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A B S T R A C T

The entry of large language models (LLMs) into research and commercial spaces has led to a trend of ever-
larger models, with initial promises of generalisability. This was followed by a widespread desire to downsize
and create specialised models without the need for complete fine-tuning, using Parameter Efficient Fine-tuning
(PEFT) methods. We present an investigation into the suitability of different PEFT methods to clinical decision-
making tasks, across a range of model sizes, including extremely small models with as few as 25 million
parameters.

Our analysis shows that the performance of most PEFT approaches varies significantly from one task to
another, with the exception of LoRA, which maintains relatively high performance across all model sizes and
tasks, typically approaching or matching full fine-tuned performance. The effectiveness of PEFT methods in
the clinical domain is evident, particularly for specialised models which can operate on low-cost, in-house
computing infrastructure. The advantages of these models, in terms of speed and reduced training costs,
dramatically outweighs any performance gain from large foundation LLMs. Furthermore, we highlight how
domain-specific pre-training interacts with PEFT methods and model size, finding the domain pre-training
to be particularly important in smaller models and discuss how these factors interplay to provide the best
efficiency-performance trade-off. Full code available at: https://github.com/nlpie-research/efficient-ml.
1. Introduction

The Natural Language Processing (NLP) research space is now dom-
inated by large language models, with a steady influx of different so-
called foundation models from major AI companies every few months.
The vast majority of recent LLMs are designed for generative tasks
and chat-style interactions, reliant on very large models with several
billion (even well over 100 billion) model parameters trained using a
mixture of autoregressive LM pre-training with follow-up reinforcement
learning from human feedback (RLHF) to create the likes of Chat-
GPT [1], Llama-2 [2], Claude 2 [3], or Mixtral 8X7B [4]. However, the
performance of these generative LLMs on classic NLP tasks such as se-
quence classification, relation extraction, named entity recognition, and

∗ Corresponding author.
E-mail address: niall.taylor@st-hughs.ox.ac.uk (N. Taylor).

1 Recently LLMs with much fewer model parameters are referred to as SLMs, but LLMs can be used interchangeably. When discussing Language Models
generally, we use the term LLM.

embedding similarity search, especially in the clinical domain remains
lacklustre [5–10] and typically requires further training or adaptation
techniques. In many such cases, much smaller, BERT-style LLMs trained
with masked language modelling (BERT [11], and RoBERTa [12]) can
be easily fine-tuned to be competitive, or even surpass the performance
of their larger counterparts [10,13], whilst only having approximately
100 million model parameters.

1.1. Scales of LLM

Recent LLM research has predominantly focused on exceptionally
large models from the more prolific AI companies, including ChatGPT
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from OpenAI [1] and Llama [2] from Meta. Although recent models
from OpenAI are proprietary, it is widely recognised that the size
of foundation models spans a broad range, from approximately 3 to
175 billion parameters, and with GPT-4 potentially more than one
trillion parameters. In contrast, there exist smaller LMs (SLMs)1 such
as BERT [11], which contains approximately 108 million parameters.

he relative cost, simplicity, and re-usability of these variously scaled
odels are crucial aspects to consider, and we aim to provide a holistic

nalysis of the interplay between different efficiency metrics and model
ize.

1.2. Fine-tuning and PEFT

Even SLMs are relatively compute-intensive when compared to
simpler machine learning alternatives, such as TF-IDF or Bag-of-Words
aired with random forest classifiers. Moreover, adapting numerous
LMs to new tasks can become unfeasible in low-resource settings

where GPUs are scarce or non-existent. Common approaches to reduce
model size include: knowledge distillation [14,15], architecture com-
pression [16], and pruning [17]. These approaches generally aim to
maintain a high level of performance in compressed models by harness-
ing the knowledge from the much larger teacher LLMs. Although these
pproaches have had great success in producing smaller LLMs, adapting
o new tasks still requires full fine-tuning of all model parameters to
chieve optimal performance on specific downstream tasks. This may
ecessitate a plethora of domain- or task-specific LLMs, which cannot

be used interchangeably due to catastrophic forgetting [18]. A more
prevalent approach today is to adapt the fine-tuning approach itself.
Traditional approaches to adapting LLMs to downstream tasks involve
the introduction of task-specific neural network layers (often referred
o as heads) to provide the extra flexibility required to complete a task,
uch as sequence classification. This training occurs in a supervised
anner, involving updates to all model parameters, including task-

pecific parameters (full fine-tuning). Full fine-tuning of smaller LLMs,
such as BERT-base [11] with merely 108 million parameters, has been
feasible with modern GPUs, requiring only a single GPU with full
precision. However, with the advent of models like Llama-2 [2] with
5 billion parameters, the practicality of fine-tuning these models on
ow-end hardware dwindles.

Several strategies exist to address this issue, one of which is being
the reduction of model size in terms of floating-point precision, bits,
and the physical memory needed to store the weights through quanti-
sation. This enables full fine-tuning of moderately sized models. [19].
Pruning model parameters to reduce the redundant weights for given
downstream tasks has also been effective in certain cases [17]. Another
approach is to avoid full fine-tuning altogether, opting instead for
ero-shot task adaption through prompting (prompt engineering), or
y reducing the number of trainable parameters necessary for fine-
uning the LLM for its new task, a process known as Parameter Efficient
ine-tuning. Notable PEFT methods include: Prompt tuning [20], Prefix
uning [21], Low Rank Adaptation (LoRA) [22], and Inhibit Activations

(𝐼 𝐴3) [23]. These PEFT methods have become popular across various
LP tasks, and in this work, we will explore the utility of a select few

or differently sized LLMs in the clinical domain.

1.3. Clinical domain - LLM adaptation

Unstructured clinical notes form a large portion of electronic health
ecords (EHRs) and can offer a substantial amount of clinically salient

information given appropriate representation, such as that given by a
LM. Foundation LLMs are typically developed and trained for a broad-
troke, general-purpose set of applications: trained on open, web-based
ext data and intended to be applied to similar open, web-based text
ata. When taking foundation LLMs and applying them to biomedi-

cal and clinical texts, performance often drops significantly [5–9,13,
24–27]. Achieving state-of-the-art (SoTA) performance in the clinical
2 
domain still involves training generic LLMs on biomedical or clinical
domain data, and PEFT methods can provide efficient ways to adapt
open LLMs to the clinical domain. The clinical domain is also inher-
ntly a compute-limited environment, with sensitive data that typically

cannot be sent to third-party APIs. Thus, small, efficient LLMs that can
perform specific tasks well and potentially run on edge devices are
highly sought after [27,28].

1.4. Related work and motivation

Utilising smaller LLMs as an efficient alternative to their larger
ounterparts has had increasing attention, with recent releases such as
hi-2 (2.7 billion parameters) from Microsoft [29,30] achieving similar

performance on certain benchmark suites as 70 billion parameter model
alternatives. Whilst Phi-2 is relatively small, they typically still require
high-end GPUs to allow any further training for specific tasks, and
deploying to production in any real-time setting becomes non-trivial
in terms of cost and time, even with the use of quantisation and PEFT
methods. The applicability of LLMs for the clinical domain is well
researched, with a great deal of attention on creating generative LLMs
that excel in question-answering style tasks [31,32], but there has been
little research into the utility of PEFT methods in this space, nor the
comparative effectiveness for traditional NLP tasks. Recent efforts have
extensively explored the use of PEFT methods for large-scale models,
aiming to align them with new domains or tasks [19,22,33], but few
have extended this to SLMs or the clinical domain [34]. One group
has recently investigated PEFT for traditional clinical NLP tasks with
Llama models, and our work follows a very similar path [35]. The
major distinction in our work is the emphasis on the efficiency of these
methods and their applicability to much smaller LLMs and how this
translates to time and cost demands.

Our key contributions involve a comparison of recent Parameter
Efficient Fine-Tuning (PEFT) methods for their applicability to clinical
decision tasks. We explore the suitability of these PEFT methods for
small LLMs such as Mobile and TinyBert architectures, which have
significantly fewer parameters compared to their larger counterparts.
Additionally, we investigate the effectiveness of PEFT methods when
applied to knowledge distilled LLMs like DistilBERT. Furthermore, we
delve into the interplay between the pre-training domain of the LLMs,
the sample size of the clinical data, and the performance of various
PEFT methods, providing insights into the optimal combinations for
efficient adaptation of LLMs to the clinical domain. Finally, we provide
a comparison of efficiency when adapting differently sized LLMs to
provide insights into associated time and financial requirements.

2. Methods

2.1. Model architectures

We evaluate the performance of PEFT across various transformer-
ased LLMs architectures of differing sizes, including: TinyBERT [36],

MobileBERT [16], DistilBERT [15] and standard BERT [11] which are
our SLMs. For a further set of experiments we also include the much
larger LLM Llama-2-7b [2]. A table of relevant architecture details is
rovided in Table 1.

2.2. Domain pre-training

In addition to exploring various transformer-based LLM architec-
ures of different sizes, we examine three domain variants for each from
revious research where model checkpoints have been released and are
vailable to download via HuggingFace [37]:

• General: Original, unadapted models [11,15,16,36].
• Biomedical: Models pre-trained or distilled with biomedical lit-

erature [38]
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Table 1
Model architectures and their associated number of parameters, Video Random Access
Memory (VRAM), and Floating Point Operations (FLOPs). FLOPs were based on a
andom sample of 10 tokens.
Model architecture # Params (mil) GPU (VRAM GB) FLOPs

Tiny-BERT 13.87 0.052 3.66 × 107
Mobile-BERT 24.58 0.092 1.62 × 108
Distil-BERT 65.78 0.245 3.41 × 108
BERT 108.31 0.403 6.81 × 108
Llama2-7b 6607.34 24.6 5.18 × 1010
Llama2-7b (bfloat16) 6607.34 12.37 5.18 × 1010

• Clinical: Models pre-trained with clinical EHR data [28]

Using domain trained LLMs allows us to investigate the interplay
between domain pre-training, model size, and the chosen PEFT meth-
ods.

2.3. Downstream fine-tuning

We opt to compare performance using a traditional fine-tuning
etup, whereby each LLM is adapted with a task-specific head to
erform the respective downstream task. For each task, we will utilise
dditional linear layer(s) on top of the base LLM (classification head),
ith a task-specific loss that is used to update all model parameters

the base LLM and the additional task head). This approach remains the
ost suitable across all model architectures and aligns with previous

esearch [28,34].

2.4. PEFT

Parameter Efficient Fine-tuning methods are numerous, but they
typically fall into two categories: introducing new trainable parameters
or selectively freezing existing ones. Based on previous works [33,35]
nd some preliminary experiments, we opt to only focus on LoRA and
 𝐴3 for our main experiments, which generally demonstrate signifi-
antly better performance compared to alternative PEFT methods (pre-
ix and prompt tuning). Moreover, aligning prefix tuning and prompt
uning with NER tasks is not straightforward and we believed it offered
imited value to adapt these methods for NER specifically. In addition to
he trainable parameters specific to each PEFT method described below,
he task-specific heads 2.3 are also updated during training.

Low-rank adaptation of large language models. Low-Rank Adaptation of
LMs or LoRA [22] is a reparameterisation technique that works by

injecting two trainable matrices (𝐴 and 𝐵) that act as an approximation
of a singular value decomposition (SVD) of the weight update 𝛥𝑊 for
any weight matrix 𝑊 ∈ R𝑑×𝑘 in the LLM. The approximation works as
𝛥𝑊 = 𝐵 𝐴, where 𝐵 ∈ R𝑑×𝑟, 𝐴 ∈ R𝑟×𝑘 and 𝑟 ≪ 𝑚𝑖𝑛(𝑑 , 𝑘) is the rank
of the LoRA matrices, which is a tunable parameter. The new forward
ass is updated from ℎ = 𝑊 𝑥 (where 𝑥 is the input embedding to the

layer/operation and ℎ the output embedding) to ℎ = (𝑊 + 𝛥𝑊 )𝑥 =
(𝑊 + 𝐴𝐵)𝑥 = 𝑊 𝑥 + 𝐴𝐵 𝑥. While it is possible to introduce the LoRA
matrices in any layer of the LLM, it is common practice to introduce
them as weight update approximations for the key, query and value
matrices. The underlying assumption is that the weight updates in LLMs
intrinsically have a lower rank than their dimensions, and thus can be
well approximated by their SVD. Additionally, once fully trained, the
LoRA matrices can be integrated into the model as 𝑊𝑢𝑝𝑑 𝑎𝑡𝑒𝑑 = 𝑊0 +
𝐵 𝐴, thereby introducing no inference latency. With LoRA the original

weight matrices of the LLM remain frozen during the fine-tuning phase. t

3 
𝐼 𝐴3. Infused Adapter by Inhibiting and Amplifying Inner Activation
(𝐼 𝐴3) shares similarities with other adapter methods that introduce
ew parameters to scale activations using learned vectors [23]. While

these learnable vectors can be applied to any set of activations, apply-
ing them to the keys and values in the relevant attention mechanism
and the intermediate activation of the position-wise feed-forward net-
works was found to be both efficient and sufficient. For a transformer
based architecture, we have a query 𝑄 ∈ R𝑑𝑞 , key 𝐾 ∈ R𝑑𝑘 , value 𝑉 ∈
R𝑑𝑣 , and a position-wise feed-forward network with hidden dimension
𝑓 𝑓 . 𝐼 𝐴3 introduces learnable vectors 𝑙𝑘 ∈ R𝑑𝑘 , 𝑙𝑣 ∈ R𝑑𝑣 and 𝑙𝑓 𝑓 ∈ R𝑑𝑓 𝑓
nd modifies the attention and feed-forward calculation as follows:

𝑠𝑜𝑓 𝑡𝑚𝑎𝑥
(

𝑄(𝑙𝑘 ⊙ 𝐾)
√

𝑑𝑘

)

(𝑙𝑣 ⊙ 𝑉 ) (1)

(𝑙𝑓 𝑓 ⊙ 𝛾(𝑊1𝑥))𝑊2 (2)

where ⊙ represents the element-wise product, and 𝛾, 𝑊1 and 𝑊2 are the
ctivation function and weight matrices of the feed-forward network.

𝑊1 is a matrix of dimension 𝑑𝑓 𝑓 × 𝑑𝑣, and 𝑊2 is of dimension 𝑑𝑣 × 𝑑𝑓 𝑓 .
he equations use Numpy’s ’broadcasting notation’[39] where the (i,

j)th entry of l⊙x is 𝑙𝑗 .𝑥𝑖,𝑗 . Similar to LoRA, the learnable vectors can
be merged into the model as 𝑙 ⊙ 𝑊 because any operation 𝑙 ⊙ 𝑊 𝑥 is
equivalent to (𝑙 ⊙ 𝑊 )𝑥. Hence, this method does not introduce any
inference latency either. Once again, with 𝐼 𝐴3 the original weight
matrices of the LLM remain frozen during fine-tuning.

2.5. Few-shot training

A prevalent challenge in real-world scenarios is the scarcity of
training samples, especially in the clinical domain where certain dis-
ases are inherently rare and generating gold-standard annotations
emands clinical expertise and considerable time, both of which are
imited resources. Therefore, the ability to train a viable model with
ew training samples is another angle of efficiency we explore. This is
chieved by supplying only a limited number of training samples per
lass to a specific model. We carry out a series of experiments with
n escalating number of samples per class to determine the effect of
ifferent model sizes and PEFT methods.

2.6. Datasets and tasks

We utilise a number of commonly used clinical datasets for down-
tream evaluation, focusing on the following tasks: named entity recog-
ition (NER), sequence classification and relation extraction (RE), in
ine with earlier clinical NLP research [40,41], and see Table 2.

2.6.1. Sequence classification tasks
Sequence classification tasks involve predicting a class label of a

given sequence of text, such as a clinical note. Here the entire text is
processed by the LLM and the produced representation of that text is
passed as features to the task-specific head as outlined above2.3.

MIMIC-III ICD-9 triage. A common task with the MIMIC-III dataset [42]
involves classifying patient records according to their medical diag-
oses, which are coded using a system known as ICD-9. We utilise a
implified version of this task, where the top 20 most commonly occur-
ing ICD-9 codes are categorised into seven triage groups: [Cardiology,
bstetrics, Respiratory, Neurology, Oncology, AcuteMedicine, Gastroen-
erology]. This grouping was developed in collaboration with clinicians.
or further information, please refer to the original paper [34].

MIMIC-III - clinical outcomes. Two clinical outcome tasks associated
with the MIMIC-III dataset [42] are Mortality Prediction (MP) and
Length of Stay (LoS) prediction [43]. MP involves analysing discharge
ummaries from the ICU to assess a patient’s mortality risk, constituting

a binary classification problem. The LoS task also uses ICU discharge
ummaries to forecast the duration of a patient’s hospital stay, with
uration’s binned into four classes: under 3 days, 3 to 7 days, 1 week

o 2 weeks, and more than 2 weeks.
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Table 2
Dataset details.
Dataset Task type # classes # train samples # eval samples

MIMIC-III MP Seq. CLS 2 33,954 9,822
MIMIC-III LoS Seq. CLS 3 30,421 8,797
MIMIC-III ICD-9 Triage Seq. CLS 7 9,559 3,172
I2B2 2010 RE Seq. CLS 9 22,256 43,000
I2B2 2010 NER 7 6726 27,626
I2B2 2012 NER 13 6797 5,664
I2B2 2014 NER 42 45 974 32,586
l
t
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I2B2 2010 relation extraction. We used several curated datasets from
he I2B2 series, including the 2010 medical relation extraction dataset
44] which aims to classify text based on the apparent medical rela-

tionship being described, with the following derived labels:

1. Treatment improves medical problem (TrIP)
2. Treatment worsens medical problem (TrWP)
3. Treatment causes medical problem (TrCP)
4. Treatment is administered for medical problem (TrAP)
5. Treatment is not administered because of medical problem (Tr-

NAP)
6. Test reveals medical problem (TeRP)
7. Test conducted to investigate medical problem (TeCP)
8. Medical problem indicates medical problem (PIP)
9. No Relations
We follow the same pre-processing procedure outlined in previous

works [28].

2.6.2. Named entity recognition
Named Entity Recognition (NER) is the task of locating and iden-

ifying named entities such as persons, locations, organisations, etc.
ithin unstructured text. NER involves labelling words in a text that

refer to types such as person, organisation, place, date, etc. Example:
Identifying ‘‘Warfarin’’ as a drug and ‘‘DVT’’ as the condition in the
sentence ‘‘Patient was started on warfarin therapy due to left lower
extremity DVT’’. NER is often formed as a token classification task,
whereby each token in the sequence is labelled as the different possible
ntities.

I2B2 - 2010 and 2012. These two NER tasks involve classifying text
pans related to temporal relations [44,45] within discharge sum-

maries, as delineated by expert annotations. The classification is based
n four primary categories: clinical concepts, clinical departments,
videntials, and occurrences. These categories are further broken down
nto more specific entities: medical problem (PR), medical treatment (TR),
edical test (TE), clinical department (CD), evidential (EV), occurrence
OC), and none (NO).
I2B2 - 2014. A deidentification task, whereby spans of text within
linical notes are classified using different protected health information
PHI) such as name, address, and postcode [46].

For further dataset and task details, see Appendix A and for hard-
are and implementation details see Appendix C.

3. Results

3.1. Model size vs PEFT

The number of trainable parameters is an important factor in de-
ermining the efficiency in model performance and has a strong cor-
elation with cost and time of training. We detail the performance
etrics for various PEFT methods applied to each model type across
ifferent clinical tasks. In Table 3, we present the results for sequence

classification and NER across different PEFT methods and model sizes.
The results demonstrate that LoRA consistently outperforms other

PEFT methods across all models and tasks, often approaching the
performance of full fine-tuning.
4 
We also compare the number of trainable parameters as a function
of the different PEFT methods in Fig. 1. There is a clear correlation be-
tween the number of trainable parameters and performance, and LoRA
appears to provide larger models an advantage over fully fine-tuned
smaller models. The performance disparity between full fine-tuning and
LoRA becomes more pronounced with smaller models.

3.2. Differential effect of LoRA rank according to model size

Given the superior performance of LoRA over other PEFT methods,
as evidenced in Fig. 1, we aimed to methodically evaluate the impact of
the LoRA rank hyperparameter across models of varying sizes. For this
purpose, we employed the Optuna package [47] to conduct 20 trials of
hyperparameter optimisation, holding the LoRA rank constant at 𝑟 ∈
8, 16, 32, 64, 128. The hyperparameters adjusted during tuning included
LoRA dropout (𝑑 ∈ 0.1, 0.3, 0.5), LoRA alpha (𝛼 ∈ 0.3, 0.5, 1.0), and
earning rate (𝑙 𝑟 ∈ [10−5, 10−3]). The Llama model was excluded from
his experiment due to its significantly larger size compared to BERT-
ased models, which would have imposed an excessive computational
oad for hyperparameter tuning. Following the hyperparameter search,
e selected the optimal performing model for each 𝑟 value to analyse

ts effect on models with differing parameter counts (Fig. B.4).
Increasing the rank 𝑟 in TinyBioBERT led to improved performance

up to 𝑟 = 64, after which a slight decline was observed at 𝑟 = 128. A
similar pattern was noted in BioDistilBERT, with the turning point at
𝑟 = 32. The impact of rank on BioMobileBERT was more variable, with
a noticeable performance dip only at 𝑟 = 64. This variability might be
attributed to the distinct architecture of BioMobileBERT compared to
other BERT-based models [16]. For BioBERT, the larger model in the

ERT family, there was a modest improvement at 𝑟 = 16, but perfor-
ance tended to decrease at higher ranks. Conversely, for the RoBERTa
odel, performance enhancements were seen at ranks 𝑟 = 32 and
= 128, yet no clear pattern between rank and performance emerged.
espite these fluctuations, the overall impact on model performance
as relatively minor, with the greatest increase in AUROC being 0.0125

and the largest decrease being 0.0078. Hence, even for models with
varying number of parameters, the default LoRA rank of 8 is a good
rade-off between computational time taken to tune the models and
erformance. However, if the task at hand would practically benefit
rom a small increase in the performance metric, tuning the LoRA
arameters may be beneficial.

3.3. General vs biomedical vs clinical domain pre-training

Another aspect of efficiency with regards to LLM downstream adap-
tation is the domain in which the model was pre-trained. We have
conducted direct comparisons between models pre-trained in general,
biomedical, and clinical domains across our various model architec-
tures. For the sake of brevity, we focus solely on the i2b2-2010 relation
xtraction task. The performance differences are greatest in the smaller

models, with clinically pre-trained models generally performing best
with a 1–4 percent improvement based on model size. For results
across all tasks and their dependence on domain pre-training, please
see Appendix C.6 (see Fig. 2).
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Table 3
PEFT results for all downstream tasks using biomedical models, with values representing the median from 3 distinct training
runs under varied random seeds for PyTorch weight initialisations. Standard Deviation (𝑆 𝐷) is provided in brackets. Micro-
averaged F1 scores are reported for the i2b2-2010-RE and all NER tasks. Macro-averaged Receiver Operating Characteristic
area under the curve (𝑅𝑂 𝐶 𝐴𝑈 𝐶) is used for MIMIC-LoS and -MP tasks, while macro-averaged F1 scores are reported for
the ICD-9 triage task. Bold results indicate the best PEFT performance and values underlined are top performance across all
fine-tuning methods.

(a) Sequence classification task results

Model name PEFT ICD9-Triage i2b2-2010-RE MIMIC-LoS Mimic-MP
(F1-macro) (F1-micro) (ROC AUC) (ROC AUC)

BioBERT Full 0.864 (0.002) 0.935 (0.004) 0.709 (0.002) 0.819 (0.020)
IA3 0.703 (0.19) 0.896 (0.004) 0.634 (0.001) 0.769 (0.005)
LoRA 0.827 (0.002) 0.925 (0.001) 0.697 (0.002) 0.828 (0.002)

BioDistilBERT Full 0.862 (0.010) 0.927 (0.003) 0.706 (0.003) 0.825 (0.006)
IA3 0.792 (0.008) 0.906 (0.002) 0.677 (0) 0.797 (0.001)
LoRA 0.855 (0.005) 0.928 (0.003) 0.702 (0.001) 0.825 (0.001)

BioMobileBERT Full 0.851 (0.004) 0.932 (0.003) 0.704 (0.004) 0.819 (0.011)
IA3 0.744 (0.012) 0.897 (0.003) 0.639 (0.001) 0.774 (0.002)
LoRA 0.808 (0.004) 0.918 (0.002) 0.671 (0.004) 0.798 (0.002)

TinyBioBERT Full 0.727 (0.012) 0.910 (0.005) 0.684 (0.001) 0.802 (0.001)
IA3 0.390 (0.035) 0.852 (0.002) 0.588 (0.003) 0.607 (0.003)
LoRA 0.599 (0.008) 0.895 (0.003) 0.649 (0.006) 0.764 (0.003)

(b) NER task results

Model name PEFT i2b2-2010-NER i2b2-2012-NER i2b2-2014-NER
(F1-micro) (F1-micro) (F1-micro)

BioBERT Full 0.819 (0.003) 0.824 (0.001) 0.967 (0.001)
IA3 0.473 (0.002) 0.485 (0.006) 0.850 (0.001)
LoRA 0.696 (0.003) 0.753 (0.001) 0.935 (0)

BioDistilBERT Full 0.803 (0.003) 0.795 (0.006) 0.967 (0.001)
IA3 0.498 (0.003) 0.503 (0.001) 0.883 (0)
LoRA 0.718 (0.008) 0.729 (0.006) 0.940 (0.001)

BioMobileBERT Full 0.796 (0.003) 0.772 (0.006) 0.966 (0)
IA3 0.515 (0.003) 0.515 (0.003) 0.908 (0)
LoRA 0.638 (0.010) 0.650 (0.004) 0.941 (0.001)

TinyBioBERT Full 0.655 (0.004) 0.705 (0.008) 0.906 (0.003)
IA3 0.328 (0.009) 0.381 (0.003) 0.715 (0.002)
LoRA 0.438 (0.007) 0.561 (0.009) 0.8051 (0.013)
Fig. 1. Sequence classification performance across the different LLM model sizes and the associated number of trainable parameters.
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Fig. 2. Comparison of F1 micro scores on the I2B2 2010 relation extraction task dependent on whether the model received biomedical, clinical, or general domain pre-training.
Model type refers to the base model(architecture) used: TinyBERT, MobileBERT, DistilBERT or standard BERT as described in Table 1.
3.4. Budget

The primary advantage of employing PEFT methods lies in their
ability to reduce training times, lower GPU memory demands, minimise
storage requirements and enhance model reusability (all of which lower
financial burden). In our study, we examined the trade-offs among
these aspects for various model architectures, focusing on the most
effective PEFT method identified in our experiments, namely, LoRA.
For each defined budget, we used MIMIC mortality prediction as the
benchmark task and macro-averaged AUROC as the metric of evalu-
ation. In addition to training the LoRA versions of each model, we
also conducted full fine-tuning on each model to determine whether
any budget level could achieve efficiency improvements comparable to
those provided by PEFT approaches. The only exception was the Llama
model, which was exclusively trained with LoRA due to computational
constraints.

3.4.1. Time
A key measure of efficiency is the training time and the speed at

which different models converge within a constrained period, particu-
larly a relatively short one. We set an initial time limit of 2000 s (33
minutes) for all models. To evaluate the performance of the models that
seemed to show an increasing trend in performance after the budget of
2000 s (Fig. 3), we raised the budget to 6000 s (100 minutes). An ex-
ception was made for the Llama model, which remained under-trained
even after 6000 s, necessitating an extension of the training period to
approximately 21,500 s (6 hours) to attain optimal performance.

We observed that the fully fine-tuned version of the models, regard-
less of size, was quicker to converge than the LoRA versions, followed
by eventually overfitting. The LoRA versions of the models eventually
converged to the performance (or close to the performance) of the fully
fine-tuned models. This observation suggests that fully fine-tuning a
model on a small time budget could theoretically obtain an efficiency
gain similar to the PEFT methods. However, from a practical stand-
point, the LoRA version of all models converged to similar performance
within ∼1 h of training (Fig. 3) while being more memory efficient.
A caveat to this analysis is that the learning rates for LoRA and full
fine-tuning were different due to drastic fluctuations in performance,
whereby one approach would under- or over-fit massively. A more
detailed analysis of the difference in efficiency between the methods
is discussed in Section 3.4.3 It is also important to acknowledge that
larger models, such as Llama, deliver superior performance but incur
significantly higher time and memory costs.
6 
3.4.2. Few-shot training
Another focus for efficient training involves restricting the number

of training samples, reflecting real-world situations with especially
rare outcomes or cases where producing labels is challenging. We
explored sample budgets that ranged from 8 to 4096 samples, increasing
incrementally by a factor of 2.

As expected, we observed a direct relationship between sample
budget and model performance, regardless of the model type and
training method used. While we noticed the fully fine-tuned models
generally performing better than their LoRA counterparts for smaller
sample budgets, the difference became negligible for higher budget
values (Fig. 3). The fully fine-tuned models on a budget of 4096 samples
under performed when compared against the LoRA versions on all
samples. Hence, for sample budget to be considered as an effective
method for efficiency gain, we would need more than 4096 samples.

3.4.3. Memory and cost
The GPU and storage requirements for training differ massively

between model types, and fine-tuning method. Whilst performance
has generally increased with model size, there is a trade-off between
performance and compute required, as well as speed of training and
inference. We provided the model size and memory requirements in
Table 1 and we extend this analysis by calculating the estimated costs
of training and storage of the differently sized models in Table 4. As
observed in previous results, larger models like Llama-2-7b achieve
higher performance on most tasks but at 20 and 94 times the monetary
value of models like BioBERT and TinyBioBERT, respectively. If the
objective is to fine-tune a model for multiple tasks, BioBERT and
similar models can be a good trade-off between monetary cost and
performance.

4. Discussion

4.1. PEFT with small LLMs

We have explored the use of different-sized LLMs for various clinical
downstream tasks, assessing both traditional fine-tuning and different
PEFT methods. From the methods we studied (𝐼 𝐴3 and LoRA), we
found LoRA to be superior across all tasks, leading us to select it as
the preferred PEFT method for all subsequent analyses. Whilst full fine-
tuning generally outperforms LoRA, in certain models and tasks the
performance is at least matched or even surpassed. Although LoRA
works well for all model sizes, the relative performance gap between
full fine-tuning and LoRA appears to increase with the smaller models,
which was only partially mitigated by increasing the LoRA rank. In fact,
it is potentially more resource-effective to use LoRA with a medium or
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Fig. 3. Effect of training time (a) and few-shot sampling (b) on models of varying sizes, trained using full fine-tuning as well as LoRA. The connected points reflect the LoRA
results to highlight the trend. The task used for this experiment was MIMIC mortality prediction and the highlighted regions shows the standard deviation across 3 runs with
different random seeds.
Table 4
Costs for training each model on a task with approximately 30,000 training samples for 10 epochs, followed
by running it in inference mode for 100,000 samples. The costs were estimated using AWS EC2 rates. The
instances used for estimating training and inference costs were g5.16xlarge and g4dn.16xlarge, respectively.
Model name PEFT Method Train time (h) Inference time (h) Total cost (GBP)

Llama-2-7b LoRA 51.07 4.06 112.22

BioBERT Full 2.51 0.22 5.56
BioBERT LoRA 2.16 0.22 4.84

BioMobileBERT Full 1.57 0.14 3.48
BioMobileBERT LoRA 1.35 0.14 3.03

BioDistilBERT Full 1.35 0.12 2.99
BioDistilBERT LoRA 1.21 0.13 2.73

TinyBioBERT Full 0.53 0.06 1.20
TinyBioBERT LoRA 0.46 0.06 1.06
large LLM in place of fully fine-tuning the smallest LLMs. This finding
highlights the potential of utilising PEFT methods with very small
LLMs.

4.2. Comparison of LLM size

The performance of various model sizes was evaluated on a specific
task within a fixed time frame, including the 7 billion parameter
7 
Llama-2 model. This comparison revealed significant differences in the
learning capabilities of models of varying sizes. Numerous smaller LLMs
completed 5 epochs of training well before the Llama-2 model achieved
comparable performance levels. Nevertheless, when given sufficient
time, Llama-2 did reach the highest evaluation performance by a few
percentage points in the target task. Llama-2 model is approximately
500 times the size of the TinyBERT models, indicating that the compu-
tational demand, even with the implementation of LoRA for Llama-2,
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is significantly higher. The duration required for the Llama-2 model
to achieve comparable performance on downstream tasks, using the
same GPU, was considerable. It took roughly ten times longer to match
the performance of smaller LLMs and exceeded six hours of training to
attain its peak performance.

4.3. Domain pre-training

The pre-training of LLMs was helpful on average in obtaining a
erformance gain on the various clinical domain tasks. The advantage

of pre-training was more pronounced in tasks such as i2b2-2010-NER
and i2b2-2012-NER, where the increase in F1-micro is 2%–4% on
average. In contrast, for tasks such as i2b2-2010-RE, Mimic-MP and
MIMIC-LOS, the performance gain was just about 1% (Appendix C.6).
We do note that the clinical LLMs, such as ClinicalBioBERT have been
trained on MIMIC-III notes themselves and this does give them an unfair
advantage. In line with previous works [25], it could be argued that
eveloping specialised clinical LLMs through pre-training on relevant
linical language remains optimal for subsequent downstream task

adaptation. Nevertheless, the trade-off between the time and resources
taken to pre-train the models, and the magnitude of performance gain
is not consistent across models and tasks.

4.4. Limitations and future work

The selection of PEFT methods investigated in this study reflected
he state of the field at the time; however, we acknowledge that this is

an evolving research area, and we cannot be certain that other methods
would not have outperformed those presented here. Indeed, since con-
ducting these experiments, the PEFT library [48] has introduced several
new methods worth exploring.

When comparing various model sizes, we chose to limit training
to a single GPU. This approach might disadvantage larger models,
articularly the Llama-2 model, which was forced to employ reduction
n bit-precision to allow any training. Furthermore, this constraint
indered our ability to thoroughly investigate Llama-2 across all tasks

and conduct any hyperparameter optimisation. Future work could seek
to explore this further, although the resources required are extensive
and arguably yield diminishing returns.

4.5. Conclusion

Overall, we believe this work highlights the power of PEFT methods
or small LLMs and demonstrates how domain pre-training can be
everaged to create efficient clinical models. While the capabilities of
uch larger LLMs are evident, they come with significantly higher time

nd financial demands.
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Appendix A. Dataset details

A.1. MIMIC-III

Mimic-III is a large, freely-available database comprising deiden-
tified health data associated with over 40,000 patients who stayed
in critical care units of the Beth Israel Deaconess Medical Center
between 2001 and 2012 [42]. The data includes demographics, vital
igns, laboratory tests, medications, and more collected from a variety
f hospital systems. It encompasses over 2 million notes including
ischarge summaries, radiology reports, and more.

A.2. i2b2

Originally released on the i2b2 website, but is now hosted via the
Department of BioMedical Informatics (DBMI) data portal. The dataset
is now referred to as the National NLP Clinical Challenges research
datasets (n2c2), and is based on fully deidentified notes from the
Research Patient Data Registry at Partners Healthcare System in Boston.

Appendix B. LoRA rank analysis

We provide a comparison of different LoRA ranks on task perfor-
mance across each model in Fig. B.4.

Appendix C. Hyperparameters and hardware for downstream
tasks

For the core experiments we utilised the HuggingFace [49] and
Parameter Efficient Finetuning (PEFT) [48] libraries. For consistency
and equal footing between model types, all experiments utilised a
single NVIDIA RTX 3090 graphics card with 24 GB of VRAM. Due to
this, however, the experiments utilising Llama-2-7b, even with LoRA,
equired a reduction in the precision of the model weights from fp32

to bfloat16 (see Table C.5).
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Fig. B.4. Differential effect of LoRA rank on performance of a model. The 𝑦-axis represents the difference in AUROC between the rank on the 𝑥-axis and rank=8.
Table C.5
The default hyperparameters for LoRA and 𝐼 𝐴3 used in all experiments prior to the hyperparameter
optimisation. For full fine-tuning the same learning rate (3𝑒−4) and dropout (0.1) was used.
PEFT Hyperparameter Value

LoRA
r 8
alpha 8
dropout 0.1
learning rate 3𝑒−4
target modules [key, value]
layers all

𝐼 𝐴3
dropout 0.1
learning rate 3𝑒 − 4
target modules [key, value, feed-forward]
layers all
Table C.6
PEFT results for sequence classification and NER tasks dependent on domain pre-training received.

(a) Sequence classification task results

Model name PEFT ICD9-Triage i2b2-2010-RE MIMIC-LoS Mimic-MP

BERTbase Full 0.991 0.975 0.702 0.799
BERTbase LORA 0.983 0.980 0.679 0.811

BioBERT Full 0.991 0.982 0.711 0.812
BioBERT LORA 0.991 0.985 0.697 0.828

BioClinicalBERT Full 0.993 0.978 0.697 0.793
BioClinicalBERT LORA 0.990 0.981 0.701 0.822

BioDistilBERT Full 0.992 0.979 0.697 0.803
BioDistilBERT LORA 0.993 0.988 0.704 0.822

BioMobileBERT Full 0.992 0.980 0.697 0.809
BioMobileBERT LORA 0.987 0.982 0.670 0.792

ClinicalDistilBERT Full 0.994 0.980 0.697 0.822
ClinicalDistilBERT LORA 0.995 0.989 0.710 0.836

ClinicalMobileBERT Full 0.995 0.983 0.720 0.826
ClinicalMobileBERT LORA 0.994 0.982 0.690 0.824

(b) NER task results

Model name PEFT i2b2-2010-NER i2b2-2012-NER i2b2-2014-NER

BERTbase Full 0.806 0.792 0.974
BERTbase LORA 0.673 0.697 0.951

BioBERT Full 0.822 0.823 0.969
BioBERT LORA 0.713 0.757 0.935

BioClinicalBERT Full 0.846 0.820 0.960
BioClinicalBERT LORA 0.704 0.746 0.920

BioDistilBERT Full 0.809 0.794 0.965
BioDistilBERT LORA 0.704 0.726 0.939

BioMobileBERT Full 0.794 0.774 0.966
BioMobileBERT LORA 0.649 0.654 0.938

ClinicalDistilBERT Full 0.816 0.817 0.961
ClinicalDistilBERT LORA 0.671 0.740 0.920
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