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Algorithmic fairness and bias mitigation 
for clinical machine learning with deep 
reinforcement learning

Jenny Yang    1 , Andrew A. S. Soltan    2,3, David W. Eyre    4 & David A. Clifton1,5

As models based on machine learning continue to be developed for 
healthcare applications, greater effort is needed to ensure that these 
technologies do not reflect or exacerbate any unwanted or discriminatory 
biases that may be present in the data. Here we introduce a reinforcement 
learning framework capable of mitigating biases that may have been 
acquired during data collection. In particular, we evaluated our model for 
the task of rapidly predicting COVID-19 for patients presenting to hospital 
emergency departments and aimed to mitigate any site (hospital)-specific 
and ethnicity-based biases present in the data. Using a specialized reward 
function and training procedure, we show that our method achieves 
clinically effective screening performances, while significantly improving 
outcome fairness compared with current benchmarks and state-of-the-art 
machine learning methods. We performed external validation across 
three independent hospitals, and additionally tested our method on a 
patient intensive care unit discharge status task, demonstrating model 
generalizability.

Advancements in computational resources and the availability of  
vast amounts of digital health data are revolutionizing our understand-
ing of general and personalized health assessment. While machine 
learning (ML)-based technologies offer clear benefits, it is crucial 
to ensure the fairness and equity of models, particularly in health-
care settings where algorithmic findings directly influence clinical 
decision-making and patient care. Ideally, a model should extract useful 
generalizations from the data without exhibiting any form of unfair 
discrimination. By achieving this, the model’s performance improves, 
while fostering trust among clinicians and patients in its effectiveness 
and reliability.

ML models are prone to bias based on the composition of train-
ing data, leading to unfair differences in performance for specific 
subgroups in predictive tasks. These biases hinder a model’s ability to 
accurately capture the relationship between features and the target 

outcome, resulting in poor generalization across subgroups and unfair 
decision-making1–5.

Prior works on ML fairness have established statistical fairness 
metrics such as statistical parity, equalized odds, equal opportunity and 
test fairness to evaluate notions of fairness2,3,5–7. Thus, fairness-aware 
ML methods aim to improve on such fairness definitions.

In this study, our focus is on optimizing for equalized odds. Con-
sider a binary classifier that predicts labels yi ∈ {0, 1} for samples i  
with features xi. A subgroup of samples Z is considered sensitive  
(that is, a group that a model may be biased against) compared  
with a non-sensitive complement Z′, whereby Z/Z′ represents sub-
groups from a real-world attribute, such as ethnicity, socioeco-
nomic community or gender. Following the definition of equalized 
odds, a classifier ̂Y  is fair if ̂Y  and Z are conditionally independent  
given Y (refs. 2,3,5,6). For binary classification, this is equivalent to 
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state-of-the-art computer vision methods consistently underdiag-
nosed underserved patient populations1. To mitigate such biases, 
many ML-based clinical projects aim to combine datasets from multi-
ple hospitals to increase the training data volume, as generalizabil-
ity often requires large datasets. However, models can still acquire 
site-specific biases during training due to varying amounts of available 
training data across different centres. If these biases influence a model’s  
decisions, certain hospitals may experience inferior outcomes,  
widening inter-hospital inequities and discouraging the adoption of 
ML-based technologies3.

Because of these concerns, there is growing attention being given 
to ML fairness and bias mitigation, with practitioners typically employ-
ing techniques at either the data, algorithm or evaluation level. For the 
purposes of our study, we specifically focus on an algorithmic-level 
technique, whereby we aim to develop a fair model using a reinforce-
ment learning (RL) paradigm. The current literature for addressing bias 
mitigation at the algorithmic level has primarily focused on standard 
supervised learning using adversarial debiasing—a technique where a 
model is trained to learn parameters that do not infer sensitive features. 
Here, a predictor network is trained against an adversary network, 
where the adversary assures that the predictor’s output is not cor-
related with the specified sensitive feature (that is, the unwanted bias 
that we are trying to mitigate). A fairness metric can also be imposed 
as a constraint or incorporated into a loss function6 (Supplementary 
Section B). This technique has been used to develop models that output 
fair predictions and has previously been successful in reducing gender 
(male versus female) bias in salary prediction6,20 and ethnicity (black 
versus white) bias in recidivism prediction21. Adversarial models have 
also been used to effectively predict COVID-19, whilst simultaneously 
improving outcome fairness with respect to site (hospital)-specific and 
ethnic biases3. As specialized methods have been shown to be neces-
sary for mitigating unwanted biases, we aimed to use an RL framework 
(instead of an adversarial one) to optimize fairness outcomes.

RL—whereby an agent interacts with an environment to learn a 
task—has been linked to many real-world artificial intelligence suc-
cesses, with many well-known exemplars in gameplay and control. 
However, the core elements of RL have been shown to be successful 
on a wider range of tasks, including those which, on the surface, do 
not appear to have a particular ‘agent’ interacting with an ‘environ-
ment’ (which is typically regarded as the standard RL set-up22,23). Such 
problems include classification tasks, which have commonly been 
addressed using standard supervised learning algorithms (where an 
input is mapped through a model to predict a class label). RL, instead, 
uses an agent to interact with the input to determine which class it 
belongs to and then receives an immediate reward from its environ-
ment based on that prediction. A positive reward is given to the agent 
when a label is correctly predicted and a negative one is given other-
wise. This feedback helps the agent learn the optimal ‘behaviour’ for 
classifying samples correctly, such that it accumulates the maximum 
rewards. To do this, an agent performs actions that set memory cells, 

P( ̂Y = 1|Y = y,Z = 0) = P( ̂Y = 1|Y = y,Z = 1), y ∈ {0, 1} . This definition 
can also be extended to multi-class classification.

In the context of fairness and bias, our focus is on clinical applica-
tions for three key reasons. Firstly, a biased model can lead to inaccurate 
predictions for crucial and potentially life-altering decisions. Secondly, 
bias against certain groups can result in disparities in the quality of care 
received by patients from those groups compared with others. Lastly, 
a biased model has the potential to worsen existing healthcare and 
societal inequities3. These factors collectively undermine clinician and 
patient trust, making the deployment of ML models in clinical practice 
more challenging.

Ethnicity-related unfair bias is a prominent concern in health-
care. It can inadvertently occur due to admission bias, volunteer bias,  
sampling bias or observer bias during data collection, resulting in data 
that do not represent the general population8,9. ML models have pre-
viously shown susceptibility to ethnicity-based biases. For instance, 
a study revealed a recidivism prediction model that exhibited bias 
against black defendants, wrongly classifying them as future criminals 
at nearly double the rate of white defendants10. In clinical applications, 
researchers have found unequal performance of ML models across dif-
ferent patient populations11, which can lead to negative consequences 
for under-represented groups12. This issue is particularly pertinent as 
sample populations used in studies may not adequately represent the 
overall patient population because of limited resources, regional biases 
and other factors. For example, randomized trials evaluate treatment 
effects for a trial population; however, participants in clinical trials are 
often demographically unrepresentative of the patient population that 
ultimately receives the treatment11,13. Consequently, if a model deter-
mines who receives a specific drug or intervention, minority groups (for 
example, ethnic minorities, women and obese patients) might receive 
the least, perpetuating demographic inequities in healthcare. Privacy 
preservation and statistical disclosure are also affected because regions 
with a small number of patients from a particular ethnicity face increased 
identification risk if the ML model exhibits bias against that group3.

Inequities can also arise between different healthcare centres, as 
they can exhibit variations in disease prevalence, mortality rates, quality  
of healthcare services, and the use of specific medical devices14–18.  
ML models trained on real-world data from one hospital may not  
gene ralize to new settings due to unintentional site-specific  
biases introduced during data collection, processing and organiza-
tion (known as measurement bias)19. For instance, a study found that 
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Fig. 1 | Reinforcement learning framework. Overview of the general RL 
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Fig. 2 | Single-stream and duelling Q-network comparison. a, A typical single-
stream Q-network. b, A duelling architecture, with two streams to independently 
estimate the state values (scalar) and advantages (vector) for each action (this 
implements equation (7)).
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which can then be used by the agent (together with the original input) 
to select actions and classify samples24. Specialized reward functions 
have previously been successful in mitigating large data imbalances 
with respect to the predicted label25,26. Thus, instead of focusing on 
label imbalance, we aimed to formulate a deep RL framework with the 
specific purpose of improving algorithmic fairness and mitigating 
unwanted biases (Fig. 1).

Specifically, we developed a duelling double-deep Q-network 
(DDQN; Fig. 2) and evaluated our method on a real-world, clinical task—
COVID-19 screening using anonymized electronic health record data 
from hospital emergency rooms. For this task, we aimed to mitigate 
any unwanted ethnicity-based and site (hospital)-specific biases. To 
demonstrate the utility of our method across diverse clinical tasks, 
we performed additional analyses on a patient discharge status task 
using electronic health record data from intensive care units (ICUs). 
Although we use clinical case studies, the framework introduced can 
be generalized across many different domains and can be applied to a 
variety of tasks and features.

Results
In this study, we introduced a method for training fair, unbiased ML 
models, based on a deep RL framework. We evaluated it on two com-
plex, real-world tasks—screening for COVID-19 and predicting patient 
discharge status—while aiming to mitigate site (hospital)-specific 
and demographic (patient ethnicity) biases. Through comparison  
of our RL method against current benchmarks and state-of-the-art  

ML methods—RL (without a debiasing component), XGBoost and a  
fully connected neural network (NN; both with and without cost- 
adjusted weights inversely proportional to the frequency of sensitive 
attributes) and adversarial debiasing—we found that RL demonstrably 
improved outcome fairness, while still achieving strong classification 
performance.

Debiasing ethnicity
After training models on patient cohorts from Oxford University 
Hospitals National Health Service (NHS) Foundation Trust (OUH), we 
externally validated our models across three external patient cohorts 
from Portsmouth Hospitals University NHS Trust (PUH), University 
Hospitals Birmingham NHS Trust (UHB) and Bedfordshire Hospitals 
NHS Foundation Trust (BH). All models achieved reasonably high  
area under receiver operator characteristic curve (AUROC) scores 
across all test sets (Table 1), comparable to those reported in previous 
studies3,19,26,27 (which used similar patient cohorts and features; Supple-
mentary Table 13), demonstrating that we trained strong classifiers to 
begin with. AUROC scores for predicting COVID-19 status stayed rela-
tively consistent across all test sets, achieving the highest performances 
on the BH cohort (PUH: AUROC range 0.834–0.882 (confidence interval, 
CI: 0.821–0.894); UHB: 0.834–0.868 (0.807–0.892); BH: 0.897–0.923 
(0.861–0.954)). With respect to the model used, all models achieved 
similar AUROCs; however, the highest AUROCs were generally achieved 
by the standard supervised learning models—adversarial and both 
weighted and unweighted XGBoost and NN models (mean AUROCs 

Table 1 | Equalized odds evaluation for ethnicity bias and COVID-19 status prediction test results across different models 
and test sets, optimized to sensitivities of 0.9

Test set Model EO (TP) EO (FP) Sensitivity Specificity PPV NPV F1 AUROC

PUH

RL 0.047a 0.037 0.876 (± 0.017) 0.512 (± 0.006) 0.088 (± 0.005) 0.987 (± 0.002) 0.159 0.834 (± 0.013)

RL (unweighted) 0.048b 0.031 0.872 (± 0.017) 0.518 (± 0.006) 0.088 (± 0.005) 0.987 (± 0.002) 0.160 0.838 (± 0.013)

ADV 0.050 0.014a 0.879 (± 0.017) 0.595 (± 0.005) 0.104 (± 0.005) 0.989 (± 0.001) 0.186 0.865 (± 0.012)

NN 0.066 0.028b 0.890 (± 0.016) 0.631 (± 0.005) 0.114 (± 0.006) 0.991 (± 0.002) 0.202 0.875 (± 0.012)

XGB 0.133 0.053 0.919 (± 0.013) 0.532 (± 0.006) 0.095 (± 0.005) 0.992 (± 0.001) 0.172 0.882 (± 0.011)

NN (weighted) 0.056 0.035 0.882 (± 0.017) 0.650 (± 0.005) 0.119 (± 0.006) 0.990 (± 0.002) 0.210 0.876 (± 0.012)

XGB (weighted) 0.214 0.054 0.900 (± 0.015) 0.597 (± 0.006) 0.107 (± 0.006) 0.991 (± 0.002) 0.191 0.882 (± 0.012)

UHB

RL 0.057a 0.041b 0.879 (± 0.034) 0.574 (± 0.011) 0.079 (± 0.009) 0.991 (± 0.003) 0.144 0.849 (± 0.025)

RL (unweighted) 0.155 0.044 0.876 (± 0.035) 0.538 (± 0.011) 0.073 (± 0.008) 0.991 (± 0.003) 0.135 0.834 (± 0.026)

ADV 0.072 0.039a 0.867 (± 0.035) 0.637 (± 0.010) 0.090 (± 0.010) 0.991 (± 0.003) 0.163 0.865 (± 0.025)

NN 0.069b 0.052 0.873 (± 0.035) 0.667 (± 0.010) 0.098 (± 0.011) 0.992 (± 0.002) 0.176 0.868 (± 0.026)

XGB 0.106 0.071 0.867 (± 0.036) 0.585 (± 0.010) 0.080 (± 0.009) 0.991 (± 0.003) 0.146 0.854 (± 0.025)

NN (weighted) 0.070 0.052 0.862 (± 0.037) 0.725 (± 0.010) 0.115 (± 0.012) 0.992 (± 0.002) 0.203 0.866 (± 0.025)

XGB (weighted) 0.155 0.042 0.867 (± 0.035) 0.603 (± 0.011) 0.083 (± 0.009) 0.991 (± 0.003) 0.151 0.858 (± 0.025)

BH

RL 0.030b 0.010a 0.935 (± 0.041) 0.691 (± 0.029) 0.296 (± 0.043) 0.987 (± 0.008) 0.449 0.923 (± 0.031)

RL (unweighted) 0.055 0.057 0.906 (± 0.049) 0.668 (± 0.029) 0.275 (± 0.031) 0.981 (± 0.011) 0.422 0.898 (± 0.035)

ADV <0.001a 0.045 0.877 (± 0.055) 0.779 (± 0.026) 0.356 (± 0.051) 0.979 (± 0.011) 0.506 0.912 (± 0.033)

NN 0.059 0.039 0.870 (± 0.057) 0.803 (± 0.024) 0.380 (± 0.053) 0.978 (± 0.010) 0.529 0.912 (± 0.033)

XGB 0.107 0.036b 0.928 (± 0.044) 0.644 (± 0.030) 0.266 (± 0.040) 0.985 (± 0.010) 0.413 0.908 (± 0.033)

NN (weighted) 0.057 0.040 0.862 (± 0.057) 0.834 (± 0.023) 0.419 (± 0.057) 0.978 (± 0.010) 0.564 0.918 (± 0.032)

XGB (weighted) 0.146 0.050 0.920 (± 0.045) 0.649 (± 0.030) 0.267 (± 0.040) 0.983 (± 0.010) 0.414 0.897 (± 0.036)

Equalized odds (EO) results are reported as the s.d. of true positive (TP) and false positive (FP) rates across all ethnicity labels, with bolded values denoting the best (a) and second best (b) 
scores. Classification metrics are reported alongside 95% CIs, with bolded values denoting best scores achieved on each test set. ADV, adversarial; XGB, XGBoost.
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of 0.869 (RL), 0.857 (RL, unweighted), 0.881 (adversarial), 0.885 (NN), 
0.881 (XGBoost), 0.887 (NN, weighted), 0.879 (XGBoost, weighted)). 
Using a sensitivity configuration of 0.9, we obtained consistent scores 
for sensitivity across all models and cohorts (PUH: sensitivity range 
0.872–0.919 (CI: 0.855–0.933); UHB: 0.862–0.879 (0.825–0.913); BH: 
0.862–0.935 (0.805–0.976)), with RL achieving the highest sensitivities 
on the UHB and BH test sets (however, it should be noted that RL had 
either the lowest or second-lowest specificities). And, as seen in previ-
ous studies, our models achieved high prevalence-dependent negative 
predictive value (NPV) scores (>0.978), demonstrating the ability to 
exclude COVID-19 with high confidence. Furthermore, these results 
demonstrate that an RL paradigm is more generalizable in diverse 
environments, with superior AUROC for the BH cohort, and superior 
sensitivity on the BH and UHB cohorts, which are the two more ethni-
cally diverse cohorts.

Although predictive performance of the RL model only varied 
slightly with respect to other models, the difference in accuracy of 
the RL model compared with that of other models was found to be 
statistically significant (P < 0.0001, by the Wilcoxon signed rank test).

In terms of fairness, the RL model achieved the best performance 
overall, achieving either the best or second-best equalized odds  
performances (for both true positive and false positive) across all 
external test cohorts, except for the false positive s.d. for PUH (Table 
1). The adversarial model achieved the second best performance  
overall, usually achieving the best or second best scores for one of  
true positive or false positive s.d. metrics. The NN and XGBoost  
models with weights (inversely proportional to the frequency of  
sensitive attributes) were not found to improve equalized odds. In  
general, models with an added dynamic debiasing functionality (that 
is, RL or adversarial models) demonstrably improved equalized odds. 
Similar results were found when models were optimized to sensiti-
vities of 0.85 (full numerical results in Supplementary Table 14), 
with RL generally achieving the best or second best equalized odds  
scores, demonstrating model consistency across small shifts in the 
decision threshold.

With the same goal of mitigating ethnicity biases, we additionally 
tested our method on a different classification task—patient discharge 
prediction. As before, we found that all models achieved reasonably 
high AUROC scores on the test set (Table 2), comparable to previ-
ously reported benchmarks using the same dataset28. AUROC scores 
ranged from 0.818 to 0.875 (CI: 0.805–0.886), with the XGBoost model 
achieving the highest score and the RL models (both with and without 
a debiasing component) achieving the lowest. However, when optimiz-
ing sensitivities to 0.9, RL (weighted) achieved the best results in terms 
of sensitivity and equalized odds, despite a small trade-off in AUROC.  
This was also the case when sensitivities were optimized to 0.85 (full 
numerical results in Supplementary Table 15), demonstrating model 
consistency. The difference in accuracy of the RL model compared 

with that of other models was found to be statistically significant 
(P < 0.0001, by the Wilcoxon signed rank test).

Debiasing hospital
We used t-stochastic neighbour embedding (t-SNE) to visualize a 
low-dimensional representation of all positive COVID-19 cases across 
the four NHS sites. From Fig. 3, we can see an isolated green cluster 
corresponding exclusively to a subset of presentations from OUH. This 
suggests that the training data can be clustered by, and thus is biased 
to, site-specific features such as annotation methods, data truncation, 
measuring devices or collection and processing tools. This was also 
found in a previous study using a different stratification of the same 
datasets3. These distribution shifts emphasize the importance of con-
sidering site-specific biases during model development.

For this bias-mitigation task, we tested all models on a held-out set, 
which included patient presentations from all four hospitals (Table 3). 
Model performances were higher than those achieved in the previous 
COVID-19 status prediction task (focused on ethnicity mitigation); 
and, as before, although performance was relatively consistent, the 
XGBoost and NN models (both weighted and unweighted) achieved  
the highest AUROC scores (AUROCs of 0.879 (CI: 0.865–0.892; RL), 
0.855 (0.840–0.870; RL unweighted), 0.882 (0.869–0.896; adversarial), 

Table 2 | Equalized odds evaluation for ethnicity bias and patient ICU discharge prediction test results across different 
models, optimized to sensitivities of 0.9

Model EO (TP) EO (FP) Sensitivity Specificity PPV NPV F1 AUROC

RL 0.032a 0.022a 0.897 (± 0.015) 0.539 (± 0.008) 0.171 (± 0.008) 0.980 (± 0.003) 0.287 0.829 (± 0.013)

RL (unweighted) 0.052 0.030 0.889 (± 0.016) 0.502 (± 0.008) 0.159 (± 0.008) 0.977 (± 0.003) 0.269 0.818 (± 0.013)

ADV 0.040 0.027 0.885 (± 0.016) 0.637 (± 0.008) 0.205 (± 0.010) 0.981 (± 0.003) 0.333 0.861 (± 0.012)

NN 0.033 0.037 0.884 (± 0.016) 0.600 (± 0.008) 0.189 (± 0.009) 0.980 (± 0.003) 0.312 0.847 (± 0.012)

XGB 0.062 0.022a 0.883 (± 0.016) 0.674 (± 0.008) 0.223 (± 0.011) 0.982 (± 0.003) 0.355 0.875 (± 0.012)

NN (weighted) 0.032a 0.033 0.882 (± 0.016) 0.606 (± 0.008) 0.191 (± 0.009) 0.980 (± 0.003) 0.314 0.843 (± 0.012)

XGB (weighted) 0.049 0.037 0.878 (± 0.016) 0.665 (± 0.007) 0.217 (± 0.010) 0.981 (± 0.003) 0.348 0.871 (± 0.011)

EO results are reported as the s.d. of TP and FP rates across all ethnicity labels, with bolded values denoting the best (a) scores. Classification metrics are reported alongside 95% CIs, with 
bolded values denoting best scores achieved on the test set.
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0.891 (0.879–0.904; NN), 0.900 (0.887–0.912; XGBoost), 0.894 (0.881–
0.906; NN weighted) and 0.901 (0.888–0.913; XGBoost weighted)). 
Using a sensitivity configuration of 0.9, we obtained consistent scores 
for sensitivity across all models (sensitivities of 0.887 (0.868–0.906; 
RL), 0.892 (0.873–0.911; RL unweighted), 0.882 (0.862–0.901; adver-
sarial), 0.879 (0.859–0.898; NN), 0.875 (0.855–0.895; XGBoost), 
0.883 (0.863–0.902; NN weighted) and 0.892 (0.873–0.911; XGBoost 
weighted)), with the weighted XGBoost and RL (unweighted) achiev-
ing the highest sensitivities and the weighted RL model achieving 
the third-highest sensitivity. As before, all models achieved high 
prevalence-dependent NPV scores (>0.985), demonstrating the ability  
to exclude COVID-19 with high confidence. Although the overall  
predictive performance between models was similar, the difference 
in accuracy of the RL model compared with that of other models  
was found to be statistically significant (P < 0.0001, by the Wilcoxon 
signed rank test).

In terms of bias mitigation, the proposed RL model (weighted) 
achieved the most fair performance, achieving the best result with 
respect to equalized odds (for both true positive and false positive 
s.d. scores). This result was consistent when models were optimized to 
sensitivities of 0.85 (full numerical results in Supplementary Table 16),  
demonstrating resilience of debiasing to decision thresholds. The 
adversarial model achieved the second-best performance in terms 
of false positive s.d., and the weighted XGBoost model achieved the 
second-best performance in terms of true positive s.d. Thus, as shown 
in the previous task, models with an added debiasing functionality 
demonstrably improved equalized odds, with only a slight trade-off 
in predictive performance (greatest AUROC decrease of 0.021 when 
comparing the RL model with the XGBoost implementation).

Discussion
As ML gains more significance in clinical decision-making, it is crucial 
to ensure that these technologies neither reflect nor amplify undesir-
able biases. Incorporating fairness principles during model develop-
ment and evaluation is essential to achieve this goal. Although our 
examination of variations across specific hospitals and ethnicities 
only addresses a portion of healthcare disparities, we aim to promote 
the utilization of deep RL and fairness principles in a wide range of 
prediction and debiasing tasks through the framework and concepts 
introduced.

For all tasks, we found that the outcomes of the RL models were 
less biased compared with those with no bias-mitigating component. 
However, although bias generally decreased, our models did not com-
pletely fulfil equalized odds requirements. One contributing factor 
may be that our training datasets, for all tasks, were imbalanced with 
respect to the sensitive attribute (that is, a much larger representation 
of white patients than other ethnicities; much more data was available 
from OUH and PUH than UHB and BH). As the base network we are using 

is an NN, skewed distributions can potentially give inconsistent results. 
This has previously been observed for adversarial training, as using 
balanced data was found to have a much stronger effect on fairness 
outcomes20. Thus, given sufficient data, future models could benefit 
from being trained on balanced datasets.

Because an RL set-up can help control how and when a learning 
signal is backpropagated to improve on error aggregation (which 
occurs through standard supervised learning), the use of cost-sensitive 
weighting (based on sensitive attribute frequency) may have been more 
effective for RL than when it was used in a standard supervised learning 
framework. In the standard supervised learning setting, cross-entropy 
loss provides a learning signal regardless of what is presented; thus, 
a model can become skewed or biased based on the majority class 
present in the batch. This was seen in the results for the weighted NN 
and XGBoost implementations, as equalized odds results were poorer. 
However, it should be noted that there may still be bias in the RL model 
given the population it is trained on, but this should not impact the 
performance on the test sets (which we have demonstrated temporally 
and externally). This bias may be a potential issue when transferring 
the model to a new domain, which can be an interesting area to explore 
in future studies.

With respect to fulfilling equalized odds requirements, the advan-
tage of using an RL framework was more observable and clear (that 
is, noticeable improvements in true positive and false positive s.d. 
for RL results over other models) for the patient discharge task and 
the COVID-19 task that involved mitigating inter-hospital biases. This 
may be due to the larger amount of training data used in those tasks 
compared with the COVID-19 task with ethnicity debiasing (14,949 
patients compared to 43,754 and 49,305 patients for COVID-19 ethnic-
ity, COVID-19 hospital, and ICU patient discharge tasks, respectively). 
Having a greater amount of training data may have made it easier for 
models to confidently differentiate between different classes (for both 
the main task and the sensitive attribute). This was demonstrated by 
the COVID-19 tasks, as higher predictive performance was achieved for 
the hospital-site mitigation task than the ethnicity mitigation task, as 
the hospital-based task utilized a larger training set.

We employed threshold adjustment to ensure high sensitivity in 
our classification tasks, specifically for COVID-19 prediction and ICU 
patient discharge prediction. This technique is effective when deal-
ing with imbalanced training data, which was the case for both tasks. 
However, we observed data bias due to site-specific factors in the t-SNE 
visualization (Fig. 3). Consequently, an optimal threshold derived from 
a specific dataset may not be suitable for new settings with different 
distributions. This probably contributed to the varying sensitivities 
observed between test sites in the COVID-19 task with ethnicity debi-
asing. Therefore, it is crucial to further investigate the selection of an 
optimal decision threshold, as it directly impacts classification and 
fairness metrics by affecting true positive and true negative rates. 

Table 3 | Equalized odds evaluation for hospital bias and COVID-19 status prediction test results across different models and 
test sets, optimized to sensitivities of 0.9

Model EO (TP) EO (FP) Sensitivity Specificity PPV NPV F1 AUROC

RL 0.010a 0.040a 0.887 (± 0.019) 0.622 (± 0.008) 0.155 (± 0.009) 0.986 (± 0.003) 0.264 0.879 (± 0.014)

RL (unweighted) 0.035 0.063 0.892 (± 0.019) 0.553 (± 0.008) 0.135 (± 0.008) 0.985 (± 0.003) 0.234 0.855 (± 0.015)

ADV 0.022 0.045b 0.882 (± 0.019) 0.642 (± 0.008) 0.161 (± 0.009) 0.986 (± 0.003) 0.272 0.882 (± 0.014)

NN 0.022 0.065 0.879 (± 0.019) 0.676 (± 0.008) 0.175 (± 0.010) 0.986 (± 0.002) 0.292 0.891 (± 0.013)

XGB 0.024 0.057 0.875 (± 0.020) 0.720 (± 0.008) 0.196 (± 0.011) 0.987 (± 0.003) 0.320 0.900 (± 0.012)

NN (weighted) 0.033 0.055 0.883 (± 0.019) 0.686 (± 0.008) 0.180 (± 0.011) 0.987 (± 0.002) 0.299 0.894 (± 0.013)

XGB (weighted) 0.014b 0.057 0.892 (± 0.019) 0.681 (± 0.008) 0.179 (± 0.010) 0.988 (± 0.002) 0.298 0.901 (± 0.012)

EO results are reported as the s.d. of TP and FP rates across all hospital labels, with bolded values denoting the best (a) and second-best (b) scores. Classification metrics are reported alongside 
95% CIs, with bolded values denoting best scores achieved on the test set.
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Additionally, in clinical settings, achieving consistent sensitivity (or 
specificity) scores across different sites is desirable, even if the AUROC 
remains consistent. Varying sensitivities and specificities can make 
it challenging for clinicians to rely on a model’s performance. Future 
experiments could explore the use of site-specific thresholds tailored 
during the calibration phase at each site to standardize predictive 
performance19. Moreover, while we recognize the usefulness of prob-
ability as a measurement, we chose classification for rapid triaging into 
‘COVID-free’ or ‘COVID-suspected’ areas. However, depending on the 
task, probabilities can be used as the final outcome.

Furthermore, it is essential to consider the trade-off between sen-
sitivity and specificity. In the COVID-19 task, we optimized thresholds 
for high sensitivity to aid in triaging. However, this trade-off nega-
tively affected specificity. RL had high sensitivities but the lowest or 
second-lowest specificities. The trade-off should be carefully assessed 
for each task, as low specificity can strain hospitals because of increased 
resource utilization, follow-up tests, costs and patient anxiety or dis-
comfort. This trade-off is also significant when determining fairness 
criteria. In certain tasks, high sensitivity may be preferred to minimize 
harm caused by false negatives, such as in disease diagnosis. In these 
cases, fairness metrics like true positive parity (equal opportunity) 
can be used, ensuring that the probability of the classifier predicting 
a sample as the positive class is equal across all classes of the sensitive 
attribute. It is important to note that other fairness metrics, such as sta-
tistical parity and test fairness, exist. Therefore, applications should be 
optimized with fairness definitions most suitable for each specific task.

While we demonstrated the effectiveness of our model in handling 
multi-class sensitive features, it remains crucial to consider whether a 
demographic-specific or site-specific model is more suitable compared 
to a generalized multi-class model for a given task. For instance, if the 
model’s purpose is to support patients within a specific hospital care 
structure or predict the risk of a disease known to vary significantly 
between ethnicities, utilizing personalized models trained individu-
ally on each class may be the optimal choice. However, implementing 
multiple models can be computationally demanding, posing challenges 
for hospitals. In such cases, adopting a more generalized model, like 
the debiasing framework presented here, would be advantageous, as 
it offers a feasible alternative while still addressing biases.

Understanding the complex interplay between genetic, social, and 
behavioural factors in clinical outcomes poses a significant challenge. 
While it is evident that ethnicity should not be the sole determining factor 
in certain non-clinical tasks like recidivism prediction, its role in clinical 
contexts is not always as straightforward. Ethnicity can be an important 
predictor for specific diagnoses, prognoses, and treatment recommen-
dations29. In our COVID-19 screening task, we focused on addressing 
data imbalances to ensure fair predictions for minority groups using 
available data from UK hospital trusts. However, we acknowledge that 
ethnicity encompasses essential characteristics like place of residence 
and socioeconomic status, which collectively contribute to disease 
prevalence among specific ethnic groups. Defining the precise contribu-
tion of ethnicity (and related factors) to COVID-19 diagnosis during the 
early stages of a pandemic can be challenging. Nevertheless, as more 
data are collected over time, gradual adjustments should be made to 
accurately assess the true impact of these characteristics.

Methods
Previous works have shown that ML-based methods can identify 
patients presenting with COVID-19 up to 90% sooner than polymerase 
chain reaction (PCR) testing, achieving high sensitivities and perform-
ing effectively as a rapid test-of-exclusion3,19,27,30. Additionally, one 
study showed that adversarial models were effective at screening for 
COVID-19 whilst being able to mitigate biases for selected sensitive 
features3. We aimed to build on these existing works, formulating a 
deep RL framework (with a specialized reward function) to effectively 
screen for COVID-19, while simultaneously mitigating unwanted biases.

Datasets and preprocessing
To train and validate our models, we used clinical data with linked, 
deidentified demographic information for patients presenting to emer-
gency departments across four independent UK NHS trusts: OUH, PUH, 
UHB and BH. With respect to these datasets, UK NHS approval via the 
national oversight and regulatory body, the Health Research Authority 
(HRA) through the Integrated Research Application System (IRAS), has 
been granted for development and validation of artificial intelligence 
models to detect COVID-19 (CURIAL; NHS HRA IRAS ID: 281832).

With scalability in mind, we trained models for the purposes of 
rapid triaging using laboratory blood tests and vital signs, as these are 
widely and routinely collected during the first hour of patients attend-
ing emergency care pathways in hospitals in middle- to high-income 
countries30. The features included are the same as those used in  
ref. 19 (also similar to those used in ref. 27 and ref. 3), allowing for com-
parison. Supplementary Table 2 summarizes the final features used.

For each of the models, a training set was used for model develop-
ment, hyperparameter selection and model training; a validation set 
was used for continuous validation and threshold adjustment; and, 
after successful development and training, three held-out, external 
test sets were used to evaluate the performance of the final models.

For the training and validation sets used in the ethnicity debiasing 
models, we used patient presentations exclusively from OUH. From 
OUH, we curated two data extracts—one from the first wave of the 
COVID-19 pandemic in the UK (1 December 2019 to 30 June 2020) and 
one from the second wave (1 October 2020 to 6 March 2021) (Supple-
mentary Fig. 1). Owing to incomplete penetrance of testing during 
the first wave and imperfect sensitivity of the PCR test, there is uncer-
tainty in the viral status of patients presenting who were untested or 
tested negative. Thus, from the ‘wave one’ dataset, we only included the 
positive cases (as determined through PCR tests) in training; and from 
the ‘wave two’ dataset, we included both positive COVID-19 cases (by 
PCR) and negative controls. This was done to ensure that the label of  
COVID-19 status was correct during training. This resulted in a preva-
lence of 11.1% used during training, which is within the spatial and tempo-
ral range of prevalences observed across the UK trusts used in our study 
(prevalences between 4.27–12.2%; Supplementary Table 1). Further-
more, to reasonably evaluate classification performance with respect 
to ethnicity, we removed any presentations where the label for ethnicity  
was ambiguous, including those labelled as ‘unknown’, ‘mixed’ or 
‘other’. This resulted in 18,687 patients used in training and validation, 
including 2,083 of which were COVID-19 positive. A ratio of 80:20 was 
used to split the OUH cohort into training and validation sets. We then 
performed external validation on three independent patient cohorts 
from PUH, UHB and BH (totalling 38,964 admitted patients, including 
1,963 who were COVID-19 positive). From Supplementary Table 3, we 
can see that ethnicity is heavily skewed in our training dataset, making 
it a possible source of bias during training.

We performed sensitivity analysis to account for uncertainty in 
the viral status of patients testing negative by PCR or who were not 
tested. We evaluated this on the validation set (to ensure that the test 
sets were not used until a final model is developed), achieving AUROC 
scores of 0.836 (0.811–0.860) and 0.857 (0.833–0.880) for the original  
and adjusted training sets, respectively. The comparable results (over-
lapping CIs) demonstrate model stability across the training sets.

In addition to debiasing ethnicity, we also demonstrated the utility 
of our proposed method for debiasing with respect to the hospital that 
a patient attended. To evaluate bias related to hospital location, pres-
entations from multiple sites needed to be present in the training data. 
Thus, we combined presentations from all hospital cohorts previously 
described; however, we additionally included the patient presenta-
tions with ambiguous ethnicity labels, as we are no longer focusing on 
mitigating ethnicity-based biases. Using a 60:20:20 split, we separated 
the data into training, validation and test sets, respectively, resulting in 
58,339 presentations used in training and validation (including 4,245 
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that were COVID-19 positive) and 14,585 presentations in the held-out 
test set (including 1,056 that were COVID-19 positive).

Consistent with previous studies, we addressed the presence of 
missing values by using population median imputation, then standard-
ized all features in our data to have a mean of 0 and an s.d. of 1.

A summary of training, validation and test cohorts used in each 
task can be found in Supplementary Tables 3 and 4. The full inclusion 
and exclusion criteria for patient cohorts and summary population 
statistics can be found in Supplementary Section C.

To further test our framework, we also trained models to predict 
the discharge status of patients staying in the ICU, using data from  
the eICU Collaborative Research Database (eICU-CRD)31,32. The 
eICU-CRD is a publicly available, anonymized database with pre- 
existing institutional review board approval. The database is released 
under the Health Insurance Portability and Accountability Act safe 
harbour provision. The re-identification risk was certified as meeting 
safe harbour standards by Privacert (Health Insurance Portability and 
Accountability Act certification no. 1031219-2). Here, we also focus on 
debiasing ethnicity (which, again, is heavily imbalanced in the dataset), 
demonstrating the generalizability of our method on a new, indepen-
dent clinical task. Details on the dataset, features and preprocessing 
steps used for this task can be found in Supplementary Section D.

Reinforcement learning for classification
To formulate classification as an RL task, we model our problem in 
a sequential decision-making format using a finite Markov decision 
process. We define the Markov decision process using a tuple of five 
variables (s, a, p, r, γ), where: s is the state space of the process, a is the 
action that an agent takes, p is the transition probability that results 
from an action, r is the reward expected for a given action and γ is the 
discount factor used for future rewards.

For a given N × D dataset, N is the total number of samples and  
D is the number of features in each sample. During training, a batch  
of data is randomly shuffled and presented to the model in order. 
Here, P is deterministic, as the agent moves from one state to the next 
according to the order of samples in the training data. The features of 
each sample presented makes up the state, s.

The action, a, is the prediction the agent makes when presented 
with a state, s. Given a total number of classification labels, K, each a 
is selected from one of K classes. With respect to COVID-19 classifica-
tion, a ∈ {0, 1}, where 0 corresponds to COVID-19 negative cases and 1 
corresponds to COVID-19 positive cases.

Because the selection of an action, a, does not determine the fol-
lowing sample, s, presented to the agent, an alternative dependency 
must be introduced between s and a. To achieve this, a training episode 
is terminated when an agent incorrectly classifies the minority class, 
preventing any further reward, r. This allows for a relationship between 
s and a to be learned, especially when there are severe data imbalances 
between majority (COVID-19 negative) and minority (COVID-19 posi-
tive) classes26. We have specifically chosen to use this off-policy Monte 
Carlo (that is model-free) RL approach, as an off-policy algorithm 
allows for the samples presented to the network to be independent 
and uncorrelated; and the model-free element means we don’t learn a 
transition function (and thereby don’t learn a trajectory), but instead, 
learn a mapping of state to appropriate action for all considered states. 
Additionally, the temporal difference loss allows us to estimate the 
equivalent Monte Carlo return in a more efficient manner33, thus  
making it feasible to treat each state independently. The overall RL 
framework is shown in Fig. 1.

Defining reward for bias mitigation. Standard classification models 
that use gradient descent, estimate the marginal distribution with a 
differentiable error term. This can skew models towards the majority 
class present in a batch, due to aggregation of the errors. However, RL 
provides a way of indicating error using a non-differentiable signal 

that can be uniquely designed for each situation at hand; for example, 
for our purposes, we can detect minority classes by representing this 
in the reward function, which aggregation typically doesn’t allow you 
to do. As a result, an RL paradigm allows for the learning of minority 
classes without needing to compromise on learning of majority classes, 
implicitly. This is particularly important in the tasks presented here, 
where we aim to train models that can generalize well across different 
patient demographics, patient outcomes and hospital centres, even 
if their distributions are unequal at the time of model development.

The reward, r, is the signal evaluating the success of the agent’s 
selected action. We introduce a specialized function for reward, 
uniquely formulated for the purpose of mitigating biases of the cho-
sen sensitive feature, z. To do this, we separate the reward function 
into two components—one to help train a strong classifier and one 
to debias with respect to the sensitive attribute. Additionally, as the 
majority of previous studies have exclusively evaluated bias mitiga-
tion for binary attributes, we formulated the reward function to be 
able to debias multi-class attributes. This is especially important in 
clinical tasks, as a higher degree of granularity is often required since 
binning values to fewer (that is, binary) classes may not be biologically 
relevant (especially when classes are categorical) and is heavily biased 
on the sample population3,26. Thus, to accommodate for class imbal-
ance for multi-class sensitive features, we make the reward inversely 
proportional to the relative presence of a class in the data. This is com-
parable to using cost-sensitive weights in standard supervised learning. 
While cost-adjusted weights can help address class imbalances, they 
still rely on the cross-entropy loss, which provides the network with 
a learning signal regardless of what is presented to it; thus, skewing 
models towards the majority class present in a batch, due to aggrega-
tion of the errors. By instead implementing an RL set-up (rather than a 
supervised learning framework dependent on gradient descent), one 
can control how and when a learning signal is backpropagated (further 
explanation in ‘Double deep Q-learning’ and ‘Reinforcement learning 
training procedure’). This has been demonstrated in previous studies 
on imbalanced learning (with respect to the outcome class label), where 
RL (with a specialized reward function) was compared with other com-
mon imbalanced learning methods (Synthetic Minority Oversampling 
Technique (SMOTE), cost-sensitive and cost-adjusted weights), and 
found to improve on balanced classification25,26.

During model training, a positive reward is given when the agent 
correctly classifies the sample (as either COVID-19 positive or nega-
tive) and a negative reward is given otherwise. If a negative reward is 
given (that is, a sample was misclassified), the absolute reward value 
given is inversely proportional to the relative presence of the label 
of the sample in the training data. Thus, the absolute reward value of 
a sample from the minority class is higher than that in the majority 
class, making the model more sensitive to the minority class. This 
helps accommodate for label imbalance during training; and since 
the primary purpose of the model is to effectively classify COVID-19 
status, this sensitivity differential will help the agent learn the optimal 
behaviour for COVID-19 prediction. To consider the sensitive class, z 
(which we aim to debias), we make the absolute reward for the positive 
case (that is, when a sample is correctly classified) inversely propor-
tional to the relative presence of each respective z label in the training 
data, accommodating for any class imbalances present in a multi-class 
sensitive attribute. Here, the absolute reward value of a sample from a 
minority z class is therefore higher than that from the majority class, 
making the model more sensitive to minority z labels. By performing 
debiasing on the positively rewarded states, we already know that the 
sample was correctly classified for the main task, as debiasing would 
be inconsequential if the model was not clinically effective for use to 
begin with. The formulation introduced allows for evaluation of both 
binary and multi-class tasks and sensitive features. Assuming M classes 
in z, and using lk to represent the COVID-19 label, the reward function 
is formulated as follows:
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R(st,ak, lk) = {
λm if ak = lk
−λk if ak ≠ lk

(1)
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, 1
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,… , 1
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‖
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2 (2)
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‖
‖‖
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, 1
N1
,… , 1

Nm

‖
‖‖
2 (3)

N represents the number of instances in class k or m, and λ is a 
trade-off parameter used for adjusting the influence of each class. 
We found that models achieved desirable performance when λ is 
the vector-normalized reciprocal of the number of class instances, 
as shown in equations (2) and (3). To balance immediate and future 
rewards, a discount factor, γ = 0.1, is used.

Policy iteration by Q-learning. An optimal policy π* is one that maxi-
mizes the expected cumulative reward, vπ. This can be interpreted as 
the value of a state-action combination, and is discovered by iterating 
through a series of policies, {π}ki , where π* = πk. Using the Bellman  
equation, vπ can be determined by solving a system of linear equations 
and calculating a set of Q-values, where Q represents the action-value 
function:

Qπ
i (st,at) = r(st,at) + γ∑

st+1

p(st+1|st,at)vπi (st+1), (4)

This gives successive policies:

πi+1(at|st) = argmax
a

Qπ
i (st,at), (5)

where, π∗ = argmax
a

Q∗ . Finally, we can use the advantage function,  

Aπ, to relate the state-action value function and Q function:

Aπ(st,at) = Qπ(st,at) − Vπ(st) (6)

The value function, Vπ can be viewed as a proxy for the ‘goodness’ 
of a particular state, and the Qπ function evaluates the value of select-
ing a particular action in this state34. Thus, Aπ can be interpreted as the 
relative importance of each action.

Duelling Q-network architecture. In a typical deep Q-network (DQN) 
set-up, the output layer of the network corresponds to predicted 
Q-values for state-action pairs. Since only one state-action pair can be 
trained at a time, it can be difficult to provide update information about 
the state. To address this, we implement a duelling Q-network, which is 
capable of training state representations and action representations 
independent of one another.

For a DQN, the Q-network is implemented as a standard, single- 
stream NN, where fully connected layers are connected in a continuous 
sequence. The duelling Q-network (Fig. 2), instead, implements a fully 
connected NN with two streams—one for estimating the value (which is 
scalar) and another to estimate the advantages of each action (which is 
a vector). These two streams are combined to produce a single output, 
which is the Q-function34.

Based on the definition of the advantage function, we represent 
Q as:

Qπ
i (st,at;θi,αi,βi)

= Vπ
i (st;θi,βi) + (Aπ

i (st,at;θi,αi) − softmax(Aπ
i (st,at+1;θi,αi))) ,

(7)

where α and β represent the parameters of the A and V streams of  
the fully connected layers, respectively. The additional softmax  
module is to allow Q to recover V and A uniquely34. Additionally, this 
extra term does not change the relative rank of A (and subsequently, 
Q-values), which preserves the ϵ-greedy policy (which we use in our 
training; explained in ‘Reinforcement learning training procedure’).

For the Q-network, we used a fully connected NN with one hidden 
layer, alongside the rectified linear unit (ReLU) activation function and 
dropout. For updating model weights, the Adam (Adaptive Moment 
Estimation) optimizer was used during training. We set the exploration 
probability, ϵ, to be linearly attenuated from 1 to 0.01 over the entire 
training process. Each training period consists of 120,000 steps (that 
is, iterations of updating parameters θ).

Double deep Q-learning. During each episode, combinations of states, 
actions, and rewards at each step, (st, at, rt, st+1), are saved in the agent’s 
working memory, M. To learn the parameters of the Q-network, θ, a ran-
domly sampled subset of these transitions, B, are used in the gradient  
descent step. The mean-squared error loss function is used to optimize 
the network:

L(θi) = ∑
(st ,at ,rt ,st+1)∈B

(y −Q(st,at;θi))
2 (8)

As in standard supervised learning, y can be treated as the target 
to be predicted and Q(s, a; θi) as the prediction. We define y using the 
format of a DDQN.

As a standard DQN uses the current Q-network to determine an 
action, as well as estimate its value, it has been shown to give overop-
timistic value estimates35. This increases the likelihood of selecting 
overestimated values (which can occur even when action values are 
incorrect), making it harder to learn the optimal policy. Thus, DDQN 
was introduced as a method of reducing this overestimation36. Unlike 
a DQN, a DDQN uses the current Q-network to select actions, and the 
target Q-network to estimate its value37. Through decoupling the selec-
tion and evaluation steps, a separate set of weights, θ′, can be used to 
provide an unbiased estimate of value.

The DDQN algorithm is implemented using the following target 
function:

yi = rt + (1 − term)γQ (st+1, argmax
a

Q(st+1,at+1;θi);θ′i) (9)

As previously mentioned, a dependency between a state and 
action needs to be established for the agent to learn a relationship. 
Thus, within this function, the value of ‘term’ is set to 1 once the agent 
reaches its terminal state, and 0 otherwise. A terminal state is reached 
after the agent has iterated through all samples in the training data (or a 
set number of samples, specified at the beginning of training), or when 
the agent misclassifies a sample from the minority class (preventing 
any further reward).

Reinforcement learning training procedure
As a typical supervised learning model relies on standard cross-entropy 
loss, a network is provided with a learning signal regardless of what is 
presented to it. However, by framing the learning problem as an RL 
set-up, learning can be regulated through the design of the reward 
function. This allows for one to control how and when a learning signal 
is backpropagated (recall the ‘term’ variable defined), which aggrega-
tion (through standard supervised learning) typically doesn’t allow for.

The environment reward procedure is described in Algorithm 1. 
The overall Q-network is trained according to the DDQN process 
described in Algorithm 2. The final, optimized Q-network is considered 
to be the trained classifier. In each episode, the agent employs  
an ϵ-greedy behaviour policy to select an action, which randomly 
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selects an action with probability ϵ, or an action following the optimal 
Q function, argmaxa Q∗(st,at) with probability 1 − ϵ.

Algorithm 1 Environment reward procedure. 

Algorithm 2 DDQN training procedure. 

Model comparators and evaluation metrics
To assess the effectiveness of our method, we compare it against two 
baseline model architectures—a fully connected NN and XGBoost. 
Additionally, we compare our method to an adversarial debiasing 
framework, which currently represents the state-of-the-art approach 
for addressing algorithmic biases. XGBoost is a widely used ensemble 
model known for achieving state-of-the-art performance in vari-
ous ML challenges. The fully connected NN serves as the founda-
tion for both our RL-based framework and an adversarial debiasing 
framework. Furthermore, we evaluate our method against an RL 
classification model without any debiasing component (specifi-
cally, an implementation introduced previously26). This comparison 
ensures that our model is initially trained as a strong classifier and 
that the inclusion of a debiasing component is indeed beneficial.To 
account for the imbalanced distribution of sensitive attribute labels, 
we employ cost-adjusted weighting within the RL framework. To 
have a fair comparison, we also train implementations of the NN and 
XGBoost models using the same weighting strategy.All comparator 
methods have previously been shown to be able to effectively screen 
for COVID-19, using the same datasets, allowing for direct comparison 
of our method3,26,27,30. Details on network architectures of compara-
tor models can be found in Supplementary Section B.To evaluate the 
performance of COVID-19 prediction, we report sensitivity, specific-
ity, positive and negative predictive values (PPV and NPV), and the 
AUROC, alongside 95% CIs based on standard error. CIs for AUROC are 
calculated using Hanley and McNeil’s method. The Wilcoxin signed 
rank test is used to calculate P-values, comparing the difference in 
accuracy between different models.As the purpose of our framework 

is to train models that are unbiased towards sensitive features, z, we 
evaluate model fairness using the statistical definition of equalized 
odds. Here, a classifier is considered fair if true positive rates are 
equal and false positive rates are equal, across all possible classes 
of the sensitive attribute7. To assess multiple labels (that is, >2), we 
used the s.d. of true positive and false positive scores3. Standard 
deviation scores closer to zero suggest greater outcome fairness. 
The equations used to calculate true positive and false positive s.d. 
scores are as follows:

s.d.TP = s.d. ({P( ̂Y = 1|Y = 1,Z = zi),P( ̂Y = 1|Y = 1,Z = zi+1),

… ,P( ̂Y = 1|Y = 1,Z = zN)})

= s.d. ({ TPi

TPi+FNi
, TPi+1

TPi+1+FNi+1
,… , TPN

TPN+FNN
}) ,

(10)

s.d.FP = s.d. ({P( ̂Y = 1|Y = 0,Z = zi),P( ̂Y = 1|Y = 0,Z = zi+1),

… ,P( ̂Y = 1|Y = 0,Z = zN)})

= s.d. ({ FPi

TPi+FNi
, FPi+1

TPi+1+FNi+1
,… , FPN

TPN+FNN
})

(11)

Hyperparameter optimization and threshold adjustment
In each task, appropriate hyperparameter values were determined 
through grid search and standard fivefold cross-validation, using 
respective training sets. Grid search was used to determine: (1) the 
number of nodes to be used in each layer of the NN and RL models,  
(2) the learning rate and (3) the dropout rate. Fivefold cross-validation 
was used to ensure that hyperparameter values were evaluated on as 
much data as possible, as to provide the best estimate of potential model 
performance on new, unseen data. Details on the hyperparameter values  
used in the final models can be found in Supplementary Section E.

The raw output of many ML classification algorithms is a prob-
ability of class membership, which is then mapped to a particular 
class. For binary classification, the default threshold is typically 0.5, 
where values equal to or greater than 0.5 are mapped to one class and 
all other values are mapped to the other. However, this default thresh-
old can lead to poor sensitivity, especially when there is a large class 
imbalance (as seen with our training datasets, where there are far more  
COVID-19 negative cases than positive ones). Thus, we used a grid 
search to adjust the decision boundary used for identifying COVID-19 
positive or negative cases, to improve detection rates at the time of 
testing. For our purposes, the threshold was optimized to sensitivi-
ties of 0.9 to ensure clinically acceptable performance in detecting 
positive COVID-19 cases. This sensitivity was chosen to exceed the 
sensitivity of lateral flow device tests, which achieved a sensitivity of 
56.9% (95% CI: 51.7–62.0%) for OUH admissions between 23 December 
2021 and 6 March 202128. Additionally, the gold standard for diagnos-
ing viral genome targets is by real-time PCR, which has estimated 
sensitivities of approximately 80–90%38,39. Therefore, optimizing to  
a threshold of 0.9 will ensure that models can effectively detect  
COVID-19 positive cases and exceed the sensitivities of current diag-
nostic testing methods.

We chose to represent this task as a binary classification (COVID-19 
positive or negative) rather than a probability score, to correspond to 
the green–amber–blue categorization system adopted by trust policy, 
with green representing a patient whose illness has no features of 
COVID-19, amber representing an illness with features potentially char-
acteristic with COVID-19 and blue representing laboratory-confirmed 
COVID-19 infection. Thus, having a classification result is consistent 
with rapid triage into a green or amber pathway.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

http://www.nature.com/natmachintell
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Data availability
Data from OUH studied here are available from the Infections in Oxford-
shire Research Database (https://oxfordbrc.nihr.ac.uk/research-themes/
modernising-medical-microbiology-and-big-infection-diagnostics/
infections-in-oxfordshire-research-database-iord/), subject to an 
application meeting the ethical and governance requirements of  
the database. Data from UHB, PUH and BH are available on reason-
able request from the respective trusts, subject to HRA requirements.  
The eICU Collaborative Research Database is available online at  
https://www.physionet.org/content/eicu-crd/2.0/.

Code availability
Code for this publication can be found at https://codeocean.com/
capsule/6724009 (ref. 40) and https://github.com/yangjenny/ 
BiasMitigationRL (ref. 41).
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