
INDDoS+: Secure DDoS Detection Mechanism in
Programmable Switches
Damu Ding1, Ozlem Kesgin2, and Noa Zilberman1

1University of Oxford, Oxford, United Kingdom
2University of Edinburgh, Edinburgh, United Kingdom

{damu.ding, noa.zilberman}@eng.ox.ac.uk, z.o.kesgin@sms.ed.ac.uk

Abstract—Volumetric distributed Denial-of-Service (DDoS) at-
tack is a key issue in modern telecommunication networks since it
can exhaust the resources of legitimate users and cripple network
services. Recently, with the emergence of high-throughput and
low-latency programmable switches, DDoS detection mechanisms
have been designed and implemented in an in-network manner,
that is, DDoS detection executed directly within programmable
switches. State-of-the-art works use advanced data structures to
monitor the number of connections targeting destination hosts:
if there is sudden increase of connections and the number
exceeds a given threshold, the destination host is most likely
under DDoS attack. However, while this approach is efficient
in DDoS victims identification, it has inherent vulnerabilities
in the detection mechanism that may lead to security issues.
In this paper, we study two possible vulnerabilities in DDoS
detection data structures, showing the possibilities to break DDoS
detection mechanisms in programmable switches. To mitigate the
constructed attacks, we propose a solution called INDDoS+. The
results show that INDDoS+ is robust to attacks and can accu-
rately detect DDoS attempts when limited hardware resources
are assigned.

I. INTRODUCTION

Volumetric distributed Denial-of-Service (DDoS) attack is
becoming a major concern in computer networks. It sends
large amounts of traffic from multiple compromised hosts to
overwhelm the network resources of victims. To detect such an
attack, network operators need to frequently collect network
traffic and infer network status statistics [1], [2]. Nonetheless,
modern intrusion detection systems face challenges when it
comes to assessing network data streams, primarily due to the
widespread distribution and sheer volume of network traffic.
As programmable switches can provide high throughput and
low latency, volumetric DDoS detection starts to be deployed
directly on the switches. Due to limited hardware resources in
the switch, collecting exact measurements of network traffic
is impractical. Therefore, using probabilistic data structures,
called Sketches, is a viable solution. Sketches require only a
very small amount of memory but can guarantee high accuracy
in the estimation of network measurements.

As shown in Fig.1, in recent years, sketches are offloaded
to programmable switches for monitoring purpose (also called
in-network monitoring), with the goal to maximize the com-
puting speed for high performance monitoring. For example, a
prominent work called INDDoS (In-network DDoS detection)
[3], employs a data structure called BACON Sketch to monitor
the number of distinct source IPs (equivalent to the number of
connections or requests) targeting different destination hosts
in the network. The switch is deployed at the edge of the
network, so that it can track the overall network status. When

Internet

Benign traffic
DDoS traffic

Bot 1

Bot 2

Bot 3

Host

Host

Victim 1

Victim 2

Host

Programmable
switch

BACON Sketch

Fig. 1. Threat model

the number of connections to a host unexpectedly increases
and surpasses the pre-defined threshold, the destination host
is considered as a DDoS victim.

Even though DDoS detection mechanisms such as INDDoS
have high accuracy in DDoS victim identification, they have no
protection mechanisms. Attackers can attempt to mislead the
Sketches with crafted traffic (e.g. spoofed source IPs), which
may cause large bias on the estimation results of connections.
Inaccurate estimations may further lead to wrong decisions on
DDoS victim identification or leave DDoS attacks undetected.

To mitigate the problem, this paper investigates the vulner-
abilities of sketch-based DDoS detection mechanisms, with
BACON Sketch in INDDoS as an example. We show that
attackers can either evade the DDoS detection of INDDoS
or trigger false DDoS alarms by exploiting security issues
in the Sketch. For example, attackers can manipulate the
source IPs to avoid the increments of the estimated number
of connections. Likewise, attackers can also inflate the Sketch
with spoofed source IPs to cause detection false positives. With
those threats in mind, we propose INDDoS+, a new solution
that effectively mitigates security issues in INDDoS while
providing good DDoS detection performance given similar
hardware resources.

In summary, we make the following contributions:

• We present two different potential threats on sketch-
based DDoS detection mechanisms and explain how to
construct corresponding attacks.

• We design and develop a novel approach called INDDoS+
to detect and mitigate the threats on BACON Sketch.

• We evaluate our approach using real-world Internet
traces, and discuss the trade-off between threats detec-
tion’s accuracy and hardware constraints.

d×w-sized
Count-min

Sketch

hi
cms(dst)

m-sized Bitmap register

1000→10001

hbm(src)

d

w

Incoming
packets

Fig. 2. The design of BACON Sketch

Algorithm 1: BACON Sketch
Input: Packet stream S identified by src or dst
Output: An estimated number of connections Êdst

contacting dst
1 d← Number of hash functions in Count-min
2 w ← Output size of hash functions in Count-min
3 m← Bitmap-register size
4 B ← A d× w ×m-sized BACON Sketch
5 Function Update(src, dst, hcms, hbm):
6 for Each hash function hi

cms in row i do
7 idx← (hi

cms(dst)%w) ·m+ hbm(src)%m
8 if Bi[idx] is 0 then
9 Bi[idx]← 1

10 Function Query(dst, hcms, hbm):
11 Êdst ← 0
12 for Each hash function hi

cm in row i do
13 start← (hi

cms(dst)%w) ·m
14 Ei ←

∑start+m−1
j=start Bi[j]

15 Êdst ← min(Ei) return Êdst

16 Function Reset():
17 for Each row i (i ∈ [0 : d− 1]) do
18 Bi[0 : w ×m− 1]← 0

II. BACKGROUND OF BACON SKETCH

In this work we focus on the recent BACON Sketch [3],
which is a memory-efficient data structure used to estimate
the number of connections (e.g., source hosts) targeting the
same destination host.It has been recently used to detect DDoS
attacks in programmable switches.

A. Basic operation of BACON Sketch

As shown in Fig.2, BACON Sketch is composed of a
d × w-sized Count-min Sketch [4] and an m-sized Bitmap
[5] register: Count-min Sketch is a probabilistic data structure
to estimate the number of packets in each flow, whereas
Bitmap is a simple data structure used to count the number
of distinct flows. By combining them, it is possible to count
the number of distinct flows towards multiple destinations: in
each bucket of Count-min Sketch, the Bitmap register is used
to count the number of distinct flows. Therefore, the overall
size of BACON Sketch is d×w×m. Algorithm 1 illustrates
the details of BACON Sketch, which applies three actions:
Update, Query, and Reset.

Update: Each row i (0 ≤ i ≤ d−1) is associated with a hash
function hi

cms, and all hash functions (e.g., CRC32 [6], md5
[7]) are pairwise independent. For all incoming packets, their
destination IPs dst are hashed to the bucket hi

cms(dst)%w
(0 ≤ i ≤ d − 1, 0 ≤ j ≤ w − 1) in each row i (0 ≤ i ≤
d − 1). Then the source IPs src are hashed by another hash
function hbm to determine the position hbm(src)%m in the
Bitmap. Therefore, the index idx to access the value is idx =
(hi

cms(dst)%w) ·m+ hbm(src)%m (Line 7). If the value in
the position idx is 0, then the value is updated to 1 (Lines
8-9). Otherwise, the value does not vary and is kept at 1.

Query: Lines 12-15 in Algorithm 1 show how Query in
BACON Sketch works: during the time interval, for any dst,
the sum Ei of all values in the Bitmap of row i (i.e., values
in the range [hi

cms(dst) · m : hi
cms(dst) · m + m − 1])

represents the number of connections estimated by the row.
Finally, the minimum Ei among all d rows (i.e., Ei with the
smallerst number of collisions in the sketch), denoted by Êdst,
is the estimated real-time number of connections targeting the
destination host dst.

Reset: At the end of each time interval, similar to other
general sketches, all counters within the BACON Sketch are
reset to 0 for the monitoring in the next time interval, as
illustrated in Lines 17-18.

B. DDoS detection using BACON Sketch

INDDoS [3] uses a BACON Sketch in a P4 programmable
switch ASIC (e.g. Intel Tofino switch) [8] to identify DDoS
victims. The switch is deployed at the edge of the network
to monitor the number of connections to different destination
hosts. When there is a volumetric DDoS attack in the network,
a number of compromised hosts (e.g. bots) attempt to send
requests for connection with the DDoS victims and exhaust
their available resource. Therefore, if the number of connec-
tions estimated by the Sketch suddenly increases and exceeds
a given threshold, then the destination host can be identified
as a DDoS victim.

III. THREAT MODELS ON THE SKETCH

Even though INDDoS has high accuracy in DDoS victim
identification, the BACON Sketch itself is vulnerable: attack-
ers may tamper with values in the sketch by sending cus-
tomized traffic, aiming to trigger false DDoS alarms or evade
detection. In this paper, we investigate two possible threats
on the BACON Sketch: inflating attack and evasion attack.
Note that similar threats can also be applied to other types
of sketches for the estimation of distinct connections, such as
Multiresolution Bitmap [5], PCSA [9] and HyperLogLog [10].

We consider the case where the BACON Sketch is a black
box, that is, the attacker does not know the hash functions
used by the Sketch. The hash functions are not typical hash
functions (i.e., the parameters in hash functions are well
configured) and cannot be easily reversed. Nevertheless, the
attacker can still access a shadow copy of the sketch via its
APIs. A potential scenario can be that the attacker can install
a well-encrypted P4 program into its own programmable
switch. For BACON Sketch, only the default APIs (Update,
Query, and Reset) are allowed. Therefore, it is not possible to
decrement the counter values. The Sketch size d× w ×m is
defined in the P4 program, but these parameters are invisible

d×w-sized
Count-min

Sketch

hi
cms(dst)

m-sized Bitmap register

10→100→1000→11

hbm(src)

d

w

Spoofed
src

Fig. 3. Inflating attacks

d×w-sized
Count-min

Sketch

hi
cms(dst)

m-sized Bitmap register

1→10000001→1

hbm(src)

d

w

Spoofed
src

Fig. 4. Evasion attacks

to the attacker. The attacker can capture the benign traffic and
populate it in the shadow copy to construct attack vectors. This
attack scenario has been proved feasible for HLL sketches
as described in [11] and [12]. Given the packet rate of
programmable switches exceeds billions of packets per second,
even though the monitoring interval is only in the order of
seconds, it is still possible for attackers to insert the attack
vector within a short amount of time.

A. Inflating attack

The goal of an inflating attack is to increase the number
of estimated connections to a perceived victim. As shown in
Fig.3, an attacker inserts a sequence of packets into the sketch
with spoofed source IP src. The hashed flows identified by src
flip the Bitmap entries from 0 to 1, significantly increasing the
estimated connections to destination hosts, and leading to false
positives in DDoS victim identification.

Algorithm.2 shows how to generate inflating attack traffic:
initially, as shown in Lines 3-4, the attackers replay the
captured benign traffic S within a given time interval to
increment the counters in the BACON Sketch B. Given a
targeting victim dsttarget, the attackers can query the number
of source IPs towards dsttarget, denoted by Êorg

dst . Then they
add a source IP srctarget together with the victim dsttarget

into the Sketch. The source IPs srctarget in the synthetic set
A can be generated as a 32-bits number and converted to an
IP address. The range of A can be customized since some IP
addresses are invalid or private, and as the IP ranges of local
service providers are more likely. The number of source IPs
to the victim dsttarget, called Êdst, is queried again (Lines 6-
8). If Êdst is greater than Êorg

dst , then this source IP srctarget

is added to the attack set F (Lines 9-10). Once Êdst is fully
filled and reaches the largest size of Bitmap (i.e., m), the attack
construction is stopped (Lines 11-12). Finally, the attack set
F is constructed and available to launch inflating attacks.

B. Evasion attack

Fig.4 shows how an attacker can send DDoS traffic to the
victim while evading detection by INDDoS using BACON
Sketch. The attacker has a set of flows with spoofed source IPs
src coming from bots, and wants the flows not to increment
the estimated connection number of BACON Sketch. This can
be achieved if the targeted sketch slot (hi

cms(dst)%w) ·m+
hbm(src)%m is already 1. This way, the estimated number of
connections targeting the destination hosts does not vary, and
the victims under DDoS attacks will not be reported to the
network operator.

Algorithm 2: Inflating attack construction
Input: A non-DDoS-victim destination host with IP

dsttarget, a synthetic set A of spoofed IPs
srcattack, and a packet stream S in a given
time interval Tint

Output: A set F with different spoofed IPs srcattack

that makes dsttarget be a DDoS victim
1 B ← d× w ×m-sized BACON Sketch with hash

function hcms in Count-min and hbm in Bitmap
2 F → {}
3 for Each packet in S (with src and dst) do
4 B.Update(src, dst, hcms, hbm)

5 for Each source IP srcattack in A do
6 Êorg

dst← B.Query(dsttarget, hcms, hbm)
7 B.Update(srcattack, dsttarget, hcms, hbm)
8 Êdst← B.Query(dsttarget, hcms, hbm)
9 if Êdst > Êorg

dst then
10 F .add(srcattack)

11 if Êdst == m then
12 return F

Algorithm 3: Evasion attack construction
Input: A targeted DDoS victim host with IP dsttarget

and a synthetic set A of spoofed IPs srcattack ,
and a packet stream S in a given time interval
Tint

Output: A list L containing different spoofed IPs
srcattack that avoid dsttarget to be identified
as a DDoS victim

1 B ← d× w ×m-sized BACON Sketch with hash
function hcms in Count-min and hbm in Bitmap

2 L → {}
3 for Each source IP srcattack in A do
4 for Each packet in S (with src and dst) do
5 B.Update(src, dst, hcms, hbm)

6 Êorg
dst← B.Query(dsttarget, hcms, hbm)

7 B.Update(srcattack, dsttarget, hcms, hbm)
8 Êdst← B.Query(dsttarget, hcms, hbm)
9 if Êorg

dst == Êdst then
10 L.add(srcattack)

11 B.Reset()

12 return L

As shown in Algorithm.3, similar to Inflating attack con-
struction, Lines 4 to 5 show that the attackers need to populate
the captured benign traffic S to increment the counters in BA-
CON Sketch B first. After querying the number of source IPs
Êorg

dst contacting the victim dsttarget, a packet with {srcattack,
dsttarget} is updated to the sketch. If the estimated number
of source IPs to dsttarget, called Êdst, remains unchanged,
then srcattack will be considered as a candidate of evasion
attack and added to the list L (Lines 6-10). Since the Sketch
does not allow to decrement the counters, the attackers must

reset all counters in the sketch to 0 (Line 11) and repeat the
same operation until all srcattack in A (i.e., a synthetic set of
spoofed IPs) are tried. The attackers are required to reset the
counters to reduce test time, otherwise they can wait for the
counters reset at the end of every time interval. Afterwards,
the attackers can spoof the source IP for packets in DDoS
traffic using the elements in L to evade the DDoS detection
mechanism of INDDoS.

IV. SECURE IN-NETWORK DDOS VICTIM IDENTIFICATION

In this section, we introduce INDDoS+, an enhanced in-
network DDoS victim identification system using a BACON
Sketch that can effectively detect evasion and inflating attacks.

INDDoS+ operation is introduced in Algorithm 4: there are
two BACON Sketches, B1 and B2, deployed in the switch.
The main difference between these two Sketches is that they
use different hash functions for Bitmap, that is, hbm1 for B1
and hbm2 for B2. Since (i.) attackers are only able to spoof
the source IPs src to mislead the output of BACON Sketch
and (ii.) the hash functions in Count-min Sketch, namely
hcms, is only responsible for hashing the destination IP dst,
changing the hash function hcms is optional in INDDoS+. In
our evaluation, the hash functions in hcms remain the same
for both. During each time interval, the two BACON Sketches
B1 and B2 are updated using different hash functions for the
Bitmap. Following updates, both of sketches can query the
real-time number of hosts contacting the destination (Lines 5-
8). If the queried values, Ê1dst from B1 and Ê2dst from B2,
are greater than the given DDoS detection threshold Tr, it
means that the destination host dst is likely under attack. The
switch can report the victim IP dst to controller for further
mitigation (Lines 9 - 10). However, if either Ê1dst or Ê2dst
is larger than Tr, this indicates that (i.) attackers evade the
increments in BACON Sketch or (ii.) Attackers inflate the
values in BACON Sketch. In either case, the BACON Sketch
is under attack, and the switch must report this alarm to a
controller (Lines 11 - 12). The controller needs to change the
hash function used by Bitmap to protect BACON Sketch and
avoid consequent attacks. This can be done by installing an
updated P4 program into the switch.

V. EXPERIMENTAL EVALUATION

INDDoS+ was implemented in Python to study its perfor-
mance in detecting attacks on BACON Sketch.

A. Evaluation metrics and settings
1) Testing flow traces: CAIDA 2018 [13] trace is used as

benign traffic. For testing the two threats, we used the first 5
seconds of a trace, and tested with 5 different time intervals,
ranging from 1s to 5s. To test the DDoS victim identification
performance, we used a 50s flow trace, and split it into 10
time intervals with 5 seconds each. Each time interval contains
nearly 2.3 million packets and 60 thousand unique source IPs.

2) Evaluation metrics: For testing inflating attacks, we
consider the number of keys and the number of attempts
required to inflate the BACON Sketch in INDDoS. For evasion
attacks, we measure the number of vulnerable keys that can
evade DDoS detection by INDDoS. To compare the DDoS
victim identification performance of INDDoS and INDDoS+
using the same amount of memory, we considered Recall Re,
Precision Pr, and F1 score F1 as the key metrics. Considering

Algorithm 4: INDDoS+
Input: Packet stream S identified by src or dst
Output: DDoS victim IP address dst or alarm

reporting INDDoS+ under attack
1 Tr ← DDoS detection threshold
2 B1← d× w ×m-sized BACON Sketch with hash

function hcms in Count-min and hbm1 in Bitmap
3 B2← d× w ×m-sized BACON Sketch with hash

function hcms in Count-min and hbm2 in Bitmap
4 for Each packet in S (with src and dst) do
5 B1.Update(src, dst, hcms, hbm1)
6 Ê1dst← B1.Query(dst, hcms, hbm1)
7 B2.Update(src, dst,hcms, hbm2)
8 Ê2dst←B2.Query(dst, hcms, hbm2)
9 if Ê1dst > Tr and Ê2dst > Tr then

10 Report dst

11 else if Ê1dst > Tr or Ê2dst > Tr then
12 Report alarm

13 Reset()

that (i.) True Positive (TP) is the number of DDoS victims that
are correctly identified, (ii.) False Negative (FN) is the number
of undetected DDoS victims, and (iii.) False Positive (FP) is
the number of wrongly identified DDoS victims, the metrics
introduced above are defined as follows:

Re =
TP

TP + FN
Pr =

TP

TP + FP
F1 =

2 ·Re · Pr

Re+ Pr

3) Parameter configurations: The hash functions used in
Count-min Sketch within BACON Sketch is md5: each dst is
hashed with md5 and then hashed again with the row number
i. The hash function used in the Bitmap of the first BACON
Sketch is md5 as well, whereas that in the second BACON
Sketch of INDDoS+ is also md5 but hashed second time
with a parameter 100. We also considered another case called
BACON Sketch+, where the hash functions of Bitmaps in
BACON Sketch+ are different for each row: BACON Sketch+
hashes src in Bitmap with md5 and also the row number i.
For instance, the Bitmap in the first row of BACON Sketch+
hashes src with the parameter 1. For the Bitmap at the second
row, the parameter is 2. If not otherwise specified, the BACON
Sketch and BACON Sketch+ size is the same as used in [3]:
the Count-min size d×w = 3× 1024, and the Bitmap size m
is 1024. The DDoS detection threshold Tr is 0.5% of overall
number of source IPs in each time interval, around 300.

B. Exp 1: Number of keys and attempts for inflating attacks
In this experiment, we consider two cases: (i.) the destina-

tion host dst with the smallest number of source hosts src
contacted and (ii.) the destination host dst with the largest
number of source hosts src contacted in a given time interval.
We generate keys (i.e., source IPs) using 216 − 1 = 65535
consecutive source IPs in this experiment. When the duration
of time interval increases, the threshold increases as well
because the threshold depends on the proportion of the overall
number of source IPs during time interval. As shown in
Table.I, less than 100 keys and attempts are required to mislead

TABLE I
NUMBER OF KEYS AND ATTEMPTS REQUIRED FOR INFLATING ATTACKS

Time
interval

Smallest
#src to
dst

Detection
threshold

#keys to exceed
the threshold

#attempts to exceed
the threshold

#keys to full
fill the Bitmap

#attempts to exceed
the threshold Largest

#src to
dst

#keys to full
fill the Bitmap

#attempts to exceed
the threshold

(0.5% of
total #src)

BACON
Sketch

BACON
Sketch+

BACON
Sketch

BACON
Sketch+

BACON
Sketch

BACON
Sketch+

BACON
Sketch

BACON
Sketch+

BACON
Sketch

BACON
Sketch+

BACON
Sketch

BACON
Sketch+

1s 1 101 78 48 81 52 971 969 8513 9874 213 933 982 8513 9874
2s 1 176 49 49 59 52 892 888 8513 9874 309 881 890 8513 9874
3s 1 232 50 49 66 54 838 835 8513 9874 377 824 833 8513 9874
4s 1 279 56 46 81 52 798 789 8513 9874 439 782 789 8513 9874
5s 1 320 58 47 85 57 760 748 8513 9874 485 748 748 8513 9874

TABLE II
EVASION ATTACK: NUMBER OF VULNERABLE KEYS IN 64K SAMPLES

Time
interval

Smallest
#src to
dst

#Vulnerable keys Largest
#src to
dst

#Vulnerable keys
BACON
Sketch

BACON
Sketch+

BACON
Sketch

BACON
Sketch+

1s 1 3456 3507 213 4051 3963
2s 1 8564 8749 309 9077 8583
3s 1 12406 12480 377 12801 12216
4s 1 14607 15407 439 15530 15055
5s 1 17504 17870 485 17668 17701

BACON Sketch to consider a legitimate host with the smallest
number of connections as a DDoS victim. This number is
even smaller if BACON Sketch+ is used because of the hash
collisions caused by Bitmap. Another observation is that the
number of keys required to fill the Bitmap to the indicated
destination host decreases with the length of time interval.
This is because a larger time interval has more packets, and
there are more 1s in BACON Sketch. However, all of them
need the same number of attempts, that is, 8513 packets.
Instead, BACON Sketch+ requires relatively smaller number
of keys to fill Bitmap because more collided 1s are generated
by BACON Sketch+ when the number of source IPs is small.
Since src are hashed to different positions of different rows,
more attempts (i.e. packets with different spoofed src) are
required for BACON Sketch+ to fully fill the Bitmap, that
is, 9874 times. When transitioning to the dst with the largest
number of source IPs (i.e., the destination host contacted by
the most connections), since the number is already greater
than the threshold, we only consider the number of keys to fill
the Bitmap. The number of keys required is smaller than the
destination hosts with the smallest number of connections for
BACON Sketch, but the number of attempts remains the same.
The reason is that the 8513th key is the last key that can flip
the ultimate 0 in Bitmap targeting dst to 1. Likewise, BACON
Sketch+ requires more attempts than BACON Sketch because
the positions with 0s are more difficult to find to inflate when
the number of src is large. Overall, in our tests, the attackers
needed to send less than 10,000 packets to mislead INDDoS
(either with BACON Sketch or BACON Sketch+) to label all
destination hosts as a DDoS victim. This demonstrates that
both Sketches are very vulnerable to this attack.

C. Exp 2: Number of keys for evasion attacks
Similar to Exp 1, as shown in Table.II, we generated 65535

source IPs with as a similar prefix. In this experiment, we
would like to see how many vulnerable keys exist within
65535 samples. We used the CAIDA trace ranging from 1
second to 5 seconds as the benign traffic in BACON Sketch
and then try to find possible vulnerable keys. Intuitively, the
number of vulnerable keys increase as the time interval length
increases because there are more packets in the BACON
Sketch. Even though the destination host has only 1 source

TABLE III
COMPARISON OF DDOS VICTIM IDENTIFICATION PERFORMANCE

BETWEEN INDDOS [3] AND INDDOS+

Strategy BACON Sketch size
(d× w ×m)

BACON
Sketches Recall Precision F1 score

INDDoS 3× 1024× 1024 1 0.96 0.99 0.97
INDDoS+ 3× 512× 1024 2 0.96 0.79 0.86
INDDoS+ 3× 1024× 512 2 0.17 0.96 0.28
INDDoS+ 3× 1024× 1024 2 0.96 0.99 0.97

host connected, when the time interval increases from 1s to
5s, the vulnerable keys significantly increases from 3456 to
17504. For BACON Sketch+, due to the collisions caused
by different hash functions in Bitmap when the number of
src is small, there are usually more 1s in Bitmap, and the
number of vulnerable keys is higher than that of BACON
Sketch. On the other hand, the destination hosts with the
largest number of contacting source IPs have much more
vulnerable keys because there are more 1s in the BACON
Sketch, and the attackers can generate packets to evade the
increments with higher probability. However, in this case,
BACON Sketch+ has a smaller number of vulnerable keys
because it has less 1s when the number of connections is larger
than the BACON Sketch. The results reveal that with only
65535 samples attempted, it is possible for attackers to find
at least thousands of available vulnerable keys for the spoofed
IPs of their attack traffic. Both BACON Sketch and BACON
Sketch+ are vulnerable to the two aforementioned attacks, and
changing the parameters inside the Sketch cannot completely
mitigate them. Therefore, the comparison of INDDoS and
INDDoS+ considers only BACON Sketch.

D. Exp 3: DDoS victim identification with equal resources
Since INDDoS+ needs two BACON Sketches to secure

the DDoS victim identification mechanism of INDDoS, for
a fair comparison we would like to see the identification
performance if the same amounts of memory is assigned. As
shown in Table.III, we used the default size of BACON Sketch
(i.e. d×w×m = 3×1024×1024) in INDDoS. This is because
the BACON Sketch with this size can perform the best F1
score on DDoS detection as demonstrated in [3]. To guarantee
the same amount of memory is used, either the Bitmap size m
or the output size of Count-min w should be halved. Therefore,
we tested INDDoS+ with two different sizes: d × w ×m =
3 × 512 × 1024 and 3 × 1024 × 512. The results are the
average of 10 time intervals. When m = 512, there are more
collisions in Bitmap, so the estimated number of connections
to a destination host is decreased. This means that there are
more undetected DDoS victims, resulting in a recall of only
0.17. Instead, when we use w = 512, the largest sufficient
number estimated by Bitmap is still 1024, so INDDoS+ is
able to detect all possible DDoS victims. However, due to the
collisions caused by the decreased size of w, the estimated

number is increased: there are more wrongly identified victims,
leading to lower precision, which is 0.79. In our opinion, the
F1 score of INDDoS+ with size d×w×m = 3× 512× 1024
(i.e., 0.86) is acceptable when memory is limited. It depends
on the choice of network operators: using a single larger-sized
BACON Sketch within INDDoS may be under attack and lead
the F1 score to a very small value but can provide a higher
detection accuracy, whereas INDDoS+ containing two smaller-
sized BACON Sketches has slightly lower precision but is
robust to potential attacks. However, if sufficient memory is
available in the hardware, INDDoS+ is the better choice as it
can guarantee comparable detection performance as INDDoS.

VI. DISCUSSION

The key limitation to implementing INDDoS+ on pro-
grammable switches, such as Intel Tofino switches, is not
the memory but the number of pipeline stages. Since the
P4 [8] implementation of BACON Sketch is identical for
INDDoS and INDDoS+, given that INDDoS has utilized all
available stages in Intel Tofino switch [3], deploying the
second sketch within INDDoS+ poses a new challenge. The
three options are to deploy the second sketch in parallel to the
first one, to use Tofino’s folded pipeline, concatenating two
processing pipes, or moving to newer switches (e.g., Tofino
2) with more processing stages. Therefore, hardware resources
are not expected to be a bottleneck to offload INDDoS+ on
programmable switches, and we consider this a future work.

VII. RELATED WORK

A. Sketch-based DDoS detection on programmable switches
Numerous methods have recently been proposed to identify

DDoS attacks in programmable switches using diverse metrics,
which can be retrieved from sketches. For instance, detecting
DDoS attacks through the reduction in normalized entropy
across distinct destination IP addresses (e.g., [14] [15]) uses
sketches to estimate the packet count of each flow, such as
Count-min Sketch [16] and Count Sketch [4]. Alternatively,
it can involve detecting a substantial volume of unique data
flows (using same source IPs) directed towards a particular
destination host (e.g., [17] [2]), commonly referred to as per-
destination flow cardinality (called connections in this paper).
Many sketch-based algorithms for estimating the cardinality
of data streams have been proposed, including Multiresolution
Bitmap [5], PCSA [9] and HyperLogLog [10]. Nonetheless,
without protection, values in sketches may be tampered by
attackers, leading to large bias on the estimations in both
servers and collectors. Inaccurate estimations significantly
degrade DDoS detection performance.

B. Adversarial model of Sketches
While sketches have been widely used for network mon-

itoring, protecting them is a new challenge. Reviriego et al.
[18] first investigated the security issues of Count-min Sketch,
generating fake elephant flows, that is, the flows with pretend
to have a large number of packets. Recently, many works
[12] [19] [11] started studying the potential vulnerabilities of
HyperLogLog Sketch, where attackers can exploit such vulner-
abilities to mislead the results of HyperLogLog. Unlike other

related work, this work focuses on the security of sketch (i.e.
BACON Sketch) deployed in high-performance programmable
switches to detect the network anomalies. We comprehensively
analyzed the potential issues of BACON Sketch and proposed
corresponding strategies to defend against them. Importantly,
the proposed inflating and evasion attacks can be generalized
to other sketches, leading to potential network vulnerabilities.

VIII. CONCLUSION

In this paper, we studied two possible vulnerabilities of BA-
CON Sketch and constructed attacks based on them. To detect
and mitigate such attacks, we proposed a novel approach called
INDDoS+, improving the resilience of BACON Sketch while
maintaining the reliability of DDoS detection mechanisms in
high-performance programmable switches.

ACKNOWLEDGEMENTS

This research was partly funded by EU Horizon SmartEdge
(101092908, Innovate UK 10056403), VMWare Research and
Oxford UNIQ+. For the purpose of Open Access, the author
has applied a CC BY public copyright license to any Author
Accepted Manuscript (AAM) version arising from this sub-
mission.

REFERENCES

[1] R. Harrison et al., “Network-wide heavy hitter detection with commodity
switches,” in ACM SOSR, 2018.

[2] Z. Liu et al., “One sketch to rule them all: Rethinking network flow
monitoring with UnivMon,” in ACM SIGCOMM, 2016.

[3] D. Ding et al., “In-Network Volumetric DDoS Victim Identification
Using Programmable Commodity Switches,” IEEE Transactions on
Network and Service Management, 2021.

[4] G. Cormode and M. Hadjieleftheriou, “Finding frequent items in data
streams,” VLDB, vol. 1, no. 2, pp. 1530–1541, 2008.

[5] C. Estan et al., “Bitmap algorithms for counting active flows on high
speed links,” in ACM IMC, 2003.

[6] J. S. Sobolewski, “Cyclic redundancy check,” in Encyclopedia of Com-
puter Science, 2003, pp. 476–479.

[7] R. Rivest, “Rfc1321: The md5 message-digest algorithm,” 1992.
[8] P. Bosshart et al., “P4: Programming protocol-independent packet pro-

cessors,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, pp. 87–95, 2014.

[9] P. Flajolet and G. N. Martin, “Probabilistic counting algorithms for data
base applications,” Journal of computer and system sciences, vol. 31,
no. 2, pp. 182–209, 1985.

[10] P. Flajolet et al., “Hyperloglog: the analysis of a near-optimal cardi-
nality estimation algorithm,” in Discrete Mathematics and Theoretical
Computer Science, pp. 137-156, 2007.

[11] P. Reviriego and D. Ting, “Security of HyperLogLog (HLL) cardinal-
ity estimation: Vulnerabilities and protection,” IEEE Communications
Letters, vol. 24, no. 5, pp. 976–980, 2020.

[12] K. G. Paterson and M. Raynal, “Hyperloglog: Exponentially bad in
adversarial settings,” in IEEE EuroS&P. IEEE, 2022, pp. 154–170.

[13] CAIDA UCSD Anonymized Internet Traces Dataset -[passive-2018],
“http://www.caida.org/data/passive/passive dataset.xml,” 2018.

[14] K. Giotis et al., “Combining OpenFlow and sFlow for an effective
and scalable anomaly detection and mitigation mechanism on SDN
environments,” Elsevier Computer Networks, vol. 62, pp. 122–136, 2014.

[15] R. Wang et al., “An entropy-based distributed DDoS detec-
tion mechanism in software-defined networking,” in IEEE Trust-
com/BigDataSE/ISPA, 2015.

[16] G. Cormode, “Count-min sketch,” in Springer Encyclopedia of Database
Systems, pp. 511-516, 2009.

[17] M. Yu et al., “Software defined traffic measurement with OpenSketch,”
in USENIX NSDI, 2013.

[18] J. Murua and P. Reviriego, “Faking elephant flows on the count min
sketch,” IEEE Networking Letters, vol. 2, no. 4, pp. 199–202, 2020.

[19] D. Ding, “Carbine: Exploring additional properties of hyperloglog for
secure and robust flow cardinality estimation,” in IEEE INFOCOM 2024-
IEEE Conference on Computer Communications, 2024.

 http://www.caida.org/data/passive/passive_dataset.xml

	Introduction
	Background of BACON Sketch
	Basic operation of BACON Sketch
	DDoS detection using BACON Sketch

	Threat models on the Sketch
	Inflating attack
	Evasion attack

	Secure in-network DDoS victim identification
	Experimental evaluation
	Evaluation metrics and settings
	Testing flow traces
	Evaluation metrics
	Parameter configurations

	Exp 1: Number of keys and attempts for inflating attacks
	Exp 2: Number of keys for evasion attacks
	Exp 3: DDoS victim identification with equal resources

	Discussion
	Related work
	Sketch-based DDoS detection on programmable switches
	Adversarial model of Sketches

	Conclusion
	References

