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Abstract—Recent studies on contrastive learning have achieved
remarkable performance solely by leveraging few labels in med-
ical image segmentation. Existing methods mainly focus on in-
stance discrimination and invariant mapping. However, they face
three common pitfalls: (1) tailness: medical image data usually
follows an implicit long-tail class distribution. Blindly leveraging
all pixels in training hence can lead to the data imbalance issues,
and cause deteriorated performance; (2) consistency: it remains
unclear whether a segmentation model has learned meaningful
and yet consistent anatomical features due to the intra-class vari-
ations between different anatomical features; and (3) diversity:
the intra-slice correlations within the entire dataset have received
significantly less attention. This motivates us to seek a princi-
pled approach for strategically making use of the dataset itself
to discover similar yet distinct samples from different anatomical
views. In this paper, we introduce a novel semi-supervised medical
image segmentation framework termed Mine yOur owN Anatomy
(MONA), and make three contributions. First, prior work argues
that every pixel equally matters to the training; we observe empir-
ically that this alone is unlikely to define meaningful anatomical
features, mainly due to lacking the supervision signal. We show
two simple solutions towards learning invariances. Second, we
construct a set of objectives that encourage the model to be capable
of decomposing medical images into a collection of anatomical
features in an unsupervised manner. Lastly, we both empirically
and theoretically, demonstrate the efficacy of our MONA on three
benchmark datasets with different labeled settings, achieving new
state-of-the-art under different labeled semi-supervised settings.

Index Terms—Contrastive learning, imbalanced learning, long-
tailed medical image segmentation, semi-supervised learning.
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I. INTRODUCTION

W ITH the advent of deep learning, medical image seg-
mentation has drawn great attention and substantial

research efforts in recent years. Traditional supervised training
schemes coupled with large-scale annotated data can engender
remarkable performance. However, training with massive high-
quality annotated data is infeasible in clinical practice since
a large amount of expert-annotated medical data often incurs
considerable clinical expertise and time. Under such a setting,
this poses the question of how models benefit from a large
amount of unlabelled data during training. Recently emerged
methods based on contrastive learning (CL) significantly reduce
the training cost by learning strong visual representations in an
unsupervised manner [1], [2], [3], [4], [5], [6], [7], [8], [9], [10].
A popular way of formulating this idea is through imposing
feature consistency to differently augmented views of the same
image - which treats each view as an individual instance.

Despite great promise, the main technical challenges remain:
(1) How far is CL from becoming a principled framework for
medical image segmentation? (2) Is there any better way to
implicitly learn some intrinsic properties from the original data
(i.e., the inter-instance relationships and intra-instance invari-
ance)? (3) What will happen if models can only access a few
labels in training?

To address the above challenges, we outline three principles
below: (1) tailness: existing approaches inevitably suffer from
class collapse problems – wherein similar pairs from the same
latent class are assumed to have the same representation [11],
[12], [13]. This assumption, however, rarely holds for real-world
clinical data. We observe that the long-tail distribution prob-
lem has received increasing attention in the computer vision
community [14], [15], [16], [17], [18]. In contrast, there have
been few prior long-tail works for medical image segmentation.
For example, as illustrated in Fig. 1, most medical images
follow a Zipf long-tail distribution where various anatomical
features share very different class frequencies, which can result
in worse performance; (2) consistency: considering the scarcity
of medical data in practice, augmentations are a widely adopted
pre-text task to learn meaningful representations. Intuitively, the
anatomical features should be semantically consistent across
different transformations and deformations. Thus, it is impor-
tant to assess whether the model is robust to diverse views of
anatomy; (3) diversity: recent work [19], [20], [21] pointed out
that going beyond simple augmentations to create more diverse
views can learn more discriminative anatomical features. At
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Fig. 1. Examples of three benchmarks (i.e., ACDC, LiTS, MMWHS) with long-tail class distributions. As observed, the ratios of different label classes over
three benchmarks are imbalanced.

Fig. 2. Overview of the MONA framework including two stages: (1) GLCon is design to seek both augmented and mined views for instance discrimination Linst
in the global and local manners. Here the global instance discrimination is designed to exploit the correlations among views within the latent feature space, which
is generated by the encoders. Meanwhile, local instance discrimination aims to leverage the correlations among views - specifically, local regions of the image -
within the output feature space produced by the decoder (See Section III-A), (2) our proposed anatomical contrastive reconstruction fine-tuning (See Section III-B).
Note that U and L denote unlabeled and labeled data.

the same time, this is particularly challenging to both introduce
sufficient diversity and preserve the anatomy of the original data,
especially in data-scarce clinical scenarios. To deploy into the
wild, we need to quantify and address three research gaps from
different anatomical views.

In this paper, we present Mine yOur owN Anatomy (MONA),
a novel contrastive semi-supervised 2D medical segmentation
framework, based on different anatomical views. The work-
flow of MONA is illustrated in Fig. 2. The key innovation in
MONA is to seek diverse views (i.e., augmented/mined views) of
different samples whose anatomical features are homogeneous
within the same class type, while distinctive for different class
types. We make the following contributions. First, we consider
the problem of tailness. An issue is that label classes within
medical images typically exhibit a long-tail distribution. An-
other one, technically more challenging, is the fact that there
is only a few labeled data and large quantities of unlabeled
ones during training. Intuitively we would like to sample more
pixel-level representations from tail classes. Thus, we go beyond
the naïve setting of instance discrimination in CL [4], [5], [6] by

decomposing images into diverse and yet consistent anatomical
features, each belonging to different classes. In particular, we
propose to use pseudo labeling and knowledge distillation to
learn better pixel-level representations within multiple seman-
tic classes in a training mini-batch. Considering performing
pixel-level CL with medical images is impractical for both
memory cost and training time, we then adopt active sampling
strategies [22] such as in-batch hard negative pixels, to better
discriminate the representations at a larger scale.

We further address the two other challenges: consistency and
diversity. The success of the common CL theme is mainly
attributed to invariant mapping [23] and instance discrimina-
tion [1], [4]. Starting from these two key aspects, we try to further
improve the segmentation quality. More specifically, we suggest
that consistency to transformation (equivariance) is an effective
strategy to establish the invariances (i.e., anatomical features and
shape variance) to various image transformations. Furthermore,
we investigate two ways to include diversity-promoting views
in sample generation. First, we incorporate a memory buffer
to alleviate the demand for large batch size, enabling much
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more efficient training without inhibiting segmentation quality.
Second, we leverage stronger augmentations and nearest neigh-
bors to mine views as positive views for more semantic similar
contexts.

Extensive experiments are conducted on a variety of datasets
and the latest CL frameworks (i.e., MOCO [5], SIMCLR [4],
BYOL [6], and ISD [24]), which consistently demonstrate the
effectiveness of our proposed MONA. For example, our MONA
establishes the new state-of-the-art performance, compared to
all the state-of-the-art semi-supervised approaches with different
label ratios (i.e., 1%, 5%, 10%). Moreover, we present a system-
atic evaluation for analyzing why our approach performs so well
and how different factors contribute to the final performance
(See Section IV-D). Theoretically, we show the efficacy of our
MONA in label efficiency (See Section A). Empirically, we also
study whether these principles can effectively complement each
CL framework (See Section IV-G). We hope our findings will
provide useful insights on medical image segmentation to other
researchers.

To summarise, our contributions are as follows: ❶ we care-
fully examine the problem of semi-supervised 2D medical
image segmentation with extremely limited labels, and iden-
tify the three principles to address such challenging tasks; ❷
we construct a set of objectives, which significantly improves
the segmentation quality, both long-tail class distribution and
anatomical features; ❸ we both empirically and theoretically
analyze several critical components of our method and con-
duct thorough ablation studies to validate their necessity; ❹
with the combination of different components, we establish
state-of-the-art under SSL settings, for all the challenging three
benchmarks.

II. RELATED WORK

Medical Image Segmentation: Medical image segmentation
aims to assign a class label to each pixel in an image, and plays
a major role in real-world applications, such as assisting the
radiologists for better disease diagnosis and reduced cost. With
sufficient annotated training data, significant progress has been
achieved with the introduction of Fully convolutional networks
(FCN) [25] and UNET [26]. Follow-up works can be categorized
into two main directions. One direction is to improve modern
segmentation network design. Many CNN-based [27], [28] and
Transformer-like [29], [30] model variants [31], [32], [33], [34],
[35], [36], [37], [38], [39], [40], [41] have been proposed since
then. For example, some works [32], [35], [42] proposed to
use dilated/atrous/deformable convolutions with larger receptive
fields for more dense anatomical features. Other works [36],
[37], [38], [39], [40], [41] include Transformer blocks to capture
more long-range information, achieving the impressive perfor-
mance. A parallel direction is to select proper optimization
strategies, by designing loss functions to learn meaningful rep-
resentations [43], [44], [45]. However, those methods assume
access to a large, labeled dataset. This restrictive assumption
makes it challenging to deploy in most real-world clinical prac-
tices. In contrast, our MONA is more robust as it leverages only

a few labeled data and large quantities of unlabeled one in the
learning stage.

Semi-Supervised Learning (SSL): The goal in robust SSL is
to improve the medical segmentation performance by taking
advantage of large amounts of unlabelled data during training. It
can be roughly categorized into three groups: (1) self-training by
generating unreliable pseudo-labels for performance gains, such
as pseudo-label estimation [46], [47], [48], [49], [50], model
uncertainty [51], [52], [53], confidence estimation [54], [55],
[56], and noisy student [57]; (2) consistency regularization [58],
[59], [60] by integrating consistency corresponding to different
transformation, such as pi-model [61], co-training [62], [63], and
mean-teacher [9], [10], [64], [65], [66], [67]; (3) other training
strategies such as adversarial training [68], [69], [70], [71], [72],
[73] and entropy minimization [74]. In contrast to these works,
we do not explore more advanced pseudo-labelling strategy to
learn spatially structured representations. In this work, we are the
first to explore a novel direction for discovering distinctive and
semantically consistent anatomical features without image-level
or region-level labels. Further, we expect that our findings can
be relevant for other medical image segmentation frameworks.

Contrastive Learning. CL has recently emerged as a promis-
ing paradigm for medical image segmentation via exploiting
abundant unlabeled data, leading to state-of-the-art results [9],
[10], [75], [76], [77], [78], [79], [80], [81], [82]. The high-level
idea of CL is to pull closer the different augmented views
of the same instance but pushes apart all the other instances
away. Intuitively, differently augmented views of the same image
are considered positives, while all the other images serve as
negatives. The major difference between different CL-based
frameworks lies in the augmentation strategies to obtain posi-
tives and negatives. [83] augments a given image with 4 different
rotation degrees and trains the model to be aware of which
rotation degree of each image by applying an contrastive loss.
In contrast, our goal is to train a model to yield segments that
adhere to anatomical, geometric and equivariance constraints in
an unsupervised manner. A few very recent studies [14], [18]
confirm the superiority of CL of addressing imbalance issues in
image classification. Moreover, existing CL frameworks [75],
[77] mainly focus on the instance level discrimination (i.e., dif-
ferent augmented views of the same instance should have similar
anatomical features or clustered around the class weights). How-
ever, we argue that not all negative samples equally matter, and
the above issues have not been explored from the perspective of
medical image segmentation, considering the class distributions
in the medical image are perspectives diverse and always exhibit
long tails [84], [85], [86]. Inspired by the aforementioned, we
address these two issues in medical image segmentation - two
appealing perspectives that still remain under-explored.

III. MINE YOUR OWN ANATOMY (MONA)

Overview: MONA consists of two parts: a global-local con-
trastive pre-training part named GLCon (Section III-A) and a
fine-tuning part named Anatomical Contrastive Reconstruction
(Section III-B). We illustrate our contrastive learning frame-
work (See Fig. 2), which includes (1) relational semi-supervised
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pre-training, and (2) anatomical contrastive reconstruction fine-
tuning.

A. GLCon

Our pre-training stage is built upon ISD [24] - a competi-
tive framework for image classification. The main differences
between ISD and the pre-training part of MONA (i.e. GLCon)
are: GLCon is more tailored to medical image segmentation,
i.e., considering the dense nature of this problem both in global
and local manner, and can generalize well to those long-tail
scenarios. Also, our principles are expected to apply to other
CL framework ((i.e., MOCO [5], SIMCLR [4], BYOL [6]). More
detailed empirical and theoretical analysis can be found in
Section IV-G and Section A, available online.

Pre-Training Preliminary: Let (X,Y ) be our dataset, in-
cluding training images x ∈ X and their corresponding C-class
segmentation labels y ∈ Y , where X is composed of N labeled
and M unlabeled slices. Note that, for brevity, y can be either
sampled from Y or pseudo-labels. The student and teacher
networks F , parameterized by weights θ and ξ, each consist
of a encoder E and a decoder D (i.e., UNet [26]). Concretely,
given a sample s from our unlabeled dataset, we have two ways
to generate views: (1) we formulate augmented views (i.e.,
x,x′) through two different augmentation chains; and (2) we
create d mined views (i.e., xr,i) by randomly selecting from
the unlabeled dataset followed by additional augmentation.1 We
then fed the augmented views to both Fθ and Fξ, and the mined
views to Fξ. Similar to [75], we adopt the global and local
instance discrimination strategies in the latent and output fea-
ture spaces.2 Specifically, the encoders generate global features
zg = Eθ(x), z′g = Eξ(x′), and zr,g = Eξ(xr), which are then
fed into the nonlinear projection heads to obtain vg = hθ(zg),
v′
g = hξ(z

′
g), and wg = hξ(zr,g). The augmented embeddings

from the student network are further projected into secondary
space, i.e., ug = h′

θ(vg). We calculate similarities across mined
views and augmented views from the student and teacher in
both global and local manners. Then a softmax function is
applied to process the calculated similarities, which models the
relationship distributions:

sθ = log
exp (sim (u,w) /τθ)∑k

j=1 exp (sim (u,wj) /τθ)
,

sξ = log
exp (sim (v′,w) /τξ)∑k

j=1 exp (sim (v′,wj) /τξ)
, (1)

where τθ and τξ are different temperature parameters, k
denotes the number of mined views and sim(·, ·) de-
notes cosine similarity. The unsupervised instance discrim-
ination loss (i.e., Kullback-Leibler divergence KL) can be
defined as:

Linst = KL(sθ||sξ). (2)

1Note that the subscript i is omitted for simplicity in following contexts.
2Here we omit details of local instance discrimination strategy for simplicity

because the global and local instance discrimination experimental setups are
similar.

Fig. 3. Illustration of the contrastive loss. Intuitively, we actively sample a set
of pixel-level anchor representations, pulling them closer to the class-averaged
mean of representations within this class (positive keys), and pushing away from
representations from other classes (negative keys).

The parameters ξ ofFξ is updated as: ξ = tξ + (1− t)θwith t =
0.99 as a momentum hyperparameter. In our pre-training stage,
the total loss is the sum of global and local instance discrimina-
tion loss Linst (on pseudo-labels), and supervised segmentation
loss Lsup (i.e., equal combination of dice loss and cross-entropy
loss on ground-truth labels): Lglobal

inst + Llocal
inst + Lsup. Therefore,

the GLCon loss encourages that the model acquires both global
and local features.

B. Anatomical Contrastive Reconstruction

Principles: The key idea of the fine-tuning part is to seek
diverse yet semantically consistent views whose anatomical fea-
tures are homogeneous within the same class type, while distinc-
tive for different class types. As shown in Fig. 2, the principles
behind MONA (the anatomical contrastive reconstruction stage)
aim to ensure tailness, consistency, and diversity. Concretely,
tailness is for actively sampling more tail class hard pixels;
consistency ensures the feature invariances; and diversity further
encourages to discover more anatomical features in different
images. More theoretical analysis is in Section A, available
online.

Tailness: Motivated by the observations (Fig. 1), our primary
cue is that medical images naturally exhibit an imbalanced or
long-tailed class distribution, wherein many class labels are
associated with only a few pixels. To generalize well on such
imbalanced setting, we propose to use anatomical contrastive
formulation (ACF) (See Fig. 3).

Here we additionally attach the representation heads to
fuse the multi-scale features with the feature pyramid network
(FPN) [87] structure and generate the m-dimensional represen-
tations with consecutive convolutional layers. The high-level
idea is that the features should be very similar among the same
class type, while very dissimilar across different class types.
Particularly for long-tail medical data, a naïve application of
this idea would require substantially computational resources
proportional to the square of the number of pixels within the
dataset, and naturally overemphasize the anatomy-rich head
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classes and leaves the tail classes under-learned in learning
invariances, both of which suffer performance drops.

To this end, we address this issue by actively sampling a set
of pixel-level anchor representations rq ∈ Rc

q (queries), pulling

them closer to the class-averaged mean of representations rc,+k

within this class c (positive keys), and pushing away from repre-
sentations r−k ∈ Rc

k from other classes (negative keys). Formally,
the contrastive loss is defined as:

Lcontrast =
∑

c∈C

∑

rq∼Rc
q

− log
exp(rq · rc,+k /τ)

exp(rq · rc,+k /τ) +
∑

r−k∼Rc
k
exp(rq · r−k /τ)

,

(3)
where C denotes a set of all available classes for each mini-batch,
and τ is a temperature hyperparameter. SupposeA is a collection
including all pixel coordinates within x, these representations
are:

Rc
q =

⋃

[m,n]∈A
1(y[m,n]=c) r[m,n],

Rc
k =

⋃

[m,n]∈A
1(y[m,n] �=c) r[m,n],

rc,+k =
1

|Rc
q|

∑

rq∈Rc
q

rq . (4)

Note that in (3), we are using the negative pairs r−k to estimate
the centers of opposite classes. The class average representation
rc,+k is averaged over all instances from the target class c.
We also note that CL might benefit more, where the instance
discrimination task is achieved by incorporating more positive
and negative pairs. However, naively unrolling CL to this setting
is impractical since it requires extra memory overheads that
grow proportionally with the amount of instance discrimination
tasks. To this end, we adopt a random set (i.e., the mini-batch)
of other images. Intuitively, we would like to maximize the
anatomical similarity between all the representations from the
query class, and analogously minimize all other class repre-
sentations. In order to compare the pairs of instances between
opposite and target classes, we then create a graph G to compute
the pair-wise class relationship: G[p, q] = (rp,+k · rq,+k ), ∀p, q ∈
C, and p �= q, where G ∈ R|C|×|C|. Here finding the accurate
decision boundary can be formulated mathematically by nor-
malizing the pair-wise relationships among all negative class
representations via the softmax operator. To be specific, in
(3), we use adaptive sampling for the negative keys r−k from
the opposite classes. To do so, we use softmax to yield a
distribution exp(G[c, v])/

∑
n∈C,n�=c exp(G[c, n]), with which

we adaptively sample negative keys from class v, for v �= c. To
address the challenge in imbalanced medical image data, we
define the pseudo-label (i.e., easy and hard queries) based on a

Fig. 4. Illustration of the equivariance loss.

defined threshold as follows:

Rc, easy
q =

⋃

rq∈Rc
q

1(ŷq > δθ)rq,

Rc, hard
q =

⋃

rq∈Rc
q

1(ŷq ≤ δθ)rq, (5)

where ŷq is the cth-class pseudo-label corresponding to rq , and
δθ is the user-defined threshold. For further improvement in
long-tail scenarios, we construct a class-aware memory bank [5]
to store a fixed number of negative samples per class c.

Consistency: The proposed ACF is designed to address imbal-
anced issues, but anatomical consistency remains to be weak in
the long-tail medical image setting since medical segmentation
should be robust to different tissue types which show different
anatomical variations. Our goal is to train a model to yield
segments that adhere to anatomical, geometric and equivariance
constraints in an unsupervised manner. As shown in Fig. 4, we
hence construct a random image transformation T and define the
equivariance loss on both labeled and unlabeled data by mea-
suring the feature consistency distance between each original
segmentation map and the segmentation map generated from
the transformed image:

Leqv(x, T (x)) =
∑

x∈X
KL (T (Fθ(x)),Fθ(T (x)))

+KL (Fθ(T (x)), T (Fθ(x))) . (6)

Here we define T on both the input image x and Fθ(x), via the
random transformations (i.e., affine, intensity, and photo-metric
augmentations), since the model should learn to be robust and
invariant to these transformations.

Diversity: Oversampling too many images from the random
set would create extra memory overhead, and more importantly,
our finding also uncovers that a large number of random im-
ages might not necessarily help impose additional invariances
between neighboring samples since redundant images might
introduce additional noise during training (see Section IV-H). To
counteract this, we utilize the nearest neighbor strategy, ensuring
the model benefits from its previous outputs without overly
concentrating on extraneous features. Thus, we formulate our
insight as an auxiliary loss that regularizes the representations
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- keeping the anatomical contrastive reconstruction task as the
main force. In practice, given a batch of unlabeled images, we
use both the teacher and student models to obtain v′

g and ug ,
which are then normalized using the l2 norm. v′

g is fed to the
first-in-first-out (FIFO) memory bank [5], where it search for
K-nearest neighbors from the memory bank. Then we use the
nearest neighbor loss Lnn to maximize cosine similarity, thereby
exploiting the inter-instance relationship. Specifically, we min-
imize the distance between ug and the K-nearest neighbors,
with the distance defined as negative cosine similarity, thereby
maximizing cosine similarity.

Setup: The total loss Ltotal is the sum of contrastive loss
Lcontrast (on both ground-truth labels and pseudo-labels), equiv-
ariance loss Leqv (on both ground-truth labels and pseudo-
labels), nearest neighbors loss Lnn (on both ground-truth la-
bels and pseudo-labels), unsupervised cross-entropy loss Lunsup

(on pseudo-labels) and supervised segmentation loss Lsup (on
ground-truth labels): Lsup + λ1Lcontrast + λ2Leqv + λ3Lunsup +
λ4Lnn. We theoretically analyze the effectiveness of our MONA
in the very limited label setting (See Section A, available online).
We also empirically conduct ablations on different hyperparam-
eters (See Section IV-H).

IV. EXPERIMENTS

In this section, we evaluate our proposed MONA on three pop-
ular medical image segmentation datasets under varying labeled
ratio settings: the ACDC dataset [92], the LiTS dataset [93], and
the MMWHS dataset [94].

A. Datasets

The ACDC dataset was hosted in MICCAI 2017 ACDC
challenge [92], which includes 200 3D cardiac cine MRI scans
with expert annotations for three classes (i.e., left ventricle (LV),
myocardium (Myo), and right ventricle (RV)). We use 120, 40
and 40 scans for training, validation, and testing.3 Note that
1%, 5%, and 10% label ratios denote the ratio of patients.
For pre-processing, we adopt the similar setting in [75] by
normalizing the intensity of each 3D scan (i.e., using min-max
normalization) into [0,1], and re-sampling all 2D scans and the
corresponding segmentation maps into a fixed spatial resolution
of 256× 256 pixels.

The LiTS dataset was hosted in MICCAI 2017 Liver Tumor
Segmentation Challenge [93], which includes 131 contrast-
enhanced 3D abdominal CT volumes with expert annotations
for two classes (i.e., liver and tumor). Note that 1%, 5%, and
10% label ratios denote the ratio of patients. We use 100 and 31
scans for training, and testing with random order. The splitting
details are in the supplementary material. For pre-processing,
we adopt the similar setting in [95] by truncating the intensity
of each 3D scan into [−200, 250] HU for removing irrelevant
and redundant details, normalizing each 3D scan into [0,1], and
re-sampling all 2D scans and the corresponding segmentation
maps into a fixed spatial resolution of 256× 256 pixels.

3https://github.com/HiLab-git/SSL4MIS/tree/master/data/ACDC

The MMWHS dataset was hosted in MICCAI 2017 chal-
lenge [94], which includes 20 3D cardiac MRI scans with expert
annotations for seven classes: left ventricle (LV), left atrium
(LA), right ventricle (RV), right atrium (RA), myocardium
(Myo), ascending aorta (AAo), and pulmonary artery (PA). Note
that 1%, 5%, and 10% label ratios denote the ratio of patients.
We use 15 and 5 scans for training and testing with random
order. The splitting details are in the supplementary material.
For pre-processing, we normalize the intensity of each 3D scan
(i.e., using min-max normalization) into [0,1], and re-sampling
all 2D scans and the corresponding segmentation maps into a
fixed spatial resolution of 256× 256 pixels.

Moreover, to further validate our approach’s unsupervised
imbalance handling ability, we consider a more realistic and
more challenging scenario, wherein the models would only have
access to the extremely limited labeled data (i.e., 1% labeled
ratio) and large quantities of unlabeled one in training. For all
experiments, we follow the same training and testing protocol.
Note that 1%, 5%, and 10% label ratios denote the ratio of
patients. For ACDC, we adopt the fixed data split [96]. For LiTS
and MMWHS, we adopt the random data split with respect to
patient.

B. Implementation Details

We implement all the evaluated models using PyTorch li-
brary [97]. All the models are trained using Stochastic Gradient
Descent (SGD) (i.e., initial learning rate = 0.01, momentum
= 0.9, weight decay = 0.0001) with batch size of 6, and the
initial learning rate is divided by 10 every 2500 iterations. All
of our experiments are conducted on NVIDIA GeForce RTX
3090 GPUs. We first train our model with 100 epochs during the
pre-training, and then retrain the model for 200 epochs during the
fine-tuning. We set the temperature τξ, τθ, τ as 0.01, 0.1, 0.5.
The size of the memory bank is 36. During the pre-training,
we follow the settings of ISD, including global projection head
setting, and predictors with the 512-dimensional output embed-
ding, and adopt the setting of local projection head in [79]. More
specifically, given the predicted logits ŷ ∈ RC×H×W , we create
36 different views (i.e., random crops at the same location)
of ŷ and ŷ′ with the fixed size 64× 64, and then project all
pixels into 512-dimensional output embedding space, and the
output feature dimension of h′

θ is also 512. An illustration of
our representation head is presented in Fig. 6. We then actively
sample 256 query embeddings and 512 key embeddings for
each mini-batch, and the confidence threshold δθ is set to 0.97.
When fine-tuning we use an equally sized pool of candidates
K = 5, as well as λ1 = 0.01, λ2 = 1.0, λ3 = 1.0, and λ4 = 1.0.
For different augmentation strategies, we implement the weak
augmentation to the teacher’s input as random rotation, random
cropping, horizontal flipping, and strong augmentation to the
student’s input as random rotation, random cropping, horizontal
flipping, random contrast, CutMix [98], brightness changes [99],
morphological changes (diffeomorphic deformations). We adopt
two popular evaluation metrics: Dice coefficient (DSC) and
Average Symmetric Surface Distance (ASD) for 3D segmen-
tation results. Of note, the projection heads, the predictor, and
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Fig. 5. Visualization of segmentation results on ACDC with 5% label ratio. As is shown, MONA consistently yields more accurate predictions and better boundary
adherence compared to all other SSL methods. Different anatomical classes are shown in different colors (RV: ; Myo: ; LV: ).

Fig. 6. Overview of the representation head architecture.

the representation head are only used in training, and will be
discarded during inference.

C. Main Results

We show the effectiveness of our method under three different
label ratios (i.e., 1%, 5%, 10%). We also compare MONA
with various state-of-the-art SSL and fully-supervised methods
on three datasets: ACDC [92], LiTS [93], MMWHS [94]. We
choose 2D UNET [26] as backbone, and compare against SSL
methods including EM [88], CCT [89], DAN [68], URPC [90],
DCT [62], ICT [91], MT [64], UAMT [51], CPS [49], SIM-
CVD [80], MMS [82], SCS [79], GCL [75], and PLC [78].
The upper bound and lower bound method are UNET trained
with full/limited supervisions (UNET-F/UNET-L), respectively.
We report quantitative comparisons on ACDC and LiTS in
Table I.

ACDC: We benchmark performances on ACDC with respect
to different labeled ratios (i.e., 1%, 5%, 10%). The following
observations can be drawn: First, our proposed MONA signifi-
cantly outperforms all other SSL methods under three different
label ratios. Especially, with only extremely limited labeled data
available (e.g., 1%), our method obtains massive gains of 22.9%
and 10.67 in Dice and ASD (i.e., dramatically improving the
performance from 59.7% to 82.6%). Second, as shown in Fig. 5,

we can see the clear advantage of MONA, where the anatomical
boundaries of different tissues are clearly more pronounced such
as RV and Myo regions. As seen, our method is capable of
producing consistently sharp and accurate object boundaries
across various challenge scenarios.

LiTS: We then evaluate MONA on LiTS, using 1%, 5%, 10%
labeled ratios. The results are summarized in Table I and Fig. 7.
The conclusions are highly consistent with the above ACDC
case: First, at the different label ratios (i.e., 1%, 5%, 10%),
MONA consistently outperforms all the other SSL methods,
which again demonstrates the effectiveness of learning represen-
tations for the inter-class correlations and intra-class invariances
under imbalanced class-distribution scenarios. In particular, our
MONA, trained on a 1% labeled ratio (i.e., extremely limited
labels), dramatically improves the previous best averaged Dice
score from 59.3% to 64.1% by a large margin, and even performs
on par with previous SSL methods using 10% labeled ratio.
Second, our method consistently outperforms all the evaluated
SSL methods under different label ratios (i.e., 1%, 5%, 10%).
Third, as shown in Fig. 7, we observe that MONA is able to
produce more accurate results compared to the previous best
schemes.

MMWHS. Lastly, we validate MONA on MMWHS, under
1%, 5%, 10% labeled ratios. The results are provided in Table II
and Fig. 8. Again, we found that MONA consistently outper-
forms all other SSL methods with a significant performance
margin, and achieves the highest accuracy among all the SSL
approaches under three labeled ratios. As is shown, MONA
trained at the 1% labeled ratio significantly outperforms all
other methods trained at the 1% labeled ratio, even over the
5% labeled ratio. Concretely, MONA trained at only 1% labeled
ratio outperforms the second-best method (i.e., GCL) both at the
1% and 5% labeled, yielding 12.3% and 2.8% gains in Dice. We
also observe the similar patterns that, MONA performs better or
on par with all the other methods at 10% labeled, which again
demonstrates the superiority of MONA in extremely limited
labeled data regimes.

Overall, we conclude that MONA provides robust perfor-
mance on all the medical datasets we evaluated, exceeding that of
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TABLE I
COMPARISON OF SEGMENTATION PERFORMANCE (DSC[%]/ASD[MM]) ON ACDC AND LITS UNDER THREE LABELED RATIO SETTINGS (1%, 5%, 10%)

Fig. 7. Visualization of segmentation results on LiTS with 5% labeled ratio. As is shown, MONA consistently produces sharp and accurate object boundaries
compared to all other SSL methods. Different anatomical classes are shown in different colors (Liver: ; Tumor: ).

Fig. 8. Visualization of segmentation results on MMWHS with 5% labeled ratio. As is shown, MONA consistently generates more accurate predictions compared
to all other SSL methods with a significant performance margin. Different anatomical classes are shown in different colors (LV: ; LA: ; RV: ; RA:

; Myo: ; PA: ).
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TABLE II
COMPARISON OF SEGMENTATION PERFORMANCE (DSC[%]/ASD[MM]) ON

MMWHS UNDER THREE LABELED RATIO SETTINGS (1%, 5%, 10%)

TABLE III
ABLATION ON MODEL COMPONENT: (1) TAILNESS; (2) CONSISTENCY;

(3) DIVERSITY, COMPARED TO THE VANILLA AND OUR MONA

the fully-supervised baseline, and outperforming all other SSL
methods.

D. Ablation Study

In this subsection, we conduct comprehensive analyses to
understand the inner workings of MONA on ACDC under 5%
labeled ratio.

E. Effects of Different Components

Our key observation is that it is crucial to build meaning-
ful anatomical representations for the inter-class correlations
and intra-class invariances under imbalanced class-distribution
scenarios can further improve performance. Upon our choice
of architecture, we first consider our CL pre-trained method
(i.e., GLCON). To validate this, we experiment with the key
components in MONA on ACDC, including: (1) tailness, (2)
consistency, and (3) diversity. The results are in Table III. As
is shown, each key component makes a clear difference and
leveraging all of them contributes to the remarkable perfor-
mance improvements. This suggests the importance of learn-
ing meaningful representations for the inter-class correlations

TABLE IV
ABLATION ON AUGMENTATION STRATEGIES FOR MONA ON THE ACDC AND

LITS DATASET UNDER 5% LABELED RATIO

and intra-class invariances within the entire dataset. The intu-
itions behind each concept are as follows: (1) Only tailness:
many anatomy-rich head classes would be sampled; (2) Only
consistency: it would lead to object collapsing due to the
different anatomical variations; (3) Only diversity: oversam-
pling too many negative samples often comes at the cost of
performance degradation. By combining tailness, consistency,
and diversity, our method confers a significant advantage at
representation learning in imbalanced feature similarity, seman-
tic consistency and anatomical diversity, which further high-
lights the superiority of our proposed MONA (More results in
Section IV-G).

F. Effects of Different Augmentations

In addition to further improving the quality and stability
in anatomical representation learning, we claim that MONA
also gains robustness using augmentation strategies. For aug-
mentation strategies, previous works [19], [24], [100] show
that composing the weak augmentation strategy for the “pivot-
to-target” model (i.e., trained with limited labeled data and
a large number of unlabeled data) is helpful for anatomical
representation learning since the standard contrastive strategy
is too aggressive, intuitively leading to a “hard” task (i.e.,
introducing too many disturbances and yielding model col-
lapses). Here we examine whether and how applying different
data augmentations helps MONA. In this work, we implement
the weak augmentation to the teacher’s input as random ro-
tation, random cropping, horizontal flipping, and strong aug-
mentation to the student’s input as random rotation, random
cropping, horizontal flipping, random contrast, CutMix [98],
brightness changes [99], morphological changes (diffeomorphic
deformations). We summarize the results in Table IV, and list
the following observations: (1) weak augmentations benefits
more: composing the weak augmentation for the teacher model
and strong augmentation for the student model significantly
boosts the performance across two benchmark datasets. (2) same
augmentation pairs do not make more gains: interestingly,
applying same type of augmentation pairs does not lead to
the best performance compared to different types of augmen-
tation pairs. We postulate that composing different augmenta-
tions can be considered as a harder albeit more useful strategy
for anatomical representation learning, making feature more
generalizable.
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TABLE V
ABLATION STUDY OF DIFFERENT CONTRASTIVE LEARNING FRAMEWORKS ON ACDC UNDER THREE LABELED RATIO SETTINGS (1%, 5%, 10%)

G. Generalization Across Contrastive Learning Frameworks

As discussed in Section III-A, our motivation comes from the
observation that there are only very limited labeled data and a
large amount of unlabeled data in real-world clinical practice.
As the fully-supervised methods generally outperform all other
SSL methods by clear margins, we postulate that leveraging mas-
sive unlabeled data usually introduces additional noise during
training, leading to degraded segmentation quality. To address
this challenge, “contrastive learning” is a straightforward way
to leverage existing unlabeled data in the learning procedure.
As supported in Section IV, our findings have shown that
MONA generalizes well across different benchmark datasets
(i.e., ACDC, LiTS, MMWHS) with diverse labeled settings (i.e.,
1%, 5%, 10%). In the following subsection, we further demon-
strate that our proposed principles (i.e., tailness, consistency,
diversity) are beneficial to various state-of-the-art CL-based
frameworks (i.e., MOCOV2 [7], kNN-MOCO [21], SIMCLR [4],
BYOL [6], and ISD [24]) with different label settings. More de-
tails about these three principles can be found in Section III-B. Of
note, MONA can consistently outperform the semi-supervised
methods on diverse benchmark datasets with only 10% labeled
ratio.

Training Details of Competing CL Methods: We identically
follow the default setting in each CL framework [4], [6], [7],
[21], [24] except the epochs number. We train each model in the
semi-supervised setting. For labeled data, we follow the same
training strategy in Section III-A. As for unlabeled data, we
strictly follow the default settings in each baseline. Specifically,
for fair comparisons, we pre-train each CL baseline and our CL
pre-trained method (i.e., GLCON) for 100 epochs in all our ex-
periments. Then we fine-tune each CL model with our proposed
principles with the same setting, as provided in Section IV-B.
For kNN-MOCO [21], given the following ablation study we set
the number of neighbors k as 5, and further compare different
settings of k in kNN-MOCO [21] in the following subsection.
All the experiments are run with three different random seeds,

and the results we present are calculated from the validation set.
Of note, UNET-F is fully supervised.

Comparisons With CL-Based Frameworks: Table V presents
the comparisons between our methods (i.e., GLCON and
MONA) and various CL baselines. After analyzing these exten-
sive results, we can draw several consistent observations. First,
we can observe that our GLCON achieves performance gains
under all the labeled ratios, which not only demonstrates the ef-
fectiveness of our method, but also further verifies this argument
using “global-local” strategy [75]. The average improvement in
Dice obtained by GLCON could reach up to 2.53%, compared
to the second best scores at different labeled ratios. Second, we
can find that incorporating our proposed three principles signifi-
cantly outperforms the CL baselines without fine-tuning, across
all frameworks and different labeled ratios. These experimental
findings suggest that our proposed three principles can further
improve the generalization across different labeled ratios. On the
ACDC dataset at the 1% labeled ratio, the backbones equipped
with all three principles all obtain promising results, improving
the performance of MOCOV2, kNN-MOCO, SIMCLR, BYOL,
ISD, and our GLCON by 39.1%, 38.5%, 40.9%, 41.2%, 34.3%,
33.3%, respectively. The ACDC dataset is a popular multi-class
medical image segmentation dataset, with massive imbalanced
or long-tailed class distribution cases. The imbalanced or long-
tailed class distribution gap could result in the vanilla models
overfitting to the head class, and generalizing very poorly to the
tail class. With the addition of under-sampling the head classes,
the principle – tailness – can be deemed as the prominent strategy
to yield better generalization and segmentation performance
of the models across different labeled ratios. Similar results
are found under 5% and 10% labeled ratios. Third, over a
wide range of labeled ratios, MONA can establish the new
state-of-the-art performance bar for semi-supervised 2D medical
image segmentation. Particularly, MONA– for the first time –
boosts the segmentation performance with 10% labeled ratio
over the fully-supervised UNET (UNET-F). From Table I we
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TABLE VI
ABLATION STUDY OF DIFFERENT PRINCIPLES ACROSS DIFFERENT CONTRASTIVE LEARNING FRAMEWORKS UNDER VARIOUS LABELED RATIO

SETTINGS (1%, 5%, 10%)

see that on LiTS with 10% labeled ratio, MONA outperforms
UNET-F by 0.8in terms of DSC (69.3vs 68.5). From Table II,
MONA outperforms UNET-F on MMWHS by 1.8in terms of
DSC (87.6vs 85.8). Tables I and II also show that MONA
significantly outperforms all the other semi-supervised methods
by a large margin. In summary, our methods (i.e., GLCON and
MONA) obtain remarkable performance on all labeled settings.
The results verify the superiority of our proposed three principles
(i.e., tailness, consistency, diversity) jointly, which makes the

model well generalize to different labeled settings, and can be
easily and seamlessly plugged into all other CL frameworks [4],
[6], [7], [21], [24] adopting the two-branch design, demonstrat-
ing that these concepts consistently help the model yield extra
performance boosts for them all.

Generalization Across CL Frameworks: As demonstrated
in Table VI, incorporating tailness, consistency, and diversity
have obviously superior performance boosts, which is aligned
with consistent observations with Section IV-D can be drawn.
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Fig. 9. Effects of k-nearest neighbour in global feature space, mined view-set
size, and mined view patch size. We report Dice and ASD of GLCON on the
ACDC dataset at the 5% labeled ratio. All the experiments are run with three
different random seeds.

This suggests that these three principles can serve as desirable
properties for medical image segmentation in both supervised
and unsupervised settings.

Does k-Nearest Neighbour in Global Feature Space Help?.
Prior work suggests that the use of stronger augmentations and
nearest neighbour can be the very effective tools in learning
additional invariances [21]. That is, both the specific number
of nearest neighbours and specific augmentation strategies are
necessary to achieve superior performance. In this subsection,
we study the relationship ofk-nearest neighbour in global feature
space and the behavior of our GLCON for the downstream
medical image segmentation. Here we first follow the same
augmentation strategies in [21] (More analysis on data aug-
mentation can be found in Section IV-D), and then conduct
ablation studies on how the choices of k-nearest neighbour
can influence the performance of GLCON. Specifically, we run
GLCON on the ACDC dataset at the 5% labeled ratio with a
range of k ∈ {3, 5, 7, 10, 12}. Fig. 9(a) shows the ablation study
on k-nearest neighbour in global feature on the segmentation
performance. As is shown, we find that GLCON at k = 5, 7, 10
have almost identical performance (k = 5 has slightly better
performance compared to other two settings), and all have su-
perior performance compared to all others. In contrast, GLCON

– through the use of randomly selected samples – is capable of
finding diverse yet semantically consistent anatomical features
from the entire dataset, which at the same time gives better
segmentation performance.

Ablation Study of Mined View-Set Size: We then conduct
ablation studies on how the mined view-set size in GLCON

can influence the segmentation performance. We run GLCON

on the ACDC dataset at 5% labeled ratio with a range of the
mined view-set size ∈ {12, 18, 24, 30, 36, 42, 48}. The results
are summarized in Fig. 9(b). As is shown, we find that GLCON

trained with view-set size 36 and 42 have similar or superior
performance compared to all other settings, and our model with
view-set size of 36 achieves the highest performance.

Ablation Study of Mined View Size: Lastly, we study the
influence of mined view size on the segmentation perfor-
mance. Specifically, we run GLCON on the ACDC dataset at

Fig. 10. Effects of hyperparameters λ1, λ2, λ3, λ4. We report Dice and ASD
of MONA on the ACDC dataset at the 5% labeled ratio. All the experiments are
run with three different random seeds.

the 5% labeled ratio with a range of the mined view size
∈ {8, 16, 32, 64, 128}. Fig. 9(c) shows the ablation study of
mined view size on the segmentation performance. As is shown,
we observe that GLCON trained with mined view size of 32
and 64 have similar segmentation abilities, and both achieve
superior performance compared to other settings. Here the mined
view size of 64 works the best for GLCON to yield the superior
segmentation performance.

Conclusion: Given the above ablation study, we set k, mined
view-set size, patch size as 5, 36, 64× 64 in our experiments,
respectively. This can contribute to satisfactory segmentation
performance.

H. Ablation Study of Anatomical Contrastive Reconstruction

In this section, we give a detailed analysis on the choice
of the parameters in the anatomical contrastive reconstruction
fine-tuning, and take a deeper look and understand how they
contribute to the final segmentation performance. All the hy-
perparameters in training are the same across three benchmark
datasets. All the experiments are run with three different random
seeds, and the experimental results we report are calculated from
the validation set.

Ablation Study of Total Loss Ltotal: Proper choices of hy-
perparameters in total loss Ltotal (See Section III-B) play a
significant role in improving overall segmentation quality. We
hence conduct the fine-grained analysis of the hyperparame-
ters in Ltotal. In practice, we fine-tune the models with three
independent runs, and grid search to select multiple hyperpa-
rameters. Specifically, we run MONA on the ACDC dataset at
the 5% labeled ratio with a range of different hyperparame-
ters λ1∈{0.005, 0.001, 0.05, 0.01, 0.05, 0.1}, and λ2, λ3, λ4∈
{0.1, 0.2, 0.5, 1.0, 2.0, 10.0}. We summarize the results in Fig.
10, and take the best setting λ1=0.01, λ2=1.0, λ3 = 1.0,
λ4 = 1.0.

Ablation Study of Confidence Threshold δθ: We then as-
sess the influence of δθ on the segmentation performance.
Specifically, we run MONA on the ACDC dataset at the 5%
labeled ratio with a range of the confidence threshold δθ ∈
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Fig. 11. Effects of confidence threshold δθ , K-nearest neighbour constraint,
and output embedding dimension. We report Dice and ASD of MONA on the
ACDC dataset at the 5% labeled ratio. All the experiments are run with three
different random seeds.

{0.85, 0.88, 0.91, 0.94, 0.97, 1.0}. Fig. 11(a) shows the ablation
study of δθ on the segmentation performance. As we can see,
MONA on δθ = 0.97 has superior performance compared to
other settings.

Ablation Study of K-Nearest Neighbour Constraint: Next,
we conduct ablation studies on how the choices of K in
K-nearest neighbour constraint can influence the segmenta-
tion performance. Specifically, we run MONA on the ACDC
dataset at the 5% labeled ratio with a range of the choices
K ∈ {3, 5, 7, 10, 12}. Fig. 11(b) shows the ablation study of
K choices on the segmentation performance. As we can see,
MONA on K = 5 achieves the best performance compared to
other settings.

Ablation Study of Output Embedding Dimension: Finally,
we study the influence of the output embedding dimension on
the segmentation performance of MONA. Specifically, we run
MONA on the ACDC dataset at the 5% labeled ratio with a range
of output embedding dimension ∈ {64, 128, 256, 512, 768}.
Fig. 11(c) shows the ablation study of output embedding dimen-
sion on the segmentation performance. As we can see, MONA
with output embedding dimension of 512, can be trained to
outperform other settings.

Conclusion: Given the above ablation study, we select λ1=
0.01, λ2=1.0, λ3=1.0, λ4=1.0, δθ = 0.97,K = 5, output em-
bedding dimension = 512 in our experiments. This can provide
the optimal segmentation performance across different labeled
ratios.

V. CONCLUSION

In this paper, we have presented MONA, a semi-supervised
contrastive learning method for 2D medical image segmentation.
We start from the observations that medical image data always
exhibit a long-tail class distribution, and the same anatomical
objects (i.e., liver regions for two people) are more similar to
each other than different objects (e.g.liver and tumor regions).
We further expand upon this idea by introducing anatomical
contrastive formulation, as well as equivariance and invariances
constraints. Both empirical and theorical studies show that we

can formulate a generic set of perspectives that allows us to learn
meaningful representations across different anatomical features,
which can dramatically improve the segmentation quality and
alleviate the training memory bottleneck. Extensive experiments
on three datasets demonstrate the superiority of our proposed
framework in the long-tailed medical data regimes with ex-
tremely limited labels. We believe our results contribute to a
better understanding of medical image segmentation and point
to new avenues for long-tailed medical image data in realistic
clinical applications.
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