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Patient Clustering for Vital Organ Failure Using
ICD Code With Graph Attention

Zhangdaihong Liu , Ying Hu, Xuan Wu, Gert Mertes, Yang Yang , and David A. Clifton

Abstract—Objective: Heart failure, respiratory failure and
kidney failure are three severe organ failures (OF) that have
high mortalities and are most prevalent in intensive care
units. The objective of this work is to offer insights into
OF clustering from the aspects of graph neural networks
and diagnosis history. Methods: This paper proposes a
neural network-based pipeline to cluster three types of or-
gan failure patients by incorporating embedding pre-train
using an ontology graph of the International Classification
of Diseases (ICD) codes. We employ an autoencoder-based
deep clustering architecture jointly trained with a K-means
loss, and a non-linear dimension reduction is performed
to obtain patient clusters on the MIMIC-III dataset. Results:
The clustering pipeline shows superior performance on a
public-domain image dataset. On the MIMIC-III dataset, it
discovers two distinct clusters that exhibit different co-
morbidity spectra which can be related to the severity of
diseases. The proposed pipeline is compared with several
other clustering models and shows superiority. Conclu-
sion: Our proposed pipeline gives stable clusters, how-
ever, they do not correspond to the type of OF which in-
dicates these OF share significant hidden characteristics
in diagnosis. These clusters can be used to signal possible
complications and severity of illness and aid personalised
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treatment. Significance: We are the first to apply an unsu-
pervised approach to offer insights from a biomedical en-
gineering perspective on these three types of organ failure,
and publish the pre-trained embeddings for future transfer
learning.

Index Terms—Artificial neural networks, clustering meth-
ods, graph attention, ICD ontology, organ failure.

I. INTRODUCTION

ORGAN failure (OF) is the main reason for admitting
patients to Intensive Care Units (ICU) and the main cause

of death in ICU [1], [31]. The mortality rate remains high
for OF patients and is significantly higher for patients with
multiple OFs [3]. [2] showed that the most common hospital
admission diagnosis of patients that had unplanned transfer to
ICU was heart failure (HF) (12%). Moreover, HF is reported
to affect over 26 million people globally and has a growing
prevalence, especially with an ageing population [29]. The most
common diagnosis of unplanned ICU transfers was respiratory
failure (RF) (27%). It also has the highest incidence rate in ICU
and is associated with high short-term mortality and long ICU
stays [27]. A population-based cohort study showed that kidney
failure (KF) had the highest one-year mortality rate (18.2%)
among all OFs that were investigated [28]. The overall mortality
of acute KF is around 20%, rising to over 50% for patients who
require dialysis [23].

Patients with these OFs have very poor quality of life, and the
cost burden of these OFs results in huge health expenditures for
countries [32]. It is crucial for a nation’s health system to better
understand the underlying relationships between these OFs so
that precautionary measures can be taken and early intervention
can be achieved more effectively to improve the mortality and
treatment. However, identifying patients with vital organ failure
timely and correctly can be challenging due to the broad di-
agnosis associated with presenting symptoms and variations in
patient presentations. Furthermore, the pathological and clinical
complexities of those OFs are high.

Electronic health records (EHR) store rich information of
patients’ hospital admissions including medical histories, demo-
graphics, and symptoms, etc. The International Classification of
Diseases (ICD) code is a globally used clinical tool for recording
patients’ diagnosis and procedures undergone in hospitals and
is widely stored (with little missingness) in most EHR systems.
The ninth revision of ICD contains over ten thousand different
codes [7]. These diagnostic codes can be collapsed into a smaller
number of clinically meaningful concepts to form an ontology.
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Such structured ontology trees can help us to present more
descriptive statistics for easier analysis and interpretation [6].
One popular ontology is created by the Clinical Classifications
Software (CCS) [36]. The ICD codes with closer relationships
are likely to fall under the same lower-level parent medical
concept. Such ontology structure may help machine learning
models to better learn the representation of rare conditions and
thus, boost model performance.

The diagnosis ICD code is one of the most accessible and
standardised modalities in EHR systems and the diagnosis
history records rich and vital information for patients’ health
status. Moreover, it is the reference for or is related to many
other medical modalities such as medication and procedure. A
large amount of literature has shown the power of diagnosis
information in various clinical tasks [5], [17], [48]. Thus, in
this paper, we focus on using the diagnostic information to
offer insights into OF patient clustering, an unsupervised task
that no research has attempted. We hypothesise that the disease
complexities are embedded in the ICD codes assigned to patients
during their hospital visits.

In this work, we adopted the attention mechanism and ICD
initialisation approach proposed in [6], in which they showed
superiority of applying such mechanism to the ICD ontology in
prediction tasks. Additionally, we turned the supervised predic-
tion task into an unsupervised setting for OF patient clustering by
employing an auto-encoder (AE) based model architecture. We
applied this pipeline to the MIMIC-III dataset on patients with
the aforementioned OFs, in order to learn patient groups from
the diagnosis histories and having more insights on these OFs
from an unsupervised point of view. The experiment pipeline can
be divided into three stages: (1) pre-train ICD embeddings from
the ontology tree; (2) pre-train an AE embedded with attentions
and with layer-wise construction loss only; (3) joint-train the AE
with a clustering loss added; (4) apply UMAP to further improve
the clustering performance.

The main contributions of this work include: (1) introducing
an OF patient clustering pipeline, where the inputs are ICD
embeddings pre-trained with ontology; (2) we discovered two
distinct clusters that can be used for complication signalling and
potentially are related to disease severity and aid personalised
treatment; (3) we publish the pre-trained ICD embeddings1

which have strong power in identifying OF types with supervised
learning. To our knowledge, we are the first to apply pre-trained
ICD embeddings to cluster OF patients. The clustering pipeline
composition is novel for this biomedical engineering task. We
are also the first to publish the pre-trained ICD embeddings for
the convenience of future transfer learning.

II. RELATED WORK

ICD embedding learning: Learning embeddings for ICD
codes, which are typically represented by dense vectors, us-
ing machine learning methods has been a popular research
topic [14], [22]. The learnt embeddings are often used as features

1https://github.com/lzdh/MIMIC-III-ICD9-Pretrained-Embeddings

for supervised tasks such as predictions and classifications since
they contain rich information for patients’ medical histories.
Natural language processing (NLP) techniques are suitable tools
to aid the learning because ICD codes are often contained in free
text parts of the EHR (e.g. charted clinician notes). [34] used long
short-term memory to automatically perform ICD coding given
the diagnosis descriptions; [16] combined convolutional neural
network and ‘Document to Vector’ to achieve text multi-label
classification and automated ICD coding; in recent work [18]
used state-of-the-art NLP model BERT to joint learn embed-
dings for ICD and age to predict diseases.

ICD ontology and graph neural network: The ICD ontology
graph is beneficial for ICD embedding learning. There are over
10,000 codes in the ICD Ninth Revision and significantly more in
the later revisions. These codes have clinical hierarchies which
can be for better understanding of the relationships between
diseases and easier analysis. There are a few widely-accepted
ontology schemes such as the one mentioned above (CCS) and
SNOMED-CT [24]. Incorporating the ontology tree into ICD
embedding learning could enhance the relationships between
ICD codes and help to learn embeddings for rare codes. [6] were
the first to embed ICD ontology graph into deep neural networks
to predict diseases. Later, [33] also employed this ICD ontology
graph and updated the attention training to improve the ICD
embedding learning. Finally, they used BERT for medication
recommendation.

Deep Clustering: Clustering is an unsupervised method in
machine learning, and has been a fundamental tool to learn
data structures in an exploratory fashion when no label is
given. Since the development of DEC (Deep Embedded Cluster-
ing [37]) which combines deep neural network with clustering,
deep clustering algorithms have drawn much attention from
machine learning researchers. Many deep clustering methods
have emerged and they can be categorised into different types
based on the loss function. The loss function generally consists
of a network loss to learn the latent representations and a
clustering loss applied to these representations to achieve the
clustering goal [21]. The network loss determines the archi-
tecture of the neural network. AE (with reconstruction loss)
is the most common architecture for deep clustering models.
DEC, DCN (Deep Clustering Network) [38], SR-K-means (Soft
Regularized K-means) [9] and K-Autoencoders [44] all adopted
this architecture. There are also generative models such as
Generative Adversarial Network and Variational AE that are
used as the network architecture [10], [45], [46]. There are
also methods such as JULE (Joint Unsupervised Learning) [39]
and DAC (Deep Adaptive Image Clustering) [4] which are
CNN-based and involve only a well-designed clustering loss
to extract discriminative features to achieve clustering purpose
specifically for images. The clustering can be achieved by
using an AE with reconstruction loss only [30]. Those with
an additional clustering loss, which is normally added after
a pre-train of the network, can simultaneously preserve the
structure of the data and achieve clustering. Variations of K-
means and KL divergence are most widely applied clustering
losses in the discriminative and generative network setting
respectively.

https://github.com/lzdh/MIMIC-III-ICD9-Pretrained-Embeddings


LIU et al.: PATIENT CLUSTERING FOR VITAL ORGAN FAILURE USING ICD CODE WITH GRAPH ATTENTION 2331

TABLE I
DATA SUMMARY TABLE. 2216 IS THE NUMBER OF PATIENTS WITH ONLY ONE

ORGAN FAILURE AND HAS AT LEAST TWO HOSPITAL VISITS

Many of the aforementioned methods showed competitive
performance compared with supervised tasks on public-domain
datasets such as MNIST [15]. However, we found little work
that applies the above techniques to medical applications, and
much less to cluster OF patients.

III. DATA

MIMIC-III [11] is a public dataset which contains around
60,000 ICU admissions and over 650,000 diagnoses, recorded
using International Classification of Diseases, Ninth Revision
(ICD-9). Organ failures are often the main reasons to admit a
patient to ICU, which makes MIMIC-III an ideal dataset for our
analysis.

To identify the patients with HF, RF and KF, we carefully
selected the following ICD codes: all end-level ICD codes under
428 (HF), 518.81 (acute RF), 518.83 (chronic RF), 518.84
(acute and chronic RF), 518.51 (acute RF following trauma and
surgery), 518.53 (acute and chronic RF following trauma and
surgery), 770.84 (RF of newborn), 584 (acute KF), 669.3 (acute
KF following labour and delivery) and 586 (renal failure). In
total there are 24 ICD codes. In MIMIC-III, a single patient may
have multiple visits (admissions). We included all visits of a
patient. Notably, the median and 95th percentile for the number
of visits are 2 and 4 respectively.

The data summary is shown in Table I. We selected all patients
with one of the three OFs. It is clinically interesting to investigate
patients with distinct OFs, and as a consequence of this, the task
is simplified. Furthermore, to better learn from the diagnostic
history and reduce the randomness/noise in the data, we removed
patients with fewer than two hospital visits. This yielded 2216
unique patients in this study, and we named this cohort the
target cohort. The data pre-processing pipeline is shown in
Supplementary Appendix Fig. 11.

For the ICD ontology, we adopted the scheme created by the
Clinical Classifications Software (CCS) [36] which is widely
recognised and applied in the literature. There are single-level
(ICD codes have only one overall category) and multi-level (ICD
codes have hierarchical ancestral categories) CCS categories.
We used multi-level CCS to construct the ontology tree. In the
ontology tree, the leaf nodes are the billable ICD codes that are
actually stored in the EHR system and the upper level ancestors
are more general medical concepts. This is illustrated in Fig. 1.
For example, ‘Heart Failure’ has three ancestors (apart from the
root node which is shared by all ICD codes). Both ‘Heart Failure’
and ‘Atrial Fibrillation’ are end-level ICD codes. They are under
a different ‘parent’ node, but belonging to the same ‘grandpar-
ent’ node. In this study, there are 3266 unique end-level ICD
codes appeared in the diagnoses of the OF patients, and they have
729 ancestor nodes (medical concepts) in the CCS ontology tree.

Fig. 1. A snapshot of the CCS ontology tree.

IV. METHODS

A. Analysis Pipeline

Fig. 2 A lists the key components from in the clustering
pipeline and Fig. 2 B shows the details of the end-to-end deep
clustering model. The architecture is based around an AE that
learns the latent representations of the model input. Clustering
is achieved by adding a clustering loss to the bottleneck latents
of the AE.

To incorporate ICD ontology into the pipeline, we adopted
the approach proposed in GRAM [6]. In brief, [6] imposed an
attention mechanism to the ontology tree to establish connec-
tions between the leaf ICD nodes and their ancestor medical
concepts. The goal is to construct an embedding matrix E for
the leaf ICD nodes where each embedding in E is a weighted
linear combination of the ancestor embeddings and the origi-
nal ICD embedding itself. More specifically, let us assume a
randomly initialised embedding matrix G containing the initial
embedding for all nodes in the ontology tree. The ‘attended’
embedding matrix E contains embeddings for ICD codes only
and is constructed by 1.

ei =
∑

j∈A(i)

αijgj , where αij =
exp(f(gi, gj))∑

k∈A(i) exp(f(gi, gk))
,

(1)
where ei is the ith column in E, corresponding to the ith ICD
code, gi the ith column in G, representing the ancestors of
targeted ICD code,αij the attention weights,A(i) the set for ICD
code i and all of its ancestors, and f(·) in this case represents a
two-layer MLP. Taking Fig. 1 as an example again, the ‘attended’
embedding of ‘Heart Failure’ would be a linear combination
of the initial embeddings of itself, ‘Congestive hear failure;
non-hypertensive,’ ‘Diseases of the heart’ and ‘Diseases of the
circulatory system’.

The ‘attended’ ICD embedding matrix E (concatenation of
all MLP outputs in Fig. 2 B) was then further mapped (taking
inner product) with the patient-diagnosis encoding matrix M to
serve as the input of a stacked AE.

As shown in Fig. 2 B, the encoding matrix M contains the
patients’ diagnosis information. M is a N × C matrix where N
is the number of patients and C is the total number of ICD codes
in the dataset. mij represents the counts of ICD code j from all
visits of patient i. Fig. 3 illustrates how this map is generated.
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Fig. 2. Box A presents the overall clustering pipeline with the key components listed. The dotted box shows the end-to-end training components.
Box B shows the details of the end-to-end training. The input of the model is the product of the patients multi-hot ICD encoding matrix M and the
pre-trained ICD embeddings G (trained by GloVe). Each ICD GloVe embedding goes through a multi-layer perceptron (MLP) to learn the attention
weights. The concatenation of all MLP outputs is the patient-wise updated ICD embedding matrix E. Taking the inner product between E and
a patient-ICD encoding matrix M to serve as the input of a stacked AE. The reconstruction loss is applied between the model input and final
reconstruction ˜MG; the clustering loss is imposed on the bottleneck latents z.

Fig. 3. The 3D matrix is a N (number of patients) by C (number of ICD
codes) by T (maximum number of visits among all patients) binary matrix
indicating whether a patient acquires an icd code in a visit. The visit
does not have temporal order, i.e. the tth visit for different patients may
be at different real-world time. The matrix is padded up to the maximum
number of visits using 0 to fill the visits that do not exist for a patient.
The multi-hot encoding matrix M is the 2D matrix on the right which is
summed over the ‘visit’ axis in the 3D matrix.

The initialisation of G can be random, however, [6] showed
that initialising G with GloVe can boost the model performance
(details of GloVe initialisation can be found in [28] and [6]).
Therefore, we initialised G with the same GloVe training, and
kept the GloVe embedding dimension as 128. In brief, GloVe
is trained on sequences containing all leaf ICD nodes obtained
within each visit of a patient and all their corresponding ancestor
nodes in the ontology tree. Therefore, GloVe is able to incor-
porate the hierarchical relationship embedded in the ontology
as well as the co-occurrence information between the ICD leaf
nodes.

We used layer-wise mean-squared error (MSE) as the recon-
struction loss, summing the reconstruction loss between each
encoder and decoder layer; K-means loss as the clustering loss
and it was applied to the bottleneck latents z. The joint loss

function is expressed in (2).

min
µ

||G− G̃||2F + λ1

k−1∑
l=1

||H l − H̃ l||2F

+ λ2

k∑
i=1

n∑
j=1

wij ||zj − μi||2,

s.t.
k∑

i=1

wij = 1; wij ∈ {0, 1}∀i, j

(2)

where || · ||F indicates the Frobenius norm, k the number of
clusters, H l and H̃ l the output of the lth encoder and decoder
layer respectively, wij the binary cluster assignment parameter
assigning point j to cluster i, zj the jth row of the bottleneck
latents, and μi is the centroid for the ith cluster. The end-to-
end training algorithm is described in Supplementary Appendix
Fig. 1.

B. Model Training and Assessment

The training procedure consisted of two pre-trains, a separate
ICD embedding pre-train using GloVe (which we name ICD
pre-train) and an end-to-end AE pre-train, and a joint-train.
Notably, the AE pre-train and joint-trainjoint-train shared the
same end-to-end training pipeline (illustrated in Fig. 2 B) with
only loss function different. The AE pre-train was trained with
MSE as loss only (first two terms in (2)); the joint-trainjoint-train
has the loss function shown in (2), sum of reconstruction loss
and clustering loss. We used Pytorch [26] to train both of the
pre-trains and joint-train. The training details can be found in
Supplementary Appendix B.
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Regarding the model assessment, we applied the converged
model to the dataset, and extracted the bottleneck latents for clus-
tering. Before applying clustering algorithms, we further applied
UMAP [20] on the bottleneck latents to reduce the dimension-
ality to 2. We will show in Section V-A that adding UMAP sig-
nificantly improves the clustering performance. Moreover, [49]
applied several manifold learning methods to embeddings ex-
tracted from AE and showed that UMAP is able to discover
the most clusterable latent representations. This application of
UMAP does not complicate the original model and facilitates
visualisation. For inference, we investigated the ICD codes as
well as their single-level CCS categories belonging to different
clusters.

Although we have no ground truth of cluster assignment for
patients, it is reasonable to assume the number of clusters is 3
since we are considering three types of organ failure. In this
study, we start by setting k = 3 for K-means loss and also
experimented for k equal to 2 and 4. To assess the clustering
results, we calculated the Silhouette score [43].

To further assess our pipeline, we compared it with DCN [39],
an extensively applied benchmark clustering model, and con-
verted an off-the-shelf model Med-BERT [49] for clustering.
We used the same hyper-parameters as in the original works
where we can. Since DCN does not incorporate any attention
mechanism, we used the average of the code embeddings as in-
put. For Med-BERT, we pre-trained BERT on the whole MIMIC
cohort using the masked language model (MLM) and fine-tuned
the model on the OF target cohort with a classification task using
the OF type as labels. We extracted the encoder embeddings and
averaged them for each patient to serve as input to K-means to
cluster the OF cohort. The rest of the setting stays the same with
Med-BERT [49].

C. Validation of the Deep Clustering Pipeline on MNIST

To validate the above loss function and training scheme, we
tested the deep clustering model (without attention learning) on
MNIST [16], an image dataset with 10 classes. The model was
trained with the same neural network architecture (AE based),
training scheme (a pre-train plus joint-trainjoint-train) and loss
function (expressed in (2)). The final clusters are obtained by
applying K-means to the 2-dimensional UMAP latents reduced
from the bottleneck latents extracted from the converged model.
The joint-train algorithm starts from step 11 in Supplementary
Appendix Fig. 1 in this case.

To assess the clusters, we calculated the standard normalised
mutual information (NMI [47]) between cluster outcomes and
the true labels and plotted a confusion matrix to visualise the
results. Higher NMI indicates better alignment between the
clustering outcomes and the true labels.

V. RESULTS

In this section, we present first the results of testing the cluster-
ing model on MNIST, then we move to the main results obtained
from MIMIC-III. This part of the results is presented according
to the pipeline training order: GloVe ICD embedding training
results are shown first; AE pre-train results come second; finally,

Fig. 4. Confusion matrices for clustering results on MNIST with
(a) and without (b) UMAP applied. More yellow blocks (relative to green)
indicates more instances that fall under the corresponding cluster and
class. Note that the numbers on the axis do not indicate the 10-digit
classes since this is an unsupervised setting. (a) With UMAP, NMI =
0.929. (b) Without UMAP, NMI = 0.512.

there are the clustering results and inference obtained from the
joint-training.

A. Testing Deep Clustering Model on MNIST

Fig. 4(a) shows the confusion matrix obtained by applying
the pipeline introduced in Section IV-C to MNIST. This result,
NMI= 0.929, is higher than all related models considered in
Section II (the highest NMI is 0.917 and given by DEPICT [8])
and is at a competitive level with the state-of-the-art clustering
models ( [8], [10]). Notably, confusion matrices in Fig. 4 show
how unsupervised cluster assignments align with the true labels.
Since the clusters do not match any specific classes, the blocks
are randomly distributed in the matrix. However, if the clusters
align well with the classes, one should expect k (k equals to the
number of true classes) distinguished blocks, and distributed
in k different rows and columns (like shown in Fig. 4(a)). We
also present the result without applying UMAP before cluster
acquirement, and found much worse performance Fig. 4(b). This
may be explained by the suffering of ‘curse of dimensionality’
of K-means. This is, therefore, the reason why we added UMAP
to the analysis of MIMIC-III data.

B. OF Patients Deep Clustering on MIMIC-III

1) Interpretation of ICD Pre-Train: As introduced in Sec-
tion III, the OF patient cohort comprises over 3266 end-level ICD
codes and 729 ancestral medical concepts. GloVe initialisation
training gives a dataset-specific embedding matrix for all of the
3995 (3266 + 729) nodes in the ontology tree. It supposes to
reveal the co-occurrence information in the OF dataset between
the different ICD codes as well as between ICD codes and
their ancestors. To be able to interpret the embeddings, we
visualised them by applying UMAP to the 128-dimensional
GloVe embeddings and reduced the dimensionality to 2. In
Fig. 5, we observed clusters where all similar medical concepts
gather together such as gynaecological diagnoses (Box B), and
diabetes-related diagnoses (Box A). There are also clusters on
related diseases such as lung cancer, respiratory diseases and
pleurisy in Box D of Fig. 5. Meanwhile, we observed some
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Fig. 5. 2-dimensional UMAP visualisation of 128-dimensional ICD and
medical ancestor embeddings trained by GloVe. Box A contains codes
related to medical concepts of diabetes (e.g. Diabetes mellitus with
complications) and some other diseases such as ‘Pulmonary heart
disease’ and ‘Genitourinary symptoms and ill-defined conditions’. Box
B contains all maternal related medical concepts. Box C is a mixture
of diseases including ‘Secondary malignancies,’ ‘Cancer of bronchus;
lung,’ ‘Osteoarthritis,’ ‘Other hereditary and degenerative nervous sys-
tem conditions,’ ‘Other nutritional; endocrine; and metabolic disorders’.
Codes in Box D are ‘Hypertension with complications and secondary
hypertension,’ ‘Cancer of bronchus; lung,’ ‘Skin and subcutaneous tissue
infections,’ ‘Pleurisy; pneumothorax; pulmonary collapse,’ ‘Other lower
respiratory disease’ and ‘Inflammatory diseases of female pelvic or-
gans’.

seemingly unrelated diseases clustered together: skin infection
appeared with pulmonary diseases (Box D). The points in Box
C are far away from the rest of the points, but they represent a
combination of a variety of diseases, e.g., nerve system dis-
eases, nutritional disorders, osteoarthritis and tumour related
diseases. The emergence of these clusters might be caused by
the co-occurrence of the diseases in this specific dataset or
outliers.

2) AE Pre-Train: The 128-dimensional GloVe embeddings
of all ICD codes and their ancestral concepts were then fed into
an AE with reconstruction loss only for pre-train (no cluster-
ing loss imposed in Fig. 2 B). Based on the experiments we
carried out on MNIST, the visualisation of bottleneck latents
after pre-train should be close to the one after joint-train. This
statement is also supported by clustering literature [30] where
no clustering loss was applied; only AE with reconstruction loss
was used for clustering and visualisation. Therefore, visualising
the bottleneck latents after pre-train would help us having some
ideas on the number of clusters. Since this is a pure unsupervised
setting, the selection of the number of clusters should be aligned
with the data structure.

As with visualising the GloVe embeddings, we applied
UMAP to the bottleneck latents extracted from applying the
converged pre-train model to the whole OF cohort. We show
this visualisation in Fig. 6(a). It looks like the data are moving
towards two clusters, and it is possible that the larger cluster may
further divide.

To see the effects of model architecture, we tested with dif-
ferent numbers of hidden layers and layer widths. We observed

Fig. 6. UMAP visualisations for the bottleneck latents after pre-train.
The latents are extract from applying the converged model to all of the
OF patients. (a), (b) and (c) are trained by the model with 3, 4 and 2
hidden layers receptively. (a) and (b) show a rough representation of
two possibly three clusters whereas (c) is hardly showing any structure.
(a) 3 hidden layers with widths 128, 64, 32. (b) 3 hidden layers with
widths 256, 128, 64. (c) 4 hidden layers with widths 256, 128, 64, 32.
(d) 2 hidden layers widths 64, 32.

Fig. 7. UMAP visualisations for the bottleneck latents after joint-train.
The latents are extract from applying the converged model to all of the
OF patients. (a), (b) and (c) are trained with 2, 3 and 4 clusters (k = 2, 3
and 4) respectively. The two colours are clustering labels assigned by
HDBSCAN. (a) k = 2. (b) k = 3. (c) k = 4.

similar pattern in UMAP visualisation with the same number
of hidden layers (with different widths, Figs. 6(b)) or more
layers Fig. 6(c). However, this pattern cannot be learnt with
fewer layers Fig. 6(d). This experiment gave us an estimate of
the number of clusters to explore during the joint-train. Since
Fig. 6(a) gives the clearest structure and with the simplest
model architecture, we used this architecture to carry out the
analysis.

3) Clustering Results From the Join-Train Stage: We ran
the joint-train stage for several repetitions of each k ∈ {2, 3, 4}.
The clustering visualisations for all ks look very stable Fig. 7.
All cases in Fig. 7 display two distinguished clusters. We also
observed that as the training proceeds, the longer-shaped cluster
tend to be stretched out even further, with a long tail (an example
is shown in Supplementary Appendix C) and no further dis-
tinguished division appeared. This kind of visualisation might
be a sign of over-training. Therefore, we stopped the training
before the cluster became too stretched out. We then moved to
interpreting the two clusters presented in Fig. 7.

The Silhouette scores for the three sets of clustering results
shown in Fig. 7 are 0.800, 0.748 and 0.740 for k = 2, k = 3
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Fig. 8. CCS single-level categories with the top 10 to 20 percent
occurrence in the two clusters. The occurrence is normalised by cluster
size and ordered in decreasing orders. The label ticks are abbreviated
category names. The full category names can be found in Supplemen-
tary Appendix F.

and k = 4 respectively. We focused on the k = 2 case since
it has the highest Silhouette score. Moreover, all ks gave very
similar results (results for k = 3 and 4 can be found in Sup-
plementary Appendix D). We first investigated the ICD codes
in the two clusters. Due to the large number of ICD codes
involved, we applied CCS single-level category to represent the
ICD codes to aid interpretation and visualisation. We visualised
the CCS single-level category by a range of percentiles based
on occurrence frequencies, and focused on interpreting the CCS
categories with the top 10-20% occurrence (Fig. 8). This is due
to the fact that the most occurring ICD codes/CCS categories are
generally diseases with high prevalence in the population which
is not helpful in distinguishing the clusters. We present the results
for the top 10% CCS categories and top 20% most-occurring
ICD codes (split into 4 ranges) in Supplementary Appendix D.

From Fig. 8, we can see that the two clusters exhibit different
comorbidity spectra, and the spectrum of Cluster 1 has higher
disease frequencies that the spectrum of Cluster 2. For cluster 1,
the most commonly occurring CCS category is ‘Chronic ulcer
of skin’ which can be a complication for all OFs. We also
observed other OF related CCS categories belonging only to
cluster 1 in this range such as ‘Heart valve disorders,’ ‘Urinary
tract infections,’ ‘Pneumonia’ and ‘COPD’ which are related
to HF, KF and RF respectively. The unique and OF-related
categories belonging to cluster 2 in this range include ‘Acute
myocardial infarction,’ ‘Chronic kidney disease,’ ‘Other upper
respiratory disease’ which can also be related to HF, KF and
RF, respectively. Therefore, the clusters are not grouped by
failing organs, but by severity of the diseases in some way:
the occurrence frequency for cluster 1 is larger than cluster
2 (normalised by cluster sizes), i.e. the patients in cluster 1
have more diagnoses than those in cluster 2. Moreover, some
diagnoses that are unique to cluster 1, such as ‘Chronic ulcer
of skin,’ ‘Coagulation and hemorrhagic disorders’ and ‘Sec-
ondary malignancies,’ are signs of more severe deterioration
in patients with organ failure [13], [25]. The same figures
for the cases of k = 3 and = 4 are shown in Supplementary
Appendix D.

Fig. 9. UMAP visualisation for DCN setting k = 2 (subplots (a) and
(b)) and k = 3 (subplots (c) and (d)). We ran each setting two times.
The colors are predicted labels given by DCN. (a) k = 2, run 1. (b) k =
2, run 2. (c) k = 3, run 1. (d) k = 3, run 2.

Fig. 10. UMAP visualisation for the Med-BERT embeddings. The sub-
jects in (a) are coloured by K-means (K = 2) labels where K-means
was applied to the 2 d UMAP representations; the subjects in (b) are
coloured by K-means (K = 2) labels where K-means was applied to the
extracted Med-BERT embeddings directly.

C. Comparison with DCN and Med-BERT

We ran DCN for k = 2 and k = 3 (in K-means), and found
that although it also displayed a pattern of two clusters as shown
in Fig. 9, the stability between different ks and different runs is
much worse compared with our method.

DCN did the same MNIST task as we presented in Sec-
tion V-A and the NMI reported in [39] (0.81) is significantly
lower than using our proposed method (0.93).

For Med-BERT, we pre-trained the model for 200 epochs and
fine-tuned for another 100 epochs. The classification accuracy
reached 98.11% during fine-tune. We furthered applied UMAP
to the extracted BERT embeddings for visualisation and im-
proving clustering performance. K-means was applied to the
UMAP reduced embeddings as well as directly to the BERT
embeddings with K set to 2. The visualisation is shown in Fig. 10.
The Silhouette scores for Fig. 10(a) and (b) are 0.468 and 0.167,
respectively.

VI. DISCUSSIONS

The investigation of multiple types of vital organ failures
especially under an unsupervised setting is very challenging and
understudied both clinically and in the field of machine learning.

To achieve the clustering purpose, we combined the best of
several published works such as using layer-wise reconstruction
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loss, two-stage training and adding graph attention. At the
same time, we also tried to make the architecture stay low
complexity such as using the discriminative AE plus UMAP
architecture. Therefore, the model training does not require
extensive computation power. Moreover, we explored different
clustering loss functions such as adding regularisation terms and
replacing K-means loss with fuzzy c-means loss, however, these
modifications did not bring extra gain in NMI or Silhouette
scores. Therefore, we carried out this clustering pipeline and
added the attention mechanism to cluster the OF patients in an
end-to-end training fashion.

We further investigated the impact of input features on the
clusters with the following experiments: 1) feeding the product
of E and M in Fig. 2 B directly to K-means; 2) applying UMAP to
the product of E and M, and then feeding the reduced features to
K-means; 3) applying K-means directly to the bottleneck latents
without UMAP. We set k = 2 for all the above scenarios. The
Silhouette scores are 0.5267, 0.5739 and 0.5685, respectively,
for the three cases, which are significantly lower than our pro-
posed pipeline (Silhouette score = 0.8005). Furthermore, we
carried out a side classification task to prove that our ‘attended’
ICD embeddings have superior performance in classifying the
OF labels (Supplementary Appendix Section E).

Compared with the previous deep clustering works which
were mostly proposed in other areas such as computer vision,
our proposed pipeline is designated for application in clinical
settings - in particular, we extended the encoder in the AE to
integrate the diagnosis codes and their ontology using graph
attention to learn more stable representations. As a potential
consequence, we observed better stability of our pipeline com-
pared with a stereotypical benchmark model, DCN in the clinical
task. For the common MNIST task which has true labels and was
implemented in almost all deep clustering works. Our pipeline
gives higher NMI than other deep clustering methods considered
in this work ([10], [38], [45], [46]). We attribute this partially to
our application of the non-linear dimension reduction method,
UMAP.

From the adaptation of an off-the-shelf BERT model proposed
in [49], we did not discover clusterable embeddings. We con-
jecture that this poor performance may be attributed to the small
data size, and therefore the model is over-parameterized. BERT
may show strengths better in supervised tasks. A better BERT
model tailored specifically for clinical tasks with relatively small
sample sizes can be investigated in the future.

Overall, this paper presents a pure exploratory analysis, and
the unsupervised setting poses several challenges to the analysis
which are common issues of unsupervised learning. First of all, it
made the interpretation of the results challenging. Since we had
no ground truth, it is difficult to choose the assessment measure
and inference approach. Apart from the Silhouette score, we in-
vestigated the disease frequencies in different clusters. However,
we are aware that there are other ways to interpret the clusters
and we may get different information by investigating different
measures. Secondly, to demonstrate the efficacy of the clustering
method, we tested the clustering part of the pipeline (without
attention) on MNIST. We acknowledge that this is not a perfect
validation, but this is a representative task given the popularity of

MINIST in computer vision and signal processing. We further
studied the stability of our current results including exploring
different AE architectures (number of layers and layer widths)
and assigning different number of clusters. Our results showed
fair robustness. Nonetheless, other factors such as the attention
architecture including the number and type of hidden layers can
affect the model performance. These aspects are valuable future
directions to explore, ideally under supervised settings since it
can provide more quantifiable assessment measures. Moreover,
this work only considered patients recorded with only one organ
failure. It can be served as a starting point for studies that include
patients with multiple OFs in real-world scenarios. One other
limitation of this work is that it only uses ICD information; inte-
grating other data modalities such as demographics, procedures
and vital signs will be valuable future work.

VII. CONCLUSION

This paper proposes an unsupervised learning pipeline for
clustering OF patients in MIMIC-III using ICD diagnosis code
which has been rarely studied so far, via graph ontology learning
and deep neural networks.

We tested this deep clustering model on the public-domain
dataset, MNIST, and found that if we add UMAP, a non-linear
dimension reduction method, to the bottleneck latents before
clustering, the model performance can be improved signifi-
cantly. It achieved an NMI of 0.929 – a competitive level of
performance with the state-of-the-art clustering algorithms even
without the use of convolutional layers.

We discovered two clusters for the OF patients from the
model. This discovery is stable to the AE architecture when
there are enough hidden layers (3 in this case) to learn such
structure, and is robust to the number of clusters to which we
assigned K-means during the joint-train learning. The clusters
produced by the model did not correspond to the three OFs
well. Instead, the two clusters rather related to the severity of the
patients, one group having considerably more diagnoses than the
other and focusing on different sets of diseases. This outcome
may suggest that these three OFs are not separable only based
on the ICD information; these groups of patients share similar
underlying characteristics or the complexity of the underlying
structure is too high to be learnt in this way. However, this model
can potentially be used in clinics as a severity identification tool
for patients with these OFs and to flag the possible complications
that may arise from organ failure.

To our knowledge, we are the first to use GloVe embeddings
to perform clustering on heart failure, respiratory failure and
kidney failure patients.

ACKNOWLEDGMENT

DAC is an Investigator in the Pandemic Sciences Institute,
University of Oxford, Oxford, U.K. The views expressed are
those of the authors and not necessarily those of the NHS,
the NIHR, the Department of Health, InnoHK – ITC, or the
University of Oxford.



LIU et al.: PATIENT CLUSTERING FOR VITAL ORGAN FAILURE USING ICD CODE WITH GRAPH ATTENTION 2337

REFERENCES

[1] J. Orban et al., “Causes and characteristics of death in intensive care
units: A prospective multicenter study,” Anesthesiology, vol. 126, no. 5,
pp. 882–889, 2017.

[2] S. R. Bapoje et al., “Unplanned transfers to a medical intensive care unit:
Causes and relationship to preventable errors in care,” J. Hosp. Med., vol. 6,
no. 2, pp. 68–72, 2011.

[3] V. Bul et al., “Multiorgan failure predicts mortality in emphysematous
pancreatitis: A case report and systematic analysis of the literature,”
Pancreas, vol. 46, no. 6, pp. 825–830, 2017.

[4] J. Chang et al., “Deep adaptive image clustering,” in Proc. IEEE Int. Conf.
Comput. Vis., 2017, pp. 5879–5887.

[5] E. Choi et al., “Gram: Graph-based attention model for healthcare repre-
sentation learning,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2017, pp. 787–795.

[6] T. H. Cost and U. Project, “Clinical classifications software (CCS) for
ICD-9-cm,” 2017. [Online]. Available: https://www.hcup-us.ahrq.gov/
toolssoftware/ccs/ccs.jsp

[7] N. C. for Health Statistics, “International classification of diseases,ninth
revision, clinical modification (ICD-9-cm),” 2021. [Online]. Available:
https://www.cdc.gov/nchs/icd/icd9cm.htm

[8] K. G. Dizaji et al., “Deep clustering via joint convolutional autoencoder
embedding and relative entropy minimization,” in Proc. IEEE Int. Conf.
Comput. Vis., 2017, pp. 5736–5745.

[9] M. Jabi et al., “Deep clustering: On the link between discriminative models
and K-means,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 6,
pp. 1887–1896, Jun. 2021.

[10] Z. Jiang et al., “Variational deep embedding: An unsupervised and gen-
erative approach to clustering,” 2016, in Proc. 26th Int. Joint Conf. Artif.
Intell., 2017, doi: 10.24963/ijcai.2017/273.

[11] A. E. Johnson et al., “MIMIC-III, A freely accessible critical care
database,” Sci. Data, vol. 3, 1, pp. 1–9, 2016.

[12] D. P. Kingma and J. Ba, “Adam: A method for Stochastic optimization,”
in Proc. 3rd Int. Conf. Learn. Representations, 2015.

[13] D. R. Kuypers, “Skin problems in chronic kidney disease,” Nature Rev.
Nephrol., vol. 5, no. 3, pp. 157–170, 2009.

[14] L. S. Larkey and W. B. Croft, “Combining classifiers in text catego-
rization,” in Proc. 19th Annu. Int. ACM SIGIR Conf. Res. Develop. Inf.
Retrieval, 1996, pp. 289–297.

[15] Y. LeCun, “The MNIST database of handwritten digits,” 1998. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[16] M. Li et al., “Automated ICD-9 coding via a deep learning approach,”
IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 16, no. 4, pp. 1193–1202,
Jul./Aug. 2019.

[17] Y. Li et al., “Behrt: Transformer for electronic health records,” Sci. Rep.,
vol. 10, no. 1, pp. 1–12, 2020.

[18] A. L. et al., “Rectifier nonlinearities improve neural network acoustic
models,” in Proc. Int. Conf. Mach. Learn., 2013, vol. 30, pp. 1–6.

[19] L. McInnes, J. Healy, and S. Astels, “HDBSCAN: Hierarchical density
based clustering,” J. Open Source Softw., vol. 2, no. 11, pp. 205–206,
2017.

[20] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform manifold ap-
proximation and projection,” J. Open Source Softw., vol. 3, 29, 2018,
doi: 10.21105/joss.00861.

[21] E. Min et al., “A survey of clustering with deep learning: From the per-
spective of network architecture,” IEEE Access, vol. 6, pp. 39501–39514,
2018.

[22] E. Moons et al., “A comparison of deep learning methods for ICD coding
of clinical records,” Appl. Sci., vol. 10, no. 15, 2020, Art. no. 5262.

[23] K. Nash, A. Hafeez, and S. Hou, “Indication for dialysis initiation and
mortality in patients with chronic kidney failure: A retrospective cohort
study,” Amer. J. Kidney Dis., vol. 69, no. 1, pp. 41–50, 2017.

[24] NIH, “Snomed ct,” 2019. [Online]. Available: https://www.nlm.nih.gov/
healthit/snomedct/index.html

[25] M. Nimah and R. J. Brilli, “Coagulation dysfunction in sepsis and multiple
organ system failure,” Crit. Care Clin., vol. 19, no. 3, pp. 441–458, 2003.

[26] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Adv. Neural Inf. Process. Syst., pp. 8024–8035, 2019.

[27] P. B. Pedersen et al., “Prevalence of organ failure and mortality among
patients in the emergency department: A population-based cohort study,”
BMJ Open, vol. 9, no. 10, 2019, Art. no. e032692.

[28] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for
word representation,” in Proc. Conf. Empirical Methods Natural Lang.
Process., 2014, pp. 1532–1543.

[29] P. Ponikowski et al., “Heart failure: Preventing disease and death world-
wide,” ESC Heart Failure, vol. 1, no. 1, pp. 4–25, 2014.

[30] S. Saito and R. T. Tan, “Neural clustering: Concatenating layers for better
projections,” in proc. 4th Int. Conf. Learn. Representations, 2017. [Online].
Available: https://openreview.net/pdf?id=r1PyAP4Yl

[31] Y. Sakr et al., “Patterns and early evolution of organ failure in the intensive
care unit and their relation to outcome,” Crit. Care, vol. 16, no. 6, 1–9,
2012.

[32] G. Savarese and L. H. Lund, “Global public health burden of heart failure,”
Cardiac Failure Review, vol. 3, no. 1, pp. 7–11, 2017.

[33] J. Shang et al., “Pre-training of graph augmented transformers for medica-
tion recommendation,” in Proc. of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, 2019, pp. 5953–5959.

[34] H. Shi et al., “Towards automated ICD coding using deep learning,” in
Proc. 56th Annu. Meeting Assoc. Comput. Linguistics, pp. 1066–1076,
2018, doi: 10.18653/v1/P18-1098.

[35] J. T. Springenberg, “Unsupervised and semi-supervised learning with
categorical generative adversarial networks,” in Proc. 4th Int. Conf. Learn.
Representations, 2016.

[36] M. Q. Stearns et al., “Snomed clinical terms: Overview of the development
process and project status,” in Proc. AMIA Symp., 2001, pp. 662–666.

[37] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for
clustering analysis,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 478–487.

[38] B. Yang et al., “Towards K-means-friendly spaces: Simultaneous deep
learning and clustering,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 3861–
3870.

[39] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of deep
representations and image clusters,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 5147–5156.

[40] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20,
pp. 273–297, 1995.

[41] T. K. Ho, “Random decision forests,” in Proc. 3rd Int. Conf. Document
Anal. Recognit., 1995, pp. 278–282.

[42] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in
Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2016,
pp. 785–794.

[43] S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally
linear embedding,” Science, vol. 290, pp. 2323–2326, 2000.

[44] Y. Opochinsky et al., “K-autoencoders deep clustering,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., 2020, pp. 4037–4041.

[45] A. Lin et al., “Mixture model auto-encoders: Deep clustering through
dictionary learning,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2022, pp. 3368–3372.

[46] S. Chazan, S. Gannot, and J. Goldberger, “Deep clustering based on a
mixture of autoencoders,” in Proc. IEEE 29th Int. Workshop Mach. Learn.
Signal Process., 2019, pp. 1–6.

[47] D. Cai, X. He, and J. Han, “Locally consistent concept factorization for
document clustering,” IEEE Trans. Knowl. Data Eng., vol. 23, no. 6,
pp. 902–913, Jun. 2011.

[48] L. Rasmy et al., “Med-BERT: Pretrained contextualized embeddings on
large-scale structured electronic health records for disease prediction,”
NPJ Digital Med., vol. 4, no. 1, pp. 1–13, 2021.

[49] R. McConville et al., “N2D:(not too) deep clustering via clustering the
local manifold of an autoencoded embedding,” in Proc. IEEE 25th Int.
Conf. Pattern Recognit., 2021, pp. 5145–5152.

https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
https://www.cdc.gov/nchs/icd/icd9cm.htm
https://dx.doi.org/10.24963/ijcai.2017/273
http://yann.lecun.com/exdb/mnist/
https://dx.doi.org/10.21105/joss.00861
https://www.nlm.nih.gov/healthit/snomedct/index.html
https://www.nlm.nih.gov/healthit/snomedct/index.html
https://openreview.net/pdf{?}id$=$r1PyAP4Yl
https://dx.doi.org/10.18653/v1/P18-1098


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


