii) is DINC suitable for different
network topologies with various configurations and scales (§ 9.3)? and (iii) is DINC’s performance
sensitive to network configurations and parameter tuning (§ 9.4-§ 9.5)?

9.1 Evaluation Setup and Datasets
9.1.1 Topologies. We evaluate DINC using two common network scenarios — a Folded-Clos based
data center network topology (shown in Figure 11(a) with 3 core, 6 aggregation level, and 24 edge
switches, connecting around ten thousand servers), and a large ISP backbone network - British
Telecom (BT) (shown in Figure 11(b) with more than a thousand nodes: 8 inner core, 12 outer core,
63 metro, and 925 tier 1 switches). An aerial view of the BT topology is shown in Figure 18.
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Fig. 11. Network topologies used for evaluation.

Using the two topologies, Table 2 shows a subset
of potential ingress/egress switch setups. A total of
five setups are presented, and are combinations of
two dimensions: communication direction and de-
ployment view. The direction of communication in
a network may depend on a service requesting or
responding, going between Core (C) and Edge (E)
switches in Figure 11(a) or Inner Core (I) and Tier
1 (T) switches in Figure 11(b). Peer-to-peer commu-
nication between end servers is considered between
Edge (E) switches or Tier 1 (T) switches.

Setup Setup 1 Setup 2 Setup 3 Setup 4 Setup 5
Topo. Clos BT Clos BT Clos BT Clos BT Clos BT
Ingress All E All T All C All I One E One T All C All I One E One T
Egress All C All I All E All T All C All I One E One T One E One T

Table 2. Network ingress & egress scenarios using the topolo-
gies shown in Figure 11.

In terms of application deployment,
a service may target all traffic going
through a network, or a subset of users.
In the first case, the network operator
is the one that defines and controls the
deployment. In the second, which fits
e.g., campus networks, only a subset of the network might be used and have proprietary constraints.

9.1.2 Workloads. We use several popular in-network computing programs from different domains:
in-network telemetry (INT) using PINT [2], load balancing using Pegasus [30], and in-network
ML inference based on Planter [48, 57] with 5 ML models. These applications represent advanced
in-network computing services, yet they require significant resources and need optimization when
co-deployed with other data plane forwarding functions.

9.1.3 Metrics. The efficiency of distributed in-network computing is evaluated for the following: 1.
Number of used nodes: The number of nodes required to deploy an in-network computing program.
This number depends on the total number of available nodes. 2. Hops per path: The number of hops
required to complete a given in-network computing program. Hop number is directly proportional
to the latency, and hops are used to represent latency, and to ensure the evaluation is unbiased
in terms of network setups and equipment selection. Cumulative distribution function (CDF) of
hops provides further insights into the distribution of required hops per path. 3. Duplication of
segments: in topologies with multiple in-out paths, duplicate segments may exist on different paths.
The amount of duplication is relative to the total number of nodes and shows the efficiency of
the deployment strategy. 4. Execution time: Job completion time of the ILP solver is critical to its
application. The ILP solver’s execution time depends on multiple factors, ranging from the topology
to the program, and the solver will be generally scalable if the time increases in a linear manner.

9.1.4 Environment: Both large-scale simulation and small-scale hardware tests are conducted. The
simulation is based on Mininet and BMv2, and hardware tests run on Tofino using APS-Networks
BF6064X-T (64×100𝐺) and two NetBerg Aurora 710 (32×100𝐺) switches. Tofino compiler is further
used for feasibility testing. Further details are in Appendix G.

9.2 Functionality
Simulation: DINC is evaluated both on the Folded-Clos data center network and BT topology,
using the five setups and seven workloads. We measure the resource consumption and number of
hops on both single and distributed deployments for all workloads, as summarized in Table 3.

DINC is capable of processing distributed deployment problems at data center level with about
10,000 servers or at ISP level with around 1000 switches. As Table 3 shows, all workloads, including
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Program
Stand Alone

Segment Setup
Folded-Clos Topology BT ISP Topology

Stage Alone Coexist Path Dis. Nodes Hops Dup. Path Dis. Nodes Hops Dup.
INT-PINT [2] 7 ✓ ✗ 5 4 18 ✓ 10/33 3/3 9 36 ✓ 3/1008 1.42/3.92 8
LB-Pegasus [30] 8 ✓ ✗ 4 1 432 ✓ 30/33 2/3 56 26512 ✓ 400/1008 3.11/3.81 796
ML-NB [57] 8 ✓ ✗ 2 4 18 ✓ 9/33 2/3 7 36 ✓ 6/1008 2.92/3.92 4
ML-SVM [56] 9 ✓ ✗ 3 5 6 ✓ 8/33 3/3 5 12 ✓ 7/1008 3/5 4
ML-DT [48] 2 ✓ ✓ 2 3 18 ✓ 1/33 1/3 0 36 ✓ 1/1008 1/3.92 0
ML-XGB [56] 6 ✓ ✗ 4 2 432 ✓ 9/33 2/3 11 26512 ✓ 410/1008 2.76/3.81 422
ML-RF [56] 6 ✓ ✗ 3 1 432 ✓ 30/33 2/3 33 26512 ✓ 400/1008 3.11/3.81 405

Table 3. Sample programs Supported by DINC. Segmentation (Seg.) details can be found in [54]. Setups refers
to Table 2. Duplication (Dup.) - number of duplicated segments. ✓/✗ Deployment feasibility. Distribution
(Dis.) - distribution feasibility. Nodes - nodes used/total. Hops - average used hops/path length.

those that cannot coexist with RARE switch functionality (✗ in Coexist column) are feasible in a
distributed deployment, coexisting with network functionalities (Dis. column). As some programs,
e.g., ML-DT, coexist with other switch functions, DINC selects the best node along the path to
optimally utilize resources and minimize latency. Such resource optimization advantages can be
found in all distributed deployed programs.

In the comparison between standalone and distributed deployment, as illustrated in Table 3 (in
the same row), consider the example of ML-RF/XGB. Under Setup 2, with a Folded-Clos data center
configuration featuring 3 core, 6 aggregation, and 24 edge switches (equivalent to 1000 servers),
the solver successfully resolves 4 segments. In this setup, more than 400 distinct data paths require
service deployment. DINC’s implemented algorithm deploys segments on only 9 out of 33 devices,
achieving service completion with an average of 2 (out of 3) hops. Additionally, there are only 9
secondary segments duplicated, compared to deploying on each individual data path (which would
require thousands of repeated segments) or alternatively routing all flows requiring service through
a single path or a subset of paths. This significantly enhances deployment efficiency and reduces
resource consumption.
In the comparison between distributed deployment under different path setups (among rows

in Table 3), workloads in BT topology using all-to-all scenarios (setups 1 & 2) require using less
than 40% of the nodes, and each path requires on average less than one duplicated segment. For
one-to-one and one-to-all scenarios (setups 3-5), not all the devices are needed for complete task
execution. In the data center setting, the number of all-to-all deployments requires one-third of
nodes when data is arriving from the core (e.g., incoming to the data center). Tasks for outward
flows may require all nodes if a latency optimization is applied (comparing ML-RF and ML-XGB).
This shows that DINC’s ILP solver can reach optimal planning with efficient node utilization and
limited duplication under different topologies and traffic path conditions for both use cases.

DINC overheads: 1. Communication Overhead. Considering the scenarios listed in Table 3, the
maximum DINC header size needed is 20B. This translates to 3.77% traffic overhead in the ML
scenarios for packet classification. Using the ML models for flow-level classification using the first
30 packets per flow [7, 34], this overhead can be further reduced to 1.18%. For in-network telemetry
application, specifically under the Hadoop workload [2, 38], the communication overhead is as
low as 0.08%. 2. Resource Overheads. DINC’s distributed deployment does not introduce additional
memory overheads, as illustrated in Figure 12(a). However, DINC’s distributed deployment does
require additional pipeline stages. In comparison to a non-distributed program (the ideal case,
which is calculated from the unsegmented program), the deployment of sliced segments requires
2 additional stages overhead in total, as shown in Figure 12b. The two nodes indicate the two
consecutive connected network devices used for distributed deployment. These extra stages are
primarily used to ensure the sequential execution of segments, as discussed in Section 6.2. Due to
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this design characteristic, other programs in Table 3 entail the same resource overhead. Based on
the stage consumption results in Figure 12(b), Figure 12(c) presents the co-deployment together
with the L2/L3 switch with 15 network features (switch.p4), which is an advanced version of the
RARE router [33]. Compared to RARE in Figure 2, switch.p4 consumes more resources, which is
used here for a stress test. The figure shows that a 3-stage segment in the first network device
(Node 1) can be co-deployed without any stage overheads, while a 5-stage segment requires one
extra stage overhead on the following Node 2.
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Fig. 12. Overhead of DINC on distributed deploying
ML-RF [56] on two nodes, same as in the last row of
Table 3. Seg. Ideal - resource consumption of segments
calculated from the unsegmented program, WS - with
switch functionality (switch.p4).

Comparisonwith state-of-the-art: Flight-
plan [43] is a state-of-the-art solution for P4
program disaggregation. We apply the Flight-
plan planner with objectives in terms of la-
tency, throughput, and hops. We compare a
deployment of ML-RF [56] on Clos (similar
to the topology used in the Flightplan [43])
and BT topologies using both DINC and Flight-
plan. As Figure 13 shows, given the same pro-
gram segmentation, in the Clos topology (33
nodes/switches), DINC and Flightplan use the same number of nodes and require the same number
of hops for program completion (classification result). This is a result of a symmetric topology.
Benefiting from the ILP planner, DINC requires 35.3% less segment duplications, saving 11.3% of
memory resource. The benefits of DINC are demonstrated on the larger BT wide area network
(1008 nodes), where DINC uses only 39.7% of the nodes, compared with Flightplan’s 96.3%, and
reduces the number of duplicated segments from 1901 to 405, saving 54.5% memory resources while
maintaining the same number of hops. Compared to the heuristics used in Flightplan, DINC’s ILP
Planner is able to handle complex environments better and place segments efficiently.
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Fig. 13. Resource consumption comparison between
Flightplan [43] and DINC on deploying ML-RF [56] on
both BT ISP and Folded-Clos topology with setup 1,
same as in the last row of Table 3.

Hardware test: We evaluate DINC on
a small-scale hardware setup using the dis-
tributed RF-ML program on Point-to-Point and
Fat-Tree topologies constructed using three
Tofino switches, covering the majority of sce-
narios in Table 2 & Table 3. RF-ML is chosen
as Planter provides a functionality validation
test. The result shows the model functions cor-
rectly with the same accuracy as a standalone
deployment. For detailed setup see Appendix G.

9.3 Scalability
Using ML-RF as a leading example, we explore the scalability of the DINC solver on both two
topologies in terms of two key factors: the number of paths of the topology and the number
of segmentations of the in-network computing program. Despite the exponential increase in
solving time for complex topologies, our tests on medium and large networks show that DINC
solver efficiently handles the problem within a reasonable timeframe. It achieves millisecond-level
planning for the core to single switch deployment (setup 4) for both Folded Clos data center
topology (which is able to support around 10,000 servers) and BT ISP topology (for the whole UK).
Network-level deployment for a 6-segment ML-RF program across all cores and edge switches is
solved in 1 second for the Folded-Clos topology (400 paths) and 1 minute for the BT ISP topology
(26k paths). Looking into the trend of time consumption, as reported in Figure 14(a) and (b), a setup
where input is all Edge/Tier 1 switches and output is Edge switches. When the number of Edge/tier1
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Fig. 14. DINC ILP solver runtime and number of In-Out Paths scaling with coverage area (the number of
edge/tier 1 switches) or number of program segments.

nodes increases, the number of paths will also increase linearly, while the time required by the
DINC solver increases but slows down as the number of paths increases. When we test the number
of segments, we apply setup 4 for chasing a relatively large usage of paths. In Figure 14(c) and (d),
when the number of segments of in-network computing programs increases, the time consumption
increases exponentially. However, this is acceptable due to the number of segmentations is usually
bounded by a small number.

9.4 Performance
We also use ML-RF as a leading example to show how DINC performs under different network
scales. The ML-RF program requires 6 stages and is able to be deployed within a single path with
consecutive switches. Figures 15 show a hops CDF along all 5 sets of in-out paths generated by 5
different setups. As reported from Figure 15(a), no matter which setup on Folded-Clos topology
and due to its relatively simple and strongly symmetric topology, ML-RF can be executed within
two hops on all paths.
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Fig. 15. CDF of hops needed to complete a program.
Setups are in Table 2 and Figure 11.
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Fig. 16. How relative objective weight of 𝑤 (Equa-
tion 7) can influence the DINC deployment strategy.

In Figure 15(b), for BT ISP topology, setups 3 and 5 exhibit the best performance in terms of
latency as they process the traffic from the user level (input only comes from one switch). Under
this circumstance, there is no conflict among the objectives of lower latency, memory, and the
number of segmentations, allowing for closer-to-source deployment. Setup 2 and 4 have a similar
performance and share a relatively larger number of hops than the optimized solution. This is
because their tasks come from a deeper network and the input switches are inner core switches.
These setups contain more in-out paths but the traffic comes in at the places where each path is
easier to share the usage of segmentation. Setup 1 has the worst latency performance and it requires
4 hops to ensure all paths finish the processing of the program. It is because setup 1 represents
the deployment of services from all tier 1 edge switches to the inner core. The shared switches,
usually at the inner part of the network, are at the end of each route. It will be an extreme waste of
resources if we deploy duplicated segments on all paths for lower latency. For this reason, even
though both setups 1 & 2 have the same number of paths and just swap input and output switches,
they have slightly different CDF results.

Therefore, we observe that DINC performs effectively in the distributed deployment of programs,
whether in common data center networks composed of 33 network devices or in large-scale ISP
networks with up to 1008 network devices.
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9.5 Sensitivity
We test the sensitivity and the trade-offs of the DINC solver to the average number of hops and
the required number of duplicated segmentations, as the relative weights between latency and
other objectives are changed. Figure 16 shows that for both two topologies when we increase the
relative weight of latency above a threshold, the average number of hops will decrease. Yet, to
ensure functionality, the provided strategy requires more duplicate segments. This implies that
DINC users have the flexibility to adjust deployment strategies based on the defined objective
function and its associated weights. We note that the DINC is relatively robust and the deployment
strategy will not change abruptly when relative weights change.
The robustness of DINC’s distribution planner is further explored for ML-RF. When changing

the number of segments from 2 to 6, DINC consistently generates identical distribution results.

9.6 Throughput & Latency
The part shows the evaluation of the throughput of different decomposed RF model segments on
an Intel Tofino switch 64× 100𝐺 , coexisting with the RARE router [33]. The latency part shows the
relative latency of each segment+RARE with switch.p4 (an L2/L3 reference switch). Appendix G
provides details of the setup.
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Fig. 17. Throughput and Latency on Hardware.

For the sample distributed RF segments, As
shown in Figure 17, all segments are able to
coexist with the RARE router program and are
able to achieve a full line rate of 6.4Tbps bit rate.
For the latency of each segment, the coexistence
of the in-network computing application seg-
ment will increase the 10% of the relative clock
cycle. However, even coexists with RARE, all deployed segments have a relatively low latency,
which is lower than 60% of the reference design (switch.p4). The full line rate in the result proved
that the DINC-added bitmap and metadata passing mechanism will not limit the throughput of the
system. The relative latency shows that the coexistence of network functions by using DINC will
not significantly increase the consumption of the clock cycle.

10 DISCUSSION AND LIMITATIONS
DINC is an important step toward distributed in-network computing and improved utilization of
data plane resources.
Scope of DINC. Not all in-network computing programs are suitable for a distributed deployment.
DINC is well-suited for stateless programs without packet recirculation. In stateful programs, the
limitation stems from potential multi-path routing, rather than DINC’s distributed deployment.
Packets going through different paths will experience different states (e.g., counter value). This can
be resolved by setting DINC to generate single-path results. In programs requiring recirculation,
DINC cannot guarantee that the segmented program can resend packets to the switch of the
first deployed segment. Instead, recirculation can be transformed to longer programs (as in loop
unrolling) before applying DINC.
DINC prerequisite. To run DINC, users need to provide a program, the program’s segmentation,
and resource requirements for each segment, and it is assumed users have a certain level of under-
standing of their programs. Automation of the segmentation and resource tasks can be achieved by
adding DINC new modules (e.g., [27]). Additionally, the Planner requires the network’s topology,
routing paths, and available resources at each node. The architecture and base program running on
each network device are needed to auto-generate the distributed code.
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Stage sharing. Although switch functionality consumes considerable resources in pipeline, it is
still possible to share stages with an in-network application. Currently, DINC does not exhaust
these spaces during the planning process and leaves them as elastic “spaces”. They are sometimes
used for operations like assigning metadata to header and bitmap checking.
Slicing applications in other languages. In general, DINC is designed for P4 code decomposi-
tion and distribution on programmable network devices. To support other languages, e.g. NPL or
Domino [41], the P4 Generator of DINC should be replaced with the relevant language’ generator.
Partitioning characteristics. Different program partitioning can impact usability. Finer-grain
segmentation yields better results from the planner. However, increasing segmentation also in-
creases the computational burden on the planner. Additionally, the placement of slices can impact
the amount of metadata used, thereby influencing communication overheads. This consideration
can be incorporated into optimization constraints and objective functions.
Runtime updates. The control plane can drive runtime control and updates based on the planner’s
results. However, when adding or altering services, or when there are changes to network topology,
it is necessary to rerun DINC and update affected nodes. For certain modifications, such as adding
new routing paths, it is not sufficient to run DINC on the added routing paths rather than the entire
topology. While this incremental approach may not yield the optimal result, it avoids non-critical
updates and can significantly reduce computational overhead. However, to find the global optimal
result, we have to run DINC over the entire topology.
Failed DINC compilation. Three reasons can lead to a compilation failure. 1. Insufficient Resources
for Deployment: If a path contains less resources than the minimum needs of a given program, or if
the network resources cannot jointly satisfy the minimal deployment requirement across multiple
paths, no valid planning solution exists. 2. Inaccurate resource estimation: An overestimation of
device resources by the central controller, an underestimation of required resources by the user, or
an underestimation of DINC’s code merging overheads can lead to a failed compilation. As these
issues are reported during compilation, they can be fixed by adjusting the corresponding resource
constraints and re-running DINC. 3. Inadequate Code Slicing: In certain instances, excessively
coarse-grain code partitioning can result in deployment failures. Very large code blocks may exceed
a single device’s resources, requiring a finer-grain partitioning, followed by a re-execution of DINC.
Network failures. A device failure does not necessarily lead to a program failure. If multiple
paths exist between the source and destination (prior to the failure), operations continue without
disruption. This is due to the handling of link failures by the network’s inherent load balancing
and routing mechanisms, underscoring DINC’s advantage of preserving the original routing and
network functionalities. In the case of a device failing along a single route, a new route needs to be
found and DINC should be incrementally run for this route.
Stages consumption In the evaluation, we use models and configurations that are sometimes
intentionally larger than in the original publication. For example, for ML-RF [57], it is possible to
deploy a small 3-stage model, with a reduced level of accuracy, while we use a larger model that
consumes 6 stages. This is as one of the DINC’s aims is to improve the scalability of in-network
programs, and ML model sizes in particular.
Planning objectives and constraints. The constraints and objectives above are provided as an
example and are suitable for most in-network computing workloads. More objectives, such as
latency or throughput constraints, variations of use-case and resources constraints, and minimizing
packet overheads [9] can be specified in a planner module (§ 7). DINC also supports heterogeneous
devices by adjusting constraints on the corresponding resources.
DINC Applications. DINC is designed to execute a single large in-network computing program
across multiple network devices in a distributed manner. It supports various in-network computing
applications, such as telemetry [2], aggregation [28], inference [58], and load balancing [30].
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Furthermore, by relaxing planner constraints, DINC can potentially offer distributed deployment
strategies for a broader range of computing tasks (e.g., [14, 15, 31]).

11 RELATEDWORK
NFV service chain planning. Service distribution is common in virtual network functions
(VNFs) [10, 11, 22–24, 49]. Network function virtualization (NFV)-based work mainly focused on
traditional processing, where the network serves just as a medium, and latency and throughput
are the main objectives. In DINC, the network is both the processing element and the medium,
and in-network services are deployed across many paths. DINC’s deployment augments network
functionality without changes to routing.

Work Slice Code ILP Planner Any-to-Any Code Gen.
Hermes [9] ✗ ✓ ✗ ✗

SRA [32] ✓ ✗ ✗ ✓

SPEED [8] ✗ ✓ ✗ ✗

ClickINC [50] ✗ ✗ Partial ✓

Flightplan [43] ✓ ✗ Partial ✓

DINC ✓ ✓ ✓ ✓

Table 4. Comparison between related works. Flightplan
supports any to any while changing routing rules.

Distributed in-network computing. Previ-
ous research efforts [8, 9, 32] primarily focused
on distributing programs across devices to sup-
port a single path through the network. No-
tably, Hermes [9] and SPEED [8] did not sup-
port slicing of a given program. In SRA [32],
Match-Action tables were disaggregated, and
routing rules were introduced to reach the
next table. None of these studies addressed the
many-paths, any-to-any routing problem. ClickINC [50] required program translation into a new
language and only supported symmetric topologies. Flightplan [43] demonstrated P4 program
disaggregation, however, its BSP planner is less suitable for large-scale complex topologies. Flight-
plan also introduces changes to routing rules and does not explore coexistence with network
functionality. In contrast, DINC does not modify routing rules and scales to large networks.

12 CONCLUSION
This work presented DINC, a distributed in-network computing framework, decomposing in-
network computing programs and generating planning strategies to distribute decomposed seg-
ments onto devices within the network. Experimental results show that large-size in-network
computing programs can be deployed within the network using efficient decomposing and op-
timal planning. DINC boosts applications’ performance by utilizing network resources without
compromising functionality.
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A LIST OF ACRONYMS
The acronyms used in this paper are listed in Table 5.

B TERMS AND DEFINITIONS

Acronyms Definition
𝐴𝐿𝑈 Arithmetic Logic Unit
𝐷𝑇 Decision Tree
𝐼𝐿𝑃 Integer Linear Programming
𝐼𝑁𝑇 In-Network Telemetry
𝐿𝐵 Load Balancing
𝑀𝐿 Machine Learning
𝑁𝐵 Naïve Bayes
𝑃𝐼𝑆𝐴 Protocol Independent Switch Architecture
𝑃4 Protocol-Independent Packet Processing
𝑅𝐹 Random Forest
𝑆𝑉𝑀 Support Vector Machine
𝑇𝑁𝐴 Tofino Native Architecture
𝑋𝐺𝐵 Extreme Gradient Boosting (XGBoost)

Table 5. Acronyms.

The variables defined in this paper and their
meaning are listed below. These variables are
mainly used in Section 5. The terms used are
the following:

• D: Deployable devices.
• 𝐿𝑒

𝑑
: The execution latency of element 𝑒

on device 𝑑 .
• 𝑁𝑑 : Number of deployable devices.
• 𝑁𝑝 : Number of routing paths links in-
put/output switches.

• 𝑁𝑟 : Number of resources in the device.
• P: Routing paths.
• 𝑝𝑖 : The 𝑖 th routing path.
• 𝑅𝑟

𝑑
: The available type 𝑟 resource on de-

vice 𝑑 .
• 𝑋𝑒→𝑑 : Deployment decision/strategy.

C ILP SOLVING DETAILS
Recall that 𝑋𝑒→𝑑 are binary decision variables. Minimize the scalarized objective function (7) under
constraints (2), (3) and (4) can be rewritten as the following integer linear programming problem
(ILP):

min
𝑋𝑒→𝑑

𝑤𝑅

𝑁𝑟∑︁
𝑟=1

𝑁𝑑∑︁
𝑑=1

𝑁𝑒∑︁
𝑒=1

𝑂𝑟
𝑒𝑋𝑒→𝑑 +𝑤𝐿

𝑁𝑝∑︁
𝑖=1

𝑙𝑖∑︁
𝑗=1

𝑁𝑒∑︁
𝑒=1

𝐿
𝑝
𝑗

𝑖
𝑒 𝑋

𝑒→𝑝
𝑗

𝑖
, (8a)

s.t,𝑋
𝑒+1→𝑝

𝑗

𝑖
−

𝑗−1∑︁
𝑘=1

𝑋𝑒→𝑝𝑘
𝑖
≤ 0,∀𝑒 ∈ [𝑁𝑒−1], 𝑖 ∈ [𝑁𝑝 ], 𝑗 ∈ [𝑙𝑖 ], (8b)

−
𝑙𝑖∑︁
𝑘=1

𝑋𝑒→𝑝𝑘
𝑖
≤ −1,∀𝑖 ∈ [𝑁𝑝 ], (8c)

𝑁𝑒∑︁
𝑒=1

𝑂 𝑟
𝑒 𝑋𝑒→𝑑 ≤ 𝑅 𝑟

𝑑
.∀𝑑 ∈ [𝑁𝑑 ], 𝑟 ∈ [𝑁𝑟 ], (8d)

𝑋𝑒→𝑑 ∈ {0, 1},∀𝑒 ∈ [𝑁𝑒 ], 𝑑 ∈ [𝑁𝑑 ] . (8e)

Searching for the optimum solution of an ILP is NP-hard. We tackle this problem using the branch-
and-cut method [36] that combines the cutting plane method and brand-and-bound method. Let
®𝑋 := {𝑋𝑒→𝑑 }𝑒,𝑑 be the vector of the decision variables. The first step is to relax the integer constraint
(8e) into

0 ≤ 𝑋𝑒→𝑑 ≤ 1,∀𝑒 ∈ [𝑁𝑒 ], 𝑑 ∈ [𝑁𝑑 ] . (9)
rewrite the objective function (8a) and constraints (8b)-(8d) in the standard form of

min
®𝑋

®𝑐𝑇 ®𝑋, s.t., A ®𝑋 = ®𝑏. (10)
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After checking the feasibility of problem (10), we set 𝑜★ = ∞, put the original LP problem (10) into
set L and iterates the following steps until set L is empty:
(1) Pop a linear programming problem P : min®𝑐𝑇 ®𝑋 , s.t.,

𝐴 (𝑝 ) ®𝑋 = ®𝑏 (𝑝 ) from set L.
(2) Solve problem P using simplex method. Let ®𝑋 (𝑝 ) and 𝑜 (𝑝 ) = ®𝑐𝑇 ®𝑋 (𝑝 ) be the objective vector

and value to problem P.
(3a) Check if each element ®𝑋 (𝑝 ) belongs to {0, 1}.

– If 𝑋𝑒→𝑑 ∈ {0, 1},∀𝑥 ∈ ®𝑋 , indicating the optimum solution of problem P is an 0/1 integer.
Therefore if 𝑜★ > 𝑜 (𝑝 ) , we can improve our strategy by selecting ®𝑋★ = ®𝑋 (𝑝 ) and set
𝑜★ = 𝑜 (𝑝 ) .

– If there exists 𝑋𝑒→𝑑 ∉ {0, 1} and the optimum solution satisfies 𝑜★ ≥ 𝑜 (𝑝 ) , there may exists
a better solution. We then push two new LP problems P1 and P2, where problem P1 is
the original LP problem P with an additional constraint that 𝑋𝑒→𝑑 = 0, and problem P1 is
problem P with additional constraint that 𝑋𝑒→𝑑 = 1.

The iteration continues until the LP set L is empty. If 𝑜★ = ∞ after the iteration finishes, then the
integer programming problem is infeasible. Otherwise, ®𝑋 is the optimal Pareto operation point we
are searching for.

D SLICER DETAILS
Multiple types of information among markers are used to indicate the DINC slicer the segment
identifier and the position. For example, in Table 1 lines 13 and 15, the Slice identify the segment
ID is 0 and the End shows the end of this segment. Position in markers shows the position of
that segment is control apply ( line 13 ), while the segment in control block is marked as control
( line 2 ). All segments with the same ID and position will be merged and saved for future use.

The dependency information is embedded in the marker Previous (Table 1 line 13, 16, and 19). It
indicates if this segment has any prerequisite segments. The prerequisite segments can be none,
single, or multiple.
The required resource information, metadata in/out, and any other required information are

used in a similar way as a dependency to be added to the marker. It will be totally flexible for the
DINC slicer to add or remove required resources, if the current resource marker is missing for a
specific segment, it will be marked as zero. The resource with the same segment ID will be added
together without being influenced by the marker position.

This is not the only option for slicer design and the DINC’s modular framework allows personal-
ized slicer design that is different from the current design (§ 7.3).

E RUNTIME FAIRNESS
We discuss the runtime fairness of DINC’s deployment of algorithms from two perspectives.
1. Fairness in terms of planning: Network infrastructure owners (or service providers) have the
flexibility to ensure fairness in the deployment through various strategies, such as setting constraints
on the maximum resource usage per device per resource category or imposing constraints on the
overall resource usage. Alternatively, they may opt for more aggressive strategies, such as a first-
come, first-served approach. The choice of strategy depends on the characteristics and requirements
of the network operator. 2. Fairness in terms of services: DINC, particularly in scenarios devoid of
intricate operations like multicast or recirculate, inherently provides a level of fairness in network
services. This is because DINC does not disrupt the load balancing and forwarding of the regular
network, which is one of its distinguishing features. If absolute fairness is required, maximum
throughput limits for individual services can be configured on switches. Nonetheless, services
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that may introduce additional traffic require the addition of constraints in the planner to mitigate
potential impacts.

F BT TOPOLOGY DETAILS

Fig. 18. An aerial view of the BT ISP topology used in
the evaluation.

BT is the UK’s largest ISP, with a network span-
ning across the country. BT provides connectiv-
ity to 45% UK residential households and 1.2M
business customers, as of 2022 [6]. BT’s back-
bone topology is extracted from the real net-
work topology of BT Wholesale 21CN [37, 39].
The BT Wholesale 21CN includes 5600 bot-
toms (MSAN) level exchanges, and 106 Metro
nodes that are dotted around the country (typ-
ically in major cities). Beyond that, there are
about 1100 Tier 1 MSANs and 4400 Tier 2 and 3
MSANs (only tier 1 nodes are directly con-
nected to the Metro network), and 20 Core
nodes (8 inner-core and 12 outer-core nodes) to
handle very high-speed switching and routing
between Metro nodes with up to 100Gbps ca-
pacity. The Tier 2 and Tier 3 nodes are managed
by Openreach, a subsidiary of BT, and as they
are separately administered, they are excluded
from our evaluation. The spatial layout of these
nodes in BT ISP topology is shown in Figure 18.

G ARTIFACT DESCRIPTION AND EVALUATION SETUP
DINC is an open-source framework. The code for the framework and its evaluation environment
are available on GitHub [54] and [55]. A detailed step-by-step guide for using the framework is
provided in README.md and ./src/help. The DINC framework’s README.md file provides detailed
information on supported architectures, targets, use cases, solvers, and topologies. It also covers
more advanced topics adding new architectures, targets, use cases, solvers, and topology modules.

The following setup was used to run the DINC framework and emulation on a server:
• Linux server runs Ubuntu 18.04.1 with installed software development environment SDE
9.9.0 (Tofino) or BMv2 1.15.0. Running the framework requires Python version 3.10 (or above)
with several pre-installed packages.

• The command python3 DINC.py -m -d <P4 program directory> is used to run the framework.
The running example is provided in [54].

For the performance evaluation on Tofino, the test setup includes 3 steps: 1. setup switch
environment, 2. setup server environment, and 3. configure and run programs on the switch.

• The system test environment uses two types of switches. The first is APS-Networks BF6064X,
an Intel Barefoot Tofino platform with 64×100G ports. The switch runs Ubuntu 18.04.1
and Barefoot’s SDE 9.6.0 is used on the switch. The other is NetBerg Aurora 710, an Intel
Barefoot Tofino platform with 32×100G ports. The switch runs 4.19.81 OpenNetwork Linux
and Barefoot’s SDE 9.9.0 is used on the switch.

• ESC4000A-E10 servers using AMD EPYC 7302P CPUs with 256GB RAM, Ubuntu 20.04LTS,
and equipped with Mellanox ConnectX-5 100G NICs are used to send traffic to the switch
using DPDK 20.11.1 and PktGen 21.03.0. Four CPU cores are dedicated per port.

https://github.com/In-Network-Machine-Learning/DINC


DINC: Toward Distributed In-Network Computing 25

• To test full throughput, a snake configuration is used, where traffic is looped from each
port to the following one, enabling traffic across all 64 ports, which is a common practice in
existing work (e.g., [13], [2]). Python scripts are used to generate and capture traffic. Simple
forwarding achieves the baseline 6.4Tbps on the switch.

• To test the hardware functionality, switches are connected in both tree and point-to-point
topology (BF6064 as the core and Aurora 710 as the edge), where traffic comes from the port
on BF6064 to the following Aurora 710. Both switches run the data plane program distributed
by DINC. Python scripts are used to generate and capture traffic for functionality verification.

H STATE-OF-ART COMPARISON - EXTENSION
Compared to distributed computing [3] and network service chains [47], distributed in-network
computing faces unique challenges in minimizing its impact on existing networks. Unlike network
service chains, which may affect routing rules, distributed in-network computing aims at a type
of deployment which is transparent to other network functions. This assumption of no routing
changes is common in many previous in-network computing works (e.g., [13, 25, 44]), in order
to avoid additional network load or load imbalance and reduce the complexity of managing the
network. Unlike computing-based scheduling, distributed in-network computing deployment lacks
the resource abundance and deployment flexibility. One cannot simply issue a task to run on a
certain network node, the task needs to traverse several other nodes to reach the processing node,
thereby inadvertly employing multiple nodes in the processing task. This demands a deployment
of a fully-functional in-network computing algorithm along each potential path that a packet may
traverse. Similar to computing, where an operating system runs on every machine, distributed
in-network computing needs to support normal network functionality on every network device,
before other services can be deployed.
As Table 4 shows, prior research efforts like Hermes [9], SRA [32], and SPEED [8] do not fully

facilitate “any-to-any“ deployment, resulting in additional routing overheads and the potential
for network load imbalance. ClickINC [50] supports multi-path deployment, but it is centered on
data center deployments and it makes assumptions on the network, such as symmetry, for its
optimization. Flightplan [43] also focused on data centers, especially on support for rack-scale
deployments where the scale is known. Moreover, Flightplan uses changes to the routing to achieve
its processing objective. For example, Flightplan [43] Figure 7 shows a sample deployment where
the firewall is only on p0e1 and p1e1. If traffic from p0h0 needs to go to p1h0 along the shown
route, it will not traverse any firewall. To go through a firewall, routing rules need to be changed
on p0a0 or p1a0, and a packet will need to traverse one of these switches twice.
In our comparison in §9.2, we employed the heuristic planner in Flightplan based on the op-

timization objective of minimizing latency increase for planning (as in the Flightplan artifact).
Compared to DINC’s multi-objective ILP planner, the single-objective heuristic search exhibited
limited scalability and lacked the trade-offs between objectives. However, it is worth noting that the
performance of Flightplan and DINC may be changed or improved with the change of objectives,
meaning the redesign planners. Currently, Flightplan’s planner accepts heuristics to prune the
search since the topology can make it expensive, leading to DINC’s better performance on the
larger BT topology. Flightplan also did not explore fairness, the closest constraints used were to
avoid overallocation.
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