
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Incremental Trainable Parameter Selection in Deep
Neural Networks

Anshul Thakur , Vinayak Abrol , Pulkit Sharma , Tingting Zhu , and David A. Clifton

Abstract— This article explores the utilization of the effective
degree-of-freedom (DoF) of a deep learning model to regularize
its stochastic gradient descent (SGD)-based training. The effective
DoF of a deep learning model is defined only by a subset of
its total parameters. This subset is highly responsive or sensitive
toward the training loss, and its cardinality can be used to govern
the effective DoF of a model during training. To this aim, the
incremental trainable parameter selection (ITPS) algorithm is
introduced in this article. The proposed ITPS algorithm acts as
a wrapper over SGD and incrementally selects the parameters
for updation that exhibit the maximum sensitivity toward the
training loss. Hence, it gradually increases the DoF of the model
during training. In ideal cases, the proposed algorithm arrives
at a model configuration (i.e., DoF) optimum for the task at
hand. This whole process results in a regularization-like behavior
induced by a gradual increment of the DoF. Since the selection
and updation of parameters is a function of the training loss, the
proposed algorithm can be seen as a task and data-dependent
regularization mechanism. This article exhibits the general utility
of ITPS by evaluating it on various prominent neural network
architectures such as CNNs, transformers, recurrent neural
networks (RNNs), and multilayer perceptrons. These models are
trained for image classification and healthcare tasks using the
publicly available CIFAR-10, SLT-10, and MIMIC-III datasets.

Index Terms— Healthcare informatics, incremental training,
regularization.

I. INTRODUCTION

SUPERVISED deep learning models have shown remark-
able performance across multiple domains such as com-

puter vision, speech recognition, acoustic signal classification,
and healthcare informatics [1], [2]. The first challenge in
designing deep learning pipelines for any task is choosing an

Manuscript received 25 July 2021; revised 15 March 2022 and 5 July
2022; accepted 18 September 2022. This work was supported in part by the
National Institute for Health Research (NIHR) Oxford Biomedical Research
Centre (BRC), and in part by an InnoHK Project at the Hong Kong Cen-
tre for Cerebro-cardiovascular Health Engineering (COCHE). The work of
Anshul Thakur was supported by an EPSRC Healthcare Technologies Chal-
lenge Award (EP/N020774/1). The work of Tingting Zhu was supported
by the Engineering for Development Research Fellowship provided by the
Royal Academy of Engineering. The views expressed are those of the
authors and not necessarily those of the NHS, the NIHR, the Department of
Health, InnoHK – ITC, or the University of Oxford. (Corresponding author:
Anshul Thakur.)

Anshul Thakur, Pulkit Sharma, and Tingting Zhu are with the Department of
Engineering Science, University of Oxford, OX3 7DQ Oxford, U.K. (e-mail:
anshul.thakur@eng.ox.ac.uk).

Vinayak Abrol is with the Infosys Centre for Artificial Intelligence, IIT
Delhi, New Delhi 110020, India.

David A. Clifton is with the Department of Engineering Science, University
of Oxford, OX3 7DQ Oxford, U.K., and also with the Oxford-Suzhou Centre
for Advanced Research, Suzhou 215123, China.

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TNNLS.2022.3210297.

Digital Object Identifier 10.1109/TNNLS.2022.3210297

appropriate model architecture. Generally, these architectures
are developed by human experts and are often inspired by
architectures previously used for similar tasks. Each archi-
tecture is capable of modeling a family of different data-
generating distributions. The final configuration (i.e., trained
weights) of the architecture defines how well it fits the
data-generating distribution corresponding to the task at hand.
It is a general practice to use an over-parameterized or deeper
neural network architecture with strong representation power
that can effectively model the data-generating distribution [3],
[4]. However, the larger or deeper neural networks are often
prone to overfitting and require mechanisms to regularize the
training of deep learning models [5].

The overwhelming success of deep learning can partly
be attributed to the regularization mechanisms that mitigate
overfitting and result in models exhibiting effective gener-
alization [3]. Recently, a plethora of regularization methods
has been developed for deep learning models. Some of the
prominent regularization methods include early stopping [6],
weight penalties such as �1 or �2 regularization [7], dropout [8]
and its variants such as concrete and guided dropout [9],
[10], penalizing low entropy output distribution [11], noise
injections to outputs of hidden units [3], and Jacobian regular-
ization [12]. Most of these regularization mechanisms restrict
the expressive power of a deep learning model during training
in a somewhat static manner. For example, a dropout rate
of 0.5 always drops 50% of the hidden units, and a weight
decay of 0.001 always penalizes the weights by a constant
factor. These regularization mechanisms are task-independent
and do not consider the complexity of the task in restricting
a model’s expressiveness. Apart from that, the regularization
level needed to achieve effective generalization can also be
seen as a function of the number of available training exam-
ples. In contrast to the sufficient training data, the lower
number of training examples often induce more sampling noise
that results in a model providing a poorer fit of data-generating
distribution and leads to overfitting [8]. Hence, there is a
requirement for regularization mechanisms that can adapt
themselves based on the number of training examples and the
task complexity to provide effective generalization.

In this article, we introduce the incremental parameter
selection (ITPS) algorithm that regularizes the stochastic gra-
dient descent (SGD) based training of deep learning models1

to mitigate some of the aforementioned drawbacks of the

1The proposed algorithm can be used for the classification model that
utilizes SGD-based training. However, in this work, we are only interested
in deep learning models.

2162-237X © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 06,2024 at 17:27:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7006-1947
https://orcid.org/0000-0001-7870-7098
https://orcid.org/0000-0002-1552-5630
https://orcid.org/0000-0001-8149-8151

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Graphical illustration of parameter selection/updation in the proposed
ITPS algorithm. As the training progress, more parameters are selected and
the effective DoF of the model is increased.

existing regularization mechanisms. The proposed algorithm
relies on governing the effective degree-of-freedom (DoF)
of the model during training to induce task and data-based
regularization. The effective DoF of a deep learning model
is often lesser than its total trainable parameters [13]. This
implies that only a subset of parameters is responsible for
defining the effective DoF, and these parameters are likely to
be sensitive toward the training loss. The proposed algorithm
exploits these parameters and the training loss to regulate
the DoF during SGD-based training. It gradually selects and
updates a subset of the available trainable parameters while
keeping the nonselected parameters constant. Hence, during
an iteration, the proposed algorithm minimizes the training
loss by updating only a subset of the trainable parameters.
The proposed algorithm analyzes the sensitivity of parameters
toward the loss throughout training and selects parameters that
exhibit the maximum sensitivity. As the training progresses,
the algorithm gradually selects more trainable parameters to
increase the DoF of the model. This behavior is illustrated in
Fig. 1. Since training loss depends on the nature of the task
and the training data, the modulation of the effective DoF and
regularization induced by this modulation is also dependent
on these factors.

The regularization achieved by the proposed ITPS algorithm
can be explained using the DoF and implicit gradient reg-
ularization (IGR) [14]. The incremental parameter selection
influences both these phenomena, and they interact in synergy
to regularize the entire training bout. The lower DoF restricts
the model’s expressiveness and is mainly responsible for regu-
larization in the initial training stages. On the other hand, IGR
is primarily accountable for regularization in the latter stages.
IGR states that the gradient descent inherently penalizes the
larger gradient updates [14]. With the DoF increment, the norm
of gradient updates is also increased as more parameters are
involved in the updation process. Hence, IGR induces more
regularization in the latter stages when the DoF is higher. More
details about this behavior are presented in Section III.

The major contributions of this article are listed as follows.

1) This article introduces the incremental trainable parame-
ter selection (ITPS) algorithm, a data and task-dependent
mechanism that regularizes the SGD-based training of
deep learning models by modulating their DoF.

2) This article extends the proposed algorithm to model-
agnostic meta-learning frameworks.

3) This article proves the general utility of the proposed
ITPS algorithm by training various model architectures
such as multiple layer perceptrons (MLP), CNNs, trans-
formers, and recurrent neural networks (RNNs) for tasks
across image and healthcare domains.

The rest of this article is organized as follows. Section II
discusses the prominent regularization methods that greatly
influenced the proposed algorithm. In Section III, we describe
the proposed algorithm and discuss the nature of regularization
it induces in SGD-based training. Apart from that, we also
perform the Hessian spectral analysis to get more insights into
the learning dynamics of the proposed algorithm. Experimental
setup and results are discussed in Section V and VI, respec-
tively. Finally, Section VII concludes this article.

II. EARLIER STUDIES

As discussed in Section I, many regularization methods
have been proposed for deep learning models. Dropout [8],
[15] is the most commonly used regularization method that
randomly drops hidden units from a neural network dur-
ing training. The random drop of hidden units or feature
detectors helps in avoiding complex co-adaptation of feature
detectors. The prevention of such co-adaptation leads to an
improved generalization of the test data where combina-
torial feature context encountered during training may not
be present. Instead of randomly dropping the hidden units,
Keshari et al. [10] proposed an intelligent version of Dropout
referred to as Guided Dropout, where only active hidden
units are dropped. These hidden units are identified using the
trainable strength parameters. The strength value signifies the
relevance of the corresponding hidden unit in the decision-
making process. Guided Dropout works on the hypothesis that
removing high-strength or active hidden units will encourage
the low-strength or inactive units to improve their strength
and contribute to the neural network’s performance. This
strengthening of the inactive units may result in improved
generalization. Gal and Ghahramani [16] showed that approx-
imate variational inference in RNNs is identical to deploying
dropouts where the same network components or units are
dropped at each time step. However, the network components
to be dropped are chosen randomly. In contrast to dropout
and guided dropout that are mainly designed for DNNs, this
variational RNN also drops the recurrent connections and pro-
vides better regularization in time-series modeling. Deviating
from Dropout, Wan et al. [17] proposed DropConnect that
randomly drops the weight connections between the layers.
Hence, DropConnect introduces sparsity over the weights
instead of output vectors (as in Dropout). Khan et al. [18]
took a different approach and proposed spectral dropout where
certain frequency contents of activations are dropped. Spectral
dropout converts the activations into the frequency domain
by discrete cosine transform (DCT) and the frequencies or
basis coefficients corresponding to “noisy components” are not
used for reconstruction during inverse transform (frequency
domain to activations). The removal of these noisy frequency
components regularizes the overall training.

Apart from dropping the network components, weight
penalties such as �1 and �2 regularization [7] are also

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 06,2024 at 17:27:16 UTC from IEEE Xplore. Restrictions apply.

THAKUR et al.: ITPS IN DEEP NEURAL NETWORKS 3

commonly used. Both �1 and �2 regularization encourages
the norm of weights to be smaller. The smaller weights
decrease the impact of hidden units, and hence, the model
complexity. Working on a similar line, Dey et al. [19] proposed
a combination of three regularization terms that is, �2 norm
of weights along with the sum of squares of the first- and
second-order derivatives of loss with respect to weights to
regularize the training and improving the robustness of MLPs
implemented using analog circuits.

All the aforementioned regularization methods directly try
to restrict the model complexity. Aside from them, another
class of regularization method exists that increases the task
complexity by training the model for an auxiliary task (along
with the primary task). The auxiliary task complements the
primary task and also increases the “model complexity”
requirements. This form of regularization is commonly used in
semisupervised learning and is referred to as consistency-based
regularization [20], [21], [22].

Also, many studies have regularized deep learning models
by penalizing the large changes in outputs due to the minor
input variations [23], [24]. These methods use the norm of the
gradient [25] or the Jacobian [12], [26] of the loss function
with respect to the model inputs as a regularization term. Such
methods regularize the training and improve model stability
against adversarial or random perturbations.

Comparison with the proposed algorithm: The proposed
ITPS algorithm is marginally inspired by Guided Dropout [10].
Both of these algorithms analyze the strength or sensitivity of
network components toward the task at hand. As discussed
in Section I, this sensitivity analysis allows the modulation
of the effective DoF and can be considered the backbone of
the proposed ITPS algorithm. However, ITPS is fundamentally
different from Guided Dropout:

1) ITPS does not drop any hidden units or parameters.
It only updates a subset of selected parameters during a
training iteration.

2) Guided Dropout drops a predefined number of active
hidden units. Hence, it induces a static form of regu-
larization. On the other hand, ITPS utilizes a greedy
heuristic to induce dynamic regularization.

Apart from Guided Dropout, the proposed algorithm also
exhibits similarity to Meta-SGD [27], a meta-learning algo-
rithm that learns different learning rates for each model
parameter. ITPS can be seen as a particular case of Meta-SGD
when only a subset of parameters exhibit positive learning
rates (greater than zero) during a training iteration. Hence,
the parameters with these positive learning rates are used
for minimizing the training loss. Although Meta-SGD can be
updated to control the effective DoF as in ITPS, it requires
a meta-optimization framework [28] that is computationally
expensive.

III. PROPOSED METHOD

This section presents the proposed ITPS algorithm and
its extension to Reptile (a model agnostic meta-learning
algorithm). Besides, we also discuss the nature and cause
of regularization induced by the proposed ITPS algorithm.

Fig. 2. Histograms depicting deviation of trained parameters from their
initial values in (a) 5-layered DNN trained on the FashionMNIST dataset
and (b) LSTM-based model trained on the MIMIC-III dataset for in-hospital
mortality prediction.

Finally, Hessian spectral analysis [29] is performed to present
more insights into the behavior of ITPS.

A. Incremental Trainable Parameter Selection

The proposed ITPS algorithm acts as a simple wrapper over
SGD to regularize the training. During each training iteration,
it selects a subset of the parameters that are updated according
to the SGD. Hence, only a subset of parameters is involved
in minimizing the training loss. This behavior restricts the
effective DoF and model complexity. However, there is no
efficient way to measure the required model complexity for
any task beforehand. The selection of fewer parameters may
hinder training, whereas the overparameterization may lead
to overfitting. The proposed ITPS algorithm addresses this
issue by employing a greedy heuristic to incrementally select
the sensitive parameters and increase the model’s DoF as the
training progresses. The proposed ITPS algorithm is expected
to arrive at a model configuration with adequate DoF that
exhibits effective generalization. ITPS can be employed with
early stopping [6] to identify the configuration or training
phase where the model starts overfitting.

1) Selection of Sensitive Parameters: Generally, a notice-
able number of parameters in a trained overparameterized
model are expected to exhibit no deviation from their ini-
tialized values. This behavior is evident in Fig. 2 where a
significant number of parameters of two trained models (a
DNN trained on Fashion MNIST and an LSTM model trained
for in-hospital mortality prediction)2 show no deviation from
their initial values. This behavior has also extensively been
exploited to sparsify or prune the deep learning models [30].
The parameters showing no deviation are not sensitive toward
the training loss and have little to no impact on the effective
DoF of the model. On the other hand, the parameters deviating
from the initial values are likely to be responsible for defining
the effective DoF. Hence, incrementally selecting and updating
these parameters is expected to influence the DoF as desired.

ITPS algorithm utilizes accounting variables to keep an
estimate of the deviation that would have been observed if all

2See Section V for model architectures.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 06,2024 at 17:27:16 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 1 Iteration of the Proposed ITPS Algorithm
1: D: Dataset
2: Let fθ () be the model initialized with θ ∈ R

N

3: Let Jθ be the accounting variables for θ initialized with
0 ∈ R

N

4: α, β : Learning rates for updating θ , Jθ

5: τ1, τ2 : Thresholds to select sensitive parameters
6: B←SAMPLE-BATCHES(D) � |B| batches, each batch

contains b examples with labels l
7: for all (b, l) ∈ B do
8: L = LCE (fθ (b), l) � Cross-entropy loss
9: Gθ = ∇θ L � Gradients

10: Jθ = Jθ − β(Gθ) � Updating accounting variables
11: Create a mask M ∈ R

N initialized with 0
12: for all element Mi of M do

13: Mi =
{

1, IF Jθ i < τ2 OR Jθ i > τ1

0, IF τ2 < Jθ i < τ1.
� Thresholding to select sensitive parameters

14: Ĝθ = Gθ �M � Mask gradients for nonselected
parameters

15: θ = θ − αĜθ � Apply gradients to update θθθ

parameters are updated in each training iteration. The para-
meters whose deviation or corresponding accounting variable
overcomes a predefined threshold are chosen and updated.
As the training progresses, more and more sensitive parameters
break the threshold and are included in the training. Since
parameters exhibiting the maximum deviation overcome the
threshold, ITPS only selects the most sensitive parameters.
Thus, it can be regarded as a greedy algorithm. The number
of parameters that break the threshold is dependent on the
deviation, which is a function of training loss and hence, the
task and the training data.

2) Implementation Details: Suppose fθ () is a neural net-
work that is parameterized by a trainable tensor θ ∈ R

N , where
N is the total trainable parameters in fθ ().3 Also, fθ () maps
an input example x ∈ R

K×L to the prediction or output vector
y ∈ R

C , where C is the number of classes or dimensions of
the output vector.

The proposed ITPS algorithm is presented in Algorithm 1.
ITPS maintains accounting variables Jθ ∈ R

N corresponding
to the trainable parameters θ ∈ R

N of the model. These
accounting variables Jθ are initialized with 0 ∈ R

N , where
0 is tensor whose all elements are zero. ITPS samples the
training batches from a dataset D and processes each batch
b ∈ R

n×K×L having n input examples with labels l ∈ R
n×C to

perform the following operations.

1) ITPS computes the training loss LCE (such as
cross-entropy loss function) for current batch using the
current model state (fθ ()) as: L = LCE(fθ (b), l).
This loss is used to compute gradients for all parameters
as: Gθ = ∇θ L .

3For simplicity of notations, we are assuming a vectorized form of trainable
tensor θ . All the operations used in the proposed method can directly be
extended to trainable tensors of any shape or dimension.

2) The accounting variables Jθ are directly updated using
Gθ as: Jθ = Jθ − β(Gθ). Here, β controls the devia-
tion induced by the gradients and is analogous to the
learning rate. At any point in the training process, the
deviation from zero in accounting variables provides an
estimate of the accumulated deviation or sensitivity of
the corresponding parameter.

3) During training, the elements of Jθ either exhibit incre-
ment or decrement from their initial values (i.e., 0). Both
negative and positive deviations provide an estimate of
the sensitivity of the corresponding parameters in θ

toward the training loss. Thus, we apply thresholding in
both negative and positive directions around elements of
Jθ to select the most sensitive parameters. The parame-
ters corresponding to the elements of Jθ that do not lie
between open interval (τ2, τ1) are selected for updation.
τ2 and τ1 are thresholds such that τ2 < 0 and τ1 > 0.
To facilitate the process of parameter selection, we cre-
ate a mask M ∈ R

N that is initialized to be a zero
tensor. Suppose Mi represent the i th element of M. Each
element Mi of this mask corresponds to a parameter θ i

in θ and hence corresponds to an accounting variable Jθ i

in Jθ . Mi is set to 1 if Jθ i does not lie between interval
(τ2, τ1)

Mi =
{

1, IF Jθ i < τ2 OR Jθ i > τ1

0, IF τ2 < Jθ i < τ1.
(1)

By using this equation, we process accounting variables
to obtain mask M.

4) M is used to mask the gradient updates (Gθ) for
nonselected parameters. These masked gradient updates
are applied to update the selected parameters (with a
learning rate α) as

Ĝθ = Gθ �M, θ = θ − αĜθ . (2)

Here, � represents the elementwise multiplication oper-
ation.

Since ITPS acts as a wrapper over SGD, any available
variant of SGD such as Adam and AdaGrad can be utilized
to update the parameters using the masked gradients (Ĝθ).

B. Regularization

The nature of regularization induced by ITPS on the
SGD-based training of deep learning models can be studied
using the following mechanisms.

1) DoF of deep learning models: Gao and Jojic [13] ana-
lyzed the DoF of a deep learning model and established
that the utilization of regularization mechanisms such as
Dropout and weight penalty decreases the effective DoF
of a deep learning model. In ITPS, the effective DoF
of the model is gradually increased with the training
progression. This is analogous to the behavior where the
level of regularization is initially high, and as the training
progresses, the regularization is gradually decreased.

2) Implicit gradient regularization: Barrett and
Dhemir [14] uncovered an implicit form of
regularization in the gradient descent that arises

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 06,2024 at 17:27:16 UTC from IEEE Xplore. Restrictions apply.

THAKUR et al.: ITPS IN DEEP NEURAL NETWORKS 5

Fig. 3. Difference in �2 norm of gradients computed in (a) standard SGD and
(b) proposed ITPS algorithm being applied to train an LSTM-based model
for the task of in-hospital mortality prediction.

due to the discrete steps instead of following the exact
continuous path toward the minima. They proved that
the trajectory followed by the discrete steps of gradient
descent is similar to an explicit path along a modified
loss surface, which can be computed using backward
error analysis. This deviation between the original loss
surface and the modified loss surface is the source of
implicit regularization in gradient descent.
Given the original loss L(θ), the modified loss L̂(θ)
can be computed analytically using the backward error
analysis and is represented as [14]

L̂(θ) = L(θ)+ λRIG(θ)

where

λ ≡ αN/4 and RIG(θ) ≡ ‖∇θ‖2

N
. (3)

In (3), θ ∈ R
N represents the model parameters and α

represents the learning rate. The proof of this equation
can be found in [14]. The analysis of (3) makes it
clear that RIG(θ) is a regularizer penalizing the larger
gradients and λ controls the regularization rate.
In SGD-based training, the magnitude of gradients is
larger during the earlier stages of training, and this
magnitude becomes smaller as SGD reaches conver-
gence [see Fig. 3(a)]. As a result, implicit gradient
regularization imposes larger penalties in the initial
stages of training. However, ITPS manifests an entirely
different behavior. The proposed ITPS algorithm selects
more parameters for updation as the training progresses.
Hence, the gradient norm increases gradually with the
increment in selected parameters. This behavior is illus-
trated in Fig. 3(b). As a result, the implicit gradient
regularization imposes more penalties as more parame-
ters are selected, or the DoF of the model is increased.
Note that once ITPS has selected all the parameters, the
gradient norm is expected to show similar behavior to
the traditional SGD.

The analysis of the DoF and the implicit gradient regular-
ization illustrates that the proposed ITPS algorithm regularizes
the training effectively throughout the training bout. During
the initial stages, regularization is mainly imposed by the

Algorithm 2 Extension of the Proposed ITPS Algorithm to
Reptile for Multitasking
1: Dt : Dataset for task t
2: Let fθ () be the model initialized with θ ∈ R

N

3: Let Jθ be the accounting variables for θ initialized with all
0

4: α, β, γ : Learning rates
5: τ1, τ2 : Thresholds to select sensitive parameters
6: for t ← 1 : T do � T : Number of tasks
7: Wt = θ � Initialize task t model with θ

8: Let fWt () be a model with Wt parameters
9: B←SAMPLE-BATCHES(D) � |B| batches, each batch

contains b examples with labels l
10: for all (b, l) ∈ B do
11: L = LCE (fWt (b), l) � Cross-entropy loss
12: GWt = ∇Wt L � Gradients
13: Jθ = Jθ − β(GWt)
14: Create a mask M ∈ R

N initialized with 0
15: for all element Mi of M do

16: Mi =
{

1, IF Jθ i < τ2 OR Jθ i > τ1

0, IF τ2 < Jθ i < τ1.

� Thresholding to select sensitive parameters
17: ˆGWt = GWt �M � Mask gradients
18: Wt

′ =Wt − α ˆGWt

19: � = 1
T

∑T
t=1(Wt

′ −Wt) � Meta update
20: θ = θ + γ � � Apply meta gradients

lower DoF. On the other hand, during the latter stages, the
regularization is induced by the higher gradient norm penalties
due to the implicit gradient regularization.

C. Extension to Reptile: An MAML Algorithm

Reptile [31], a first-order model agnostic meta-learning
(MAML) algorithm, is generally used for multitasking where
information learned from one task may aid in performing
the other tasks. The proposed ITPS algorithm can easily be
extended to Reptile (or any other MAML) by incrementally
selecting the sensitive model parameters and masking the
corresponding gradients computed for each task. Algorithm 2
encapsulates an iteration of the proposed extension of ITPS
to Reptile. In Reptile, a shared model fθ () is parameterized
with θ . During a training iteration, for each task t , a task-
specific model fWt is created and is initialized with a copy
of θ (Wt = θ). These task-specific models are trained
using their corresponding datasets to obtain updated parame-
ters W′t . To update θ , the meta-gradients are computed as:
� = (1/T)

∑T
t=1(W

′
t −Wt). In the proposed extension, the

task-specific models are updated using the ITPS algorithm and
the accounting variables are shared across all the tasks (as
shown in Algorithm 2).

Note that many multitask scenarios require task-specific
changes to the model architecture. The tasks that rely on
similar latent representation may require a few task-specific
layers. The proposed ITPS extension addresses such cases by
considering the task-specific models as a combination of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 06,2024 at 17:27:16 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Observing the evolution of (a) Hessian trace, (b) number of selected parameters, (c) training loss, and (d) validation accuracy during the ITPS-based
training of a 5-layer DNN over the Fasion MNIST dataset.

shared and the task-specific layers. In the ITPS extension, the
accounting variables are maintained for both shared and task-
specific parameters. A detailed study of task heterogeneity
scenarios can be found in the supplementary document.

IV. HESSIAN SPECTRAL ANALYSIS

We performed the Hessian spectral analysis to get more
insights into the training dynamics of the proposed ITPS
algorithm. The Hessian of the loss of a neural network fθ () can
be represented as: H = ∂2L(fθ (b), l)/∂θ2 = ∇2

θL(fθ (b), l).
Here, b, l, L, and θ ∈ R

N represent a batch of examples, its
corresponding labels, loss function, and parameters of model
fθ (), respectively. The Hessian matrix H ∈ R

N×N is a sym-
metric matrix that can provide information about the learning
dynamics of the neural networks [29], [32], [33]. In this work,
we analyzed the evolution of Hessian trace during ITPS-based
training of a DNN4 over the Fashion MNIST dataset [34].
Along with the Hessian trace, we also analyzed the evolution
of cardinality of the subset of parameters selected/updated by
ITPS, training loss, and validation accuracy. We implemented
ITPS over Adam optimizer and used a fixed learning rate
of α = 0.001, β = 0.1, τ1 = 0.25, and τ2 = −0.25 (see
Algorithm 1). We compared the training dynamics of ITPS
against the standard Adam optimizer with a learning rate of
α = 0.001. Fig. 4 encapsulates the observations, and the
following conclusions can be drawn from this figure.

1) During the initial training phase of ITPS, the Hessian
trace is larger compared to the Hessian trace observed
in Adam. This can be attributed to the restricted para-
meter selection and updation by ITPS. Once the number
of parameters to be utilized by ITPS settles (around
100th epoch), the behavior of ITPS becomes similar to
Adam’s.

2) Both Adam and ITPS lead to a flatter minimum as
signified by the low Hessian trace during the latter
phase of training [32]. Arguably, the flatter minima
results in better generalization [35], [36]. This implies
that ITPS is able to converge while updating only
approx. 27 000 parameters out of 1.49 million available
in DNN throughout the training.

3) Since ITPS selects and updates the most sensitive
parameters, it only moves the model parameters in

4See Section V for architecture details.

nondegenerate directions during the initial stages of
training. These directions are signified by nonzero eigen
values of the Hessian matrix. When these nondegenerate
directions become sparse, as suggested by the lower
Hessian trace, it is an indication that model parameters
are in flatter minima [32] and convergence has been
achieved.

V. EXPERIMENTAL SETUP

This section describes datasets, comparative methods, and
experiments used for the performance evaluation of the pro-
posed algorithms.

A. Datasets, Tasks, and Models

Table I documents the datasets, tasks, and models used
for the performance evaluation. These tasks and models are
chosen to exhibit the general utility of the proposed ITPS
algorithms.

1) Fashion MNIST Classification Using DNN: Fashion
MNIST [34] consists of 28 × 28 grayscale images of ten dif-
ferent categories of clothing articles. The images are flattened
before being given as input to fully- or densely-connected
neural networks (DNN). This DNN consists of five layers with
1024, 512, 256, 128, and ten units. The hidden and output
layers are followed by rectified linear and softmax activa-
tion functions, respectively. The model architecture contains
1.49 million (approx.) trainable parameters.

2) CIFAR-10 and SLT-10 Classification Using CNNs: VGG-
16 [37], Resnet-50 [38], and EfficientNetB0 [39] (pretrained
on imagenet dataset) are trained on CIFAR-10 [40] and
SLT-10 [41] datasets. The images in both datasets are resized
to 224 × 224 before being given as input to CNNs.

3) MIMIC-III or Healthcare Tasks Using LSTM and Trans-
former: MIMIC-III contains electronic health records (EHRs)
of patients admitted to critical care units at a tertiary care
hospital. EHRs include vital signs, medications, laboratory
measurements, fluid balance, hospital length of stay, and
survival data. As described in [43], MIMIC-III is preprocessed
to sample subdatasets for three different tasks.5 Each example
is an evenly spaced time series where different clinical mea-
surements (resulting in 76 features) are sampled at each time

5Benchmarking code available at https://github.com/YerevaNN/mimic3-
benchmarks is used to create training, test, and validation sets.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 06,2024 at 17:27:16 UTC from IEEE Xplore. Restrictions apply.

THAKUR et al.: ITPS IN DEEP NEURAL NETWORKS 7

TABLE I

DATASETS AND MODELS USED FOR THE PERFORMANCE EVALUATION OF THE PROPOSED ITPS ALGORITHM

step. In this work, we have specified a time step of one hour.
The three tasks are described below.

1) In-hospital mortality prediction: This task deals with
predicting in-hospital mortality based on the first 48 h of
ICU stay. Each example is represented by a time-series
of size 76 × 48, where 48 is the number of time-steps
and 76 is the feature dimension.

2) Decompensation prediction: Decompensation prediction
deals with predicting whether the patient’s condition will
decline in the next 24 h. Each example is represented
by a variable length time series where each time-step is
represented by a 76-dimensional vector. Zero-padding
is used to force the same length or time-steps on all
time-series in a training batch.

3) Phenotype classification: This is a multilabel classifica-
tion task to identify 25 different acute care conditions
(phenotypes) from a patient’s ICU stay record. Similar
to the decompensation prediction task, each example is
represented by a variable length time series. The details
of these 25 phenotypes can be found in [43].

Two types of neural networks are used for each of the
aforementioned tasks.

1) Fig. 5 depicts the architectures of LSTM-based models
used for each task. These architectures are almost iden-
tical and only differ in the structures of the last layers.

2) We also use transformer-based models where each
model consists of four transformer blocks [44] followed
by a global average pooling layer and dense layers with
128 units and one output unit (or ten output units for
phenotyping). The penultimate and last dense layers are
followed by ReLu and sigmoid activations, respectively.
Each transformer block (encoder blocks in [44]) consists
of a multihead attention followed by a feed-forward
module. The attention module utilizes four attention
heads and 256-dimensional keys. The feed-forward mod-
ule consists of two 1-D convolution layers that have
eight and 76 pointwise filters (of size 1). These models

consist of 1.27 million (approx.) trainable parameters.
More details can be found in the supplementary docu-
ment.

B. Comparative Regularization Methods

Following comparative methods have been used to evaluate
the performance of the proposed ITPS algorithm.

1) Dropout [8], guided dropout [10], and spectral
dropout [18] are used as the major baselines for the per-
formance comparison. Guided dropout has been known
to perform better than other variants of dropout such as
variational dropout and concrete dropout [10]. Hence,
these methods are not considered in this study.

2) �2 regularization (weight decay), data grad (i.e., the
norm of the gradient of the loss with respect to input as
regularizer) [24], [25], and Jacobian regularization (i.e.,
the norm of the Jacobian of loss with respect to input as
regularizer) [24], [26] are also used as the comparative
methods.

3) Variational LSTM [16] that drops the recurrent connec-
tions along with the input and output units is used as
a comparative method specifically for the RNNs (and
critical care tasks).

C. Experiments

We designed experiments to evaluate different regularization
methods in both high and low amounts of training data
scenarios. The experimental designs are dataset-specific. For
CIFAR-10 and SLT-10 (image classification), we train CNNs
on all the available data. We simulate a data-scarce scenario
using the CIFAR-10 dataset where we train models using 50,
100, and 500 examples per class.

For Fashion MNIST and MIMIC-III tasks, we use different
supervision levels (i.e., 25%, 50%, 75%, and 100%) for train-
ing models. The supervision level implies the percentage of
the available training examples used for training a model. The
utilization of different supervision levels helps in analyzing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 06,2024 at 17:27:16 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE II

OPTIMAL PARAMETERS OF DIFFERENT REGULARIZATION METHODS USED FOR DIFFERENT DATASETS. THESE PARAMETERS ARE TUNED TO OBTAIN
MAXIMUM PERFORMANCE ON VALIDATION EXAMPLES

Fig. 5. Model architectures used for different critical care tasks. The
architectures used for in-hospital mortality or decompensation prediction and
phenotyping contain 682 497 and 694 809 trainable parameters, respectively.

the changes in ITPS behavior with a variation in the number
of training examples.

The performance of the proposed ITPS extension to Reptile
(ITPS-Reptile) is compared against the Reptile algorithm in a
multitasking scenario. This comparison is performed using the
critical-care or MIMIC-III tasks using LSTM-based models
where each model is trained for in-hospital mortality pre-
diction, decompensation prediction, and phenotyping. These
critical care tasks work on a common set of features, and a
latent representation learned by the model for a particular task
can help in other tasks. Task heterogeneity is handled using
the shared and task-specific layers as described in [45]. More
details can also be found in the supplementary document.

D. Parameter Setting

The parameters across all baselines and the proposed regu-
larization method can be divided into two categories: training
specific (such as optimizer, batch size, and learning rate) and
regularization-specific (such as dropout rate, weight decay,
and thresholds in ITPS). For a fair comparison, we keep
training-specific parameters the same for each model or dataset
across all baselines and tune the regularization-specific para-
meters over the validation examples using grid search. The

search space used for selecting each parameter is presented
in Table S1 of the supplementary document. Note that we
have tuned hyperparameters separately for each experimental
setting or supervision level while keeping the search spaces
the same across all experiments. However, we did not notice
any major change in optimal parameters with the change in
supervision levels for most of the cases.

1) Training-Specific Parameters: An identical training setup
is used for all comparative methods for the performance
evolution on a specific dataset. For all CIFAR-10 and SLT-10
experiments, we have used Adam with a fixed learning rate of
0.0001 as an optimizer and a batch size of 32 for training
all CNNs. Similarly, a batch size of 32 examples and an
Adam optimizer with a fixed learning rate of 0.001 is used
for training the models (DNN, LSTM, and transformer-based
models) on the Fashion MNIST and MIMIC-III datasets.

For all comparative methods, the batches are presented in
identical order to the training process. The same initialization
is used for all methods in a comparative study (or a run) to
alleviate the effect of the initialization on the performance.
The early stopping is used across all methods, and the model
configuration providing the best performance on the validation
examples is chosen for evaluation on the test examples.

2) Regularization-Specific Parameters: Table II tabulates
the optimum regularization-specific parameters used for each
method on each dataset. These parameters are tuned over
validation examples using grid search for 100% supervision
setting. As discussed earlier, the parameter setting documented
in Table II is almost optimum for the other supervision levels.

For spectral dropout, we keep threshold (τ = 0.1) fixed and
vary η, percentage of activations above τ as suggested in [18].
The parameters listed on the MIMIC-III dataset were found to
be optimal across all three critical tasks. For ITPS + Spectral
Dropout, we keep the optimum spectral dropout parameter η
for each model and only vary the ITPS thresholds.

In multitasking experiments, both Reptile and ITPS-Reptile,
we have used task-specific learning rate α and global learning

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 06,2024 at 17:27:16 UTC from IEEE Xplore. Restrictions apply.

THAKUR et al.: ITPS IN DEEP NEURAL NETWORKS 9

TABLE III

PERFORMANCE OF DIFFERENT REGULARIZATION METHODS ON THE
CIFAR-10 DATASET

TABLE IV

PERFORMANCE OF DIFFERENT REGULARIZATION METHODS ON THE SLT-
10 DATASET

TABLE V

PERFORMANCE OF VGG-16 ON THE CIFAR-10 DATASET UNDER LOW

TRAINING DATA CONDITIONS

rate γ (see Algorithm 2) of 0.001 and 0.15, respectively. Note
that we have kept β = 0.1 (the rate of updating accounting
variables in Algorithm 1 and 2) constant in ITPS, ITPS +
Spectral Dropout and ITPS-Reptile for all experiments.

E. Performance Metrics

Classification accuracy is used as the performance metric
for Fashion MNIST, CIFAR-10, and SLT-10 classification.
For the task of phenotyping, the macro area under the ROC
curve (AUROC) is used as the performance metric. For the
prediction tasks (mortality and decompensation prediction),
we have used AUROC as a metric.

TABLE VI

PERFORMANCE OF RESNET-50 ON THE CIFAR-10 DATASET UNDER LOW
TRAINING DATA CONDITIONS

TABLE VII

PERFORMANCE OF EFFICIENTNET ON CIFAR-10 UNDER LOW TRAINING
DATA CONDITIONS

VI. RESULTS AND DISCUSSION

In this section, we present and discuss the results obtained
during the experimentation. Apart from that, we also analyze
the impact of thresholding parameters, that is, τ1 and τ2 on
the performance and the learning dynamics of ITPS.

A. Performance on CIFAR-10 and SLT-10 Datasets

Tables III and IV document the performance of different
methods used to regularize the training of VGG-16, Resnet-50,
and EfficientNet on CIFAR-10 and SLT-10 datasets, respec-
tively. The following conclusions can be drawn from the
analysis of these tables.

1) The proposed ITPS algorithm shows a noticeable
improvement over all the other comparative meth-
ods across all models and both datasets. However,
the improvement is more significant on VGG-16 and
Resnet-50 as these models are more parameterized and
hence more susceptible to overfitting than EfficientNet
(which has a compact architecture).

2) Among baselines, guided and spectral dropout outper-
form dropout and all the other methods. Moreover, the
performance of both these methods is comparable across
all experiments. Also, the performance of dropout is
better than data grad, Jacobian, and �2 regularization.

3) The best classification performance was achieved across
all models by applying spectral dropout with ITPS
(ITPS + Spectral Dropout) to regularize training. Since

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 06,2024 at 17:27:16 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE VIII

CLASSIFICATION ACCURACY OF DIFFERENT REGULARIZATION METHODS
ON THE FASHION MNIST DATASET

the cause of regularization induced by ITPS and spectral
dropout are different, both these methods complement
each other, and the combination of these methods out-
performs both spectral dropout as well as ITPS.

Tables V–VII tabulate the performance of VGG-16,
Resnet-50, and EfficientNet trained under data-scarce scenar-
ios on the CIFAR-10 dataset. Again, ITPS outperforms the
existing methods across all experimental configurations. Also,
the combination of spectral dropout and ITPS exhibits the best
classification performance. The improvement shown by ITPS
and ITPS+Spectral Dropout over the comparative methods is
more prominent when we use only 500 training examples
(or 50 examples per class). This shows that ITPS can be of
particular interest across multiple applications where we often
deal with a lesser amount of training data.

B. Performance on Fashion MNIST

The performance of ITPS and other comparative meth-
ods for training DNN at different levels of supervision is
documented in Table VIII. The performance trends on the
CIFAR-10 and SLT-10 datasets also hold on DNN trained
on the Fashion MNIST dataset. ITPS exhibits a noticeable
improvement over the baseline methods, whereas ITPS +
Spectral Dropout results in the best performance across all
experiments.

C. Performance on MIMIC-III Tasks

Tables IX–XI document the performance of LSTM-based
models for the tasks of in-hospital mortality (IHM) predic-
tion, decompensation prediction, and phenotype classification,
respectively. The following inferences can be drawn from the
analysis of these tables.

1) ITPS and ITPS + Spectral Dropout exhibit better perfor-
mance than other regularization methods at all the exper-
imental configurations. The paired t-tests (p < 0.05)
confirm the statistical significance of the performance

TABLE IX

PERFORMANCE OF LSTM-BASED MODEL FOR THE TASK OF IN-HOSPITAL
MORTALITY PREDICTION

TABLE X

PERFORMANCE OF LSTM-BASED MODELS FOR THE TASK OF

DECOMPENSATION PREDICTION

improvements observed by ITPS and ITPS + Spectral
Dropout over all baselines.

2) For IHM and decompensation prediction, the perfor-
mance improvements observed by ITPS and ITPS +
Spectral Dropout are more significant at lower super-
vision, that is, 25% and 50%. At higher supervision,
the chances of overfitting are reduced by the availability
of more training data. Hence, the performance improve-
ments are relatively less.
For phenotype classification, the relative improvement is
similar across all supervision levels.

3) Among baselines, guided and spectral dropout outper-
form the other methods. Moreover, variational dropout
results in better performance than data grad, Jacobian,
and �2 regularization.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 06,2024 at 17:27:16 UTC from IEEE Xplore. Restrictions apply.

THAKUR et al.: ITPS IN DEEP NEURAL NETWORKS 11

TABLE XI

PERFORMANCE OF DIFFERENT REGULARIZATION METHODS FOR THE
TASK OF PHENOTYPE CLASSIFICATION. MACRO AUROC IS USED AS

THE PERFORMANCE METRIC

TABLE XII

PERFORMANCE OF TRANSFORMER FOR THE TASK OF

IN-HOSPITAL MORTALITY

Tables XII–XIV document the performance of transformer-
or attention-based models for the tasks of in-hospital mortality
(IHM) prediction, decompensation prediction, and phenotype
classification, respectively. Similar to LSTM-based models,
ITPS and ITPS + Spectral Dropout outperform almost all
baselines on all three tasks. This shows that the proposed
method is not model dependent and can help in improving
the performance of any model architecture for a given task.

D. Performance in Multitask Setup: Reptile Versus
ITPS-Reptile

Table XV tabulates the performance of LSTM-based models
trained simultaneously for critical-care tasks using Reptile and
ITPS-Reptile. The analysis of this table highlights that adding
ITPS to Reptile leads to a statistically significant improvement
(p < 0.05) in the classification or prediction performance
across all three tasks over Reptile.

TABLE XIII

PERFORMANCE OF TRANSFORMER FOR THE TASK OF
DECOMPENSATION PREDICTION

TABLE XIV

PERFORMANCE OF TRANSFORMER FOR THE TASK OF PHENOTYPING

TABLE XV

PERFORMANCE OF REPTILE AND ITPS-REPTILE IN A

MULTITASKING SCENARIO

E. DoF as a Function of the Number of Training Examples

Fig. 6 shows the total parameters selected by ITPS for fash-
ion MNIST classification and in-hospital mortality prediction.
As the number of training examples or the supervision level
is incremented, the total parameters selected by ITPS are also
increased, and the level of regularization is decreased. This
shows that, as desired, the level of regularization in ITPS is
dependent on the number of training examples. ITPS induces
more regularization at lower supervision by selecting fewer

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 06,2024 at 17:27:16 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 6. Total parameters selected and updated by the proposed ITPS
algorithm during the training of (a) DNN for Fashion MNIST classification
and (b) LSTM-based model for IHM prediction IHM at different levels of
supervision.

parameters and hence, keeping the DoF lower. The identical
behavior was observed during the training of models for other
tasks.

F. Impact of τ1 and τ2 on ITPS

The principle of lazy training [46], [47] states that most
parameters in overparameterized neural networks exhibit little
to no deviation from their initial state during training. Hence,
the search space for ideal τ2 and τ1 should be limited to regions
around the initial value of accounting variables, that is, 0. The
size of threshold interval (τ2 < 0 < τ1) can significantly
impact the regularization achieved by ITPS. If values of
τ2 and τ1 are approaching zero, ITPS behaves like standard
SGD-based training as low thresholds result in the selection
and updation of almost all parameters. On the other hand,
high thresholds (higher |τ2| and |τ1| values) may result in
overregularization as very few parameters will be selected by
ITPS for training.

To empirically analyze the effect of the threshold range
(τ2 to τ1) on ITPS, we trained the models for in-hospital
mortality prediction with different threshold ranges at 100%
supervision. We changed the threshold range to (−0.25 to
0.25) and (−0.01 to 0.01) from (−0.15 to 0.15). Apart from
thresholds, the other parameters are not changed. The impact
of different thresholds on training loss, validation loss, and the
number of selected parameters is presented in Fig. 7. From the
analysis of this figure, the following inference can be drawn.

1) Decreasing the threshold range to (τ2 = −0.01 to
τ2 = 0.01) from (τ2 = −0.15 to τ2 = 0.15) results
in a significant increment in the number of parameters
selected by ITPS. More selected parameters signify
lesser regularization and hence, overfitting. The vali-
dation curves confirm the overfitting during the latter
phases of the training.

2) Increasing the threshold range to (τ2 = −0.25 to
τ2 = 0.25) from (τ2 = −0.15 to τ2 = 0.15) shows
minute changes in the behavior of ITPS. The training
process is effectively regularized in both the parameter
configurations, as evident by the training and validation
loss curves. However, the increment in the threshold
range resulted in the selection of fewer parameters and
hence more regularization.

Fig. 7. Impact of different thresholds on (a) training loss, (b) validation loss,
and (c) number of selected parameters during ITPS-based training of models
for in-hospital mortality prediction.

G. Drawbacks

Following are the drawbacks of ITPS.

1) ITPS is mainly guided by the amount of training data
and the task complexity. However, the user-defined
thresholds (τ1 and τ2) still exhibit an influence on
the level of regularization. A very careless choice of
thresholds may result in slower training (due to a larger
range of τ2 to τ1) or little to no regularization (due to
a small uniform window from τ2 to τ1). The existence
of these thresholds in ITPS marginally undermines the
goal of coming up with an algorithm that is completely
task- and data-dependent.

2) ITPS requires the maintenance of accounting variables
that have a similar size or memory requirements as
the model parameters. Hence, the memory footprints
of ITPS are twice that of the standard neural network
training.

VII. CONCLUSION

This article showed that the classical concept of DoF can be
utilized to regularize the SGD-based training of deep learning
models. The experimental results highlight that the regular-
ization induced by the proposed algorithm in deep learning
models is indeed effective and results in better prediction
scores. Although the proposed algorithm has its limitations,
this work has paved the way for the introduction of more
advanced algorithms that can exploit the DoF for regulariza-
tion and other related concepts such as neural architectural
search.

Future work may involve augmenting ITPS with contextual
bandits to automate the selection of optimal thresholds. Apart
from that, multiple subnetworks selected and updated by the
proposed algorithm within a model can be forced to work on
separate subspaces. Such a framework can find its application
in task-incremental continual learning.

ACKNOWLEDGMENT

The views expressed are those of the authors and not
necessarily those of the NHS, the NIHR, or the Department
of Health.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 06,2024 at 17:27:16 UTC from IEEE Xplore. Restrictions apply.

THAKUR et al.: ITPS IN DEEP NEURAL NETWORKS 13

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016, [Online]. Available: http://www.
deeplearningbook.org

[2] D. Ravì et al., “Deep learning for health informatics,” J. Biomed. Health
Inform., vol. 21, no. 1, pp. 4–21, Dec. 2016.

[3] H. Noh, T. You, J. Mun, and B. Han, “Regularizing deep neural networks
by noise: Its interpretation and optimization,” in Proc. Adv. Neural Inf.
Process. Syst. (NeurIPS), 2017.

[4] M. Li, M. Soltanolkotabi, and S. Oymak, “Gradient descent with early
stopping is provably robust to label noise for overparameterized neural
networks,” in Proc. Int. Conf. Artif. Intell. Statist., 2020, pp. 4313–4324.

[5] G. Kang, J. Li, and D. Tao, “Shakeout: A new approach to regularized
deep neural network training,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 40, no. 5, pp. 1245–1258, May 2018.

[6] L. Prechelt, “Early stopping-but when?” in Neural Networks: Tricks
Trade. Cham, Switzerland: Springer, 1998, pp. 55–69.

[7] J. Kukačka, V. Golkov, and D. Cremers, “Regularization for deep
learning: A taxonomy,” 2017, arXiv:1710.10686.

[8] N. S. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2019.

[9] D. P. Kingma, T. Salimans, and M. Welling, “Variational dropout and the
local reparameterization trick,” in Proc. Adv. Neural Inf. Process. Syst.
(NeurIPS), vol. 28. Red Hook, NY, USA: Curran Associates, 2015.

[10] R. Keshari, R. Singh, and M. Vatsa, “Guided dropout,” in Proc. AAAI
Conf. Artif. Intell., vol. 33, no. 1, 2019, pp. 4065–4072.

[11] G. Pereyra, G. Tucker, J. Chorowski, L. Kaiser, and G. Hinton, “Reg-
ularizing neural networks by penalizing confident output distributions,”
2017, arXiv:1701.06548.

[12] J. Hoffman, D. A. Roberts, and S. Yaida, “Robust learning with Jacobian
regularization,” 2019, arXiv:1908.02729.

[13] T. Gao and V. Jojic, “Degrees of freedom in deep neural networks,” in
Proc. 32nd Conf. Uncertainty Artif. Intell., 2016, pp. 232–241.

[14] D. Barrett and B. Dherin, “Implicit gradient regularization,” in Proc. Int.
Conf. Learn. Represent. (ICLR), 2021.

[15] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” 2012, arXiv:1207.0580.

[16] Y. Gal and Z. Ghahramani, “A theoretically grounded application of
dropout in recurrent neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 29, 2016, pp. 1019–1027.

[17] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization
of neural networks using dropconnect,” in Proc. Int. Conf. Mach. Learn.,
2013, pp. 1058–1066.

[18] S. H. Khan, M. Hayat, and F. Porikli, “Regularization of deep neural
networks with spectral dropout,” Neural Netw., vol. 110, pp. 82–90,
Feb. 2019.

[19] P. Dey, K. Nag, T. Pal, and N. R. Pal, “Regularizing multilayer per-
ceptron for robustness,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 48,
no. 8, pp. 1255–1266, Aug. 2018.

[20] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and
C. A. Raffel, “Mixmatch: A holistic approach to semi-supervised learn-
ing,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 5049–5059.

[21] D. Berthelot et al., “Remixmatch: Semi-supervised learning with distrib-
ution matching and augmentation anchoring,” in Proc. Int. Conf. Learn.
Represent., 2019.

[22] T. Miyato, S.-I. Maeda, M. Koyama, and S. Ishii, “Virtual adversarial
training: A regularization method for supervised and semi-supervised
learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 8,
pp. 1979–1993, Aug. 2019.

[23] H. Drucker and Y. L. Cun, “Improving generalization performance using
double backpropagation,” IEEE Trans. Neural Netw., vol. 3, no. 6,
pp. 991–997, Nov. 1992.

[24] D. Varga, A. Csiszárik, and Z. Zombori, “Gradient regularization
improves accuracy of discriminative models,” 2017, arXiv:1712.09936.

[25] A. G. Ororbia II, D. Kifer, and C. L. Giles, “Unifying adversarial training
algorithms with data gradient regularization,” Neural Comput., vol. 29,
no. 4, pp. 867–887, Apr. 2017.

[26] J. Sokolic, R. Giryes, G. Sapiro, and M. R. D. Rodrigues, “Robust large
margin deep neural networks,” IEEE Trans. Signal Process., vol. 65,
no. 16, pp. 4265–4280, Aug. 2017.

[27] Z. Li, F. Zhou, F. Chen, and H. Li, “Meta-SGD: Learning to learn
quickly for few-shot learning,” 2017, arXiv:1707.09835.

[28] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. Int. Conf. Mach. Learn.,
2017, pp. 1126–1135.

[29] Z. Yao, A. Gholami, K. Keutzer, and M. W. Mahoney, “PyHessian:
Neural networks through the lens of the Hessian,” in Proc. IEEE Int.
Conf. Big Data (Big Data), Dec. 2020, pp. 581–590.

[30] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2019.

[31] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning
algorithms,” 2018, arXiv:1803.02999.

[32] M. Wei and D. J. Schwab, “How noise affects the Hessian spectrum in
overparameterized neural networks,” 2019, arXiv:1910.00195.

[33] B. Ghorbani, S. Krishnan, and Y. Xiao, “An investigation into neural net
optimization via Hessian eigenvalue density,” in Proc. Int. Conf. Mach.
Learn., 2019, pp. 2232–2241.

[34] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,” 2017,
arXiv:1708.07747.

[35] S. Hochreiter and J. Schmidhuber, “Flat minima,” Neural Comput.,
vol. 9, no. 1, pp. 1–42, 1997.

[36] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and
P. T. P. Tang, “On large-batch training for deep learning: Generalization
gap and sharp minima,” in Proc. Int. Conf. Learn. Represent. (ICLR),
2017.

[37] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[39] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for con-
volutional neural networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 6105–6114.

[40] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009. [Online]. Avail-
able: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

[41] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in
unsupervised feature learning,” in Proc. Int. Conf. Artif. Intell. Statist.,
2011, pp. 215–223.

[42] A. E. Johnson et al., “MIMIC-III, a freely accessible critical care
database,” Sci. Data, vol. 3, no. 1, pp. 1–9, 2016.

[43] H. Harutyunyan, H. Khachatrian, D. C. Kale, G. Ver Steeg, and
A. Galstyan, “Multitask learning and benchmarking with clinical time
series data,” Sci. Data, vol. 6, no. 1, pp. 1–18, Dec. 2019.

[44] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst. (NeurIPS), vol. 30, 2017.

[45] A. Thakur, P. Sharma, and D. A. Clifton, “Dynamic neural graphs based
federated reptile for semi-supervised multi-tasking in healthcare applica-
tions,” IEEE J. Biomed. Health Informat., vol. 26, no. 4, pp. 1761–1772,
Apr. 2022.

[46] Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory for deep
learning via over-parameterization,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 242–252.

[47] L. Chizat, E. Oyallon, and F. Bach, “On lazy training in differentiable
programming,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS),
vol. 32, 2019.

Anshul Thakur received the Ph.D. degree from the
School of Computing and Electrical Engineering,
IIT Mandi, Mandi, India, in 2020.

Since 2020, he has been working as a
Post-Doctoral Researcher with the Computational
Health Informatics Laboratory, Department of
Engineering Science, Institute of Biomedical
Engineering, University of Oxford, Oxford, U.K.
His research interests mainly lie in deep learning,
AI for healthcare informatics, privacy preservation,
and audio analysis.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 06,2024 at 17:27:16 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Vinayak Abrol received the bachelor’s and master’s
degrees in electronics and communication engineer-
ing from Panjab University Chandigarh, India, in
2011 and 2013, respectively, and the Ph.D. degree
from the School of Computing and Electrical engi-
neering, IIT Mandi, Mandi, India, in 2018, funded
by the TCS Innovation Laboratory.

He has held an Oxford-Emirates Data Science Fel-
lowship with the Mathematical Institute, University
of Oxford, Oxford, U.K., and SNSF funded post-
doctoral position with the IDIAP Research Institute,

Switzerland, from 2018 to 2020. Since 2021, he has been with IIT Delhi,
New Delhi, India, where he is currently an Assistant Professor with the
Department of Computer Science and Engineering. His research interests
include speech/audio signal processing, machine learning, and the design and
analysis of numerical algorithms for information-inspired applications.

Pulkit Sharma received the Ph.D. degree from the
School of Computing and Electrical engineering, IIT
Mandi, Mandi, India, in 2019.

He has worked as a Senior Research Applica-
tion Engineer with the Text-to-Speech Research and
Development, Nuance India. He is currently a Data
Scientist with QuantumBlack, London, U.K., and a
Visiting Researcher with the Computational Health
Informatics Laboratory, University of Oxford,
Oxford, U.K. His main research interests include
speech processing, healthcare informatics, and
deep learning.

Tingting Zhu received the D.Phil. degree in infor-
mation and biomedical engineering from the Insti-
tute of Biomedical Engineering, Oxford University,
Oxford, U.K., in 2016.

She is currently a Royal Academy of Engineering
Research Fellow and a member of faculty with the
Department of Engineering Science, University of
Oxford. Her research interests lie in machine learn-
ing for healthcare applications. Her work involves
the development of machine learning for under-
standing complex patient data, with an emphasis on

Bayesian inference, deep learning, and applications involving low-income
countries.

David A. Clifton is currently a Professor of clinical
machine learning with the Department of Engineer-
ing Science, University of Oxford, Oxford, U.K.,
and an OCC Fellow in AI and machine learning
with the Reuben College, Oxford. He is a fellow of
the Alan Turing Institute, a Research Fellow of the
Royal Academy of Engineering, a Visiting Chair in
AI for Healthcare with the University of Manchester,
Manchester, U.K., and a fellow of Fudan University,
Fudan, China. His previous research resulted in
patented systems for jet-engine health monitoring,

used with the engines of the Airbus A380, the Boeing 787 Dreamliner, and the
Eurofighter Typhoon. Since 2008, he has focused mostly on the development
of AI-based methods for healthcare. His research focuses on the development
of machine learning for tracking the health of complex systems.

Prof. Clifton holds a Grand Challenge Award from the U.K. Engineering
and Physical Sciences Research Council, which is an EPSRC Fellowship that
provides long-term strategic support for future leaders in healthcare.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 06,2024 at 17:27:16 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

