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Abstract—The increasing demand for real-time inference on
high-volume network traffic has led to the rise of in-network
machine learning, where programmable switches execute var-
ious models directly in the data-plane at line rate. Effective
network management often involves multiple prediction tasks,
such as predicting bit rate, flow size, or traffic class; how-
ever, existing solutions deploy separate models for each task,
placing a significant burden on the data-plane and leading to
substantial resource consumption when deploying multiple tasks.
To address this limitation, we introduce MUTA, a novel in-
network multi-task learning framework that enables concurrent
inference of multiple tasks in the data-plane, without exhausting
available resources. MUTA builds a multi-task neural network
to share feature representations across tasks and introduces
a data-plane mapping methodology to fit it within network
switches. Additionally, MUTA enhances scalability by supporting
distributed deployment, where different layers of a multi-task
model can be offloaded across multiple switches. An orchestrator
employs multi-objective optimization to determine optimal model
placement in multi-path networks. MUTA is deployed on P4
hardware switches, and is shown to reduce memory requirements
by x10.5, while at the same time improving accuracy by up to
9.14% using limited training data, compared with state-of-the-art
single-task learning solutions.

Index Terms—In-network computing; P4; multi-task learning;
neural networks; programmable data-planes

I. INTRODUCTION

Al-assisted network management schemes traditionally de-
ploy learning models on either end-hosts or network control-
planes [1]. However, this approach often results in long
reaction times to network events and may incur substantial
bandwidth consumption [2]. Programmable switches, along
with domain-specific languages such as P4 [3], present a
unique opportunity to execute machine learning (ML) infer-
ence algorithms directly within the data-plane. This capability
facilitates learning-based network management analysis at
line-rate, ensuring ultra-low latency response times without
impacting network forwarding [4].

Prior in-network ML research has introduced numerous
implementations of ML models in the data-plane. Tree-based
models [5—12], in particular, are popular as their inference pro-
cess can be effectively implemented using match-action tables.

Kaiyi Zhang, Nancy Samaan and Ahmed Karmouch are with the School of
Electrical Engineering and Computer Science, University of Ottawa, Ottawa,
ON KIN 6NS5, Canada (e-mail:kzhan122 @uottawa.ca)

Changgang Zheng and Noa Zilberman are with the Department of Engi-
neering Science, University of Oxford, OX1 3PJ Oxford, U.K.

These implementations can carry out network management
tasks such as attack detection [13], traffic classification [14],
bot traffic detection [15], and heavy flow detection [16].
Additionally, some studies have investigated deploying neu-
ral networks on SmartNICs or network switches for traffic
analysis [17-22] or leveraging these devices as accelerators to
enhance neural network inference efficiency [23, 24].
However, the aforementioned studies address only a single
network management task at a time, using one deployed
model. Consequently, addressing multiple management tasks
necessitates the deployment of multiple independent models.
For example, ensuring Quality of Service (QoS) and optimiz-
ing network resource allocation require various management
tasks, including traffic class prediction, bandwidth prediction,
flow size prediction, and duration prediction [25]. However,
due to the limited resources of network switches, deploying
individual models for each task can exhaust or even exceed
all the switch resources [26]. Additionally, some tasks are
considered as hard-to-label tasks, which refer to tasks where
accurately labeling collected traffic data is challenging. For ex-
ample, labeling traffic classes is a labor-intensive process that
requires domain experts to manually inspect and classify pack-
ets or flows based on observed patterns and behaviors. This
approach is slow, expensive, and difficult to scale, especially
as network data volumes continue to grow. While automatic
labeling schemes [27] exist, they typically rely on predefined
rules or machine-generated patterns, which may fail to capture
the complexity of real-world network traffic. These methods
also struggle with ambiguous or mixed traffic types, leading to
misclassifications and reduced model accuracy. Consequently,
training models for such tasks with insufficient or low-quality
labeled data often results in poor model performance.
Multi-task learning (MTL) [28] emerges as a promising
solution to these issues. MTL enables the simultaneous ex-
ecution of multiple related tasks by leveraging shared fea-
ture representations, providing two key advantages for in-
network ML. First, a single multi-task model can replace
multiple standalone models, significantly reducing the resource
burden on network switches. Second, tasks with abundant and
easily obtainable labels can supplement the training of hard-
to-label tasks by contributing shared representations, thereby
improving their accuracy. Thus, integrating MTL into the data-
plane not only optimizes resource utilization but also improves
the performance of tasks with insufficient labeled data.
Neural network architectures are often used to perform MTL



tasks [28]. However, there are two challenges to implementing
neural network inference in the data-plane. First, the data-
plane pipeline does not support complex operations required
for neural network inference, such as matrix multiplication
and floating-point operations. Second, the limited resources
in the data-plane restrict the size of neural network models,
making it difficult to deploy large models on a single switch.
Given that neural network models used for MTL are usually
deep, this is a notable challenge. As a result, hardware
modifications were suggested to support neural network-based
inference [29, 30], but these approaches restrict the direct
utilization of existing switch ASICs. Fully-binarized neural
networks, where binarization (or binary quantization) reduces
weights and activations to binary values (typically +1), have
been explored as an alternative [17, 18]; however, they suffer
from precision degradation.

To address these challenges, this paper proposes MUTA.
First, MUTA builds an MTL neural network where tasks share
multiple layers, rather than deploying multiple independent
models supporting different management tasks. This approach
is both resource-efficient and more accurate than single-task
models (§VII-C). Resource efficiency is achieved by sharing
feature representations among related tasks, thereby elimi-
nating redundant resource usage. Moreover, MUTA enhances
accuracy in scenarios where specific tasks lack sufficient
labeled data (§VII-B) by leveraging knowledge from related
tasks through shared model parameters. Second, MUTA ef-
ficiently maps model layers and associated weights to a set
of off-the-shelf programmable switches using a novel deploy-
ment strategy, enabling non-binarized MTL neural network
inference in the data-plane without hardware modifications
(§V). The network-wide deployment strategy ensures that the
provided service will cover the entire multi-path network, with
the ability to adjust the trade-off between switch resource
consumption and latency (§VI). In summary, the main con-
tributions of this paper are as follows:

« We introduce MUTA!, an intelligent architecture that
performs multiple management tasks using MTL models
in the programmable data-plane. MUTA generates a quan-
tized MTL model suitable for deployment in the data-
plane. To the best of our knowledge, this is the first work
toward non-binarized multi-task model inference in the
data-plane.

o We design and train a non-binarized multi-task neural
network model that ensures efficient utilization of limited
resources in data-planes while maintaining high accuracy
when processing multiple tasks simultaneously.

« We present a novel mapping methodology for deploying
the MTL model within the data-plane in a distributed
manner. The model’s layers can be allocated across
multiple switches, and we design a novel implementation
of the per-layer inference operation (i.e., vector-matrix
multiplication) to enhance scalability and alleviate the
resource burden on individual devices.

'A preliminary work appeared in part at the 2025 IEEE International
Conference on High Performance Switching and Routing (HPSR) [31].

o To ensure that the MTL-based service does not affect
existing network functions, and that correct service is
provided regardless of the path taken through the network,
we formulate the neural network layer placement problem
in a multi-path network as an integer linear programming
(ILP) problem and design a network-wide deployment
strategy.

We evaluate the proposed solution using two use cases:
video streaming quality of experience prediction and traffic
characteristics prediction, showing that MTL can improve the
accuracy of hard-to-label tasks with insufficient labels. The
evaluation of MUTA on Intel Tofino switches shows that
MUTA reduces memory usage by x10.5 compared to single-
task models, while maintaining line-rate throughput and sub-
microsecond latency. The proposed distributed deployment
strategy is scalable and flexible, providing efficient distribution
plans across different network scales and topologies without
requiring changes to routing rules.

The remainder of this article is organized as follows; Section
IT discusses related work. Section III provides an overview
of the proposed architecture while Section IV describes the
proposed multi-task neural network and explains the adopted
quantization scheme. Section V discusses the P4-based imple-
mentation details. Performance evaluation results are discussed
in Section VII. Section VIII discusses some considerations and
future research directions. Finally, Section IX concludes the

paper.
II. RELATED WORK

In this section, we review programmable data-planes, multi-
task learning, and existing in-network machine learning solu-
tions, and highlight the key design challenges that motivate
our approach.

A. Programmable Data-Plane

The Protocol-Independent Switch Architecture (PISA) [35]
enables data-plane programmability, empowering fast innova-
tion of networking designs. Many current data-plane architec-
tures [36-39] originate from, and are similar to, this general
architecture. In a PISA pipeline, a data packet is first mapped
into a packet header vector (PHV) by a parser. The PHV is
then passed to a match-action pipeline for algorithm execution
and data manipulation. The pipeline consists of match-action
tables arranged in a sequence of logical stages. Match-action
tables are fundamental units that lookup a value of key (e.g.,
a field in packet header) in a table, and map the resulting
entry to a corresponding action. Finally, the processed PHV
is assembled into a set of ordered headers and payload by the
deparser. The parser, match-action pipeline, and deparser can
be programmed to implement customized protocols.

While PISA supports simple operations like addition, shift
and bit-wise operations, complex instructions like floating-
point operation, matrix multiplication and loops are not
supported. Furthermore, hardware switches are resource-
constrained, with only tens of megabytes of memory and a
restricted number of processing stages [4]. For example, Intel
Tofino switch [40] has twelve processing stages and Mb-scale
memory.



TABLE I: Comparison of advanced in-network neural network solutions.

Scheme Model Platform Layer Split DMllSltllt'll-bl:ftg(li E,elzgzl:ltlation Multi-task
N2Net [32] binarized NN RMT-like Switch X X v X
BaNaNa Split [23] | binarized NN SmartNIC v X v X
N3IC [17] binarized NN SmartNIC X X v X
Qin et al.[18] binarized NN bmv2 (software) X X v X
NNSplit[33] binarized NN bmv2 (software) | v X v X
MARTINI[34] binarized NN bmv2 (software) | X X v v
BoS [22] binarized RNN Tofino (hardware) | X X v X
INQ-MLT [19] non-binarized NN bmv2 (software) b 4 X v X
101 [30] non-binarized NN Modified ASIC X X v X
Taurus [29] non-binarized NN Modified ASIC b 4 X v X
Razavi et al. [24] non-binarized CNN | Tofino (hardware) v X X X
MUTA non-binarized NN Tofino (hardware) v v v v

B. Multi-Task Learning

Multi-task learning (MTL) is a machine learning training
paradigm in which a shared model simultaneously learns
multiple tasks under the assumption that the tasks are not
completely independent and one can improve the learning
of another. MTL has been successfully applied in various
ML fields, including natural language processing [41] and
computer vision [42] and autonomous driving [43].

MTL can be implemented using either hard parameter
sharing or soft parameter sharing. In hard parameter sharing,
a subset of parameters is shared across multiple tasks, while
task-specific parameters are maintained separately. In contrast,
soft parameter sharing employs independent models for each
task, but their parameters are regularized to promote similarity
and leverage commonalities among tasks [28]. In this work,
we adopt the hard parameter sharing approach due to its
simplicity and efficiency. Compared to the single-task case,
where each individual task is solved separately by its own
model, such multi-task models have several advantages. First,
their inherent layer sharing leads to a substantially reduced
memory footprint. Second, their resource efficiency is high,
as they explicitly avoid repetitive features calculation in the
shared layers.

C. Existing In-Network ML Solutions and Limitations

1) In-Network Tree-based Solutions: The research com-
munity has made substantial progress [5-12] in realizing
tree-based inference models within programmable switches.
Among the proposed methodologies, two advanced mapping
schemes have been extensively explored: the hierarchical
mapping scheme and the feature-encoding mapping scheme.
Hierarchical mapping schemes [7-9] follows a natural strategy,
which involves mapping the hierarchical structure of decision
trees to the programmable switch pipeline. This requires at
least one (and possibly more) stages per tree level. Conse-
quently, tree depth is bottlenecked by the number of pipeline
stages. The feature-encoding mapping scheme [26] overcomes
this limitation by partitioning the input feature space and
leveraging feature tables to encode individual feature values.
The encoded feature space is then mapped to labels using
a decision table. This scheme allows feature tables to share
stages, significantly enhancing scalability and enabling the

deployment of deeper and more complex trees. Beyond single-
switch deployment, DUNE [44] further extends scalability by
distributing tree-based models across multiple switches.

However, current tree-based solutions require separate tree
models to be deployed for different tasks, which significantly
increases resource consumption within the data-plane. As each
branch in a tree model is formed based on features relevant to
a specific task, it is difficult to share branches or nodes across
different tasks. This structural rigidity means that tree models
do not naturally support the sharing of information between
tasks. Additionally, tree-based models struggle with tasks that
have limited training data.

2) In-Network Neural Network Solutions: Table I summa-
rizes existing in-network neural network schemes. The imple-
mentation of Binary Neural Networks (BNNs) in the data-
plane has been explored using commodity SmartNICs (e.g.,
N3IC [17] and BaNaNa Split [23]), and software switches
bmv2 (e.g., Qin et al. [18]). These works binarize both the
weights and the activations of a Multi-Layer Perceptron (MLP)
model. The forward propagation in fully-connected layers
is then executed using XNOR operations and customized
population count (popcnt) operations[17, 18]. Following this
approach, MARTINI [34] implements BNN-based MTL mod-
els in software switches. However, it has not been proven that
these solutions can be effectively integrated into commercial
switch Application-Specific Integrated Circuits (ASICs) while
maintaining acceptable performance and scalability.

Instead of full model binarization, BoS [22] enables the
use of recurrent neural network (RNN) in the data-plane by
only performing binarization on activation functions. They
avoid direct computations of the layer forward propagation
by replacing it with a table lookup. It realizes equivalent layer
forward propagation by recording a mapping from input to
output bit strings in a match-action table.

As a further step toward higher precision in-network neu-
ral networks, INQ-MLT [19, 20] introduces an in-network
quantized ML toolbox designed to generate non-binarized
neural networks for data-plane deployment. However, the
solution is suitable only for targets supporting multiplication
operations (e.g., software switches [36]), and not for switch
ASICs. Razavi et al. [24] implement a quantized convolutional
neural network (CNN) on Tofino2 switches [45] for an image



classification task. Their approach decomposes each multipli-
cation into multiple shift operations, necessitating a significant
amount of recirculation. This approach results in a substantial
throughput reduction and increased latency.

Orthogonal to the above solutions, Taurus [29] proposes
modified switches, using custom hardware based on the
MapReduce abstraction, supporting deep neural networks.
Similarly, IOI [30] implements neural network inference on
programmable switches by plugging a novel transceiver mod-
ule. This module is designed to perform linear operations such
as matrix multiplication in the optical domain. Both solutions
are not applicable to commodity switch ASICs.

Neural networks are inherently suitable for MTL due to their
ability to learn and share representations across multiple tasks.
Neural networks utilize shared parameters within their layered
architecture, enabling the extraction and sharing of useful
features between tasks. This shared representation facilitates
better generalization and allows the model to make efficient
use of the available data from all tasks. By leveraging the
shared representation, tasks with abundant labeled data can
significantly enhance the performance of tasks with insufficient
labeled data through shared learning [25]. Furthermore, neural
networks can scale to handle large and intricate network
management tasks, whereas decision trees can become compu-
tationally expensive and difficult to manage as the complexity
of the tasks grows.

Although the concurrent work MARTINI [34] also explores
similar MTL idea in the data-plane, our approach, MUTA,
differs in the following key aspects: First, while MARTINI
employs BNNs in software switches, MUTA uses higher
precision neural networks and introduces a PISA-friendly
mapping methodology, making it applicable in hardware
switches. Second, while MARTINI focuses primarily on the
resource efficiency of MTL, MUTA additionally demonstrates
the advantage of improved accuracy for hard-to-label tasks
by leveraging shared representations. Third, MUTA supports
MTL services across the entire multi-path network, providing
broader coverage and scalability.

D. Design Challenges

Model Inference on unmodified switch ASIC: Pro-
grammable switch ASICs, such as Intel Tofino [40], lack
support for complex operations essential for neural network
inference, including matrix multiplication and floating-point
arithmetic. Existing approaches to address these limitations of-
ten involve either hardware modifications [29, 30] or extensive
recirculation [24]. Hardware modifications, while enabling
advanced operations, restrict the direct utilization of existing
switch ASIC. To perform multiplication without hardware
changes, one can decompose each multiplication into a number
of bit shifts and addition, but this consumes excessive stage re-
sources (e.g., an 8-bit multiplication requires 4 stages). When
the pipeline cannot fit the entire inference model, packets
must be cloned and recirculated within the pipeline multiple
times. This approach significantly degrades throughput and
latency, making it unsuitable for real-time applications. MUTA
overcomes these constraints by introducing a distributed neural

network mapping methodology, along with a novel layer-
wise inference implementation, enabling neural network ex-
ecution on unmodified switch ASICs while maintaining line-
rate performance without the need for hardware modifications
or excessive recirculation.

Distributed Deployment: Deploying MTL model to a
single switch has a performance ceiling, as the resources
of a single switch are limited and cannot accommodate
very large models. MUTA applies a distributed processing
approach to support large models, inspired by server-based
distributed inference [46]. While the idea of distributing a
neural network’s layers in the data-plane is not new [33],
two significant gaps remain: first, distribution across resource-
constrained switch-ASICs is significantly different from using
resource-unlimited software switches. Second, unlike server-
based distributed inference, where dedicated nodes are used,
in network-based inference there are a lot of potential paths of
packets through the network. This means that correct execution
of all model’s layers needs to be guaranteed, and it has to be
done without changing routing rules as this may lead, e.g., to
congestion on certain routes. MUTA solves both challenges,
designing a deployment strategy that ensures MTL model’s
services correctly cover an entire network, and demonstrating
it on a switch ASIC (Intel Tofino).

Our Design Goal: To develop a practical in-network MTL
framework that leverages a shared neural network model to
perform multiple prediction tasks efficiently, the design must
address the challenges of resource constraints, scalability, and
deployment across programmable switches while ensuring
high accuracy and maintaining line-rate performance.

III. AN OVERVIEW OF MUTA

This section provides an overview of the proposed archi-
tecture. MUTA combines control-plane and data-plane com-
ponents. As shown in Fig. 1, the control-plane is responsible
for building and training a multi-task neural network model
for network management applications. The trained model is
offloaded to the data-plane in a distributed manner. Based
on the application’s objectives or the requirements of the
network operator, a set of network management tasks is first
defined. Collected raw traffic data is labeled in the control-
plane (e.g., manually) to reflect these defined tasks. The
relationships among tasks are then analyzed to determine
their interdependencies and potential for shared learning. The
labeled data is used by the multi-task model builder to create
appropriate models. After the multi-task model is built, the
model training and quantization module generates a quantized
MTL model, with parameters prepared for mapping the model
inference to data-plane program (§IV).

Once the quantized MTL model is obtained, it is fed into
the model mapping module to generate the data-plane P4 code.
The module first splits the model layer by layer, extracting
the weights from each layer, and recording the dependencies
between layers. Subsequently, it produces P4 code for each
layer, mapping the model inference to match-action tables in
accordance with the extracted weights. The feature extraction
process, which may be either stateful or stateless, can be
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Fig. 1: MUTA architecture. The control-plane is responsible for training and quantizing the model, generating the data-plane code, and determining the
deployment strategy. The model layers are then distributed across multiple data-plane devices to cover intelligent services across the entire network.

implemented as a standalone P4 program, and we do not
prescribe a specific feature extraction mechanism. Extracted
features can then be transmitted in-band together with the data
packets [47]. During model inference, intermediate computa-
tion results from each layer are stored in the packet headers
and passed sequentially to subsequent switches, enabling the
network to execute inference in a layer-by-layer manner. The
final prediction is obtained at the switch hosting the model’s
output layer (§V) and is then cached in registers for reuse; it
can either trigger local actions (e.g., shaping, prioritization) or
be written into the packet header for downstream processing.

A deployment orchestrator is used to provide a recom-
mended deployment of the generated P4 code of the MTL
model across the entire network, supporting complex multi-
path network topologies and ensuring full paths coverage. It
matches the resource requirements of each layer, as standalone
programs (e.g., a minimum of 10 MB of memory), with the
resource constraints of the target switch (e.g., 20 MB of
available memory). The orchestrator analyzes layers’ informa-
tion and obtains their resource requirements and dependencies
(e.g., layers must be completed in order). The control-plane
provides the network topology and routing table, identifying
all possible paths and the resources available on each switch.
The orchestrator formulates an integer linear programming
problem and produces a deployment strategy (§VI).

IV. MULTI-TASK MODEL TRAINING AND QUANTIZATION

To concurrently execute multiple network management
tasks, we adopt a structured approach that leverages shared
feature representations to construct a multi-task model. Typi-
cally, to train a single task, the learning model learns its own
feature representations of the input data through hidden layers.
Each network management task, such as traffic prediction or
anomaly detection, extracts unique feature representations for
its specific requirements. However, because many network
management tasks share underlying traffic characteristics and
patterns (e.g., packet size distribution) [48], it is feasible to
learn a unified feature representation. By employing a multi-
task learning framework, it is possible to train a shared model
that captures these shared features, enabling more efficient and
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Fig. 2: Proposed multi-task learning architecture.

generalized learning across tasks. This shared representation
not only enhances the model’s ability to generalize [28]
but also reduces the computational overhead associated with
training separate models for each task.

A. Model Architecture and Training

The overall architecture of our multi-task model is shown
in Fig. 2. The initial layers of the multi-task neural network
share common feature representations and are jointly used to
execute different tasks. For the output layer, each task has
its own dedicated task-specific layer, which uses the shared
representation to produce task-specific outputs. Suppose we
aim to train a neural network to simultaneously perform N
management tasks. For each task i € {1,2,---,N}, there
is an associated loss function £; and a task-specific output
vi. The objective of the multi-task learning approach can be
formulated as:

N
argmin > 4 Li(yi. 1) (1)
i=1
where §; denotes the true label for task i. 4; denotes the weight
assigned to the loss of task 7, indicating the relative importance
of the task. The model parameters 6 (i.e., weights and bias)
are iteratively updated by back-propagation to minimize the
loss function, using a combined direction derived from the
gradients of each task. This joint training approach avoids
the need to train separate models from scratch for each



task, reduces the total number of model parameters, and thus
reduces computational overhead.

B. Quantization

As data-planes cannot perform floating-point operations,
the weights of each layer of the MTL model are restricted
to fixed-point representations when stored in the data-plane.
Therefore, we employ a quantization technique to transform
the floating-point based model to a quantized model which
represents weights and activations using more compact format
(e.g., 8-bit integers) [19]. A floating-point model parameter r
is mapped to a quantized value g by defining three quantization
parameters: the real-valued scale S, the zero-point Z, and the
bit-width B. The scale S specifies the quantization step, or
the corresponding real-value distance between two consecutive
integers. The zero-point Z is an integer that ensures that real
zero is quantized without error. The quantized integer ¢ is
obtained as follows,

g = clamp(| |+ Z; Oins Oman) @
where |-] is the round-to-nearest integer value operator. The
function Clamp(q; Qmins Qmax) = min(max(q, Qmin)s Qmax)
ensures that the quantized value g stays within the clipping
range [Qmin, Omax], Which is determined by the bit-width B.

Applying quantization to a trained model may introduce
a perturbation to the trained model parameters, significantly
reducing the model accuracy. To mitigate this, we employ
quantization-aware training (QAT) [49]. As depicted in Fig. 2,
we add quantization nodes, which are sequences of quantiza-
tion and de-quantization operations stacked together. This pro-
cess simulates low-precision inference time computation in the
forward pass of the training process, thereby introducing the
quantization induced errors to the training phase. The model
is forced to learn as it is trained how to modify its weights
in order to minimize its accuracy loss due to quantization.
Importantly, these additional nodes are only needed during
the training phase and are not part of the inference.

After the model is trained by the control-plane and its
quantized weights are obtained, each layer is mapped to
its corresponding match-action tables as part of the packet
forwarding pipeline, as detailed in Section V.

V. MAPPING MODELS TO SWITCHES

In this section, we describe the implementation of the MTL
model within the programmable data-plane. Deploying the
entire model within a single switch limits scalability, especially
for deeper models, so we decompose the model into individual
layers and distribute computations across multiple switches.
Each layer is implemented as a P4 program following PISA
and assigned to a switch. Fig. 3 illustrates the encoding and
mapping of a layer’s computations to a set of match-action
tables, as explained next. Multiple layers can also be assigned
to a single switch if the layer size is small. Intermediate layer
results are then forwarded to subsequent switches, enabling
layer-by-layer inference of the entire model.

A. Data-Plane Mapping Methodology

1) Layer Inference in a Single Switch: The computations
within a neural network layer require multiple multiplication
and addition operations. Given that switch ASICs do not
inherently support multiplication operations, we replace these
operations using match-action tables. These tables are used
to store precomputed mappings between input values and
the corresponding intermediate results, effectively replacing
multiplications with table lookups.

1 apply {

2 action ac_inputl (int<32>z11, int<32>2z21,...,1int<32>2z81) {
3 meta.R1_hl = meta.R1_hl + z11;

4 meta.R1_h2 = meta.R1_h2 + z21;

5 [N

6 meta.R1_h8 = meta.R1_h8 + z81;}

7 action ac_input2 (int<32>z12, int<32>z22,...,1int<32>282) {
8 meta.R1_hl = meta.R1_hl + z12;

9 meta.R1_h2 = meta.R1_h2 + z22;

10 e

11 meta.R1_h8 = meta.R1_h8 + z82;}

12 action ac_input3(int<32>z13, int<32>z23,...,1int<32>2z83) {
13 meta.R1_hl = meta.R1_hl + z13;

14 meta.R1_h2 = meta.R1_h2 + z23;

15 P

16 meta.R1_h8 = meta.R1_h8 + z83;}

17 action ac_input4 (int<32>z14, int<32>z24,...,int<32>z84) {
18 meta.R2_hl = meta.R2_hl + z1l4;

19 meta.R2_h2 = meta.R2_h2 + z24;

20 R

21 meta.R2_h8 = meta.R2_h8 + z84;}

22 action ac_input5(int<32>z15, int<32>z25,...,1nt<32>z85) {
23 meta.R2_hl = meta.R2_hl + z15;

24 meta.R2_h2 = meta.R2_h2 + z25;

25 P

26 meta.R2_h8 = meta.R2_h8 + z85;}

27 action ac_input6 (int<32>z16, int<32>z26,...,1int<32>z86) {
28

meta.R2_hl = meta.R2_hl + zl16;
29 meta.R2_h2 = meta.R2_h2 + z26;
)

31 meta.R2_h8 = meta.R2_h8 + z86;}

32 table tb_inputl {
key={hdr.inputl:exact;}

4 actions = {ac_inputl;}

35 size=256;} // Stage 0

36 table tb_input4d {

7 key={hdr.inputéd:exact;}

38 actions = {ac_input4;}

39 size=256;} // Stage 0

40 table tb_input2 {...} // ¢

41 table tb_input5 {...} //

42 table tb_input3 {...} //

43 table tb_inputé6 {...} // ¢ e

44 // Stage 3

1
1
>
2

45 meta.outputl = meta.R1_hl + meta.R2_hl
46 meta.output2 = meta.R1_h2 + meta.R2_h2
47

48 meta.output8 = meta.RI1_h8 + meta.R2_h8

19}

Listing 1: P4 code fragment demonstrating vector-matrix multiplication
between an input vector of size 6 and a 6 x 8 layer weight matrix. For example,
the parameters (z2, 222, --., zg2) in the action ac_input?2 correspond to the
precomputed outputs (x;wi2, xaw22, - - -, Xowgp) in Table 2 of Fig. 3.

For example, the triggering of each layer, requires a vector-
matrix multiplication operation between the input vector x =
(x1,- - ,x,) and the layer weight matrix W = [w,,,] of size
n x m, followed by adding the bias vector b = (by,- -, by),
resulting in the output vector y= xW + b. However, directly
using a single match-action table to enumerate all possible
combinations of inputs would result in an impractically large
table, making implementation on a single switch infeasible.
Therefore, we employ smaller match-action tables, dedicating
one table to each input variable. Listing 1 provides a P4 code
fragment illustrating vector-matrix multiplication for an input
vector of size 6 and a weight matrix of dimensions 6 x 8.

For an input x;, the training process provides bias and
weights that are constant during the inference process. A small
match-action table is then used to store the precomputed output
dimensions (x;w1;, Xx;wa;, - -+ , X;Wwy;) for all possible values of
inputs x;. This allows x; to act as the key in the match-action
table for retrieving the corresponding parameters used in the
action function, thereby eliminating the need for multiplication
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Fig. 3: Methodology for mapping layer computation to a match-action pipeline. The parser extracts the input vector from the packet header, followed by
layer-wise inference executed through a sequence of match-action tables. The deparser then reconstructs the packet, embedding the output vector into the
header. These intermediate layer values are forwarded to downstream switches, which use them as inputs for their assigned layers. The top-right corner

illustrates parallel execution used to minimize stage consumption.

operations. For example, the parameters (z12, 222, ..., 282) in
the action ac_input2 (as shown in Listing 1) correspond to
the precomputed outputs (xowi2, Xowo, -+ -, Xpwgp) in Table 2
of Fig. 3. The addition of bias can be integrated into any one
of these tables, such as Tablel in Fig.3.

The looked-up intermediate values are then used for addition
operations that generates vector y (i.e., the element-wise
sum of vectors from all match-action tables). For an input
vector of size n, the switch utilizes n match-action tables to
perform the vector-matrix multiplication required for the layer
inference. Once the vector y is obtained, a non-linear activation
function is applied, expressed as y' = g(y), and realized
through the clamping mechanism defined in Eqn. (2). For
instance, when using ReL.U, the operation can be represented
as 'y = clamp(y’; Z, Omax), Where Z is the zero-point. This
clamping, implemented using if—else conditional statements,
guarantees that each element remains within the bit-width
range (e.g., uint8 values in [0,255]) [49], with negative
intermediate values clipped to the quantized zero-point. The
resulting output vector y’ is then written into the outgoing
header and passed as input to the next switch.

2) Complete Model Execution Across Switches: Once a
switch completes its assigned layer computation, it encap-
sulates the results in packet headers and forwards them to
the next switch. The subsequent switch parses the headers,
retrieves the intermediate data, and uses it as input for its
assigned layer computations, enabling scalable deployment of
MTL models across the data-plane.

When a packet arrives at the switch deploying the output
layer, the final prediction result is generated after applying
the activation function. Binary classification using a sigmoid
activation function can obtain the label by comparing the
output value to the quantized value corresponding to 0.5 using
conditional statements. For a multi-class classification prob-
lem, using a ternary matching table provides better scalability
for numbers comparison (i.e., the argmax operation) [22].

Regarding the final classification result, the switch hosting

the output layer stores the decision in registers indexed by
flow keys so that subsequent packets of the same flow can
directly reuse the cached result without recomputation. This
decision can then be leveraged in two ways. First, it can
be written into the packet header and forwarded in-band to
downstream switches or end-hosts for further use. Second, the
local switch that generates the result can directly use it to
trigger immediate actions (e.g., traffic shaping, prioritization,
or filtering). In scenarios with early flow classification, the
result is stored in registers and reused for subsequent packets
of the same flow. This dual capability ensures that results are
available both for network-wide services and for local, real-
time decision-making.

B. Minimizing Stage Consumption

The above description illustrates the concept of the process
as a sequence of computations. However, directly implement-
ing this in the pipeline can be highly inefficient and potentially
unfeasible; Sequential dependencies between operations lead
to a series of stages used on the switch, where each match-
action table consumes a processing stage within the pipeline
and metadata (stored in the PHV and initialized per packet)
is used to pass shared information between stages. This se-
quential approach is wasteful, leading to an excessive number
of processing stages dependent on the number of inputs (e.g.,
the number of features in the first layer). To overcome this
constraint, we minimize stage consumption through parallel
execution, as illustrated in the upper right corner of Fig. 3.

As a simple example, assume an input vector of size 6. In
a traditional sequential execution, the elements of the input
vector are processed one after the other, leading to a total
of 6 stages used. In contrast, a parallel execution allows to
look up inputs in two or more tables in the same stage. This
is achieved by dividing the input vector into two (or more)
parts and processing them simultaneously. In this example,
the first three elements (Table 1, Table 2, and Table 3) and
the last three elements (Table 4, Table 5, and Table 6) of the



input vector are processed in parallel in the first three stages
(line 38-49 in Listing 1). This parallel computation produces
two intermediate results (R1 and R2). In the subsequent stage,
these two intermediate results are combined to produce the
final output (line 51-54 in Listing 1). Thus, a computation that
originally required 6 stages in a sequential approach is now
completed in just 4 stages. The choice of number of lookups
per stage is further discussed in VII-C3. This method not only
saves stages, but also enhances the efficiency and reduces the
latency of the computation process.

Automated P4 Code Generation: As shown in Listing 1,
the P4 code follows a highly regular structure. To facilitate
efficient P4 code generation for each layer, we develop a tem-
plate library containing parameterized templates for common
operations. The parameters are determined by the ML model
configuration or precomputed by the control-plane. MUTA
offers three key parameters: the number of input nodes, the
number of output nodes, and the level of parallel execution.
By specifying these parameters, MUTA can automatically
generate the corresponding data-plane code.

After the data-plane code is generated, the system must
address two crucial distributed deployment requirements to
ensure the efficient and effective operation of the MTL models.
First, the deployment must ensure the correctness and integrity
of model execution. Second, it must ensure that the services
provided by the model cover the entire network while utilizing
as few resources as possible. These two considerations are
addressed by the deployment orchestrator, which is explained
in Section VI.

VI. DEPLOYMENT ORCHESTRATOR

To effectively distribute the layers of the MTL model across
multiple switches, several requirements need to be met. First,
the deployment must not affect the functionality of the network
and should not require changes to routing rules. Second, the
model’s correct order of execution must be maintained. Third,
the MTL-based service needs to cover the entire network (i.e.,
maintain its functionality for any set of paths). To this end, we
formulate the layer-to-switch placement problem as an integer
linear programming (ILP) problem and define a deployment
strategy.

A. Model Formulation

Following [50], we consider a network comprising multiple
programmable switches across a topology with various paths.
The MTL model inference can be distributed among multiple
switches by splitting the model layer by layer. Placing these
layers across multiple switches is an optimization problem.
Our goal is to minimize resource consumption, computation
delay, and duplicated deployed layers, without impacting the
network’s original routing rules.

1) Network model: A network with |S| programmable

switches can be represented by (S,9), where
S = {s1,---,s55} denotes the set of switches.
P = {p1,---,p|p/} denotes the set of available paths

in the network. Each path p € P, is an ordered set of size [,

: — 1 Ip H 1 Ip
ie, p={s,.---,s;} The chain 5, — --- — 5 represents

. . . !
a path from an ingress switch s}, to an egress switch s},

where [, is the total number of switches in path p.

2) Resource model: Let R := {41,---,A4|g|} be the set of
resource types in the programmable switches (e.g., memory
and stage). We use Q¢ to denote the available resource type
A e R on switch s € S.

3) Neural Network model: We assume the MTL model can
be split into |K]| layers. Let K := {ki,---, k|x|} be the set
of model layers. These layers can be deployed into several
switches to distribute the inference task.

4) Deployment Decision: Let X;_s € {0,1},Vk € K,s €
S be the deployment decision, where X;_,s = 1 indicates layer
k is deployed on switch s. If Xz_,¢ = 1, by executing layer &,
switch s will use O,j units of resource type 4 € R.

The goal is to design a deployment strategy, i.e., {Xx—s},
that can meet the correctness and integrity of full model exe-
cution while minimizing resource consumption and execution
latency on the programmable switches.

The set of resource types R can include various elements
such as memory, pipeline stages, header space, or compute
cycles, depending on the target architecture. These resource
types can be adapted based on the capabilities and limitations
of the underlying platform. To compute per-layer resource
consumption OF, we employ a compiler-assisted profiling
approach. Specifically, each layer is compiled separately using
the P4 software development environment (Intel Barefoot
SDE for Tofino) to obtain accurate metrics such as memory
footprint and stage occupancy. These values are subsequently
incorporated into the resource constraints defined in the fol-
lowing formulation.

B. Constraints

1) Dependency: For the MTL model, all |X| layers have to
be completed in order among each path. For every path, any
layers k should appear at least once before next layer k + 1.
Mathematically, if layer k+1 is deployed on switch s7,, i.e., the
e-th switch of the p-th path, the deployment decision variable
Xk+1_m; = 1 and layer k has to be deployed on at least one
node in set {s},, e ,s;‘l}, ie.,

e—1
Z Xk*)Sl"; Z Xk+]as;’,’vp € P’ Ve € {25 e ,lp} (3)
u=1

1<k <|K|-1
2) Integrity: All the layers should be executed on each path

to satisfy the integrity of the MTL model. Therefore, on every
path p, every layer k € K should appear at least once, i.e.,

ll’
Z Xiost > 1,Yp € P 4)

u=1

3) Resource Constraints: The available resources on each
switch s must be sufficient for all deployed layers. Therefore,

%]
Z OX; s < QL Vs € S,V1 e R (5)
k=1



C. Problem Formulation

1) Resource Consumption: Let W¢ ) be the total resource
cost in the network. Recall that O;{l is the resource type
A overhead if layer k is deployed. Therefore, W 4 can be
computed as follows:

IS| K]

Wea= ). > OiXiy (©)

s=1 k=1

2) Latency (Number of hops): Assume that the transmission
delay on each path is fixed. We then focus on minimizing
the time required to complete the MTL program, which is
proportional to the number of hops. The execution latency on
each path p € P can be computed by checking the index of
the switch where the output layer is executed on path p. The
execution latency ¥y , on path p can be computed by:

Ip v
Yip = Z VX x| sy H (1 - Xl’K|—>s1'§) (7
u

v=1 =1

where H(x) denotes the unit step function, defined as H(x) =
1if x >0 and H(x) =0 if x < 0, to ensure that only the first
switch of the deployment output layer is considered. However,
the step function introduces non-linearity into the objective
function, which can significantly increase the complexity of
the problem, especially in large-scale networks. To tackle this
issue and simplify the problem, we linearize the problem by
introducing an auxiliary binary variable Z, , € {0,1},Vp €
P,¥v € {1,---,1,}, represent the output layer execution
indicator, where Z,, = 1 indicates that the v-th switch on
path p is the first to execute the output layer |K|. The auxiliary
variable Z, ,, helps identify the correct position for executing
the output layer along each path.
Therefore, Using Z,, ,, we can rewrite the latency (7) as
below:
Iy
W=D v Zpy ®)

v=1

To ensure correctness, Z,, is subject to the following
constraints:

Zp,v§X|‘K|—>sIV,,VP€P7VV€{1,"'7lp} 9

v—1
ZX|7<|—>s;: +Zpy < LVpeP, Vv e {2, 1}

u=1

(10)

Ip

> Zyy=1Ypep

v=1

Y

Constraint (9) ensures Z, , can only be 1 if the final layer
|'K| is deployed on s),- Constraint (10) ensures Z, ,, is 1 only
if none of the earlier switches on the path {s},, e ,slv,"} has
deployed the final layer. Constraint (11) ensures that the output
layer |K| is executed at exactly one position along each path.

3) Integer Linear Programming Problem: The ultimate
objective function is a weighted linear combination of the
execution latency of all paths and the resource consumption.
Hence, we can formulate the integer linear programming
problem as follows:

IR |P]
min wc TC,/I"'WLZTL,[? 12
=1 p=1 ( )

s.t. (3),(4),(5),(9), (10), (11)

where we, wp € R* are the weights of resource con-
sumption and execution latency, respectively. The weights
of latency and resource consumption depend on the specific
use case. For example, in an anomaly detection scenario,
minimizing detection latency may be prioritized over resource
consumption, as quickly identifying anomalies can be critical.
Additionally, other objective functions, such as fairness, can
also be incorporated.

4) Solution: The problem described above falls under the
category of standard Integer Linear Programming (ILP). Sev-
eral well-established ILP solvers, such as HiGHS [51] and
CPLEX [52], can be employed to obtain an optimal solution. It
is acceptable to use these solvers directly if the computational
time required by these solvers remains within a practical and
tractable range.

VII. PERFORMANCE EVALUATION

We have evaluated the performance of MUTA on a network
with Intel Tofino switches. We selected video streaming Qual-
ity of Experience (QoE) prediction [53] and traffic character-
istics prediction [25] as the use-case scenarios for validating
the performance of our proposed architecture.

A. Use Cases

Video Streaming QoE: Traffic patterns can be utilized
to infer the Quality of Experience (QoE) for video streaming
applications. Predicting QoE directly in the data-plane enables
faster content delivery and real-time adaptation for video
traffic [54]. We use the dataset provided by [53] to tackle
four tasks, i.e., startup delay, video resolution, video bit-rate
prediction, and re-buffering occurrence. It contains the traffic
of more than 40000 video sessions labeled with ground truth
information obtained at the client side. This dataset applies a
simple binary classification into high (= 700p) or low average
resolution, existing (true) or non-existing (false) stalling, short
(< 5 s) or long startup delay, and high (> 500 kbps) or
low average bit-rate. The dataset consists of 69 flow-level
features. However, not all features can be measured on switch
ASICs (e.g., skewness and kurtosis). Thus, we only select
switch-compatible features for our evaluation. We rank switch-
compatible features according to the ANOVA scores [55] and
use the top 7 features. Resolution prediction is considered as
the hard-to-label task in this use case.

Network Traffic Characteristics: Accurate prediction
of traffic characteristics in the data-plane is crucial for effi-
cient routing and load balancing. We use QUIC dataset [56]
captured at University of California at Davis. It contains



QUIC traffic of 5 Google services: Google Docs (1251
flows), Google Drive (1664 flows), Google Music (622 flows),
YouTube (1107 flows), Google Search (1945 flows). We tackle
four prediction tasks, i.e., bandwidth, duration, flow size, and
traffic class prediction tasks. We perform the four tasks by
only observing the first few packets, not the entire flow. We
formulate the bandwidth and duration prediction problem as a
multi-class classification task by dividing the bandwidth and
duration values into five classes based on [25]. For flow size
prediction, we classify the flows that belong to the top 20%
as elephant flows, while the other flows are mice flows. The
dataset contains time-series features such as packet length,
relative time, and direction. We extract per-flow statistics (max,
min, mean) over windows of the first 8, 16, 32, and 64 packets.
Features from all window sizes are retained, and inference is
triggered after the 64th packet using the complete feature set.
Traffic class prediction is considered the hard-to-label task in
this use case.

B. Multi-Task Model Performance

1) Setting and Training: The model employed for QoE
prediction includes two hidden layers, each containing 8
nodes. The model used for traffic characteristics prediction has
a slightly larger architecture, consisting of two hidden layers
with 14 nodes each, to handle the complexity of the multi-
class classification task. Both models use ReLU activation
for hidden layers. The output layer is task-specific: softmax
for multi-class classification in traffic characteristics prediction
and sigmoid for binary classification in QoE prediction. During
training, we multiply the input of task-specific layer to a mask
vector to prevent back-propagation from this task for data
samples that do not have a label. The depth of the decision
tree model is set to 6 for all tasks.

The model training, validation, and quantization operations
are performed by the control-plane using TensorFlow Lite 2.
For each use-case, the dataset is split into a training (80%), and
a test (20%) sets. To assess model performance, the weighted
Fl-score is employed, as it offers a more comprehensive eval-
uation than basic classification accuracy. Particularly in sce-
narios involving class imbalance or unequal misclassification
costs, the Fl-score captures the trade-off between precision
and recall more effectively. This preference for performance
metrics aligns with previous research in this field [17, 26, 29].
All results are reported on the test set, and the performance is
checked using 5-fold cross-validation.

2) Results: As illustrated in Fig. 4, MUTA outperforms
decision trees (DTs) and single-task NNs for hard-to-label
tasks in both use-cases, where only 100 labeled samples are
available for training. For instance, in the resolution prediction
task, MUTA improves the Fl-score by 4.17% compared to
single-task NNs and by 9.14% compared to DTs. The large
amount of data available for the other three tasks improves
the training process by allowing the model parameters to be
trained with such abundant data. There is no significant per-
formance difference between single-task models and MUTA
for the other three tasks because there are abundant training

Zhttps://www.tensorflow.org/lite
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Fig. 4: Performance comparison between IIsy (DT) [26], single-task neural
network (NN), and MUTA, using only 100 samples for label-limited tasks
(resolution prediction and traffic class prediction) during training.
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Fig. 6: Performance comparison of the floating-point model (FP), quantized
model without QAT (No QAT), and MUTA.

data for these tasks. Single-task models tend to perform poorly
when training data is limited, as insufficient supervision in-
creases the risk of underfitting and reduces the model’s ability
to generalize to unseen instances. This result demonstrates that
MUTA can improve the performance of hard-to-label tasks
without affecting the performance of other tasks.

Fig. 5 illustrates the performance of three schemes across
different numbers of labeled training samples for hard-to-label
tasks. As shown, MUTA consistently outperforms both DT
and single-task NN schemes when the number of available
labeled samples is limited. For the resolution prediction task,
MUTA with only 100 labeled samples achieves almost the
same performance as single-task models with more than 5000
labeled samples. This is attributed to MUTA’s ability to reduce
the need on labeled data for hard-to-label tasks. By learning
shared representations, MUTA effectively transfers knowledge
across tasks, thereby improving the performance of tasks with
limited labels. As the number of labeled samples increases, the
performance gap between the methods decreases. Theoretical
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Fig. 7: Impact of hard-to-label task loss weight on model performance.

conditions under which multi-task models outperform single-
task models are discussed in [57], [58] and [59].

Fig. 6 presents the effect of quantization on accuracy loss for
MUTA compared to quantized models without Quantization-
Aware Training (QAT), using floating-point models as the
baseline. All three schemes have the identical structure. For
both use cases, the quantized model without QAT suffers from
significant performance loss due to the perturbation of trained
parameters during quantization, resulting in severe accuracy
degradation. Using QAT, MUTA demonstrates a much smaller
performance degradation, highlighting QAT’s effectiveness in
mitigating accuracy loss during the quantization process.

Fig. 7 presents the performance of the four tasks under
varying loss function weights assigned to the hard-to-label
task. Intuitively, when the training samples for the hard-to-
label task are fewer compared to other tasks, the shared
parameters of the MTL model are predominantly influenced by
tasks with abundant data during training. Increasing the weight
of the hard-to-label task’s loss function can help increase
its influence on the training process. As shown in Fig. 7,
increasing this weight initially enhances the performance of
the hard-to-label task until a maximum is reached. Further
increasing the relative weight causes performance degradation
of all tasks. This degradation can be attributed to the model
overfitting to the limited training data available for the hard-
to-label task, causing the shared parameters to become skewed
toward patterns in this task. As the shared parameters are used
for all tasks, this bias negatively impacts their performance as
well. Additionally, excessively large gradient updates for the
hard-to-label task introduce instability, making it difficult for
the model to converge effectively during training. Therefore,
selecting an appropriate loss weight for the hard-to-label task
is crucial to achieve optimal performance across all tasks.

Compare with control-plane ML: Fig. 8 presents a
comparison between MUTA and traditional control-plane ML
schemes. For QoE prediction, the control-plane ML baseline
is based on the methodology introduced by Seufert and Orso-
lic [53], who benchmark various classical ML algorithms and
find that a random forest model trained on the complete set of
109 input features offers the best performance. As shown in
Fig. 8 (a), while the data-plane model exhibits slightly lower
accuracy in this scenario, the gap is largely attributable to its
use of only seven input features due to hardware constraints.
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Fig. 8: Performance comparison between MUTA and control-plane ML
schemes. (a) The control-plane ML baseline adopts the QoE prediction method
presented in [53]. (b) The control-plane ML baseline follows the MTL scheme
proposed in [25]. HL: Hidden Layer.

When MUTA is configured to leverage the complete set of
109 input features for training a large MTL model in the
control-plane, it achieves an average performance improve-
ment of 1.5% compared to the baseline in [53]. For traffic
characteristics prediction, we adopt a representative control-
plane MTL scheme proposed by Rezaei and Liu [25], which
employs a deep 1D-CNN architecture with over 10 layers
and utilizes fine-grained time-series features. Their model
addresses three specific tasks: bandwidth, duration, and traffic
class prediction. Accordingly, we restrict our comparison to
these three tasks. As illustrated in Fig. 8 (b), despite using
coarse-grained features (statistical features) and significantly
smaller models (only two hidden layers), the data-plane model
still has a competitive performance, especially given the sub-
stantial computational and storage resource disparity between
the control-plane and data-plane. When MUTA is configured
to train a larger model with more features in the control-plane,
it achieves nearly the same accuracy as the scheme proposed
in [25], while using fewer layers.

To further enhance MUTA’s performance, a hybrid approach
similar to that proposed in [26] can be considered. For exam-
ple, initial traffic classification can be performed on switches
using the MTL model at line rate, and only traffic samples
with low classification confidence are forwarded to a server
for inference using a more sophisticated model. This hybrid
strategy reduces latency and server load while improving
overall classification performance.

C. Hardware Resource Consumption

1) Setting and Metrics: We implement the model using
P44 targeting Tofino Native Architecture (TNA) [37] used
in Intel Tofino switch ASIC. All P4 code was compiled
using version 9.13.2 of Intel Barefoot SDE. For the resource
consumption, we mainly focus on the following three aspects:
1) Program resources, i.e., the number of stages, and table
entries; 2) Memory resources, i.e., the percentage of used
SRAM and TCAM; 3) The metadata used to execute action
functions. The results reported are based on the QoE prediction
use case. MUTA is compared to two advanced tree-based
solutions, i.e., the feature-encoding solution (e.g., IIsy [26])
(other schemes such as Flowrest [10] and NetBeacon [12] are
all derived from or closely related to IIsy) and the hierarchical



TABLE II: Resource Consumption for IIsy (DT): T1 - Stalling Prediction, T2
- Startup Delay Prediction, T3 - Resolution Prediction, T4 - Bitrate Prediction.

Tl T2 T3 T4 Total
SRAM(%) 23.23 56.67 89.48 28.44 197.82
TCAM(%) 2431 2431 2431 2431 9.724
Stages 4 8 12 5 29
Table Entries 421874 | 940243 | 1490240 | 526208 | 3378565
Metadata (bytes) 19 35 51 23 128
TABLE III: Resource Consumption for MUTA.
Layerl | Layer2 | Layer3 | Total
SRAM(%) 2.178 10.00 6.667 18.845
TCAM(%) 6.250 0 0 6.250
Stages 6 6 5 17
Table Entries 1560 2048 2048 5656
Metadata (bytes) | 260 292 128 680

mapping solution (e.g., SwitchTree [8] and pforest [9]). These
tree models are generated using Planter [60]. However, every
tree model generated using the hierarchical mapping solution
failed to fit due to extremely high pipeline-stage consumption.
Consequently, we report results only for tree models generated
using the feature-encoding solution (i.e., IIsy [26]).

2) Results: Table II presents the resource consumption
of IIsy for each individual task as well as the cumulative
consumption for all four tasks combined. Similarly, Table III
details the resource utilization of MUTA across each layer
of the neural network, along with the total consumption for
the entire model. It is important to note that TCAM is only
utilized in the first layer of the MTL model, due to the
range-based match type used in the match-action table at this
layer. In contrast, subsequent layers employ exact match tables
exclusively. Compared to IIsy, MUTA consumes significantly
lower memory resources, especially for SRAM, reducing
usage from 197.82% to 18.845%. Moreover, MUTA reduces
stage consumption, requiring only 17 stages to execute all
tasks, fitting within a Tofino2 switch (20 stages available) [61]
or use the proposed distributed execution across multiple
Tofino switches (12 stages available). In contrast, IIsy needs
29 stages to complete four tasks. However, MUTA incurs
5.3 times the metadata usage due to the parallel execution
of multiple match-action tables. These results indicate that,
at the cost of increased consumption of metadata, MUTA
demonstrates improved memory and stage efficiency relative
to IIsy.

3) Trade-off between stage and metadata: There is a trade-
off between the number of used stages and metadata at varying
levels of parallelization. Using more metadata allows for more
table lookups per stage, which leads to higher parallelization,
thereby saving more stages. Conversely, lower levels of par-
allelization, or the absence thereof, result in a greater number
of stages. The decision regarding this trade-off depends on the
specific scenario.

D. Latency and Throughput

1) Setting: The latency of Tofino is under non-disclosure
agreement (NDA), therefore we report our measurements of
pipeline latency of each layer relative to switch.p4, an L2/L3
reference switch program for Tofino, including 10 network
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Fig. 9: (a) Pipeline Relative Latency (R-Latency) on Tofino switches for
tree models (IIsy), different layers in MUTA, and standalone switch.p4. (b)
Throughput for different layers in MUTA on Tofino switches.

functions such as load balancing, tunneling, firewall, and
statistics. MUTA's relative pipeline latency is computed based
on data reported by SDE. In the throughput test, the Tofino
switch with bf-sde-9.5.0 runs each layer of the model with
snake configuration. Packets are sent to the switch by a server
using DPDK 20.11 via a 100G NIC with both (i) collected
network traffic traces and (ii) synthetic traffic.

2) Results: As shown in Fig. 9 (a), all of MUTA layers
have a lower latency than the reference switch.p4. The latency
for all layers is less than 33% of switch.p4. This illustrates
that even under resource constraints, MUTA still can achieve
comparable latency (at the sub-microsecond level) to simple
packet switching. As shown in Fig. 9 (b), all layers are able
to achieve a full line-rate of 6.4Tbps.

E. Network-Wide Deployment Performance
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Fig. 10: Network topology used for evaluation.

1) Simulation Setting and Metrics: We use the IBM ILOG
CPLEX optimization solver [52] to solve the optimization
problem in Section VI. The computations were conducted on
a PC with Intel Core i7-9750H processor @ 2.60 GHz cpu
and 16 GB of RAM. We evaluate the deployment orchestrator
using two network topologies, as illustrated in Fig. 10. The
first topology, shown in Fig. 10 (a), is a tree structure with a
depth of 5, comprising 31 switches and 640 servers. In this
configuration, the root switch is considered as the egress node,
while the leaf switches function as ingress nodes, reflecting a
hierarchical and centralized traffic flow. The second topology,
depicted in Fig. 10 (b), is a fat-tree architecture with 6 pods,
consisting of 45 switches and 600 servers, and is commonly
used in data center networks [62]. In this setup, the edge
switches within the rightmost pod are configured as egress
nodes, while all other edge switches act as ingress nodes. We
use two metrics to evaluate the efficiency of our orchestrator
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Fig. 11: Network-wide deployment performance between MUTA and the
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Fig. 13: Relative objective weight of w (defined in (12)) influence on MUTA’s
deployment strategy. Fat-tree topology: 6 pods with 45 switches.

in such topology with multiple paths. 1. Node utilization:
The percentage of used nodes compared to the total available
nodes. 2. Layer Duplication: the number of duplication for
different layers across all paths.

We compare our deployment orchestrator with a baseline
method called greedy resource availability (GRA). In this
baseline, each layer is deployed on the first switch along the
path that has sufficient available resources to accommodate it.
The process continues sequentially for the subsequent layers
until all layers are deployed.

2) Results: Fig. 11 shows the comparison between GRA
and MUTA in a tree topology with a depth of 5 and a fat-tree
topology with 6 pods. In both topologies, compared to the
GRA deployment strategy, MUTA has lower node utilization.
This means MUTA has higher resource efficiency because it
can cover the MTL-based service with fewer nodes. At the
same time, MUTA significantly reduces duplication across
layers. In the tree topology, MUTA reduces duplication in
Layer 1, Layer 2, and Layer 3 by 75% compared to GRA.
In the fat-tree topology, MUTA achieves a 40% reduction in
Layer 1 (from 15 duplications to 9), an 80% reduction in Layer
2 (from 15 duplications to 3), and a 66.7% reduction in Layer 3
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Fig. 14: Impact of topology scale on solver execution time.

(from 9 duplications to 3). These reductions saves the memory
and stage resources.

Figs. 12 and 13 illustrate the tradeoff between the or-
chestrator’s impact on latency and resource efficiency as the
relative weights of latency and other objectives are varied.
In both topologies, increasing the relative weight of latency
results in a reduction in the number of hops. To ensure
functionality, the provided strategy requires more nodes and
additional duplicated layers. These findings highlight MUTA’s
flexibility in adapting deployment strategies based on the
defined objective function and its associated weights.

Fig. 14 illustrates the solving time as the scale of the
topology increases. As the topology expands, the number of
available paths grows, leading to an increase in computational
time. For tree topology, the optimal deployment decision can
be determined in under half a second. For fat-tree topology,
the number of path grows more significantly with the number
of pods, exceeding 10,000 paths when the number of pods
reaches 12. However, the solving time is still under one
minute. The computation time for obtaining optimal deploy-
ment decisions using IBM ILOG CPLEX solver [52], which
handles ILP formulation introduced in Section VI, remains
efficient and well within acceptable limits. Therefore, we
do not consider any heuristic method for this optimization
problem.

VIII. DISCUSSION

In this section, we discuss some key considerations for using
MUTA.

Model update: After an MTL model is deployed, it is
essential to periodically update it, adapting to changes in
traffic patterns. There are two possible update scenarios:
updating model weights and model structure modification
(e.g., changing the number of nodes). Updating model weights
can be done at runtime, as it only requires entry updates in
match-action tables, and these can be done atomically with-
out affecting the forwarding pipeline. Modifying the model
structure requires stopping traffic during the update. The
implementation of model updates after retraining is envisioned
as a future enhancement, building on our previous continuous
learning work P4Pir [13] and drift detection work SPIDD [63].

Deployment updates: Changes in network topology (e.g.,
adding or removing switches) or in model structure (e.g.,
increasing the number of layers), require rerunning the orches-
trator to find the optimal deployment decision and updating the
affected switches accordingly. Just like routing tables need to



be updated when the network changes, the deployment update
can be carried out as part of that process.

Feature management: MUTA is agnostic to whether fea-
tures are derived at the packet-level or at the flow-level,
whether through early flow classification using the first few
packets or full-flow classification by observing the entire flow.
Packet-level features can be extracted directly from packet
headers with minimal overhead, whereas flow-level features
require maintaining state across packets using registers in
the data-plane. This design introduces hash collisions when
multiple flows map to the same register entry. Prior work,
such as Flowrest [10], addresses this challenge by employ-
ing timeout-based eviction policies to manage per-flow state.
These techniques complement our approach and can be seam-
lessly integrated into MUTA.

Scalability: The scalability of MUTA is improved by dis-
tributing MTL model layers across multiple switches. This
strategy enables effective management of the computational
load and facilitates model expansion as necessary. The max-
imum number of model layers depends on the number of
switches available on a given path. In terms of layer size, using
Tofino, each switch can handle a layer of 16x16. Tofino 2 can
manage larger layers, as it supports more stages and memory
resources than the Tofino chip we utilize.

In-band transmission overhead: MUTA transmits inter-
mediate layer outputs in-band using packet headers to enable
distributed inference across switches. In our implementation,
the size of these intermediate results is minimal due to the
use of 8-bit quantization and compact layer dimensions (e.g.,
8-16 nodes), requiring only a few tens of bytes per packet.
This overhead remains well below the Ethernet MTU of 1500
bytes. However, scaling to larger models or supporting a
higher number of tasks could increase the header size beyond
the MTU. In such cases, enabling jumbo frames [64] or
implementing fragmentation and reassembly mechanisms in
the data-plane would be necessary. These strategies represent
an important consideration for future deployments of more
complex models.

Task grouping: Training all tasks together in a single model
may not always be optimal, as the model might fail to learn
a shared representation that can generalize to all objectives.
To address this, one can analyze inter-task affinity [65] to
determine which tasks should be grouped and trained together.
Inter-task affinity captures how much a task’s gradient update
helps or hurts another task’s loss, allowing the identification
of task groupings that are more likely to reduce each other’s
losses during training. This task grouping can be formulated
as an optimization problem, where the objective is to max-
imize model performance (e.g., the sum of the accuracy of
each task.) while considering data-plane resource limits as a
constraint.

Resource optimization: For neural networks, there is a
trade-off between performance and complexity, characterized
by parameters such as depth (number of layers) and width
(number of nodes per layer). Increased complexity (i.e., a
deeper or wider network) typically results in higher resource
consumption. Consequently, it is sometimes pragmatic to trade
off a bit of accuracy to reduce complexity. For instance,

saving half the resources while only losing 1% of accuracy.
Furthermore, techniques such as pruning [66] can be applied to
reduce the resources required for vector-matrix multiplication
operations by eliminating parameters that do not significantly
impact inference accuracy.

Use cases: While MUTA is primarily designed for network
management tasks, it is also applicable to other MTL-based
applications, such as in-network financial market prediction
for high-frequency trading [67] (e.g., forecasting future stock
price movements and volatility across different periods).

Generalization: MUTA is generic in the sense that all its
core designs are adaptable. The mapping methodology uses
match-action tables, a common data-plane primitive, making
MUTA potentially deployable on other types of programmable
data-planes. While MUTA has been demonstrated on Tofino
switches, alternative platforms such as Xsight Labs X2 [68]
and Cisco Silicon One [69] also support similar capabilities
and could serve as viable deployment targets. The deployment
orchestrator is scalable and flexible, and can support other
in-network computing tasks (e.g., other resource-heavy in-
network ML tasks [60]). As long as a task can be divided into
smaller sub-tasks, the dependencies between sub-tasks can be
established, and the resources required for sub-tasks can be
estimated.

Potential enhancement: While MUTA has been evaluated
on use cases involving four tasks, future work will explore us-
ing one MTL model for as many network management tasks as
possible. This involves a deep analysis of the relationships and
potential synergies among various tasks to determine which
can be effectively learned together within a shared model
architecture. This requires the collection of a comprehensive,
high-quality dataset that captures the diverse nature of these
tasks and their interdependencies. Additionally, we aim to
achieve more fine-grained distributed execution by splitting
layers into smaller parts to maximize resource utilization in
the programmable data-plane.

IX. CONCLUSION

In this paper, we introduced a novel in-network solution for
multi-task learning (MTL). Given multiple network manage-
ment tasks, MUTA demonstrates enhanced performance for
tasks with limited labeled data. The architecture effectively
maps MTL model layers into match-action tables and deploys
these layers in a distributed manner in programmable switches,
while ensuring the MTL-based service covers the entire net-
work. Experimental results indicate that MUTA runs at line-
rate, efficiently utilizes switch resources, and optimizes layer-
to-switch placement in multi-path networks.
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