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Abstract. Machine learning (ML) has become a mainstream ap-
proach in the fight against transaction fraud for its intelligence.
For financial institutions and businesses, low-latency detection of
fraudulent transactions in real-time is highly important as it en-
ables rapid identification and prevention. Concurrently mitigating
fraudulent transactions by using ML while also reducing latency re-
mains a challenging endeavor, for which performing inference within
programmable network devices offers a potential solution. In this
paper, we introduce MIND, conducting ML-based fraud detection
within programmable devices. MIND is prototyped on both soft-
ware and hardware network devices, including BMv2, Intel Tofino,
and NVIDIA BlueField-2 DPU, and is evaluated with three publicly
available transaction datasets. Experimental results demonstrate that
MIND detects transaction fraud in real-time, with a throughput of 6.4
terabits per second and microsecond-scale latency. Compared with
server-based solutions, MIND can process over ×800 more trans-
actions per second, along with a latency reduction of over ×1300
per transaction. At the same time, MIND attains 99.94% of server-
based benchmarks’ accuracy and 93.66% of their F1-score, exhibit-
ing only marginal degradation in classification performance. There-
fore, MIND offers substantial savings in the number of servers, lead-
ing to reduced costs and energy consumption, while providing a bet-
ter customer experience.

1 Introduction
Fraudulent activities are widespread in financial transactions nowa-
days. These refer to any intentional deception or misrepresenta-
tion by an individual or group with the aim of obtaining unautho-
rized benefits [38]. Transaction fraud can have significant and wide-
ranging harmful effects on individuals, businesses, and society as a
whole. According to a study by Juniper Research, merchants’ cumu-
lative financial losses from online transaction fraud are predicted to
surpass $343 billion between 2023 and 2027 [30]. Therefore, fraud
detection plays a crucial role in preventing and reducing the pos-
sibility of potential harm. Fraud Detection Systems (FDS) are de-
signed to identify and flag suspicious fraudulent behaviors, allowing
for prompt intervention and prevention of further damage [2]. How-
ever, the ever-evolving nature of fraudulent activities, coupled with
fraudsters’ ability to adapt to fraud detection measures, presents a
considerable challenge to traditional FDS with statistical and rule-
based analysis components [46].

To better secure electronic commerce systems, most FDS utilize
machine learning (ML) algorithms to recognize fraudulent patterns
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Figure 1. General working scenario of MIND.

and detect them in real-time transaction data streams [6]. ML has
significantly improved detection accuracy and reduced false pos-
itives thanks to its ability to analyze complex datasets and learn
from anomalies in historical transactions [4]. Despite the promis-
ing results demonstrated by previous ML-based works, accurate and
prompt detection remains a formidable task. Significant data imbal-
ance and considerable variability of fraudulent transactions both con-
tribute to the complexity [14, 33]. To reach optimal performance,
there is an ongoing development of increasingly advanced models.
However, embedding more sophisticated ML models into FDS con-
flicts with the aim of lowering detection time, which is essential
to prevent fraudulent transactions from being processed and com-
pleted. Latency directly impacts the ability of FDS to swiftly iden-
tify and respond to suspicious activities. Most real-time fraud detec-
tion services, both in research and industry, currently operate at the
millisecond-level latency [10, 8, 16, 17]. However, the escalating ve-
locity at which fraudulent activities can occur requires FDS to iden-
tify suspicious transactions not within seconds or even milliseconds,
but microseconds [19].

Programmable network devices can process data streams in par-
allel with other network functions. They have been shown to reduce
latency compared to servers, particularly when used for real-time in-
ference tasks (also referred to as in-network ML) [40, 50] by de-
ploying pre-trained ML models into the data plane, which focuses
on the actual forwarding process of data packets. However, no pre-
vious works studied its application to transaction fraud detection.
This paper presents a first-time research work in this area, specifi-
cally in the context of using in-network classifiers to distinguish be-
tween fraudulent and genuine transactions. We introduce MIND, an
in-network prototype that detects incoming fraudulent transactions.
Figure 1 shows a general deployment scenario of MIND compared
with traditional server-based FDS solutions of a financial entity. Typ-
ically, a transaction starts at a transaction terminal, passing through
one or more network switches, before arriving at a server-based FDS.
When a fraudulent transaction is detected, it is flagged to the se-



curity team and an emergency response is triggered. In MIND, the
fraudulent transaction is detected within the switch and immediately
flagged, eliminating the server processing and delay component.

MIND is implemented on a software switch (BMv2) and a hard-
ware switch (Intel Tofino), demonstrating its feasibility. Evaluation
results indicate that MIND outperforms a server-based benchmark
by processing over ×800 more transactions per second and achiev-
ing microsecond-level latency with a significant reduction of over
×1300 per transaction. At the same time, MIND attains a compa-
rable detection performance with server-based benchmarks across
evaluated models and datasets. Consequently, MIND has the poten-
tial to eliminate a large number of servers, and thereby reduce cost
and energy consumption while enhancing the customer experience.

The main contributions of this paper are as follows:

• We study the practical application of in-network ML to financial
fraud detection using transaction data and present a proof of con-
cept to demonstrate the feasibility of this approach. To the best of
our knowledge, this study is the first of its kind to investigate the
use of in-network ML for low-latency transaction fraud detection.

• We design and implement a prototype using transaction data for
feature engineering and ML classification in a programmable data
plane. Integrating the use-case-related workflow with ML pro-
cesses, we deploy the prototype on a software switch and a com-
modity hardware switch.

• We evaluate the prototype within a local testbed, considering a
wide range of ML and networking performance metrics across
different commonly used in-network ML models. Given the ab-
sence of prior switch-based fraud-detection research, server-based
benchmarks are used for comparative analysis. The results indi-
cate that MIND offers terabit-scale throughput and microsecond-
level latency while maintaining high detection performance.

2 Related Work
ML-Based Transaction Fraud Detection. Financial institutions and
businesses face the impracticality of manually inspecting each trans-
action due to the sheer volume of transactions, and users antici-
pate instantaneous responses. Rule-based expert systems have been
used for decades, drawing on established industry practices to detect
known fraudulent behaviors [24]. However, the emergence of online
transaction fraud with complex patterns, which differs significantly
from its traditional counterpart, has rendered traditional FDS ineffec-
tive in detecting and intercepting such activities [54].

In contrast, ML algorithms can effectively process large datasets
and adjust themselves based on new information, enabling them
to capture financial phenomena and adapt to evolving patterns of
fraudulent activities. Therefore, different ML models have been em-
ployed to detect transaction fraud, such as support vector machines
(SVMs) [43], naive Bayes (NB) [5], decision trees (DTs) [39],
random forests (RFs) [51, 32], and extreme gradient boosting
(XGB) [37]. Previous works have also conducted comparative anal-
ysis of multiple models applied to this field [6, 59, 4, 33, 31].

The recent surge in transaction data volume and the growing com-
plexity of fraudulent activities have led to the need for more intricate
ML models, posing challenges for real-time data processing. While
some prior studies have focused on low-latency financial fraud de-
tection [10, 9, 8], none of them attempted to employ programmable
network devices for achieving lower latency during data processing.
The most relevant and latest study presents an XGBoost accelerator
based on FPGA for speeding up inference and applying it in trans-
action fraud detection [16]. All of the CPU, GPU, and FPGA-based

designs are constrained to achieving latency at the millisecond level.
However, in the prevention of fraudulent activities, the difference
between milliseconds and microseconds can sometimes signify the
contrast between incurring substantial financial losses or avoiding
them entirely [19].

In-Network ML. The ever-growing complexity of modern com-
puter networks has made traditional network management practices
insufficient, leading to the necessity for network programmabil-
ity [34]. Programmable network devices serve as a flexible and scal-
able infrastructure, empowering network administrators to automate
network management and respond promptly to dynamic demands.

In-network computing refers to the practice of executing computa-
tions and processing data within the network infrastructure itself in-
stead of solely depending on computing resources on end hosts [48].
The network infrastructure involves a wide range of programmable
network devices such as switches, FPGAs, and NICs. The utiliza-
tion of in-network computing capitalizes on the benefits of reduced
overhead in terms of space, energy, and cost, as well as the superior
process efficiency of network devices [47, 48]. It has been applied to
various applications including network functions, caching, coordina-
tion, and distributed systems (e.g., [22, 23, 35, 15]).

In-network ML represents a special utilization scenario of in-
network computing, which refers to the offloading of ML func-
tions or inference into the data plane of programmable network de-
vices [41, 25]. Previous works on in-network ML have explored and
applied a variety of models, thereby enabling their application across
different domains [55]. While in-network ML has been identified as a
viable solution for latency reduction [20, 21, 57], the scope of its use
cases remains constrained and its application in finance has barely
been explored yet, necessitating this work.

3 Design of Proposed Solution

As a replacement for traditional server-based solutions, MIND is de-
signed to be deployed within the FDS of financial entities. MIND
enables real-time transaction fraud detection through feature engi-
neering and ML inference within the programmable data plane. More
specifically, upon receiving a fresh transaction record, MIND selects,
manipulates, and transforms raw data into ML features all within the
data plane. The features are then used for inference, classifying the
transaction as fraudulent or not. Figure 2 presents the system archi-
tecture design of MIND, described next. The control plane focuses
on managing and controlling the network traffic, while the data plane
is responsible for the actual forwarding of network packets.

3.1 Offline Training and Mapping

A MIND deployment starts by using transaction data feeds as in-
puts for ML training on a server, using both raw and hand-crafted
data fields as features (as in Figure 2-I). The resulting trained model
(Figure 2-II) is mapped into a data plane compliant model (Figure 2-
III), using match-action table constructs. A P4 [7] program is gen-
erated from this process based on the target platform architecture
(Figure 2-IV). P4 is a specialized language utilized for configuring
the packet processing and forwarding mechanisms of a data plane.
The generated P4 program consists of three main parts: architecture-
related code, feature-engineering-related code, and inference-model-
related code. The architecture-related code is where standard net-
work switching functionality is located and where the other two com-
ponents are integrated. The code pertaining to feature engineering
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Figure 2. System design of MIND with components and processes on the control plane and data plane.

varies across datasets, while the code related to ML inference is gen-
erated based on up-to-date mapping methodologies [57]. After com-
pilation, the P4 code is loaded onto the data plane target, while table
entries are loaded through the control plane (Figure 2-V). This al-
lows for real-time data processing and detection directly within the
data plane, based on the pre-trained ML model.

In general, the mapping process converts ML models trained to
run on a CPU into a network device pipeline. Unlike CPUs, where
instructions move through the pipeline, network devices move data
through the pipeline while instructions are stored in tables. An illus-
tration of the model inference mapping process to the data plane is
provided in Figure 2-II & III, with a DT model serving as an example.
This process entails decomposing the model into a series of straight-
forward operations that can be executed by the processing pipeline.
A tree-like structure with nodes and branches is obtained from model
training as shown in Figure 2-II. It exemplifies a partitioning of fea-
ture space based on two features f1 and f2. When a data sample
traverses the tree during inference, the sequence of branches it fol-
lows forms a feature split path. This path involves comparing the
input feature values against threshold values and subsequently pro-
ceeding down the appropriate branch of the tree. To map such model
structure to the data plane pipeline, match-action table rules are gen-
erated by translating the feature split path into feature tables and a
tree table, as shown in Figure 2-III. The feature tables utilize input
feature values and feature splits as match conditions and are asso-
ciated with encoded values as actions that direct the data to the next
tree node and branch, while the tree table records code pairs as match
conditions to yield the labeling decisions.

3.2 Real-Time Data Processing

Despite variations in transaction data feeds, they consistently contain
a diverse range of transaction information, such as credit card pur-
chases, online transfers, cash withdrawals, and other monetary ex-
changes. The data fields may include transaction timestamps, trans-
action amounts, merchant details, customer identities, location infor-
mation, device used for the transaction, and other attributes.

As raw data fields may not be directly suitable for effective model
training, feature engineering is essential for ML-based fraud detec-
tion as it transforms variables from raw transaction data into infor-
mative features, capturing relevant patterns and relationships specific
to fraudulent activities. By crafting engineered features, ML mod-
els can better discern between legitimate and fraudulent transactions,
leading to improved detection performance. Additionally, feature en-
gineering helps mitigate the curse of dimensionality [49], allowing
models to handle large volumes of transaction data efficiently and
enhancing detection performance.

Real-time data processing in MIND consists of two key compo-
nents in addition to network forwarding: feature engineering and ML
inference. Due to variations in raw data fields among different trans-
action feeds, the process of feature engineering varies depending on
the specific new features desired and the selection of raw features
to be utilized in their generation. Further elaboration and illustra-
tive instances of this process are provided in Section 4. Once the
features have been processed and transformed through engineering
techniques, they are used as inputs to the ML models to detect fraud-
ulent transactions.

It is crucial to consider the limitations imposed by the pro-
grammable data plane within switches when fitting the process of
feature engineering. The complexity of this process must be con-
strained, as programmable switches are typically not equipped to
handle intricate mathematical operations, such as trigonometric func-
tions, logarithmic functions, and exponential functions, nor opera-
tions like matrix multiplication or calculus. Section 4 explains how
the limitations are overcome to provide a practical implementation.

4 Implementation
We implement MIND using P4 on both Intel Tofino switch-ASIC
and BMv2. ML models are pre-trained on a server using Python and
the scikit-learn (sklearn) library [36]. This section presents the P4
targets, primary implementation obstacles with proposed solutions,
and implementation details.

4.1 P4 Targets

BMv2 is a widely used open-source behavioral software switch de-
veloped and maintained by the P4 workgroups. It is often used as a
reference switch for functionality evaluation and offers greater flex-
ibility compared to switch-ASICs as it is less resource-constrained
than hardware targets.

The second target is Intel Tofino, a programmable switch-ASIC
with multi-Tbps (terabits per second) data rate and sub-microsecond
latency [3]. Tofino can potentially be deployed at network edge or
financial-entity access, offering transaction fraud detection services.
However, like most programmable switch-ASICs, Tofino faces re-
source constraints such as limited stages and memory [12]. While
BMv2 serves as a suitable choice for P4 prototyping, the utilization
of Tofino demonstrates the viability of employing off-the-shelf plat-
forms in real-world scenarios.

4.2 Key Challenges and Solutions

Due to the inherent hardware constraints, the process of feature en-
gineering needs to be tailored to the device. The key challenges and



solutions involved in MIND’s implementation are presented below.
Lack of Data Types: P4 is designed for packet processing and

forwarding tasks, focusing on the manipulation of fixed-size fields
within packet headers, commonly represented as integers. Therefore,
P4-capable programmable data planes do not have native support
for floating-point numbers. However, in transaction feeds, transac-
tion amounts are usually floating-point numbers. To facilitate align-
ment with the P4 data plane, those amounts are converted to integers.
Since amounts often significantly vary between transactions, the con-
version does not necessarily incur a loss of information or affect ML
performances. While the conversion may discard the decimal preci-
sion, the remaining integer values retain the relative magnitude and
order of the original amount.

Lack of Mathematical Operations: P4 supports only a restricted
subset of fundamental arithmetic and logical operations. These op-
erations comprise fundamental mathematical computations such as
addition, subtraction, logical operations (such as Xor), and bit shift.
Additionally, P4 accommodates conditional constructs like if−else
conditions, providing basic decision-making capabilities. However,
other commonplace operations like multiplication, division, and vari-
able comparisons are not supported. As these operations are indis-
pensable in feature engineering for ML, different strategies are used
to perform them indirectly. For example, to compare two variables
within an if − else condition, an implicit comparison is needed.
First, the difference between two variables is calculated, and then
this difference is compared with 0. To enable operations like mul-
tiplication, division, and other complex calculations, using match-
action table lookups is a viable solution. By executing table lookups
using specific keys or matching conditions, complex feature engi-
neering can be implemented. Furthermore, instead of storing each
set of {operands, result} separately, lookup tables can efficiently
group multiple entries with shared attributes using scaling mecha-
nisms (e.g., ternary matching).

Limitations on Value Range of a Feature: Up-to-date in-network
ML mapping approaches mainly use match-action table lookups
to enable ML algorithms within the data plane [57]. When a pro-
cessed feature has an exceptionally wide value range, challenges
arise. Specifically, the range of values correlates to the number of
entries required in the match-action tables, and may exceed the re-
source constraints of the hardware in terms of memory. Transac-
tion amounts can significantly vary across transactions, with fraudu-
lent transactions often characterized by exceptionally large amounts.
Consequently, the amount field must be processed and mapped to
the data plane. Our approach is to partition transaction amounts into
two distinct components. These two components can be utilized as
ML features, substituting the original single feature and reducing ef-
fectively the total table entries. The first part encapsulates the least
significant value: thousands and below, while the second stores the
significant bits. The second part is a more important feature because
it indicates the magnitude of the transaction amount.

4.3 Data Plane Implementation

MIND’s P4 implementation incorporates feature engineering code
integrated with ML inference code generated using Planter, a modu-
lar framework for mapping trained ML models to programmable net-
work devices [57]. The implementation ensures compatibility with
Tofino 2, requiring no modifications to existing code. Tofino 2 is less
resource-constrained than Tofino, enabling the execution of more in-
tricate feature engineering, extraction of more features, and support-
ing ML models that require a higher number of stages. To cover di-

verse transaction feeds, feature engineering is performed separately
on three representative datasets [28, 42, 44] characterized by dif-
ferent raw fields, which have been widely employed in previous
works [26, 29] and are also utilized for our evaluation.

The first transaction feed originates from a dataset [28] generated
by the PaySim mobile money simulator based on real transactions
obtained from one-month financial logs of a mobile money service
deployed in Africa. Each entry includes information on a time step,
transaction amount, unique identifiers of the customer and recipient,
initial balances of both customer and recipient before the transac-
tion, and new balances of both after the transaction. Driven by the
possibility of zero balances as a distinguishing factor between fraud-
ulent and legitimate transactions, two new features (Eorig and Edest)
can be created, capturing errors in the originating and destination
accounts for each transaction. The parameter Atrans represents the
transaction amount. The variables Iorig and Norig signify the ini-
tial balance of the originating account and the new balance following
the transaction, respectively. Similarly, Idest and Ndest represent the
corresponding values for the destination account. The computation
process is demonstrated in Equation 1 and Equation 2.

Eorig = Norig +Atrans − Iorig (1)

Edest = Idest +Atrans −Ndest (2)

Generated by a data generation tool [18], the second feed [42] con-
tains credit card transactions, including the transaction date and time,
amount, the category associated with the merchant, and customer in-
formation, such as their credit card number, name, gender, date of
birth, address, city, state, occupation, and geographic coordinates.
New features can also be derived from these raw fields. For exam-
ple, the population of the customer’s city (Pcity) can be transformed
into an additional feature (Ccity) that categorizes the city based on
its level of population density, as shown in Equation 3.

Ccity =


1, 0 < Pcity < 104

2, 104 ≤ Pcity < 5 ∗ 104

3, Pcity ≥ 5 ∗ 104
(3)

The third type of feeds [44] consists of transactions conducted by
users across multiple terminals during the period spanning from Jan-
uary 2023 to June 2023. Each transaction within it comprises distinct
identifiers denoting the transaction, customer, and source terminal, as
well as the precise date and time of occurrence. Additionally, it in-
cludes the transaction amount, as well as the duration in seconds and
days that transpired prior to the transaction. The emphasis of feature
engineering lies in the creation of new time-related features (Dweek,
Fweekday , and Fworkinghour). Dweek takes on values ranging from
0 to 6, each corresponding to a specific day of the week. Its calcu-
lation is predicated on Zeller’s Congruence, an algorithmic method
designed to ascertain the specific day of the week corresponding to a
given date [53]. Since all transactions in the dataset occur in the year
2023, the algorithm can be expressed as Equation 4, where D and
M denote the day and month of the transaction date, respectively.
Two additional features (Fweekday and Fworkinghour) are shown in
Equation 5 and Equation 6. They are generated to indicate whether
the transaction took place on a weekday and during working hours,
respectively. The parameter H denotes the hour of the transaction,
spanning from 0 to 23.

Dweek =

(D +
⌊

13(M+13)
5

⌋
− 8) mod 7, M ∈ {1, 2}

(D +
⌊

13(M+1)
5

⌋
− 7) mod 7, otherwise

(4)



Fweekday =


0, Dweek ∈ {0, 1}

1, otherwise

(5)

Fworkinghour =

{
1, 6 ≤ H ≤ 19

0, otherwise
(6)

The solutions explained in Section 4.2 are applied in the imple-
mentation of MIND. For instance, modulo operations depicted in
Equation 4 are enabled within the P4 data plane using match-action
table lookups. These three datasets serve as mere illustrations, as
there is an opportunity for further exploration in feature engineering
and the discovery of new features based on raw transaction datasets.

5 Evaluation
In this section, we use openly available financial datasets to evaluate
MIND, testing its ML detection performance, latency, and through-
put. We also compare MIND running on commodity programmable
switches, Data Processing Units (DPUs), and server-based bench-
marks using different ML approaches. The results show the advan-
tages of MIND in improving throughput, lowering latency, and main-
taining detection performance across datasets and hardware targets.
Dataset Description: This study uses three publicly-available finan-
cial fraud detection datasets for evaluation, also mentioned in Sec-
tion 4. The first dataset [28] contains around 6.36 million entries
and about 0.13% of them are fraudulent transactions. The second
dataset [42] consists of 1.85 million credit card transactions, with
around 0.52% marked as fraudulent. The third dataset [44] has a col-
lection of 1.75 million transactions, exhibiting a class imbalance with
13.45% of the transactions being flagged as fraudulent.
Experiment Setup: The evaluation uses an APS-Networks
BF6064T-X Intel Tofino switch featuring 64×100G ports running
SDE 9.4.0. To conduct server-based experiments, including traffic
generation, two ASUS ESC4000A-E10 servers are used, each fur-
nished with an AMD EPYC 7302P CPU, 256GB DDR4 RAM, and
running Ubuntu 20.04 LTS. The switch is connected to both servers
via NVIDIA ConnectX-5 100G NICs and direct attach cables. The
NVIDIA BlueField-2 DPU runs Ubuntu 22.04 LTS, and is equipped
with eight ARM Cortex-A72 cores, where BMv2 runs.

5.1 ML Performance

In this binary classification, fraudulent transactions are labeled as
positive instances and others as negative. However, there is often a
marked class imbalance with the negative class substantially outnum-
bering the positive, leading to models that may disproportionately
favor the majority class and reduce effectiveness in detecting fraud.
To counteract this, the synthetic minority over-sampling technique
(SMOTE) is carried out on the datasets [11]. This approach generates
synthetic samples from the minority class, thereby enabling models
to learn from more balanced datasets.

In addition to common metrics for ML performance evaluation,
including precision, sensitivity, specificity, accuracy, and F1-score
(F1), two more informative metrics for imbalanced datasets are used,
namely Matthew’s correlation coefficient (MCC) [13] and balanced
classification rate (BCR) [45]. The possible range of MCC is between
-1 and 1, where 1 represents a perfect classification, 0 represents a
random classification, and -1 represents a completely wrong classifi-
cation. For all other six metrics, the possible value ranges from 0 to
1, where 1 denotes the best score and 0 indicates the worst.
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Figure 3. The average (avg) ratio of precision (PRE), sensitivity (SEN),
specificity (SPE), accuracy (ACC), F1, MCC, and BCR, switch-based

solutions relative to server-based benchmarks, across models and datasets.

ML performances on all three datasets are presented in Table 1,
covering the five models that are commonly used in this task and also
supported by up-to-date in-network ML mapping approaches. All
the values presented in the table have been rounded to two decimal
places, so the representation of 100% does not denote an exact 100%,
but rather a value within the range of 99.995...% to 99.999...%.

While both BMv2 and Tofino exhibit the same outcomes, as in-
dicated in the “Switch” columns of Table 1, they both experience a
reduction in evaluation metrics when compared to the server-based
benchmark results, as reflected in the “Server” columns. The accu-
racy and F1 loss average at 0.06% and 5.20% respectively across all
evaluated datasets and models, highlighting the overall effectiveness
of MIND in classification. More specifically, loss of precision, sen-
sitivity, and specificity are 0.85%, 7.19%, and 0.02%, respectively.
In terms of MCC and BCR, an average discrepancy of 4.63% and
3.60% is showcased respectively, illustrating MIND’s ability to han-
dle imbalanced datasets.

The average ratios of all metrics relative to a server benchmark
are also computed. As shown in Figure 3, the average precision and
sensitivity of MIND can respectively achieve 98.63% and 90.94%
of the ML benchmarks’ precision and sensitivity. The F1 ratio aver-
aged at 93.57%, indicating a moderate balance between precision and
sensitivity. The MCC and BCR ratios reach 94.39% and 95.99%, re-
spectively. The specificity and accuracy ratios are even higher, being
99.98% and 99.94% correspondingly. In conclusion, even with con-
strained model sizes and sometimes fewer features, MIND demon-
strates promising performance across models and datasets.

To further explore MIND’s ML performance with different mod-
els, we calculate the metrics ratios of each model relative to a server
benchmark, thus facilitating a comprehensive analysis. As shown in
Figure 4, SVM and RF have relatively lower ratios for most metrics,
compared with the other three in-network ML algorithms. The ob-
served performance can be attributed to several factors beyond the
inherent loss resulting from their mapping approaches. In the case of
SVM, server-based benchmarks benefit from the ability to employ a
broader range of features and utilize the entire training set for ML
model training. However, the implementation of in-network SVM
necessitates a more restricted feature set and training on a subset of
the data to accommodate the inherent limitations of the switch. Re-
garding RF, it encounters challenges primarily due to the constraint
of mapping, wherein the feasibility of mapping a model is restricted
by its size. This leads to a substantial discrepancy in model sizes
between server-based benchmarks and switch-based solutions. Con-
sidering the second dataset to illustrate, the server-based benchmark
employs an ensemble of 19 DTs with a maximum depth of 18 for
each tree. Such model size proves impractical for a switch-based im-
plementation, compelling a reduction in the number of DTs to 5, with
a maximum depth of 5 for each DT. As indicated by the notes of Ta-
ble 1, in-network SVM and NB encounter suitability and scalability
challenges compared to tree ensemble models, as they can exceed the
stage limitation when dealing with a higher number of features.

The ML performance on the second dataset is comparatively lower



Dataset 1: PaySim Financial Fraud Detection Dataset [28]
Precision Sensitivity Specificity Accuracy F1 MCC BCR

Model Switch Server Switch Server Switch Server Switch Server Switch Server Switch Server Switch Server

SVM‡ 86.44 88.86 47.41 81.66 99.99 99.99 99.92 99.96 61.24 85.11 63.99 85.16 73.70 90.82
NB‡ 33.77 34.00 32.48 33.03 99.92 99.92 99.83 99.83 33.12 33.51 33.04 33.43 66.20 66.47
DT 96.46 98.91 99.57 99.70 100.00 100.00 99.99 100.00 97.99 98.52 98.00 98.53 99.78 99.85
RF 99.55 100.00 94.38 99.70 100.00 100.00 99.99 100.00 96.90 99.85 96.93 99.85 97.19 99.85
XGB 96.51 99.94 99.57 99.70 100.00 100.00 99.99 100.00 98.02 99.82 98.03 99.82 99.78 99.85

Dataset 2: Sparkov Credit Card Transactions Fraud Detection Dataset [42]
Precision Sensitivity Specificity Accuracy F1 MCC BCR

Model Switch Server Switch Server Switch Server Switch Server Switch Server Switch Server Switch Server
SVM 9.86 10.58 63.04 63.31 96.90 97.12 96.72 96.94 17.05 18.12 24.05 25.03 79.97 80.21
NB 31.67 32.11 47.22 47.85 99.45 99.46 99.17 99.19 37.92 38.43 38.28 38.81 73.34 73.66
DT 94.18 94.33 57.35 78.71 99.98 99.98 99.76 99.86 71.29 85.82 73.39 86.11 78.66 89.34
RF 94.38 95.80 48.14 76.20 99.98 99.98 99.74 99.86 63.76 84.88 67.31 85.37 74.06 88.09
XGB 94.42 94.76 64.67 80.62 99.98 99.98 99.80 99.87 76.77 87.12 78.05 87.34 82.33 90.30

Dataset 3: Fraudulent Transaction Detection Dataset [44]
Precision Sensitivity Specificity Accuracy F1 MCC BCR

Model Switch Server Switch Server Switch Server Switch Server Switch Server Switch Server Switch Server
SVM 97.01 98.27 96.30 96.37 99.54 99.74 99.10 99.29 96.65 97.31 96.14 96.91 97.92 98.05
NB 99.42 98.78 95.20 96.26 99.91 99.82 99.28 99.34 97.27 97.50 96.89 97.13 97.56 98.04
DT 99.99 100.00 96.41 96.42 100.00 100.00 99.52 99.52 98.17 98.18 97.92 97.92 98.21 98.21
RF 99.99 100.00 96.41 96.42 100.00 100.00 99.52 99.52 98.17 98.18 97.92 97.92 98.21 98.21
XGB 99.99 100.00 96.41 96.42 100.00 100.00 99.52 99.52 98.17 98.18 97.92 97.92 98.21 98.21

‡ In-network SVM and NB on Dataset 1 surpass Tofino’s predefined 12-stage constraint as a higher number of features are used compared to
the other two datasets. Consequently, their performance is emulated based on Tofino 2 which provides the capability to accommodate up to 20
stages. Models in the remaining entries can all fit within Tofino’s limitations.

Table 1. ML classification performance with all three datasets (%). MIND runs limited-size models on BMv2 and Tofino (or emulated on Tofino 2). The
benchmark runs on a server using Sklearn and unlimited-size models.
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Figure 4. The average (avg) ratio (%) of different ML models in terms of all used metrics, switch-based solutions relative to server-based benchmarks.

than that of the other two datasets primarily due to the available fea-
tures’ limited effectiveness in the dataset. Notably, SVM and NB ex-
hibit inferior performance when compared to tree ensemble models
which possess a greater capacity for capturing intricate nonlinear re-
lationships and interactions among features. However, even tree en-
semble models require a large model size to achieve a relatively high
ML performance. In our evaluation, server-based DT has a depth of
9, while RF and XGB are composed of 19 DTs with a maximum tree
depth of 18 and 4 DTs with a maximum tree depth of 8, respectively.

Notably, publicly accessible server-based solutions utilizing
these models demonstrate similar performance across the three
datasets [27, 42, 44], thereby validating our results. The benchmark
outcomes also exhibit consistency with prior studies using the same
datasets [26, 29]. Additionally, while there is clear potential for fu-
ture advancements in in-network deep learning (DL), these models
are so far impractical to fit directly into programmable switches due
to their computational demands exceeding the devices’ capabilities.

5.2 Networking Performance

To assess networking performance, an extensive evaluation is con-
ducted on the data plane, focusing on latency and throughput, pro-
viding insights into the efficiency and effectiveness of MIND. La-
tency measures the time a data packet travels from the source to the
destination through the hardware switch, while throughput refers to
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Figure 5. The pipeline R-Latency of MIND on Tofino with different
in-network ML models across datasets and switch.p4.

the amount of data that can be transmitted over the switch within a
given period.

Due to Tofino-related NDAs, we present the relative pipeline la-
tency (R-Latency) of MIND to that of an Intel reference switch
program (switch.p4), both determined by Tofino’s compiler. The
switch.p4 program describes the data plane of an L2/L3 switch, sup-
porting a range of features encompassing basic L2 switching and ba-
sic L3 routing [1]. As shown in Figure 5, MIND exhibits even lower
latency than half of switch.p4 across all datasets and evaluated in-
network models, except for the in-network SVM and NB on dataset
1, as explained in the notes of Table 1). This presents the capacity
of MIND to attain latency performance comparable to that of sim-
ple packet switching, even under resource constraints. Additionally,
MIND can be deployed in parallel with other networking functions.

Moreover, to evaluate MIND’s framework latency, measurements
are conducted between two servers with a switch positioned in
between. The framework R-Latency is calculated as the ratio be-




������� 
������� 
������� 	�
���

���

���

���

�
�
��
��
��

���

�
��
��	
�	
	��������

����
����
����

Figure 6. The framework R-Latency of MIND on Tofino with different
in-network ML models across all datasets. The benchmark (BM) is a

server-based industrial solution for real-time payment fraud detection.

tween the measured MIND latency and the measurement obtained
from simple forwarding through the switch. Precision Time Proto-
col (PTP) with the ptp4l toolkit is applied in the measurements. The
findings depicted in Figure 6 reveal that the measured latency of
MIND is on average approximately 7.21% higher than simple for-
warding on the framework level. More importantly, MIND achieves a
latency level at the microsecond scale, which stands in stark contrast
to an AI-driven real-time fraud detection solution running on a single
server that typically operates at the millisecond latency level [17].
Scaling down from millisecond to microsecond level, MIND pro-
vides around ×1300 latency reduction. The similar relative relation-
ship among models’ latency presented in Figure 5 and Figure 6 mu-
tually cross-validates the correctness of the experiments.

To evaluate maximum throughput capacity, a snake configura-
tion is used, whereby traffic is routed in a loop from each port to
the next, enabling communication across all 64 ports. Packet gen-
eration is done using DPDK 20.11.1 and PktGen 21.03.0. The re-
sults show that MIND reaches line rate on a Tofino commercial
switch, achieving a throughput of 6.4Tbps across all three datasets.
While server-based solutions process 3.5 million inferences per sec-
ond [17], MIND reaches a packet rate of 2.9 Bpps (billion packets
per second), providing ×800 throughput improvement. In conclu-
sion, while ML performance may vary with different datasets, the
switch-system performance is guaranteed by design.

Beyond raw transactions, the datasets used include private cus-
tomer information. Such information need not leave the financial
institute’s premise (with the network platform at its edge) and can
be securely stored in encrypted databases on smart networking plat-
forms with encryption/decryption cores, such as DPUs. Therefore,
an evaluation of throughput and latency is conducted on an NVIDIA
BlueField-2 DPU. P4C compiler is used to compile the P4 code uti-
lizing the v1model architecture to a BMv2 running on DPU’s Arm
cores. On average, MIND achieves sub-millisecond latency across
models, outperforming server-based solutions by ×4. Additionally,
our experiments explore the use of Transport Layer Security (TLS),
a widely used encryption protocol designed to ensure robust commu-
nications security across networks. Kernel TLS offloading using two
DPUs is deployed and tested via OpenSSL, demonstrating MIND
can be practical when traffic encryption is used.

6 Discussion
In fraud detection, false negatives (FN) are instances wherein FDS
fail to identify fraudulent transactions, allowing them to proceed as
legitimate, leading to potential financial losses and reputation dam-
age. In contrast to FN, false positives (FP) occur when valid transac-
tions are mistakenly identified as fraudulent, causing customer dis-
satisfaction and burdening operational resources due to false alarms.
An ideal model should minimize both FN and FP, but there is often an
inherent trade-off between the two. For instance, implementing strin-
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Figure 7. (a) Scatter plot of the number of FP versus the number of FN for
different parameter settings. (b) Scatter plot of the precision (PRE) rate

versus sensitivity (SEN) rate for different parameter settings.

gent rules to reduce FN may inadvertently elevate FP, and vice versa.
This trade-off is also evident in the interplay between precision and
sensitivity. We use XGB on the Sparkov simulated dataset [42] as an
illustrative example of the trade-off, varying the number of trees from
one to twenty while maintaining constant maximum tree depth. Five
rounds of experimentation are conducted, with maximum tree depth
increased from 4 to 8 for the respective rounds. The results, shown in
Figure 7 (a), reveal this characteristic trade-off pattern, wherein mod-
els exhibiting elevated FN correspondingly demonstrate decreased
FP, and vice versa. Figure 7 (b) shows that the precision-sensitivity
trade-off follows a similar pattern: higher precision may be accom-
panied by lower sensitivity, and vice versa. Addressing this trade-off
depends on the relative significance of FN versus FP (or sensitiv-
ity versus precision). In transaction fraud detection, reducing FN (or
increasing sensitivity) is often prioritized, as the primary goal is min-
imizing the losses caused by fraud.

Knowledge from separate decentralized nodes can be shared,
where nodes of MIND send digest messages to a controller, en-
abling online and federated learning, following ideas applied to IoT
traffic [52]. While the deployment can be distributed [58], MIND’s
use case requires the ability to locally analyze and flag fraudulent
transactions, meaning that a MIND instance needs to be able to act
autonomously on transactions. Alternatively, a hybrid ML deploy-
ment [56] can be used to further improve classification performance
by using a limited-size model on a switch and a large model on a
server.

7 Conclusion
This paper presented a time-sensitive application of in-network ML
for detecting transaction fraud. A prototype named MIND was devel-
oped, leveraging programmable network devices to detect fraudulent
transactions within the data plane. MIND achieves high classification
performance and line-rate throughput while maintaining ultra-low,
microsecond-scale latency. Compared to server-based benchmarks,
MIND processes over ×800 more transactions per second and re-
duces latency by over ×1300 per transaction. Moreover, the auto-
mated implementation of MIND facilitates the future processing of
new datasets and other ML models. This work is a proof of concept
for achieving ML-based in-network detection for transaction fraud
based on real-time feeds.

Acknowledgements
This work was partly funded by VMware. We acknowledge support
from Intel and NVIDIA.



References
[1] switch.p4. https://github.com/p4lang/switch/tree/master/p4src.
[2] A. Abdallah, M. A. Maarof, and A. Zainal. Fraud Detection System: A

Survey. J. Netw. Comput. Appl., 68:90–113, 2016.
[3] APS Networks. BF6064X-T Advanced Programmable Switch.

https://www.aps-networks.com/wp-content/uploads/2021/07/210712_
APS_BF6064X-T_V04.pdf[Online, accessed Feb-2023].

[4] J. O. Awoyemi, A. O. Adetunmbi, and S. A. Oluwadare. Credit Card
Fraud Detection Using Machine Learning Techniques: A Comparative
Analysis. In ICCNI 2017, pages 1–9. IEEE, 2017.

[5] A. C. Bahnsen, A. Stojanovic, et al. Improving Credit Card Fraud De-
tection with Calibrated Probabilities. In Proceedings of the 2014 SIAM
international conference on data mining, pages 677–685. SIAM, 2014.

[6] S. Bhattacharyya, S. Jha, et al. Data Mining for Credit Card Fraud: A
Comparative Study. Decis. Support Syst., 50(3):602–613, 2011.

[7] P. Bosshart, D. Daly, G. Gibb, et al. P4: Programming Protocol-
Independent Packet Processors. ACM SIGCOMM Computer Communi-
cation Review, 44(3):87–95, 2014.

[8] B. Branco, P. Abreu, et al. Interleaved Sequence RNNs for Fraud Detec-
tion. In Proceedings of the 26th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 3101–3109, 2020.

[9] S. Cao, X. Yang, et al. TitAnt: Online Real-time Transaction Fraud
Detection in Ant Financial. arXiv preprint arXiv:1906.07407, 2019.

[10] F. Carcillo et al. Scarff: A Scalable Framework for Streaming Credit
Card Fraud Detection with Spark. Inf. Fusion, 41:182–194, 2018.

[11] N. V. Chawla, K. W. Bowyer, L. O. Hall, et al. SMOTE: Synthetic
Minority Over-Sampling Technique. JAIR, 16:321–357, 2002.

[12] X. Chen, S. L. Feibish, Y. Koral, J. Rexford, O. Rottenstreich, S. A.
Monetti, and T.-Y. Wang. Fine-grained queue measurement in the data
plane. In Proceedings of the 15th International Conference on Emerg-
ing Networking Experiments And Technologies, pages 15–29, 2019.

[13] D. Chicco and G. Jurman. The Advantages of the Matthews Correlation
Coefficient (MCC) over F1 Score and Accuracy in Binary Classification
Evaluation. BMC genomics, 21(1):1–13, 2020.

[14] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi.
Credit Card Fraud Detection and Concept-Drift Adaptation with De-
layed Supervised Information. In IJCNN 2015, pages 1–8. IEEE, 2015.

[15] H. T. Dang, P. Bressana, et al. P4xos: Consensus as A Network Service.
IEEE/ACM Transactions on Networking, 28(4):1726–1738, 2020.

[16] A. Gajjar et al. FAXID: FPGA-Accelerated XGBoost Inference for Data
Centers using HLS. In FCCM 2022, pages 1–9. IEEE, 2022.

[17] T. Groenfeldt. IBM Puts AI On A Chip To Improve Fraud
Detection In Real-Time Payments. Forbes, 2022. URL
https://www.forbes.com/sites/tomgroenfeldt/2022/04/06/ibm-put
s-ai-on-a-chip-to-improve-fraud-detection-in-real-time-payments/.

[18] B. Harris. Sparkov Data Generation. https://github.com/namebrandon
/Sparkov_Data_Generation, 2022.

[19] K. Herrell. Defeating latency is at the heart of the AI,
fraud and data challenges at banks. BAI, 2020. URL
https://www.bai.org/banking-strategies/defeating-latency-is-at-the
-heart-of-the-ai-challenge-at-banks/.

[20] X. Hong, C. Zheng, S. Zohren, and N. Zilberman. Linnet: Limit Order
Books Within Switches. In Proceedings of the SIGCOMM’22 Poster
and Demo Sessions, pages 37–39. 2022.

[21] X. Hong, C. Zheng, et al. LOBIN: In-Network Machine Learning for
Limit Order Books. In HPSR 2023, pages 159–166. IEEE, 2023.

[22] X. Jin, X. Li, H. Zhang, et al. NetCache: Balancing Key-value Stores
with Fast In-Network Caching. In Proceedings of the 26th Symposium
on Operating Systems Principles, pages 121–136, 2017.

[23] X. Jin, X. Li, H. Zhang, et al. NetChain: Scale-free Sub-RTT Coordi-
nation. In NSDI 2018, pages 35–49, 2018.

[24] Y. Kou, C.-T. Lu, S. Sirwongwattana, and Y.-P. Huang. Survey of Fraud
Detection Techniques. In IEEE International Conference on Network-
ing, Sensing and Control, 2004, volume 2, pages 749–754. IEEE, 2004.

[25] C. Lao, Y. Le, K. Mahajan, et al. ATP: In-Network Aggregation for
Multi-Tenant Learning. In NSDI, volume 21, pages 741–761, 2021.

[26] L. K. Lok, V. A. Hameed, and M. E. Rana. Hybrid Machine Learning
Approach for Anomaly Detection. Indonesian Journal of Electrical
Engineering and Computer Science, 27(2):1016, 2022.

[27] E. Lopez-Rojas. Synthetic Financial Datasets For Fraud Detection. ht
tps://www.kaggle.com/datasets/ealaxi/paysim1, 2017.

[28] E. Lopez-Rojas, A. Elmir, and S. Axelsson. PaySim: A Financial Mo-
bile Money Simulator for Fraud Detection. In EMSS 2016, pages 249–
255. Dime University of Genoa, 2016.

[29] A. Madhavi and T. Sivaramireddy. Real-time credit card fraud detec-
tion using spark framework. In Machine Learning Technologies and
Applications, pages 287–298. Springer, 2021.

[30] N. Maynard. Online Payment Fraud: Market Forecasts, Emerging
Threats & Segment Analysis 2022-2027. Juniper Research, 2022.
URL https://www.juniperresearch.com/researchstore/fintech-payment
s/online-payment-fraud-research-report.

[31] S. Mittal and S. Tyagi. Performance Evaluation of Machine Learning
Algorithms for Credit Card Fraud Detection. In Confluence 2019, pages
320–324. IEEE, 2019.

[32] S. Nami and M. Shajari. Cost-Sensitive Payment Card Fraud Detection
Based on Dynamic Random Forest and k-Nearest Neighbors. Expert
Systems with Applications, 110:381–392, 2018.

[33] X. Niu et al. A Comparison Study of Credit Card Fraud Detection: Su-
pervised Versus Unsupervised. arXiv preprint arXiv:1904.10604, 2019.

[34] B. A. A. Nunes, M. Mendonca, et al. A Survey of Software-Defined
Networking: Past, Present, and Future of Programmable Networks.
IEEE Communications surveys & tutorials, 16(3):1617–1634, 2014.

[35] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu. Stateless Datacenter
Load-Balancing with Beamer. In NSDI 2018, pages 125–139, 2018.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, et al. Scikit-learn: Machine
learning in Python. JMLR, 12:2825–2830, 2011.

[37] C. V. Priscilla and D. P. Prabha. Influence of Optimizing XGBoost to
Handle Class Imbalance in Credit Card Fraud Detection. In ICSSIT
2020, pages 1309–1315. IEEE, 2020.

[38] A. Reurink. Financial Fraud: A Literature Review. Journal of Economic
Surveys, 32(5):1292–1325, 2018.

[39] Y. Sahin et al. A Cost-Sensitive Decision Tree Approach for Fraud
Detection. Expert Systems with Applications, 40(15):5916–5923, 2013.

[40] D. Sanvito, G. Siracusano, and R. Bifulco. Can The Network Be The
AI Accelerator? In Proceedings of the 2018 Morning Workshop on In-
Network Computing, pages 20–25, 2018.

[41] A. Sapio, M. Canini, et al. Scaling Distributed Machine Learning with
In-Network Aggregation. arXiv preprint arXiv:1903.06701, 2019.

[42] K. Shenoy. Credit Card Transactions Fraud Detection Dataset. https:
//www.kaggle.com/datasets/kartik2112/fraud-detection, 2022.

[43] G. Singh, R. Gupta, A. Rastogi, et al. A Machine Learning Approach for
Detection of Fraud Based on SVM. International Journal of Scientific
Engineering and Technology, 1(3):192–196, 2012.

[44] S. Singh. Fraudulent Transaction Detection Dataset. https://www.kagg
le.com/datasets/sanskar457/fraud-transaction-detection, 2023.

[45] A. Tharwat. Classification Assessment Methods. Applied computing
and informatics, 17(1):168–192, 2020.

[46] A. Thennakoon, C. Bhagyani, S. Premadasa, S. Mihiranga, and N. Ku-
ruwitaarachchi. Real-time Credit Card Fraud Detection Using Machine
Learning. In Confluence 2019, pages 488–493. IEEE, 2019.

[47] Y. Tokusashi, H. Matsutani, and N. Zilberman. LaKe: the Power of
In-Network Computing. In ReConFig 2018, pages 1–8. IEEE, 2018.

[48] Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and N. Zilberman. The
Case for In-Network Computing On Demand. In Proceedings of the
14th EuroSys Conference 2019, pages 1–16, 2019.

[49] M. Verleysen and D. François. The Curse of Dimensionality in Data
Mining and Time Series Prediction. In International work-conference
on artificial neural networks, pages 758–770. Springer, 2005.

[50] Z. Xiong and N. Zilberman. Do Switches Dream of Machine Learning?
Toward In-Network Classification. In Proceedings of the 18th ACM
workshop on hot topics in networks, pages 25–33, 2019.

[51] S. Xuan, G. Liu, Z. Li, et al. Random Forest for Credit Card Fraud
Detection. In ICNSC 2018, pages 1–6. IEEE, 2018.

[52] M. Zang, C. Zheng, T. Koziak, N. Zilberman, et al. Federated Learning-
Based In-Network Traffic Analysis on IoT Edge. In 2023 IFIP Network-
ing Conference (IFIP Networking), pages 1–6. IEEE, 2023.

[53] Zeller. Die Grundaufgaben der Kalenderrechnung auf neue und verein-
fachte Weise gelöst, 1882.

[54] Z. Zhang, X. Zhou, X. Zhang, L. Wang, and P. Wang. A Model Based on
Convolutional Neural Network for Online Transaction Fraud Detection.
Security and Communication Networks, 2018, 2018.

[55] C. Zheng, X. Hong, D. Ding, S. Vargaftik, Y. Ben-Itzhak, and N. Zil-
berman. In-Network Machine Learning Using Programmable Network
Devices: A Survey. IEEE Communications Surveys & Tutorials, 2023.

[56] C. Zheng, Z. Xiong, T. T. Bui, et al. IIsy: Hybrid In-Network Clas-
sification Using Programmable Switches. IEEE/ACM Transactions on
Networking, 2024.

[57] C. Zheng, M. Zang, X. Hong, L. Perreault, R. Bensoussane, et al.
Planter: Rapid Prototyping of In-Network Machine Learning Inference.
ACM SIGCOMM Computer Communication Review, 2024.

[58] C. Zheng et al. DINC: Toward Distributed In-Network Computing. Pro-
ceedings of the ACM on Networking, 1(CoNEXT3):1–25, 2023.

[59] Z. Zojaji, R. E. Atani, A. H. Monadjemi, et al. A Survey of Credit Card
Fraud Detection Techniques: Data and Technique Oriented Perspective.
arXiv preprint arXiv:1611.06439, 2016.


