
1

IIsy: Hybrid In-Network Classification Using
Programmable Switches

Changgang Zheng , Zhaoqi Xiong, Thanh T Bui, Siim Kaupmees, Riyad Bensoussane, Antoine Bernabeu ,

Shay Vargaftik , Yaniv Ben-Itzhak , Noa Zilberman , Senior Member, IEEE

Abstract—The soaring use of machine learning leads to in-
creasing processing demands. As data volume keeps growing,
providing classification services with good machine learning per-
formance, high throughput, low latency, and minimal equipment
overheads becomes a challenge. Offloading machine learning
tasks to network switches can be a scalable solution to this
problem, providing high throughput and low latency. However,
network devices are resource constrained, and lack support for
machine learning functionality. In this paper, we introduce IIsy -
a novel mapping tool of machine learning classification models to
off-the-shelf switches. Using an efficient encoding algorithm, IIsy
enables fitting a range of classification models on switches, co-
existing with standard switch functionality. To overcome resource
constraints, IIsy adopts a hybrid approach for ensemble models,
running a small model on a switch and a large model on the
backend. The evaluation shows that IIsy achieves near-optimal
classification results, within minimum resource overheads, and
while reducing the load on the backend by 70% for data-intensive
use cases.

Index Terms—In-network Computing; Machine Learning; P4;
Programmable Data Planes; Software Defined Networks

I. INTRODUCTION

MACHINE Learning (ML) is increasingly applied to
every aspect of our lives, leading to overwhelming pro-

cessing requirements. Indeed, in data centers, ML has become
a prominent workload [1]. To alleviate compute requirements
and improve latency-sensitive applications’ performance, ML
is pushed to the edge [2] and to end-user devices [3]. The
performance requirements of ML have driven the development
of a range of ML accelerators, including GPUs [4], FPGA [5],
and custom ASICs [6]. While state-of-the-art accelerators can
run trillions of operations per second, their network interface
still limits their throughput. Network devices offer an untapped
resource for scaling ML, and in particular – classification.
The use of programmable network devices for in-network
computing applications, such as caching [7], consensus [8] and
network services [9], provides orders of magnitude throughput
increase and latency reduction, combined with significant
power savings [10].

Combining ML and networking is not a new trend [11], with
most of the work focusing on ML on the end host. Newer

C. Zheng, R. Bensoussane, and N. Zilberman are with the Department of
Engineering Science, University of Oxford, Oxford OX1 3PJ, UK.

A. Bernabeu (LS2N, CNRS, Ecole Centrale Nantes, Nantes Université,
UMR 6004, France) while at the University of Oxford.

Z. Xiong, T. T Bui, and S. Kaupmees while at the University of Cambridge,
Cambridge CB3 0FD, UK.

S. Vargaftik and Y. Ben-Itzhak are with VMware Research Group (by
Broadcom), Tel Aviv 6997801, Israel.

In-network machine learning

Network assisted machine learning
Feature extraction
(e.g. FlowLens)

In-network aggregation
(e.g., ATP, SwitchML)

End-host

In-network

General machine learning

Commodity
data plane

Modified
data plane

Control plane

In-network classification (e.g. Taurus, IOI)

IIsy Feature extraction Classification

Figure 1: The positioning of IIsy

works had succeeded in creating network-assisted machine
learning, as shown in Figure 1, using network switches either
for aggregation [12], [13] or for feature extraction [14].
Despite these previous successes, running ML within network
switches has proven hard to tackle. While ML accelerators
usually focus on matrix multiplication [6], network switches
do not support such operations. Several works have tried to
address this limitation by modifying the data plane hardware
or designing new hardware modules [15], [16]. These are
experimental, not off-the-shelf solutions and cannot be easily
and cheaply adopted.

A few attempts have been made to run ML models within
the network (top of Figure 1), as further detailed in §X.
Most of these works (e.g., [17], [18], [19], [20], [21] have
done so using network interface cards (NICs), FPGA, or in
a software environment, building upon the significant avail-
ability of resources and functionality, compared with switch-
ASIC. However, as we convey in §II, such solutions lack the
scalability and latency benefits of using switches. Attempts to
implement ML-based classification on switch-ASIC supported
only a limited number of models. These solutions also had
limited size and performance (i.e., small model size with ac-
curacy trade-off [22], [23], [24]) due to significant constraints
on switch resources and functionality. To date, harnessing the
power of network switch-ASIC for ML within off-the-shelf
programmable switches (e.g., Tofino [25]) remains a challenge.

To attend to this problem, we present IIsy, In-network
Inference made easy, supporting off-the-shelf programmable
switches (e.g., Intel Tofino) to employ a range of ML clas-
sification methods. IIsy supports a range of tree-based clas-
sification models (Decision Tree (DT), Random Forest (RF),
and XGBoost (XGB)) and classical models (Support Vector
Machines (SVM), Naı̈ve Bayes, and K-means), and is gener-
alizable to other classification methods (§V). The support of

https://orcid.org/0000-0003-1894-722X
https://orcid.org/0000-0001-7912-5161
https://orcid.org/0000-0002-0982-7894
https://orcid.org/0000-0002-3844-5940
https://orcid.org/0000-0002-3655-2873

2

ensemble models allows IIsy to overcome resource constraints
through a hybrid deployment: running a small model on a
switch and a large model at the backend. In this manner,
IIsy achieves both high system-level performance (e.g., high
throughput and low latency) and high ML performance (e.g.,
accuracy, F1 score).

The design of IIsy follows these guidelines:

1. Off-the-shelf Switches. Production-environment net-
works rely on programmable switch platforms and prior-
itize network functionality. Enabling in-network classifi-
cation using existing equipment saves costs and resources
and, importantly, offers platform maturity and availability
without compromising functionality or performance. We
describe several deployment scenarios in §II-B.

2. Low-resource ML models. ML models require com-
plex mathematical operations, unsupported by switch-
ASIC, or consume significant resources (e.g., Decision
Tree based models). The scarcity of switch resources
means that not every model mapping will be feasible.
In addition, resources must be reserved for networking
functionality. IIsy attends to these challenges by using
lookup-based ML mapping algorithms, co-existing with
standard switch functionality and parallelizing operations.
We describe these in §V.

3. ML performance. For classification purposes, the same
level of ML performance, e.g., accuracy and precision,
as running on a CPU or a GPU is targeted. While
this is highly desirable, it is sometimes practical to
trade some accuracy for resources, e.g., saving half the
memory resources while giving up 1% of accuracy. To
address this challenge, IIsy supports hybrid deployments,
offering competitive ML performance with low-resource
in-network classification consumption, discussed in §III.

4. Easy ML model updates. As data changes over time
and ML models need to be retrained, quick and easy
deployment of updated ML models is sought. Moreover,
deploying an updated classification model should be
with minimal traffic disruption. To avoid disruption, IIsy
supports real-time table updates using a use-case-specific
(P4) program. This approach is addressed in §V.

5. Feature extraction. While packet-header features can be
easily extracted, more complex features are needed to
support many ML models. In PISA-style devices [26],
this means using the parser to extract specific data from
the packet and the match-action pipeline to turn this ex-
tracted data into a feature and store the information. Ad-
ditionally, it is required to process data stored deep within
the payload. These challenges are addressed in §VI.

In summary, this paper presents IIsy - a novel tool for
mapping classification models to off-the-shelf programmable
switches. IIsy is resource efficient, allows real-time ML model
updates, and supports hybrid ML deployment. IIsy generates
both data plane and control plane programs from the output of
a common ML training framework and does not require mod-
ifications to tools, network devices, or protocols. In particular,
the main contributions of this paper are:

• Introducing a mapping tool of ML classification models

to programmable network switches, supporting a range
of classification methods, such as Decision Tree, Random
Forest, XGBoost, SVM, Naı̈ve Bayes, and K-means.

• Presenting an efficient mapping algorithm that is inde-
pendent of the number of stages in the switch pipeline,
which is critical for scaling ensemble models.

• Demonstrating feature extraction on packet, flow, aggre-
gate, and file granularity.

• Demonstrating the use of hybrid deployments for in-
network classification, consisting of a small model on
a network switch and a large model over the hosts.
IIsy achieves high ML performance while reducing the
backend’s load and classification latency.

Our evaluation shows that IIsy supports ML-based classifi-
cation within the network with minimal to no loss in accuracy
(§VIII-C). Using 5 features, IIsy supports ensembles of up
to 8 trees and tree depth of 10, representing more than a
twofold improvement compared to related works [20], [23]
(§VIII-E). Model size represents a trade-off, and we show
that IIsy can support up to 50 features or 20 trees (§VIII-D).
At the same time, all supported models run at line rate
(6.4Tbps) with sub-microsecond latency (§VIII-F). Leveraging
hybrid deployments, IIsy achieves near-optimal classification
performance with over 70% of classification decisions within
the switch (§VIII-G).

II. MOTIVATION

A. Benefits: the 3-Ls

The benefits of in-network classification using switches can
be summarized as the 3-Ls: Location, Latency, and Load.

• Location. Any cloud-processed user-generated data goes
through the network first. This means that any informa-
tion that needs to be classified, is already processed by
switches. Extending this processing to include classifica-
tion is a natural step. Network switches are located at
every point of the network (e.g., edge, data center, point
of presence), providing early access to data as well as
visibility into the aggregation of data sources. In addition,
network switches are already part of the infrastructure
carrying user data and do not need to be newly added.
There are no cost or space overheads, beyond existing
network requirements, unlike other accelerators (e.g.,
GPUs, middleboxes).

• Latency. The latency from a data-generating node to
a processing node is always higher than the latency to
any network device along the path between the node.
Within a data center, every hop avoided through in-
network classification saves hundreds of nanoseconds to
microseconds [27]. In wide-area networks, propagation
delay can be in the order of milliseconds, therefore,
classifying next to the end-user or at the edge can
significantly reduce latency. This is important for time-
sensitive applications, such as financial transactions, in-
dustrial control [28], smart transportation systems, and
latency-critical IoT applications [29]. As discussed later,
automatically converting and loading trained ML models
to (local and remote) network switches, can speed up

3

further the reaction to events in the network and shorten
the time for detection and mitigation.

• Load. Network switches can process billions of transac-
tions per second and do so while providing high power
efficiency [10]. The rate of classification decisions by an
end-host or an accelerator is bounded by the data rate of
the attached network device. A fully realized in-network
classification offers both the high throughput of a network
switch and the reduction of the load on the backend. As
shown in §VIII, in-network classification can significantly
reduce the amount of traffic to servers, and that requires
further processing. In some use cases, e.g., mitigating
distributed denial of service (DDoS), dropping malicious
traffic close to the source can dramatically reduce both
network and server loads.

B. Deployments Scenarios

In-network classification is possible in different deployment
scenarios, including (1) a native switch operation, (2) a switch
acting as an endpoint accelerator, (3) smart NICs.

Switch/Router. A programmable switch used as a
switch/router has some, or most, of its resources dedicated to
networking operations, meaning that in-network classification
needs to be resource efficient. Using in-network classification
within a switch or a router does not require extra cost or space,
and the power overheads are small [10]. The location of a
switch/router affects its benefits; A switch/router very close to
the user is most useful for data reduction, ultra-low latency
applications, and mitigating the effects of distributed events
(e.g., DDoS attacks). On the other hand, a switch within a data
center can support more complex applications. For example,
assuming that the switch is located after a load balancer,
decrypted traffic can sometimes be assumed [30], enabling
in-network classification in use-cases otherwise prohibited by
traffic encryption.

Endpoint accelerator. The switch as an endpoint acceler-
ator refers to using a switch purely for ML purposes. This
model is already in use for some applications, such as load
balancing [31]. Unlike other deployment scenarios, here the
switch adds space, power, and cost overheads.

Smart NIC. Smart NICs, DPU (e.g., NVIDIA BlueField),
and IPU (e.g., Intel Mount Evans) have been used in several
recent in-network classification works [21], [17] due to their
improved resource availability (memory, encryption modules)
and flexibility of programming (e.g., FPGA or SoC based).
While smart NICs benefit from the 3-Ls, it is to a lesser degree.
Their throughput is lower than a switch (e.g., 400Gb/s vs
50Tb/s), end-to-end latency is higher than a switch (but lower
than a CPU), and their location is further from the data source.
As shown in previous works [10], there are still performance
and power benefits, but sub-par to a switch ASIC.

The significant benefits of the 3-L’s lead us to focus on
the Native Switch deployment scenario. IIsy also seamlessly
supports the Endpoint Accelerator model. Our solution is
applicable to smart NIC architectures, like the Portable NIC
Architecture (PNA) [32], and was used for prototyping [33].

C. Limitations of In-Network Classification

While using in-network classification offers benefits such as
the 3-Ls, it has some limitations. The constrained resources
on programmable switches impose limitations on the size of
models that can be deployed. This affects the accuracy of
classification services. Even though IIsy scales in-network
models beyond previous works, their size remains small com-
pared with the very large models running on server-based
setups. However, system performance demands for services,
such as classification rate, are usually non-negotiable. Thereby,
a solution that leverages the advantages of in-network machine
learning while achieving classification performance at the
server level is needed.

III. HYBRID DEPLOYMENT

The resource-constrained nature of network devices means
that in-network ensemble models are smaller than full-grown
ensemble models. Hence their ML performance may be sub-
par. For such cases, we propose a hybrid ML model that
can achieve close to optimum ML performance while still
benefiting from the performance of in-network classification.
A hybrid deployment employs a small in-network ML model
on the network device and a large ML model over an end-
point. The idea of applying a hybrid model to in-network
classification is inspired by techniques used in heterogeneous
computing (e.g., ARM’s big.LITTLE) and from pure-ML
hybrid deployments.

In many ML ensemble models, such as Random Forest and
XGBoost, the ML model can provide a classification with
a corresponding confidence level – the probability that the
classification is correct [34]. In this paper, we adapt the ML
concept of a hybrid deployment [35] by implementing a small
in-network ensemble model (e.g., by limiting the number of
trees in an ensemble or using a subset of features [36]), and
running a large ML model at the backend.

The small models within the network are necessarily models
where the training process can provide confidence scores for
classification outputs, e.g. tree-based ensembles. The large
model at the backend operates independently from the small
models, and they do not need to be of the same type.
The selection of the large model at the end-point primarily
considers the processing ability of the backend system, as well
as the ML performance of the large model. Advanced models,
such as deep neural networks [37], and sophisticated training
techniques, like adversarial training [38], can be utilized.
However, due to their high performance for the studied use
cases, and simplicity of analysis, we employ ensemble trees on
both the small model inside the network and the large model
on the backend system.

To cope with the lower ML performance of a small in-
network ML model, classifications by the small model are
considered valid only if their corresponding confidence is
above a given (high) threshold. Invalid classifications by
the small in-network ML model (i.e., confidence below the
threshold) are forwarded for re-classification by the large ML
model deployed at the backend. Confidence is a property of the
model. The output confidence value is fixed for a given input.

4

Using a forest model as an example, the output confidence is
the mean of the probabilities of selected output label for all
the trees in the forest.

Previous pure ML works [35] have shown that most of
the queries in a given dataset can be classified by a small
ML model with a high confidence level. Hence, a hybrid ML
deployment reduces both the classification latency and the load
on the backend servers (by forwarding only “hard” queries
for re-classification), as compared to a monolithic ML model
deployment at the backend, where all queries are processed
by the end-point. In §VIII, we validate these assumptions and
demonstrate the benefits using two use cases from different
domains, cyber-security, and finance.

IV. IISY ARCHITECTURE

IIsy automatically maps trained classification models to
programmable network devices, and in particular to off-the-
shelf switch ASIC. IIsy uses a common ML framework for
training and converts its output to data plane code and control
plane code.

Large
M

odelO
utput

High Confidence

Packets In

Data Plane

Control Plane

Standard p4
program

Feature
extraction

Mapped ML
model

Add/remove table entries

Final Decision

Co
nf

id
en

ce

Low

Complex backend model:

…
k code1

k code1

k codem

k codem

Model to Switch
Tool

Small model

Small in-network model

Large model
MLmodel training

Key Feature 1 Key Feature m Code Label

codes label

codes label! "#$%4

! "#$%4! "#$%5

! "#$%5

… … … … … …

Figure 2: The high-level architecture of IIsy

The architecture of IIsy, shown in Figure 2, has four
components: ML training, a mapping tool from a trained
model to a target network device, a data plane implementation
on a hardware target, and a control plane component for
populating table entries. Additionally, the figure shows the
integration with a server backend, for hybrid deployments.

IIsy uses host-based ML training based on standard ML
frameworks, such as scikit-learn, and allows for model updates
over time (see §VIII-I). Input datasets may be of different
formats (e.g., csv, pcap traces), and the output is expected as
a pickle file.

IIsy’s mapping tool takes the output of the ML framework,
the trained model, and maps it to a switch-ASIC target (see
§V). The tool generates two components: an implementation
of the network switch data plane (P4 based), and the table
entries loaded by the control plane.

The data plane components of IIsy target RMT [39] or
PISA [26] based network switches, such as Intel’s Tofino and
NetFPGA SUME [40]. It combines standard network switch
functionality (provided by the user), and the in-network clas-
sification code generated by the mapping tool. In particular,
this component of IIsy’s design provides resource-allocation
optimizations.

The control plane component is responsible for the con-
figurations and updates of the network device. As such, it
combines the standard user-defined control plane and the table
configurations generated by the mapping tool and required

for in-network classification. The control plane also supports
runtime updates on the deployed classification model (§VIII-I).

IIsy’s support for hybrid deployment means that an addi-
tional data plane component is needed, which considers the
confidence level of a classified transaction, and accordingly
decides if to forward the transaction to its destination (high
confidence) or route it to the backend for classification by
the large model (low confidence). The confidence threshold is
configurable, and confidence levels are programmed through
the control plane. The type of the model on the switch and at
the backend do not need to be identical, e.g., XGBoost on the
switch and a neural network at the backend.

V. MAPPING MODELS TO SWITCHES

Mapping trained models to switches is challenging on
multiple fronts. Not only the amount of on-switch memory
is limited, but also the number of tables and stages that can
be used. Additional constraints include limited mathematical
operators, parsing states, metadata resources, and others.

To overcome these challenges, IIsy builds upon the follow-
ing guidelines:

• Using lookup tables to implement mathematical opera-
tions, for example, multiplication and exponents.

• Optimizing on-chip resources, and reducing lookup ta-
bles size, by storing encoded results instead of explicit
calculation results.

• Classification decisions and complex follow-up actions
(e.g., in a hybrid deployment) use resource-efficient
lookup tables instead of conditions or functions.

• Be willing to trade accuracy for resources. Users can
further trade model size and ML performance.

• Breaking the dependency between model dimensions
(e.g., features, trees, hyperplanes) and pipeline stages
through design for parallelism.

• Optimizing the resource usage by sharing features lookup
tables between models.

The methods for mapping different trained ML models to
switches are described in Table I. Every method builds upon
the Match-Action (M/A) pipeline [39], [26], [25] to map
different, or more complex models. Specifically, in the M/A
pipeline, a key (input value) is matched against a table, and the
matched entry is associated with a result action. One intuitive
method, shown in Table I (9), is suitable for all models. Using
a single M/A table, this approach maps all input features to an
output class. While this universal solution is simple, it typically
leads to the explosion of table entries and stages, hindering its
adoption in use cases with a large number of features or wide
feature ranges. In the following, we introduce several other
mapping methods, which are model-specific.

A. Decision Tree

The most basic functionality of network switches is packet
classification, mapping incoming packets to output ports (i.e.,
classes in terms of ML). In a layer-2 Ethernet switch, the
feature used for classification is the destination MAC address,
and the MAC table is used to decide the output port –
the classification’s result. This is analogous to a single-level

5

Feature 1
0
1
2
3
4
5
6
7
…
n

Code1
00
00
00
01
01
10
10
11
…
11

Branch 2

Branch 1

Branch 4

Feature 2
0
1
2
3
4
5
6
7
…
n

Code2
00
00
01
01
01
01
10
10
…
10

Brach 3

Branch 5

Code1, Code2
00, **
01, **
1*, 00
1*, 01
1*, 10

Leaf
0
1
2
4
5

Branch 1

Branch 2 Branch 3

Branch 4 Branch 50 1

2 3 4 5

Input : Key = (1, Action =)*+,1 Key =(2, Action =)*+,2 Key ={)*+,1,)*+,2}, Action =)-.//
Example Input: [Feature 1: 4, Feature 2: 7] Key = 4, Action = 01 Key =7, Action = 10 Key ={01, 10}, Action = 1

Table 1: Feature 1 Table 2: Feature 2 Table 3: Classification Ensemble TreesDecision Tree

[Feature 1: (1, Feature 2: (2]

(1 ≥ 7 !2 < 6 !2 ≥ 6

!1 < 5 !1 ≥ 5

!1 < 3 !1 ≥ 3 !2 < 2 !2 ≥ 2

!1 < 7 !1 ≥ 7

…

…

*+,-. 1

*+,-. 3

!.,+/0. 1
!.,+/0. 2

!.,+/0. 3

!.,+/0. 1

20.. 1
20.. 2

20.. 3

20.. 1
*+,-. 2

34,556!67,+681 9.765681

Figure 3: An example of a Decision Tree mapping, and the mapping to stages of an Ensemble Model.

decision tree. A more complex switch will consider also
features such as VLAN tag, IPv4 address or flow size, creating
a multi-level decision tree.

IIsy takes a more efficient approach for mapping decision
trees to network devices, independent of tree depth. In the first
step (equivalent to a switch stage), IIsy looks up in parallel
with all input features. In the second step (equivalent to a
switch stage), IIsy uses the results of the features’ lookup to
make a classification decision (Table I Decision Tree). The
main idea behind this mapping is decomposing the path from
the root of a tree to the leaf node into feature-based decisions,
where each feature lookup indicates which path(s) is (are)
taken. The classification decision lookup uses, as the lookup
key, the integration of feature-based decisions.

Figure 3 shows a simple example of this mapping, using
a decision tree with a depth of three, with six leaf nodes,
and using two features. The color of each branch indicates
the feature used, with three branches using feature 1 (f1),
and two branches using feature 2 (f2). The branches using
f1 are mapped to Table 1, and the lookup key is the value
of f1. The table contains 4 ranges, covering the potential
outcomes of branches 1, 2, and 4. Each range is encoded as
the resulting action. Similarly, Table 2 uses f2 as the lookup
key, with 3 ranges, corresponding to branches 3 and 5. The
result of this table lookup is a second 2-bit code. While the
tables are shown as an exact match, ternary match, longest
prefix match, and range match implementations are possible.
The third table, the classification table, uses as the lookup
key the two resulting codes (actions) of Table 1 and Table 2.
A match on this key results in a leaf node, the classification’s
result.

Table size analysis. Assume a tree with B branches using F
features, where each feature fi is wi bits wide and used in bi
branches. The number of entries in a ternary feature table for
fi will be O(bi×wi), while an exact match table will contain
all valid feature values. This number can end up small, as
shown in §VIII-C, for example, if most values are mapped to
a default entry, meaning that no memory is consumed.

The number of entries in the classification table depends on
the depth and shape of the tree. The worst case is when the
branches are evenly divided between all features, so features
require the same number of (multiple) bits for the code. The

best case is where F − 1 features are used only once in
branches, requiring a single-bit code, and the last feature is
used B − (F − 1) times. This can be written as:

2⌈log2
B
F ⌉F ≥ Entries ≥ 2B−1+⌈log2(B−(F−1))⌉ (1)

B. Ensemble Tree-Based Methods

Ensemble methods improve ML prediction results by
combining multiple learning models [41]. We consider two
tree-based types of ensemble methods: Bagging and Boosting.
Ensemble models require three logical pipeline stages: the
first to lookup features, the second to lookup in parallel the
independent decisions of all the models, and the third to
make a classification decision based on the decisions of the
ensemble. While features are looked up only once, similar to
DT (§V-A), here a feature’s lookup generates multiple results
— one per model.

Bagging. In bagging methods, multiple learners are used, and
each learner has an equal weight (single vote) in the final
decision. Each learner is trained using a different sample with
replacement of the training data. We use Random Forest [42],
which is built from multiple decision trees, as an example of
mapping a bagging model to a network device.

The mapping of a model to a switch is oblivious to dif-
ferences between bagging models in terms of training-related
parameters such as sample selection and training method.
The mapping is influenced only by constraints of the training
outcome, e.g., selected features, number, and depth of trees.

While each decision tree in a Random Forest can be inde-
pendently mapped to a device, as in §V-A, this is inefficient.
For example, a Random Forest of ten trees, each using the
same five features, will require fifty feature tables and eleven
decision actions (one decision per tree, plus one classification
for the entire forest).

IIsy significantly reduces resource requirements by sharing
feature tables between trees. This means that for the previous
example, IIsy will require just five feature tables instead of
fifty. The result of each lookup in a feature’s table is a series
of action codes (as defined in §V-A), one per tree. Trees can be
pruned to create action codes of feasible length. This mapping
is not free; the number of entries in each feature table will
increase to cover all models’ branches, as well as the size of
metadata required to carry action codes.

6

No. Classifier A Table per. . . Key Action Last stage
1. Decision Tree (1) Feature Feature’s value Feature’s code word Table, Decoding code words to class
2. Decision Tree (2) Class All features Vote Logic/table, votes counting
3. SVM (1) Feature Feature’s value Calculated vector Logic, hyperplanes calculation and voting
4. SVM (2) Hyperplane All features Vote Logic/table, votes counting
5. Naı̈ve Bayes (1) Feature Feature’s value Probability Logic, selecting highest probability
6. Naı̈ve Bayes (2) Class All features Probability Logic, Probability comparison
7. K-means (1) Feature Feature’s value Distance vectors Logic, selecting smallest overall distance
8. K-means (2) Cluster All features Distance from cores Logic, Distance comparison
9. General Model Model All features Label Table

Table I: Different manners of implementing in-network classification within a match-action pipeline. Logic refers only to
addition operations and conditions. Random Forest and XGBoost are an extension of Decision Tree.

As noted in §V-A, IIsy requires a table per tree to turn an
encoded path into the decision of a tree. The classification
result of the entire ensemble is based on the collective
classification results of all trees in the ensemble and is
implemented as a table. The decision table takes as the
lookup key the classification results of all the trees and
provides the classification result as an output.

Boosting. Boosting [43] and bagging methods are different,
as the ensemble is built by training new learners to focus
on misclassifications by previous learners. Gradient boosting,
such as XGBoost, is often built from an ensemble of decision
trees, where a small decision tree (e.g., with 8-32 terminal
nodes) is added at each iteration and scaled by a constant
factor. Then, a new tree is grown to reduce the loss (according
to the loss function) of the previous trees. In boosting, new
trees are trained with a focus on previous misclassifications.
The decision is based on the weighted outcome of each tree.

Despite the differences in training, the mapping of a gener-
ated XGBoost model is mostly identical to a Random Forest
(§V-B), using a table per feature, and a table per tree. The
main difference is that leaf nodes are weighted. The weighting
can be applied either when constructing the tree table, which
is typically more resource-efficient, or at the decision stage.
Specifically, the weight in XGBoost is converted into an
equivalent codes. Different to “one vote per tree” in bagging,
in boosting trees have different weights in the final vote.
The weight codes are used to represent the number of votes
from each tree. In the final stage, it is effective (§VIII)
to aggregate the weighted results across all trees, either by
summation or using a lookup table. Directly votes’ summation
and comparing the summed votes for each class is easy, but
more stages and logic resources. On the other hand, a lookup
table enables mapping of weight codes from each tree to
the corresponding output class (Figure 3), requiring only one
pipeline stage but costs more memory (table entries).

C. Classical models: SVM, K-means, and Naı̈ve Bayes

Classical classification algorithms can be mapped using
approaches similar to ensemble models. In IIsy’s prototype,
these are applied to SVM, K-means, and Naı̈ve Bayes.

While previous models were indifferent to data types, clas-
sical models are sensitive to it. In IIsy, integers and fixed-
point numbers are seamlessly supported. Fixed point numbers
are either normalized (e.g., multiplied by a factor to achieve

a natural number) or quantized. The use of quantization is
common for all data types as a means of table compression,
where the number of bins is relative to the number of bits in
the lookup’s result (action).

The first classical model’s mapping approach uses a lookup
table per feature, and the results are encoded. For example, it
might indicate a normalized value. If the result of a lookup is
a code, the second stage in the pipeline will use a lookup table
with the codes of all features as the key, similar to decision
trees. If the result of a lookup is a value, then the last stage in
the pipeline will operate on all values, typically adding them
up and comparing the results across classes (for example Table
I SVM (1)).

A second mapping approach, which is not always feasible,
holds a table per class or class indicator. For example, in
Table I SVM (2), there will be a table per hyperplane. The
lookup keys are the values of all the features. The result of
the lookup will be an indicator, such as if the entry belongs
within or outside the hyperplane (for SVM) or the distance
from a center of a cluster (for example, Table I K-means (2)).
This approach is theoretically applicable to a wide range of
algorithms, including Decision Tree (2) in Table I.

Based on these two approaches, IIsy provides mapping
solutions for SVM, K-means, and Naı̈ve Bayes:

SVM. Support Vector Machines (SVM) uses hyperplanes to
separate between classes, where the output of the training stage
is the equations of the hyperplanes, such as: a1x1 + b1x2 + ...z1xn + d1 = 0

...
amx1 + bkx2 + ...zmxn + dm = 0

where xi is the value of feature i, n is the number of
features, k is the number of classes and m = k ∗ (k − 1)/2.
There are two ways to map SVM to a network device. First,
to hold a table per feature, and second, to hold a table per
hyperplane.

A table per feature means that the key to a table is the
feature’s value (Table I SVM (1)), and the output of the lookup
is a vector of calculated values ai × xi, where xi is the value
of the feature (potentially normalized or quantized). The value
of an SVM hyperplane, separating two classes, is calculated
as the sum of vectors from all feature tables, and a decision
is taken. This can be optimized by adding up the features in
each pipeline stage.

7

A table per hyperplane means that m lookup tables are used,
one per hyperplane, and the outcome of the lookup indicates
on which side of a hyperplane is a given input (Table I SVM
(2)). The key to a table is a set of features, and the action is
a “vote”. A “vote” is a one-bit value mapped to the metadata
bus that indicates if the input belongs within or outside a
hyperplane. The “votes” from all m tables are counted in the
last stage, and the class with the highest count of “votes” is
the classification result.

The table per hyperplane approach is feasible only when
the concatenation of all features does not lead to a too-wide
key (same when using each feature code as a separate key).
If the features used are, for example, source and destination
port, protocol, and some IP flags, the key will be relatively
small, and the solution will be feasible. Theoretically, the use
of all features can yield the classification within a single table.
However, this table is likely to be very large and less resource-
efficient than distributing across a few smaller tables.

The main advantage of the table per hyperplane approach
is that there is no unintentional loss of accuracy; the output
of the table is a vote, not a value. It is possible to purposely
lose some accuracy, e.g., if one wants to reduce the number of
table entries by merging multiple ranges of different “votes”
into a single entry (e.g., if keys 0-1111 and 1113-32767 are
mapped to class 1, and key 1112 to class 2). In contrast, a
solution using a table per feature may lose some accuracy,
as the result of a lookup is a calculated value (and not a
code), which has an accuracy limited by its number of bits.
The final classification decision may not be affected by the
loss of accuracy in calculations along the pipe, but this is not
guaranteed.

Using a table per feature will be favored in some cases, e.g.,
if working with eight features, each of eight-bit, so each table
is only (and at most) 256 entries deep, and features can be
looked up in parallel. The table per hyperplane equivalent will
be multiple (m) tables of a 64-bit key (or eight eight-bit keys).

K-means. An example of unsupervised learning mapped to
a network device uses K-means clustering. In K-means, k
classes are represented by k centers of clusters, with each
center defined by n coordinate values, one per feature. A data
point will be mapped to a class based on its nearest center of
a cluster. The distance from cluster i is denoted by:

Di =
√
(x1 − ci1)

2 + (x2 − ci2)
2 + ..(xn − cin)

2

where x1 to xn are the values of the data point’s features.
Obviously, to find the nearest cluster, it is sufficient to consider
the square distances. As in previous examples, there are two
ways to map the model to a network device.

One option is using a table per feature (Table I K-means (1)),
with the lookup’s result of table i being a vector of {(xi −
c1i)

2, (xi − c2i)
2, ..., (xi − cki)

2}. Here, the last stage will need
to sum up all Di and find the smallest one1. As before, the
challenges here are the accuracy of the calculation and the
required width of the metadata bus.

1Values can also be summed up in each stage.

The second approach uses a table per class (Table I
K-means (2)), with multiple keys of all features (a feature
per key) or one key constructed by the concatenation of all
features (presenting a challenge of key width). The result of
each such table lookup is the distance of the data point from
the center of the cluster. As proposed above, this distance can
be represented by an integer value across all tables, allowing
an easy comparison and selection at the last stage.

Naı̈ve Bayes. For a Naı̈ve Bayes classifier [44], we assume
a Gaussian distribution of independent features [45]. Similar
concepts apply to related methods, such as kernel estima-
tion [11]. Under this assumption, the likelihood of feature xi

is expressed as:

P (xi|y) =
1√
2πσ2

y

exp
(
− (xi − µy)

2

2σ2
y

)
And the classification rule is:

ŷ = arg maxyP (y)

n∏
i=1

P (xi|y) (2)

If there are n features and k classes, there are k × n pairs of
(µy, σy).

A mapping based on a table per feature is possible but can
be both inefficient and inaccurate. Here, the result of each
feature-value lookup will be a vector of probabilities (Table I
Naı̈ve Bayes (1)). As the number of bits per vector is limited,
there will be some accuracy loss. Even if the target allows
for any vector length and a fixed point notation is used, the
amount of metadata that needs to be carried between stages
will be larger than other solutions, and depending on the
number of features and classes, exceeding allowed resources.
In this approach, each class will require a table at the end of
the pipeline to calculate its overall probability, bringing the
overall number of tables required to O(n+k). Unless there is
a compromise on accuracy, the number of entries in each such
table will be large, as the keys are all probabilities per class
(or the concatenation of all probabilities). Finally, at the end
of the pipeline, a comparison is required to find maxyP (y).

The second approach is to use one table per class, with
all the features as the key, and with the result being the
probability of that class (Table I Naı̈ve Bayes (2)). The
disadvantage is the size of the required table: it uses a very
wide key (a form of a concatenation of all input feature
values) or too many keys (each feature used as one key), and
its depth is proportional to this unless a compromise is made
for accuracy. The resulting probability does not need to be
presented as a fraction, and an integer value can be used that
symbolizes the probability. As long as the same notation is
used across all tables, the final comparison of P (y) and the
classification result will be correct.

Table size analysis. Our experience shows that the first
approach, single-feature-as-a-key, shown in Table I (1, 3,
5, 7) provides (relatively) shallow tables, proportional to
the number of classes. Assume a use case with n input

8

features, with range (0, f i
max] for a given feature i. Single-

feature-as-a-key requires
∑n

i=0 f
i
max table entries and n + k

logical stages, where k is the number of stages required
for the final logic (usually 1-2 stages). Models using this
approach may experience accuracy loss and higher stage
consumption, as explored in §VIII-C. The second approach,
all-features-as-a-key, shown in Table I (2, 4, 6, 8), is feasible
only when the use of multiple features allows for a feasible
key size and table depth. Under the same use case assumption
with m classes (e.g., hyperplane in SVM), this approach
requires m

∏n
i=0 f

i
max table entries with m + k logical

stages. It provides higher accuracy results and requires fewer
operations at the last stage, but costs more memory (§VIII-C).

Clearly, no single solution fits all use cases. The approach
fits some classification, regression, and clustering models.
Iterative models are less suitable, though they may be feasible,
e.g., using recirculation. Importantly, IIsy takes care that the
type of feature or its range will not affect the accuracy of the
classification (e.g., through normalization).

D. Training and Mapping

The aforementioned ML algorithms are trained offline on
a server using established frameworks like scikit-learn [46].
The trained models are then mapped to the data plane, before
being deployed. IIsy maps the trained model into three distinct
components: 1. data plane code, 2. M/A table entries, and 3.
control plane code. The data plane code is in P4 using the
mappings previously described (Table I). The features of the
trained model are extracted in the parser. A template is used for
every mapping, where the number of M/A tables and logical
operations, as well as lookup keys are taken from the trained
model and its configured hyperparameters. M/A table entries
are directly derived from model parameters and weights.
Control plane code is used to load M/A table entries into
the data plane model. As mapping implementation depends
on model selection and mapping approach, each mapping is
using a template. Further automation work is described in [47].
IIsy does not guarantee that a model would fit on a switch, as
some models are too large.

E. Retraining and Updates

ML models often need to be retrained, e.g., due to data skew,
and the resulting classification model needs to be updated. IIsy
enables such updates using only table updates, without changes
to the deployed program.

A IIsy-generated P4 program depends on a set of user
definitions: the features that need to be extracted (not nec-
essarily used by the ML model), the type of the model,
and constraints on the model (e.g., number of trees). While
retraining will result in a different ML model, as long as the
definitions above are kept the P4 program will not change.
Changes to actions in the features table, and in different
code-to-classification entries in the tree and decision tables
(as in Figure 3) manifest as table entries changes rather
than changes to the P4 code. These can be loaded through
table updates, a common management operation. Changes to

hyperparameter definitions requires generating new P4 code
and is not supported in runtime.

In a hybrid deployment, traffic can be directed to the
backend during updates, to avoid misclassification. Data for
retraining can be collected through sampling and using in-
network telemetry [9], and will be affected by the location of
a switch (e.g., edge vs data center), similar to [15].

VI. FEATURE EXTRACTION

Network devices are designed to extract headers from
packets. However, the research community has already
gone beyond packet headers for applications ranging from
telemetry [9] to in-network computing [10]. In IIsy, the
features extracted are selected based on ML importance
score. The number of features is constrained by the number
of stages in the parser [39] and memory, and scales to tens
of features (§VIII-D).

Packet level features. Extracting packet-level features is
native to network devices. Packet header extraction is done in
the parser, and features are stateless. Such features include,
for example, protocol type or source and destination port
number. Packet level features also refer to features that
describe the packet, such as packet size, switch source port,
or timestamp

Flow level features. Flow-level features, such as flow size
and flow duration, are stateful. Information is collected and
stored across multiple packets [48]. IIsy supports two types of
flow-level features: counted features (e.g., flow size, packets
count), and time-related features (e.g., flow’s start time,
inter-packet gap).

Aggregate level features. Aggregate level features consider
a group of flows, the aggregation of traffic (e.g., from/to port
X) or the network as a whole. Examples of features useful
for ML purposes include traffic volume from a group of
subnets, inter-arrival time toward a specific application or a
histogram of source and destination ports [49]. Implementing
aggregate-level features is mostly similar to flow-level
features, however, additional operations may be required,
such as mapping flow identifiers to an aggregated-feature
identifier.

Supporting file-level features. Supporting features extraction
from files is more complex than in previous cases. We distin-
guish between four stages of file processing:

1. Start of a file. Where the file header needs to be pro-
cessed, and initial resources need to be assigned. This
is similar to a start of a flow but with a more complex
parsing of the header.

2. Looking into the file’s payload. If packet size exceeds the
width of the programmable data plane’s bus, then it may
require recirculation (target dependent).

3. Examining payload across packets. As a file is likely to
be broken across many packets, extracting features from
a file means that contents at the end of a previous packet

9

need to be stitched with the contents at the head of the
next packet.

4. End of file. This is similar to the end of a flow and may
allow to free up some resources.

In IIsy it is feasible to extract data from a subset of
file types, not from all file types. Text-based files, such as
txt, xml, html, and csv, are straightforward to process.
File types that use many objects (e.g., docx, pdf), have a
complex file structure (e.g., mp3, png), or are composed of
many elements (e.g., videos composed of frames) are very
hard to process due to the complex structure and required
resources. Extracting a feature from the jpeg file, such as
the average value or the value of a certain pixel, is possible.
However, extracting more complex features is typically beyond
the resource budget [50].

IIsy’s file processing makes a few assumptions. First, we
assume that files are not encrypted (as in some deployment
scenarios described in §II-B). Second, while both TCP and
UDP are feasible, no packet reordering is currently supported,
e.g., a direct-attached network device. Third, we assume file-
type-specific feature extraction. Last, privacy and legal rights
to process the data need to be addressed by the operator. Going
beyond these assumptions is future work.

IIsy’s contribution focuses on two file processing chal-
lenges: looking within the packet’s payload and examining
the payload across packets. For deep payload inspection,
we observe that feature extraction is not limited by the
number of consecutive bytes in a header, but by Packet
Header Vector (PHV) bit-width. It is possible to skip bytes
within the packet in order to extract information, without
wasting PHV resources. This enables IIsy to support line-
rate features extraction as long as the total size (in Bytes)
of extracted features is less than PHV size. To extract more
features, a packet requires recirculation, with processed bytes
being stripped from the packet. As recirculation has negative
performance implications, limiting the number of features may
be preferred over performance loss.

Examining payload across packets requires saving features
data, done using registers. When a feature is split across two
packets, the first part is stored in a register, and then matched
to the second part either using recirculation (matching both
parts of the feature in the right pipeline stage) or in a second
pipeline, such as the egress or folded pipeline.

There is a trade-off in functionality, performance, and re-
source efficiency when applied to specific file-level use cases.
As previous works have suggested [24], an easy getaway is to
manipulate the file sent at the host’s side before entering the
network so that some challenges can be avoided.

VII. IMPLEMENTATION

IIsy’s framework uses four components (ML trainer/con-
verter, data plane implementation, control plane component,
and backend large model), as described in §IV. In this section,
we describe the implementation of our prototype.

The prototype’s ML training framework is based on scikit-
learn [51]. The implementation enables fast development and
prototyping of different models and, in particular, the hybrid

approach. The training of the hybrid models used scikit-learn
0.24.1 and XGBoost 1.3.3, running over a c4.8xlarge
AWS EC2 instance with 36 vCPUs and 60 GB RAM running
Ubuntu 16.04 LTS.

The switch implementation runs on two platforms: Intel’s
Barefoot Tofino (ASIC), and NetFPGA-SUME [40] (FPGA).
All the models are mapped to both targets, except for boosting,
which targets only Tofino. The NetFPGA implementation en-
abled exploring the limits of feature extraction. This includes
complex stateful features (§VI), such as jitter, inter-arrival
time, and data rate. On Tofino, packet-level, flow and aggregate
features are supported, with a further focus on files. Data is
extracted from text files, both with fixed and unknown feature
sizes (e.g., words separated by delimiters). The prototype
supports features of up to 15 ASCII characters (32-bit). In
addition, it supports features split between packets and features
implemented deep within the packet (§VIII-A2).

The data plane and the control plane are auto-generated,
using python scripts and a configuration file. A user defines in
a configuration file design constraints, such as the maximum
number of trees, and the tool takes the output of the training
stage (pickle file) and uses it to generate both the data
plane (P4 files) and the control plane (table entries). Further
information is provided in [47].

The system test environment uses 64×100G ports Barefoot
Tofino. P4-NetFPGA [52] is used for FPGA development.
Four servers with 100G NVIDIA ConnectX-5 NICs are used
to send and receive traffic from the switch. To test full
throughput, we use a snake configuration, where traffic is
looped from each port to the following one, enabling traffic
across all 64 ports, which is a common practice [8]. As a
baseline, we measure 6.4Tbps on the switch when running
simple forwarding.

VIII. EVALUATION

In this section, we evaluate in-network classification for
feasibility, performance, resource consumption and ML per-
formance. For brevity, this section focuses on Intel Tofino,
and further details of NetFPGA are provided in [33], [53].

A. Use cases

Our evaluation is driven by two use cases: network anomaly
detection using the UNSW-NB15 dataset [54], and time
sensitive financial market prediction using the Jane Street
Market Prediction dataset [55]. For each of these use cases,
described below, we explore the classification performance of
a standalone switch, as well as part of a hybrid model V-B.

1) Anomaly detection - Reducing backend resource con-
sumption: Anomaly detection, such as intrusion detection and
prevention, is typically done at the backend and can consume
significant compute or acceleration resources [56]. All network
traffic toward certain application servers needs to be examined,
and malicious traffic needs to be filtered. Our goal is to provide
a scalable solution, whereby normal traffic is admitted by the
switch, and anomaly traffic is either dropped in the switch
or sent to the backend (in a hybrid mode). In the hybrid
mode evaluation, any traffic that is classified as anomalous

10

or with low confidence is sent to the backend for deeper
inspection. In this manner, the switch does not block (drop)
legitimate traffic and offloads significant processing from the
backend, as most traffic is normal. The dataset used, UNSW-
NB15 [54], contains a mix of normal traffic and different
types of attacks. This use-case is focused on load benefits,
where in-network classification saves resources compared with
host-based solutions while also scaling with the network’s
bandwidth.

From ML perspective, Random Forest is the most suitable
for this use-case, as it offers low variance in its classifications.
This leads to a more predictable fraction of the traffic that is
correctly classified as normal (unless the traffic distribution
changes dramatically – which requires retraining the model).
Other ML models are evaluated for feasibility purposes.

Our learning uses 80% of the data for training and 20%
for testing. The model running on the backend is using a
Random Forest of 200 trees (estimators) and 10,000 leaf nodes
(at most), and all the features in the dataset.

2) Financial market prediction - Reducing latency: Low
latency financial transactions, such as algorithmic trading, are
very sensitive to latency. For top 10% financial traders, the
decision latency is less than 42 microseconds [57] from a
passive order to an active transaction.

In algorithmic trading, a data feed from the stock market
provides live information using an unencrypted protocol, such
as NASDAQ ITCH. Typically, a large backend is used to
provide real-time classification for all market transactions. In
this use case, the switch can identify and tag high-priority
transactions, while other transactions are sent to the backend
for fine-grain classification. The tagged high-priority and high-
confidence transactions can be forwarded to a different server
for immediate execution. Moreover, tagged queries can be pri-
oritized over dedicated link(s), avoiding congestion. Assigning
time-sensitive high-priority and high-confidence transactions
to a special fast processing path may bring significant financial
benefits with low resource consumption. Any missclassified
high-priority transactions will simply undergo the regular
classification path. This is an example of latency benefits for
time-sensitive applications, while the change to the backend’s
load is small.

To demonstrate this use-case, the Jane Street Market Pre-
diction dataset [55] is used. Each entry in the dataset con-
tains 130 anonymized features, representing real market data,
and two output values (‘weight’ and ‘resp’) representing the
trade’s return. using these two output values, we label the
transactions by recommended actions: ‘Strong sell or buy’,
and ‘Sell/Hold/Buy’. The transactions are typically a feed of
individual trade instructions from the stock exchange. The Jane
Street dataset is a recent and open information available from
a trading company, presenting pre-processed transactions.

Our goal is to minimize the latency experienced by transac-
tions marked as “strong buy or sell” (accounts for ≈13.1% of
the total transactions). All incoming transactions are assumed
to go through the switch, so any classification by the switch
has an additive latency of close to zero2. All low-confidence

2Use of L1 switches, e.g., Cisco Nexus 3550 is a different scenario.

Model SVM Bayes KMeans DT RF XGB
Tables 6 6 4 5 11 11
Memory 5.37% 9.22% 9.12 % 1.11% 1.89% 6.68%
Stages 8 8 7 2 3 4
Latency 30.37% 31.11% 23.33% 28.52% 35.56% 35.93%
Accuracy 92.14% 87.92% 52.41% 88.69% 88.91% 88.88%
Acc. sbytes 91.78% 86.93% 87.36% 97.04% 97.05% 96.83%

Table II: Anomaly Detection - Latency on Tofino relative to
switch.p4 reference program. The row named accuracy (Acc.)
sbytes shows the IIsy performance of using flow-level features
’sbytes’.
Model SVM Bayes KMeans DT RF XGB
Tables 6 6 4 5 11 11
Memory 1.15% 1.15% 1.04% 1.11% 2.00% 6.68%
Stages 8 7 6 2 3 3
Latency 30.37% 23.33% 30.00% 27.78% 34.81% 34.81%
Accuracy 72.08% 71.92% 70.35% 72.43% 72.44% 72.47%

Table III: Financial Transactions - Latency on Tofino relative
to switch.p4 reference program.

packets are forwarded to the backend.
In terms of ML performance, while we evaluate with

different models, the preference for this use case is XGBoost,
commonly used in financial applications as boosting offers a
controlled bias that is more suitable for identifying minorities.

Our learning uses 80% of the dataset for training and 20%
for testing. The model running on the backend is using all
130 features, with XGBoost of 100 trees (estimators) and a
maximum depth of 8 (XGBoost trees tend to be shallow).

B. Feature Extraction

In the anomaly detection use case, the Tofino implemen-
tation supports packet-level features (e.g., source and des-
tination port, protocol, service, and ports equivalence) and
flow-level features (e.g., duration, flow size in bytes, and
packets in each direction). Flow level features sometimes
improve the quality of the prediction, but cost two stages:
to hash the flow ID, and to update a register holding the
value of the feature (e.g. flow size). Choosing between the
two options requires weighting also other considerations, such
as if flow ID is needed for “standard” networking purposes.
Our resource consumption evaluation (Table II) uses source
and destination port, protocol, and service features, and the
study of hybrid deployment (Table IV) uses in addition the
feature is sm ips ports (same source and destination) and the
stateful feature “source bytes”(sbytes). By swapping feature
‘service’ with flow-level feature ‘sbytes’, the effect of flow-
level features on accuracy is shown in Table II accuracy (Acc.)
of sbytes row.

The Jane Street dataset contains 130 numerical features,
which we evaluate twice: using packets containing numerical
values, and in a csv format. For ease of exploration, the dataset
is reformatted as columns of eight characters, yet other IIsy
implementations are not of fixed size or known delimiter loca-
tion. The features ranked most important and used are features
number 42, 43, 45, 124, and 126. Both numerical and csv

11

4 8 12 16 20 24 28 32
Action Data Bits

10 9
10 7
10 5
10 3
10 1

R
el

at
iv

e
Er

ro
r (

%
) KM Bayes SVM R-Err R-Mem

3.5
5.0
6.5
8.0
9.5

M
em

or
y

(%
)

KM Bayes SVM R-Err R-Mem

Figure 4: Calculation error in SVM, Bayes and K-means.

format processing use these features, thereby demonstrating
feature extraction from deep within the packet, successfully
extracting without recirculation.

As financial transactions are typically a feed of individual
trade instructions (§VIII-A2), and the size of an entry in the
Jane street dataset, with 130 columns, barely fits within an
MTU packet (1522B), each transaction is sent individually.

C. Resource Consumption

IIsy aims to maximize the performance of ML prediction,
while still fitting the design within the switch ingress pipeline.
This section explores the resource requirements of different
mapping methods.

We start by comparing two types of mapping methods of
classical ML models: using a single feature as a key to a table
and using all features as a key to a table. Both methods are
evaluated on two datasets, Iris dataset (a small dataset of flower
classification) [58] and UNSW dataset (a larger dataset related
to anomaly detection) [54]. For the small Iris dataset, the
single-feature-as-a-key approach (Table I (1, 3, 5, 7)) requires
around 220 table entries and 2-8 stages while the all-features-
as-a-key approach (Table I (2, 4, 6, 8)) requires around 6×106

table entries and 1-3 stages. In UNSW anomaly detection
use case, the single-feature-as-a-key approach requires around
2 × 105 table entries and 2-9 stages. The all-features-as-a-
key approach requires an infeasible number of table entries
(about 4×1013), which results in the explosion in table entries
and stages, as a stage can support a limited number of table
entries). Consequently, even though the all-features-as-a-key
approach requires less stages on small datasets, it is infeasible
for both anomaly detection and finance use cases. Therefore, in
the following evaluations, the single-feature-as-a-key mapping
approach in Table I (1, 3, 5, 7) is applied to each model.

Table II and Table III summarize the resource consumption
of anomaly detection and financial transactions, respectively.
The tables show, for each model, the size of the model that
fits within Tofino’s ingress pipeline using the features noted
above. The ensemble models use a small model of 6 trees with
a depth of 4 (As in §VIII-G, see §VIII-D for scalability).

In the table, the memory indicates the proportion of overall
utilization, while the latency is assessed relative to Tofino’s
switch.p4 reference design (due to NDA). switch.p4 is an
L2/L3 switch program for Tofino, commonly used as a ref-
erence design, including 10 network functions such as load
balancing, tunneling, firewall, and statistics.

As the results show, the memory requirements are low in
comparison with switch.p4. For anomaly detection, all the
models consume less than 9.3% of the memory, with DT and
RF requiring less than 1.9%. In the financial use case, all the

1 2 3 4 5 6 7 8 9 10
Tree depth

100
102
104
106
108

Ta
bl

e
en

tri
es

(a) Anomaly Detection

1 2 3 4 5 6 7 8 9 10
Tree depth

100
102
104
106
108

Ta
bl

e
en

tri
es

(b) Financial Transactions.

1 2 3 4 5 6 7 8 9 10
Tree depth

0
4
8

12
16
20

N
um

be
r o

f t
re

es

(c) Anomaly Detection

1 2 3 4 5 6 7 8 9 10
Tree depth

0
4
8

12
16
20

N
um

be
r o

f t
re

es

(d) Financial Transactions.

1 2 3 4 5 6 7 8 9 10
Tree depth

0
4
8

12
16
20

N
um

be
r o

f t
re

es

3f exact
4f exact

5f exact
6f exact

3f ternary
4f ternary

5f ternary
6f ternary

Figure 5: Ensemble scaling of table entries (a,b) and maximum
number of trees (c,d) with tree depth and features.

models require less than 6.7% of memory. This demonstrates
the efficiency of our mapping algorithm. As shown, a decision
tree requires only 2 stages, and an ensemble requires 3-4
stages, smaller than the number of trees.

The implementation of classical ML models may introduce
an error. This error is studies for both calculation error and
classification error. The calculation error, shown in Figure 4 for
the anomaly detection use case, is the relative error of a result
calculated on a switch (e.g., hyperplane equation in SVM),
compared with the same equation calculated on a server. While
this error is small (less than 0.001%), the more important result
is the misclassification due to calculation error: zero for SVM
and K-means, and 0.00003% for Naı̈ve Bayes when using
action width of 16 bit. This error is due to extremely low
probabilities, and can be eliminated by encoding the results
of Naı̈ve Bayes calculations, rather than normalizing values.
As shown in Figure 4, increasing the number of bits in an
action has a minor effect on memory consumption, but can
significantly reduce calculation errors.

D. Scalability

The size of a model fitting within a switch depends on
the type of model, the dataset, and its features. This is
demonstrated in Figure 5 (a) & (b), showing how memory
requirements of a decision tree scale with the number of
features and the depth of the tree, using exact match or ternary
feature tables. In the finance use case, all the features are
similar, and adding features increases memory requirements
in a roughly consistent manner. In the anomaly detection use
case, features vary significantly in their memory requirement.
For example, the protocol type requires significantly fewer
entries than the source or destination port. Consequently, the
anomaly detection use case requires less memory than the
finance use case for the same model size. As Figures 5 (c)
& (d) show, using up to 6 features, one can fit up to 20 trees.

12

SVM Bayes KM DT XGB RF RFhybrid
0

15
30
45
60
75

M
ax

 N
um

 F
ea

tu
re

s

Numerical & Switch.p4
ASCII & Switch.p4
Numerical
ASCII

Figure 6: The maximum number of features that can fit on a
switch in the financial transactions use case.

Increasing tree depth means that fewer trees can fit within the
switch, due to the size of the decision table.

To explore the maximum number of features that can be
supported, four types of implementations are evaluated: in-
network classification using numerical features, in-network
classification using ASCII (from csv) features, in-network
classification integrated with switch.p4 and using numeri-
cal features, and in-network classification integrated with
switch.p4 and using ASCII features. This is applied to the
financial use case, supporting both types of features.

Figure 6 shows the maximum number of features feasible
under the four variations. Tree-based models can fit more
features compared to classic models due to stage sharing.
For example, decision tree and random forest can fit up to
59 numerical features or 30 ASCII features (due to PHV
size), while XGBoost fits 55 numerical features and 30 ASCII.
Classical models support 9-10 numerical or ASCII features
and are limited by the number of stages required for logical
operations. The integration with switch.p4 limits the resources
available for feature tables, leading to 12-18 features allowed
for tree-based models.

Table IV explores the effect of ensemble size on ML
performance, showing both native switch deployment and
hybrid-deployment. The results are compared to fully-grown
ensemble models running on a backend (§VIII-A). As the
table shows, the size of a model has a limited effect on its
ML performance (except for small RF in anomaly detection),
and negligible effect in a hybrid deployment. Furthermore,
the results of the hybrid deployment are almost identical to
the baseline, showing that a hybrid deployment using a small
model allows for high ML performance and little resources.
We report [47] similar quality of ML performance for medium-
size models also with other attack-detection datasets [59], [60],
[61] and other UNSW-based research [62].

E. State-of-the-art Comparison

We compare IIsy’s lookup-based mapping with two state-
of-the-art in-network classification works, Clustreams [24] and
SwitchTree [20], under the finance use case. Clustreams was
originally implemented on Spectrum 3, and uses a tree data
structure that encodes a 2 dimensional workspace. SwitchTree
was originally implemented on bmv2 and uses a pipeline stage
for every level of a tree.

As shown in Figure 7, the IIsy’s K-means algorithm re-
quires significantly less memory than Clustreams, for the
same accuracy, where model depth is the parameter used to
adjust Clustream’s accuracy. Figure 7 (b) shows that IIsy’s DT
implementation requires 8 stages less than SwitchTree, with

Anomaly Detection, Random Forest, confidence threshold 0.7
Small Medium Large Baseline

Features 4 5 6 25
Trees 6 10 14 200
Max Depth 4 5 6 —
Accuracy 97.05 97.17 97.78 99.51
Precision 98.06 98.12 98.60 99.67
Recall 88.55 89.04 91.36 99.75
F1 score 92.60 92.94 94.58 98.88
Hybrid Accuracy 98.58 98.94 99.31 —
Hybrid F1 96.64 97.53 98.41 —
Financial Market Prediction, XGBoost, confidence threshold 0.7
Features 4 5 6 130
Trees 6 10 14 200
Max Depth 4 5 6 –
Accuracy 72.48 72.65 73.73 77.34
Precision 68.48 68.76 70.05 74.43
Recall 66.51 65.69 68.09 72.76
F1 score 67.16 65.51 68.78 73.43
Hybrid Accuracy 77.31 77.30 77.26 —
Hybrid F1 73.41 73.43 73.40 —

Table IV: Esemble models scalability and ML performance.

1 2 3 4 5 6 7
Model Depth

101
103
105
107

Ta
bl

e
En

tri
es

30
50
70
90

R
-A

cc
ur

ac
y

(%
)

Clustreams R-ACC
Clustreams Entries

IIsy R-ACC
IIsy Entries

 Depth

Features

Stage

Memory(%)

 Depth36912

IIsy DT
SwitchTree DT

(a) KM Comparison (b) DT Comparison

Figure 7: Comparison of (a) Table entries and Relative ac-
curacy (R-ACC) in IIsy and Clustreams KM. (b) Stages and
Memory in IIsy and SwitchTree DT. The scale (3, 6, 9, 12)
applies to all evaluation parameters (Features, Stages, Depth,
Memory(%)).

only 3% memory overhead. Using a Random Forest and for a
small model size (3 trees, depth of 2), as shown in Figure 8 (a),
IIsy requires only 3 stages and 0.82% memory, compared with
11 stages and 2.4% memory in SwitchTree. The maximum
size of a SwitchTree RF model fitting on Tofino (Figure 8
(b)) is again 3 trees and a depth of 2, but using 12 features.
For the same model, IIsy requires 1.5% more memory but
uses only 4 stages, 7 stages less than SwitchTree. Figure 8 (c)
shows combinations of hyperparameters settings of IIsy, all too
big for SwitchTree, and their resource consumption, including
(blue) 10 trees, 5 features, depth of 5 consume 4 stages and
3.7% memory. (green) 5 trees of depth 8 and 3 features require
4 stages and 6.9% memory, and (red) 8 trees with a depth of
4 and 12 features use 4 stages and 4.6% memory.

IIsy outperforms other reported scalability results of ensem-
ble models (See §X). pForest [23] reported a maximum depth
of 4 on Tofino. NetBeacon [63] used two trees of depth 9 or a
single tree of depth 10. In comparison, IIsy fits on Tofino

13

Features

TreesDepth

Stage

R-Mem(%) R-Lat(0.1)

Features36912 IIsy RF
IIsy RF

IIsy RF
IIsy RF

SwitchTree RF

Depth

Trees
Features

Stage
Memory(%)

Depth36912
Depth

Trees
Features

Stage
Memory(%)

Depth36912
Depth

Trees
Features

Stage
Memory(%)

Depth36912

(a) Small Model (b) Large Model (c) Large IIsy

Figure 8: Comparison of Stages and Memory in IIsy RF and
SwitchTree RF, for (a) small model (b) maximum SwitchTree
(c) Maximum IIsy. The scale (3, 6, 9, 12) applies to all evalua-
tion parameters (Trees, Features, Stages, Depth, Memory(%)).

model depth of up to 15. The maximum number of trees
currently supported is 20, with up to 55 features, though there
is a trade-off between these parameters as explored above.

F. Throughput and Latency

IIsy is designed for line rate operation, without recircula-
tions or packet drops. All evaluated programs meet Tofino’s
timing for a minimum packet size (128 bytes). Our throughput
and latency tests use UNSW’s pcap traces [54], and the Jane
Street dataset converted to pcap and sent over UDP. The
throughput is compared with a simple layer 2 forwarding
program. In all cases, there are no packet drops on any
of the 64 switch ports. The performance is compared with
the classification of the datasets on a server using scikit-
learn, without the additional host packet processing overheads
(which favors the host performance). Note that ensemble
models are commonly classified on CPUs [64].

SVM NB KM DT RF XGB

10 1
100
101
102
103

Th
ro

ug
hp

ut
 (M

pp
s)

Tofino CPU

(a) Throughput

SVM NB KM DT RF XGB

10 2

10 3

10 4

10 5

10 6

 L
at

en
cy

 (s
)

Tofino CPU

(b) Latency.
Figure 9: Throughput (anomaly detection use case) and latency
(finance use case) of ML algorithms on Tofino and CPU.

As shown in Figure 9 (a), the switch implementation
achieves 25× (XGBoost) to 80, 000× (SVM) throughput im-
provement compared with classifying on a CPU. The latency
of classifying on the switch, as shown in Figure 9 (b), is ×102

to ×103 better than on a CPU. Compared with the latency of
current financial trading systems [57] IIsy can save at least an
order of magnitude in latency.

For reference, Tables II and III report the latency of the use
cases relative to the reference switch.p4 program. This latency
is sub-microsecond.

G. ML performance

In this section, we explore IIsy’s ML performance, with a
focus on ensemble models in a hybrid deployment. Although
SVM and Naı̈ve Bayes achieve an accuracy of 0.88–0.92, this
is as the anomaly detection dataset is biased, with most of

0.5 0.6 0.7 0.8 0.9 1.0
Switch Confidence Threshold

0.25

0.75

1.25

1.75

 E

rr
or

 R
at

e
(%

)

Baseline (0.49%)

f1=0.9650

f1=0.9753

f1=0.9888

0.5 0.6 0.7 0.8 0.9 1.0
Switch Confidence Threshold

 10
 30
 50
 70
 90

Sw
itc

h
Fr

ac
tio

n
(%

)

Figure 10: Anomaly Detection in a hybrid deployment (Ran-
dom Forest) - fraction of traffic handled by the switch and
misclassification rate.

0.5 0.6 0.7 0.8 0.9 1.0
Switch Confidence Threshold

0.5
1.5
2.5
3.5
4.5

Th
ro

ug
hp

ut
 (B

pp
s)

Backend Throughput
(Throughput of 100 Servers)

0.5 0.6 0.7 0.8 0.9 1.0
Switch Confidence Threshold

0.2
0.5
0.8
1.1
1.4

La
te

nc
y

(m
s) Average

Median

Figure 11: Throughput and latency of hybrid deployment in
Anomaly Detection use case (same setup as in Figrue 10).
Backend uses 100 servers.

the traffic benign. Using ensemble tree models, we correctly
identify anomalies.

The baseline for ML performance comparison is the full
ensemble model running on backend servers. We implement
on the switch a small model (Table IV), that classifies a subset
of the traffic, and forwards to the backend all low-confidence
or anomalous traffic. A confidence level is set in the switch
to determine the threshold for on-switch classification.

Figure 10 shows for the anomaly detection use case using
Random Forest, the fraction of traffic offloaded by the switch
and the corresponding misclassification rate, as a function of
the switch classification confidence threshold. The baseline
results is a misclassification rate of 0.49% and an F1 score
of 0.9888. In comparison, with a confidence threshold of 0.7,
84.5% of the traffic is handled by the switch, achieving a
misclassification rate of 1.03% and F1 score of 0.976. These
improve as the confidence threshold increases, but the fraction
of traffic handled by the switch decreases. For the same
scenario, Figure 11 shows the throughput and latency of hybrid
deployment, where the throughput follows the fraction of
offloaded while latency is the opposite. Switch’s and server’s
performance match the results in §VIII-F, and the backend
uses 100 servers.

Figure 12 presents the effect of confidence threshold on the
ML performance of financial market prediction. Figure 12 (a)
shows that the baseline achieves an error rate of 0.231. In
comparison, the hybrid model achieves an error rate of 0.271
with a confidence threshold of 0.5. Increasing the confidence
level to 0.7 reduces the error rate to 0.236. However, there is a
trade-off here, shown in Figure 12 (b): with a threshold of 0.6,
72.91% of transactions are classified by the switch, whereas
at 0.7 confidence, 50.07% of the transactions are classified by
the switch. To put these results in context, consider Figure 12
(c), which shows the error rate for classifications done by the
switch compared with the error rate for the same transactions if
done by the host. As the graph shows, transactions that achieve
low confidence (below 0.8) on the switch, are less likely to be

14

0.5 0.6 0.7 0.8 0.9 1.0
switch confidence threshold

0.21

0.23

0.25

0.27

0.29

E
rr

or
ra

te

Baseline - total error rate

Hybrid model - total error rate

(a) Confidence to Total Error

0.5 0.6 0.7 0.8 0.9 1.0
Switch confidence threshold

0

25

50

75

100

D
at

a
fr

ac
ti

on
[%

]

72.91

50.07

36.01

19.17

Data fraction of valid classification by the switch

(b) Confidence to Fraction of Traffic

0.5 0.6 0.7 0.8 0.9 1.0
Switch confidence threshold

0.0

0.1

0.2

0.3

0.4

E
rr

or
ra

te

Switch error rate of the valid classification (by the switch)

Server error rate of the instances served by the switch

(c) Confidence to Error Rate

Figure 12: Financial transactions in a hybrid deployment (XGBoost) - error rate and fraction of traffic handled by the switch.

misclassified by the full-grown model running on the server.
In fact, starting 0.8 confidence threshold (where 36.01% of
decisions are being served by the switch model) the error rate
difference between the server and the switch is very small,
and some traders may even find that the error difference at
0.7 is still small enough to provide higher transactions rate
for 50.07% of the transactions.

H. Optimizations

An easy resource optimization for ensemble models is
reducing the number of trees or their depth in the training
stage, thereby reducing ML performance. As demonstrated in
Table IV, in a hybrid deployment, there is a minor benefit to
using Medium or Large switch models over a Small model.
This can further be tweaked by changing the confidence
threshold, and is configurable.

Memory resources can be saved by quantizing or dropping
entries, i.e. consciously mapping more entries in the features
tables to the same code. This reduces the size of all tables
but may lead to a loss of ML performance. In an experiment
using the finance use case and longest prefix match (lpm)
tables, we find that dropping entries covering ranges with a
single value has a negligible effect on ML performance on
a stand-alone switch, but memory requirements are reduced
by over 20%. However, dropping entries with 2 consecutive
values (one masked bit) leads to significant accuracy loss, and
less than 10% memory savings.

I. ML Model Updates

For run-time updates (§V-E), we measure the update time of
our ML ensemble models on a switch. The update time varies
based on the size of the model: from 50ms for a small model,
to several seconds for a large one (Table IV). We address the
effect of ML model updates in a follow-up work [65].

IX. DISCUSSION

Generalization. The focus of this paper is on the method-
ology of mapping ML models to network devices. IIsy’s map-
ping solution is designed for RMT-based [39] programmable
network devices, which have been the focus of the commu-
nity’s research (e.g., [7], [16], [15]), and in particular P4
practitioners. IIsy was tested on multiple architectures, such as
v1model, SimpleSumeSwitch [52] and TNA [25]. As IIsy uses
a simple data plane, with complexity mainly in the algorithms

mapping from the trained models to table entries, porting
between targets is straight forward. It requires syntax changes
in the P4 code generator and a script generating control-plane
commands, but not to the mapping tool. While this paper
focuses on six different mapped models, the mapping can be
easily extended to more models, details are provided in [47].

Benefits. A lesson of this work is that despite resource con-
straints, network switches can serve as important classification
components in hybrid deployments. Saving microseconds (or
more) of latency in time-sensitive applications and reducing
the load on backend servers by tens of percent, without adding
new hardware to the infrastructure. While classification cannot
be added to a fully utilized switch, our results show that the
resource overheads of in-network classification are minimal.

Scope. This paper focuses on the methodology of mapping
trained ML models to network devices. The work does not
seek to improve the quality of training ML models, nor to
contribute to a specific use case. Applying the methodology
to certain applications, such as congestion control, is beyond
the scope of the paper. While the methodology offered in this
work cannot be directly applied to neural network models,
our choice of ensemble models is primarily as they provide
the best results for the example use cases.

Hybrid Deployment. In hybrid classification scenarios,
different settings can be used to determine which packets
should be forwarded to the backend for additional processing.
One intuitive choice is to consider only confidence level, as
applied in the financial market prediction use case, achiev-
ing high accuracy across all labels. Alternatively, there are
other options, such as forwarding only the traffic with low
confidence under a specific class. This approach is used in
this paper in the anomaly detection use case, where the focus
is on identifying and mitigating attacks. In this case, only
packets classified as normal with low confidence are subjected
to further scrutiny, while all packets labeled malicious are
dropped as a precaution. The specific setting can be adjusted
based on use case requirements.

Model Update. To address data drift and the dynamic
network environment, IIsy-supported models can be updated
while ensuring uninterrupted normal traffic flow through the
control plane. We address the effect of ML model updates in
a follow-up work [65].

Limitations. Some of the limitations discussed in this work,
e.g., the number of tables or features, are the property of the
target platform and will change on a different platform. For

15

Project Target Models Const.
BaNaNa [22] RMT, NIC BNN P
N3IC [17] NIC, FPGA BNN P
Qin [18] bmv2, NIC BNN ✗

pForest [23] bmv2, ASIC RF ✓

SwitchTree [20] bmv2 RF ✗

NERDS [21] bmv2, NIC RF P
NetBeacon [63] ASIC RF, XGB ✓

IOI [16] Modified ASIC NN —
Taurus [15] Modified ASIC DNN, SVM, P

KM, LTSM
iSwitch [19] FPGA RL P
Clustreams [24] ASIC KM ✗

IIsy ASIC, SVM, KM, NB ✓

FPGA DT, RF, XGB

Table V: A comparison of in-network classification solutions.
Legend: Const. - Resource constrained. NN - Neural Network.
BNN/DNN - Binary/Deep NN. RF - Random Forest. NB -
Naı̈ve Bayes. KM- K-means. XGB - XGBoost. P - Partial.

example, NetFPGA is mostly limited by memory and logic
resources, while on Tofino, memory and logic resources are
rarely limiting us, and we are limited by different constraints,
such as the number of stages.

X. RELATED WORK

The application of ML to network traffic, especially for
traffic classification, has been of interest for a long time (e.g.,
[11], [66]). Using ML for scheduling and congestion control
(e.g., [67]) was also studied. The focus of these works has
been on using ML over traditional computing platforms.

The challenges of ML have led researchers to explore
new approaches to resource-constrained ML, using devices of
limited resources [68], [69]). This work focuses on network
switches, using a drastically different pipeline architecture and
with much higher processing rates.

The first to propose in-network classification was Sanvito et
al. [22]. As shown in Table V, several works have implemented
ML on a software switch [22], [20], [21], [70], a NIC [21] an
FPGA [17], [19], or a DPU [71]. These targets have more
resources and significantly lower throughput than a switch.

Clustreams [24] used a tree data structure to implement
K-means, successfully clustering 80%-90% of objects. pFor-
est [23] was implemented on Tofino, using a methodology
similar to SwitchTree [20], with limited scalability (e.g., depth
of 4). Our baseline comparison with SwitchTree is indicative
of pForest.

Several works proposed modifying switches for ML pur-
poses, adding dedicated new modules [19], [15], [16]. IIsy’s
use of off-the-shelf switches is complementary to these works.

IIsy’s early work [33] was used by many follow up projects,
and in particular Planter [47], DINC [72], NetBeacon [63], and
Homunculus [73] which automate the deployment process and
hyperparameter search, respectively.

An orthogonal thread of research uses programmable
switches to accelerate ML frameworks. These works focus
on parameter servers and in-network aggregation [13], [12]

in the training stage, rather than on classification, operating
under different sets of requirements.

Using programmable network devices for anomaly detection
was explored both at the host side [56] and within switch-
ASIC (e.g., [74]). Our work is orthogonal to these non-
ML based efforts. Several studies [75], such as Planter [47],
SwitchTree [20], NERDS [21], and NetBeacon [63], focused
on in-network anomaly classification, and referenced IIsy [33].
IIsy outperforms these later works, as discussed in VIII.
P4Pir [65] is a follow up work which focuses on updating
ML models for anomaly detection on IoT gateways.

ML for financial transactions has been widely researched,
with XGBoost and SVM often used [76]. Acceleration of
financial transactions has mostly focused on the backend, e.g.
using FPGA [77]. A related programmable switches project
is the publish-subscribe system [78] for the NASDAQ Market
data feed filter and router. Based upon IIsy, Linnet [79] and
LOBIN [80] use in-network ML for market prediction using
limit order books.

XI. CONCLUSION

This paper presented IIsy, mapping trained ML models to
programmable switches for in-network classification. Using
a hybrid deployment, IIsy reduces the load on the backend,
achieves high throughput, low latency, and high ML perfor-
mance, while coexisting with standard switch functionality.

Acknowledgments This paper complies with all applicable
ethical standards of the authors’ home institution. This work
was partly funded by VMware, EU Horizon SMARTEDGE
(101092908, UKRI 10056403), Leverhulme Trust (ECF-2016-
289) and Isaac Newton Trust. We acknowledge support from
Intel. For the purpose of Open Access, the author has applied
a CC BY public copyright license to any Author Accepted
Manuscript (AAM) version arising from this submission.

REFERENCES

[1] K. Hazelwood, S. Bird, D. Brooks et al., “Applied Machine Learning
at Facebook: A Datacenter Infrastructure Perspective,” in IEEE HPCA,
2018, pp. 620–629.

[2] S. Cass, “Taking AI to the edge: Google’s TPU now comes in a maker-
friendly package,” IEEE Spectrum, vol. 56, no. 5, pp. 16–17, 2019.

[3] A. Boroumand, S. Ghose, Y. Kim et al., “Google Workloads for Con-
sumer Devices: Mitigating Data Movement Bottlenecks,” in ASPLOS,
2018, pp. 316–331.

[4] A. A. Awan, H. Subramoni, and D. K. Panda, “An In-depth Performance
Characterization of CPU- and GPU-based DNN Training on Modern
Architectures,” in ACM MLHPC, 2017.

[5] M. Blott, T. B. Preußer, N. J. Fraser et al., “FINN-R: An End-to-End
Deep-Learning Framework for Fast Exploration of Quantized Neural
Networks,” ACM TRETS, 2018.

[6] N. P. Jouppi, C. Young, N. Patil et al., “In-Datacenter Performance
Analysis of a Tensor Processing Unit,” in IEEE ISCA, 2017, pp. 1–12.

[7] X. Jin, X. Li, H. Zhang et al., “NetCache: Balancing Key-Value Stores
with Fast In-Network Caching,” in ACM SOSP, 2017, pp. 121–136.

[8] H. T. Dang, P. Bressana, H. Wang et al., “P4xos: Consensus as a
Network Service,” IEEE/ACM TON, vol. 28, no. 4, pp. 1726–1738, 2020.

[9] C. Kim, A. Sivaraman, N. Katta et al., “In-band Network Telemetry via
Programmable Dataplanes,” in ACM SIGCOMM, 2015.

[10] Y. Tokusashi, H. T. Dang, F. Pedone et al., “The Case For In-Network
Computing On Demand,” in EuroSys, 2019.

[11] A. W. Moore and D. Zuev, “Internet Traffic Classification Using
Bayesian Analysis Techniques,” in SIGMETRICS PER, 2005.

[12] A. Sapio, M. Canini, C.-Y. Ho et al., “Scaling Distributed Machine
Learning with In-Network Aggregation,” in NSDI, 2021.

16

[13] C. Lao, Y. Le, K. Mahajan et al., “Atp: In-network aggregation for
multi-tenant learning,” in NSDI, 2021.

[14] D. Barradas, N. Santos, L. Rodrigues et al., “FlowLens: Enabling Effi-
cient Flow Classification for ML-based Network Security Applications,”
in NDSS, 2021.

[15] T. Swamy, A. Rucker, M. Shahbaz et al., “Taurus: a data plane
architecture for per-packet ML,” in ASPLOS, 2022, pp. 1099–1114.

[16] Z. Zhong, W. Wang, M. Ghobadi et al., “IOI: In-network Optical
Inference,” in SIGCOMM OptSys, 2021.

[17] G. Siracusano, S. Galea, D. Sanvito et al., “Re-architecting Traffic
Analysis with Neural Network Interface Cards,” in NSDI, 2022.

[18] Q. Qin, K. Poularakis, K. K. Leung et al., “Line-Speed and Scalable
Intrusion Detection at the Network Edge via Federated Learning,” in
IFIP Networking, 2020.

[19] Y. Li, I.-J. Liu, Y. Yuan et al., “Accelerating Distributed Reinforcement
Learning with In-switch Computing,” in ISCA, 2019, pp. 279–291.

[20] J. H. Lee and K. Singh, “SwitchTree: In-network Computing and Traffic
Analyses with Random Forests,” Neural Computing and Applications.

[21] B. M. Xavier, R. S. Guimarães, G. Comarela et al., “Programmable
Switches for in-Networking Classification,” in WKSHPS CCC, 2021.

[22] D. Sanvito, G. Siracusano, and R. Bifulco, “Can the Network be the AI
Accelerator?” in NetCompute, 2018.

[23] C. Busse-Grawitz, R. Meier, A. Dietmüller et al., “pForest: In-Network
Inference with Random Forests,” arXiv:1909.05680, 2019.

[24] R. Friedman, O. Goaz, and O. Rottenstreich, “Clustreams: Data Plane
Clustering,” in SOSR, 2021, pp. 101–107.

[25] Intel, “P4 16 Tofino Native Architecture Application Note - Public
Version,” 2021, https://github.com/barefootnetworks/Open-Tofino/blob
/master/PUBLIC Tofino-Native-Arch-Document.pdf.

[26] P. Bosshart, D. Daly, G. Gibb et al., “P4: Programming Protocol-
Independent Packet Processors,” SIGCOMM CCR, 2014.

[27] N. Zilberman, M. Grosvenor, D. A. Popescu et al., “Where has my time
gone?” in PAM. Springer, 2017, pp. 201–214.

[28] S. Laki, C. Györgyi, J. Pető et al., “In-Network Velocity Control of
Industrial Robot Arms,” in NSDI, 2022, pp. 995–1009.

[29] P. Schulz, M. Matthe, H. Klessig et al., “Latency Critical IoT Applica-
tions in 5G: Perspective on the Design of Radio Interface and Network
Architecture,” IEEE Communications Magazine, 2017.

[30] AWS, “New – TLS Termination for Network Load Balancers,” 01
2019. [Online]. Available: https://aws.amazon.com/blogs/aws/new-tls-t
ermination-for-network-load-balancers/

[31] Businesswire, InsidePacket extends SONiC use cases, enabling new
edge-cloud network services, 03 2020.

[32] G. Brebner, “Extending the Range of P4 Programmability,” in Keynote
in the EuroP4, 2018.

[33] Z. Xiong and N. Zilberman, “Do Switches Dream of Machine Learning?
Toward In-Network Classification,” in HotNets, 2019, pp. 25–33.

[34] B. Zadrozny and C. Elkan, “Transforming Classifier Scores into Accu-
rate Multiclass Probability Estimates,” in SIGKDD, 2002, pp. 694–699.

[35] S. Vargaftik and Y. Ben-Itzhak, “Efficient Multiclass Classification with
Duet,” in EuroMLSys, 2022, pp. 10–19.

[36] J. Tang, S. Alelyani, and H. Liu, “Feature Selection for Classification: A
Review,” Data classification: Algorithms and applications, p. 37, 2014.

[37] K. He, X. Zhang, S. Ren et al., “Deep Residual Learning for Image
Recognition,” in CVPR, 2016, pp. 770–778.

[38] Y. Ganin, E. Ustinova, H. Ajakan et al., “Domain-Adversarial Training
of Neural Networks,” JMLR, vol. 17, no. 1, pp. 2096–2030, 2016.

[39] P. Bosshart, G. Gibb, H.-S. Kim et al., “Forwarding Metamorphosis:
Fast Programmable Match-action Processing in Hardware for SDN,” in
SIGCOMM, 2013, pp. 99–110.

[40] N. Zilberman, Y. Audzevich, G. Covington et al., “NetFPGA SUME:
Toward 100 Gbps as Research Commodity,” IEEE Micro, 2014.

[41] Z. Zhou, Ensemble Methods: Foundations and Algorithms. CRC press.
[42] L. Breiman, “Random Forests,” Springer Machine learning, 2001.
[43] R. E. Schapire and Y. Freund, “Boosting: Foundations and Algorithms,”

Kybernetes, 2013.
[44] M. E. Maron, “Automatic Indexing: An Experimental Inquiry,” Journal

of the ACM, vol. 8, no. 3, pp. 404–417, 1961.
[45] D. J. Hand and K. Yu, “Idiot’s Bayes-Not So Stupid After All?”

International statistical review, vol. 69, no. 3, pp. 385–398, 2001.
[46] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “Scikit-learn: Machine

learning in python,” JMLR, vol. 12, no. Oct, pp. 2825–2830, 2011.
[47] C. Zheng, M. Zang, X. Hong et al., “Automating In-Network Machine

Learning,” 2022.

[48] V. Sivaraman, S. Narayana, O. Rottenstreich et al., “Heavy-Hitter
Detection Entirely in the Data Plane,” in ACM SOSR, 2017, pp. 164–176.

[49] S. Sen and J. Wang, “Analyzing peer-to-peer traffic across large net-
works,” in ACM SIGCOMM Workshop on IM, 2002, pp. 137–150.

[50] R. Glebke, J. Krude, I. Kunze et al., “Towards Executing Computer
Vision Functionality on Programmable Network Devices,” in ENCP.

[51] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “Scikit-learn: Machine
Learning in Python,” JMLR, vol. 12, pp. 2825–2830, 2011.

[52] S. Ibanez, G. Brebner, N. McKeown et al., “The P4→NetFPGA Work-
flow for Line-Rate Packet Processing,” in ACM FPGA, 2019, pp. 1–9.

[53] C. Zheng, Z. Xiong, T. T. Bui et al., “IIsy: Practical In-Network
Classification,” 2022.

[54] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems,” in IEEE MilCIS, 2015.

[55] J. S. Group. (2020) Jane Street Market Prediction. https://www.kaggle
.com/c/jane-street-market-prediction. [Online; accessed May 2022].

[56] Z. Zhao, H. Sadok, N. Atre et al., “Achieving 100Gbps Intrusion
Prevention on a Single Server,” in OSDI, 2020.

[57] M. Baron, J. Brogaard, B. Hagströmer et al., “Risk and Return in High-
Frequency Trading,” JFQA, vol. 54, no. 3, pp. 993–1024, 2019.

[58] R. A. Fisher, “The Use of Multiple Measurements in Taxonomic
Problems,” Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

[59] E. Chatzoglou, G. Kambourakis, and C. Kolias, “Empirical Evaluation
of Attacks Against IEEE 802.11 Enterprise Networks: The AWID3
Dataset,” IEEE Access, vol. 9, pp. 34 188–34 205, 2021.

[60] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward Generating
a New Intrusion Detection Dataset and Intrusion Traffic Characteriza-
tion,” ICISSp, vol. 1, pp. 108–116, 2018.

[61] S. Stolfo, W. Fan, W. Lee et al., “Cost-based Modeling for Fraud and
Intrusion Detection: Results from the JAM Project,” in DISCEX, 2000.

[62] I. Alrashdi, A. Alqazzaz, E. Aloufi et al., “AD-IoT: Anomaly Detection
of IoT Cyberattacks in Smart City Using Machine Learning,” in IEEE
CCWC, 2019, pp. 0305–0310.

[63] G. Zhou, Z. Liu, C. Fu et al., “An Efficient Design of Intelligent Network
Data Plane,” in USENIX Security, 2023.

[64] H. Jiang, Z. He, G. Ye et al., “Network Intrusion Detection Based on
PSO-Xgboost Model,” IEEE Access, vol. 8, pp. 58 392–58 401, 2020.

[65] M. Zang, C. Zheng, L. Dittmann et al., “Towards Continuous Threat
Defense: In-Network Traffic Analysis for IoT Gatewayss,” in IOTJ,
2023.

[66] A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and Future Directions
in Traffic Classification,” IEEE Network, vol. 26, no. 1, pp. 35–40, 2012.

[67] V. Dukić, S. A. Jyothi, B. Karlaš et al., “Is advance knowledge of flow
sizes a plausible assumption?” in NSDI, 2019, pp. 565–580.

[68] S. Wang, T. Tuor, T. Salonidis et al., “Adaptive Federated Learning in
Resource Constrained Edge Computing Systems,” IEEE JSAC, 2019.

[69] R. Sanchez-Iborra and A. F. Skarmeta, “TinyML-Enabled Frugal Smart
Objects: Challenges and Opportunities,” IEEE Circuits and Systems
Magazine, 2020.

[70] M. Zang, C. Zheng, T. Koziak et al., “Federated learning-based in-
network traffic analysis on IoT edge,” 2023.

[71] M. Hemmatpour, C. Zheng, and N. Zilberman, “E-Commerce Bot
Traffic: In-Network Impact, Detection, and Mitigation,” in ICIN, 2024.

[72] C. Zheng, H. Tang, M. Zang et al., “DINC: Toward Distributed In-
Network Computing,” in Proceedings of ACM CoNEXT’23, 2023.

[73] T. Swamy, A. Zulfiqar, L. Nardi et al., “Homunculus: Auto-Generating
Efficient Data-Plane ML Pipelines for Datacenter Networks,” in ASP-
LOS, 2023, pp. 329–342.

[74] Z. Liu, H. Namkung, G. Nikolaidis et al., “Jaqen: A High-Performance
Switch-Native Approach for Detecting and Mitigating Volumetric DDoS
Attacks with Programmable Switches,” in USENIX Security, 2021.

[75] C. Zheng, X. Hong, D. Ding et al., “In-Network Machine Learning
Using Programmable Network Devices: A Survey,” IEEE COMST, 2023.

[76] A. Tsantekidis, N. Passalis, A. Tefas et al., “Using Deep Learning
to Detect Price Change Indications in Financial Markets,” in IEEE
EUSIPCO, 2017, pp. 2511–2515.

[77] R. Velu, Algorithmic Trading and Quantitative Strategies. CRC Press.
[78] T. Jepsen, A. Fattaholmanan, M. Moshref et al., “Forwarding and

Routing with Packet Subscriptions,” in CoNEXT, 2020, pp. 282–294.
[79] X. Hong, C. Zheng, S. Zohren et al., “Linnet: Limit Order Books Within

Switches,” in SIGCOMM’22 Poster, 2022, pp. 37–39.
[80] X. Hong, C. Zheng, S. Zohren et al., “LOBIN: In-Network Machine

Learning for Limit Order Books,” in IEEE HPSR, 2023.

https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch-Document.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch-Document.pdf
https://aws.amazon.com/blogs/aws/new-tls-termination-for-network-load-balancers/
https://aws.amazon.com/blogs/aws/new-tls-termination-for-network-load-balancers/
https://www.kaggle.com/c/jane-street-market-prediction
https://www.kaggle.com/c/jane-street-market-prediction

	Introduction
	Motivation
	Benefits: the 3-Ls
	Deployments Scenarios
	Limitations of In-Network Classification

	Hybrid Deployment
	IIsy Architecture
	Mapping Models to Switches
	Decision Tree
	Ensemble Tree-Based Methods
	Classical models: SVM, K-means, and Naïve Bayes
	Training and Mapping
	Retraining and Updates

	Feature Extraction
	Implementation
	Evaluation
	Use cases
	Anomaly detection - Reducing backend resource consumption
	Financial market prediction - Reducing latency

	Feature Extraction
	Resource Consumption
	Scalability
	State-of-the-art Comparison
	Throughput and Latency
	ML performance
	Optimizations
	ML Model Updates

	Discussion
	Related work
	Conclusion
	References

