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Self-Aware SGD: Reliable Incremental
Adaptation Framework for Clinical AI Models

Anshul Thakur , Jacob Armstrong, Alexey Youssef, David Eyre , and David A. Clifton

Abstract—Healthcare is dynamic as demographics, dis-
eases, and therapeutics constantly evolve. This dynamic
nature induces inevitable distribution shifts in populations
targeted by clinical AI models, often rendering them ineffec-
tive. Incremental learning provides an effective method of
adapting deployed clinical models to accommodate these
contemporary distribution shifts. However, since incremen-
tal learning involves modifying a deployed or in-use model,
it can be considered unreliable as any adverse modifica-
tion due to maliciously compromised or incorrectly labelled
data can make the model unsuitable for the targeted appli-
cation. This paper introduces self-aware stochastic gradi-
ent descent (SGD), an incremental deep learning algorithm
that utilises a contextual bandit-like sanity check to only al-
low reliable modifications to a model. The contextual bandit
analyses incremental gradient updates to isolate and filter
unreliable gradients. This behaviour allows self-aware SGD
to balance incremental training and integrity of a deployed
model. Experimental evaluations on the Oxford University
Hospital datasets highlight that self-aware SGD can provide
reliable incremental updates for overcoming distribution
shifts in challenging conditions induced by label noise.

Index Terms—Distribution shifts, incremental learning,
medical informatics, COVID-19.

I. INTRODUCTION

D IGITAL technologies are driving a revolution in healthcare
and creating a landscape where data complexity and quan-

tity are growing exponentially. In this landscape, AI is enabling
the development of effective Software as a Medical Device
(SaMD) and digital health applications [1]. Such applications
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take inputs from medical devices, smartphones, wearables, and
healthcare records to provide a wide range of clinical function-
alities such as patient management and diagnosis. Modern deep
learning has been the cornerstone of this AI revolution, expand-
ing into a range of healthcare applications [2], [3] such as disease
diagnosis [4], [5], patient monitoring [6], drug discovery [7], and
organ transplant allocation [8].

Most of the prevalent deep learning solutions are static in
nature and often become outdated if the characteristics of a tar-
geted population change over time [9]. A significant distribution
shift in patient variables can render a deployed model practically
ineffective. Such shifts are anticipated in the healthcare domain
as target populations, underlying disease epidemiology, and
treatment protocols often evolve:

� Shifts in demographics: Populations evolve naturally over
time due to various factors such as immigration [10],
changes in fertility/mortality rates [11] and population
aging [12].

� Shifts in epidemiology: Changes in risk factors and pop-
ulation behaviours can alter disease epidemiology. For
example, increased obesity in England during last two
decades is expected to affect the prevalence of other
chronic diseases [13].

� Shifts in pathology: Disease pathophysiology also changes
over time, often due to changes in the risk factors of the
disease. For example, the major risk factors for cervical
cancer are oncogenic variants of Human Papillomavirus
(HPV). Although a significant reduction has been wit-
nessed in HPV due to widespread vaccination, other risk
factors such as smoking, genetic predisposition, and sexual
factors are still prevalent. As such, the nature of future
cases is likely to change due to differences in the driving
pathophysiology [14], [15].

� Shifts in disease management protocols and technology:
Protocols, technologies, and tools for disease management
evolve over time [16], [17]. These changes in disease
management are driven by improved understanding of the
disease, early diagnostic advancements, and progress in
therapeutics, including personalised therapy.

COVID-19 pandemic presents a clear case study to analyse
the impact of the above factors on a population. We witnessed
a demographic shift as higher incidence of COVID-19 shifted
from older to younger population after the initial pandemic
stages [18]. Changes in the management of COVID-19 patients
also accompanied this population shift. As our understanding
of COVID-19 improved and better preventative (e.g. vaccines)
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Fig. 1. Illustration of incremental adaptation of the deployed model.

and therapeutic [19] options became available, the protocols
were changed to account for these improvements. Another factor
altering the nature of COVID-19 is the emergence of new viral
variants differing in virulence, pathogenicity and susceptibil-
ities towards vaccines and antivirals [20]. The different out-
comes observed in COVID-19 patients over time reflected these
trends [21].

As underlying distributions of patient variables shift, models
become uncalibrated, and performance degrades over time. A
model trained for predicting respiratory deterioration in COVID-
19 patients [22], [23] in the early stages of the pandemic may
be less effective during the third or fourth wave. Hence, clinical
models should be adapted/fine-tuned to stay effective over a pro-
longed period. Incremental learning [24] provides an effective
solution to tackle such distribution shifts, wherein models are
iteratively updated to reflect the changes in a target population
(Fig. 1). Incrementally updating models over time is a broad
topic and has been studied in various contexts over the years,
such as online learning and continual learning. Online learning
typically refers to methods for updating models on a potentially
infinite incoming stream of training examples. It is generally
assumed that all streaming examples belong to the same domain
or exhibit no distribution shift [25]. Continual learning also deals
with updating models on incoming data over time. However, it
iteratively adapts a model to new classes (class-incremental)
or domains (domain-incremental) while retaining information
about the previously learned classes or domains [25]. Retaining
information from previous domains (or previous characteristics
of population) is less relevant in the scenario where the target
population varies with time, and the updated model is only
expected to work on the new population [26]. Hence, this paper
mainly deals with such scenarios and considers simple iterative
adaptation or fine-tuning of a deployed model to new populations
as incremental learning (unless specified otherwise).

Although incremental learning has potential to help in devel-
oping dynamic clinical deep learning models, it presents two
major challenges to medical practitioners, regulators and AI
researchers:

� Alterations to a deployed model: Incrementally training
a clinical model is precarious as it modifies a deployed
or in-use model. An inappropriate modification to critical
clinical models, e.g. ICU resource allocation and disease
diagnosis models, can hamper performance and may lead
to devastating consequences. The primary reason for such
performance degradation could be “label noise” that often
manifest itself in the incremental data due to labelling er-
rors arising from inaccuracies in diagnosis, coding of diag-
noses, and documentation of clinical measurements [27].
Additionally, labels or incremental training data may be

compromised by malicious actors. Since incremental data
often arrives in streams or bursts, it is not always feasible
to manually check the sanity of labels. If the deployed
model is updated with data exhibiting label noise, it may
forget the trained task and become unusable.

� Issues in regulation of iterative AI solutions: The current
regulatory framework of SaMD adopted by healthcare
regulators such as the Medicines & Healthcare products
Regulatory Agency (MHRA) and the Food and Drug Ad-
ministration (FDA) does not enable iterative development
approach as it requires products to go through the reg-
ulatory certification route once a significant iteration has
happened. Recently, FDA launched a new regulatory path-
way pilot termed the “PreCert” pathway [28] to regulate
the developer of digital health solutions rather than the
individual solution itself, facilitating the iterative develop-
ment. While this is a step towards effective implementation
of adaptive digital health solutions, frameworks and tools
for quality control over the incremental learning process
are still lacking. Quality checks are imperative to ensure
that newly incorporated information and updates lead to
non-inferior performance of deployed models.

This paper aims to provide a framework for reliable incre-
mental adaptation of clinical deep learning models that ad-
dresses the above mentioned challenges to a great extent. To
this aim, we introduce self-aware stochastic gradient descent
that acts as a wrapper over standard stochastic gradient de-
scent (SGD) and imposes a sanity check over gradients for
reliable incremental learning. In the presence of label noise in
incremental data, the proposed algorithm effectively balances
the adaption of a deployed clinical model and maintaining its
integrity. Self-aware SGD exploits a deep neural network–based
contextual bandit that analyses the magnitude and direction of a
gradient update to predict its impact on the performance of the
deployed model. A gradient update that results in performance
deterioration is deemed harmful and filtered out. As a result,
self-aware SGD assures that a model is updated reliably and
robustly.

Apart from standard incremental adaptation, Self-aware SGD
is also compatible with state-of-the-art (replay-based) domain-
incremental learning methods. By preserving the integrity of a
deployed model during incremental learning, this paper exhibits
a potential mechanism to create new iterative AI solutions for
healthcare that asserts quality control over themselves. Tools
like the proposed algorithm can potentially be a key component
of how regulators control and exert quality assurance over rolled
out incremental digital health solutions.

The major contributions of this paper are listed below:
� This paper proposes self-aware SGD, a reliable incremen-

tal learning algorithm, that can provide effective incre-
mental adaptation of deployed deep learning models under
challenging label noise conditions without compromising
their integrity.

� The proposed algorithm provides a blueprint for the possi-
ble future studies dealing with clinical incremental learn-
ing applications. Unlike existing studies, this paper has
highlighted the requirement of reliability and self-quality
control in the clinical incremental learning solutions.
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� This paper provides the evidence in favor of dynamic clin-
ical models by utilising the Oxford University Hospitals
(OUH) data, collected between 2016 and 2021, to show
the inappropriateness of static clinical models in handling
the evolving target populations.

The rest of this paper is organised as: Section II provides
a background of the existing incremental learning frameworks
within the context of healthcare informatics. Section III de-
scribes the proposed self-aware SGD. Section IV and V describe
the experimental setup and analysis of the results, respectively.
Finally, Section VI concludes this paper.

II. BACKGROUND

A. Incremental Learning

Incremental learning has seen limited exploration in health-
care applications. In [26], the authors proposed an adaptive risk
prediction system that detects distribution shifts and adapts the
models to cater to the changing population. Guo et al. [29] and
Alves et al. [30] also tackled the problem of temporal shifts in
the target population. However, instead of incremental learning,
these studies considered domain adaptation for handling distri-
bution shifts. In [31], the authors benchmarked state-of-the-art
domain-incremental learning algorithms for longitudinal elec-
tronic health records or multivariate clinical time-series data
and found that replay-based domain-incremental algorithms
outperform the other counterparts. On the similar lines, Kiyasseh
et al. [32] had explored replay-based domain-incremental learn-
ing on physiological signals earlier. Domain-incremental learn-
ing has also been used in some studies to overcome distribution
shifts in X-Ray images that arise either due to differences in
sensors or in the underlying patient population [33], [34].

B. Robust Deep Learning Training Under Label Noise

Training deep learning models using data with label noise
is a well-studied problem in deep learning literature. The effi-
cient noise-robust mechanisms can isolate training signals from
overwhelming noise and provide effective training. In [35], the
authors proposed a meta-learning framework where a simple
one layer MLP is used to learn the importance of each sample
in a training dataset. In theory, the importance of wrongly
labelled examples will be lower, and they will have no impact
on the overall training. Xu et al. [36] proposed an information
theoretic loss function that is robust any pattern of label noise.
In [37], the authors highlighted early learning regularisation to
propose a label-noise robust training mechanism. In the early
learning phase, the model mostly learns from correctly labelled
examples. During the later phase, the model starts learning from
noisy labels resulting in feature interference. Building on this
observation, the authors proposed a regularisation mechanism
that tries to force the model outputs to be consistent with the
model predictions obtained in the early training phase.

All the existing noise robust training mechanisms only deal
with training models from scratch. These methods do not impose
any integrity constraints on a deployed model and may degrade
performance after incremental training (see Section V).

C. Comparison With Self-Aware SGD

Most of the existing incremental studies do not consider the
reliability and regulatory concerns posed by modifications to a
deployed clinical model during incremental adaptation. Unlike
the existing methods, the proposed self-aware SGD is specially
designed to strike an effective balance between maintaining
the performance of the deployed model and adaptation to the
evolving population. To the best of our knowledge, this paper is
the first attempt in performing incremental learning under label
noise.

III. PROPOSED SELF-AWARE SGD

This section elaborates the proposed self-aware SGD based
incremental learning framework. Here, we first describe the
problem statement. Then, we describe the concept of gradient
consistency that forms the basic building block of the proposed
self-aware SGD. Finally, self-aware SGD is presented.

A. Problem Statement

A deployed or in-use clinical deep learning model has to be
updated using batches of incremental data that are arriving in
bursts. The aim is to come up with an incremental learning
algorithm that makes sure that the application of incremental
updates does not result in any catastrophic drop in performance
of the deployed model. This desired algorithm must work under
the assumption that some gradient updates are going to be
harmful (arising from batches with drastic label noise) for the
deployed model while others will help model in adapting itself to
the evolving population. It should filter out the harmful updates
while applying the required incremental updates to adapt the
model.

B. Gradient Consistency

A deployed model has already been trained for the targeted
task. It has learned the features or semantics associated with each
class. When this model is incrementally updated using a batch
containing incorrectly labelled data, we are forcing the model
to switch this semantic-class relationship. For example, we are
dealing with a model deployed for respiratory deterioration
prediction and the lower SPO2 is associated with respiratory
deterioration. However, the gradient update computed from a
wrongly labelled batch may force the model to associate lower
SPO2 with no respiratory deterioration event. This implies that
the incremental gradient update is not consistent with the histor-
ical gradient updates that have been used to train the deployed
model.

All historical gradient updates (that resulted in current state of
the deployed model) can be summarised as change in parameters
from their initial random state to the current state. Suppose
θ0 and θ1 represent the random and current state of model
parameters. Then, the historical gradient update can be defined
as:

gh = −(θ1 − θ0) = θ0 − θ1 (1)
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Algorithm 1: Process of Training a Contextual Bandit
Model Bφ() in Self-Aware SGD.

1: INPUTS← fθ: model, gh: historical grad, Bφ: bandit,
Dinc,Dval: Incremental & Validation Data, τ : Threshold

2: OUTPUT← φ, trained bandit parameters
3: P = [ ],R = [ ]
4: Rprev = SCORE(Dval, fθ()) � Compute AUROC score
5: B ← SAMPLE-BATCHES(Dinc) � |B| batches
// Obtaining rewards and features for training Bφ()
6: for all (b, l) ∈ B do
7: L = LCE(fθ(b), l) � Cross-entropy loss
8: Gθ = ∇θL � Gradient
9: N = ||Gθ||2 � Compute norm

10: C = COSINE-SIMILARITY(gh,Gθ)
11: θ′ = θ − ηGθ � Gradient update with learning rate η
12: Rcur = SCORE(Dval, fθ′())
13: r = Rcur −Rprev

14: if r > τ then
15: R.APPEND(1)
16: P.APPEND([N,C])
17: else
18: R.APPEND(0)
19: P.APPEND([N,C])
// Training Bφ()

20: C ← SAMPLE-BATCHES (P,R) � |C| batches
21: for all (c, l) ∈ C do
22: L = LMAE(Bφ(c), l) � MAE loss
23: Gφ = ∇φL � Gradient
24: φ′ = φ− α∇φL
25: φ = φ′ � Update φ
26: Return φ or Bφ()

At the current state of model parameters (θ1), an incremental
gradient update,∇θ1 , must be consistent with gh to preserve the
integrity of the model. This consistency can be defined as:

� Gradient norm: The norm of a consistent gradient update
must be lesser than an inconsistent one. The lower norm
implies that the magnitude of gradient is lower, and it
won’t cause any significant changes to the current model
state [38].

� Cosine similarity: The higher cosine similarity betweengh

and∇θ1 implies that∇θ1 is going to update the parameters
in a direction similar to historical parameter updating.
Hence,∇θ1 can be considered as consistent. The opposite
is true if cosine similarity is lower. Since gradients are
tensors (not vectors), we vectorise∇θ1 and gh to compute
cosine similarity:

Cgh∇θ1
=

∇θ1 · gh

||∇θ1 || × ||gh|| . (2)

To visualise gradient consistency in action, we computed
gradients using batches with correctly and incorrectly labelled
examples for a model trained/deployed for respiratory deteriora-
tion prediction (see Section IV). We corrupted batches with four
different label noise probabilities, i.e. we flipped the label of each

Algorithm 2: Reliable Incremental Adaptation of Deployed
Model Using Self-Aware SGD.

1: INPUTS← fθ: model, gh: historical grad & Bφ: bandit
2: OUTPUT← θ, trained model parameters
3: while Dinc arrives do � Incremental data
4: Bφ ← TRAIN-BANDIT(Bφ, fθ,Dinc) � Algorithm 1
5: θ0 = θ � Copy of input model parameters
6: B ← SAMPLE-BATCHES(Dinc) � |B| batches
7: for all (b, l) ∈ B do
8: L = LCE(fθ(b), l) � Cross-entropy loss
9: Gθ = ∇θL � Gradient

10: N = ||Gθ||2 � Gradient norm
11: C = COSINE-SIMILARITY(gh,Gθ)
12: P = Bφ([N,C]) � Bandit Prediction
13: if P < 0.5 then
14: skip remaining steps
15: else θ′ = θ − α∇θL
16: gh = θ0 − θ′ � Update historic gradient
17: θ = θ′ � Update θ
18: Return θ or fθ()

example (in each batch) with a uniform random probability of
0.2, 0.4, 0.6 and 0.8. Fig. 2(a) and (b) depicts the difference be-
tween gradient norm and cosine similarity of gradients computed
from corrupted and “pure” batches. The analysis of this figure
highlights a clear difference between correctly labelled batches
and batches with label noise. Hence, both these properties can
be used to create an automatic sanity check to identify and reject
the inconsistent gradients.

C. Self-Aware SGD

Self-aware SGD can be seen as combination of two stages:
training the bandit model and performing reliable incremental
learning using the trained bandit model. Following the nomen-
clature from the contextual bandit literature, these stages can
be seen as analogous to exploration and exploitation. In the
exploration phase, an agent learns to associate the actions and
contexts with rewards. Hence, it can be considered as a training
phase. On the other hand, an agent exploits the accumulated
knowledge to take actions and obtain rewards in the exploitation
phase. The details of these two stages with respect to incremental
learning are discussed below:

� Training bandit model: The bandit model is trained or
updated before each bout of incremental learning. As
incremental data arrives in bursts of a few batches at a
time, only these batches are analysed to update or train
the bandit model. Since there are no labels (or rewards) to
train the bandit model, the first step is to analyse gradient
updates and their impact on the performance of the initial
or deployed model over validation examples. The gradient
updates are computed for each incremental batch, and each
gradient update is processed to obtain its norm and cosine
similarity with historical model updates. These gradient
norms and cosine similarities are accumulated and are used
as input features (context) to train the bandit model.



1628 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 3, MARCH 2023

Fig. 2. Difference between distribution of (a) norm and (b) cosine
similarity of gradients computed from batches with correct and incorrect
labels. (c) Illustration of differences in distribution of deviation in AUROC
induced by incremental adaptation with correctly and incorrectly labelled
batches. Kernel density estimation (with Gaussian kernel) is used to
estimate these distributions.

The labels or rewards are generated for each batch or
its corresponding gradient without affecting the initial
model. For each gradient update, a copy of the initial
model is created and the gradient update is applied to this
copy. Then, we compute performance metrics such as the
area under the ROC curve (AUROC) on the validation
examples using the “updated copy” model. Based on the
performance of the initial and updated model, we define
reward R as:

R =

{
1, if (rθ − rθ′) > τ

0, if (rθ − rθ′) < −τ .
(3)

Here rθ and rθ′ represent the AUROC obtained by the
deployed/initial model and incrementally updated copy
of the initial model, respectively. τ is a user-defined pa-
rameter used to reject the confusing gradients from this
training process. In terms of distribution, these confusing
gradients belong to the region overlapped by both correctly
and incorrectly labelled batches (see Fig. 2(c)). After com-
puting gradient properties and their corresponding rewards
or labels, the bandit model is trained to predict whether an
input gradient is consistent or inconsistent with the initial

model. An update is regarded as inconsistent if it results
in performance deterioration and vice-versa.

� Reliable incremental adaptation using trained bandit
model: Once the bandit model has been trained, it can
be deployed as a wrapper over the standard gradient de-
scent (or any of its variants). During incremental training,
the gradient is computed for a batch as in any standard
deep learning framework. Then, this gradient is processed
to compute its norm and cosine similarity with respect
to historical gradient updates (as discussed earlier). The
contextual bandit model intakes these gradient properties
and predicts the gradient consistency. The gradient update
is only applied if it is deemed consistent, and hence, the
integrity of the deployed is preserved.

Implementation details: Suppose fθ() be an initial/deployed
model, with θ defining its parameters or weights. Similarly, let
Bφ() be a DNN acting as an agent or a bandit model. First,
Bφ() is trained using the set of labelled incremental batches
Xinc. Then, self-aware SGD utilises the trained bandit model,
Bφ(), to identify the consistent gradient updates for adapting
the initial model fθ(). Algorithm 1 documents the process of
training the bandit model and Algorithm 2 illustrates the process
of deploying this bandit model for incremental learning.

Since the proposed algorithm is aware of the historical gra-
dient direction and determines the nature of the gradient up-
dates without any external stimulus, it has been referred to
as self-aware SGD in this paper. This algorithm works on the
assumption that incremental data has a mix of corrupted and
pure batches. In real life, we may encounter scenarios where
all incremental batches are pure (best-case scenario), or all are
corrupted (worst-case scenario). We can borrow a handful of
batches from validation data to handle such cases. Since batches
from validation data are pure, we can add artificial label noise
to create their corrupted versions. These noisy and original
validation examples can be added to the incremental data for
the training bandit model.

D. Extending Self-Aware SGD for Domain-Incremental
Learning

In domain-incremental learning, a model must retain informa-
tion about the previous domains (or populations) while adapting
to new domains. Self-aware SGD is consistent with replay-based
domain-incremental methods (which are considered state-of-
the-art). In replay-based methods, a subset of previous domain
examples is mixed with new domain data during incremental
training. This subset of previous domain examples replays the in-
formation in the corresponding domain to the model and avoids
catastrophic forgetting. Since self-aware SGD identifies and
isolates the inconsistent gradients, the corresponding training
batches can be removed from contention of being utilised in any
replay-based method. Hence, the process of selecting examples
for replays is limited to the examples considered consistent by
self-aware SGD. Since all replay-based methods differ only
in storing and retrieving the previous domain examples, any
replay-based method can be augmented with self-aware SGD
effectively.
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TABLE I
NUMBER OF PATIENTS AND EXAMPLES IN EACH SUB-DATASET OBTAINED

FROM OXFORD UNIVERSITY HOSPITALS (OUH) DATA

IV. EXPERIMENTS

This section describes the dataset and experiments designed
to evaluate the performance of self-aware SGD and self-aware
SGD with replays.1

A. Dataset Used

Patient records from the Infections in Oxfordshire Research
Database (IORD) are used for evaluating the proposed frame-
work.2 This data is collected from patients admitted to Oxford
University hospitals (OUH) between January 2016 and June
2021. Patients admitted between January 2016 and December
2019 exhibited various underlying conditions such as pneumo-
nia, heart failure, and asthma. In contrast, the data between
March 2020 and June 2021 is only collected from patients
with PCR confirmed COVID-19. To simulate an incremental
learning setup, we temporally divide the data into six subsets:
2016 dataset, 2017 dataset, 2018 dataset, 2019 dataset, first
COVID-19 dataset (March 2020 to July 2020), and second
COVID-19 dataset (August 2020 to June 2021) dataset. The first
COVID-19 dataset (COVID-1) corresponds to first COVID-19
wave, whereas the second COVID-19 dataset (COVID-2) corre-
sponds to second and third waves.

Patient features are sampled at irregular time intervals reflect-
ing ad hoc clinical measurements taken by hospital staff. Each
sample is characterised by a 77-dimensional feature vector and
a binary label (retrospectively generated) signifying respiratory
deterioration within the next 24 hours [23]. Features include
demographic characteristics, vital sign measurements, labora-
tory test results, and inspired oxygen concentration (FiO2).
The detailed information regarding these features and data
pre-processing can be found in [23] and in the supplementary
document.

Table I documents the number of patients, number of samples,
and percentage of samples exhibiting respiratory deterioration
in each sub-dataset after pre-processing.

1More experiments dealing with EHR time-series data are presented in the
supplementary document.

2Dataset is not publicly available as it contains personal/sensitive patient
information. However, it can be obtained from the Infections in Oxfordshire
Research Database (IORD), subject to an application and research proposal
meeting on the ethical and governance requirements of the database.

B. Designed Experiments

We train a deep neural network for the task of respiratory de-
terioration prediction in an incremental learning setup depicted
in Fig. 3. Following experiments were designed to evaluate the
performance of self-aware SGD using this setup:

� Self-aware SGD vs. standard SGD for incremental adap-
tation: The performance of self-aware SGD is compared
against the standard SGD (normal training) in presence of
the label noise for incremental adaptation or fine-tuning.
The noisy conditions are simulated by randomly flipping
labels of the incremental training batches. A training
batch is selected with probability b, and the label of each
example in a selected batch is flipped with probability
p. We refer to b and p as batch and example proba-
bilities, respectively. We used batch probabilities of 0.5
and 0.75, and a fixed example probability of 0.8 i.e. we
randomly corrupt labels of approximately 50% and 75%
of available batches. In each corrupted batch, labels of
approximately 80% of randomly chosen examples are
flipped.

� Comparison against existing noise robust algorithms: In
this experiment, the performance of self-aware SGD is
compared against the well-known noise-tolerant DNN
training frameworks. These methods include determinant-
based mutual information (DMI) loss function [36],
early learning regularisation (ELR) [37] and meta-weight
net [35] (discussed in Section II).

� Self-aware SGD with replays for domain-incremental
learning: The ability of self-aware SGD with replays
(Section III) for domain-incremental learning is evaluated.
For this experiment, we augment self-aware SGD with
greedy sampler and dumb learner (GDumb) [39], a sim-
ple replay-based domain-incremental learning method.
GDumb selects a fixed number of most recently encoun-
tered examples from each domain or population and stores
them in a fixed-size memory buffer that is equally divided
among all populations. In this setup, self-aware SGD
only stores the most recently encountered training batches
in memory buffer of 50,000 examples if their gradients
are deemed consistent. During incremental adaptation,
self-aware SGD queries the memory buffer to obtain the
examples corresponding to previous populations. These
examples are mixed with new incremental data for reliable
model adaptation.
We incrementally trained the model using self-aware SGD
with replays in a label noise setup where the batch proba-
bility of 0.5 is used for label corruption.

C. Models and Parameter Setting

A fully-connected neural network or DNN is trained for
predicting respiratory deterioration events. The model consists
of three fully-connected or dense layers having 308 (77× 4),
231 (77× 3) and 1 hidden units. The first two dense layers
are followed by the rectified linear activation function, and the
last layer is followed sigmoid activation function. A dropout
of 0.25 is used between dense layers to regularise the model.
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Fig. 3. Incremental learning framework used in the experimental evaluation of self-aware SGD. This illustration exhibits the order of datasets
used for incremental model adaptation/fine-tuning for the task of respiratory deterioration prediction. The numbers of training, validation, and test
examples in each dataset are also depicted (70%, 15%, and 15% of the total examples respectively). Patients sampled for training, testing, and
validation are different.

Binary cross-entropy is used as a loss function, and we use
standard SGD with 0.9 momentum and 0.0001 learning rate as an
optimiser to train the initial model on 2016 dataset (see Fig. 3).
A batch size of 512 examples is used across all experiments.
Also, we train each model (initial or incremental) for 100 epochs
and use early stopping to store only the best performing version
of the model. During incremental adaptation using self-aware
SGD, we used also use SGD optimiser with 0.9 momentum and
0.0001 learning rate.

We use a three-layered DNN consisting of layers with 8 nodes,
4 nodes and 1 node as a contextual bandit model. The first
two nodes are followed by rectified linear activation whereas
the last node is followed by sigmoid activation function. The
loss function used to train this model is mean average error
(MAE) [40], and Adam with a learning rate of 0.0001 is used
as optimiser. We used a batch size of 128 across to train bandit
model across all experiments.

For comparative analysis, we train DNN with determinant-
based mutual information (DMI) loss function [36] using SGD
optimiser with 0.0001 learning rate and 0.9 momentum. In
ELR [37], we used a regularisation coefficient of 7 (r = 7)
and weight factor of 0.7 (t = 0.7) for generating pseudo-labels.
SGD with a learning rate of 0.001 and momentum of 0.9 was
used as an optimiser. For meta-weight net, we have used SGD
with a 0.001 learning rate and 0.9 momentum as an optimiser to
train the respiratory deterioration prediction model. To train the
weighing MLP, SGD with 0.001 and zero momentum was used.
All these parameters are chosen using hyperparameter tuning on
validation examples.

V. RESULTS AND DISCUSSION

A. Self-Aware SGD vs. Standard SGD for Incremental
Learning

Fig. 4 depicts the performance of self-aware SGD and stan-
dard incremental training (normal training) within the incre-
mental framework illustrated in Fig. 3. The analysis of Fig. 4
highlights the following:

� In standard incremental training (normal training), the
presence of label noise in the incremental data results
in a relative drop of 24.4(±1.45)% at b = 0.5 and
44.4(±2.1)% at b = 0.75 in the performance of the de-
ployed model on 2016 dataset (Fig. 4(a)). This drop up-
holds our claim of the requirement of reliability in clinical
incremental learning.

� The performance of self-aware SGD is near-optimum
across all datasets, and no performance drop is observed
in any of the noisy conditions unlike normal training.
This shows that self-aware SGD can effectively identify
and filter out “harmful” gradient updates during incre-
mental training, preserving the integrity of the deployed
model.

� The analysis of Fig. 4(b) and (c) shows that the model
trained on 2016 dataset (initial model) exhibits excellent
performance on the 2017 and 2018 datasets. Incremental
learning using self-aware SGD (or standard training in
no label-noise setup) with 2017 and 2018 data does not
result in any noticeable improvement. This shows that
the nature of 2016, 2017 and 2018 datasets is similar,
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Fig. 4. Performance comparison between the normal DNN training and self-aware SGD under simulated label noise conditions on the test
examples from (a) 2016, (b) 2017, (c) 2018, (d) 2019, (e) first, and (f) second COVID-19 datasets. The baseline is normal DNN training under
no label noise. Each x-axis point illustrates the datasets that have been used to update the model till that point. Note we display performance on
previous years’ test sets after incremental training on subsequent years to evaluate the degree of catastrophic forgetting.

Fig. 5. An illustration of distribution shifts in 8 randomly selected features of (a) 2016 and 2017 datasets, and (b) 2016 and first COVID-19 wave
datasets. Kernel density estimation (KDE) with Gaussian kernel is used for estimating these feature distributions.

and there is little to no distribution shift between these
datasets. This is illustrated in Fig. 5(a) showing the em-
pirical distributions of 8 different features from the 2016
and 2017 training datasets. However, the model trained
on 2016 or incrementally updated using 2017 and 2018
datasets demonstrates high but sub-optimal performance
on 2019 test examples (Fig. 4(d)). Incrementally updating
using 2019 training examples results in a significant per-
formance improvement. This highlights that the features
of 2019 and previous datasets exhibit a minute distribution

shift such that the previous model is still effective but not
optimum.

� A more significant change is observed between COVID-19
and the other datasets. The initial model or incrementally
adapted model using 2017, 2018 and 2019 datasets is prac-
tically unusable on both COVID-19 datasets (Fig. 4(e) and
(f)). However, after incremental adaptation using COVID-
19 data, the performance on the COVID-19 datasets is
significantly improved. This signifies a distribution shift
between historical and COVID-19 data (see Fig. 5(b)).
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Fig. 6. Performance comparison between self-aware SGD and the comparative methods under simulated label noise defined by batch probabilities
of (a) 0.5 and (b) 0.75. The comparative methods include DMI loss function [36], early learning regularisation (ELR) [37] and Meta-weight net [35].

� The improvement in performance after incremental adap-
tation using self-aware SGD (Fig. 4(d), (e) and (f)) under
noisy label conditions highlights that it not only preserves
the integrity of the model but also allows an effective
incremental adaptation to overcome the distribution shifts
induced by evolution of the underlying population.

� The paired t-tests are performed to analyse the statisti-
cal significance of the performance improvement in self-
aware SGD over normal training across all experiments
under label noise. The null hypothesis is that there is no
statistical difference in scores, and we reject null hypoth-
esis if p < 0.005. Apart from COVID datasets, the perfor-
mance improvement achieved by the proposed method is
statistically significant. In case of COVID datasets, the
significant distribution shifts have rendered the models
trained using 2016 to 2018 datasets ineffective (even in
no noise scenarios). However, after adapting models to
COVID datasets, we again witness a significant improve-
ment in the performance of self-aware SGD.

B. Comparison Against Existing Label-Noise Robust
Deep Learning Methods

We compare the performance of self-aware SGD with existing
label-noise robust deep learning methods under the simulated
label-noise configurations. Fig. 6(a) and (b) depict the results of
this comparison at batch probabilities of 0.5 and 0.75, respec-
tively. The analysis of these figures highlight that self-aware
SGD significantly outperforms existing methods in most experi-
mental setups. The paired t-tests between scores obtained by self-
aware SGD and the comparative methods at batch probability of
0.75 highlight that the performance improvement by self-aware
SGD is statistically significant in approximately all scenarios
(p < 0.005). At a batch probability of 0.5, the performance
of self-aware SGD and DMI loss is statistically comparable
across many experimental setups (p > 0.005). In spite of that,

self-aware SGD exhibits noticeable improvement over the other
comparative methods.

Although the existing methods exhibit better performance
than normal training, they fail to preserve the integrity of
deployed models and result in performance deterioration. This
behaviour is expected as none of these methods are designed
for incremental learning. Although these methods can isolate
the relevant training signals from the noisy labels with some
success, they impose no constraint on the preserving historical
performance of the deployed models.

C. Catastrophic Forgetting During Incremental Learning

On analysing the performance of normal training under no
label noise in Fig. 4(a), it is clear that catastrophic forgetting
is not observed on incremental adaptation of model using 2017
and 2018 data. However, a relative drop of 9.88% and 15% is
observed after incremental training on COVID-1 and COVID-2
datasets. This drop is due to the distribution shift between ear-
lier datasets (2016–2018) and COVID-19 datasets. Incremental
training on new datasets interferes with previously learned fea-
tures and results in this performance drop. Self-aware SGD also
exhibits catastrophic forgetting. However, it undergoes lesser
adaptation and exhibits less catastrophic forgetting than standard
training as most of the noisy incremental data is rejected. Similar
catastrophic behaviour is observed in Fig. 4(b), (c) and (d) after
adaptation with the COVID-19 datasets.

D. Self-Aware SGD With Replays for Domain
Incremental Learning

The results of this experiment are depicted in Fig. 7. The anal-
ysis of this figure highlights that self-aware SGD with replays
avoids the catastrophic forgetting witnessed in self-aware SGD.
Incremental training with COVID-19 datasets does not cause
any significant drop in performance over 2016 to 2019 datasets
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Fig. 7. Performance comparison between self-aware SGD and its vari-
ant with replays to avoid catastrophic forgetting.

(Fig. 7(a)–(d)). Hence, self-aware SGD with replays can over-
come both label noise and catastrophic forgetting challenges.

VI. CONCLUSION

This paper highlighted that clinical models must evolve
with time to match the dynamic nature of diseases and target
populations. A traditional static model cannot cope with the
distribution shifts seen in the underlying clinical variables as
the nature of population health and diseases change, and hence
become ineffective over time. This paper further argued that
incremental learning may help in coming up with dynamic
clinical AI solutions to tackle evolving populations while bring
the reliability and regulatory concerns in incremental learning
to the foreground. To alleviate these concerns, this paper con-
ceptualised an incremental learning framework, i.e. self-aware
SGD, with a sanity check over gradient updates to allow only
reliable changes to a deployed model. The experimental results
highlight that these sanity checks can indeed allow an incre-
mental learning framework to preserve the integrity of deployed
models even in the presence of extreme label noise. Hence,
self-aware SGD and similar future algorithms can pave the way
for exploiting incremental learning to develop reliable SaMD
solutions.

In comparison to the standard SGD, self-aware SGD is com-
putationally expensive as it requires a trained bandit model.
However, this computational overhead empowers the proposed
framework to tackle the challenging label-noise conditions.
Apart from that, a major limitation of the current version of
self-aware SGD is that it has only targeted the prediction tasks
(binary classification problems). Although the prediction tasks
form a bulk of automated decision support systems, it would be
beneficial to extend the proposed framework to more generic and
challenging settings such as multi-class classifications and tem-
poral segmentation. Future work will deal with extending this
work to these use-cases using advanced reinforcement learning
algorithms.

ACKNOWLEDGMENT

DE is a Big Data Institute Robertson Fellow. DAC is an In-
vestigator in the Oxford Suzhou Centre for Advanced Research
(OSCAR), Suzhou, China, and in the Pandemic Sciences Insti-
tute, University of Oxford, Oxford, U.K. The views expressed
are those of the authors and not necessarily those of the NHS,
the NIHR, the Department of Health, InnoHK – ITC, or the
University of Oxford.

REFERENCES

[1] B. Allen, “The role of the FDA in ensuring the safety and efficacy of
artificial intelligence software and devices,” J. Amer. College Radiol.,
vol. 16, no. 2, pp. 208–210, 2019.

[2] D. Ravì et al., “Deep learning for health informatics,” IEEE J. Biomed.
Health Informat., vol. 21, no. 1, pp. 4–21, Jan. 2017.

[3] A. Thakur, P. Sharma, and D. A. Clifton, “Dynamic neural graphs based
federated reptile for semi-supervised multi-tasking in healthcare applica-
tions,” IEEE J. Biomed. Health Informat., vol. 26, no. 4, pp. 1761–1772,
Apr. 2021.

[4] J. Diaz-Escobar et al., “Deep-learning based detection of covid-19 using
lung ultrasound imagery,” PLoS One, vol. 16, no. 8, 2021, Art. no.
e0255886.

[5] L. Jin et al., “Deep learning extended depth-of-field microscope for
fast and slide-free histology,” Proc. Nat. Acad. Sci., vol. 117, no. 52,
pp. 33051–33060, 2020.

[6] A. Davoudi et al., “Intelligent ICU for autonomous patient monitoring
using pervasive sensing and deep learning,” Sci. Rep., vol. 9, no. 1,
pp. 1–13, 2019.

[7] W. Jin et al., “Deep learning identifies synergistic drug combinations for
treating COVID-19,” Proc. Nat. Acad. Sci., vol. 118, no. 39, 2021, Art. no.
e2105070118.

[8] C. Xu, A. Alaa, I. Bica, B. Ershoff, M. Cannesson, and M. Schaar,
“Learning matching representations for individualized organ trans-
plantation allocation,” in Proc. Int. Conf. Artif. Intell. Statist., 2021,
pp. 2134–2142.

[9] K. Stacke, G. Eilertsen, J. Unger, and C. Lundström, “Measuring domain
shift for deep learning in histopathology,” IEEE J. Biomed. Health Infor-
mat., vol. 25, no. 2, pp. 325–336, Feb. 2021.

[10] A. V. Bustamante, J. Chen, L. F. Beltrán, and A. N. Ortega, “Health
policy challenges posed by shifting demographics and health trends among
immigrants to the United States: Study examines examine recent trends in
immigrant health and health care after the great recession and the national
implementation of the affordable care act,” Health Affairs, vol. 40, no. 7,
pp. 1028–1037, 2021.

[11] G. E. Zoeller, B. L. Drew, C. W. Schmidt, R. Peterson, and J. J. Wilson,
“A paleodemographic assessment of mortality and fertility rates during
the second demographic transition in rural central Indiana,” Amer. J. Hum.
Biol., vol. 34, no. 1, 2021, Art. no. e23571.

[12] M. C. Odden, P. G. Coxson, A. Moran, J. M. Lightwood, L. Goldman,
and K. Bibbins-Domingo, “The impact of the aging population on coro-
nary heart disease in the United States,” Amer. J. Med., vol. 124, no. 9,
pp. 827–833, 2011.

[13] Y. C. Wang, K. McPherson, T. Marsh, S. L. Gortmaker, and M.
Brown, “Health and economic burden of the projected obesity trends
in the USA and the UK,” Lancet, vol. 378, no. 9793, pp. 815–825,
2011.

[14] J. Lei et al., “HPV vaccination and the risk of invasive cervical cancer,”
New England J. Med., vol. 383, no. 14, pp. 1340–1348, 2020.

[15] S. Zhang, H. Xu, L. Zhang, and Y. Qiao, “Cervical cancer: Epidemiol-
ogy, risk factors and screening,” Chin. J. Cancer Res., vol. 32, no. 6,
pp. 720–728, 2020.

[16] H. Li, W. Lu, A. Wang, H. Jiang, and J. Lyu, “Changing epidemiology
of chronic kidney disease as a result of type 2 diabetes mellitus from
1990 to 2017: Estimates from global burden of disease 2017,” J. Diabetes
Investigation, vol. 12, no. 3, p. 346–356, 2021.

[17] S. Desmet et al., “Dynamic changes in paediatric invasive pneumococcal
disease after sequential switches of conjugate vaccine in Belgium: A
national retrospective observational study,” Lancet Infect. Dis., vol. 21,
no. 1, pp. 127–136, 2021.

[18] P. Venkatesan, “The changing demographics of COVID-19,” Lancet
Respir. Med., vol. 8, no. 12, 2020, Art. no. e95.



1634 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 3, MARCH 2023

[19] E. Nicastri et al., “The evolution of clinical and scientific evidence-based
management guidelines for Covid-19 disease: A longitudinal descriptive
analysis,” SSRN Electron. J., 2020.

[20] E. Mahase, “Covid-19: How many variants are there, and what do we know
about them?,” BMJ, vol. 374, 2021.

[21] G. A. Roth et al., “Trends in patient characteristics and COVID-19 in-
hospital mortality in the United States during the COVID-19 pandemic,”
JAMA Netw. Open, vol. 4, pp. e218828–e218828, 2021.

[22] A. A. Soltan et al., “Rapid triage for COVID-19 using routine clinical data
for patients attending hospital: Development and prospective validation of
an artificial intelligence screening test,” Lancet Digit. Health, vol. 3, no. 2,
pp. e78–e87, 2021.

[23] A. Youssef et al., “Development and validation of early warning score
systems for COVID-19 patients,” Healthcare Technol. Lett., vol. 8, no. 5,
pp. 105–117, 2020.

[24] V. Losing, B. Hammer, and H. Wersing, “Incremental on-line learning: A
review and comparison of state of the art algorithms,” Neurocomputing,
vol. 275, pp. 1261–1274, 2018.

[25] Z. Chen and B. Liu, Lifelong Machine Learning (Synthesis Lectures on
Artificial Intelligence and Machine Learning Series), 2nd ed. San Rafael,
CA, USA: Morgan & Claypool, 2018.

[26] A. Koivu et al., “Adaptive risk prediction system with incremental and
transfer learning,” Comput. Biol. Med., vol. 138, 2021, Art. no. 104886.

[27] N. Jackson et al., “The quality of vital signs measurements in electronic
medical records varies by hospital, specialty, and patient demographics,”
medRxiv, 2022. [Online]. Available: https://www.medrxiv.org/content/
early/2022/01/21/2022.01.19.22269544

[28] T. T. Lee and A. S. Kesselheim, “US food and drug administration
precertification pilot program for digital health software: Weighing the
benefits and risks,” Ann. Intern. Med., vol. 168, no. 10, pp. 730–732, 2018.

[29] L. L. Guo et al., “Evaluation of domain generalization and adaptation on
improving model robustness to temporal dataset shift in clinical medicine,”
Sci. Rep., vol. 12, no. 1, pp. 1–10, 2022.

[30] T. Alves, A. Laender, A. Veloso, and N. Ziviani, “Dynamic prediction of
ICU mortality risk using domain adaptation,” in Proc. IEEE Int. Conf. Big
Data, 2018, pp. 1328–1336.

[31] J. Armstrong and D. Clifton, “Continual learning of longitudinal health
records,” 2021, arXiv:2112.11944.

[32] D. Kiyasseh, T. Zhu, and D. A. Clifton, “CLOPS: Continual learning of
physiological signals,” 2020, arXiv:2004.09578.

[33] M. Lenga, H. Schulz, and A. Saalbach, “Continual learning for domain
adaptation in chest x-ray classification,” in Proc. Med. Imag. Deep Learn.,
2020, pp. 413–423.

[34] S. Srivastava, M. Yaqub, K. Nandakumar, Z. Ge, and D. Mahapatra,
“Continual domain incremental learning for chest x-ray classification in
low-resource clinical settings,” in Domain Adaptation and Representation
Transfer, and Affordable Healthcare and AI for Resource Diverse Global
Health. New York, NY, USA: Springer, 2021, pp. 226–238.

[35] J. Shu et al., “Meta-weight-Net: Learning an explicit mapping for sample
weighting,” in Proc. Adv. Neural Inf. Process. Syst., 2019,vol. 32, pp. 1919–
1930.

[36] Y. Xu, P. Cao, Y. Kong, and Y. Wang, “Ldmi: A novel information-
theoretic loss function for training deep nets robust to label noise,” in
Proc. Adv. Neural Inf. Process. Syst., 2019,vol. 32, pp. 6225–6236.

[37] S. Liu, J. Niles-Weed, N. Razavian, and C. Fernandez-Granda, “Early-
learning regularization prevents memorization of noisy labels,” Adv. Neu-
ral Inf. Process. Syst., vol. 33, pp. 20331–20342, 2020.

[38] A. K. Menon, A. S. Rawat, S. J. Reddi, and S. Kumar, “Can gradient
clipping mitigate label noise?,” in Proc. Int. Conf. Learn. Representations,
2019.

[39] A. Prabhu, P. H. Torr, and P. K. Dokania, “GDumb: A simple approach that
questions our progress in continual learning,” in Proc. Eur. Conf. Comput.
Vis., 2020, pp. 524–540.

[40] X. Ma, H. Huang, Y. Wang, S. Romano, S. Erfani, and J. Bailey, “Normal-
ized loss functions for deep learning with noisy labels,” in Proc. Int. Conf.
Mach. Learn., 2020, pp. 6543–6553.

https://www.medrxiv.org/content/early/2022/01/21/2022.01.19.22269544
https://www.medrxiv.org/content/early/2022/01/21/2022.01.19.22269544


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


