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Abstract—Confidential computing is increasingly becoming a
cornerstone for securely utilizing remote services and building
trustworthy cloud infrastructure. Confidential computing builds
on hardware-anchored root-of-trust that can attest the identity
and authenticity of the remote machine, the configuration, and
the running software stack, in an unforgeable way. In addition to
the hardware-rooted verifiable attestation mechanism, confiden-
tial computing depends on strict run-time isolation of confidential
computing tasks’ data and code from each other and the other
tasks, including privileged ones. Such isolation is achieved via
on-chip access control and cryptographically once off-chip.

Despite the wide support of confidential computing in most
modern processors, e.g., AMD SEV-SNP and ARM CCA, there
is minimal discussion of the effect of such support on the
performance of conventional on-chip access control. Thus, in
this paper we highlight the key changes in virtual memory
support required for access control in confidential computing
environments, and quantify their overheads. We propose an
optimized design that enables improved performance by caching
confidential computing access control metadata effectively. Two
design options are proposed to balance hardware overhead and
performance. We evaluate two configurations with different TLB
entry coverage, which mirror Arm CCA GPC and AMD RMP,
respectively. Our design improves performance by 12% over the
baseline access control design and 6% over the state-of-the-art.

Index Terms—Confidential Computing, Access Control, Arm
CCA, Hardware Security, Memory Virtualization, MMU.

I. INTRODUCTION

As cyber-attacks increase, cloud customers demand stronger
data protection. Users often lack visibility into the cloud
provider’s hardware and software. To reduce the risks stem-
ming from physical attacks and potentially vulnerable supply
chain in cloud systems, hardware vendors now offer Confi-
dential Computing support. With hardware-rooted confidential
computing support, customers can directly attest the hardware
running their job and rely on its security features to protect the
confidentiality and integrity of their applications, even in the
presence of a malicious hypervisor. Confidential computing
support relies on three aspects: (i) immutable hardware root-
of-trust (RoT) that can verifiably report the boot sequence,
platform status, and the loaded software, (ii) proper access
control and isolation for confidential jobs’ data and code while
on the chip, and (iii) cryptographic data and code protection
while off the trusted compute base (e.g., in off-chip memory).

Although confidential computing support is commonly an-
nounced and/or supported by major chip vendors [1]–[3],

Haoyu (Henry) Wang, Noa Zilberman, and Amro Awad are with the
University of Oxford. Ahmad Atamli is with University of Southampton.

limited implementation details are made public. Meanwhile,
confidential computing can incur an average performance
overhead of 24.5% by AMD SEV-SNP, as shown in Table I,
which emphasizes the need for more efficient hardware designs
and implementations. While the hardware-rooted measured
boot attestation report and secure session establishment are
incurred infrequently (e.g., at the job start time), off-chip
data protection and access control overheads can lead to
significant run-time performance degradation. To the best of
our knowledge, there is a scarcity of research that explores the
design space for access control implementation in confidential
computing.

II. BACKGROUND: CONFIDENTIAL COMPUTING IN
VIRTUALIZED ENVIRONMENTS

The foundation of access control in modern confidential
computing architectures is hardware-enforced memory iso-
lation across co-existing domains. A confidential comput-
ing domain gains trust from (i) a minimal verifiable priv-
ileged software stack, (ii) hardware-enforced isolation, and
(iii) hardware-rooted attestation. For example, ARM CCA [3]
defines three domains: realm (confidential computing), secure
(trusted services), and normal (OS and hypervisor). This
isolation relies on an additional access control layer, which
we call the confidentiality check. Since each domain supports
multiple privilege levels, isolation is achieved hierarchically:
OS manages process page tables, hypervisor manages nested
VM page tables, and a minimal firmware establishes hardware
memory assignment through a Vertical Check Table (VCT).
Conceptually, VCT is analogous to ARM’s Granule Protection
Table (GPT) [3] and AMD’s Reverse Map Table (RMP) [4].

In a virtualized environment, a single memory reference
can trigger a complex, two-dimensional address translation.
The guest OS manages the first stage mapping (guest virtual
to guest physical address, gVA-gPA, stored in the guest page
tables), while the hypervisor manages the second stage (guest
physical to system physical address, gPA-sPA, stored in the
nested page tables). The page table walker, which is generally
in the MMU, issues a sequence of memory reads to fetch
the corresponding page table entry. Permission and access
bits in the page table entries are checked. In the worst-case,
a Translation Lookaside Buffer (TLB) miss can trigger two-
dimensional walks requiring up to 4 (4-level guest page walk)
* 4 (4-level nested page walk) + 4 + 4 = 24 memory accesses
to resolve a single address [5] [6] with a final memory access
by the CPU to fetch the data. A large number of memory
accesses are required because each step of the guest page table
walk produces a guest physical address, which must then be
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TABLE I: Performance Evaluation of AMD SEV-SNP: AMD
Milan, 2 vCPUs; GAP Benchmark Suite, Scale 20.
Metric Value
Normalized, geometric mean (SEV-SNP/Base) 0.75
Average overhead, arithmetic mean (%) 24.5

translated through multiple levels of nested page table walks
to obtain the corresponding system physical address.

III. MOTIVATION
However, to achieve the access control with confidentiality

check, each access to system physical memory, including
those required for address translation and the target memory
address access, requires a VCT check to ensure that the target
address can be accessed by the world initiating the request.
Thus, even a conservative implementation of VCT that merely
captures the world each physical page belongs to can incur
50 memory accesses for a single memory access1. Note
that this assumes a linear VCT implementation and hence a
single memory access to obtain confidentiality check metadata.
Frequent VCT checks during memory accesses add latency to
the memory path and decrease instructions per cycle (IPC).
We evaluated an AMD SEV-SNP confidential VM on an AMD
Milan processor against a baseline system without SEV-SNP
on the same processor, using the GAP benchmark suite. Table I
shows a 24.5% mean IPC overhead.

While prior work has provided informative measurements
of confidential computing overheads on specific platforms [7]–
[10], these studies primarily evaluate end-to-end performance
and extend confidential computing to additional platforms. In
contrast, they do not describe the hardware changes required
to support confidentiality checks or the alternative designs to
implement and optimize them. The ARM RME design guide
recommends a PAS-tagged cache and a world/security state-
tagged TLB, but it does not provide performance data, and we
believe the TLB design can be further optimized. A few papers
examine architecture design, metadata bit insertion policies,
and the placement of confidentiality checks, for example,
separate paths near the MMU and CPU versus an integrated
mechanism near the MMU.

In this paper, we explain and quantify the overheads of
access control in confidential computing, and propose an
effective mechanism to minimize such overheads. To this end,
we investigate the overheads incurred by confidentiality check
when VCT is linear vs. two-level, study the effectiveness of
caching VCT metadata on the different memory access paths,
and propose an optimization that embeds verification result as
a part of each TLB entry to eliminate the need for checking
a VCT cache in parallel with each TLB access. Our design
achieves an average of 6% performance improvement over the
Shelter [11].

IV. THREAT MODEL

Our threat model is similar to prior work in confidential
computing [1], [3]. We assume a powerful adversary with
full control over the privileged software stack, including the
hypervisor and host OS, which are considered untrusted and

124 page table walks each requiring 24 VCT checks, plus final memory
access and its corresponding VCT check.

potentially malicious [4]. The Trusted Computing Base (TCB)
is thus minimized to the CPU hardware and its specific trusted
firmware. The attacker’s primary objective is to compromise
the confidentiality and integrity of a target guest VM’s data-
in-use by subverting its memory isolation. While physical
attacks and certain side-channels are often considered out of
scope, attacks leveraging software control are central to the
confidential computing threat landscape.

V. CONFIDENTIALITY CHECK IMPLEMENTATION

CPU

VM VM …

iCC

dCC

gVA

sPA

Physical 
Memory Space

VS Cache

VCTVCTW

VS
Associated

Pages

(w) sPA

Check passed(pt) sPA

L1/L2 TLB

2D MMU

Fig. 1: Intermediate and Direct Confidentiality Check
(i/dCC) Located on the Memory Access path. (Grey boxes:

trusted CC related modules.)
As shown in Figure 1, confidentiality check (CC) must occur

on both the direct memory access path and the intermediate
memory access path, as depicted by dCC and iCC blocks,
respectively. dCC checks if the resulting sPA to be accessed
belongs to a Vertical Space accessibly by the current world.
Meanwhile, iCC applies the same checks as dCC but for
the memory requests resulting from the page table walking
process. As shown in the figure, i/dCC can include logic
for VCT Walking and a VS Cache, respectively. We first
discuss the basic split CC design, followed by an alternative
unified CC design that writes back to the verified TLB with
an additional VCT walk for the final sPA.
A. The fundamental implementation: Split CC

The fundamental flow of a conventional confidentiality
check, such as ARM GPC [12], employs two-level address
translation from gVA to sPA to isolate two distinct Vertical
Privilege Levels (VPL). During address translation, the PTW
logic accesses the actual tables in physical memory, requiring
further verification of security metadata by walking dedicated
metadata tables. Figure 1 shows an iCC, situated between the
MMU and physical memory, performing metadata checks on
sPA accesses during PTW by requester side. A Vertical Check
Table Walk (VCTW) logic, is integrated within the iCC to
traverse the Vertical Check Table (VCT) stored in physical
memory. Consequently, each PTW issued by the MMU neces-
sitates an additional VCTW on the VCT. Therefore, after the
check by the iCC passes, the pages associated with Vertical
Spaces (VS) must be traversed to complete the translation.
To accelerate this vertical checking process, a Vertical Space
Cache (VSC) is integrated into the iCC as a widely-used way
[3]. Most recently fetched VS tags are stored in the VSC. With
the presence of the VSC, every sPA that requires checking
by the iCC can be immediately validated upon a cache hit,
eliminating the need for an additional metadata lookup from
the VCT in memory.

Another path integrated with the confidentiality check mod-
ule shown in Figure 1, is between the CPU and physical
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memory, which is more critical than the PTW path due to
the direct impact of data acquisition latency on CPU pipeline
performance. This parallel access using the final sPA requires
verification by the dCC, which shares an identical structure
with the iCC. Therefore, a VCT walk is required if no previous
verification result associated with the VS tag exists in the VSC.
VSC significantly accelerates this verification flow, delivering
native performance when it hits. The high parallelism is
provided by double CC modules, but with higher hardware
overhead.

B. Verified-TLB-Based Design: unified CC
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Fig. 2: Unified Confidentiality Check Locating on the
Memory Access path, with Verified TLB enabled

To reduce the additional dCC hardware overhead on the
CPU data path, we propose an alternative design. A Verified
TLB is integrated into the 2D MMU to store the verified final
sPA along with the additional VS tag returned from the iCC.
In this design, the final sPA is checked by the iCC instead of
being verified by the parallel dCC. We refer to the combination
of the Verified TLB and the iCC as the unified CC (uCC),
as shown in Figure 2. This approach removes the dCC but
introduces an additional verification step for the final sPA.

The Verified TLB is developed by extending the TLB to
store a VS tag alongside each sPA. After the uCC verifies an
sPA, the 〈sPA, VS tag〉 pair is inserted into the Verified TLB.
On a subsequent hit, the CPU can access memory by the final
sPA verified by uCC. Workloads with high locality benefit
from this design, as higher Verified TLB hit rates reduce the
overhead imposed by the CCA mechanism. On a Verified TLB
miss, the access falls back to the uCC path for verification.
However, workloads with low locality may experience worse
performance due to the additional VCT walk.

VI. METHODOLOGY AND RESULTS EVALUATION

Our simulation experiments are conducted within the SST
framework [13]. Table III summarizes the primary architec-
tural parameters of our simulated system and the benchmark
suites. We modeled a 2b-2Levels CC design analogous con-
figuration of ARM GPC [12], and a 16B-Flat CC design with
a same entry size (including the embedded Virtual Machine
ID) representing a 4 KB granule, analogous configuration of
AMD’s RMP [4] design. We selected benchmarks known for
their memory intensity, with eight of them having over 45
Misses Per Kilo Instructions (MPKI) as shown in Table II. The
minimum MPKI among all selected benchmarks is around 10
(NPB-is), while the maximum reaches 140 (NPB-cg). This
selection covers workloads ranging from cache-friendly to
cache-stressed, enabling a balanced evaluation under varying
memory intensities. All benchmarks were executed in single-
threaded mode.

TABLE II: Average L1 MPKI by benchmark suite.

Suite GAP(5) NPB(5) PARSEC (canneal) XSBench

Avg. L1 MPKI 51.18 83.81 26.39 13.78

TABLE III: Hardware Configuration and Benchmarks
CPU Core

Clock Frequency 2 GHz
Core Count 1
Max Instructions 100 Million

2-Level-Translation MMU (Samba [14])
Translation Mode 2-Stage Nested Translation
L1/L2 TLB Hierarchy 64 entries; 1536 entries
Page Walk Cache (PTWC) 4-level, 32-entry/level, 4-way

2b-2Levels CC Model
Protection Granularity; VS Tag 4 KB; 2 Bit
VS Cache Entry Size, #entries, Replacement Policy 16 B, 64, LRU;
VS Table Covers/Cache Entry 256 KB

16B-Flat CC Model
Protection Granularity; VS Tag 4 KB; 16 B
VS Cache Entry Size, #entries, Replacement Policy 16 B, 64, LRU;
VS Table Covers/Cache Entry 4 KB

Memory Subsystem
Private L1-D Cache / Private L2: Cache Size & Latency (Cycles) 32 KiB / 256 KiB, 1 / 2
Shared L3 Cache: Cache Size & Latency (Cycles) 1 MiB, 15
DRAM Access Time 100 ns
DRAM Controller Clock 1.2 GHz

A. Overall Performance Evaluation on Design Options

Our IPC results in Figures 3 and 4 are normalized to the
1D Native (Non-CC) configuration. The blue bars represent
1D Native without CC logic; the orange bars show 2D Nested
translation without CC; the yellow bars indicate the split CC;
the green bars present the unified CC; and the gray “CC-Base”
bars denote the CC baseline without VS cache acceleration.
Average values are listed in the legend.
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Fig. 4: IPC and Memory Throughput Comparison between
16B-Flat CC design with other designs.

Hardware-assisted virtualization is the first source of over-
head. With two-dimensional page walks, average IPC drops
to about 84% of the 1D Native (Non-CC). The loss follows
from higher TLB-miss penalties described in Section III.
Adding confidentiality checks without optimization (Base-CC)
introduces a further reduction of roughly 22% relative to 2D
Nested (Non-CC), because each page walk and data access
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now requires a check, without any cache or TLB logic to
accelerate it. Our goal is to narrow the performance gap
between CC integrated design with the 1D Native (Non-CC)
design.

In the unified CC design, or uCC, the VS Caches and
Verified TLB improve performance by caching VS tag and
verified 〈sPA, VS tag〉 pairs, respectively. On a Verified TLB
hit, the CPU uses the verified sPA without an additional uCC
check. On average, we observe a 10% gain for the 2b-2Levels
CC and a 7% gain for the 16B-Flat CC. The benefit is higher
for workloads with strong locality, where the Verified TLB
achieves higher hit rates, such as mg, sp and sssp.

In the split CC design, or i/dCC, the extra Verified TLB
check is not required, because the dCC performs the parallel
check for CPU memory operations. Therefore, there is an
additional average improvement of 12% on 2b-2Levels CC
and 8% on 16B-Flat CC compared with the Base-CC design.
Comparing to the 2D Nested results, the best design introduces
only average 9% overhead on 2D Nested design, which
outperforms [11] by 6%.

Across the evaluated workloads, both Figures 3 and 4
show that the base-CC limits an average normalized memory
throughput to 76% of the 1D Native (non-CC) configuration,
while other split and unified CC designs improve the through-
put to above 83%. This strong correlation between memory
throughput and IPC exists, meaning the CPU’s instruction
throughput is fundamentally gated by the performance of the
memory hierarchy.

B. Analysis of Performance on Two Configurations

We evaluate different CC configurations by adjusting the
granule mapping size for each VS Cache entry in both 2b-
2Levels and 16B-Flat CC designs. The 2b-2Levels config-
uration demonstrates better performance because each entry
covers more granules. In contrast, the 16B-Flat configuration
requires an extra 16 bytes to cover a single 4KB granule, re-
sulting in more cross page accesses due to its smaller coverage.
The performance difference between the two configurations is
4% for the split CC and 2.1% for the unified CC in Figure 3
and 4.
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Fig. 5: VS Cache Miss Rate of 16B-Flat/2b-2Levels uCC.

To analyze these differences, we use the VS Cache miss rate
in Figure 5. Workloads with irregular or sparse access, such
as cg, is, and the graph set bc, bfs, pr, sssp, tc, show
very high miss rates under the 16B-Flat uCC, often close to
100%, which triggers frequent VCT walks and reduces IPC.
The 2b-2Levels uCC lowers miss rate because one entry covers
a 256KB region with the smaller VCT metadata (2 bits) and
captures spatial reuse even when page level locality is poor.

To reflect a practical Verified TLB in the uCC design, a 16B
per entry extension is unattractive: it can nearly triple TLB
storage (8B entry vs. 24B entry) in all TLB levels, whereas a

Split-CC design would only introduce a relatively small VSC
cache in the dCC block on the direct memory access path.

VII. CONCLUSION
In this paper, we pointed out, evaluated, and mitigated the

critical performance overhead imposed by hardware access
control mechanisms in modern Confidential Computing Archi-
tectures (CCAs). We introduced a novel architectural design
featuring flexible CC configurations, which provides the com-
munity with two additional design options for the hardware
and performance overhead trade-off. Our simulation results
demonstrate that high-performance design improves perfor-
mance by 6% over Shelter [11] by effectively accelerating
these checks. Future investigations could focus on developing
adaptive VSC caching policies and an enhanced Verified TLB
design to better accommodate workloads with poor locality,
thereby further mitigating the performance impact on memory-
intensive applications.
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