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Wearable Vital Signs Monitoring for Patients
With Asthma: A Review

Lucy Taylor , Xiaorong Ding , Member, IEEE, David Clifton, and Huiqi Lu , Member, IEEE

Abstract—Worldwide,an estimated 461 000 people die from
asthma attacks each year. While there remain treatments to
alleviate asthma symptoms and reduce deaths, patient dete-
rioration needs to be identified in sufficient time. To prevent
asthma deterioration, patients need to be aware of personal
and environmental triggers and monitor their asthma symp-
toms. The aim of this article is to provide a comprehensive
review of the current state-of-the-art wearable sensors and
devices that use vital signs for asthma patient monitoring and
management. Among all vital signs, breathing rate and airflow
sound are key indicators of asthmatic patients’ health that
can be measured directly using wearable sensors to provide
continuous and constant patient monitoring or indirectly by
estimations based on proven algorithms using electrocardio-
gram (ECG), photoplethysmogram (PPG), and chest movements. ECG and PPG signals are widely used in smart watches
and chest bands, enabling easy integration of a more extensive body sensor framework for asthmatic exacerbation
prediction. Other vital signs used in asthma patient monitoring include blood oxygen saturation, temperature, blood
pressure, verbal sound, and pain responses. The use of wearable vital signs enabled a broad range of wearable sensor
application scenarios for asthma monitoring and management.

Index Terms— Asthma, breathing rate (BR), digital health, electrocardiogram (ECG), mobile health, patient monitoring,
photoplethysmogram (PPG), sensors, wearable technology.

I. INTRODUCTION

WORLDWIDE, more than 300 million people are suffer-
ing from asthma, with around 461 000 expected deaths

each year [1], [2]. In European countries, U.K. has the highest
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prevalence; approximately 12% of the U.K. population has
been diagnosed with asthma [2], [3]. While asthma is a lifelong
condition, most patients can be symptom-free with treatment
and a self-management plan. However, approximately 5% of
patients with asthma have a severe condition, where symptoms
are usually hard to control [4]. Severe asthma is a complex het-
erogeneous disease entity with high morbidity and mortality.

As there are treatments to alleviate asthma symptoms (such
as inhaled medication), many of these deaths are preventable,
especially in lower income countries where access to diagnosis
and treatment is limited [1]. Although some deaths will occur
as a result of the rapid onset of symptoms, allowing little
time for intervention, a large proportion of patients will
slowly deteriorate across a number of days or even weeks
[5]. If periods of decline are accurately identified early on
in the development of symptoms, it allows ample time for
intervention and reduces the chance of further deterioration,
which can lead to death.

People with asthma can manage their condition by using
a preventer inhaler every day and a reliever inhaler if their
symptoms appear. The inhalers are typically loaded with
drugs such as bronchodilators and corticosteroids to relax the
muscles that constrict the airways and reduce inflammation in
the lung.

There are two major types of inhalers: pressurized metered-
dose inhalers (pMDIs) and dry powder inhalers [6]. The
pMDIs deliver medication with a mix of propellant in a
spray, which users need to shake and then apply pressure
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Fig. 1. Application scenarios of wearable devices and vital signs for monitoring patients with asthma. The original design concepts of this figure
are borrowed from Dr. N. Ji [7] and Dr. R. Pettigrew’s presentations at the IEEE Life Sciences Grand Challenge Conference held at the National
Academy of Sciences in 2012 [8], [9], [10].

to dispense the medication. The dry powder inhalers are of
different shapes, e.g., a disk-shaped device with a dose count
indicator. Training and practice are required to ensure that
patients use their inhalers correctly, which makes the delivery
of medication challenging, especially for children and elderly
individuals.

Individuals who have asthma can have their condition
deteriorating due to various reasons, but the deterioration will
normally follow one of two routes; the patient can either
have their condition worsen slowly over a period of days
or at a much faster rate within a few hours. For both the
rapid and the slow onset of deterioration, the patient will
experience a similar pathway of decline in their physiological
health. Although they may not experience all of the symptoms
at once, they will likely experience a combination of chest
tightness, wheezing, breathlessness, and coughing fits [11]
(due to asthma causing an inflamed airway). These symptoms
will also be reflected in changes to the patient’s vital signs,
including their breathing rate (BR), heart rate (HR), and blood
oxygen saturation [5].

People with asthma are likely to have triggers that will
increase the likelihood of their condition deteriorating, where
the combination of triggers is patient-specific. Some of the
most common triggers include weather, pollution, pollen
count, and exercise [12]. To prevent asthma deterioration,
patients need to be aware of triggers and monitor their asthma
symptoms [13].

Fig. 1 shows how patients with asthma can be monitored
and managed inside and outside hospital scenarios. In the

hospital scenario, patients are monitored by bedside equipment
for their vital signs. Patients with severe asthma can be
examined by computed tomography (CT) scans to identify
bronchopulmonary aspergillosis or detect hypersensitive pneu-
monitis (mimic asthma) [14], [15]. However, there are only
a few studies on the quantitative assessment of proximal
airway structure changes in asthmatic adults [16], [17] and
children [18], [19]. Moreover, due to radiation exposure and
the size of the equipment, CT is not a standard of practice for
asthma monitoring modality in hospital settings.

Although bedside equipment provides good patient moni-
toring, these devices are expensive, not portable, and require
access to the main power supply. Therefore, the two main
types of long-term monitoring systems for the deterioration of
asthmatic symptoms outside of the hospital setting are asthma
questionnaires and mobile-health applications. Patients can
complete weekly questionnaires, such as the asthma symptom
tracker (AST) [20], which uses a scoring system to assess
the patient’s asthma symptoms over the previous week. The
system classifies the likelihood of deterioration based on the
results of the questionnaire. Although the questionnaire can be
helpful, there are several limitations—primarily, they rely on
patients filling out the questionnaire accurately and reliably.

The intelligent alternative to questionnaires is mobile-health
applications, which are helpful tools for online symptom
tracking. SaniQ Asthma [21] is an application that acts as
an online record of asthma-related medical history, including
peak flow recordings and blood oxygen saturation. Medication
can also be manually inputted, and local pollen count values
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are included in the interface, enabling the app to predict when
symptoms will likely worsen. Alternatively, Propeller [22] is
a sensor that can be attached to the top of the patient’s inhaler
and links to an application on their smartphone, acting as
a tracker and reminder for when to take their medication.
The system also includes local weather and pollution levels
to provide indications as to whether the patient’s symptoms
will deteriorate. Similarly, Smart Asthma [23] links a sensor
attached to a patient’s inhaler to the Smart Asthma smartphone
application. In addition, a Smart Asthma spirometer can be
attached to the patient’s mobile phone to directly record peak
flow measurements, and symptoms can be manually inputted
to the application. This enables Smart Asthma to predict when
their symptoms will deteriorate.

Although the above methods are useful for predicting patient
stability, they at least in part rely on patients manually entering
information such as medication usage or general feedback
about their symptoms. As an asthmatic patient’s condition
deteriorates, there will be physiological indicators that can be
measured in a more accurate manner. Therefore, an alternative
method for predicting asthmatic patient deterioration would
be to monitor vital signs using wearable technology and
sensors. By measuring these vital signs continuously, patient
deterioration could be identified before the patient reaches
a critical condition, and timely medical intervention could
prevent the need for the subsequent hospital admission. The
vital sign measurements could also be used alongside the
existing technology to provide a more accurate prediction.

In this article, we focus on reviewing vital signs and sensor
technologies (with an emphasis on BR) and their applications
that were either developed for people with asthma or can
potentially be used to monitor people with asthma. Vital signs
are critical in monitoring and managing the health conditions
of people with asthma. Beyond the commonly used vital
signs, such as BR, oxygen saturation, temperature, blood
pressure, and pulse/HR, there are unique “markers” that relate
to asthmatic patients, such as level of nitric oxide in their
exhale, verbal sound, and pain responses.

II. VITAL SIGN REPRESENTATION OF PATIENT

HEALTH FOR ASTHMATICS

Vital signs are widely used as indicators of patient health
to continuously monitor and track patient stability. “Gold-
standard” measurements of vital signs are the most accurate
and are meant to represent their true values. However, most
of the methods behind “gold-standard” measurements are
invasive or require highly specialized equipment, often only
available in clinical settings. Nevertheless, it is essential to
understand these methods in patient monitoring, as they can be
used to evaluate the accuracy of vital signs recorded from other
wearable technologies. Vital signs include body temperature,
blood pressure, blood oxygen saturation, heart rate, and BR.

A. Gold-Standard Measurements for Vital Signs
1) Body Temperature: The “gold-standard” core body tem-

perature measurement is through the use of a mercury
thermometer, which is most commonly placed orally [24].

The in-ear temperature is higher than the oral measurement
and cannot be used as an accurate gold-standard measure-
ment. The normal physiological range for temperature is from
36.5 ◦C to 37.2 ◦C [25], which does not appear to be directly
affected by an asthma exacerbation.

2) Blood Pressure: The “gold-standard” blood pressure
measurement is performed using a mercury sphygmomanome-
ter, which contains a cuff and a mercury manometer [26], [27].
Due to the environmental impact of mercury, modern sphyg-
momanometers use alternative manometers. When taking a
measurement, the cuff is placed around the arm and inflated
to occlude the arterial vessels, with the manometer recording
the pressure of the cuff. The pressure is gradually reduced,
increasing the arterial blood flow and leading to Korotkoff
sounds, which can be separated into phases that occur at
different levels of vessel occlusion. A trained practitioner can
identify Korotkoff sounds and phases corresponding to systolic
and diastolic blood pressure (with the values being read off
the manometer).

The normal physiological range for a healthy adult’s blood
pressure is a systolic blood pressure of less than 120 mmHg
and a diastolic blood pressure of less than 80 mmHg [25],
which does not appear to change as a direct result of an asthma
exacerbation.

3) Blood Oxygen Saturation: The “gold-standard” measure-
ment for blood oxygen saturation is arterial blood gas (ABG)
analysis [28], where a sample of blood is taken from a patient’s
artery and sent to the laboratory for ABG analysis. However,
this is a highly invasive measurement technique that only
provides intermittent monitoring, as each test requires a new
sample of blood.

In clinical settings, a pulse oximeter is instead commonly
used for continuous monitoring, from which a photoplethys-
mograph (PPG) signal is obtained [29]. During pulse oximetry,
two different wavelengths of light are transmitted through a
section of the body, and either the reflected or the transmitted
signal is recorded. Traditionally, the two wavelengths of light
used are red and near infrared (NIR). As oxygenated and
deoxygenated, blood has different absorption spectra, and
the received signal from the pulses of light can be used to
determine the blood oxygen saturation [29].

The normal physiological range for a healthy adult’s blood
oxygen saturation (SaO2) is between 95% and 100% [30],
while for asthmatic patients experiencing an exacerbation, this
range lowers to less than 90% SaO2 [5].

4) Heart Rate: The “gold-standard” heart rate measurement
is through the use of a 12-lead electrocardiograph (ECG) [31],
where ten ECG electrodes are placed at specific locations on
the chest. The most common electrodes used are Ag/AgCl,
which are attached to the skin via the use of conductive gels.
This reduces the impedance of the electrode–skin interface,
so a higher quality ECG signal can be achieved [32]. Two
electrodes are required to make a “lead,” which acts as a
transducer and converts the ionic potentials generated from the
polarization phases during the cardiac cycle into an electrical
potential. This electrical potential can then be processed and
displayed on a monitor [33], from which features, such as the
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QRS complex, can be identified, and the heart rate can be
extracted.

The normal physiological range for a healthy adult’s heart
rate is from 60 to 100 beats/min [25], while for asthmatic
patients experiencing an exacerbation, this range increases to
greater than 120 beats/min [5].

5) Breathing Rate: The clinical “gold-standard” measure-
ment for BR derives from a capnography waveform [34],
which uses the absorption spectra of carbon dioxide (CO2).
By passing infrared radiation through exhaled air, the concen-
tration of CO2 can be measured [35]. As this concentration
will change through periods of exhalation and inhalation,
a waveform of CO2 concentration against time can be plotted
from which the BR can be estimated. In clinical settings,
the industry-standard method is instead more commonly used,
where a stopwatch records a time over which breaths are
manually counted [34].

The normal physiological range for a healthy adult’s BR is
from 12 to 20 breaths/min [25], while for asthmatic patients
experiencing an exacerbation, this range increases to greater
than 30 breaths/min [5].

6) Airway Sound: The stethoscope performs the “gold-
standard” airway sound measurement to identify wheezing,
stridor, rhonchi, and crackle sound in the lung. Wheezing is a
high-pitched whistling sound that can be heard from patients
at breath out. This sound can be heard in the lung using a
stethoscope when airways are narrowed due to bronchospasms
and/or inflammation. A stridor sound is a high-pitched harsh
sound that can be heard without the use of a stethoscope.
Stridor sound appears when there is disrupted airflow or
obstruction. For children with asthma, stridor sounds are often
a joint effect caused by croup (a rare viral condition), pertussis
(whooping cough), and epiglottitis (airway swollen caused by
infection or physical trauma). For adults, stridor occurs due to
vocal cord dysfunction.

B. Vital Signs for Monitoring Asthmatic
Patient Deterioration

Obtaining clinical-standard vital sign measurements based
on the “gold-standard” and industry-standard methods is not
practical for the continuous monitoring required to predict
patient deterioration. Therefore, measuring vital signs using
wearable devices provides an excellent opportunity for novel
approaches to chronic respiratory health monitoring. BR is one
of the key indicators of asthmatic patient health. Blood oxygen
saturation and heart rate could also be used as indicators of
asthmatic patient stability, as they are both affected by an
asthma exacerbation, but the BR is the preferred monitoring
method in the majority of applications. BR is broadly used
because it can be observed directly (such as by looking at
the movement of the chest or hearing the breathing sound) or
extracted from either the ECG or PPG signals. If the BR is
extracted from signals measuring other vital signs, then the
raw data from these vital sign signals can also be recorded
and used simultaneously with the BR at little extra effort.
This would allow heart rate and blood oxygen saturation to be
easily incorporated into a more extensive model for predicting
deterioration in asthmatic patients who could be developed in

the future. Other vital signs used in asthma patient monitoring
include blood oxygen saturation, temperature, blood pressure,
verbal sound, and pain responses.

III. USING ECG AND PPG SIGNALS TO MEASURE BR
A. BR Extraction From Vital Signs

To continuously monitor patients with asthma, measuring
the BR directly using capnography is impractical [35]. In wear-
able device applications, the BR is commonly estimated using
recordings of other vital signs, such as ECG and PPG signals.
This section focuses on reviewing how BR is measured using
ECG and PPG signals.

1) BR Extraction From an ECG Signal: A patient’s BR can
be extracted from an ECG signal, which shows the changing
electric potentials of the heart over the course of the cardiac
cycle. There are several ways of extracting the BR from
an ECG signal: using R–R interval modulation [caused by
respiratory sinus arrhythmia (RSA)], using baseline wander,
or using R-peak amplitude modulation [36].

RSA is a physiological condition present in everyone but is
particularly pronounced in children and younger adults. As the
heart rate decreases during patient exhalation and increases
during inhalation, the R–R interval (time between successive R
peaks) is modulated by the BR. Algorithms used to extract the
breathing rate from an ECG signal are summerised in Table I.

RSA-based methodologies can be used to estimate the
BR from the R–R interval modulation in the ECG sig-
nal. As demonstrated by Helfenbein et al. [37] and
Ruangsuwana et al. [38], the R–R interval can be found from
the time difference between similar features in consecutive
QRS complexes, from which the instantaneous heart rate
(IHR) can be extracted. Using cubic splines to interpolate
between values of the IHR, the breathing waveform can be
displayed, and the BR can be found from the frequency of
this waveform. Nayan et al. [36] instead followed a different
pathway using an RSA-based methodology. The ECG signal
was initially preprocessed to remove the baseline wander
and the high-frequency components (using a Savitzky–Golay
filter), with the R-peaks identified using an ECG demo peak
detection function developed by Chernenko. From this signal,
the BR can be estimated. In addition, the signal quality was
assessed through the partial autocorrelation of the RSA wave
with an autoregressive (AR) model.

Alternative methods for estimating the BR from ECG sig-
nals involve direct R-peak detection. Once the R-peaks are
identified, the instantaneous R–R interval can be found and
plotted against time. From this sinusoidal waveform, the BR
can then be estimated.

Along this concept, Wang et al. [39] used a method for
R-peak detection involving three discrete criteria. The ECG
signal was partitioned into a series of samples, and for
each reference sample, another two samples were found at
0.03 and 0.08 s (as the time difference between these samples
corresponds to the average length of time for a QRS complex).
The first criterion found the slopes of the lines between the
reference sample and the two other samples, with the gradients
of these lines calculated. A “slope difference” value can then
be calculated, which if above a certain threshold classifies the
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TABLE I
SUMMARY OF ALGORITHMS USED TO EXTRACT THE BREATHING RATE FROM AN ECG SIGNAL

reference sample as a peak. The second criterion sets a series
of inequalities that need to be satisfied (to ensure that the peak
has sufficient steepness on either side), with the third criterion
requiring the height of the current peak to be above 0.4 times
the average of the previous eight peaks identified (to ensure
that the peak is not that of a T or P wave). If all three criteria
are met, then an R-peak has been identified.

Along with a similar approach, Tang et al. [40] used a three-
state delta modulator, where the delta voltage is generated by
subtracting the feedback voltage from the input ECG signal.
The signal output of the modulator describes whether the
delta voltage is greater than, lower than, or between the two
reference voltages. A local maximum point algorithm is then
used to detect the rising and falling edges of the R-peak: if
the number of consecutive rising segments is higher than a set
threshold value, it is considered an R-peak. If the number of
consecutive falling samples is also higher than the threshold
value, the whole QRS complex has been detected.

R-peaks can also be detected using a novel level-crossing-
based method [41]. The output signal from an analog-to-
digital converter is defined by two quantization levels [called a
level crossing analog-to-digital converter (LC-ADC)], between
which the signal lies. If the signal leaves the range between the
levels, the levels change by value k to ensure that the signal
remains within the range. The value of k can be set to one least
significant bit (LSB) or higher numbers of LSBs (which help
to filter out noise). The peaks of the signal are detected from
the change in value of the level crossing signal, from which
the R-peaks can be identified. As the difference between the
values of the level crossings is constant, the time difference
between level crossings can be used as a gradient indicator
of the peak. Around the detected peak, the sum of the time
intervals of a constant window of the level crossings can be
found, and a threshold applied to the value—if this duration
of the peak is less than a certain value, then the peak is that
of an R-peak. Dead-time zones between successive peaks are
also used to prevent T-waves from being falsely identified as
R-peaks. Zhang and Lian [42] also used a level-crossing-based
ADC to process the ECG signal, enabling the identification of
R-peaks from setting threshold parameters.

Zhao et al. [43] instead conducted R-peak identification
using three discrete steps. Initially, the signal is preprocessed
using a bandpass filter to reduce noise and help identify
potential R-peak candidates. A bilateral threshold is then
applied to determine the R-peaks from the possibilities found
in the previous step. A “QRS watchdog” is finally applied,
using a search-back function to identify missing R-peaks from
long time gaps between successive R-peaks.

Baseline wander of the ECG signal can occur from general
motion artifacts but also as a result of the chest rising and
falling during the respiration cycle (relevant only to ECG
electrodes that are placed directly onto the skin and not from
other technology such as smart watches). From the ECG trace,
Ruangsuwana et al. [38] showed that this R–R curve envelope
can easily be found by interpolation of consecutive R-peaks
using cubic splines (or by using the ECG mean), from which
the breathing waveform, and hence the BR, can be estimated.

The R-peak amplitude modulation during the breathing
cycle can also be used to extract the BR [44]. Throughout
the breathing cycle, the distance between the chest wall and
the heart changes, as does the impedance of the chest due
to the varying volume of air within the lungs. These physio-
logical factors manifest as changing QRS amplitudes. Initially,
the baseline wander needs to be filtered out (achieved using a
20th order, high pass, linear phase, and finite-impulse response
(FIR) filter) and the R-peak locations detected (using a Hilbert
transformation-based QRS detector). After anomalous peaks
are rejected, the remaining R-peak amplitudes can be plotted
against the time at which they occur. After low-pass filtering of
this signal, a smooth ECG-derived respiratory (EDR) estimate
(from which the BR can be estimated) can be plotted.

Along a similar methodology, QRS amplitude modulation
can be used to estimate the BR from an ECG signal [37].
Initially, a QRS detector was used, and the amplitude of the
QRS complex was recorded. This amplitude can be plotted
against time, and cubic splines can be used to interpolate
between consecutive values to obtain the EDR waveform.
By also employing a bandpass filter with suitable cutoff
frequencies (corresponding to realistic BR limits) to the inter-
polated signal, the BR can be extracted.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on May 31,2024 at 08:03:06 UTC from IEEE Xplore.  Restrictions apply. 



TAYLOR et al.: WEARABLE VITAL SIGNS MONITORING FOR PATIENTS WITH ASTHMA: A REVIEW 1739

Similar to the above methodologies, but for ECG electrodes
placed directly onto the chest, QRS amplitudes can be found
from which cubic splines can be used to interpolate between
consecutive values [37]. By also employing a bandpass filter
with suitable cutoff frequencies (corresponding to realistic BR
limits) to the interpolated signal, the BR can be extracted.
In addition, the intercostal chest muscles and diaphragm pro-
duce high-frequency signals overlaid on the ECG recording,
which correspond to their muscle activity throughout the respi-
ratory cycle. Therefore, a breathing waveform can be extracted
by applying a high-pass filter (with a cutoff frequency of
250 Hz) and calculating the rms value of the signal using a
sliding window [37]. However, this would still include residual
high-frequency fragments of the QRS complex; by performing
QRS signal to find the location of the QRS complexes and then
applying a smoothing filter over the corresponding times in the
breathing waveform signal, the remaining QRS peaks can be
filtered out.

2) BR Extraction From a PPGSignal: Although pulse oxime-
try is used to measure blood oxygen saturation, the heart rate,
and hence BR, can also be extracted from the PPG signal. The
heart rate can be extracted due to the pulsatile nature of blood
flow through the body, from which the BR can be extracted
due to RSA.

There are many different methods to extract the BR from the
PPG signal. They all follow a similar structure: extracting the
BR envelope from the overall signal, removing the dc offset,
and then using a variety of peak detection methods to establish
the BR. Algorithms used to extract the breathing rate from a
PPG signal are summerised in Table II.

Fusco et al. [45] developed an algorithm for BR extraction
based on the empirical mode decomposition (EMD), which
decomposes the PPG signal into different frequency-and-
amplitude modulated signals using intrinsic mode functions
(IMFs). The local maxima and minima of the signal are
identified from which the envelopes of the signal can be
interpolated. The mean is then removed to account for any
dc offsets, and a smoothing filter is applied (as an initial step)
to reduce the strength of unwanted signals such as motion
artifacts. The lowest frequency component of the processed
signal corresponds to the respiratory waveform, from which
the BR can be extracted. Ambekar and Prabhu [46] took
a similar approach but first added white noise uniformly to
the signal before first decomposing it into IMFs and then
performing an ensemble EMD (EEMD). The ensemble mean
for the IMFs falling in the frequency range of 0.2–0.33 Hz is
then used to calculate the final BR.

Along with a similar methodology, Li et al. [47] first
decomposed the PPG signal into a series of Gaussian basis
functions. The optimal parameters for the basis were found
through optimization of the least-squares error using the steep-
est descent method to find the minimization. The Gaussian
basis can then be processed using the Hilbert transform, and
this representation of the signal can be smoothed using the
Shannon energy envelope approach. The location of the second
highest peak along the frequency axis from the Shannon
energy envelope corresponds to that of the BR.

TABLE II
SUMMARY OF ALGORITHMS USED TO EXTRACT THE BREATHING

RATE FROM A PPG SIGNAL

Alternatively, Fleming and Tarassenko [48] developed an
algorithm based on an AR model. Initially, the recorded PPG
signal is downsampled. This helps to remove any of the signal
components corresponding to cardiosynchronous fluctuations
and reduce inaccuracies in the phase angles identified later.
Any dc offset in the signal is also removed. The downsampled
signal is then resampled, with a decimation algorithm applied
to act as an antialiasing filter. Standard AR modeling is then
applied

x (n) = −�
p
k=1akx (n − k) + e (n) . (1)

Taking e(n) (the noise term) as the input and x(n) as the
output, the transfer function from the AR model can be
expressed as a fraction, with the poles in the denominator
and the zeros in the numerator. From this, a pole-zero plot
can be formed, and the pole with the largest amplitude (also
within the expected frequency range for BR) can be identified.
Setting a threshold to 95% of this value, the lowest frequency
pole with an amplitude above the threshold value corresponds
to the BR.

Peak detection on the PPG signal also provides more
straightforward processing to extract the BR. Nilsson et al.
[49] simply filtered their PPG signal using a third-order Butter-
worth bandpass filter with cutoff frequencies at 0.1 and 0.3Hz,
before using peak identification to find the times of individual
breaths. From this, the BR can be extracted by the inverse
of the average time between consecutive peaks. As shown by
Leonard et al. [50], continuous wavelet transforms (CWTs)
can also be used to decompose the PPG signal into two
bands, of which the frequency of one corresponds to the BR.
In addition, a scalogram can be plotted from the CWT, which
can be projected into the amplitude–time domain (to obtain
the ridge amplitude perturbation (RAP) signal) or into the
frequency–time domain (which obtains the ridge frequency
perturbation (RFP) signal). Another wavelet transform can
then be applied to the RAP and RFP signals, from which the
BR can also be extracted.

Although Freeman [51] did not apply this methodology
using an algorithm but instead manually identified the key
features of the PPG signal; it presents an alternative concept
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TABLE III
SUMMARY OF WEARABLE ECG SENSORS

for extracting the BR. The PPG signal was initially segmented
into pulses, and landmarks were identified (the landmarks,
including the start point, endpoint, systolic peak, and diastolic
peak of each pulse). Pulses were individually evaluated for
suitability, and the BR was calculated from the time difference
between the foot and the systolic peak.

B. Commercially Available Wearable ECG and PPG
Monitoring Technologies

1) Wearable ECG Sensors: As described in Section II-A4,
the “gold standard” for measuring the heart rate is a 12-lead
ECG, where the electrodes are attached directly to the skin and
wired to a bulky monitor for display and processing. However,
alternative wearable technology must be implemented for
ambulatory monitoring of ECG as patients follow their regular
daily routine. To achieve this, traditional ECG sensors can
instead be integrated into a wearable shirt, and the recorded
signal can be transmitted wirelessly to an external control unit
for processing [52]. A summery of wearable ECG Sensors is
listed in Table III.

Park et al. [53] were able to integrate insulated bioelectrodes
(similar to the “gold-standard” electrodes but without the need
for skin preparations, gels, or adhesives) into a wearable shirt
from which to record the ECG signal.

Fensli et al. [54] attached their ECG electrode directly onto
the chest using a conductive hydrogel, which has an integrated
wireless transmitter to send the signal to a handheld device for
processing. The electrode itself has two electrical conducting
points to be attached to the skin, with the resulting patch
resembling a plaster. Traditional Ag electrodes can also be
integrated into an in-plane polyethylene terephthalate (PET)

film, as demonstrated by Yamamoto et al. [55]. The ECG
electrodes are screen-printed on the bottom surface of the PET
film and are directly attached to the chest using a commercially
available ion gel.

Yamamoto et al. [56] instead used biocompatible materials
to attach the traditional Ag ECG electrode directly onto
the chest. A mixture of ethoxylated polyethylenimine and
polydimethylsiloxane created the adhesive layer with carbon
nanotubes incorporated to improve the layer’s adhesion and
conductivity. Hallfors et al. [59] took the alternative approach
of creating a new fabric sensor made from Nylon1 and coated
in reduced graphene oxide. The reduced graphene oxide can
be attached to the Nylon1 as a uniform coating through the
aqueous solution it is suspended in, with the resulting fabric
being soft, flexible, and electrically conductive. The electrodes
can then be placed on the neck and the wrists to record the
ECG signal.

Capacitive ECG electrodes can also be placed directly
onto the skin, which transfers the electric charge from the
cardiac cycle along the capacitive path made between the
skin, the insulation layer, and the metal-plate sensor [60]. Two
electrodes are placed on the chest, with a third electrode placed
on the right hip used as the ground electrode to create the
two-lead ECG recording.

Similarly, ECG electrodes can be integrated into bands worn
around the chest. The recorded signal passes through a small
control unit integrated into the band before being wirelessly
transmitted to an external computer for further processing [61].
PhysioDroid is a two-lead ECG system integrated into a band
worn around the chest. PhysioDroid also has a smartphone

1Registered trademark.
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application that displays ECG signals directly on the patient’s
phone [62]. Another commercial alternative is the LifeMonitor
(which is also FDA 510k approved), where ECG electrodes are
integrated into a band worn around the chest [63], [64]. ECG
electrodes can also be incorporated into a belt within a vest,
with the connective wires incorporated as a smart textile into
the fabric of the underlying garment [65].

Yapici and Alkhidir [66] instead integrated a novel ECG
electrode into elastic bands that can be worn either around the
neck or wrists. The electrodes are made by dipping sections
of Nylon1 textile into a graphene oxide suspension, thermally
treating the resulting material, and then dipping it in hydrogen
oxide. The treated Nylon1 is cut into 3 × 6 cm pieces, which
are glued onto larger pieces of cotton fabric and then sewn
onto the elastic bands (which are used to ensure good contact
between the skin and the electrodes). As the electrodes are
attached to the inside of the bands, metallic snap fasteners are
used to electrically connect them to the outside of the bands,
where the circuitry (for processing and transmitting the signal)
is attached.

In addition, the ECG signal can be recorded through the
use of wearable technology around the wrist integrated into
smart watch interfaces. Both the Apple Watch (Series 4, 5,
and 6) [70], [71] and the Withings Move ECG watch [72]
have ECG sensors integrated into the hardware and operate
on the same principle. The watches have electrode sensors
placed on the back of the watch (so that they are in contact
with the wrist onto which the watch is placed) and another
sensor on the front face of the watch. For the Apple Watches,
this front sensor is the “Digital Crown” on the side of the
watch, and for the Withings Move ECG watch, this sensor
is in the form of a metal disk around the front of the watch
face. When the wearer wishes to make an ECG recording,
they connect the watch to a designated app (specific to each
watch) and place their opposite hand (to the one wearing the
watch) on the front sensor for 30 s. As the contacts between
the electrodes on the watch, the wrist wearing the watch, and
the other hand create a loop, this technology acts in the same
way as a traditional single-lead ECG recording. The signal
is transmitted wirelessly from the watch to the app, which is
then able to process the signal and display the ECG trace in
a similar manner to that of the “gold standard.”

Another example is the KardiaMobile device, which can
record ECG signals using Android and iOS apps on mobile
phones [73]. This portable device consists of two sensor pads,
where the user places two fingers from each hand, as shown
in Fig. 2(c). In comparison, iWatch is a one-lead ECG, and
KardiaMoble has one-, six-, and 12-lead versions. The six-lead
version has two ECG sensors on the top for fingers and one on
the bottom to contact the skin of the left leg, delivering ECG
leads I, II, III, aVL, aVR, and aVF [74]. The 12-lead version is
currently under clinical trial. KardiaMobile has been clinically
approved by the U.K. National Institute for Health and Care
Excellence and is available to purchase without needing a
doctor’s subscription.

2) Wearable PPG Sensors: As demonstrated in
Section III-A2, the BR can be extracted from a PPG

Fig. 2. Asthmatic monitoring using ECG. (a) Apple iWatch [58].
(b) Withings watch [59]. (c) KardiaMobile ECG monitor [74].

waveform. The PPG signal is traditionally recorded using
a pulse oximeter attached to the finger connected to large
monitors using wires [76]. Although this is the most accurate
method for taking a pulse oximetry reading, it requires close
proximity to the large monitors and control units, so it is not
suitable for ambulatory monitoring of patients. Therefore,
wearable pulse oximetry alternatives are required.

Wireless versions of traditional pulse oximetry sensors can
instead be attached to different parts of the body, with the
signals being transmitted via Bluetooth to a remote-control
unit for analysis and extraction of the BR. Reflectance-type
pulse oximeter sensors can be attached to the tip of the
finger or to the forehead (using double-sided sticky tape and
an elastic headband) [77]. The sensors can alternatively be
directly integrated into devices that can be worn on the legs
(BSX Insight) [78], thigh (Humon Hex) [79], and earlobe
(Lumafit) [83]. In addition, Chetélat et al. [80] were able to
embed both PPG and ECG sensors into a wearable vest, with
the PPG sensors containing four optical channels. A summary
of wearable PPG sensors are listed in Table IV.

Furthermore, PPG sensors can be integrated into smart
rings, such as the Oura ring [81]. Pulse oximetry sensors are
embedded into the inside of the ring, and the resulting PPG
waveform is transmitted to an application on a smartphone for
processing using in-built algorithms. Currently, the Oura ring
can only measure the BR, while the user is sleeping, as this
period has a lower motion artifact.

Pulse oximetry sensors can also be integrated into smart
watches or devices worn on the wrist. The FDA has approved
some of these sensors as medical monitoring devices, such
as the Masimo sensor [82]. This sensor has similar operating
principles and design to the “gold-standard” sensor used in
clinical settings—it is a pulse oximetry sensor that is attached
to the finger. In order to make the overall device wireless, the
sensor is attached via a short wire to a small control unit that
in turn is attached to the wrist using a strap.

The control unit is then able to send the acquired PPG signal
to an external server for processing.

Alternatively, BioBeats is a smart watch with pulse oximetry
sensors embedded into its hardware for PPG monitoring on the
wrist [84]. The Fitbit Charge HR is another similar technology
that uses PPG sensors integrated into a device worn on the
wrist [85], [86]. The Fitbit Charge HR uses PurePulse, their
patented technology in the form of a traditional pulse oximeter,
pulsing a light-emitting diode onto the skin and recording the

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on May 31,2024 at 08:03:06 UTC from IEEE Xplore.  Restrictions apply. 



1742 IEEE SENSORS JOURNAL, VOL. 23, NO. 3, 1 FEBRUARY 2023

TABLE IV
SUMMARY OF WEARABLE PPG SENSORS

reflected waveform [87]. The Fitbit Charge HR has an in-built
algorithm to extract the heart rate from the PPG signal, from
which the BR can be extracted. As demonstrated by Lee et al.
[88], pulse oximetry sensors can also be integrated into a
simple watch strap, where the PPG signal is extracted from
the radial and ulnar arteries. To minimize the noise signal
integrated into the PPG waveform, the inside of the watch
strap is lined with a conductive fabric that also connects to
the ground, serving as a shield to the sensors.

Waveform is transmitted to an application on a smartphone
for processing using in-built algorithms. Currently, the Oura
ring can only measure the BR, while the user is sleeping,
as this period has a lower motion artifact.

Pulse oximetry sensors can also be integrated into smart
watches or devices worn on the wrist, as shown in Fig. 3.
The FDA has approved some of these sensors as medical
monitoring devices, such as the Masimo sensor [81]. This
sensor has similar operating principles and is designed to the
“gold-standard” sensor used in clinical settings—it is a pulse
oximetry sensor that is attached to the finger. In order to make
the overall device wireless, the sensor is attached via a short
wire to a small control unit that in turn is attached to the wrist
using a strap. The control unit is then able to send the acquired
PPG signal to an external server for processing.

Alternatively, BioBeats is a smart watch with pulse oximetry
sensors embedded into its hardware for PPG monitoring on the
wrist [82]. The Fitbit Charge HR is another similar technology
that uses PPG sensors integrated into a device worn on the
wrist [83], [84]. The Fitbit Charge HR uses PurePulse, their
patented technology in the form of a traditional pulse oximeter,
pulsing a light-emitting diode onto the skin and recording the
reflected waveform [85]. The Fitbit Charge HR has an in-built
algorithm to extract the heart rate from the PPG signal, from
which the breathing rate can be extracted. As demonstrated by
Gorny et al. [86], pulse oximetry sensors can also be integrated
into a simple watch strap, where the PPG signal is extracted
from the radial and ulnar arteries. To minimize the noise signal
integrated into the PPG waveform, the inside of the watch
strap is lined with a conductive fabric that also connects to
the ground, serving as a shield to the sensors.

Fig. 3. Asthmatic monitoring using PPG. (a) Oura ring [75]. (b) Masimo
sensor [68]. (c) Fitbit Charge HR [69]. (d) Biobeats [70].

Furthermore, smartphones can have pulse oximetry sensors
embedded into them, where the PPG signal is obtained by
the user placing their index finger on the sensor [87]. The
phone then takes a reading and uses an application on the
phone for signal processing. Although it would not provide
continuous monitoring in the same way that the other wearable
sensors can, signal processing can be achieved directly on
the smartphone app, thus making it unnecessary to transmit
the signal elsewhere.

IV. COMMERCIALLY AVAILABLE AND EMERGING

WEARABLE TECHNOLOGIES

In the past ten years, wearable and contactless monitoring
technologies have started shaping the new digital health era for
monitoring and managing people with asthma. Many emerging
wearable technologies have been developed and have become
commercially available. These technologies can be broadly
defined as contact and noncontact monitoring.

There are four main types of noncontact monitoring,
including camera-based respiratory monitoring (infrared ther-
mography or video), ultrasound-based monitoring, remote
plethysmography, and radar-based respiratory monitoring
(continuous wave Doppler radar, laser Doppler vibrom-
eter radar, ultrawideband radar, and frequency-modulated
continuous-wave radar).
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While noncontact monitoring can provide patients with
more comfort, especially for long-term monitoring, the major-
ity of the digital health solutions that are available in the
market are based on contact sensor technologies.

This section focuses on the most promising methods for
measuring the breathing rate and airflow sounds, enabling
asthmatic patients to be monitored in a nonclinical setting.
Resistive and capacitive sensors can be integrated into smart
textiles, wearable vests, or placed directly onto the skin to
measure either the breathing rate or other vital signs associated
with breathing.

A. Skin Contact Wearable Sensors, Smart Textiles, and
Wearable Vests to Measure the Breathing Rate

1) Skin Contact Wearable Sensors: Patients’ breathing rates
can be measured directly without needing a capnograph, due
to emerging sensor technologies and innovations in material
sciences.

The RespiraSense sensor takes the approach of applying
the sensors directly to the skin, instead of via a wearable
vest or being integrated into a smart textile garment [34]. The
RespiraSense sensor is applied to the chest area using medical-
grade adhesive, which in turn is attached to a small control unit
that can be clipped onto items of clothing using thin wires. The
sensors themselves consist of piezoelectric films organized into
an array and can measure deformations in the relative angles
between the thoracic and abdominal surfaces.

These deformations are then converted into an electric
signal. The control unit consists of an in-built algorithm,
a Bluetooth transmitter, and an accelerometer, allowing the
breathing rate to be directly extracted from the signal. In addi-
tion, the accelerometer is used to reject motion artifacts from
the signal and improve the accuracy of the calculated breathing
rate. The Bluetooth transmitter is then able to send the signal
to external systems for storage.

A similar methodology is demonstrated by Chu et al. [91],
where a pair of sensors are attached directly to the skin around
the circumference of the ribcage and abdomen using a double-
sided adhesive. The sensors are made from a piezoresistive
metal film set in a silicone elastomer substrate, with their
changes in strain recorded to measure the breathing rate. The
novel aspect of these sensors is the use of the technology
behind the “Shrinky Dinks” toy (which consists of pieces of
plastic that shrink considerably in size when they are heated
up in the oven) when creating corrugation in the metal film
[92]. In addition to the breathing rate, Chu et al. [91] extracted
the respiration volume from the output of the sensors.

In clinical settings, the respiration volume is recorded
using the “gold-standard” method simultaneously with the
measurements from the skin sensors, allowing a calibration
model between the two measurements to be created as each
patient went through a set of prescribed breathing exercises.
It was only necessary to complete this procedure once for
the respiratory volume to then be estimated from any future
measurements from the sensor signal.

2) Smart Textiles and Wearable Vests: The term smart
textiles refer to a group of products in which electronic

Fig. 4. (a) Bioharness [90]. (b) Technology based on ShrinkyDink
toys [91].

components are embedded (or sewn) into an existing tex-
tile or fabric. These innovative textiles can be used in
patient monitoring applications, such as body movement,
blood pressure, temperature, and breathing rate. By using
smart textiles and incorporating various sensors into the
vest-like items of clothing, there are several exciting inno-
vations in wearable vests for breathing rate measurement and
monitoring.

As shown in Fig. 4, BioHarness 3.0 is one such technology
in which a capacitive pressure sensor (operating at 25 Hz)
is integrated within a vest to measure the changes in torso
circumference as the patient inhales and exhales [90], [93].
An algorithm within the sensor converts the recorded pressure
signal into a sinusoidal waveform, which can then be exported
wirelessly to a remote server to be processed. The resulting
signal is first resampled at 250 Hz. After the mean value is
removed, a third-order Butterworth bandpass filter with cutoff
frequencies at 0.5 and 1 Hz is applied for signal normalization
using the absolute value of the waveform. This enables easy
identification of the peaks associated with the breathing rate,
with the time difference between successive peaks used to
estimate the instantaneous breathing rate.

Another smart textile is formed when a foam-based version
of polypyrrole (PPy) is sewn into an existing fabric [94]. PPy is
a type of conducting electroactive polymer (CEP) used because
it does not change the mechanical properties of the material
it is integrated into. For use in a breathing rate sensor, PPy is
sewn into the pocket of a T-shirt. As the patient inhales and
exhales, the material is compressed and stretched, changing the
electrical conductivity of the PPy. Two-wire leads can then be
attached to either end of the sensor, and the resulting changes
in voltage are measured using a standard voltage bridge. The
signal is wirelessly transmitted to a base station for storage and
processing. Breaths can be detected from the location of the
peaks on a voltage–time graph; hence, the breathing rate can be
deduced from the average time difference between successive
peaks.

Along with a similar design concept, Guo et al. [95]
integrated two conductive coated straps into a wearable vest,
with the straps following the circumference of the chest
and abdomen. The conductive coating is applied using the
“knife-over-role” laboratory coating method. The control unit
(consisting of a microcontroller and a Bluetooth transmitter)
is situated on the back of the garment.
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TABLE V
SUMMARY OF SKIN CONTACT WEARABLE SENSORS, SMART TEXTILES, AND WEARABLE VESTS USED TO MEASURE THE BREATHING RATE

Conductive threads are used to connect the straps to the
control unit and are sewn into the piping of the garment
along the seams. The resistive change due to the mechanical
deformation of the sensor as the patient inhales and exhales
is measured, from which the breathing rate can also be
extracted.

Following a similar approach, Brouillette et al. [96] placed
inductive bands around the chest, which changed induc-
tance as the patient inhaled and exhaled during the respi-
ratory cycle. The bands are then connected to a polygraph
to give a signal trace, where the breathing rate can be
extracted from the time difference between successive peaks
identified after peak threshold detection was applied. The
inductive plethysmography approach was also followed by
Carry et al. [97], where two coils were integrated into a
jacket and allowed only to move in the axial direction. This
ensured that the changes in induction of the wires corre-
spond to the movement of the chest during the respiration
cycle.

Issatayeva et al. [98] created a different smart textile by
mounting two belts (each with five sensors) onto a T-shirt,
with the belts located around the abdomen and chest. The
sensor used was a fiber Bragg grating (FBG) sensor. As light
propagates through the sensor, a specific wavelength of light
(the Bragg wavelength) is reflected. When an external strain
or temperature acts upon the sensor, the reflected light shifts
wavelength as the fibers within the sensor react. By measuring
the wavelength of the reflected light, the strain (hence the
change in circumference of the chest) can be found, from
which breaths and the breathing rate can be extracted. As ten
sensors are included within the garment, if six or more of the
sensors show peaks simultaneously in their signal, these peaks
are interpreted as corresponding to breaths and hence are used
in the calculation of the breathing rate.

B. Monitoring Asthma Using Vital Signs Associated With
Breathing Rate and Airflow Sound

Table VI provides an overview of technologies used to
measure other vital signs that are associated with the breathing
rate and airflow sound and then discusses the suitability for
use in people with asthma.

Fig. 5 shows the prototypes for a wearable patch and wrist-
band. Sensors in both devices can track vital signs, including
heart rate, respiratory rate, and oxygen saturation, provide
estimations of wheezing in the lungs, and detect contamination
in the air for patients with asthma [6].

Figs. 6 and 7 show chest motion sensors developed based
on airflow sound. Fig. 8 shows a humidity sensor based on
poly lactic glycolic acid.

A wheezing sensor can also be used to detect early indica-
tions of asthma. One such sensor with a breathing acquisition
module can be placed on the upper chest to record the breath-
ing sound. Once this signal has been wirelessly transmitted to
an external device and processed, the signal can be displayed,
and signs of wheezing can be identified. A commercially
available and clinically approved wheezing sensor, Omron
WheezeScan, is shown in Graphical Abstract (f).

Another type of asthma patient monitoring is achieved
by measuring the concentration of nitric oxide, a chemi-
cal produced in response to airway inflammation caused by
asthma [6]. Nitric oxide is not a vital sign measurement, but
we believe that it is helpful to mention this technology to
readers.

For people with asthma, a higher level of nitric oxide in
their exhalation is related to the severity of airway inflam-
mation. The nitric oxide of exhalation can be tested by
handheld devices and used as a part of the patient monitoring
scheme. Fig. 9 shows the devices used in primary care to
measure the nitric oxide level and help in the early detection
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TABLE VI
SUMMARY OF TECHNOLOGIES USED TO MEASURE OTHER VITAL SIGNS ASSOCIATED WITH THE BREATHING RATE AND AIRFLOW SOUND

Fig. 5. Prototype for a chest patch and a wristband that can track vital
signs and environmental factors [6].

Fig. 6. Hybrid-based aspiration and respiration sensing for airflow
sound [99].

of asthma attacks [102], [114]. Another monitor developed
under a similar concept is a handheld asthma sensor with
ZCube. This rechargeable sensor detects nitric oxide mark-
ers in exhales to help doctors adjust patients’ medication
dosage [13].

V. DEVICES AND APPLICATIONS TRAILED FOR CLINICAL

OBSERVATION AND INTERVENTIONS

People living with asthma require self-management, includ-
ing observing breath patterns and enabling exercise control,
as well as clinical intervention through medication intervention
and treatment.

To provide insight into wearable and monitoring
technologies used in clinical practices worldwide, we screened
248 studies using the keyword “monitoring” and 16 studies
using the keyword “wearable” under the health condition
of asthma on the NIH clinical trials database (accessed on
July 28, 2022). This database is a major registration resource
for privately and publicly funded clinical studies conducted
worldwide, managed by the NIH U.S. National Library of
Medicine.

After shortlisting clinical trials using keywords and remov-
ing clinical trials that were terminated, we shortlisted 11 clini-
cal studies that focus on using wearable monitoring for asthma
patient monitoring.

A key difference between clinical and nonclinical devices
is the purpose of using them. For clinical studies, devices are
used to obtain measurements to provide the detailed vital signs
that are not necessarily needed in nonclinical settings. These
measurements are called “outcome measures,” as shown in
Table VII. Researchers designing new vital signs monitoring
technology for asthma monitoring should use clinical trial pro-
tocols such as the dictionary of “clinical importance,” “ground-
truth measurement,” and “clinical or nonclinical pipeline.” The
types of vital signs used in clinical studies can be broader than
the ones that are ready for commercially ready applications,
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TABLE VII
SENSOR TECHNOLOGIES, OUTCOME MEASURES, PATIENT SIZE, COUNTRY OF USE, COMPLETION STATUS

IN CLINICAL STUDIES, AND REVIEWER COMMENTS

comparing Table VII to Table VI. To enable clinical usage,
the clinical devices require a user interface to connect with
a hospital IT system or the results need to be manually
added to the electronic health record. The devices for clinical
usage can be larger in size compared to home monitoring
devices.

Table VII summarizes the shortlisted studies and lists
their sensor technologies, name of devices, outcome mea-
sures, patient size, and country of use. These studies
focus on technologies for asthma symptom monitoring and

medical intervention. The clinical pipelines for observation
and intervention are different when monitoring patients with
asthma. The observation study will lead to a scientific conclu-
sion based on observation, with or without medical interven-
tion followed by.

Countries with different prevalence levels of asthma, limi-
tations in doctor resources, or different income levels, such
as low-and-medium-income countries, often require cost-
effective and different digital health solutions to address
their challenges. Country-specific information will help to
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Fig. 7. Chest motion sensors. (a) Photograph of wearable mechanical
design. (b) Photograph of wearing the wireless breathing sound mon-
itoring system. (c) Block diagram and (d) photograph of the proposed
wireless breathing sound acquisition module. (e) Photograph of the
acoustic sensor [100].

Fig. 8. Prototype of the breathing rate measurement using a humidity
sensor based on poly lactic glycolic acid [101].

Fig. 9. Handheld nitric oxide devices. (a) NObreath FeNO primary care
monitor for asthma monitoring [102]. (b) NIOX MINO for the monitoring
of respiratory disorders [114].

address risk factors, diagnosis criteria in racial variance,
and geographical differences that suit epidemiology studies.

Readers interested in clinical trials can read the full details of
the above trials on the NIH website [104].

VI. CONCLUSION

This article has presented various methodologies in wear-
able vital sign monitoring for patients with asthma, including
extracting breathing rate from ECG and PPG signals, monitor-
ing airway sound in exhalation, and measuring breathing rate
indirectly using a combination of wearable sensors and smart
textiles. These sensor technologies’ commercial and clinical
applications and their readiness are summarized and discussed
in Sections IV and V.

Although the direct measurement methods, such as the
wearable vests and smart textile applications discussed in this
article, provide the results that are strongly correlated with the
breathing rate obtained from various clinical “gold-standard”
techniques, there are some common challenges in long-term
breathing rate monitoring for patients with asthma.

First, the conditions in which the different sensors were
tested do not accurately reflect the environment in which
they will be used. There will be significantly more motion
artifacts present outside of clinical trials as the patient
follows their normal daily routine; thus, the processing
techniques used for extracting the breathing rate from the
signal will not necessarily yield the same accuracy of
results.

Second, some sensor monitoring technologies require spe-
cialized garments to be worn by the patient. As the patient
would also need to be continuously monitored, they would
either need to wash the garments regularly or own multiple
garments—with these solutions being either impractical or
expensive.

In addition, when the garments are not discreet but instead
are vests and T-shirts that need to be tight-fitting to ensure
good contact between the sensors and the chest, it is unlikely
that patients will be willing to wear these garments every day
instead of their own clothing. Therefore, these methods do
not present desirable means for continuous monitoring of the
breathing rate in asthmatic patients.

Extracting breathing rate from ECG and PPG signals pro-
vides a more realistic opportunity for continuous monitoring,
as recording these signals can be achieved using smaller,
integrated sensors that have minimal impact on the patient’s
day-to-day life. For example, as a lot of patients wear rings
daily, the Oura ring is small, compact, and minimally affects
the patient. Moreover, with the ever-increasing use of smart-
phones and smart watches, applications with smartphone and
watches can also be feasible solutions for long-term asthma
monitoring.

Furthermore, as there are a large variety of techniques to
extract the breathing rate from the signals, a combination of the
algorithms could potentially be used to ensure a more accurate
calculation of the breathing rate.

In conclusion, continuous monitoring of patients’ breath-
ing rate and airflow sound would enable periods of
patient decline to be more quickly identified, allowing
more timely intervention for medical treatment and poten-
tially preventing the patient from requiring admission to
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the emergency department. Asthma monitoring can improve
patient’s quality of life, potentially reduce hospital admissions,
and serve cases, thus preventing some deaths, thus beneficial
to both the National Health Service and individuals affected by
asthma.
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