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Multimodal Learning With Transformers: A Survey
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(Survey Paper)

Abstract—Transformer is a promising neural network learner,
and has achieved great success in various machine learning tasks.
Thanks to the recent prevalence of multimodal applications and
Big Data, Transformer-based multimodal learning has become a
hot topic in AI research. This paper presents a comprehensive
survey of Transformer techniques oriented at multimodal data.
The main contents of this survey include: (1) a background of
multimodal learning, Transformer ecosystem, and the multimodal
Big Data era, (2) a systematic review of Vanilla Transformer, Vision
Transformer, and multimodal Transformers, from a geometrically
topological perspective, (3) a review of multimodal Transformer
applications, via two important paradigms, i.e., for multimodal
pretraining and for specific multimodal tasks, (4) a summary of
the common challenges and designs shared by the multimodal
Transformer models and applications, and (5) a discussion of open
problems and potential research directions for the community.

Index Terms—Multimodal learning, transformer, introductory,
taxonomy, deep learning, machine learning.

I. INTRODUCTION

THE initial inspiration of Artificial Intelligence (AI) is to
imitate human perception, e.g., seeing, hearing, touching,

smelling. In general, a modality is often associated with a
specific sensor that creates a unique communication channel,
such as vision and language [1]. In humans, a fundamental
mechanism in our sensory perception is the ability to leverage
multiple modalities of perception data collectively in order
to engage ourselves properly with the world under dynamic
unconstrained circumstances, with each modality serving as a
distinct information source characterized by different statistical
properties. For example, an image gives the visual appearance
of an “elephants playing in water” scene via thousands of pixels,
whilst the corresponding text describes this moment with a
sentence using discrete words. Fundamentally, a multimodal AI
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Fig. 1. Overview of Transformer [2].

system needs to ingest, interpret, and reason about multimodal
information sources to realize similar human level perception
abilities. Multimodal learning (MML) is a general approach to
building AI models that can extract and relate information from
multimodal data [1].

This survey focuses on multimodal learning with Transform-
ers [2] (as demonstrated in Fig. 1), inspired by their intrinsic ad-
vantages and scalability in modelling different modalities (e.g.,
language, visual, auditory) and tasks (e.g., language translation,
image recognition, speech recognition) with fewer modality-
specific architectural assumptions (e.g., translation invariance
and local grid attention bias in vision) [3]. Concretely, the input
to a Transformer could encompass one or multiple sequences
of tokens, and each sequence’s attribute (e.g., the modality
label, the sequential order), naturally allowing for MML with-
out architectural modification [4]. Further, learning per-modal
specificity and inter-modal correlation can be simply realized by
controlling the input pattern of self-attention. Critically, there is
a recent surge of research attempts and activities across distinct
disciplines exploring the Transformer architectures, resulting
in a large number of novel MML methods being developed
in recent years, along with significant and diverse advances in
various areas [4], [5], [6], [7], [8]. This calls for a timely review
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and summary of representative methods to enable researchers to
understand the global picture of the MML field across related
disciplines and more importantly to capture a holistic structured
picture of current achievements as well as major challenges.

Taxonomy: For better readability and reachability from and
across different disciplines, we adopt a two-tier structured
taxonomy based on the application and challenge dimensions
respectively. This has several benefits: (1) Researchers with
expertise in specific applications can find those applications
appropriate to their own research domain before connecting
to other related domains. (2) Similar model designs and archi-
tectures developed in different domains can be summarized in
an abstract, formula-driven perspective so that the mathemat-
ical ideas of various models formed in different applications
can be correlated and contrasted on common ground, crossing
domain-specific restrictions. Crucially, our taxonomy offers an
interesting stereo-view of individual works with the insights
in both application specificity and formulation generality. It is
hoped that this can help to break down domain boundaries and
foster more effective idea communication and exchange across
modalities. By using the prompt modelling strategy [9], [10] as a
basis for investigation, we also include the classical classification
problem (e.g., image classification) – usually regarded as a single
modality learning application in conventional MML surveys [1],
[11], [12] – as a special MML application. This has the potential
to significantly enrich MML, as the classification problem is an
AI topic amongst the most extensive studies in the literature [13].

Scope: This survey will discuss the multimodality specific
designs of Transformer architecture including, but not limited
to, the following modalities: RGB image [5], depth image [14],
multispectral image [15], video [7], audio/speech/music [14],
[16], [17], table [18], scene graph/layout [19], [20], [21], [22],
pose skeleton [23], SQL [24], [25], recipe [26], programming
language [27], sign language [28], [29], [30], point cloud [31],
symbolic knowledge (graph) [32], [33], multimodal knowl-
edge graph [34], sketch drawing [35], [36], [37], [38], 3D
object/scene [39], [40], [41], document [42], [43], programming
code [44] and Abstract Syntax Tree (AST) – a kind of graph [45],
optical flow [46], medical knowledge (e.g., diagnosis code ontol-
ogy [47]). Note that this survey will not discuss the multimodal
papers where Transformer is used simply as the feature extractor
without multimodal designs.

Related Surveys: We relate this paper to existing surveys of
the two specific dimensions MML and Transformers. There exist
a few MML surveys [1], [11], [12]. In particular, [1] proposed a
structured, acknowledged taxonomy by five challenges, which
we also adopt as part of our structure. Unlike [1], [11], and [12],
which review general machine learning models, we instead focus
on Transformer architectures and their self-attention mecha-
nisms. Several surveys dedicated to Transformers have been
recently introduced, with a range of emphases including general
Transformers [48], efficient designs [49], visualization [50],
computer vision tasks [51], [52], [53], [54], medical imag-
ing [55], video tasks [56], and vision language pretraining [57].
While [51], [53], [54], [55] consider MML, their reviews are
somewhat limited in the scope, taxonomy, and coverage. To our
knowledge, only a few surveys on video-language pretraining

(VLP) [57], [58], [59] are relevant to MML. However, VLP is
only a subdomain of MML. In this survey, we focus solely on
the intersection of multimodal learning and Transformers.

Features: To our knowledge, this paper is the first compre-
hensive review of the state of Transformer based multimodal
machine learning. The major features of this survey include

(1) We highlight that Transformers have the advantage that
they can work in a modality-agnostic way. Thus, they are com-
patible with various modalities (and combinations of modal-
ities). To support this view, we, for the first time, offer an
understanding of the intrinsic traits of Transformers in a multi-
modal context from a geometrically topological perspective. We
suggest that self-attention be treated as a graph style modelling,
which models the input sequence (both uni-modal and multi-
modal) as a fully-connected graph. Specifically, self-attention
models the embedding of arbitrary tokens from an arbitrary
modality as a graph node.

(2) We discuss the key components of Transformers in a
multimodal context as mathematically as possible.

(3) Based on Transformers, cross-modal interactions (e.g.,
fusion, alignment) are essentially processed by self-attention and
its variants. In this paper, we extract the mathematical essence
and formulations of Transformer based MML practices, from
the perspective of self-attention designs.

Contributions: Having presented our review of the landscape
of multimodal learning, Transformer ecosystem, and multi-
modal Big Data era in Section II, we summarize our main
contributions as the follows.

1) In Section III, we present a systematic reviewing of Vanilla
Transformer, Vision Transformer, and multimodal Trans-
formers, from a geometrically topological perspective.

2) We contribute a taxonomy for Transformer based MML
from two complementary perspectives, i.e., application
based and challenge based. In Section IV, we provide a
review of multimodal Transformer applications, via two
important paradigms, i.e., for multimodal pretraining and
for specific multimodal tasks. In Section V, we summarize
the common challenges and designs shared by the various
multimodal Transformer models and applications.

3) In Section VI, we discuss current bottlenecks, existing
problems, and potential research directions for Trans-
former based MML.

II. BACKGROUND

A. Multimodal Learning (MML)

MML [1], [60], [61] has been an important research area in
recent decades; an early multimodal application – audio-visual
speech recognition was studied in 1980s [62]. MML is key to
human societies. The world we humans live in is a multimodal
environment, thus both our observations and behaviours are mul-
timodal [63]. For instance, an AI navigation robot needs multi-
modal sensors to perceive the real-world environment [64], [65],
[66], e.g., camera, LiDAR, radar, ultrasonic, GNSS, HD Map,
odometer. Furthermore, human behaviours, emotions, events,
actions, and humour are multimodal, thus various human-
centred MML tasks are widely studied, including multimodal
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emotion recognition [67], multimodal event representation [68],
understanding multimodal humor [69], face-body-voice based
video person-clustering [70], etc.

Thanks to the development of the internet and a wide variety
of intelligent devices in recent years, increasing amounts of mul-
timodal data are being transmitted over the internet, thus an in-
creasing number of multimodal application scenarios are emerg-
ing. In modern life, we can see various multimodal applications,
including commercial services (e.g., e-commerce/commodity
retrieval [71], vision-and-language navigation (VLN) [72], [73],
[74], [75], [76]), communication (e.g., lip reading [77], sign lan-
guage translation [28], [29]), human-computer interaction [78],
healthcare AI [79], [80], surveillance AI [81], etc.

Moreover, in the era of Deep Learning, deep neural networks
greatly promote the development of MML, and Transform-
ers [2] are a highly competitive architecture family, bringing
new challenges and opportunities to MML. In particular, the
recent success of large language models and their multimodal
derivatives [82], [83], [84], [85], [86] further demonstrates the
potential of Transformers in multimodal foundation models.

B. Transformers: A Brief History and Milestones

Transformers are emerging as promising learners. Vanilla
Transformer [2] benefits from a self-attention mechanism, and
is a breakthrough model for sequence-specific representation
learning that was originally proposed for NLP, achieving the
state-of-the-art on various NLP tasks. Following the great
success of Vanilla Transformer, a lot of derivative models have
been proposed, e.g., BERT [4], BART [87], GPT [88], Long-
former [43], Transformer-XL [89], XLNet [90].

Transformers currently stand at the dominant position in NLP
domains, and this motivates researchers try to apply Transform-
ers to other modalities, such as visual domains. In early attempts
for visual domain, the general pipeline is “CNN features + stan-
dard Transformer encoder”, and researchers achieved BERT-
style pretraining, via preprocessing raw images by resizing to a
low resolution and reshaping into a 1D sequence [91].

Vision Transformer (ViT) [5] is a seminal work that con-
tributes an end-to-end solution by applying the encoder of
Transformer to images. Both ViT and its variants have been
widely applied to various computer vision tasks, including
low-level tasks [92], recognition [93], detection [94], segmen-
tation [95], etc, and also work well for both supervised [93]
and self-supervised [96], [97], [98] visual learning. Moreover,
some recently-released works provide further theoretical under-
standing for ViT, e.g., its internal representation robustness [99],
the continuous behaviour of its latent representation propaga-
tion [100], [101].

Motivated by the great success of Transformer,
VideoBERT [7] is a breakthrough work that is the first work
to extend Transformer to the multimodal tasks. VideoBERT
demonstrates the great potential of Transformer in multimodal
context. Following VideoBERT, a lot of Transformer based
multimodal pretraining models (e.g., ViLBERT [102],
LXMERT [103], VisualBERT [104], VL-BERT [105],
UNITER [106], CBT [107], Unicoder-VL [108], B2T2 [109],
VLP [110], 12-in-1 [111], Oscar [112], Pixel-BERT [113],

ActBERT [114], ImageBERT [115], HERO [116], UniVL [117])
have become research topics of increasing interest in the field
of machine learning.

In 2021, CLIP [9] was proposed. It is a new milestone that
uses multimodal pretraining to convert classification as a re-
trieval task that enables the pretrained models to tackle zero-shot
recognition. Thus, CLIP is a successful practice that makes full
use of large-scale multimodal pretraining to enable zero-shot
learning. Recently, the idea of CLIP is further studied, e.g., CLIP
pretrained model based zero-shot semantic segmentation [118],
ALIGN [119], CLIP-TD [120], ALBEF [121], and CoCa [122].

C. Multimodal Big Data

In the past decade, with the rapid development of internet
applications such as social media and online retail, massive
multimodal datasets have been proposed, e.g., Conceptual Cap-
tions [123], COCO [124], VQA [125], Visual Genome [126],
SBU Captions [127], Cooking312K [7], LAIT [115], e-SNLI-
VE [128], ARCH [129], Adversarial VQA [130], OTT-QA [18],
MULTIMODALQA (MMQA) [131], VALUE [132], Fashion
IQ [133], LRS2-BBC [134], ActivityNet [135], VisDial [136].

Some emergent new trends among the recently released mul-
timodal datasets are:

1) Data scales are larger. Various recently released datasets
are million-scale, e.g., Product1M [137], Conceptual
12M [138], RUC-CAS-WenLan [139] (30 M), How-
ToVQA69M [140], HowTo100M [141], ALT200M [142],
LAION-400M [143].

2) More modalities. In addition to the general modalities
of vision, text, and audio, further diverse modalities are
emerging, e.g., Pano-AVQA [144] – the first large-scale
spatial and audio-visual question answering dataset on
360◦ videos, YouTube-360 (YT-360) [145] (360◦ videos),
AIST++ [146] (a new multimodal dataset of 3D dance
motion and music), Artemis [147] (affective language for
visual arts). In particular, MultiBench [148] provides a
dataset including 10 modalities.

3) More scenarios. In addition to common caption and QA
datasets, more applications and scenarios have been stud-
ied, e.g., CIRR [149] (real-life images), Product1M [137],
Bed and Breakfast (BnB) [150] (vision-and-language nav-
igation), M3A [151] (financial dataset), X-World [152]
(autonomous drive).

4) Tasks are more difficult. Beyond the straightforward tasks,
more abstract multimodal tasks are proposed, e.g., Mul-
tiMET [153] (a multimodal dataset for metaphor under-
standing), Hateful Memes [154] (hate speech in multi-
modal memes).

5) Instructional videos have become increasingly popular,
e.g., cooking video YouCookII [155]. Aligning a sequence
of instructions to a video of someone carrying out a task
is an example of a powerful pretraining pretext task [7],
[156]. Pretext tasks are pre-designed problems to force the
models to learn representation by solving them.

Similar to other deep neural network architectures, Trans-
formers are also data hungry. Therefore, their high-capacity
models and multimodal Big Data basis co-create the prosperity
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of the Transformer based multimodal machine learning. For
instance, Big Data bring zero-shot learning capability to VLP
Transformer models.

III. TRANSFORMERS

In this section, we use mathematical formulations to review
the key techniques of Vanilla Transformer [2], Vision Trans-
former [5], and multimodal Transformers,1 including tokenized
inputs, self-attention, multi-head attention, basic Transformer
layers/blocks, etc. We highlight that Vanilla Transformers can be
understood from a geometrically topological perspective [157],
because due to the self-attention mechanism, given each tok-
enized input from any modalities, Vanilla self-attention (Trans-
former) can model it as a fully-connected graph in topological
geometry space [158]. Compared with other deep networks (for
instance, CNN is restricted in the aligned grid spaces/matrices),
Transformers intrinsically have a more general and flexible
modelling space. This is a notable advantage of Transformers
for multimodal tasks. Sections III-A, III-B, and III-C will review
the key designs of Vanilla Transformer, Vision Transformer, and
multimodal Transformers, respectively.

A. Vanilla Transformer

Vanilla Transformer has an encoder-decoder structure and
is the origin of the Transformer-based research field. It takes
tokenized input (see Section III-A1). Both its encoder and de-
coder are stacked by the Transformer layers/blocks, as demon-
strated in Fig. 1. Each block has two sub-layers, i.e., a multi-
head self-attention (MHSA) layer (see Section III-A2) and a
position-wise fully-connected feed-forward network (FFN) (see
Section III-A3). To help the back propagation of the gradient,
both MHSA and FFN use Residual Connection [159] (given
an input x, the residual connection of any mapping f(·) is
defined as x← f(x) + x), followed by normalization layer.
Thus, assuming that the input tensor is Z, the output of MHSA
and FFN sub-layers can be formulated as:

Z← N(sublayer(Z) + Z), (1)

where sublayer(·) is the mapping implemented by the sub-layer
itself andN(·) denotes normalization, e.g.,BN(·) [160],LN(·)
[161].

Discussion: There is an important unsolved problem that
is post-normalization versus pre-normalization. The original
Vanilla Transformer uses post-normalization for each MHSA
and FFN sub-layer. However, if we consider this from the mathe-
matical perspective, pre-normalization makes more sense [162].
This is similar to the basic principle of the theory of matrix,
that normalization should be performed before projection, e.g.,
Gram–Schmidt process.2 This problem should be studied further
by both theoretical research and experimental validation.

1In this survey, “multimodal Transformer” means “Transformer in multimodal
learning context”.

2https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process

1) Input Tokenization: Tokenization Vanilla: Transformer
was originally proposed for machine translation as a sequence-
to-sequence model, thus it is straightforward to take the vocab-
ulary sequences as input. As mentioned previously, the original
self-attention can model an arbitrary input as a fully-connected
graph, independently of modalities. Specifically, both Vanilla
and variant Transformers take in the tokenized sequences, where
each token can be regarded as a node of the graph.

Special/Customized Tokens: In Transformers, various spe-
cial/customized tokens can be semantically defined as place-
holders in the token sequences, e.g., mask token [MASK] [4].
Some common special tokens are summarized in appendix,
available in the online supplemental material. Special tokens
can be used in both uni-modal and multimodal Transformers.

Position Embedding: Position embeddings are added to the
token embeddings to retain positional information [4]. Vanilla
Transformer uses sine and cosine functions to produce position
embedding. To date, various implementations of position em-
bedding have been proposed. The concrete solutions are outside
the focus of this survey.

Discussion: The main advantages of input tokenization in-
clude the following:

1) Tokenization is a more general approach from a geomet-
rically topological perspective, achieved by minimizing
constraints caused by different modalities. In general,
every modality has intrinsic constraints on modelling.
For instance, sentences have sequential structures that
are well-suited by RNN, and photos are restricted in
aligned grid matrices that CNN works well for. Tokeniza-
tion helps Transformers inherently to process different
modalities universally via irregular sparse structures. Thus
even Vanilla Transformer can encode multimodal inputs
flexibly by just concatenation, weighted summation, even
without any multimodal tailor-made modifications.

2) Tokenization is a more flexible approach to organize
the input information via concatenation/stack, weighted
summation, etc. Vanilla Transformer injects temporal in-
formation to the token embedding by summing position
embedding. For instance, when use Transformer to model
free-hand sketch drawing [163], each input token can
integrate various drawing stroke patterns, e.g., stroke co-
ordinates, stroke ordering, pen state (start/end).

3) Tokenization is compatible with the task-specific cus-
tomized tokens, e.g., [MASK] token [4] for Masked Lan-
guage Modelling, [CLASS] token [5] for classification.

Discussion: How to understand position embedding to Trans-
formers is an open problem. It can be understood as a kind of
implicit coordinate basis of feature space, to provide temporal
or spatial information to the Transformer. For cloud point [164]
and sketch drawing stroke [163], their token element is already
a coordinate, meaning that position embedding is optional, not
necessary. Furthermore, position embedding can be regarded as
a kind of general additional information. In other words, from
a mathematical point of view, any additional information can
be added, such as detail of the manner of position embedding,
e.g., the pen state of sketch drawing stroke [163], cameras
and viewpoints in surveillance [165]. There is a comprehensive

https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
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survey [166] discussing the position information in Transform-
ers. For both sentence structures (sequential) and general graph
structures (sparse, arbitrary, and irregular), position embeddings
help Transformers to learn or encode the underlying structures.
Considered from the mathematical perspective of self-attention,
i.e., scaled dot-product attention, attentions are invariant to the
positions of words (in text) or nodes (in graphs), if position
embedding information is missing. Thus, in most cases, position
embedding is necessary for Transformers.

2) Self-Attention and Multi-Head Self-Attention: The core
component of Vanilla Transformer is the Self-Attention
(SA) operation [2] that is also termed “Scaled Dot-Product
Attention”. Assume that X = [x1,x2, . . .] ∈ R

N×d is an
input sequence of N elements/tokens, and an optional pre-
processing is positional encoding by point-wise summa-
tion Z← X⊕ PositionEmbedding or concatenation Z←
concat(X, PositionEmbedding).

Self-Attention (SA): After preprocessing, embedding Z will
go through three projection matrices (WQ ∈ R

d×dq , WK ∈
R

d×dk , and WV ∈ R
d×dv , dq = dk) to generate three embed-

dings Q (Query), K (Key), and V (Value):

Q = ZWQ,K = ZWK ,V = ZWV . (2)

The output of self-attention is defined as

Z = SA(Q,K,V) = Softmax

(
QK�√

dq

)
V. (3)

Given an input sequence, self-attention allows each element to
attend to all the other elements, so that self-attention encodes
the input as a fully-connected graph. Therefore, the encoder of
Vanilla Transformer can be regarded as a fully-connected GNN
encoder, and the Transformer family has the non-local ability of
global perception, similar to the Non-Local Network [167].

Masked Self-Attention (MSA): In practice, modification of
self-attention is needed to help the decoder of Transformer to
learn contextual dependence, to prevent positions from attending
to subsequent positions, as

Z = MSA(Q,K,V) = Softmax

(
QK�√

dq
�M

)
V, (4)

where M is a masking matrix. For instance, in GPT [88], an
upper triangular mask to enable look-ahead attention where each
token can only look at the past tokens. Masking can be used
in both encoder [163], [168] and decoder of Transformer, and
has flexible implementations, e.g., 0-1 hard mask [163], soft
mask [168].

In both uni-modal and multimodal practices, specific masks
are designed based on domain knowledge and prior knowledge.
Essentially, MSA is used to inject additional knowledge to
Transformer models, e.g., [24], [163], [169], [170].

Multi-Head Self-Attention (MHSA): In practice, multiple self-
attention sub-layers can be stacked in parallel and their concate-
nated outputs are fused by a projection matrix W, to form a
structure named Multi-Head Self-Attention:

Z = MHSA(Q,K,V) = concat(Z1, . . . ,ZH)W, (5)

where each headZh = SA(Qh,KhVh) andh ∈ [1, H], andW
is a linear projection matrix. The idea of MHSA is a kind of en-
semble. MHSA helps the model to jointly attend to information
from multiple representation sub-spaces.

3) Feed-Forward Network: The output of the multi-head
attention sub-layer will go through the position-wise Feed-
Forward Network (FFN) that consists of successive linear layers
with non-linear activation. For instance, a two-layer FFN can be
formulated as

FFN(Z) = σ(ZW1 + b1)W2 + b2, (6)

whereW1,b1,W2, andb2 denote the weights and biases of the
two linear transformations, while σ(·) is non-linear activation,
e.g., ReLU(·) [171], GELU(·) [172]. In some Transformer
literature, FFN is also termed Multi-Layer Perceptron (MLP).

B. Vision Transformer

Vision Transformer (ViT) [5] has an image-specific input
pipeline in which the input image must be split into fixed-size
(e.g., 16× 16, 32× 32) patches. After going through the lin-
early embedded layer and adding the position embeddings, all
the patch-wise sequences will be encoded by a standard Trans-
former encoder. Given an image X ∈ R

H×W×C (H height, W
width, C channels), ViT needs to reshape X into a sequence of
flattened 2D patches: xp ∈ R

N×(P2·C), where (P × P ) is the
patch resolution and N = HW/P 2. To perform classification,
a standard approach is to prepend an extra learnable embedding
“classification token” [CLASS] to the sequence of embedded
patches:

Z← concat([CLASS],XW), (7)

where W denotes the projection.

C. Multimodal Transformers

Recently, a large number of Transformers have been stud-
ied extensively for various multimodal tasks, and shown to be
compatible with various modalities in both discriminative and
generative tasks.

In this section, we will review the key techniques/designs of
the existing multimodal Transformer models, from the perspec-
tives of multimodal input (Section III-C1), self-attention variants
(Section III-C2), and network architectures (Section III-C3).

1) Multimodal Input: The Transformer family is a general
architecture that can be formulated as a type of general graph
neural network. Specifically, self-attention can process each
input as a fully-connected graph, by attending to the global (non-
local) patterns. Therefore, this intrinsic trait helps Transformers
can work in a modality agnostic pipeline that is compatible with
various modalities by treating the embedding of each token as a
node of the graph.

Tokenization and Embedding Processing: Given an input from
an arbitrary modality, users only need to perform two main
steps, (1) tokenize the input, and (2) select an embedding space
to represent the tokens, before inputting the data into Trans-
formers. In practice, both the tokenizing input and selecting
embedding for the token are vital for Transformers but highly
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TABLE I
TOKENIZATION AND TOKEN EMBEDDING COMPARISON FOR MULTI-MODAL INPUTS FOR TRANSFORMERS

flexible, with many alternatives. For instance, given an image,
the solution of tokenizing and embedding is not unique. Users
can choose or design tokenization at multiple granularity levels
– coarse-grained versus fine-grained. e.g., use ROIs (obtained by
an object detector) and CNN features as tokens and token embed-
dings [102], use patches and linear projection as tokens and token
embeddings [5], or use graph node (obtained by object detector
and graph generator) and GNN features as tokens and token
embeddings [181]. Given a tokenization plan, the subsequent
embedding approaches can be diverse. For example, for video
input, a common tokenization is to treat the non-overlapping
windows (down-sampled) over the video as tokens, and their
embeddings can then be extracted by various 3D CNNs, e.g.,
VideoBERT [7], CBT [107], and UniVL [117] use S3D [186],
ActBERT uses ResNet-3D [187].

Table I summarizes some common practices of multi-
modal inputs for Transformers, including RGB, video, au-
dio/speech/music, text, graph, etc.

Discussion: When considered from the perspective of geo-
metric topology, each of the modalities listed in Table I can be
regarded as a graph. An RGB image is essentially a neat grid
graph in the pixel space. Both video and audio are clip/segment
based graphs over a complex space involving temporal and
semantic patterns. Both 2D and 3D drawing sketches [78], [163]
are a kind of sparse graph if we consider their key points along
the drawing strokes. Similar to sketches, the human pose also is a
kind of graph. 3D point cloud is a graph in which each coordinate
is a node. Other abstract modalities also can be interpreted as
graphs, e.g., source code [44], data flow of source code [44],
table [18], SQL database schema [25], text question graph [24],
and electronic health records (EHRs) [184].

Token Embedding Fusion: In practice, Transformers allow
each token position to contain multiple embeddings. This is
essentially a kind of early-fusion of embeddings, for both uni-
modal and multimodal Transformer models. (This will be dis-
cussed further in subsequent sections.) The most common fusion
is the token-wise summing of the multiple embeddings, e.g., a
specific token embedding ⊕ position embedding. Similar to the
flexible tokenization, token embedding fusion is also flexible and
widely applied to both uni-modal and multimodal Transformer
applications. In [81], token-wise weighted summing is used to
perform early-fusion of RGB and grey-scale images for mul-
timodal surveillance AI. In particular, token embedding fusion
has an important role in multimodal Transformer applications
as various embeddings can be fused by token-wise operators,
e.g., in VisualBERT [104] and Unicoder-VL [108], segment
embeddings are token-wise added to indicate which modal-
ity (vision or language) each token is from, VL-BERT [105]
injects global visual context to linguistic domain by “linguis-
tic token embedding ⊕ full image visual feature embedding”,
InterBERT [188] adds location information for ROI by “ROI
embedding ⊕ location embedding”, in ImageBERT [115], five
kinds of embeddings are fused “image embedding ⊕ position
embedding ⊕ linguistic embedding ⊕ segment embedding ⊕
sequence position embedding”.

2) Self-Attention Variants in Multimodal Context: In mul-
timodal Transformers, cross-modal interactions (e.g., fusion,
alignment) are essentially processed by self-attention and its
variants. Thus, in this section, we will review the main mul-
timodal modelling practices of Transformers, from a perspec-
tive of self-attention designs, including (1) early summation
(token-wise, weighted), (2) early concatenation, (3) hierarchical
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TABLE II
SELF-ATTENTION VARIANTS FOR MULTI-MODAL INTERACTION/FUSION

Fig. 2. Transformer-based cross-modal interactions: (a) Early Summation, (b) Early Concatenation, (c) Hierarchical Attention (multi-stream to one-stream),
(d) Hierarchical Attention (one-stream to multi-stream), (e) Cross-Attention, and (f) Cross-Attention to Concatenation. “Q”: Query embedding; “K”: Key embedding;
“V”: Value embedding. “TL”: Transformer Layer. Best viewed in colour.

attention (multi-stream to one-stream), (4) hierarchical attention
(one-stream to multi-stream), (5) cross-attention, and (6) cross-
attention to concatenation. See Table II and Fig. 2.

For brevity, we will state and compare the mathematical
formulations in two-modality cases. Please note that all dis-
cussed self-attention and its variants are such flexible that can be
extended to multiple modality cases. Specifically, the following
formulations are modality-, tokenization-, and embedding- ag-
nostic, as self-attention models the embedding of arbitrary token
from arbitrary modality as a node of a graph.

Given inputs XA and XB from two arbitrary modalities, Z(A)

andZ(B) denote their respective token embeddings. LetZ denot-
ing the token embedding (sequence) produced by the multimodal
interactions. Tf(·) stands for the processing of Transformer
layers/blocks.

(1) Early Summation: In practice, early summation [46], [81]
is a simple and effective multimodal interaction, where the token
embeddings from multiple modalities can be weighted summed
at each token position and then processed by Transformer layers:

Z← Tf(αZ(A) ⊕ βZ(B)) = MHSA(Q(AB),K(AB),V(AB)),
(8)

where ⊕ is element-wise sum, and α and β are weight-
ings. Concretely, Q(AB) = (αZ(A) ⊕ βZ(B))W

Q
(AB), K(AB) =

(αZ(A) ⊕ βZ(B))W
K
(AB), and V(AB) = (αZ(A) ⊕ βZ(B))W

V
(AB).

Its main advantage is that it does not increase computational
complexity. However, its main disadvantage is due to the manu-
ally set weightings. As discussed in Sections III-A1 and III-C1,

summing position embedding is intrinsically a case of early
summation.

(2) Early Concatenation: Another straightforward solution is
early concatenation [7], [44], [178], [180] that the token embed-
ding sequences from multiple modalities are concatenated and
input into Transformer layers as

Z← Tf(C(Z(A),Z(B))). (9)

Thus, all the multimodal token positions can be attended as a
whole sequence, such that the positions of each modality can be
encoded well by conditioning the context of other modalities.
VideoBERT [7] is the one of the first multimodal Transformer
works, where video and text are fused via early concatenation
that can encode the global multimodal context well [188].
However, the longer sequence after concatenation will increase
computational complexity. Early concatenation is also termed
“all-attention” or “Co-Transformer” [137].

(3) Hierarchical Attention (multi-stream to one-stream):
Transformer layers can be combined hierarchically to attend
to the cross-modal interactions. A common practice is that
multimodal inputs are encoded by independent Transformer
streams and their outputs are concatenated and fused by another
Transformer [146]:

Z← Tf3(C(Tf1(Z(A)), T f2(Z(B)))). (10)

This kind of hierarchical attention is an implementation of late
interaction/fusion, and can be treated as a special case of early
concatenation.
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(4) Hierarchical Attention (one-stream to multi-stream): In-
terBERT [188] is another good practice of hierarchical attention
where concatenated multimodal inputs are encoded by a shared
single-stream Transformer that is followed by two separate
Transformer streams. This flow can be formulated as⎧⎨

⎩
C(Z(A),Z(B))← Tf1(C(Z(A),Z(B))),
Z(A) ← Tf2(Z(A)),
Z(B) ← Tf3(Z(B)).

(11)

This method perceives the cross-modal interactions and mean-
while preserves the independence of uni-modal representation.

(5) Cross-Attention: For two-stream Transformers, if the Q
(Query) embeddings are exchanged/swapped in a cross-stream
manner, the cross-modal interactions can also be perceived. This
method is termed cross-attention or co-attention [190], which
was first proposed in VilBERT [102]:{

Z(A) ←MHSA(QB,KA,VA),
Z(B) ←MHSA(QA,KB,VB).

(12)

Cross-attention attends to each modality conditioned on the
other and does not cause higher computational complexity,
however if considered for each modality, this method fails to
perform cross-modal attention globally and thus loses the whole
context. As discussed in [188], two-stream cross-attention can
learn cross-modal interaction, whereas there is no self-attention
to the self-context inside each modality.

(6) Cross-Attention to Concatenation: The two streams of
cross-attention [102] can be further concatenated and processed
by another Transformer to model the global context. This kind
of hierarchically cross-modal interaction is also widely stud-
ied [137], [189], and alleviates the drawback of cross-attention.

⎧⎨
⎩
Z(A) ←MHSA(QB,KA,VA),
Z(B) ←MHSA(QA,KB,VB),
Z← Tf(C(Z(A),Z(B))).

(13)

Discussion: All these aforementioned self-attention variants for
multimodal interactions are modality-generic, and can be ap-
plied in flexible strategies and for multi-granular tasks. Specifi-
cally, these interactions can be flexibly combined and nested. For
instance, multiple cross-attention streams are used in hierarchi-
cal attention (one-stream to multi-stream) that in a two-stream
decoupled model [191]Tf2 andTf3 of (11) are implemented by
cross-attention defined in (12). Moreover, they can be extended
to multiple (≥ 3) modalities. TriBERT [183] is a tri-modal
cross-attention (co-attention) for vision, pose, and audio, where
given a Query embedding, its Key and Value embeddings are
the concatenation from the other modalities. Cross-attention
to concatenation is applied to three modalities (i.e., language,
video, and audio) in [189].

3) Network Architectures: Essentially, various multimodal
Transformers work due to their internal multimodal attentions
that are the aforementioned self-attention variants. Meanwhile,
as illustrated in Fig. 2, these attentions determine the external
network structures of the multimodal Transformers where they
are embedded.

In general, if we consider from the angle of network struc-
tures, (1) early summation and early concatenation work in

single-stream, (2) cross-attention work in multi-streams, (3)
hierarchical attention and cross-attention to concatenation work
in hybrid-streams. Thus, multimodal Transformers can be di-
vided into single-stream (e.g., Uniter [106], Visualbert [104],
Vl-bert [105], Unified VLP [110]), multi-stream (e.g., ViL-
BERT [102], Lxmert [103], ActBERT [114]), hybrid-stream
(e.g., InterBERT [188]), etc.

From the perspective of timing of interaction, these multi-
modal attentions fall into three categories, i.e., early interaction:
early summation, early concatenation, and hierarchical attention
(one-stream to multi-stream), late interaction: hierarchical at-
tention (multi-stream to one-stream), or throughout interaction:
cross-attention, cross-attention to concatenation.

As demonstrated in Fig. 2 in [192], the multimodal Trans-
former models have another architecture taxonomy based on
the computational size of the components.

IV. APPLICATION SCENARIOS

In this section we survey multimodal Transformers based on
the application scenarios. We consider two important paradigms:
(1) Transformers for multimodal pretraining (Section IV-A,
including both task-agnostic (Section IV-A1) and task-specific
(Section IV-A2) multimodal pretraining), and (2) Transformers
for specific multimodal tasks (Section IV-B).

A. Transformers for Multimodal Pretraining

Inspired by the great success of Transformer based pretraining
in NLP community, Transformers are also widely studied for
multimodal pretraining as the various large-scale multimodal
corpora is emerging. Recent work has demonstrated that if
pretrained on large scale multimodal corpora Transformer based
models [7], [102], [103], [104], [105], [106], [110] clearly
outperform other competitors in a wide range of multimodal
down-stream tasks, and moreover achieve the zero-shot gen-
eralization ability. These superiorities have led Transformer-
based multimodal pretraining to become a hot topic, which
has two main directions, i.e., general pretraining for agnostic
down-stream tasks (Section IV-A1), goal-oriented pretraining
for specific down-stream tasks (Section IV-A2).

We focus on these key points: (1) What trends are emerging?
(2) Where/how do the cross-modal interactions take place during
pretraining? (3) How to sort out and understand the pretraining
pretext objectives? How can they drive Transformers to learn
the cross-modal interactions?

1) Task-Agnostic Multimodal Pretraining: Recently Trans-
former-oriented pretraining has been widely studied involving
diverse modality combinations, e.g., video-text [7], [107], [117],
image-text [102], [103], [104], [193], [194], [195], acoustic-
text [180].

Among existing work, the following main trends are emerg-
ing:

(1) Vision-language pretraining (VLP) is a major research
problem in this field. VLP is including both “image + lan-
guage” and “video + language”, also termed visual-linguistic
pretraining. A great deal of excellent work has been proposed,
e.g., VideoBERT [7], ViLBERT [102], LXMERT [103], Visu-
alBERT [104], VL-BERT [105], UNITER [106], CBT [107],
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Unicoder-VL [108], B2T2 [109], VLP [110], 12-in-1 [111],
Oscar [112], Pixel-BERT [113], ActBERT [114], Image-
BERT [115], HERO [116], UniVL [117], SemVLP [196].

(2) Speech can be used as text. Thanks to recent advances in
automatic speech recognition (ASR) techniques, in a multimodal
context, speech can be converted to text by the off-the-shelf
speech recognition tools. For instance, VideoBERT [7] and
CBT [107] make full use of speech rather than low-level sounds
as a source of cross-modal supervision, by extracting high-level
semantic text.

(3) Overly dependent on the well-aligned multimodal data. A
majority of Transformer-based multimodal pretraining works
in a self-supervised manner, however, it is overly depen-
dent on the well-aligned multimodal sample pairs/tuples.
For instance, large amount of image-language pretraining
Transformer models are pretrained on large-scale image-
text pairs, e.g., VisualBERT [104], VL-BERT [105], ViL-
BERT [102], LXMERT [103], UNITER [106]. For another
example, the instructional videos (e.g., cooking) 3 are widely
used as the pretraining corpora, e.g., HowToVQA69M [140],
HowTo100M [141], as in general, their visual clues/content
and the spoken words have a higher probability to align with
each other, if compared with other videos. However, using
cross-modal alignment as cross-modal supervision is costly for
large-scale applications. Thus, how to use the weakly-aligned
or even unpaired/unaligned multimodal data as the pretraining
corpora is still understudied. Some recent attempts [137], [199]
study the use of weakly-aligned cross-modal supervision to train
Transformers to learn the cross-modal interactions.

(4) Most of the existing pretext tasks transfer well across
modalities. For instance, Masked Language Modelling (MLM)
in the text domain has been applied to audio and image, e.g.,
Masked Acoustic Modelling [180], [200], Masked Image Re-
gion Prediction [190], while both Sentence Ordering Modelling
(SOM) [201] in text domain and Frame Ordering Modelling
(FOM) [116] in video domain share the same idea. We will
further discuss the pretext tasks for multimodal Transformer
pretraining in the follows.

(5) Model structures are mainly in three categories. Essen-
tially, in multimodal pretraining scenarios, Transformer models
work based on those self-attention variants that are discussed
in Section III-C2. Thus, if considered from the perspective of
model structures, the existing Transformers for multimodal pre-
training are also mainly in three categories, i.e., single-stream,
multi-stream, hybrid-stream.

(6) Cross-modal interactions can perform within various com-
ponents/levels in the pretraining pipelines. For Transformer
based multimodal pretraining, the key is to drive the Transformer
(encoder w/, w/o decoder) to learn the cross-modal interac-
tions. In the existing Transformer-based multimodal pretraining
practices, the cross-modal interactions are flexible, which can
perform within various components/levels in the pretraining
pipelines. In general, Transformer-based multimodal pretraining
pipelines have three key components, from bottom to top, i.e.,
tokenization, Transformer representation, objective supervision.

3Note that instructional videos also have weakly aligned cases [197], [198].

For not only the multimodal pretraining but also the specific
multimodal tasks, the cross-modal interactions can perform
within arbitrary component(s) of the three. As discussed in
Section III-C2, because self-attention models the embedding
of an arbitrary token from an arbitrary modality as a node of
a graph, the existing pretraining pipelines can, in general, be
transferred independently across modalities, unless considered
with modality-specific objectives.

Discussion: Vision Language Pretraining (VLP) follows
two general pipelines: two-stage (need object detector, e.g.,
Faster R-CNN [202]) (e.g., LXMERT [103], ViLBert [102],
VL-Bert [105], UNITER [106]) and end-to-end (e.g., Pixel-
Bert [113], SOHO [203], KD-VLP [204], Simvlm [199]). Two-
stage pipelines have a main advantage – object-aware perceiving,
by using the supervised pre-trained visual detectors, however
these are based on a strong assumption that the visual represen-
tations can be fixed.

Discussion: How to look for more corpora that intrinsically
have well-aligned cross-modal supervision, such as instruc-
tional videos, is still an open problem. However, weakly-aligned
cross-modal samples are popular in the real-life scenarios,
for instance, enormous weakly aligned multimodal data sam-
ples are emerging in e-commerce [137], due to fine-grained
categories, complex combinations, and fuzzy correspondence.
Well labelled/aligned cross-modal datasets are very costly in
collecting and annotating; how to use weakly-aligned or even
unaligned corpora crawled from the web is a promising question.
Some recently successful practice [9], [199], [205] used weakly
aligned image-text pairs to perform pretraining, and achieve
both competitive performance and zero-shot learning capability
for image classification, image-text retrieval, and open-ended
visual question answering, etc. Because these practices in weak
supervision make full use of large-scale pretraining corpora, they
yield greater promise of zero-shot generalization.

Pretext Tasks: In Transformer based multimodal pretrain-
ing, the pretraining tasks/objectives are also termed pretext
tasks/objectives. To date, various pretext tasks have been stud-
ied, e.g., masked language modelling (MLM) [137], masked
image region prediction/classification (also termed masked
object classification (MOC)) [137], [190], masked region
regression (MRR) [115], visual-linguistic matching (VLM)
(e.g., image–text matching (ITM) [188], image text match-
ing (ITM), phrase-region alignment (PRA) [204], word-region
alignment (WRA) [106], video-subtitle matching (VSM) [116]),
masked frame modelling (MFM) [116], frame order mod-
elling (FOM) [116], next sentence prediction (NSP) [4], [102],
[190], masked sentence generation (MSG) [191], masked group
modelling (MGM) [188], prefix language modelling (Pre-
fixLM) [199], video conditioned masked language model [117],
text conditioned masked frame model [117], visual transla-
tion language modelling (VTLM) [206], and image-conditioned
masked language modelling (also termed image-attended
masked language modelling) [207]. These down-stream task
-agnostic pretext pretraining is optional, and the down-stream
task objectives can be trained directly, which will be discussed
in Section IV-A2. Table III provides the common and representa-
tive pretext tasks for Transformer based multimodal pretraining.
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TABLE III
PRETEXT TASK COMPARISON OF MULTI-MODAL PRETRAINING TRANSFORMER MODELS (FOR AGNOSTIC DOWN-STREAM TASKS)

In practice, pretext tasks can be combined, and some represen-
tative cases are summarized in Table III of [57], Table II of [58].

The pretext tasks have multiple taxonomies:
(1) Supervision: The common multimodal pretraining Trans-

formers use well-aligned, weakly-aligned, and even un-
aligned multimodal sample pairs/tuples, to work in supervised,
weakly-supervised, and unsupervised manners, respectively.
Meanwhile, if we consider the definitions of their pretext
tasks/objectives from supervision, the pretexts can be sorted into
unsupervised/self-supervised (e.g., masked language modelling
(MLM) [7], [137]) and supervised (e.g., image-text matching
(ITM) [102], [103], [104], [106], [188], [209]), etc. Nowadays,
self-supervised attempts are the majority.

(2) Modality: Considering the mathematical formulations,
some pretexts are defined on single modality, e.g., masked
language modelling [7], masked acoustic modelling [200],
masked region regression (MRR) [115], while other pretexts
are defined on multiple modalities, e.g., image-conditioned
masked language modelling (IMLM) [208], image-text match-
ing (ITM) [188], video-subtitle matching (VSM) [116]. Thus,
from this mathematical view, the pretext tasks can be divided
into two categories, i.e., uni-modal and multimodal.

However, this classification is not really accurate. It should be
highlighted that in multimodal pretraining Transformer models,
even if the pretext objective formulations only include uni-modal
elements, pretexts can still involve other modalities, essentially
conditioned on the clues from other modalities, by (a) prepositive
token level interactions and/or Transformer level interactions,
(b) co-training with other pretexts that involve other modalities.
For instance, VL-BERT [105] uses two dual pretext tasks, i.e.,
masked language modelling and masked RoI classification.

(3) Motivation: If consider their motivations, the pretext tasks
include masking, describing, matching, ordering, etc.

Some recent surveys focus on VLP and compare the ex-
isting VLP Transformer models from the angles of domain
(image-text or video-text), vision feature extraction, language

feature extraction, architecture (single- or dual- stream), de-
coder (w/, w/o), pretext tasks/objectives, pretraining datasets,
and down-stream tasks, e.g., Table III of [57], Table II of [58].
Different from these views, in this survey, we would propose
our comparisons from some new perspectives. Specifically: (1)
The core of Transformer ecosystem is self-attention, thus we
would compare the existing multimodal pretraining Transformer
models from the angles of how and when the self-attention
or its variants perform cross-modal interactions. (2) Consider-
ing from a geometrically topological perspective, self-attention
helps Transformers intrinsically work in a modality agnostic
pipeline that is compatible with various modalities by taking
in the embedding of each token as a node of graph, thus
we would highlight that the existing VLP can be applied to
other modalities, beyond visual and linguistic domains. (3)
We suggest to treat the Transformer-based multimodal pre-
training pipelines having three key components, from bottom
to top, i.e., tokenization, Transformer representation, objective
supervision.

Discussion: In spite of the recent advances, multimodal pre-
training Transformer methods still have some obvious bottle-
necks. For instance, as discussed by [208] in VLP field, while
the BERT-style cross-modal pretraining models produce excel-
lent results on various down-stream vision-language tasks, they
fail to be applied to generative tasks directly. As discussed
in [208], both VideoBERT [7] and CBT [107] have to train
a separate video-to-text decoder for video captioning. This
is a significant gap between the pretraining models designed
for discriminative and generative tasks, as the main reason is
discriminative task oriented pretraining models do not involve
the decoders of Transformer. Therefore, how to design more
unified pipelines that can work for both discriminative and
generative down-stream tasks is also an open problem to be
solved. Again for instance, common multimodal pretraining
models often underperform for fine-grained/instance-level tasks
as discussed by [137].



XU et al.: MULTIMODAL LEARNING WITH TRANSFORMERS: A SURVEY 12123

Discussion: As discussed in [208], the masked language and
region modelling as pre-training task have a main advantage that
the Transformer encoder learned from these supervisions can
encode both vision and language patterns based on bidirectional
context and it is naturally fit for the semantic understanding
tasks, e.g., VQA, image-text retrieval.

Discussion: How to boost the performance for multimodal
pretraining Transformers is an open problem. Some prac-
tices demonstrate that multi-task training (by adding auxil-
iary loss) [111], [137] and adversarial training [210] improve
multimodal pretraining Transformers to further boost the per-
formance. Meanwhile, overly compound pretraining objectives
potentially upgrade the challenge of balancing among different
loss terms, thus complicate the training optimization [199].
Moreover, the difficulty of the pretexts is also worth discussing.
In general, if aim to learn more explicit object concepts, more
complex pretext losses will be used [204]. However, for pretexts,
whether more complexity is better remains a question.

2) Task-Specific Multimodal Pretraining: In practices of
multimodal Transformers, the aforementioned down-stream
task -agnostic pretraining is optional, not necessary, and down-
stream task specific pretraining is also widely studied [150],
[190], [208], [211]. The main reasons include: (1) Limited by
the existing technique, it is extremely difficult to design a set
of highly universal network architectures, pretext tasks, and
corpora that work for all the various down-stream applications.
(2) There are non-negligible gaps among various down-stream
applications, e.g., task logic, data form, making it difficult to
transfer from pretraining to down-stream applications.

Therefore, a large number of down-stream tasks still need
tailor-made pretraining to improve the performance. Guhur
et al. [150] propose in-domain pretraining for vision-and-
language navigation, as the general VLP focuses on learning
vision-language correlations, not designed for sequential deci-
sion making as required in embodied VLN. Murahari et al. [190]
present a visual dialogue oriented approach to leverage pre-
training on general vision-language datasets. XGPT [208] is
tailor-made for image captioning, to overcome the limitation that
BERT-based cross-modal pre-trained models fail to be applied
to generative tasks directly. ERNIE-ViLG [211] is designed for
bidirectional image-text generation with Transformers.

Special modalities have their own unique domain knowledge
that can be used to design the specific pretrain pretexts. Graph-
CodeBERT [44] uses two structure-aware pretext tasks (i.e., pre-
dict where a variable is identified from, data flow edge prediction
between variables) for programming source code. To learn from
the spatial cues in 360◦ video, Morgado et al. [145] propose
to perform contrastive audio-visual spatial alignment of 360◦

video and spatial audio. Med-BERT [184] is a contextualized
embedding model pretrained on a structured electronic health
record dataset of two million patients. Kaleido-BERT [212] is a
VLP Transformer model tailor-made for the fashion domain.

B. Transformers for Specific Multimodal Tasks

Recent work has demonstrated that Transformer models can
encode various multimodal inputs in both classical and novel

discriminative applications, e.g., RGB & optical flow [46],
RGB & depth [213], RGB & point cloud [214], RGB & Li-
DAR [215], [216], textual description & point cloud [31], acous-
tic & text [180], audio & visual observation for Audio-Visual
Navigation [76], speech query & schema of SQL database [25],
text question/query & the schema SQL database [24], audio &
tags [217], multimodal representation for video [218], [219],
text query & video [220], audio & video for audio visual speech
enhancement (AVSE) [179], audio & video for Audio-Visual
Video Parsing [173], audio & video for audio-visual speech
recognition [134], video & text for Referring Video Object
Segmentation (RVOS) [221], source code & comment & data
flow [44], image & text for retrieval [222].

Meanwhile, Transformers also contribute to various multi-
modal generative tasks, including single-modality to single-
modality (e.g., raw audio to 3D mesh sequence [39], RGB
to 3D scene [40], single image to 3D human texture estima-
tion [223], RGB to scene graph [19], [224], [225], [226], graph
to graph [33], knowledge graph to text [227], video to scene
graph [228], video to caption [229], [230], [231], [232], image
to caption [233], [234], [235], [236], [237], text to speech [238],
text to image [205], [239], text to shape [240], RGB to 3D human
pose and mesh [41], music to dance [241]), multimodality to
single modality (e.g., image & text to scene graph [242], Video
Dialogue (text & audio & visual to text) [243], Mono Audio &
Depth to Binaural Audio [14], music piece & seed 3D motion to
long-range future 3D motions [146], X-raying image & question
to answer [244], video & text & audio to text [245]), and
multimodality to multimodality (e.g., [246]).

V. CHALLENGES AND DESIGNS

Complementing the application scenario taxonomy discussed
in Section IV, we further survey prior work from the perspec-
tive of technical challenges. We discuss seven challenges of
Transformer based multimodal learning, including fusion, align-
ment, transferability, efficiency, robustness, universalness, and
interpretability. This further extends the taxonomy introduced
in [1] to tackle the higher diversity and wider scopes of existing
Transformer based MML works in recent years.

A. Fusion

In general, MML Transformers fuse information across multi-
ple modalities primarily at three levels: input (i.e., early fusion),
intermediate representation (i.e., middle fusion), and prediction
(i.e., late fusion). Common early fusion based MML Trans-
former models [7], [104], [108] are also known as one-stream
architecture, allowing the adoption of the merits of BERT due
to minimal architectural modification. The main difference be-
tween these one-stream models is the usage of problem-specific
modalities with variant masking techniques. With attention op-
eration, a noticeable fusion scheme is introduced based on a
notion of bottleneck tokens [175]. It applies for both early and
middle fusion by simply choosing to-be-fused layers. We note
that the simple prediction-based late fusion [247], [248] is less
adopted in MML Transformers. This makes sense consider-
ing the motivations of learning stronger multimodal contextual
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representations and great advance of computing power. For
enhancing and interpreting the fusion of MML, probing the
interaction and measuring the fusion between modalities [249]
would be an interesting direction to explore.

B. Alignment

Cross-modal alignment is the key to a number of real-world
multimodal applications. Transformer based cross-modal align-
ment has been studied for various tasks, e.g., speaker localization
in multi-speaker videos [250], speech translation [180], text-
to-speech alignment [251], text-to-video retrieval [252], [253],
[254], and visual grounding of natural language [255], [256],
[257], [258], [259]. Recently, Transformer based alignment [9],
[119], [260], [261], [262] has led to a surge of leveraging large
quantities of web data (e.g., image-text pairs) for vision and
language tasks.

A representative practice is to map two modalities into a com-
mon representation space with contrastive learning over paired
samples. The models based on this idea are often enormous
in size and expensive to optimize from millions or billions of
training data. Consequently, successive works mostly exploit
pretrained models for tackling various down-stream tasks [120],
[263], [264], [265], [266]. These alignment models have the
ability of zero-shot transfer particularly for image classifica-
tion via prompt engineering [267]. This novel perspective is
mind-blowing, given that image classification is convention-
ally regarded as a unimodal learning problem and zero-shot
classification remains an unsolved challenge despite extensive
research [268]. This has been studied for more challenging and
fine-grained tasks (e.g., object detection [269], visual ques-
tion answering [103], [106], [112], [263], and instance re-
trieval [222], [263]) by imposing region (semantic parts such as
objects) level alignment. Fine-grained alignment will however
incur more computational costs from explicit region detection
and how to eliminate this whilst keeping the region-level learn-
ing capability becomes a challenge. Several ideas introduced
recently include random sampling [113], learning concept dic-
tionary [203], uniform masking [270], patch projection [192],
joint learning of a region detector [271], and representation
aligning before mask prediction [263].

C. Transferability

Transferability is a major challenge for Transformer based
multimodal learning, involving the question of how to transfer
models across different datasets and applications.

Data augmentation and adversarial perturbation strategies
help multimodal Transformers to improve the generalization
ability. VILLA [210] is a two-stage strategy (task-agnostic
adversarial pretraining, followed by task-specific adversarial
finetuning) that improves VLP Transformers.

In practice, the distribution gap between training data and
practical data is noticeable. For instance, supervised data sam-
ples (well-labelled, well-aligned) are costly in practical appli-
cations, thus how to transfer the supervised multimodal Trans-
formers pretrained on well-aligned cross-modal pairs/tuples to
the weakly aligned test bed is challenging [137]. CLIP [9] is

an inspiring solution that transfers knowledge across modal-
ities by learning a shared multimodal embedding space, en-
abling zero-shot transfer of the model to down-stream tasks.
The main inspiration that CLIP presents the community is that
the pretrained multimodal (image and text) knowledge can be
transferred to down-stream zero-shot image prediction by using
a prompt template “A photo of a {label}.” to bridge
the distribution gap between training and test datasets.

Over-fitting is a major obstacle to transfer. Multimodal Trans-
formers can be overly fitted to the dataset biases during training,
due to the large modelling capability. Some recent practices
exploit how to transfer the oracle model trained on noiseless
dataset to real dataset. For instance, Kervadec et al. [272],
[273] explore how transferable reasoning patterns are in VQA,
and demonstrate that for LXMERT [103]/BERT-like reasoning
patterns can be partially transferred from an ideal dataset to a
real dataset.

Cross-task gap is another major obstacle to transfer [208],
[274], due to the different reasoning and input-output workflows,
e.g., how to use multimodal datasets to finetune the language
pretrained model is difficult [274]. In real applications, multi-
modal pretrained Transformers sometimes need to handle the
uni-modal data at inference stage due to the issue of missing
modalities. One solution is using knowledge distillation, e.g.,
distilling from multimodal to uni-modal attention in Trans-
formers [275], distilling from multiple uni-modal Transformer
teachers to a shared Transformer encoder [276]. There is a
huge gap across discriminative and generative multimodal tasks.
As discussed in [208], the BERT-like encoder-only multimodal
Transformers (e.g., VideoBERT [7], CBT [107]) need sepa-
rately to train decoders for generation tasks. This could create
a pretrain-finetune discrepancy detrimental to the generality.
Recently, more and more attempts study this issue further, e.g.,
GilBERT [222] is a generative VLP models for a discriminative
task, i.e., image-text retrieval.

Cross-lingual gap also should be considered for the transfer-
ability of Transformer based multimodal learning, e.g., universal
cross-lingual generalization from English to non-English mul-
timodal contexts [206], [277].

D. Efficiency

Multimodal Transformers suffer from two major efficiency
issues: (1) Due to the large model parameter capacity, they are
data hungry and thus dependent on huge scale training datasets.
(2) They are limited by the time and memory complexities that
grow quadratically with the input sequence length, which are
caused by the self-attention. In multimodal contexts, calculation
explosion will become worse due to jointly high dimension
representations. These two bottlenecks are interdependent and
should be considered together.

To improve the training and/or inferring efficiency for mul-
timodal Transformers, recent efforts have attempted to find
various solutions, to use fewer training data and/or parameters.
The main ideas can be summarized as the follows.

1) Knowledge distillation. Distill the knowledge from the
trained larger Transformers to smaller Transformers [93].
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Miech et al. [278] conduct distillation from a slower model
(early concatenation based Transformers, O((N(A) +
N(B))

2)) to a faster one (independently dual branch Trans-
formers, O(N2

(A))).
2) Simplifying and compressing model. Remove the com-

ponents to simplify the pipelines. Taking the VLP Trans-
former models as an example, two-stage pipeline is costly
as they need object detector. One simplifying is processing
the visual input in convolution-free manner, e.g., E2E-
VLP [271], ViLT [192]. DropToken [174] reduces the
training complexity via random dropping a portion of
the video and audio tokens from input sequence during
training. DropToken can be treated as an implementation
of dropout or adversarial training. Weight-sharing is also a
common practice for simplifying multimodal Transformer
models. Wen et al. [279] present a weight-sharing Trans-
former on top of the visual and textual encoders to align
text and image. Lee et al. [280] propose a novel parameter
sharing scheme based on low-rank approximation.

3) Asymmetrical network structures. Assign different model
capacities and computational size properly for different
modalities, to save parameters. See Fig. 2 in [192].

4) Improving utilization of training samples. Liu et al. [281]
train a simplified LXMERT by making full use of fewer
samples at different granularities. Li et al. [282] use
fewer data to train CLIP by fully mining the potential
self-supervised signals of (a) self-supervision within each
modality, (b) multi-view supervision across modalities,
and (c) nearest-neighbour supervision from other similar
pairs.

5) Compressing and pruning model. Search the optimal
sub-structures/sub-networks of multimodal Transformers,
e.g., playing Lottery Tickets with the VLP Transformer
models [283], adaptively freezing some layers during
training [284].

6) Optimizing the complexity of self-attention. Transform-
ers cost time and memory that grows quadratically with
the input sequence length [285]. One potential solu-
tion is optimizing the O(N2) complexity, e.g., Child
et al. [286] present sparse factorizations of the attention
matrix to reduce the quadratical complexity to O(n√n),
Transformer-LS [287] is an efficient Transformer for both
language and vision long sequence, with linear computa-
tional and memory complexity.

7) Optimizing the complexity of self-attention based mul-
timodal interaction/fusion. Nagrani et al. [175] propose
Fusion via Attention Bottlenecks (FSN, fusion bottle-
neck) to improve the early concatenation based multi-
modal interaction. FSN passes on the messages through
a small number of bottleneck latents, thus requiring the
model to purify the most necessary information from
each modality for cross-modal sharing. This strategy uses
the fusion bottleneck as a bridge, and not only improves
fusion performance, but also reduces computational
cost.

8) Optimizing other strategies. Use optimal strategies to per-
form the common Transformer based multimodal inter-
actions. Given the quadratic complexity of self-attention,

using early concatenation based multimodal interaction
to synchronously fuse the inputs from multiple modali-
ties/views is costly. Yan et al. [288] present an efficient
solution that sequentially fuses information between all
pairs of two adjacent views in ascending order of sequence
length. This is intrinsically a greedy strategy.

E. Robustness

Multimodal Transformers pretrained on large-scale corpora
achieve the state-of-the-art for various multimodal applications,
while their robustness is still unclear and understudied. This
at least involves two key challenges, i.e., how to theoretically
analyse the robustness, how to improve the robustness.

Although that recent attempts [99], [182], [289], [290] study
and evaluate how the Transformer components/sub-layers con-
tribute to the robustness, the main bottleneck is that the commu-
nity lacks theoretical tools to analyse the Transformer family.
Recently, the common practices to analyse robustness are mainly
based on experiment evaluations [291], e.g., cross-dataset evalu-
ations, perturbation-based evaluations. Thus, some multimodal
datasets [130], [292] are proposed for evaluating the robustness.

Recent attempts mainly use two straightforward methods
to improve the robustness for multimodal Transformer mod-
els: (1) augmentation and adversarial learning based strate-
gies [293], [294], (2) fine-grained loss functions [295]. For
instance: VILLA [210] is a generic adversarial training frame-
work that can be applied to various multimodal Transformers.
Akula et al. [292] empirically demonstrate that ViLBERT fails
to exploit linguistic structure, and they propose two methods to
improve the robustness of ViLBERT, one based on contrastive
learning and the other based on multi-task learning.

F. Universalness

Due to the highly diversity of tasks and modalities of mul-
timodal learning, universalness is an important problem for
multimodal Transformer models. A large amount of recent
attempts [117], [296], [297], [298] study how to use as unified as
possible pipelines to handle various modalities and multimodal
tasks. Ideally, the unified multimodal Transformers can be com-
patible with various data (e.g., aligned and unaligned, uni-modal
and multimodal) and tasks (e.g., supervised and unsupervised,
uni-modal and multimodal, discriminative and generative), and
meanwhile have either few-shot or even zero-shot generalization
ability. Thus, the current solutions for universalness goal for
multimodal Transformers are preliminary probes.

The currently unifying-oriented attempts mainly include:
1) Unifying the pipelines for both uni-modal and multi-

modal inputs/tasks. As discussed Section V-C, in prac-
tical scenarios, multimodal Transformers need to handle
uni-modal data due to the issue of missing modalities.
Distilling multimodal knowledge into small models that
are adaptable to uni-modal data and tasks is a successful
practice [275], [276].

2) Unifying the pipelines for both multimodal understanding
and generation. In general, for multimodal Transformer
pipelines, understanding and discriminative tasks require
Transformer encoders only, while generation/generative
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tasks require both Transformer encoders and decoders. Ex-
isting attempts use multi-task learning to combine the un-
derstanding and generation workflows, where two kinds of
workflows are jointly trained by multi-task loss functions.
From the perspective of model structures, typical solutions
include: (a) encoder + decoder, e.g., E2E-VLP [271].
(b) separate encoders + cross encoder + decoder, e.g.,
UniVL [117], CBT [107]. (c) single unified/combined
encoder-decoder, e.g., VLP [110]. (d) two-stream decou-
pled design [191].

3) Unifying and converting the tasks themselves, e.g.,
CLIP [9] converts zero-shot recognition to retrieval, thus
reduces the costs of modifying the model.

However, the aforementioned practices suffer some obvious
challenges and bottlenecks, at least including:

1) Due to modality and task gaps, universal models should
consider the trade-off between universalness and cost.
Unifying the pipelines of different modalities and tasks
generally cause larger or more complicated model con-
figuration, whereas for a specific modality or task, some
components are redundant.

2) Multi-task loss functions increase the complexity of train-
ing. How to co-train multiple objectives properly and
effectively is challenging, due to that different objectives
generally should be optimized in different strategies.

G. Interpretability

Why and how Transformers perform so well in multimodal
learning has been investigated [106], [299], [300], [301], [302],
[303], [304], [305], [306]. These attempts mainly use probing
task and ablation study. Cao et al. [299] design a set of prob-
ing tasks on UNITER [106] and LXMERT [103], to evaluate
what patterns are learned in pretraining. Hendricks et al. [301]
probe the image–language Transformers by fine-grained image–
sentence pairs, and find that verb understanding is harder than
subject or object understanding. Chen et al. [106] examine the
optimal combination of pretraining tasks via ablation study, to
compare how different pretexts contribute to the Transformers.
Despite these attempts, the interpretability of multimodal Trans-
formers is still under-studied to date.

VI. DISCUSSION AND OUTLOOK

Designing the universal MML models to excel across all
the unimodal and multimodal down-stream tasks with different
characteristics simultaneously [115], [299] is a non-trivial chal-
lenge. For instance, two-stream architectures [9], [263] are typ-
ically preferred over one-stream ones for cross-modal retrieval-
like tasks in efficiency, since the representation of each modality
can be pre-computed beforehand and reused repeatedly. That
being said, how to design task-agnostic MML architectures is
still an open challenge, in addition to other design choices such
as pretext and objective loss functions. Furthermore, a clear
gap remains between the state-of-the-art and this ultimate goal.
In general, existing multimodal Transformer models [9], [199],
[263] are superior only for specific MML tasks, as they are de-
signed specifically for only a subset of specific tasks [137], [142],
[212], [249], [260], [261], [265], [266]. Encouragingly, several

recent studies towards universal modality learning in terms of
modality-agnostic network design [3] and more task-generic
architecture design [307], [308], [309] have been introduced,
and it is hoped this will spark further investigation. To that end,
instead of exhaustively exploring the vast model design space,
seeking in-depth understanding and interpretation of a MML
model’s behaviour might be insightful for superior algorithm
design, even though the interactions and synergy across differ-
ent modalities are intrinsically complex and even potentially
inconsistent over tasks [249].

For more fine-grained MML, it is widely acknowledged that
discovering the latent semantic alignments across modalities
is critical. An intuitive strategy is to leverage semantic parts
(e.g., objects) pre-extracted by an off-the-shelf detector for
MML [103], [104], [105], [106], [112], [204], [310]. This, how-
ever, is not only complex and error-prone, but computationally
costly [207]. Several remedies introduced recently include ran-
dom sampling [113], learning concept dictionary [203], jointly
learning a region detector [271], and representation aligning
before mask prediction [263]. Given the scale of MML training
data, exploring this direction needs exhaustive computational
costs, and it is supposed that industrial research teams with rich
resources are more likely to afford. Ideally, a favourable MML
method would leave fine-grained semantic alignment across
modalities to emerge on its own, which is worthy of careful
investigation in the future.

As the learning scale expands exponentially, the training data
become inevitably noisy and heterogeneous [9], [199], [263].
It has been recently shown that properly tackling the noise
issue is useful [263], [309]. Another related facet is training
strategy, e.g., how many stages of training is superior over the
common one-stage policy [115]. Further, the quadratic com-
plexity with Transformers becomes more acute for multimodal
data due to longer input. Despite extensive research on efficient
variants [49], dedicated efficiency study for MML is still under-
estimated even empirically and call for more investigation.

Identifying the strengths of Transformers for multimodal
machine learning is a big open problem. The following main
points can be summarized from the literature: (1) Transform-
ers can encode implicit knowledge [32]. (2) The multi-head
brings multiple modelling sub-spaces that can further enhance
the expressive ability of the model. Ideally, multiple heads
after training are good and different. This is essentially a good
practice of ensemble learning. (3) Transformers intrinsically
have a nature of global aggregation that perceives the non-local
patterns. (4) Thanks to the large model capacity, Transformer
models handle the challenging domain gaps and shifts (e.g.,
linguistic and visual) better via effective pretraining on large-
scale corpora [294]. (5) Transformers can represent the inputs as
graphs, which are intrinsically compatible with more modalities,
e.g., table and SQL. (6) For modelling series and sequence
patterns (e.g., time-series), Transformers have better training and
inference efficiency against RNN-based models, thanks to their
parallel computation in training and/or inference. Transformers
are inherently permutation invariant for processing a sequence
of points, e.g., well-suited for point cloud learning [164]. (7) To-
kenization makes Transformers flexible to organize multimodal
inputs, as discussed in Section III-A1.
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VII. CONCLUSION

This survey focuses on multimodal machine learning with
Transformers. We reviewed the landscape by introducing the
Transformer designs and training in the multimodal contexts. We
summarized the key challenges and solutions for this emerging
and exciting field. Moreover, we discussed open problems and
potential research directions. We hope that this survey gives a
helpful and detailed overview for new researchers and practition-
ers, provides a convenient reference for relevant experts (e.g.,
multimodal machine learning researchers, Transformer network
designers), and encourages future progress.
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