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a b s t r a c t

Although graph representation learning has been studied extensively in static graph settings, dynamic
graphs are less investigated in this context. This paper proposes a novel integrated variational
framework called DYnamic mixture Variational Graph Recurrent Neural Networks (DyVGRNN), which
consists of extra latent random variables in structural and temporal modelling. Our proposed frame-
work comprises an integration of Variational Graph Auto-Encoder (VGAE) and Graph Recurrent Neural
Network (GRNN) by exploiting a novel attention mechanism. The Gaussian Mixture Model (GMM)
and the VGAE framework are combined in DyVGRNN to model the multimodal nature of data, which
enhances performance. To consider the significance of time steps, our proposed method incorporates an
attention-based module. The experimental results demonstrate that our method greatly outperforms
state-of-the-art dynamic graph representation learning methods in terms of link prediction and
clustering.1

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Many real and man-made systems can be represented as graph
tructures where individual entities are connected through links.
raph structures play a key role in many real-world applications.
he recommendation in social networks (Liu, Shi, Pierce and
en, 2019), traffic forecasting in transportation networks (Zhao
t al., 2019), and pattern recognition in biological networks (Fout,
yrd, Shariat, & Ben-Hur, 2017) are some of these applications.
ue to their complexity and high dimensions, these structures
re difficult to study. To deal with this problem, representation
earning approaches are used (Angles & Gutierrez, 2008). These
ethods aim to map high-dimensional vectors to low ones in

atent space so that these latent vectors capture the structural
nformation of the graph as well as each node’s features.

Downstream machine learning tasks can then use these la-
ent vectors as feature inputs (Bacciu, Errica, Micheli, & Podda,
020; Hamilton, 2020). For example, COOL (Molaei, Bousejin,

∗ Corresponding author.
E-mail address: h.zare@ut.ac.ir (H. Zare).

2 Equal Contribution.
1 The source code is available at https://github.com/GhazalehNiknam/
yVGRNN.
ttps://doi.org/10.1016/j.neunet.2023.05.048
893-6080/© 2023 Elsevier Ltd. All rights reserved.
Zare, Jalili and Pan, 2021), and GHNN (Ju et al., 2022) employ
graph representations in their classification task, Modularity-
aware VGAE (Salha-Galvan, Lutzeyer, Dasoulas, Hennequin, &
Vazirgiannis, 2022), and GCN-LP (Mudiyanselage, Lei, Senanayake,
Zhang, & Pan, 2022) in their link prediction tasks, and SOLI (Mo-
laei, Bousejin, Zare and Jalili, 2021) in its clustering task. Although
many real-world graphs, known as dynamic graphs, evolve over
time, the bulk of existing graph representation learning algo-
rithms concentrates on static graphs, in which the set of nodes
and edges does not change over time. This work aims to capture
the underlying dynamics of the network.

Our proposed method, ‘‘DYnamic mixture Variational Graph
Recurrent Neural Networks (DyVGRNN)’’, integrates a variational
framework with a Graph Recurrent Neural Network (GRNN) to
simultaneously capture the evolution of the dynamic graph topol-
ogy and node attributes. The DyVGRNN can model the addi-
tion/removal of nodes and edges in dynamic graphs and can be
applied to simple or attributed networks. While conventional
variational frameworks can capture hidden and hierarchical de-
pendencies, they are tussling with multimodal data.

Multimodality arises when in a dataset with an overall pop-
ulation and various subpopulations, we are unable to dedicate
each subpopulation to an individual observation. Mixture models

such as Gaussian Mixture Models (GMM) are an absolute solution

https://doi.org/10.1016/j.neunet.2023.05.048
https://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2023.05.048&domain=pdf
mailto:h.zare@ut.ac.ir
https://github.com/GhazalehNiknam/DyVGRNN
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Fig. 1. Examining the effect of considering unknown subpopulations on modelling. Here, if the green curve is utilised for modelling and the age of the population
under investigation is not considered, some specific information could be lost. On the other hand, a thorough knowledge of the input data is given if the red curve
is employed for modelling.
for these kinds of datasets. These models describe the probability
distribution of observations in the whole population (Chen &
Zhang, 2020; Dilokthanakul et al., 2017; Niknam, Molaei, Zare,
Clifton, & Pan, 2022). Technically, mixture models are a principled
modelling approach to handle such complex data and are a uni-
versal approximator of densities (Goodfellow, Bengio, & Courville,
2016; Kostantinos, 2000).

For more clarification, consider a study that examines how an
dvertisement impacts a sample group of people. Some important
ata, like the effect of age, may be lost if the study employs
he population while omitting subpopulations and models the
ata using a unimodal distribution. More flexibility and a more
n-depth understanding of the input data can be obtained by
mploying a mixture model. Fig. 1 shows this affection on a
ynthetic dataset.
In this paper, we employ GMM to model the prior and pos-

erior distribution in the Graph Variational Auto-Encoder (GVAE).
ith this combination, it is possible to capture the distribution
f the input data more effectively and to get a deeper knowledge
f it. Furthermore, a module based on the attention mecha-
ism on graph snapshots is introduced in our proposed method
o demonstrate the significance of time steps. Our experiments
how DyVGRNN’s superior performance in dynamic link predic-
ion tasks in several real-world dynamic graphs compared to the
tate-of-the-art methods. Our contributions to this work are as
ollows:

• We propose a novel integrated variational framework con-
sisting of extra latent random variables in structural and
temporal modelling.

• We combine variational inference based on GMM with the
proposed framework to infer the multimodal nature of data
and improve the comprehension of the model.

• We introduce a module according to the attention mecha-
nism of graph snapshots to consider the importance of time
steps.

• Our experiments show the superior performance of the pro-
posed DyVGRNN in several real-world dynamic graphs com-
pared to the state-of-the-art methods.

. Related work

To build a solid understanding of dynamic graph represen-
ation learning methods, it is important to first delve into the
597
foundational concepts of static methods. Therefore, we will be-
gin by exploring static methods before progressing to dynamic
methods.

2.1. Static graph representation learning

Shallow embedding methods, which are based on matrix fac-
torisation and random walks, were the first attempts to learn
graph representation on static graphs. Matrix factorisation meth-
ods such as Graph Factorisation (GF) (Ahmed, Shervashidze,
Narayanamurthy, Josifovski, and Smola, 2013) GraRep (Cao, Lu,
& Xu, 2015), and HOPE (Ou, Cui, Pei, Zhang, & Zhu, 2016) are
inspired by dimensionality reduction techniques. The key dis-
tinction among these three methods is the measure used to
determine node similarity. On the other hand, in random walk
methods (Grover & Leskovec, 2016; Perozzi, Al-Rfou, & Skiena,
2014), nodes have similar representations when they tend to
occur together in short random walks on the graph. In contrast
to matrix factorisation approaches that use deterministic node
similarity measures, random walk methods use flexible stochastic
node similarity measures.

DeepWalk (Perozzi et al., 2014), and node2vec (Grover &
Leskovec, 2016) fall into the random walks category, which op-
timise embeddings to encode random walk statistics instead
of decoding deterministic measures of node similarity. While
shallow embedding methods have been quite popular in the last
decade, they have significant drawbacks, including the inability
to handle parameter sharing, difficulty with node attributes, and
transductive behaviour (Hamilton, Ying, & Leskovec, 2017b). To
overcome the limitations of shallow embedding methods, Graph
Neural Networks (GNNs) have been proposed as powerful deep
embedding approaches (Hamilton, 2020; Hamilton et al., 2017b).

GNNs are categorised into three types: those based on Graph
Recurrent Neural Networks (GRNN), those based on Graph Con-
volutional Networks (GCN), and those based on Graph Auto En-
coders (GAE) (Skarding, Gabrys, & Musial, 2021). The first struc-
ture presented in the context of GNNs is the GRNN. This struc-
ture received little attention prior to the advent of dynamic
graphs. The primary assumption in the GRNN is that messages
are exchanged between nodes and their neighbours until a stable
equilibrium is reached.

GCNs generalise the convolutions to graph-structured data
(Kipf & Welling, 2017), which plays a leading role in the con-
struction of many other GNNs. The GCN-based approaches extract
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igh-level node representations by stacking multiple graph con-
olution layers (Wu et al., 2020). Following GCNs, GAE-based
ethods are presented which include an encoder (mainly based
n GCN) to learn representations and a decoder to reconstruct
nput data (Kingma & Welling, 2014; Kipf & Welling, 2017). Varia-
ional Graph Auto-Encoder (VGAE) is a variant of GAE comprising
probabilistic encoder and a probabilistic decoder to model the
ncertainty of node representation for more generalisation of
nference (Kipf & Welling, 2016).

.2. Dynamic graph representation learning

Dynamic graphs can be represented in two different ways: dis-
retely and continuously. A discrete dynamic graph is represented
s a set of static graphs taken at predetermined intervals, referred
o as snapshots. Continuous graphs contain no summarisation and
rovide whole temporal information. Continuous methods cannot
e utilised on discrete networks, whereas discrete methods can
e applied on continuous networks. Therefore, discrete tech-
iques are more flexible than continuous ones (Skarding et al.,
021). While the discrete representation learning approach is our
ocus, we also briefly touch on the continuous representation
earning approaches.

ontinuous Methods. Continuous dynamic graph representation
earning approaches are categorised into two groups: RNN-based
nd temporal point-based approaches. RNNs are used in the first
ategory to continually maintain node embeddings. Every time an
vent or network change occurs, RNN-based approaches all up-
ate the embeddings of the interacting nodes. DyGNN (Ma, Guo,
en, Tang, & Yin, 2020) falls into this category, which consists of
wo components: an update component that updates the states
f the nodes involved in an interaction and a propagation com-
onent that propagates the update to those nodes’ neighbours.
ODIE (Kumar, Zhang, & Leskovec, 2019) is another RNN-based
pproach designed for user–item interaction networks in rec-
mmender systems. This method uses one RNN for users and
he other for items. JODIE updates the embeddings when an
nteraction happens between a user and an item.

The utilisation of the Temporal Point Process (TPP), parametri-
ed by neural networks, is a recurring feature of temporal point-
ased techniques. For example, DyREP (Skarding et al., 2021)
ses a two-time scale TPP, which is parametrised by an RNN.
his two-time scale TPP expresses the dynamics of the network
realised as topological evolution) as well as dynamics on the
etwork (realised as node communication). Utilising temporal
nformation, the attention coefficient for a structural edge be-
ween nodes is computed. Using these coefficients, the aggregate
uantity required for embedding propagation is then determined.
n addition, the Latent Dynamic Graph (LDG) (Kipf, Fetaya, Wang,
elling, & Zemel, 2018) extends DyREP using the Neural Re-

ational Inference (NRI) (Han, Jiang, Wang, Ma, & Tresp, 2019)
odel.

iscrete Methods. The most straightforward way for modelling
iscrete dynamic graphs began with a single GNN in each snap-
hot (Skarding et al., 2021). The output of each GNN is subse-
uently sent into the time-series modelling module as input. For
xample, GCRNM1 (Seo, Defferrard, Vandergheynst, & Bresson,
018) modelled structural features using the GCN variation de-
cribed in Defferrard, Bresson, and Vandergheynst (2016) and
raph evolution using the peephole LSTM introduced in Gers,
chraudolph, and Schmidhuber (2002). RgCNN (Narayan & Roe,
018) used PATCHY-SAN, a GCN-based approach for modelling
tructural properties, and stacked this with a standard LSTM for
odelling temporal properties.
DyGGNN (Taheri, Gimpel, & Berger-Wolf, 2019) leveraged a

ated Graph Neural Network (GGNN) and a long short-term
598
memory network (LSTM) in its framework to model the topology
of dynamic graphs and temporal information among them. Wa-
terfall Dynamic-GCN and Concatenated Dynamic-GCN (Manessi,
Rozza, & Manzo, 2020) are two architectures exploiting a GCN and
an LSTM in the stacked form by applying them to each node sepa-
rately. The extra skip connection of the GCN in the Concatenated
Dynamic-GCN distinguishes these designs. Also, DySAT (Sankar,
Wu, Gou, Zhang, & Yang, 2020) is another stacked architecture
that uses self-attention blocks to capture structural and temporal
properties.

The techniques mentioned earlier all offer a stacked archi-
tecture with a separate GNN for processing each snapshot of
the dynamic graph and a time series module for processing the
outputs of these GNNs. By integrating structural and temporal
modelling into a single layer and capturing both concurrently,
dynamic graphs can better capture growing relationships (Skard-
ing et al., 2021). EvolveGCN (Pareja et al., 2020) is an integrated
framework consisting of a GCN and an RNN that GCN’s weights
are updated with the RNN.

Another integrated framework is GC-LSTM (Chen, Wang, & Xu,
2022), which combines an LSTM with a GCN. The graph snapshots
are fed into LSTM in this framework, and then a spectral graph
convolution is performed on the hidden layer of LSTM. LRGCN (Li
et al., 2019) leverages an R-GCN to jointly address intra-time
and inter-time relationships and an LSTM to capture the time
dependency between graph snapshots. Recurrent Event Network
(RE-NET) (Jin, Qu, Jin, & Ren, 2020) is an auto-regressive architec-
ture for modelling dynamic knowledge graphs and integrating an
R-GCN in several RNNs.

Inspired by the success of the static GAE framework, dy-
namic GAE-based methods have emerged. The Dynamic Graph
Embedding model (DynGEM) (Goyal, Kamra, He, & Liu, 2018)
modifies the static GAE to initialise it with the weights of the
previous snapshot, and substantial modifications are not permit-
ted from one snapshot to the next. Based on DynGEM, Dyn-
graph2vec (Goyal, Chhetri, & Canedo, 2020) is introduced. This
framework employs the l time window that defines the l most re-
ent snapshots for encoding. Chen et al. (2019) proposed Encoder-
STM-Decoder (E-LSTM-D), which combines an LSTM with an
ncoder–decoder architecture. They stacked LSTM on GAE to
earn graph evolution patterns.

All the above dynamic graph representation learning tech-
iques employ deterministic vectors to represent each node in
low-dimensional space. These deterministic representations

annot reflect the uncertainty of the node representation. Al-
hough GAE-based methods perform effectively, they disregard
ata distribution and may lead to overfitting and poor representa-
ions (Charte, Charte, del Jesus, & Herrera, 2020; Pan et al., 2018).
he combination of the GAE framework and deep generative
odels has been introduced for this purpose. Deep generative
odels have the ability to represent complex dependencies and

nteractions between input and output data by considering the
istribution of data (Rezende, Mohamed, & Wierstra, 2014).
GCN-GAN (Lei, Qin, Bai, Zhang, & Yang, 2019) is a genera-

ive adversarial-based method for applying GCN to examine the
opological properties of each snapshot and an LSTM to char-
cterise the evolution of the dynamic graph. This component is
generator, while a dense feed-forward network is a discrim-

nator. SI-VGRNN (Hajiramezanali et al., 2019) is a generative
pproach that uses a VGAE in each snapshot. They consider a
RNN to model the temporal evolution of the graph. Our pro-
osed framework contains an integration of VGAE and GRNN
y exploiting a novel attention mechanism. Moreover, a natural
ssumption of multimodality of observed data is applied in our
odelling (Goodfellow et al., 2016; Kostantinos, 2000).
Earlier efforts modelled the uncertainty of the observed data

sing a unimodal Gaussian distribution. Under this assumption,
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Table 1
The notation summary. This table summarises the notations used in this paper
and provides a brief explanation for each.
Symbols Meaning

G Dynamic graph
T Total number of snapshots
G(t) A snapshot of G at time step t
V (t) Set of nodes in G(t)

E(t) Set of edges in G(t)

A(t) The adjacency matrix of G(t)

Nt Number of nodes in G(t)

X(t) The features matrix of G(t)

F Number of features in X(t)

Z,W, C The latent variables in GMM
φ The parameters of encoder neural networks
θ The parameters of decoder neural networks
β The parameters of the GNN related to each GMM component
φZ The parameters of the GNN related to Z
φW The parameters of the GNN related to W
H The dimension of the representation embedding size

modelling complex data with properties like multimodality is
inefficient. Although SI-VGRNN develops semi-implicit variational
inference for greater modelling flexibility, they only regard this
assumption on their posterior modelling and not their prior.
Hence, the improvement in their results is marginal
(Hajiramezanali et al., 2019). To capture multimodality in the
input data, our proposed DyVGRNN leverages GMM to model
prior and posterior.

Furthermore, most previous works treat timed snapshots
qually, despite the fact that assessing differences in snapshot
ignificance may lead to more accurate results. SI-VGRNN assigns
fixed priority to different time series modelling snapshots,

ven though these snapshots may affect them differently. Here,
e propose an attention-based module for examining the im-
ortance of snapshots. Unlike the traditional application of the
ttention mechanism in static graph representation learning,
here the input is a matrix of nodes and the attention mechanism
xamines the importance of each node’s neighbouring nodes, the
nput in our module is a matrix of information for each time step,
nd the importance of time steps is examined.

. The proposed model

.1. Notation and problem definition

Let us represent a dynamic graph G as G = {G(1),G(2), . . . ,G(T )
},

here G(t)
= (V (t), E(t)) denotes a graph at time step t . Here

(t) and E(t) represent sets of nodes and edges, and T denotes
he number of time steps. Since we intend to model a possible
ode or edge set change, the number of nodes and/or edges
an change over time. Thus, (V (t), E(t)) and (V (t+1), E(t+1)) can
be completely different. The input of the proposed method is a
sequence of variable-length adjacency matrices in the form of
A = {A(1),A(2), . . . ,A(T )

} where A(t)
∈ RNt×Nt and Nt denotes

the number of nodes in this snapshot. Furthermore, there is a
sequence of variable-length feature matrices in the form of X =

{X(1),X(2), . . . ,X(T )
} as input, if the nodes have features. Here,

each X(t) is a Nt × F matrix, where F denotes the number of
features. We assume F is constant over time. Table 1 summarises
the notations used in this paper.

3.2. DyVGRNN

Fig. 2 shows a high-level overview of our proposed method,
DyVGRNN. The proposed method consists of three main modules
described in this section. First, integrating GMM and VGAE used
 s

599
to model each graph snapshot is examined. Following, the process
of modelling the evolution is described. Finally, we discuss the
attention-based module for considering the importance of each
graph snapshot in modelling evolution over time.

3.2.1. Integration of GMM and VGAE
Our model defines three hidden variables Z, W, and C for

integrating GMM and VGAE into a framework called Gaussian
Mixture Variational Graph Auto Encoder (GM-VGAE). In this case,
the inference model of standard VGAE for snapshot t , generalises
and follows the process shown in Eq. (1)

W(t)
∼ N (0, I)

C(t)
∼ Cat(π )

Z(t)
|C(t),W(t)

∼

K∏
k=1

N (µc(t)k
(W(t)

; β),Σ c(t)k
(W(t)

; β))c
(t)
k

(1)

Here, K is a hyperparameter of the model, which denotes
he number of components in the mixture model. W(t) is one
f the latent variables of snapshot t that follows a Gaussian
istribution with mean zero and covariance matrix I. C(t) is a
ne-hot vector denoting the mixing coefficients of the Gaussian
ixture components of snapshot t . This vector is sampled from
(the mixing probability), which indicates one of the Gaussian
ixture components.
W(t) is fed to a GNN parametrised by β . The output of this

eural network is a set of K (µ(t)
ck ) and K (Σ (t)

ck ). Each µ
(t)
ck and Σ (t)

ck
n these sets are calculated by a GNN. An inner product between
atent variables is used for reconstructing the adjacency matrix,
s shown in Eq. (2).

(A(t)
|Z(t)) =

N∏
i=1

N∏
j=1

p(A(t)
ij |z(t)i , z(t)j )

p(A(t)
ij |z(t)i , z(t)j ) = Sigmoid(z(t)Ti z(t)j )

(2)

ased on the mean-field variational family, the general form of
osterior can be factorised as Eq. (3).

(Z(t),W(t), C(t)
|A(t)) =

Nt∏
i=1

qφZ (z
(t)
i |A(t)

i )qφW (w(t)
i |A(t)

i )qβ (z
(t)
i |c(t)i ,w(t)

i )
(3)

n this equation, φZ , φW , and β are the parameters of neural
etworks, and the output of these networks is the parameters of
he variational distributions. The C-posterior is as follows,

β (cj = 1|Z,W) =
p(cj = 1)p(Z|cj = 1,W)∑K
k=1 p(ck = 1)p(Z|cj = 1,W)

=
πjN (Z|µj(W; β), σj(W; β))∑K

k=1 πkN (Z|µk(W; β), σk(W; β))

(4)

3.2.2. Modelling the evolution
In contrast to standard VGAE that samples prior from a stan-

dard Gaussian distribution (N (0, I)), the proposed VGAE (GM-
GAE) has a new prior extraction process that allows the pa-
ameter of the prior distribution to be modelled by a function
f the previous time step. In other words, the prior distribution
arameters are based on the information of the previous hidden
tate rather than deterministic parameters. The construction of
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Fig. 2. A high-level overview of our method. A VGAE integrated with GMM performs on each time step. The prior distribution of the VGAE is a function of the
previous time step and a GRNN structure with extra hidden variables of the prior time step acts as a backbone of the entire framework. GRNN captures the
dynamics of both graph topology and the node features jointly. The hidden state of GRNN is also added to latent random variables of GM-VGAE, making it capable
of modelling variations in the topology or graph properties over time. Moreover, an attention-based module measures the importance of each graph snapshot in
modelling evolution over time.
Fig. 3. Graphical illustrations for Prior, Inference, Recurrence, and Generation of DyVGRNN. Arrows indicate the dependency of each component on the other
component. The drawn arrow for Prior suggests the source of prior parameters, which is the previous hidden state of the model. The arrows of Inference and
Recurrence indicate the resources needed to infer the latent variables and update the hidden state, respectively. The arrow of generation shows that the adjacency
matrix can be reconstructed by having latent variables.
the prior distribution can be written as shown in Eq. (5).

{µ
(t)
prior ,Σ

(t)
prior} = 𭟋prior (ht−1)

W(t)
∼ N (µ(t)

prior ,Σ
(t)
prior )

C(t)
∼ Cat(π )

Z(t)
|C(t),W(t)

∼

K∏
k=1

N (µc(t)k
(W(t)

; β),Σ c(t)k
(W(t)

; β))c
(t)
k

(5)

Here µ
(t)
prior andΣ (t)

prior represent the parameters of the prior distri-
bution. 𭟋prior is a function that produces the parameters of prior
distribution based on the previous hidden state. This function
can be a neural network. The prior distribution of the first step
is assumed to be a standard multivariate Gaussian distribution
as N (0, I). If node addition occurs at each snapshot, the prior
distribution of the added node is defined as N (0, I). Eliminating
a node can be conceived as removing all edges connected to the
node. In this way, prior probabilities are unaffected.

The GRNN structure acts as a chain in the whole framework
to capture the dynamics of graph topology and features of the
nodes. The GRNN update rule is defined as shown in Eq. (6).

h = f (A(t),X(t), Z(t),h ) (6)
t t−1

600
Here f can be one of the Recurrent Neural Network (RNN)
frameworks, such as long short-term memory (LSTM) or gated
recurrent units (GRU). In this paper, we use LSTM-Attention for
this purpose. If node addition occurs at snapshot t , the hidden
state of the node at snapshot t − 1 is considered being zero. The
Z-posterior of the model is shown in Eq. (7).

q(Z(t)
|A(t),X(t),ht−1) ∼

K∏
k=1

N(µc(t)k,enc
, Σc(t)k,enc

)c
(t)
k

µ(t)
enc = GNNµ(A(t), CONCAT (X(t),ht−1))

Σ (t)
enc = GNNΣ (A(t), CONCAT (X(t),ht−1))

(7)

Here µ
(t)
enc and Σ

(t)
enc represent the parameters of the posterior

distribution, respectively. GNNµ(.) and GNNΣ (.) can be any kind
of GNN. We use a two-layer GCN for this purpose. The graph-
ical illustrations for Prior, Inference, Recurrence, and Genera-
tion of DyVGRNN are shown in Fig. 3. To carry out the learn-
ing process, the standard ELBO formulation is generalised as
Eq. (8) (Dilokthanakul et al., 2017).

LELBO = Eq

[p(A(t), Z(t),W(t), C(t))]
(8)
q(Z(t),W(t), C(t)|A(t))
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n which,

(A(t), Z(t),W(t), C(t)) = p(W(t))p(C(t))p(Z(t)
|W(t), C(t))p(A(t)

|Z(t))

(9)

Based on the mean-field variational family, shown in Eqs. (3)
and (9), the lower bound for each snapshot can be written as
Eq. (10).

L(t)ELBO = Eq(Z|A,X)[log p(A(t)
|Z(t))]−

Eq(W|A,X)p(C|Z,W)[DKL(qφZ (Z
(t)

|A(t),X(t))∥pβ (Z(t)
|W(t), C(t)))]−

DKL(qφW (W(t)
|A(t),X(t))∥p(W(t)))−

Eq(Z|A,X)q(W|A,X)[DKL(pβ (C(t)
|Z(t),W(t))∥p(C(t)))]

(10)

his equation consists of four terms representing the reconstruc-
ion error term, prior conditional term, W-prior term, and C-prior
erm. The total loss function of the model is calculated as the sum
f the loss functions of each snapshot. Thus, the loss function can
e written as Eq. (11).

(total)
ELBO =

T∑
t=1

L(t)ELBO (11)

.2.3. Attention module
The attention mechanism was first introduced by Bahdanau,

ho, and Bengio (2015) in the field of Natural Language Process-
ng (NLP). This work became the basis for Vaswani et al. (2017),
hich attracted much attention. Recent studies in NLP have em-
hasised that the use of the attention mechanism improves the
fficiency and performance of models (Shen et al., 2018; Tan,
ang, Xie, Chen, & Shi, 2018; Tenenbaum, De Silva, & Langford,
000). Other fields have also been positively influenced by the
apability of this mechanism (Sankar et al., 2020; Veličković et al.,
018), and we endeavour to use the potential of this mechanism.
We add an attention module to the proposed model, which

eceives as input the hidden states and structural information
f all time steps. The attention module’s output hidden state is
onsidered the model’s final hidden state. Structural information
s then used to calculate the loss function like Eq. (10) with the
arameters gained by the attention mechanism. Then, backprop-
gation of the gradients of the loss function leads to updating the
eights. In this way, the importance of each snapshot is taken

nto consideration in the learning process.
Here, the mean and standard deviation matrices are remarked

s the structural information of each snapshot. Thereupon, the
eceived information is converted into a matrix, each row show-
ng one snapshot’s information. This operation is fulfilled for both
he mean and standard deviation matrices. The un-normalised
ttention scores between two snapshots are calculated according
o Eq. (12).
µ
i,j = LeakyReLU(a(CONCAT (µi, µj)))
σ
i,j = LeakyReLU(a(CONCAT (σ i, σ j)))
h
i,j = LeakyReLU(a(CONCAT (hi,hj)))

(12)

ere a is a learnable weight vector. The normalised attention
cores calculate by applying a Softmax to un-normalised attention
cores as shown in Eq. (13). Eventually, these α sets determine
he importance of each time step.

µ
i,j =

exp eµ
i,j∑

k∈µ exp eµ
i,k

, µ = {µ(1), µ(2), . . . ,µ(T )
}

ασ
i,j =

exp eσ
i,j∑

k∈σ exp eσ
i,k

, σ = {σ(1), σ(2), . . . , σ(T )
}

αh
i,j =

exp ehi,j∑ h , h = {h(1),h(2), . . . ,h(T )
}

(13)
k∈h exp ei,k
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Table 2
Summary of the employed datasets. “–” in “Number of Edge” column means the
number changes across different snapshots.
Dataset Number of

snapshots
Number of
nodes

Number of
edges

Number of
node attributes

Enron 11 184 115–266 –
Colab 10 315 165–308 –
Facebook 6 663 844–1068 –
UCI 7 537–1899 59835 –
Cora 6 500–2708 406–5429 1433
LFB 36 45435 180011 –
AS733 30 6628 13512 –

Both DyREP (Skarding et al., 2021) and DySAT (Sankar et al.,
2020) leverage the attention mechanism as part of their method.
They employ node-based attention mechanisms in their frame-
work. DyREP computes the attention coefficient and evaluates
the importance of each node’s neighbours using temporal in-
formation. DySAT applies one attention layer to focus on each
node’s immediate neighbours, and a second attention layer to
focus on each node’s temporal history in each snapshot. While
our attention module is based on graphs, these two methods use
a node-based attention module. In fact, in their methods, the
input would be a matrix of nodes and the attention mechanism
examines the importance of the neighbouring nodes of each node.
Whereas the input of our module is a matrix of information for
each time step, and the importance of time steps is examined.

4. Experimental details

In this section, the results of the experiments are presented.
First, the datasets, the state-of-the-art methods, and the stud-
ied tasks and metrics are introduced. Then, the results of the
experiments are described.

4.1. Datasets

Our experiments are performed on five real-world graph
datasets. Table 2 presents a summary of the employed datasets.

Facebook. This dataset contains information about Facebook
posts. The Facebook dataset is collected by Viswanath, Mislove,
Cha, and Gummadi (2009), and the procedure of cleaning and
preparing the data is similar to the procedure in Rahman and
Al Hasan (2016) and Xu and Hero (2014). This dataset has 663
nodes and 1068 edges but does not contain node or edge at-
tributes.

LFB. This dataset is a larger-scale version of the Facebook dataset
containing 45435 nodes and 180011 edges. The procedure of
cleaning and preparing the data in this version is also similar to
the procedure in Rahman and Al Hasan (2016) and Xu and Hero
(2014). 36 snapshots of the activations throughout the last three
years are included in the dataset. In the LFB dataset, there are a
large number of users but not many links between them.

Enron emails (Enron). This dataset contains 500,000 emails ex-
changed between Enron employees from 1998 to 2002 (Priebe,
Conroy, Marchette, & Park, 2005). The nodes represent 184 em-
ployees, and the edges represent the emails exchanged between
pairs of employees in the graph created from this dataset. The
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teps of cleaning and producing the appropriate structure for ap-
lying the algorithm are done according to the procedure in Ha-
iramezanali et al. (2019), Rahman and Al Hasan (2016) and Xu
nd Hero (2014). This dataset has no node or edge attributes.

ollaboration (Colab). There is information about co-authorship
elationships between 315 authors in this dataset. Each node rep-
esents an author, and each edge demonstrates co-authorship re-
ationships between a pair of authors from 2000 to 2009 (Rahman
Al Hasan, 2016). This dataset has no node or edge attributes.

CI. This dataset was aggregated by the University of California,
rvine (Priebe et al., 2005). In this dataset, message interaction
nformation between students based on an online community has
een collected. Nodes represent students, and edges represent
he sending of a message between two students. This information
as collected over a 7-day period. Each day denotes one snapshot
f the graph. This dynamic graph starts at 537 nodes, ends at 1899
odes, has 59835 edges, and has no node properties.

ora. This dataset is a static citation graph in which the nodes
epresent the publications, and the edges denote the citation (Sen
t al., 2008). Cora consists of 2708 nodes with a 1433-dimensional
inary attribute vector. To make use of Cora dynamically, we pre-
rocess the data in the same way as described in Hajiramezanali
t al. (2019) and Liu et al. (2019). In the dynamic network,
e added 500 nodes with their accompanying edges at each
emporal snapshot (208 nodes for the last snapshot), using the
ndexes of the nodes as their arrival order, and six snapshots
f the dynamic graph were taken, starting with 500 nodes and
nding with 2708 nodes.

S733. This dataset is a communication network containing Au-
tonomous Systems (AS) and traffic flows between them that show
who communicates with whom. AS733 was gathered from the
Route Views Project at the University of Oregon, which con-
tains 733 daily instances spanning 785 days between 1997 and
2000 (Leskovec, Kleinberg, & Faloutsos, 2005). There are 6628
nodes and 13512 edges in this dataset.

4.2. Baselines

We compare DyVGRNN with the following baselines and state-
f-the-art methods. We use the original implementation of the
ethods introduced in their paper. To ensure a fair comparison,

he hyperparameters are adjusted based on the suggestion in
heir papers.

.3. Discrete dynamic graph representation learning methods

ynAE (Dynamic Auto-Encoder) (Goyal et al., 2020): This model
s an auto-encoder composed of multiple fully connected layers as
he encoder and decoder. These layers are used to capture non-
inear interactions between nodes at each snapshot and across
ultiple snapshots.

ynRNN (Dynamic Recurrent Neural Network) (Goyal et al.,
020): This model consists of an LSTM encoder and an LSTM de-
oder. These encoder and decoder allow capturing the long-term
ependencies in dynamic graphs.

ynAERNN (Dynamic Auto-Encoder Recurrent Neural
etwork) (Goyal et al., 2020): This model includes a fully con-

nected layer connected to an LSTM as the encoder. The fully
connected layer generates initial low-dimensional hidden repre-
sentations, which are then fed to LSTM. Here, the decoder is a
fully connected network.

SI-VGRNN (Variational Graph Recurrent Neural Networks) (Ha-
jiramezanali et al., 2019): This method was the inspiration for this
602
paper that is based on VGAE, which is combined with GRNN to
capture topology and node feature changes in dynamic graphs.
This paper suggested regarding and disregarding the semi-
implicit part as an SI-VGRNN and VGRNN, respectively.

DySAT (Dynamic Self-Attention Network) (Sankar et al., 2020):
This method computes node representations through self-
attention blocks that capture structural and temporal properties.

HTGN (Hyperbolic Temporal Graph Network) (Yang, Zhou, Ka-
lander, Huang, & King, 2021): This approach maps the dynamic
graph in hyperbolic space and combines a hyperbolic GNN and a
hyperbolic GRNN to capture network evolution while implicitly
maintaining hierarchical information.

4.4. Continuous dynamic graph representation learning methods

DyREP (Skarding et al., 2021): This model uses a two-time scale
Temporal Point Process (TPP) model, which is parametrised by an
RNN.

JODIE (Kumar et al., 2019): This model uses RNNs to predict
representations in the future. Since the method was originally
proposed for bipartite graphs, we modified it for standard graphs
in accordance with Wang, Chang, Liu, Leskovec, and Li (2020).

TGAT (Xu, Ruan, Korpeoglu, Kumar, & Achan, 2020): This model
is based on the self-attention mechanism and develops a func-
tional time encoding technique based on the classical Bochner’s
theorem.

4.5. Tasks

We perform the link prediction and clustering tasks in this
study to evaluate our method. The link prediction task in dy-
namic graphs is defined differently than in static graphs. Given
a dynamic graph G = {G(1),G(2), . . . ,G(T )

}, the link prediction is
divided into two categories: (1) dynamic link prediction attempts
to identify the unobserved links in G(T ), and (2) dynamic new link
prediction tries to predict links in G(T+1) which does not exist in
(T ).

.6. Metrics

We use the Average Precision (AP) and the Area Under the
eceiver operating characteristic Curve (AUC) (Kipf & Welling,
016) metrics to compare our proposed method with state-of-
he-art methods in link prediction and new link prediction tasks.
o calculate these measures, all edges of GT are considered as

actual links (positive samples), and on the other hand, the pairs
of nodes without an edge imply false links (negative samples).
Furthermore, the silhouette criterion is applied for the evaluation
of the clustering results to interpret and validate data consistency
within clusters.

4.7. Settings

The proposed model uses the LSTM-attention with a single
hidden layer of 32 units for the GRNN. The GNNµ and GNNΣ are
et to be two-layer GCN with 32 and 16 units, respectively. Our
odel is initialised using Glorot initialisation (Glorot & Bengio,
010). The learning rate for training our model is set to be 0.01.
odel training is done in 1000 epochs using the Adam SGD
ptimiser (Kingma & Ba, 2015). Moreover, we use a validation set
or the early stopping. Therefore, the training will terminate if the
alidation accuracy does not improve in 10 consecutive stages.
he mean of the evaluation metrics is reported based on 10 runs
f the model under different random seeds.
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Table 3
AP scores of link prediction on dynamic graphs. The best results are high-
lighted.
Model Enron Colab Facebook LFB UCI Cora AS733

DynAE 76.00 64.02 56.04 58.90 91.12 57.11 74.23
DynRNN 85.61 78.95 75.88 75.28 89.21 80.75 87.53
DynAERNN 89.37 81.84 78.55 78.27 89.92 82.93 88.77
DySAT 93.06 90.40 80.39 80.39 85.01 87.73 96 .72
HTGN 94.31 91.91 83.80 83.80 86.72 90.12 98.41
VGRNN 93.29 87.77 89.04 81.40 91.83 93.32 96.69
SI-VGRNN 94.44 88.36 90.19 82.01 93.16 96.68 97.13

DyVGRNN 97.28 96.77 92.70 86.22 95.07 97.48 99.10

Table 4
AUC scores of link prediction on dynamic graphs. The best results are high-
lighted.
Model Enron Colab Facebook LFB UCI Cora AS733

DynAE 74.22 63.14 56.06 57.18 91.89 57.13 73.84
DynRNN 86.41 75.7 73.18 73.98 89.27 80.10 86.11
DynAERNN 87.43 76.06 76.02 75.28 90.08 78.00 88.37
DySAT 93.06 87.25 76.88 76.88 86.73 85.3 95.06
HTGN 94.17 89.26 83.70 83.7 87.25 89.73 98.75
VGRNN 93.10 85.95 89.47 79.11 92.01 94.41 95.17
SI-VGRNN 93.93 85.45 90.94 80.27 93.5 97.17 96.37

DyVGRNN 96.59 95.80 93.17 86.73 95.15 98.74 99.19

Table 5
AUC scores of new link prediction on dynamic graphs. The best results are
highlighted.
Model Enron Colab Facebook LFB UCI Cora AS733

DynAE 66.10 58.14 54.62 56.34 89.94 56.27 68.93
DynRNN 83.20 71.71 73.32 74.15 87.27 79.94 74.72
DynAERNN 83.77 71.99 76.35 76.55 88.29 77.36 76.63
DySAT 87.94 79.74 74.97 74.97 84.2 86.11 82.84
HTGN 91.26 81.74 82.21 82.21 84.98 87.85 96.62
VGRNN 88.43 77.09 87.20 76.33 89.93 94.94 81.86
SI-VGRNN 88.60 77.95 87.74 77.42 90.45 96.36 83.27

DyVGRNN 94.26 92.71 92.51 85.26 94.17 97.16 97.89

4.8. Results analysis

Dynamic Link Prediction. Tables 3 and 4 represent the compar-
ison results in terms of AP and AUC on the link prediction task.
The results of the dominant algorithm are highlighted. DyVGRNN
shows significant improvement in results compared to the other
methods. The enhancement of our method using the AP criterion
compared to the first method is 21.28% in the Enron dataset,
32.75% in the Colab dataset, 36.66% in the Facebook dataset, and
40.37% in the Cora dataset. Large datasets like LFB and AS733
show improvements of 27.32% and 24.87%, respectively. Likewise,
in the UCI dataset, where the first method performed well, our
proposed method boosts the result by 3.95%. If we compare
the AUC criteria, the results are also significantly improved. For
example, the results of a comparison with SI-VGRNN, which on
average provided the best results among the previous methods,
show that the proposed method leads to 2.66% improvement in
the Enron dataset, 10.35% in the Colab dataset, 2.23% in the Face-
book dataset, 1.65% in the UCI dataset, and eventually 1.57% in the
Cora dataset. Large datasets LFB and AS733 have improvements
of 6.46.21% and 2.82%, respectively.

Dynamic New Link Prediction. Tables 5 and 6 represent the
results of comparisons regarding AUC and AP on the new link
prediction task. The proposed method has achieved significant
results in all datasets. A similar analysis for the link prediction
 o
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Table 6
AP scores of new link prediction on dynamic graphs. The best results are
highlighted.
Model Enron Colab Facebook LFB UCI Cora AS733

DynAE 66.50 58.82 54.57 54.91 89.65 56.65 69.12
DynRNN 80.96 75.34 75.52 76.01 86.86 80.01 75.12
DynAERNN 85.16 77.68 78.70 78.27 88.15 82.34 76.87
DySAT 86.83 83.47 78.34 78.34 83.94 87.15 89.07
HTGN 90.62 84.06 81.70 81.7 84.26 89.83 95.52
VGRNN 87.57 79.63 86.30 79.61 89.48 93.21 88.59
SI-VGRNN 87.88 81.26 86.72 80.12 90.07 95.32 89.49

DyVGRNN 94.44 93.65 91.81 85.00 94.11 96.82 96.83

task can be provided for the new link prediction task. In general, it
can be noted that the proposed method can have a high potential
for predicting the overall structure of the graph in the new
snapshot.

To point out some significant improvements, we can mention
the progress of more than 40% in the Cora dataset or the increase
of over 37% in the Facebook dataset in both criteria compared to
DynAE. In addition, our method performed superior to SI-VGRNN,
which indicates a positive effect of the assumption of GMM and
the proposed attention module. A comparison of the proposed
DyVGRNN and VGRNN is presented in Appendix A in order to
further analyse the effectiveness of the methods.

Clustering. For further investigation, we provide a clustering
comparison as well. The proposed approach is compared against
SI-VGRNN, which achieves the highest result among various
methods, and DySAT, which performs best among determin-
istic ones. To this end, the silhouette criterion is utilised for
clustering the Cora dataset. This criterion is 0.32 for DySAT,
0.36 for SI-VGRNN, and 0.43 for our approach. Demonstrating
a transparent view, we visualise the representations of these
three methods in a two-dimensional space as shown in Fig. 4.
Compared to the raw features, the trained representations in two-
dimensional space for our method indicate well-separated clus-
tering compared to SI-VGRNN. In addition, modelling uncertainty
in SI-VGRNN and DyVGRNN yields superior clustering outcomes
compared to DySAT, which is a deterministic-based method. We
also provide a classification comparison in Appendix C.

Comparison with Continuous Methods. We compare our model
to state-of-the-art methods in the category of continuous dy-
namic graph representation learning in terms of dynamic link
prediction. The results of this comparison are shown in Fig. 5. As
demonstrated in Fig. 5, our proposed method outperforms other
continuous methods. DyRep has the best performance among
existing continuous approaches, which our method enhances.

4.9. Complexity and running time

To compute the time complexity of our method, the analysis
of Gao and Ribeiro (2022) is followed. For this purpose, the
proposed DyVGRNN can be divided into three main parts. (1)
modelling node temporal attributes by LSTM which the time
complexity is O(T |V |H2). (2) modelling node structural properties
by VGAE, which consists of GCN structure in its encoder and an
inner product decoder. Time complexity of GCN is O(|V |H2

+(|V |+

|E|)H). Since H and |V | are relatively small w.r.t. to |E|, the time
ost is indeed O(|E|).
Moreover, the time complexity of the inner product decoder

s O(|E|). As a result, the time complexity of VGAE is O(|E|).
3) Considering the attention mechanism which has an order
f O(EH2). Eventually, the time complexity of our proposed
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Fig. 4. Cluster visualisation for embeddings of Cora dataset in 2D space. (a) Raw feature cluster visualisation demonstrates the inability to differentiate between
clusters. (b) Cluster visualisation of DyVGRNN embeddings showing distinct clusters. (c) Cluster visualisation of SI-VGRNN embeddings indicates more indiscernible
clusters compared to DyVGRNN. (d) Cluster visualisation of DySAT embedding also reveals more undetectable clusters compared to the two other methods.
Fig. 5. The comparison of the proposed DyVGRNN and continuous methods for the task of dynamic link prediction. As shown in the charts below, different methods
are represented by different colours. These results are performed on UCI and Enron. Each chart shows the results for UCI and Enron in the left and right groups,
respectively. (a) The results of comparing in terms of AUC score. (b) The results of comparing in terms of AP score.
s
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Fig. 6. Comparison of running times of different methods on the LFB dataset.
he colours represent various methods in the colour scheme.
i
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Table 7
Time complexity of different methods.
Method Time complexity

DynAE O(T (|E| + |V |))
DynRNN O(T |V |H2)
DynAERNN O(T |V |H2

+ T (|E| + |V |))
HTGN O(T |V |H2

+ |E|H2)
DySAT O(T |V |H2

+ |E|H2)
VGRNN O(T |V |H2) + O(|E|)
DyVGRNN O(T |V |H2) + O(|E|H2)

method is O(T |V |H2)+O(EH2). Table 7 lists the time complexity of
ome methods evaluated in our work on LFB dataset. In addition,
ig. 6 contrasts the running times of SI-VGRNN, DySAT, and DyV-
RNN. As seen, our approach runs faster than DySAT but lower
han SI-VGRNN. Although compared to VGRNN, this is seen as a
hortcoming for our model, accuracy at inference time is more
mportant in many cases.
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Fig. 7. The effect of GMM on proposed DyVGRNN. The outcomes of running our model in two modes with and without GMM are shown in this figure. Two tasks,
dynamic link prediction, and new dynamic link prediction are performed on Enron, Colab, and Facebook with the results. The various criteria for these two tasks
are represented by the colours in accordance with the colour scheme.
Table 8
Effect of parameter K on the DyVGRNN outcome. The results of dynamic link prediction and dynamic new link prediction by adjusting K to different values are given
in this table. “Mean of AUCs” in each dataset category show the mean of AUC of link prediction and AUC of link prediction for different K.
Dataset Metric K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

Enron
AUC of link prediction 95.80 96.59 95.70 96.60 95.92 95.82
AP of link prediction 96.77 97.28 96.34 97.10 96.73 96.64
AUC of new link prediction 92.71 94.26 93.10 93.58 93.64 92.98
AP of new link prediction 93.65 94.44 93.36 93.38 94.25 93.57

Mean of AUCs 94.25 95.42 94.4 95.09 94.78 94.4
Mean of APs 95.21 95.86 94.85 95.24 95.49 95.10

Facebook
AUC of link prediction 93.17 90.20 92.55 91.37 92.61 93.02
AP of link prediction 92.70 88.67 92.17 90.66 92.18 92.47
AUC of new link prediction 92.51 89.79 91.95 90.70 91.93 92.55
AP of new link prediction 91.81 88.11 91.67 89.81 91.17 92.04

Mean of AUCs 92.84 89.99 92.25 91.03 92.27 92.78
Mean of APs 92.25 88.39 91.92 90.23 91.67 92.25

Colab
AUC of link prediction 95.80 90.20 92.55 91.37 92.61 93.02
AP of link prediction 96.77 88.67 92.17 90.66 92.18 92.47
AUC of new link prediction 92.71 89.79 91.95 90.70 91.93 92.55
AP of new link prediction 93.65 88.11 91.67 89.81 91.17 92.04

Mean of AUCs 92.84 89.99 92.25 91.03 92.27 92.78
Mean of APs 92.25 88.39 91.92 90.23 91.67 92.25
4.10. Ablation study

In this section, we conduct ablation studies to verify the effec-
iveness of the key components of the proposed model.
election of K
Since each dataset has various properties, we need to select

he hyperparameter K according to the unique properties of each
dataset. To this end, this study compares the results by examining
the various values of K and selecting the best value. Table 8 shows
the results of these comparisons. The best value of K for Enron,
UCI, Cora, and AS733 datasets was 3, and for Facebook, Colab, and
LFB datasets were 2. The first column of these tables shows the
situation where the GMM does not affect the results. As can be
seen, at K = 2, i.e. applying the GMM, a significant improvement
in the results is achieved. This improvement demonstrates the
validity of our claim that the use of GMM positively affects
outcomes.
Impact of the GMM

605
The effects of utilising a GMM to handle multimodality are
examined in this section. This is accomplished by considering
the proposed DyVGRNN in two different scenarios: first, without
using GMM, and second, using GMM. Fig. 7 shows the result of
comparisons in these two modes. As seen in this figure, GMM
leads to improving the results.

Impact of the Attention Module
To assess the effectiveness of the attention module, we have

divided the proposed model into two modes: with and without
using it. To emphasise the attention module, we investigated the
proposed method without considering GMM. Fig. 8 shows the
result of comparisons in these two modes.

Impact of Features
A noteworthy point in examining the results is the effect of

the node features on the results. Fig. 9 shows the performance of
DyVGRNN in the Cora in two modes: with and without features.
The performance is significantly improved with the presence of

node features, which indicates our proposed method can capture
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Fig. 8. Impact of the attention module on DyVGRNN. In this figure, the results of running our model in two different modes with and without the attention module
are depicted. To achieve this, two tasks – dynamic link prediction and new dynamic link prediction – are carried out. The colours, in accordance with the colour
scheme, represent the various criteria for these two tasks. The results of the comparison on the (a) Colab, (b) Facebook, (c) Enron datasets.
Fig. 9. The results of comparing the proposed method on Cora with and without using features. Dynamic link prediction is used to accomplish this. (a) The result of
omparison in terms of AUC. Results are enhanced by the presence of node features. (b) The result of comparison in terms of AP. Results are improved when node
eatures are present.
ong-term dependencies in both the topological evolution and
ynamics of node features.

. Conclusion and future works

We proposed DyVGRNN, an integrated variational GRNN for
earning node representations of dynamic graphs. DyVGRNN has
dditional random latent variables in the GRNN framework for
apturing the evolution of graph structures and node attributes.
e have shown that the combination of variational inference
ased on GMM and the proposed framework leads to a high level
f validity and knowledge of the model. We also introduced an
606
attention module to consider each snapshot’s importance, leading
to improved performance. The experiments’ results showed our
model’s superiority over baseline and state-of-the-art methods.
In the future, we are looking to apply a probabilistic decoder to
the VGAE structure than a simple inner product decoder. In our
proposed method, VGAEs reconstruct the adjacency matrix, but
not the features matrix. Therefore, considering the reconstruction
of the feature matrix and adjacency matrix would lead to a raise
in accuracy. We believe it is a worthwhile area to explore more.
In addition, it would intrigue to study the impact of other GNN
frameworks, such as GAT, GraphSAGE, and GIN, with different
layer numbers for the encoder and perhaps the decoder.
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Fig. A.10. Comparing the proposed method with VGRNN on different datasets in terms of AUC and AP. The colours reflect the various criteria for dynamic link
prediction and dynamic new link prediction under the colour scheme. (a) The comparison of two methods in terms of AUC on Colab. The early epochs are closely
contested, but after epoch 300, DyVGRNN soon overtakes VGRNN. (b) The comparison of two methods in terms of AP on Colab. The superiority of DyVGRNN is
significant after epoch 300. (c) The comparison of two methods in terms of AUC on Enron. After epoch 300, DyVGRNN’s dominance becomes considerable. (d) The
comparison of two methods in terms of AP on Enron. Again, in the 300th period, DyVGRNN’s advantage becomes substantial. (e) The comparison of two methods in
terms of AUC on Facebook. Even in the early epochs, DyVGRNN’s supremacy was noticeable. (f) The comparison of two methods in terms of AP on Facebook. From
the very beginning, DyVGRNN’s dominance is significant.
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ppendix A. Visualisation the results of comparison

In order to more thoroughly assess the performance of the
roposed method, DyVGRNN and VGRNN are compared in
ig. A.10. It is evident that DyVRNN performs better over time
n practically all epochs. Despite having close competition in the
arly epochs, DyVGRNN quickly passes VGRNN and establishes its
uperiority.
607
Appendix B. Qualitative analysis

Fig. B.11 displays a visualisation of the learnt embeddings over
time to show how effectively the embeddings are encoded. To
do so, we use the clustering task and the silhouette metric on
synthetic data and visualised the learnt embeddings in a two-
dimensional space throughout our training. The clusters become
more well-separated with time, as can be observed.

Appendix C. Node classification task

We compare our model to three baseline methods in order
to assess its performance on the classification task. Two of these
methods, GCN (Kipf & Welling, 2017) and GraphSAGE (Hamilton,
Ying, & Leskovec, 2017a), are supervised techniques that relied
solely on static graph structures and node attributes, ignoring
temporal information. Another method, RNNGCN (Yao & Joe-
Wong, 2021), utilised a two-layer GCN with a decay weight as
a learnable parameter. This decay weight has applied to infor-
mation from each timestep, gradually decreasing over time. The
resulting linear combination of information over time is then used
for classification purposes.

The datasets used in this task has obtained from DBLP,3 a
omprehensive database of academic papers in various subfields
f computer science. The authors of these papers are represented

3 https://dblp.org/.

https://dblp.org/
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Fig. B.11. Visualisation of the learnt embeddings of DyVGRNN over time. In this figure, each colour corresponds to a cluster. (a) Visualisation of embedding on
epoch 0 of the running. The clusters are confused. (b) Visualisation of embedding on epoch 50 of the running. Clusters are hardly distinguishable. (c) Visualisation
of embedding on epoch 200 of the running. Clusters show themselves, but they are still intertwined. (d) Visualisation of embedding on epoch 400 of the running.
Clusters are almost easily distinguishable.
Fig. C.12. The results of comparing the classification performance of the proposed method on DBLP-3 and DBLP-5 datasets with other baselines in terms of AUC.
The colours, in accordance with the colour scheme, represent the various methods.
as nodes in a graph, with connections between nodes indicat-

ing co-authorship. Analysing the authorship of papers published

between 2005 and 2018 resulted in the dynamic graph in these

datasets, treating each year as a snapshot. DBLP-5 has 6606 nodes,

42 815 edges, and 10 snapshots, while DBLP-3 has 4257 nodes,
608
23540 edges, and 10 snapshots. These datasets included node at-
tributes extracted by word2vec (Mikolov, Chen, Corrado, & Dean,
2013) from authors’ paper titles and abstracts. They both have
100 attributes. These datasets are further clustered into three
and five classes, respectively, based on the research area of the
authors. These classes remained static over time. Fig. C.12 shows
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he results of our comparison in terms of the AUC. As seen, our
roposed DyVGRNN outperforms other methods in both datasets.
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