
QCMP: Load Balancing via In-Network Reinforcement Learning
Changgang Zheng∗
University of Oxford

changgang.zheng@eng.ox.ac.uk

Benjamin Rienecker
University of Oxford

benjamin.rienecker@bnc.ox.ac.uk

Noa Zilberman
University of Oxford

noa.zilberman@eng.ox.ac.uk

ABSTRACT
Traffic load balancing is a long time networking challenge. The dy-
namism of traffic and the increasing number of different workloads
that flow through the network exacerbate the problem. This work
presents QCMP, a Reinforcement-Learning based load balancing
solution. QCMP is implemented within the data plane, providing
dynamic policy adjustment with quick response to changes in traf-
fic. QCMP is implemented using P4 on a switch-ASIC and using
BMv2 in a simulation environment. Our results show that QCMP
requires negligible resources, runs at line rate, and adapts quickly
to changes in traffic patterns.

CCS CONCEPTS
• Networks → Programmable networks; In-network process-
ing; • Computing methodologies → Reinforcement learning.

KEYWORDS
Load Balancing, In-Network Computing; Distributed; Reinforce-
ment Learning; Machine Learning; Programmable Switches; P4.

1 INTRODUCTION
Network traffic is dynamic by nature. The increasing use of cloud
computing and the introduction of more and more networked ser-
vices mean that traffic patterns are less predictable and more imbal-
anced than in the past [15]. Furthermore, network topologies are
also complex and evolve over time, as a network grows, nodes fail
and connectivity changes.

The dynamism of the network is of a special challenge when try-
ing to satisfy capacity demands and to maintain service objectives.
In networks where multiple paths exist between source and desti-
nation, Load Balancing aims to assign flows to different paths in a
manner that optimizes network utilization [15], and consequently
user experience.

The classic load balancing algorithm, Equal-Cost Multi-Path
(ECMP) [13], evenly distributes traffic to all available paths using a
hash function. While ECMP is simple and feasible within switches,
it may suffer imbalance due to hash collisions and varying data
rates [15], or global traffic imbalancing in networks with asymmet-
ric topologies [3].

Network telemetry, and in particular in-band telemetry, and the
rise of software defined networks, enabled new load balancing so-
lutions such as CONGA [1] and HULA [5]. These solutions gained
real-time insights into network utilization, using a variety of in-
network techniques. However, they still use fixed load balancing
policies. In addition, each solution has its limitations. For example,
CONGA achieves global congestion awareness through end-to-end
path feedback, requiring storing large amounts of path information

∗Changgang and Benjamin contributed equally to this work.

and limiting large-scale deployment. HULA lacks global cooper-
ation of switches, which may lead to congestion when multiple
switches concurrently identify the same best path [6].

Unlike fixed-strategy policies, reinforcement learning (RL) has
the ability to dynamically adapt to unknown environments. It im-
proves policies by interacting with the environment to find the
optimal policy.When an environment changes, reinforcement learn-
ing can gradually discover new optimal strategies, adjusted based
on trial and error and environmental feedback. Its applicability to
complex problems, interactive learning, and autonomous decision-
making capabilities make it a promising solution for load balancing
challenges. Previous works have applied reinforcement learning
to host-based load balancing [8] and controller-based load balanc-
ing [18], but the exploration of reinforcement learning for switch-
based load balancing remains limited [15].

In this work, we introduce QCMP, a reinforcement-learning
based distributed load balancing solution for network switches.
QCMP applies Q-learning to adjust the weight of each path, balanc-
ing the load across the network. QCMP uses In-Network Teleme-
try (INT) to collect congestion and utilization information across
the network, and uses Q-learning to make decisions. QCMP’s dis-
tributed switch-based load balancing ensures quick reactions and
high scalability, overcoming the limitations of centralized con-
trollers. The RL-based decision ensures continuous policy update
by QCMP and adjusting to diverse environments. In summary, the
main contributions of this work are as follows:
(1) We introduce two novel in-network Q-learning paradigms, one

implemented entirely within the data plane, and the other using
local switch CPU for the Q-table updates.

(2) We propose QCMP, an RL-based load balancing solution. QCMP
is switch-based, distributed and model-free. It uses INT and Q-
learning to continuously interact with the environment and
update its policy.

(3) We implement QCMP in P4 and evaluate it on a swich-ASIC
and in simulation. Our evaluation shows that QCMP is feasible
on commodity hardware, and provides efficient load balance in
dynamic scenarios.

2 BACKGROUND
Programmable Data Planes. Programmable network devices al-

low network operators to customize the forwarding behavior of
network devices, providing high flexibility and adaptability. Us-
ing the P4 language, programmers can specify the functionality
of the data plane, based on the architecture of the target device
(e.g., PISA). Information can be extracted from packet headers, and
used as keys for lookups in match-action (M/A) tables. While table
entries cannot be changed directly from the data plane, register
arrays maintain state across packets and allow operations such as
read-modify-write. Updating table values is done via the control
plane, often using the local CPU of a switch box [7].

FIRA ’23, September 10, 2023, New York, NY, USA Changgang Zheng, Benjamin Rienecker, and Noa Zilberman

Load balancing. Load balancing distributes traffic across multiple
links, to optimize system performance, maximize link utilization,
and enhance overall reliability. In data centers, load balancing can
be categorized into three main types: centralized controller-based
load balancing, host-based load balancing, and switch-based load
balancing [10]. Centralized load balancing can universally do the
balance task but incurs relatively high network resource consump-
tion, deployment overhead, and response latency [2, 18]. While
host-based load balancing offloads balancing tasks from a central-
ized controller to the hosts, thereby reducing deployment overhead,
it imposes additional challenges in modifying host protocol stacks,
making deployment difficult. Switch-based load balancing is in
comparison more responsive and easier to deploy than the pre-
vious two approaches [1, 5], with recent progress based on the
advancement of programmable network devices [7]. The granular-
ity of switch-based load balancing implementation can be based on
packet, flow, or flowlet. In this work, the proposed QCMP algorithm
is a flow-level switch-based load balancing solution.

Reinforcement Learning. RL optimizes strategies by interacting
with the environment. The objective of RL algorithms is to obtain
the maximum cumulative reward from a dynamic environment [4].
RL has the ability to adapt to environmental changes by maintain-
ing an optimal strategy through interactions and trial errors. RL
algorithms can be classified into model-based and model-free ap-
proaches. Model-free reinforcement learning refers to cases where
the environment cannot be fully modelled and predicted, such as
load balancing with complex and dynamic unpredictable traffic.
Model-free reinforcement learning can further be categorized into
value-based and policy-based methods. In value-based reinforce-
ment learning, a value function is utilized to assist policy updates,
while policy-based methods directly uses iterative updates to opti-
mize the policy. Value-based RL methods can be further classified
into offline or online learning. Online learning requires the policy
used for making decisions to be consistent with the one that is
improved (e.g. SARSA [9]), while offline learning allows decision-
making based on non-latest learned policies (e.g. Q-learning [14]).

In-networkMachine Learning. In-networkmachine learning (ML)
offloads ML algorithms into the data plane (e.g., programmable
routers, switches, and NICs) [16]. It lowers latency, achieves high
throughput and reduces the load on servers and accelerator cards.
Online processing of traffic using in-network ML enables real-time
decision-making, and pushing functionality closer to the edge. Most
in-network ML solutions focused on ensemble tree models, classic
models and neural networks (e.g., [11, 17]). To date, the only attempt
to implement in-network RL was on a smartNIC, heavily relying
on the NIC’s externs (hardware-specific additional functions) and
had limited portability [10].

2.1 Motivation and Challenges
Load balancing is a complex problem. The network is dynamically
changing, flows come and leave, and congestion at one end of the
network may affect traffic at the other end of it. Reinforcement
learning is ideal to solving such problems: it is dynamic, self-learns
from changing situations and can detect trends that human plan-
ning and fixed policy may not.

Still, implementing RLwithin the data plane is a challenge. Unlike
other forms of in-network ML, such as classification or clustering
algorithms, it requires continuous computations and updates of
values, contrary to the common data and control plane separation.
The following Section 3 reports how we overcome the challenges
and implement in-network RL, while the subsequent Section 4
introduces the application of in-network RL to load balancing.

3 IN-NETWORK REINFORCEMENT
LEARNING

This section introduces our in-network RL solution. The algorithm
needs to fit the primitives of the data plane’s PISA architecture,
e.g., M/A pipeline. It also need to tolerate hardware constraints
on resources, operations and stages. Based on different aspects of
RL properties, the requirements are (i) a model-free RL algorithm,
where complex environmental modeling is not necessary. (ii) off-
policy algorithm, meaning that policy updates are independent of
the agent’s actions. The availability of the “action first update later”
paradigms fits the operation logic of programmable data planes
(M/A table entries can only be updated by the control plane, not
in-band).

Q-learning [14] is a popular RL algorithm. Unlike other RL algo-
rithms that are deep neural-network and hard to implement in a
data plane [17], Q-Learning is suitable for mapping. As shown in
Algorithm 1, the algorithm tries to solve the Markov decision pro-
cess by learning an optimal policy (Q-table) through value iteration.
It achieves this by iteratively updating the Q-value of state-action
pairs (𝑠-𝑎 and 𝑠′-𝑎′ are the current and next state-action pairs). To
this end, it uses observed rewards (𝑟) and the maximum expected
future rewards (Algorithm 1 line 6, where 𝛼 is the learning rate and
𝛾 is a discount factor). The algorithm explores the environment us-
ing an 𝜖-greedy algorithm to balance exploration and exploitation,
gradually converging towards an optimal policy that maximizes
the expected cumulative reward over time. During the exploration
process, each time Q-table update means a step and each time envi-
ronment restart means an episode. The look-up mechanism used
by Q-learning’s Q-table fits the M/A table in the data plane well,
and the limited action space inside the Q-table reduces memory
requirements.

The main challenge to implementing in-network Q-learning is
updating the Q-table. This includes where to store the Q-table, how
to calculate Q-value, and how to maintain history action, state, and

Algorithm 1: Q-learning
Initialize :Q(s,a) arbitrarily

1 Repeat // for each episode
2 Initialize s;
3 Repeat // for each step of episode
4 a← Q(,) and s using policy e.g., 𝜖-greedy;
5 Take action a→ observe r and s’;
6 Q(s,a)← Q(s,a) + 𝛼 [r + 𝛾max𝑎′Q(s’,a’) - Q(s,a)];
7 s← s’;
8 while step is not terminal;
9 while episode is not terminal;

QCMP: Load Balancing via In-Network Reinforcement Learning FIRA ’23, September 10, 2023, New York, NY, USA

(a) Q-learning fully on the Data Plane (b) Q-learning partially on Data Plane

Control Plane

Data Plane Data Plane

Input Packets

&$'()*$+#$%

), ., .', ,

Register: Q-table
3(.',∗)

Logic
max%' 3(.',∗)

2 M/A Tables

Registers

3 ., , , ., ,

9 ∗, D ∗
Clac and Update

E>0,%# 3(., ,)

,′

Input Packets

Update Q-table

Update Packets

,′

), ., .', ,

Load (Update) Table

M/A Table: Q-table/Decision

), ., .', ,

Figure 1: In-network Q-learning solutions. (a) Register-based
Q-learning and (b) M/A table-based Q-learning.

Agent

!"#$%

&$'()*$+#$%

!
,-%(*$

.%,%#)#/,)0
1 2

Environment

=>0,%# 3
. ,

3!"# ., , ⇐ 3, ,, ., .'

Control
Plane

Data
Plane

3 ., ,

(a) General RL (b) In-network RL

Figure 2: Comparison between traditional Q-learning and
M/A-based in-network Q-learning in Figure 1 (b).

reward information. To address these challenges, we introduce two
solutions: one purely in the data plane, and one combining data
and control planes.

The first solution implements Q-learning entirely in the data
plane using registers, as shown in Figure 1 (a). In this solution, the
Q-table and some parameters (e.g., previous state, action, reward)
are stored in register arrays. The workflow of this register-based
Q-learning is as follows:

(1) When a new packet arrives (Input Packets in Figure 1 (a)),
it is associated with environment’s information including
new state (𝑠′) and reward (𝑟) (past state 𝑠 and action 𝑎 are
optional), reflected in line 5 of Algorithm 1.

(2) The rewards 𝑄 (𝑠′, ∗) are read from the Q-table stored in
registers (shown in Figure 1 (a) step Register: Q-table).

(3) The new action (𝑎′) is calculated using logic based on an
𝜖-greedy algorithm.

(4) The previous Q-value (𝑄 (𝑠, 𝑎)), state (𝑠), and action (𝑎) are
read from registers and the registers are updated with the
new values (𝑄 (𝑠′, 𝑎′), 𝑠′, 𝑎′) (line 7 in Algorithm 1). The
registers in this step can be changed to packet headers if the
input packet contains these values.

(5) The Q-value update is done in the step Calc and Update
(line 6 in Algorithm 1). For the update calculation, the mul-
tiplication result of the learning rate and discount factor is
pre-calculated and stored in two M/A tables, removing the
need for multiplication which is unsupported within the data
plane.

(6) After the new Q-value is computed and the Q-table is up-
dated, the packet (or another object or function) will re-
turn the new action (𝑎′) to the environment (line 4 in Algo-
rithm 1).

This procedure will iterate, with the agent taking the new action
and getting the reward from the environment.

The second solution moves complex operations from the data
plane to the control plane, as shown in Figure 1 (b) and Figure 2.
The workflow of this M/A table-based Q-learning is as follows:

(1) Like the first solution, an input packet is associated with the
previous state & action (𝑠 & 𝑎) and the new (current) state &
reward (𝑠′ & 𝑟).

(2) The reward of all actions is read from the Q-table, imple-
mented as a M/A table, and the new action (𝑎′) is selected
based on an 𝜖-greedy algorithm.

(3) The new action (𝑎′) is sent back to the environment to guide
the agent’s behavior.

(4) Different from the registers used in the first solution, M/A
tables can not be updated in-band. Instead, the control plane
(e.g., the switch CPU) needs to update the entries. The cur-
rent reward (𝑟) and state (𝑠′) are brought to the control plane
using update packets. The update packets can be generated
from the switch CPU, sent by the environment, or generated
(mirrored) by the switch.

(5) As the update process happens in the control plane, there is
no need to calculate the new Q-value in the data plane. The
new Q-value can be calculated in the control plane before
the table update.

(6) After theQ-table has been changed, the control plane updates
the changed table entry in the data plane.

The differences between these two approaches are further dis-
cussed in §7.

4 LOAD BALANCING SYSTEM DESIGN
There are two common classes of load balancing solutions: dis-
tributed and centralized. In centralized solutions (e.g., AuTO [2]),
all switches are treated as a single agent. However, this approach
results in an excessively large state and action space, unsuitable
for Q-learning. Additionally, handling INT is more complex in a
centralized solution, leading to increased response times. Therefore,
QCMP opts for a distributed load balancing. Each programmable
switch runs a Q-learning algorithm responsible for controlling the
agent, i.e., the switch. This section provides an overview of the
QCMP design workflow and operation.

4.1 QCMPWorkflow
The implementation of QCMP follows the structure outlined in
Figure 1, implementing in-network RL with the Q-table in the data
plane. Most data centers use hardware switches for high through-
put and low latency traffic forwarding. On hardware targets, the
register-based solution is harder to implement and has limited scal-
ability. Therefore, we focus on M/A-based Q-learning (Figure 1 (b))
as a leading example for QCMP.

A high-level view of QCMP’s implementation is shown in Fig-
ure 3. The operation distinguishes between two types of packets:
normal traffic and INT messages1. Normal network traffic, on the
left of Figure 3, is forwarded based on path weights. Parsed packets
are forwarded to ports based on routing tables (routing-related)
and weights (load balancing-related). INT packets, on the right of
Figure 3, contain queue lengths information, used to update path

1Use of dedicated INT packets is for illustration purposes

FIRA ’23, September 10, 2023, New York, NY, USA Changgang Zheng, Benjamin Rienecker, and Noa Zilberman

Initiate Q-table

Send INT packets
to switches

Final hop? Forward to next
switch

Choose output
packet path

Incoming
packets

Output
packets

Get queue length
from switch

Creates
queues

Calculate and
update Q-table

Based on
M/A table

Data plane

Yes

No

Normal Network Packets INT Packets for Q-learning

Figure 3: QCMP system workflow.

weights. This information is sent to the control plane for Q-value
updates.

TheQ-table and thematch-action tablewhich stores pathweights,
are initially set to equal weight. When INT packets pass through
a switch, the switch updates queue length in the INT header. For
coverage, we assume that source routing is used, as in [12]. INT
packets are mirrored to the CPU and the controller calculates a new
Q-value and updates the Q-table in the control plane. Based on the
queue lengths from INT packets, path weights are updated in the
M/A table.

4.2 Q-learning in QCMP
An effective implementation of load balancing using Q-learning
depends on the several essential components: agents, states, actions
and rewards.

4.2.1 States. The state space of QCMP is made from the queue
lengths for each path from a switch. Each queue has a length in
the range [0, 𝑁𝑞𝑢𝑒𝑢𝑒], but through state aggregation, the queue
is mapped to integers in a smaller range [0, 𝑁𝑞]. The mapping
means dividing the queue length by 𝑁𝑞 and then rounding up to
the nearest integer. This crucially allows a zero queue to be its
own state, only possible if the incoming traffic rate is less than
the outgoing traffic rate. The queue lengths updated frequently, so
having a more detailed state space is not required for avoiding state
space explosion, as the queue length fluctuations are small. Less
frequent updates (less INT communication overhead) mean that
the state space will grow. Similarly, the state space can be reduced
by considering a subset of paths or a subset of hops from the switch.
Two possible paths from a switch result in a state space of 𝑁 2

𝑞 states,
which can be controlled to an adequately small number without
using state space compression methods.

4.2.2 Actions. The QCMP action controls the weight of each out-
put port. The action space covers all possible permutations of in-
creasing, decreasing and keeping constant the weights of each path.
The sum of the path weights remains constant, ensuring a finite
action space. In QCMP, we further constrain the actions to a form
shown in Table 1, focusing on changing one port and consequently
changing other ports to compensate for the change. As shown in
Table 4, in any 𝑁𝑃 paths, there are at most 2𝑁𝑝 + 1 actions. In
order to accelerate the convergence process of path weights, the
constant 𝑘 that controls the weight of each path’s changes can be

Action Path 1 Weight Path 1 Weight . . . Path n Weight
↑↓ . . . ↓ +𝑘 (𝑁𝑝 − 1) −𝑘 . . . −𝑘
↓↑ . . . ↑ −𝑘 (𝑁𝑝 − 1) +𝑘 . . . +𝑘

.

↑ . . . ↑↓ +𝑘 +𝑘 . . . −𝑘 (𝑁𝑝 − 1)
− . . .− +0 +0 . . . +0

Table 1: QCMP actions.

dynamic. This chosen value can depend on the episode number or
other parameters that reflect the change of environment.

4.2.3 Rewards. Rewards are based on the change in weighted aver-
age queue length for different paths from a switch and the difference
in queue lengths. The weighted average queue length needs to be
minimized, but so does the difference in queue lengths, preventing
getting stuck in non-optimal weights. Without having a term to
minimize the difference, a policy would get stuck in the minima
where one path has a full queue but is assigned a zero weight,
whilst the other paths have empty queues and share all weights.
Combining the difference and the weighted average terms results in
Equation 1, where 𝑟 evaluates current load balancing performance,
𝑐: is a constant, 𝐿: is the queue length, 𝑤 : is the path weight, ∗:
indicates values of the previous step, and 𝑖, 𝑗 ∈ {1, . . . , 𝑁𝑝 }.

Difference term︷ ︸︸ ︷
(𝑐 −max |𝐿𝑖 − 𝐿𝑗 |) +

Weighted average term︷ ︸︸ ︷
(
∑︁
𝑖

𝐿∗𝑖𝑤
∗
𝑖 −

∑︁
𝑖

𝐿𝑖𝑤𝑖) = 𝑟 (1)

To reduce (over) sensitivity of the system, Equation 2 is used to
calculate the actual reward.

Reward =

+1 if 𝑟 > 0.5
−1 if 𝑟 < −0.5
±0 if − 0.5 < 𝑟 < 0.5

(2)

5 IMPLEMENTATION
Both in-network Q-learning strategies are implemented in BMv2
software switch using P4 with v1model architecture. The M/A
table-based Q-learning approach is also implemented on an Intel
Tofino switch-ASIC (APS-Networks BF6064X, SDE 9.5.0) using TNA
architecture. Emulation of QCMP uses Mininet. The switch control
plane is written in Python and supports P4Runtime.

6 EVALUATION
QCMP hardware performance test is run on Intel Tofino. System
level operation is evaluated using BMv2, and performance is com-
pared with ECMP.

6.1 Simulation
Network Setup (Topology). QCMP is evaluated on a 3-tier Fat-

Tree topology with two spine switches connected to a pod. Within
a pod, two aggregation switches are connected to two Top of Rack
(ToR) switches.

Experimental Setup. In the evaluation, the queue length rate on
the simulator ranges from [0, 𝑁𝑞𝑢𝑒𝑢𝑒 = 100] and we set 𝑁𝑞 = 10. In

QCMP: Load Balancing via In-Network Reinforcement Learning FIRA ’23, September 10, 2023, New York, NY, USA

0 100 200 300 400 500
Time (s)

25
50
75

100

Th
ro

ug
hp

ut
 (%

) QCMP ECMP

DropsDrops

(a) Ratio of Throughput

30 45 60 75 90 105
Throughput (%)

0.2
0.4
0.6
0.8

C
D

F

0.78

0.38

0.01

95%
100%

QCMP
ECMP

(b) CDF of Throughput

Figure 4: System performance comparision between QCMP
and ECMP.

the evaluated network topology, each switch is connected to two
other switches, which means 𝑁𝑝 = 2. The path changes weight 𝑘
is initialized to 5 and the constant 𝑥 in the reward equation is set
as 50. The model starts with a high learning rate and exploration
rate for rapid explorative learning but reduces to lower values
for a more exploitative approach that converges accurately to the
optimal policy. The exploration rate is limited to a minimum of
0.1 to overcome non-optimal states, a discount factor of 0.25 to lay
more emphasis on immediate reward and less on long-term reward.

Figure 4 shows the performance of QCMP compared to ECMP
over a 500-second episode, with the output port queue rates chang-
ing every 100 seconds. A 10-second moving average is used for both
sets of results in order to limit the effect of noise due to the random
variations of the hash function. ECMP shows consistent perfor-
mance over the episodes with an average throughput of about 60%
or 75%, depending on queue rate configuration. This is the result
of packets being evenly sent on paths with queue rates ratios of
3:1, leading to per-port throughput of 66% and 100% of port rate,
respectively. Consequently, the larger the difference between the
queue rates of the paths, the worse ECMP would perform. A small
temporary increase in throughput can be observed when the queue
rates change, as full queues rapidly send packets.

As shown in Figure 4 (a), QCMP’s throughput starts at the same
level as ECMP, with around 60%, but it learns the optimal path
weights to achieve a throughput of 100% within 30 seconds. This oc-
curs when one output port handles 75% of traffic and the other 25%.
At 100 seconds, when the queue rates are switched, the throughput
suddenly drops to around 50%. This is because the output port re-
ceiving 75% will now experience only a third of the previous packet
rate, whilst the other output port experiences triple the previous
packet rate. For this reason, every hundred seconds when param-
eters are reset, QCMP’s performance drops and is slightly worse
than ECMP for a short time. Note that this happens only due to the
significant artificial change in port rates in our experiment. At 400
seconds, the optimal queue weights are re-found within 14 seconds.
This is shorter than the first 3 times of learning because the Q-table
already contains a trained policy2. These show that QCMP adapts
to network conditions changes.

Figure 4 (a) also shows the number of packets dropped using
ECMP and QCMP. The number of packets dropped and the number
of packets arriving at the destination approximately matches the
input packet rate, with slight difference due to the packet delays
in queues. The graph clearly shows QCMP drops far fewer packets
than ECMP. While there is a brief period where queue rates are

2The scale of seconds is intentionally set, to avoid fluctuations.

switched and QCMP experiences an increase in packet drops, once
it relearns the optimal path weights, no packets are dropped.

CDFs of QCMP and ECMP throughput are shown in Figure 4 (b).
The average throughput of QCMP is 92.6% (including rate change
events), whilst ECMP achieves 66%, a significant improvement. Our
experiments show that the gap in performance grows as networks
becomemore complex. QCMP achieves over 95% of the input packet
rate 62% of the time, and matches 100% input packet rate 22% of
the time, outperforming ECMP 99% of the time.

6.2 Hardware Test
QCMP’s implementation on Tofino is tested using a snake config-
uration, utilizing 64 × 100𝐺𝐸 ports. Our measurement shows that
QCMP achieves full line rate on all 64 ports, with no packet drops.
The resources used on the switch are negligible, less than 1% of
memory resources and two pipeline stages.

7 DISCUSSION
In-network RL in the data plane. To the best of our knowledge,

this is the first work to introduce in-network RL within the data
plane, implemented on switch ASIC. OPaL [10], which implemented
in-network RL on a smartNIC, relied on externs for the RL func-
tionality, using many minions for tile coding. The two Q-learning
solutions presented in this work introduce trade-offs: the register-
based solution will react faster to changes (sub-`𝑠 vs tens of `𝑠) and
can process updates at line rate. The M/A-table approach, on the
other hand, can handle a larger state space, requires less resources,
and can support more complex RL implementations. For the pur-
pose of load balancing, the table-based approach is preferred over
the register-based, as it offers better scalability and the reaction
time required is (relatively) slow.

Packets reordering. All packets from the same flow will follow
the same path, i.e. the output port will be the same for all packets of
the same flow. Updates to output port selection, due to congestion
along the path and policy updates, may lead to reordering, but as
our results show the effect on performance was small.

Flowlets. While this work focuses on flow-level load balancing,
similar approaches can be applied to flowlets. We leave it to future
work.

8 CONCLUSION
This paper presented QCMP, a reinforcement-learning based solu-
tion to traffic load balancing, implemented within the data plane.
We introduced two methodologies to enabling reinforcement learn-
ing within the data plane, one using M/A tables and the other
registers. QCMP was implemented on an Intel Tofino Switch and
in a simulation environment, and the evaluation shows that it can
run at line rate, requires negligible resources and adapts quickly
to changes in traffic patterns. Future work will explore the use of
flowlets and extend the scope of evaluation.

Acknowledgements This work was partly funded by VMware.
We acknowledge support from Intel. This paper complies with all
applicable ethical standards of the authors’ home institution.

FIRA ’23, September 10, 2023, New York, NY, USA Changgang Zheng, Benjamin Rienecker, and Noa Zilberman

REFERENCES
[1] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, et al. CONGA: Dis-

tributed Congestion-Aware Load Balancing for Datacenters. In ACM SIGCOMM,
pages 503–514, 2014.

[2] Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. Auto: Scaling Deep Reinforce-
ment Learning for Datacenter-Scale Automatic Traffic Optimization. In ACM
SIGCOMM, pages 191–205, 2018.

[3] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding Network
Failures in Data Centers: Measurement, Analysis, and Implications. In ACM
SIGCOMM, pages 350–361, 2011.

[4] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
Learning: A Survey. JAIR, 4:237–285, 1996.

[5] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. Hula: Scalable Load Balancing Using Programmable Data Planes. In
ACM SOSR, pages 1–12, 2016.

[6] Jingling Liu, Jiawei Huang, Wanchun Jiang, and Jianxin Wang. Survey on Load
Balancing Mechanism in Data Center. Journal of Software, 32(2):300–326, 2020.

[7] Oliver Michel, Roberto Bifulco, Gabor Retvari, and Stefan Schmid. The Pro-
grammable Data Plane: Abstractions, Architectures, Algorithms, and Applica-
tions. ACM Computing Surveys (CSUR), 54(4):1–36, 2021.

[8] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon
Wischik, and Mark Handley. Improving Datacenter Performance and Robustness
withMultipath TCP. ACMSIGCOMMComputer Communication Review, 41(4):266–
277, 2011.

[9] Gavin A Rummery and Mahesan Niranjan. On-Line Q-Learning Using Connec-
tionist Systems, volume 37. Citeseer, 1994.

[10] Kyle A Simpson and Dimitrios P Pezaros. Revisiting the Classics: Online RL
in the Programmable Dataplane. In NOMS, IEEE/IFIP Network Operations and
Management Symposium, pages 1–10. IEEE, 2022.

[11] Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad Malekzadeh,
et al. Re-architecting Traffic Analysis with Neural Network Interface Cards. In
USENIX NSDI, pages 513–533, 2022.

[12] Carl A Sunshine. Source Routing in Computer Networks. ACM SIGCOMM
Computer Communication Review, 7(1):29–33, 1977.

[13] Dave Thaler and C Hopps. Multipath Issues in Unicast and Multicast Next-Hop
Selection. Technical report, 2000.

[14] Christopher JCH Watkins and Peter Dayan. Q-Learning. Machine learning,
8:279–292, 1992.

[15] Jiao Zhang, F Richard Yu, Shuo Wang, Tao Huang, Zengyi Liu, and Yunjie Liu.
Load balancing in data center networks: A survey. IEEE Communications Surveys
& Tutorials, 20(3):2324–2352, 2018.

[16] Changgang Zheng, Zhaoqi Xiong, Thanh T Bui, Siim Kaupmees, Riyad Bensous-
sane, Antoine Bernabeu, Shay Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman.
IIsy: Practical In-Network Classification, 2022.

[17] Changgang Zheng, Mingyuan Zang, Xinpeng Hong, Riyad Bensoussane, Shay
Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman. Automating In-Network Ma-
chine Learning, 2022.

[18] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, et al. WCMP: Weighted
Cost Multipathing for Improved Fairness in Data Centers. In ACM EuroSys, pages
1–14, 2014.

	Abstract
	1 Introduction
	2 Background
	2.1 Motivation and Challenges

	3 In-network Reinforcement Learning
	4 Load Balancing System Design
	4.1 QCMP Workflow
	4.2 Q-learning in QCMP

	5 Implementation
	6 Evaluation
	6.1 Simulation
	6.2 Hardware Test

	7 Discussion
	8 Conclusion
	References

