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Abstract—Tetanus is a life-threatening infectious dis-
ease, which is still common in low- and middle-income
countries, including in Vietham. This disease is charac-
terized by muscle spasm and in severe cases is compli-
cated by autonomic dysfunction. Ideally continuous vital
sign monitoring using bedside monitors allows the prompt
detection of the onset of autonomic nervous system dys-
function or avoiding rapid deterioration. Detection can be
improved using heart rate variability analysis from ECG sig-
nals. Recently, characteristic ECG and heart rate variability
features have been shown to be of value in classifying
tetanus severity. However, conventional manual analysis of
ECG is time-consuming. The traditional convolutional neu-
ral network (CNN) has limitations in extracting the global
context information, due to its fixed-sized kernel filters.
In this work, we propose a novel hybrid CNN-Transformer
model to automatically classify tetanus severity using
tetanus monitoring from low-cost wearable sensors. This
model can capture the local features from the CNN and the
global features from the Transformer. The time series imag-
ing - spectrogram - is transformed from one-dimensional
ECG signal and input to the proposed model. The CNN-
Transformer model outperforms state-of-the-art methods in
tetanus classification, achieves results with a F1 score of
0.82 + 0.03, precision of 0.94 + 0.03, recall of 0.73 £ 0.07,
specificity of 0.97 + 0.02, accuracy of 0.88 = 0.01 and AUC
of 0.85 + 0.03. In addition, we found that Random Forest
with enough manually selected features can be comparable
with the proposed CNN-Transformer model.
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[. INTRODUCTION

ETANUS 1is a vaccine-preventable infectious disease,
T caused by a neurotoxin produced by the Clostridium tetani
bacterium [1]. Tetanus is estimated to cause around 213 000-293
000 deaths in the world each year, including 5-7% of all neonatal
deaths and 5% of maternal deaths globally [2]. Although tetanus
is rare in high-income countries, it is still common in many low-
and middle-income countries (LMIC) [3], [4], [5]. In 2015, 79%
of deaths due to tetanus (44612 of 56743) were estimated to
occur in south Asia and sub-Saharan Africa [6].

Tetanus is caused by a powerful neurotoxin which inhibits
transmission at central nervous system synapses, resulting in
muscle stiffness and spasms. In severe cases, cardiovascular
system instability occurs. Over a period of 2-5 days, approx-
imately half of all patients will progress to severe disease where
mechanical ventilation is needed. Around 25% of all patients
experience autonomic nervous system (ANS) dysfunction, af-
fecting heart rate and blood pressure. This is the leading cause of
death for tetanus patients. The early detection of severe tetanus
is highly valuable, because it allows timely intervention and
allows more appropriate resource utilization [7]. The Ablett
score is the simplest classification system for tetanus severity,
ranging from 1 to 4 [5]. In grades 1 and 2, (mild or moderate
disease), patients’ clinical conditions can be managed without
the need for invasive Intensive Care Unit (ICU) intervention
such as mechanical ventilation. In grades 3 and 4 of disease,
patients have severe disease requiring mechanical ventilation
and, in the case of grade 4 disease, may require additional organ
support to manage ANS dysfunction [4], [8]. Conventionally
Ablett grading relies on a combination of clinical features, many
of which may occur in other co-existing conditions (e.g., fever,
hypertension and tachycardia). In busy clinical settings or those
with limited clinical staff experience accurate classification may
be difficult.

Providing ICU care is expensive in all countries, including
LMICs. For diseases, such as tetanus, where patients may
deteriorate rapidly, all patients require hospital admission for
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careful observation (and if necessary rapid emergency treat-
ment). In most low-resource settings this means admission to
high-dependency or intensive care units (ICUs) as these are the
only places with sufficient staff and equipment to do this. This
large burden of additional cases results in suboptimal use of
already scare resources and likely worsens outcomes for those
who do require ICU level care [9], [10], [11]. Additionally
in countries like Vietnam where many patients pay for care
out-of-pocket, the extra costs of ICU care, compared to normal
ward care, are significant. There are the information about
direct medical costs of tetanus, dengue, and sepsis patients in
an ICU in Vietnam from previous research [9], [10], [11]. If
patients do not require mechanical ventilation, the median total
ICU cost per patient varied between US$64.40 and US$675
for the different diseases [9]. If patients required mechanical
ventilation, the costs were higher, and the median total ICU cost
per patient for the different diseases varied between US$2,590
and US$4,250 [9]. The main cost drivers varied depending on
disease and its related severity [9].

In high-income countries, complex continuous monitoring
systems and high staff-to-patient ratios facilitate improved the
tetanus outcomes [11]. However, in LMICs, inexperienced staff,
lack of equipment with limited time are commonly cited imped-
iments to providing high quality care for patients with tetanus.
Low-cost wearable sensors have been proposed as an alternative
solution for tetanus in resource-limited settings. The wearable
sensors are small, lightweight and wireless. They can contin-
uously monitor vital signs in real-time, in order to help in the
early identification of patient deterioration [11], [12]. One chal-
lenge of utilizing low-cost wearable sensors is that the recorded
continuous physiological data can be less precise, due to the
large amount of noise (caused by muscle movement and the
monitors electrical source) and missing data [11]. The ultimate
aim of our work is to develop a tetanus severity warning tool,
which can improve the clinical outcomes and disease incidence.
This warning tool will classify tetanus disease severity based
on the patient’s electrocardiogram (ECG) data using wearable
sensors. This tool would be appropriate for low-resource settings
where lack of equipment and staff impacts patient care, but also
high income settings where limited numbers of cases of tetanus
means staff are inexperienced in tetanus management. The tool
could assist clinical decision making, avoiding unnecessary ICU
admissions (for mild cases) and reducing treatment delays (for
severe cases).

In this paper, we use ECG data collected with wearable
sensors in a Vietnamese ICU and propose a warning tool, created
using a deep learning approach, in order to classify tetanus
severity indicated by Ablett score. In our recent study [13],
we used 2D Convolutional Neural Network (CNN) with a
channel-wise attention mechanism to classify the severity of
tetanus using wearable monitors in a resource-limited setting.
Our method outperforms 1D CNN, 2D CNN and 2D CNN with
attention mechanism by combining either the gating function or
sequential techniques. We also discuss how the window length of
log-spectrograms of ECG signals influences the performance of
the proposed method. Our channel-wise based method employs
the 2D convolution for the feature extraction. Because the CNN

captures the local structure with a fixed size of convolution
kernel, the pixels which are far away from the receptive field will
not affect the value of the feature calculated by the convolution
kernel. Hence, it is unable to extract the global information of
the input image. Hence, we add the global information of the
log-spectrograms in this work. The contributions of this work
are as follows:
® We propose a novel hybrid CNN-Transformer network
for classifying the severity of tetanus, which captures
both rich local features and global context information of
the 2-dimensional (2D) logarithmic spectrogram of ECG
signals. This completely data-driven network could be
transferable to similar infectious diseases.
¢ Tothe best of our knowledge, this is first transformer-based
network in tetanus diseases classification for capturing
global contextinformation, which cannot be obtained from
CNNEs.
¢ The proposed network outperforms CNN and state-of-art
vision transformer on the 2D logarithmic spectrogram of
the ECG signal acquired from tetanus patients.

The paper is structured as follows: Section II introduces re-
lated work in the diagnosis of tetanus diseases in LMIC, time se-
ries imaging and deep learning approaches. Section III describes
the proposed network for classifying the severity of tetanus in
intensive-care settings. Section IV provides the details of our
collected tetanus dataset, implementation details, a comparison
of baseline methods and the evaluations of the classification
results with several performance metrics. Section V presents and
discusses the experimental results. Finally, Section VII provides
the conclusion of our work.

[I. RELATED WORK

The diagnosis of lethal infectious diseases plays a significant
role in patient treatment. In tetanus, disease severity is associated
with autonomic nervous system (ANS) activity [13]. Heart rate
variability (HRV) represents the variation of beat-to-beat in RR
intervals. This variation is controlled by the autonomic nervous
system (ANS) and it indicates ANS activity [13]. The changes in
conventional HRV parameters measured from ECG have been
shown to correlate with tetanus disease severity. In HRV-based
methods for classifying tetanus severity, an extra pre-processing
step is needed, after which features - RR intervals and QRS com-
plex - are then extracted [14], [15], [16], [17]. Duong et al. [14]
demonstrated the utility of ANSD. However, conventional meth-
ods of HRV detection require expensive equipment and expertise
which is usually not available in ICU or low-resource settings.
Van et al. [11] used wearable devices to extract RR intervals
from tetanus ECG recordings. However, it is still a challenge to
robustly extract RR intervals [18].

Artificial intelligence, including machine learning (ML) and
deep learning methods, has revolutionized healthcare for di-
agnosing and classifying the severity of infectious diseases.
Traditional ML approaches require the feature engineering pro-
cess for manually extracting features such as RR intervals from
the dataset [19]. Tadesse et al. [20] applied support vector
machines (SVM) to automatically detect the ANS dysfunction
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level for tetanus and demonstrated SVM outperforms HRV on
infectious diseases detection. Pathological photoplethysmogram
(PPG) signals have been used to improve diagnosis performance
for hand, foot and mouth disease (HFMD) and tetanus [21].
Time series imaging - spectrograms - have been employed to
classify the severity of two infectious diseases - Tetanus and
HFMD - using ECG and PPG with transfer learning in [18].
Deep learning methods haven been approved outperforming
traditional machine learning methods (e.g., SVM) [18]. In pre-
vious research, the synchronised ECG and PPG data from 10
tetanus patients were used in [18], [20], and PPG data from
19 tetanus patients were utilised in [21]. Because of the small
datasets used in the previous work, the experimental results
were limited.

Time series imaging is a popular technology which transforms
time series data into images, such as recurrence plot, gramian an-
gular field and spectrogram. Time series imaging is widely used
in 2D CNNss for classification tasks, e.g., the 2D representation
of time-frequency analysis - spectrogram, log spectrogram, mel
spectrogram, and scalogram - is used in 2D CNN [18], [22], [23],
[24], [25]. The 2D CNN has a promising performance in image
classification, according to the recent literature work. Although
the 1-dimensional (1D) CNNs have been employed in signal
processing applications, such as biomedical data classification
and early diagnosis [26], [27], an image-based ECG signal
classification structure using 2D spectrograms achieves a better
performance than the 1D CNN [28].

Transformers [29] were first introduced for natural language
processing (NLP) dealing with sequential input data. Transform-
ers can capture global/long range dependencies using parallel
self-attention mechanisms in various NLP tasks. A standard
Transformer layer [29] includes a multi-head attention mech-
anism modelling global relationships between sequence tokens,
and a feed-forward network (FFN) learning wider representa-
tions.

Inspired by the novel architecture of transformers in NLP,
transformers are recently applied to computer vision tasks [30].
Vision Transformer (ViT) [31] achieved the state-of-the-art per-
formance on image classification. The ViT is good at capturing
long-range dependencies between patches. Firstly, images are
splitinto 16 x 16 non-overlapping patches. These patches com-
bined with positional encoding input into transformer blocks
to model global relations for classification. Several variants
of ViT have been suggested to improve the performance on
vision tasks. Data-efficient image Transformer (DeiT) [32] is
a type of ViT for image classification using knowledge distilla-
tion [33]. Swin Transformer is a hierarchical ViT using shifted
windows [34]. TNT [35] chooses an inner transformer block
to process the relationship between sub-patches and an outer
transformer block to model the relationship among patch-level
embeddings. Transformers have been raised in computer vision
and image analysis [36], [37], [38], [39], [40]. Inspired by trans-
formers on audio spectrograms [41], [42], [43], transformers
have great potential on tetanus ECG spectrograms for improv-
ing the performance of classifying the severity of tetanus in
intensive-care settings.

[ll. METHOD
A. Data Preprocessing

ECG signal denoising is a crucial pre-processing step. Low
band frequency noise [44] and high band frequency noise [44]
are primarily two types of noise that disturb the ECG signal
analysis. They are caused by patient muscle movement and the
electrical source operating the ECG monitor, respectively. In
this work, we choose one-lead ECG signals acquired from the
low-cost wearable monitor. Then we remove the background
noise and clean the data using the Butterworth filter. We set a
cutoff point of 0.05 Hz and 100 Hz, for the high-pass filter and the
low-pass filter respectively. The implementation is performed
utilizing the SciPy package [45].

B. Time Series Imaging

In the proposed method named 2D-CNN-Transformer, the
input data is required to be a 2D type of image. We can use
time series imaging converted from the one-dimensional ECG
to be the input. Spectrograms are one of the most widely used
2D images as the representations for signal. Spectrograms are
described by the time series spectra along one axis and frequency
along the other axis. The logarithmic spectrogram is a log-scaled
spectrogram based on the consecutive Fourier transform and
this scale gives more attention on lower frequencies. Hence,
we choose logarithmic spectrograms T as input in our proposed
method. We normalise the spectrograms I by their maximum
value and scale the value in the range O to 255, and scale the
normalised spectrograms as a logarithm (see (1)).

~ 1
I =log (max([) * 255> (1

We resize and stitch on the 2D logarithmic spectrogram. In
our work, we choose 60 s ECGs based on previous experiments
in Lu et al. [13], [18].

C. CNN-Transformer Network

In general, Vision Transformer (ViT) splits a raw image into
patches. Instead, the proposed CNN-Transformer hybrid model
splits a feature map from CNN. The CNN encoder extracts
middle-level features from a logarithmic spectrogram. These
fixed-size split feature patches are then linearly embedded. Next,
position embeddings are added to these patch embeddings to
keep positional information.

1) CNN Encoder: We employ three 2D convolutional
blocks to extract mid-level features. A logarithmic spectrogram
is input to the convolutional blocks. These convolutional blocks
extract rich local spatial features in each 2D spectrogram. The
architecture of each block was inspired by Lu et al. [13] and
Zihlmann et al. [23]. Each convolutional block contains the 2D
convolutional layers (3 x 3 kernel size), exponential linear unit
(ELU) and 2D batch normalization. The second convolutional
block is followed by a 2D max pooling layer (2 x 2 window).

2) Transformer Encoder: Given a feature map - the output
of the three 2D CNN blocks - x € RW*#*C where the C
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denotes the number of channels, and W and H are the width
and height of the feature map. We first split the x into flattened
non-overlapping patches X, € RV*(P**C) where the N is the
total number of the patches (/N = % X %) and the P is the
patch size. Then we convert these patches into a D-dimensional
embedding space with a trainable linear projection. We concate-
nate position embeddings and patched embeddings for keeping
the spatial information of these extracted patches, which can be
described as follows:

mgy = [)E;})E, }EZ%E, ce ey igE] + Eposa (2)

where E € RP°*O)*D represents the projected patch em-
bedding, E,,s € RV*P stands for the learnable position
embedding.

After the embeddings, we employ L transformer layers. In
each transformer layer [29], [31], there are three main compo-
nents: Multi-head Self-Attention (MSA), Multi-Layer Percep-
tron (MLP) and Layer Normalization (LN). The output of the
I-th layer is as follows:

m; = MSA(LN (m;_1))+m_1,l=1,....,L, (3)

m; = MLP (LN (m}))+m,l=1,...,L. 4)
MSA: The inputs m € R™*¢ are transformed into three vec-
tors: queries Q € R™ % keys K € R™*% and values V €
R™*dv | where dj, are the dimensions of the queries and keys,

and d,, are the dimensions of the values. The scaled dot-product
attention can be described as [29]

Att (Q, K, V) = softmax (QKT) A% (5)
) ) \/@ )
where % is a scale factor that leads to stable gradients by
avoiding the softmax function, which falls into regions, resulting
in exceedingly small gradients.

The MSA is a core module of the transformer, which consists
of n parallel self-attention (SA) heads. It splits the Q, K and
V into different subspaces and performs the scaled dot-product
attention function in parallel. Next, the outputs of each head are
concatenated and produce a final output of the MSA via a linear
projection. The formula is as follows

MSA(Q,K,V) = Concat (Heady, . .., Headp) W°, (6)

Head; = Att (QW;9, KW, ™, viv;V), (7
where W denotes the multi-headed trainable parameter
weights.

MLP: The MLP can be obtained as

MLP(X) = FC (¢(FC(X))) (8)

where the FC represents a fully-connected layer, o/(.) means an
activation function GELU [46].

LN: Layer normalization [47] improves the stability of hidden
state dynamics within the training network and enables faster
training time and convergence. The formula is as follows

LN(fE):wx;MJr@ ©)

where v and [ are learnable parameters, o represents the
element-wise dot, 1+ and o are the mean and standard deviation
of the elements in .

IV. EXPERIMENTS
A. ECG Acquisition for Tetanus Patients

The tetanus data collection has received the approval from
both the Ethics Committee of the Hospital for Tropical Dis-
eases and the Oxford Tropical Research Ethics Committee. This
dataset is collected from 110 patients at the Hospital for Tropical
Diseases, Ho Chi Minh City, Vietnam. Recently, this tetanus
dataset has been published [11].

To obtain ECG data from tetanus patients, we chose the
low-cost wearable monitor ePatch (ePatch V.1.0, BioTelemetry,
USA) [48] (see Fig. 1). The lightweight ePatch' was stuck firmly
to the patient’s chest skin. The ePatch records ECG in two
channels with a sampling rate of 256 Hz. Channel 1 and channel
2 of the ePatch do not relate to lead 1 and lead 2 in conventional
ECG from the bedside monitor. The continuous ECG was stored
in the device and exported after the recording period. Tetanus
patients > 16 years old, admitted to the ICU at the Hospital for
Tropical Diseases Ho Chi Minh City, were enrolled for the vital
sign monitoring data collection. The first 24-hour ECG data were
recorded on this 1st day at ICU. 24-hour ECG recordings were
taken on the 1st and 5th day of hospitalization. ECG signals
from channel 1 of ePatch were used in our experiment. In order
to get stable signals, the first and last five minutes of each ECG
recording were trimmed [11].

B. Implementation Details

1) Pre-Processing.: The dataset consists of 178 time series
ECG waveform example files from 110 patients on days 1 and
5. We split our data into the Training/Validation/Test datasets
with a 141/19/18 ratio. The same patient data are not in Train-
ing/Validation/Test datasets at the same time. The time series
ECG waveform is divided into a sequence of ECG samples
without overlapped windows. We set the duration of the window
length as 60 seconds. We choose 30 60-second ECG samples
from each ECG example file. There are 4230 (141 *30) ECG log
spectrograms in the training set, including 2370 samples of mild
disease and 1860 samples of severe disease; 540 (18*30) ECG
log spectrograms in the validation set, including 270 samples
of mild disease and 270 samples of severe disease; 570 (19%30)
ECG log spectrograms in the test set, including 360 samples of
the mild disease and 210 samples of severe disease (see Table I).
The mild and severe tetanus are labelled by clinician at the
Hospital for Tropical Diseases.

First, we remove the noise from these split ECG samples. The
implementation is performed utilizing the SciPy package [45].
Next, spectrograms are computed by scipy.signal.spectrogram
in SciPy [45]. We choose the Tukey window width to be 25% of
a window’s length overlap. We set the nperseg - length of each
segment - as 64, and the noverlap - numbers of points to overlap

TePatch. https://www.cardiologic.co.uk/epatch-2-Osensor
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Transformer Encoderx 2

Overview of the proposed framework for the classification of tetanus severity. The raw ECG data is collected by an ePatch wearable sensor.

The resized and stitched 60 s window length Log-Spectrogram of raw ECG data is the input of the proposed method called 2D-CNN-Transformer.
The output of the proposed method is the label classification, label 0 - mild tetanus and label 1 - severe tetanus.

TABLE |
DEFINITION OF TRAIN-VALID-TEST SPLIT FOR THE TETANUS DATASET

30 ECG samples from each ECG example

Data Set Total Number  Mild Tetanus  Severe Tetanus
Training 4230 (141 *30) 2370 1860
Validation 540 (18%30) 270 270
Test 570 (19%30) 360 210

TABLE Il
EMPLOYED PARAMETERS OF THE TRANSFORMER ENCODER IN THE
PROPOSED 2D-CNN-TRANSFORMER

Parameters

img_size 112 the size (resolution) of each image
in_chans 128 the number of input channels
patch_size 8 the size (resolution) of each patch
n_classes 2 the number of classes

embed_dim 386 the embedding dimension

depth 2 the number of the transformer block
n_heads 2 the number of the heads

qkv_bias True the bias of the queries, keys and values
mlp_ratio 4 the MLP ratio

between segments - as 32. There are 15360 = 256 Hz % 60 s
sampling points in a window of length which are used to compute
a spectrogram; these are based on 60 seconds at the sampling
rate 256 Hz of the ECG data. We then apply normalization and
logarithmic scale to the spectrogram. The spectrogram is saved
as a PNG format image with the default ’viridis’ colourmap.
Finally, the rectangular picture of the spectrogram (479 x 33
pixels of the Log-Spectrograms on every 60 seconds of ECG) is
ready for the proposed deep learning approach.

2) Experimental Setup: Based on experiments, the Trans-
former Encoder with the selected hyperparameters of the pro-
posed method achieves optimal results (see Table II). The
model is trained over 100 epochs using the Adam optimizer

with a learning rate 0.001 and a batch size of 32. We choose
torch.nn.BCEWithLogitsLoss for the loss function. The pro-
posed network was implemented using Python 3.7 with PyTorch.
Experiments are run with computational hardware NVidia
GeForce GTX 1080 Ti 10 GB, NVidia GeForce RTX 3060 12 GB
and NVIDIA RTX A6000 48 GB.

C. Baseline Methods

In our work, we compare the proposed method - 2D-CNN -
Transformer - with four different baseline methods. The baseline
methods include three 2D deep learning methods (2D-CNN,
2D-CNN + Dual Attention, 2D-CNN + Channel-wise Attention)
and the 1D deep learning method 1D-CNN.

D. Evaluation Metrics

We choose widely used metrics to evaluate the performance
of the binary classification, including F1-score, precision, recall,
specificity and accuracy [18].

Fl-score is the harmonic mean of precision and recall. The
formula is as follows

Fl— 9 precision x recall

. 10
precision + recall (10)

Precision evaluates how precisely a method predicts the
positive labels. The formula is as follows

TP

recision TP+ FP

an
Recall measures the percentage of true positives that a method
correctly detects. The formula is as follows

TP

Recall = m—m .

12)
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TABLE IlI

ABLATION STUDIES OF THE PROPOSED METHOD - 2D-CNN-TRANSFORMER - USING RESIZED AND STITCHED 60 S WINDOW LENGTH
LOG-SPECTROGRAMS AS INPUT

The resized and stitched 60 second window length Log-Spectrogram

Method F1 score precision recall specificity accuracy AUC

2D-CNN part only 0.55+0.12 0.57+0.13 0.63+0.28 0.62+0.32 0.64+0.12 0.65+0.08
ViT 0.76+0.07 0.94+0.05 0.69+0.13 0.97+0.03 0.85+0.03 0.81+0.05
Proposed 2D-CNN-Transformer/8  0.82+0.03 0.94+0.03 0.73+0.07  0.97+0.02 0.88+0.01 0.85 +0.03

The results are presented as mean + standard deviation. The best performance is indicated in bold.

TABLE IV

QUANTITATIVE COMPARISON ON PATCH SIZE OF THE TRANSFORMER ENCODER OF THE PROPOSED METHOD - 2D-CNN -TRANSFORMER

The proposed method

Patch Size of the Transformer F1 score precision recall specificity accuracy AUC

Patch 16 * 16 0.81+0.05 0.90+0.06 0.74+0.11  0.95+0.04 0.87+0.02 0.85+0.04
Patch 14 * 14 0.71+0.02 0.89+0.07 0.60+0.05  0.95+0.04 0.82+0.01 0.77+0.01
Patch 12 * 12 0.77+0.06  0.86+0.06 0.71+0.10  0.93+0.04 0.85+0.03 0.82+0.04
Patch 10 * 10 0.82+0.03  0.90+0.03  0.76x0.05 0.95+0.02 0.88+0.02 0.86+0.02
Patch 8 * 8 0.82+0.03 0.94+0.03  0.73+0.07  0.97+0.02 0.88+0.01 0.85 +0.03
Patch 6 * 6 0.70+0.07 0.95+0.02 0.56+£0.09  0.98+0.01 0.83+0.03 0.77+0.04
Patch 4 * 4 0.72+0.09  0.94+0.06 0.59+0.13  0.97+0.03 0.83+0.04 0.78+0.05

The results are presented as mean + standard deviation. The best performance is indicated in bold.

Specificity evaluates the percentage of true negative classifi-
cation that a method correctly detects. The formula is as follows

TN
TN+ FP’

Accuracy measures the total number of classifications that a
method gets correctly generates. The formula is as follows

TP +TN
TP+TN+FP+ FN'

Here the terms TP (true positive) and TN (true negative)
represent accurately predicted numbers of severe tetanus and
mild tetanus, respectively. The FP (false positive) means the
mild tetanus has been incorrectly identified as severe tetanus,
whilst the FN (false negative) means severe tetanus has been
incorrectly identified as mild tetanus.

We also use the area under the curve (AUC) metric [49]. The
higher the AUC, the better the proposed method distinguishes
severe tetanus from mild tetanus. We run each model 5 times and
calculate the mean and the standard deviation of the performance
metrics on the test dataset.

Speci ficity = (13)

Accuracy = (14)

V. RESULTS AND DISCUSSION

In this section, we evaluate the proposed 2D-CNN-
Transformer method and show how it works. Firstly, we measure
the performance of the two main components of the 2D-CNN-
Transformer. We discuss the patch size of the transformer, and
two types of resized Log-Spectrograms. Then, we compare the
proposed 2D-CNN-Transformer to the 1D-CNN; vanilla 2D-
CNN, 2D-CNN + Dual Attention, and 2D-CNN + Channel-wise
Attention with two types of input images [13]. In addition,
we compare the proposed method to the traditional machine
learning method of Random Forest. In our experiments, we run
each model five times with the same split training / validation /
test datasets. We perform the splitting of the dataset into training,

validation and test based on unique ECG samples. After splitting,
we apply windowing on ECG time series to split each signal into
60 s time series. Therefore, we made sure that ECG samples in
each split of the dataset are unique.

A. Ablation Study

We investigate the effects of two main components - CNN
encoder, transformer encoder - within our proposed 2D-CNN-
Transformer. As shown in Table III, The proposed 2D-CNN-
Transformer clearly outperforms a pure ViT model (vision trans-
former) on the given task. We also investigate the optimal batch
size of the transformer encoder to generate image patches.

1) Patch Size: A patch sequence represents the feature map
obtained from the CNN encoder. The different path size influ-
ences the performance of the proposed method. Table I'V reports
the performance for the proposed 2D-CNN-Transformer method
using different patch sizes. We observe that the patch size is
an important factor for the tetanus severity prediction. From a
patch size 4 x 4 to 16 x 16, the path size 8 x 8 and 10 x 10
achieve the optimal performance. The 2D-CNN-Transformer/8
represents the proposed method using the path size 8 x 8. The
2D-CNN-Transformer/10 represents the proposed method using
the path size 10 x 10. Fig. 2 shows the examples of Grad-CAM
visual explanations of the features for the label 1 - severe tetanus
- in the 2nd transformer layer of the proposed method.

2) Resized and Stitched Spectrograms: We have ex-
plored different types of resized spectrograms as inputs of the
proposed 2D-CNN-Transformer. As shown in Fig. 3, the resized
spectrograms in (c) failed and are not suitable for the proposed
method. Because too much resize into 224 x 224 pixels makes
the image information loss. Also, Fig. 3(a) can be used in the
proposed 2D-CNN-Transformer. Based on experiments, we find
the original Log-Spectrograms only have 33 pixels in the width.
The short width does not perform well in the patch embeddings.
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Fig. 2. Examples of visual explanations of the features in the 2nd transformer layer of the proposed method 2D-CNN-Transformer. The resized

and stitched 60 s window length Log-Spectrogram of raw ECG data is the input of the proposed method. The performance of the proposed method
using different patch sizes from 16 x 16 to 4 x 4 in the transformer encoder are compared.

However, the information of the image still maintains well in
Fig. 3(b), which is the best option for the proposed method.

3) CNN Blocks Selection: The exploration of the number
of the CNN blocks in the CNN encoder is meaningful. Be-
cause the low-, mid- and high-level local features effect the
performance of the transformer encoder. We do experiments
on two layers, three layers and four layers of the CNN en-
coder of the proposed 2D-CNN-Transformer. At the end, we
find that three layers of the CNN encoder achieve the better
performance. We also consider adding channel-wise into each
CNN block. From our experiments, the channel-wise layers lead
to an unstable CNN-Transformer model which has the gradients
explosion. Fig. 4 shows the examples of Grad-CAM visual

explanations of the features for the label 1 - severe tetanus -
in the different blocks of the proposed method. The resized
and stitched Log-Spectrograms are the inputs of the proposed
method. The red colours emphasise the most important areas the
2D-CNN-Transformer focuses on for classification.

B. Comparisons

We compare the proposed 2D-CNN-Transformer with four
different deep learning methods. Based on the experimental
results in Table V, the image-based method 2D-CNN-
Transformer boosts the performance of diagnosing tetanus and
outperforms other methods.
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TABLE V
QUANTITATIVE COMPARISON ON THE PROPOSED METHOD - 2D-CNN-TRANSFORMER/8 USING RESIZED AND STITCHED 60 S WINDOW LENGTH
LOG-SPECTROGRAMS AS INPUT AND THE BASELINE METHODS USING ORIGINAL 60 S WINDOW LENGTH ECG AS INPUT

60 second window length Log-Spectrogram

Method F1 score precision recall specificity accuracy AUC
2D-CNN 0.61+0.14  0.68+0.07  0.57+0.19  0.85+0.02 0.75+0.07 0.72+0.09
2D-CNN + Dual Attention 0.65+0.19 0.71+0.17 0.61+0.21 0.86+0.09 0.76+0.11 0.74+0.13
2D-CNN + Channel-wise Attention 0.79+0.03 0.78+0.08 0.82+0.05 0.85+0.08 0.84+0.04 0.84+0.03
Proposed 2D-CNN-Transformer/8  0.82+0.03 0.94+0.03  0.73+0.07  0.97+0.02 0.88+0.01 0.85+0.03
No time series Images
Method F1 score precision recall specificity accuracy AUC
1D-CNN 0.65+0.14 0.61+0.05 0.77+0.25 0.70+0.13 0.73+£0.05 0.74+0.08

The results are presented as mean =+ standard deviation. The best performance is indicated in bold.

TABLE VI
QUANTITATIVE COMPARISON OF THE PROPOSED METHOD (2D-CNN-TRANSFORMER/8) AND THE BASELINE METHODS (TRADITIONAL MACHINE LEARNING),
UsING ORIGINAL 60 s WINDOW LENGTH ECG As INPUT. THE RESULTS ARE PRESENTED AS MEAN =+ STANDARD DEVIATION.
THE BEST PERFORMANCE IS INDICATED IN BOLD

60 second window length Log-Spectrogram

Method F1 score precision recall specificity accuracy AUC

Proposed 2D-CNN-Transformer/8 0.82+0.03 0.94+0.03 0.73+0.07 0.97+0.02 0.88+0.01 0.85+0.03
No time series Images

Method F1 score precision recall specificity accuracy AUC

Random Forest (HRV time domain features (Set 1))  0.81+0.00 0.77+0.00 0.85+0.01  0.85 +0.00 0.85+0.00 0.80+0.00

Random Forest (HRV time domain features (Set 2)) 0.82+0.00 0.76+0.01 0.89+0.00  0.86+0.00 0.84+0.01 0.86+0.03

60-second window length Log-Spectrogram

Resize and Stitch Resize

L R VR TR O R A T e T

(c)

(R R

Fig. 3. The different types of Log-Spectrograms: (a) 60-second win-
dow length Log-Spectrograms in 479 pixels x33 pixels; (b) Log-
Spectrograms after resize and stitch from (a), in 224 pixels x 224 pixels;
(c) Log-Spectrograms after resize from (a), in 224 pixels x224 pixels.

We also compare the proposed 2D-CNN-Transformer with the
traditional machine learning method Random Forest [50], [51],
[52] (see Table VI). The extracted features for Random Forest
are HRV time domain features (see Table VII). In our work, we
detect r peaks of ECG using the open-source packages py-ecg-
detectors 1.3.2 [53] and extract features using the open-source
packages hrv-analysis 1.0.4 [54]. In Random Forest, the HRV
time domain features (Set 2) as input produce better performance
than the HRV time domain features (Set 1) as input.

VI. DISCUSSION

In this work, we proposed a novel end-to-end deep learning
method - 2D-CNN-Transformer - to classify the severity of
tetanus using wearable monitors in a resource-limited setting.
The low cost of obtaining ECG outputs makes this method of
vital sign data collection affordable in LMICs. We are able to
reliably use this low-quality data and classify tetanus symptoms
as mild or severe tetanus. Despite this, there are limitations to
this method. Because of the small tetanus dataset, we make a
classification of tetanus severity using ECG data recorded on
day 1 and day 5. In future, we will extend the tetanus dataset.
With a larger dataset, we will be able to classify the severity of
tetanus on day 5 using the ECG data from only day 1.

ECG wearable devices are indeed increasingly available in
LMICs. The device used in this study is the ePatch, which is
reusable and is used with a single disposable electrode ($5 ap-
proximately). We appreciate that the potential of such techniques
will be greater as more lower cost devices become available,
but in comparison to a daily ICU cost for monitoring, or a
conventional ICU monitor capable of providing waveform data
($16,000), the ePatch is low cost.

The proposed method uses patterns of the series imaging
- spectrogram - to classify the severity level of tetanus. In
our experiments, the spectrogram parameters does not impact
performance very much. We will explore time series imaging
further in future work, which will aim to find the optimal range
of time windows and parameters.

If tetanus patients suffer from heart diseases, their ECG sig-
nals are different from the tetanus patients without any heart
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Example of visual explanations of the features in different layers of the proposed method 2D-CNN-Transformer/8 (patch size 8 x 8 of the

Transformer part). The resized and stitched 60 s window length Log-Spectrogram of raw ECG data is the input of the proposed method.

TABLE VII
LIST OF EXTRACTED HEART RATE VARIABILITY (HRV) FEATURES IN
TRADITIONAL MACHINE LEARNING

Parameters
HRYV time domain features (Setl)

mean_nni mean of RR-intervals

sdnn standard deviation of RR-intervals

sdsd standard deviation of differences between adja-
cent RR-intervals

rmssd square root of the mean of the sum of the squares
of differences between adjacent NN-intervals

mean_hr mean Heart Rate

max_hr max heart rate

min_hr min heart rate

std_hr standard deviation of heart rate
HRYV time domain features (Set2)

mean_nni mean of RR-intervals

sdnn standard deviation of RR-intervals

sdsd standard deviation of differences between adja-
cent RR-intervals

nni_50 number of interval differences of successive RR-
intervals greater than 50 ms

pnni_50 proportion derived by dividing nni_50

nni_20 number of interval differences of successive RR-
intervals greater than 20 ms

pnni_20 proportion derived by dividing nni_20

rmssd square root of the mean of the sum of the squares

of differences between adjacent NN-intervals
median Absolute values of the successive differ-
ences between the RR-intervals

median_nni

range_nni difference between the maximum and minimum
nn_interval.

cvsd coefficient of variation of successive differences
equal to the rmssd divided by mean_nni

cvnni coefficient of variation equal to the ratio of sdnn
divided by meanpni.

mean_hr mean Heart Rate

max_hr max heart rate

min_hr min heart rate

std_hr standard deviation of heart rate

diseases. This requires further research. Some severity tetanus
patients need ventilators which influence HRV. We will consider
how various HRV related to the severity tetanus in the future
work.

In our experiments, we compared the proposed 2D-CNN-
Transformer with the Random Forest model. We applied the
Random Forest model with two feature sets containing HRV
time domain features. The first feature set (Set 1) contains 8
standard HRV time domain features while the second feature
set (Set 2) contains 8 additional time domain features. We found
that Random Forest with enough manually selected features can
be comparable with the proposed 2D-CNN-Transformer model
in classifying the severity of Tetanus disease. Moreover, Random
Forest with these two HRV time domain features sets have higher
recall values, which indicates that Random forest yields a better
prediction of severe tetanus. Here, recall measures the ability of
the model in correctly predicting the percentage of the severe
tetanus (TP) condition.

VIl. CONCLUSION

The proposed 2D-CNN-Transformer method captures both
the local spatial information from the CNN features and the
global context information from Transformers. Experimental
results demonstrate that the proposed deep learning method
outperforms other state-of-the-art methods in tetanus classifi-
cation. The proposed deep learning framework can help clinical
care decision-making and assist in the allocation of limited
healthcare resources in LMICs, and could be applied to similar
infectious diseases such as sepsis. In future work, we will
integrate multi-modal physiological data with the current work
to further improve tetanus severity classification.
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Thwaites, Louise Thwaites, Tran Minh Duc, Trinh Manh Hung,
Hugo Turner, Jennifer Ilo Van Nuil, Vo Tan Hoang, Vu Ngo
Thanh Huyen, Sophie Yacoub

Hospital for Tropical Diseases, Ho Chi Minh City (alphabetic
order by surname): Cao Thi Tam, Duong Bich Thuy, Ha Thi Hai
Duong, Ho Dang Trung Nghia, Le Buu Chau, Le Mau Toan, Le
Ngoc Minh Thu, Le Thi Mai Thao, Luong Thi Hue Tai, Nguyen
Hoan Phu, Nguyen Quoc Viet, Nguyen Thanh Dung, Nguyen
Thanh Nguyen, Nguyen Thanh Phong, Nguyen Thi Kim Anh,
Nguyen Van Hao, Nguyen Van Thanh Duoc, Pham Kieu Nguyet
Oanh, Phan Thi Hong Van, Phan Tu Qui, Phan Vinh Tho, Truong
Thi Phuong Thao

University of Oxford (alphabetic order by surname): Natasha
Ali, David Clifton, Mike English, Shadi Ghiasi, Heloise Gre-
eff, Jannis Hagenah, Ping Lu, Jacob McKnight, Chris Paton,
Tingting Zhu

Imperial College London (alphabetic order by surname): Pan-
telis Georgiou, Bernard Hernandez Perez, Kerri Hill-Cawthorne,
Alison Holmes, Stefan Karolcik, Damien Ming, Nicolas Moser,
Jesus Rodriguez Manzano

King’s College London (alphabetic order by surname): Liane
Canas, Alberto Gomez, Hamideh Kerdegari, Andrew King,
Marc Modat, Reza Razavi, Miguel Xochicale

University of Ulm (alphabetic order by surname): Walter
Karlen

The University of Melbourne (alphabetic order by surname):
Linda Denehy, Thomas Rollinson

Mahidol Oxford Tropical Medicine Research Unit (MORU)
(alphabetic order by surname): Luigi Pisani, Marcus Schultz

REFERENCES

[1] C. Thwaites, “Botulism and tetanus,” Medicine, vol. 45, no. 12,
pp. 739-742, 2017.

[2] Disease factsheet about tetanus. 2021. [Online]. Available: https://www.
ecdc.europa.eu/en/tetanus/facts

[3] D.B. Thuy etal., “Tetanus in southern Vietnam: Current situation,” Amer.
J. Trop. Med. Hyg., vol. 96, no. 1, 2017, Art. no. 93.

[4] C. Thwaites et al., “Predicting the clinical outcome of tetanus: The tetanus
severity score,” Trop. Med. Int. Health, vol. 11, no. 3, pp. 279-287, 2006.

[5] L. M. Yen and C. L. Thwaites, “Tetanus,” Lancet, vol. 393, no. 10181,
pp. 1657-1668, 2019. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0140673618331313

[6] H.H.Kyuetal., “Mortality from tetanus between 1990 and 2015: Findings
from the global burden of disease study 2015,” BMC Public Health,vol. 17,
no. 1, pp. 1-17, 2017.

[7]1 The importance of diagnostic tests in fighting infectious diseases. 2021.
[Online]. Available: https://www.lifechanginginnovation.org/medtech-
facts/importance-diagnostic-tests-fighting-infectious-diseases.html

[8] M. Afshar et al., “Narrative review: Tetanus—A health threat after natural
disasters in developing countries,” Ann. Intern. Med., vol. 154, no. 5,
pp- 329-335, 2011.

[9]1 T. M. Hung et al., “Direct medical costs of tetanus, dengue, and sepsis
patients in an intensive care unitin Vietnam,” Front. Public Health, vol. 10,
2022, Art. no. 893200.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]
[29]
[30]
[31]

(32]

(33]

[34]

(35]

[36]

[37]

T. M. Hung et al., “The estimates of the health and economic burden of
dengue in Vietnam,” Trends Parasitol., vol. 34, no. 10, pp. 904-918, 2018.
H. M. T. Van et al., “Vital sign monitoring using wearable devices in a
vietnamese intensive care unit,” BMJ Innovations, vol. 7, no. Suppl 1,
pp. s1-s5, 2021.

M. Joshi et al., “Wearable sensors to improve detection of patient deteri-
oration,” Expert Rev. Med. Devices, vol. 16, no. 2, pp. 145-154, 2019.

P. Lu et al., “Classification of tetanus severity in intensive-care settings for
low-income countries using wearable sensing,” Sensors, vol. 22, no. 17,
2022, Art. no. 6554.

H. T. H. Duong et al., “Heart rate variability as an indicator of autonomic
nervous system disturbance in tetanus,” Amer. J. Trop. Med. Hyg., vol. 102,
no. 2, 2020, Art. no. 403.

I. Cygankiewicz and W. Zareba, “Heart rate variability,” Handbook Clin.
Neurol., vol. 117, pp. 379-393, 2013.

Electrophysiology, Task Force of the European Society of Cardiology the
North American Society of Pacing, “Heart rate variability: Standards of
measurement, physiological interpretation, and clinical use,” Circulation,
vol. 93, no. 5, pp. 1043-1065, 1996.

M. Bolanos, H. Nazeran, and E. Haltiwanger, “Comparison of heart rate
variability signal features derived from electrocardiography and photo-
plethysmography in healthy individuals,” in Proc. Int. Conf. IEEE Eng.
Med. Biol. Soc., 2006, pp. 4289-4294.

G. A. Tadesse et al., “Multi-modal diagnosis of infectious diseases in
the developing world,” IEEE J. Biomed. Health Inform., vol. 24, no. 7,
pp- 2131-2141, Jul. 2020.

S. Ghiasi et al., “Sepsis mortality prediction using wearable monitor-
ing in low—middle income countries,” Sensors, vol. 22, no. 10, 2022,
Art. no. 3866. [Online]. Available: https://www.mdpi.com/1424-8220/22/
10/3866

G. A. Tadesse et al., “Severity detection tool for patients with infectious
disease,” Healthcare Technol. Lett., vol. 7, no. 2, pp. 45-50, 2020.

D. Kiyasseh et al., “Plethaugment: GAN-based PPG augmentation for
medical diagnosis in low-resource settings,” IEEE J. Biomed. Health
Inform., vol. 24, no. 11, pp. 3226-3235, Nov. 2020.

A. Ullah et al., “Classification of arrhythmia by using deep learning with
2-D ECG spectral image representation,” Remote Sens., vol. 12, no. 10,
2020, Art. no. 1685.

M. Zihlmann, D. Perekrestenko, and M. Tschannen, “Convolutional re-
current neural networks for electrocardiogram classification,” in Proc.
Comput. Cardiol., 2017, pp. 1-4.

A. Diker et al., “A novel application based on spectrogram and convo-
lutional neural network for ecg classification,” in Proc. 1st Int. Informat.
Softw. Eng. Conf., 2019, pp. 1-6.

G. Liu et al., “ECG quality assessment based on hand-crafted statistics
and deep-learned s-transform spectrogram features,” Comput. Methods
Programs Biomed., vol. 208, 2021, Art. no. 106269.

B. Tutuko et al., “AFibNet: An implementation of atrial fibrillation detec-
tion with convolutional neural network,” BMC Med. Inform. Decis. Mak.,
vol. 21, no. 1, pp. 1-17, 2021.

S. Kiranyaz et al., “1D convolutional neural networks and applications: A
survey,” Mech. Syst. Signal Process., vol. 151, 2021, Art. no. 107398.

Y. Wu et al., “A comparison of 1-D and 2-D deep convolutional neural
networks in ECG classification,” 2018, arXiv:1810.07088.

A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 6000-6010.

K. Han et al., “A survey on vision transformer,” IEEE Trans. Pattern Anal.
Mach. Intell., early access, doi: 10.1109/TPAMI.2022.3152247.

A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” 2020, arXiv:2010.11929.

H. Touvron et al., “Training data-efficient image transformers & dis-
tillation through attention,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 10347-10357.

G. Hinton et al., “Distilling the knowledge in a neural network,” 2015,
arXiv:1503.02531.

Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp- 10012-10022.

K. Han et al., “Transformer in transformer,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 34, pp. 15908-15919, 2021.

A. Hatamizadeh et al., “UNETR: Transformers for 3D medical image
segmentation,” in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis., 2022,
pp. 574-584.

J.Chenetal., “TransUNet: Transformers make strong encoders for medical
image segmentation,” 2021, arXiv:2102.04306.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on May 31,2024 at 08:07:29 UTC from IEEE Xplore. Restrictions apply.


https://www.ecdc.europa.eu/en/tetanus/facts
https://www.ecdc.europa.eu/en/tetanus/facts
https://www.sciencedirect.com/science/article/pii/S0140673618331313
https://www.sciencedirect.com/science/article/pii/S0140673618331313
https://www.lifechanginginnovation.org/medtech-facts/importance-diagnostic-tests-fighting-infectious-diseases.html
https://www.lifechanginginnovation.org/medtech-facts/importance-diagnostic-tests-fighting-infectious-diseases.html
https://www.mdpi.com/1424-8220/22/10/3866
https://www.mdpi.com/1424-8220/22/10/3866
https://dx.doi.org/10.1109/TPAMI.2022.3152247

1350

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 70, NO. 4, APRIL 2023

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

C. Zhao et al., “Visual-assisted probe movement guidance for obstetric
ultrasound scanning using landmark retrieval,” in Proc. Int. Conf. Med.
Image Comput. Comput.- Assist. Interv., 2021, pp. 670-679.

J. Zhang et al., “A CNN-transformer hybrid approach for decoding visual
neural activity into text,” Comput. Methods Programs Biomed., vol. 214,
2022, Art. no. 106586.

H. Wu et al., “FAT-Net: Feature adaptive transformers for automated skin
lesion segmentation,” Med. Image Anal., vol. 76, 2022, Art. no. 102327.
Y. Gong, Y.-A. Chung, and J. Glass, “AST: Audio spectrogram trans-
former,” 2021, arXiv:2104.01778.

S. Park, Y. Jeong, and T. Lee, “Many-to-many audio spectrogram trans-
former: Transformer for sound event localization and detection,” DCASE,
pp. 105-109, 2021.

Q. Kong et al., “Sound event detection of weakly labelled data with CNN-
transformer and automatic threshold optimization,” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 28, pp. 2450-2460, Aug. 2020.

Y.-H. Byeon and K.-C. Kwak, “Pre-configured deep convolutional neural
networks with various time-frequency representations for biometrics from
ECG signals,” Appl. Sci., vol. 9, no. 22, 2019, Art. no. 4810.

P. Virtanen et al., “SciPy 1.0: Fundamental algorithms for scientific com-
puting in python,” Nature Methods, vol. 17, pp. 261-272, 2020.

D. Hendrycks and K. Gimpel, “Gaussian error linear units (GELUs),”
2016, arXiv:1606.08415.

[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” 2016,
arXiv:1607.06450.

epatch the world’s most wearable holter monitor. 2021. [Online]. Avail-
able: https://www.gobio.com/clinical-research/cardiac-safety/epatch/

A. P. Bradley, “The use of the area under the ROC curve in the evalu-
ation of machine learning algorithms,” Pattern Recognit., vol. 30, no. 7,
pp. 1145-1159, 1997.

L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001.

P. Lu et al., “Highly accurate facial nerve segmentation refinement from
CBCT/CT imaging using a super-resolution classification approach,” IEEE
Trans. Biomed. Eng., vol. 65, no. 1, pp. 178-188, Jan. 2018.

P.Luetal., “Facial nerve image enhancement from CBCT using supervised
learning technique,” in Proc. 37th Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc., 2015, pp. 2964-2967.

Seven ECG heartbeat detection algorithms and heartrate variability anal-
ysis. 2022. [Online]. Available: https://www.ecdc.europa.eu/en/tetanus/
facts

Heart rate variability analysis. 2022. [Online]. Available: https://pypi.org/
project/hrv-analysis/

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on May 31,2024 at 08:07:29 UTC from IEEE Xplore. Restrictions apply.


https://www.gobio.com/clinical-research/cardiac-safety/epatch/
https://www.ecdc.europa.eu/en/tetanus/facts
https://www.ecdc.europa.eu/en/tetanus/facts
https://pypi.org/project/hrv-analysis/
https://pypi.org/project/hrv-analysis/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


