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Abstract—Performance in an engineering system tends to
degrade over time due to a variety of wearing or ageing
processes. In supervisory controlled processes there are typically
many signals being monitored that may help to characterize
performance degradation. It is preferred to select the least
amount of information to obtain high quality of predictive anal-
ysis from a large amount of collected data, in which labeling
the data is not always feasible. To this end a novel unsupervised
feature selection method, robust with respect to significant mea-
surement disturbances, is proposed using the notion of “weak
monotonicity” (WM). The robustness of this notion makes it
very attractive to identify the common trend in the presence of
measurement noises and population variation from the collected
data. Based on WM, a novel suitability indicator is proposed
to evaluate the performance of each feature. This new indica-
tor is then used to select the key features that contribute to
the WM of a family of processes when noises and variations
among processes exist. In order to evaluate the performance of
the proposed framework of the WM and suitability, a compara-
tive study with other nine state-of-the-arts unsupervised feature
evaluation and selection methods is carried out on well-known
benchmark datasets. The results show a promising performance
of the proposed framework on unsupervised feature evaluation
in the presence of measurement noises and population variations.

Index Terms—Robust feature selection, suitability, unsuper-
vised feature evaluation, weak monotonicity (WM).
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I. INTRODUCTION

MANY engineering systems naturally have monotonic
characteristics (or trends) when ageing cannot be

ignored, such as various types of wear encountered in industry
from surface fatigue to corrosion and cracking [1], [2]. The
existence of trends plays an important role in predicting future
behaviors or predictive analysis [3], [4]. However, the trends
may be not always visible from corrupted measurements. This
work focuses on identifying key features that contribute to the
trends of the system when noises and uncertainties exists.

Many existing techniques have been proposed to select key
features from data measurements. Feature selection mainly
focuses on choosing a small number of representative features
from the original feature set [5]. It plays an important role in
reducing dimensionality, and leads to an improved efficiency
in modeling [6]. Various supervised learning algorithms have
been proposed if the available dataset is labeled, such as the
Fisher criterion [7], the Pearson correlation [8], and feature
selection with the sequential forward and sequential backward
method [9].

It is highlighted that feature selection is different from
feature learning, which learns features from datasets with
transformation or latent learning. There are many used
feature learning methods include the convolutional neural
network [10], long short-term memory [11], and manifold
learning [12]. The extracted features from these methods are
a combination or transformation of the datasets, making the
results difficult to be interpreted. On the contrary, feature selec-
tion usually identifies features based on some cost functions,
which is usually application driven.

When the dataset is not able to be labeled, the unsuper-
vised learning algorithm is a suitable choice. The unsupervised
feature selection is widely encountered [13], as labeling the
data requires extra efforts, and it is even not feasible to label
the data in some cases, that is, exploratory data analysis for
initial investigations. Existing unsupervised feature selection
techniques usually evaluate features by defining some cost
functions, such as data similarity [8] and local discriminative
information [14]. Then, features are selected by measuring the
cost with their corresponding ranking. As unsupervised learn-
ing schemes are data driven, the quality of data will greatly
affect the model performance, and sometimes lead to unac-
cepted performance as indicated in [13]. In terms of selecting
representative features for prediction analysis, it is assumed
that adding trend information into the feature selection process
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will help to improve model performance on selecting key
features for the prediction.

This work proposes a novel concept of weak monotonicity
(WM) to add robust trends to unsupervised feature selection
techniques, which tries to keep the trend in the presence of
noises and uncertainties. With the concept of WM, it is possible
to characterize the trend using statistical properties derived from
a family of processes coming from the same population. Once
the trend of a process is captured by the WM, it can be served as
some inherent “model” information. Such model information
can be used to define a cost to evaluate the importance of dif-
ferent features, and unsupervised select representative features
that contribute to the trend. Because the WM uses statistics
calculated from a family of processes to define the cost, the
unsupervised feature selection model is expected to have a
better generalization ability in identifying key features, and
robust to measurement noises and disturbances.

The concept of monotonicity used for trend analysis is
usually mathematically modeled with strong assumptions as
shown in [15] and [16]. In engineering applications, these
analysis techniques are not directly applicable due to dif-
ficulty in checking assumptions. Some research utilizes the
concept of strict monotonicity (SM) to describe processes
with clear trends, and evaluates features for practical appli-
cations [4], [17]. When the trends are corrupted by noises
or variations among the family of processes, the SM cannot
always work well. There are initial attempts to employ the
concept of WM in biomedical engineering applications [18],
however, the method developed in [18] uses a conservative
fixed bound as a priori. Therefore, more robust measures with
respect to noises and variations need further investigations.

Similarity is known as an important index to characterize
the common behavior when a family of processes with sim-
ilar trends are considered [8], [18]. With leveraging the WM
and the similarity measures, similar to the standard unsuper-
vised feature selection technique, a new indicator in terms
of suitability is introduced to evaluate features. Such a robust
measure can be used to capture the common trend for a family
of processes with noises and variations among the population,
and with applications in unsupervised feature selection.

The contributions of this article are summarized as follows.
1) A new concept of WM is proposed to describe the trend

of a process with consideration of measurement noises
and variations.

2) Along with the WM, the similarity measure is used to
capture the common trend of a family of processes.

3) A new algorithm is developed to systematically estimate
the uncertainty or noise level in a family of processes.

4) A novel suitability indicator (cost) is developed to eval-
uate and identify representative features for common
trends existing in a family of processes.

5) Extensive comparative studies with nine state-of-the-art
unsupervised feature selection methods using the well-
known datasets are presented to show the effectiveness
of the proposed method.

The remainder of this article is organized as follows.
Section II presents the basic concepts of SM and WM.
Section III discusses unsupervised feature evaluation with a
new cost of suitability. The effectiveness of the proposed

method is illustrated by comparisons with the existing meth-
ods on well-known datasets in Section IV, and the discussion
is presented in Section V. Finally, conclusions are drawn in
Section VI.

II. MONOTONICITY AND WEAK MONOTONICITY

This section introduces the concept of a monotonicity signal
and its extension: a WM to capture the trend of a signal.

A. Notations

The set of real numbers is denoted as R, and the set of
natural numbers is denoted as N . Let {�j}j=1,2,...,M be a family
of M processes. The notation F ∈ R

Np×m×M denotes the matrix
coming from the feature set for the M processes with Np rows
and m columns. The vector xj

i denotes the ith feature vector
derived from the jth process. Each element of xj

i contains the
feature value at time step k of the jth process, which is denoted
as xj

k,i ∈ R, k = 1, 2, . . . ,Np, with Np denoting the duration
of the process. The set F ⊂ R

Np×m contains m features with
time duration Np.

B. Strict Monotonicity

First, we introduce the concept of the SM for a sequence
of measurements of a scalar-valued signal (it is seen from
the following text, but we may as well state it up front),
zk is a real scalar-valued variable, measured at time tk,
k is an integer counting the events. Without abuse of
notion, the pair {tk, zk}k∈N is sometimes used to present this
signal.

Definition 1: A signal {tk, zk}k∈N is called strictly mono-
tonically increasing if the following condition holds:

tk+1 > tk, tk
k→∞−−−→∞

zk+1 > zk, k = 1, 2, . . . (1)

where k is the index of sampling instant.
It is usually hard to find strictly monotonically increasing

or decreasing signals in engineering applications. Most signals
have a trend of monotonicity. In order to capture such a trend,
the following measure Mo is proposed for a finite duration
signals {tk, zk}k=1,2,...,Np [4]

Mo = n+

Np − 1
− n−

Np − 1
(2)

where, n+ is the number of points with larger values than the
previous instants along Np points of the signal zk, which can
be calculated as

n+ =
Np∑

k=1

Numk (3)

and Numk is the monotonically increasing point

Numk+1 =
{

1, if zk+1 > zk

0, else
k = 0, . . . ,Np − 1. (4)

Similar, we can obtain the number of monotonically
decreasing points n− as

n− =
Np∑

k=1

Numk. (5)
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and the monotonically increasing point Numk is defined as

Numk+1 =
{

1, if zk+1 < zk

0, else
k = 0, . . . ,Np − 1. (6)

Remark 1: It is worthwhile to highlight that we can use the
SM to describe a trend of a monotonically decreasing signal
as well. It is noted that if the signal {zk}k=1,2,...,Np is mono-
tonically increasing (decreasing), then Mo = 1 (Mo = −1). If
Mo > 0, the signal {tk, zk}k=1,2,...,Np has a trend of mono-
tonically increasing, while Mo < 0 indicates a trend of
monotonically decreasing in a signal.

Due to the existences of noises in sensor measurements,
sometimes, the SM trend is not clear from the measured signal.
In order to capture the existing trend with the consideration
of noises, the notion of WM is introduced next.

C. Weak Monotonicity

Definition 2: A signal {tk, zk}k∈N is called weakly mono-
tonically increasing if there exists a constant � > 0 such that
the following condition holds:

tk+1 > tk, tk
k→∞−−−→∞

zk+1 ≥ zk − δk, k = 1, 2, . . . (7)

where δk is a random zero mean variable with either a positive
or negative value bounded by maxk∈N |δk| ≤ �.

Remark 2: The sequence {δk}k=1,2,..., represents the noise
and uncertainty at each measurement, and it affects the cal-
culation of the monotonicity measure. There also may have
uncertainty in the measurement time instants. However, the
time uncertainties are typically small comparing to δk, and of
course do not affect the trend in the signal. Therefore, the
current study only models the value measurement uncertainty.

The following measure WMo is used to check the WM
(increasing) trend of a finite duration of this signal:

WMo = An+

Np − 1
− An−

Np − 1
(8)

where An+ is the number of increasing points in the sense
of WM

An+ =
Np∑

k=1

ANumk (9)

and the weak monotonically increasing point ANumk is
defined as

ANumk+1 =
{

1, if zk+1 ≥ zk − δk

0, else.
(10)

Then, the number of weak monotonically decreasing points
An− can be calculated in the similar way

An− =
Np∑

k=1

ANumk (11)

where the weak monotonically decreasing point ANumk is
defined as

ANumk+1 =
{

1, if zk+1 < zk − δk

0, else.
(12)

Fig. 1. Illustrations of signals with SM and WM characteristics.

Remark 3: Both Mo and WMo are in the range of [−1, 1].
When they are close to 1 or −1, they indicate strong mono-
tonically increasing or decreasing trend of a signal.

Remark 4: In general, it is very hard to find the bound of
noises for a single signal or process. Even if there exists such
a bound, it is usually conservative. In practice, it is possible to
estimate such variations or uncertainties using some statistic
properties of the measurements. When a group of signals or
processes are considered, Section III-B proposes a feasible
solution to estimate variations among a family of processes,
and effectiveness of this solution is validated by our testing
on benchmark datasets.

As an illustrative example of how to compute the Mo and
WMo of a signal, Fig. 1 demonstrates three signals J1, J2,
and J3 with underlying trends of monotonicity, but affected
by measurement noises. For simplicity, the variation of each
signal is set as 10% of the current value of each data point.

It is noted that both the SM and the WM can capture the
trend of a signal, while the SM is sensitive to measurement
uncertainty. The WM introduces a bound for the signal and
allows each data point to have a certain degree of variation.
The calculation of WM can robustly represent the relationship
between data points and capture the underlying trend of a
signal. Take points A and B in the J1 trajectory, for example,
the value of point A is smaller than its previous point, then
it is regarded as a negative point (−) when computing Mo.
On the other hand, if the value of point A is larger than the
lower bound of its previous point, then it can be regarded
as a positive point (+) in order to compute WMo. It can be
seen that the value at point B in the J1 signal is smaller than
the lower bound of its previous point, then it is treated as a
negative point (−) in computing both Mo and WMo.

The three signals in Fig. 1 have weak monotonically increas-
ing patterns. We first calculate the monotonicity measure for
each signal according to (2), and have MoJ1 = 0, MoJ2 =
−0.09, and MoJ3 = 0.5, it is clear that the MoJ1 = 0 does
not show the trend correctly. While by the concept of WM,
we have WMoJ1 = 0.6, WMoJ2 = 0.82, and WMoJ3 = 1.
Comparing with SM, the WM can better capture the trend of
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a process with variations. It is also robust to noises as shown
in the experimental study in Section IV.

The concepts of SM and WM can be used in various
applications to characterize the trend of a family of signals
(processes). For example, it can be used to detect implicit
degradation processes such as the early stage mechanical wear
in bearings. In order to demonstrate the effectiveness of these
concepts, they are used in the challenging problem of unsuper-
vised feature evaluation and selection for a family of similar
processes with some common trend. In other words, both SM
and WM can be used to select significant features, to which
contribute the trend or monotonicity for a family of processes.
It is worthwhile to highlight that due to variations among the
population (within the family of processes), the robust analysis
will be more complicated than a single process.

III. UNSUPERVISED FEATURE EVALUATION

Let us consider a family of processes that share the common
trend, such as the flank wear of a set of cutters in a milling
process, and the wear of bearings in machines. The focus of
this work is to identify features that can clearly represent the
trend of these processes using noisy measurements of sen-
sors. Such features may play important roles to monitor the
performance of the systems and detect faults of the processes
or failures of the sensors.

As it is not easy to label a large amount of data for industrial
processes, it is desirable to use unsupervised feature selection.
This section discusses how to use the concept of WM to assist
unsupervised feature selection and pick up the key features of
a family of processes with a common trend.

A. Problem Formulation

Given a family of processes {�j}j=1,2,...,M having some
common trends with a large set of signals �j : {tk, xj

k}k∈N
measured from these processes. Here, xj

k consists of elements
xj

k,i representing the ith feature of the sensor measurement for
the jth process at the kth sampling instant.

These signals have the following properties:

tk+1 > tk, tk
k→∞−−−→∞

xj
k+1,i ≤ ρj

i x
j
k,i + δj

k,i, k = 0, 1, . . . , i = 1, . . . ,m

j = 1, . . . ,M (13)

for some positive constants ρ
j
i ∈ (0, 1) with

maxk∈N ,i=1,...,m,j=1,...,M

∣∣∣δj
k,i

∣∣∣ ≤ �, where � is a positive
constant to bound the size of noises or uncertainties.

Remark 5: It is noted that the damping ratio ρ
j
i is intro-

duced in order to simplify the calculations when noises exist.
The inequality (13) is a special case of the inequality (7). In
our analysis, the information of ρj

i is not used.
It can be seen from the inequality (13) that there is a com-

mon trend (SM) in each feature when the uncertainty δj
k,i = 0,

and the speed of convergence ρj
i depends on the feature and

the process. More precisely, each feature demonstrates strictly
decreasing (see Definition 1) when there are no measurement
noises, variations, and other unmeasured uncertainties. With

the consideration of disturbances, the processes are weakly
monotonic (see Definition 2).

If such disturbances δj
k,i are too large, the trend of the jth

process or the family of the processes will disappear. In gen-
eral, there are many features obtained from sensors, that is,
m >> 1. The challenge is to pick up significant features from
a large set of features that are less sensitive to noises, distur-
bances, and variations so that the common trend of a family
processes {�j}j=1,...,M can still be captured.

Hence, the objective of this article is to identify key
features that can capture a common trend of a family of
processes {�j}j=1,...,M in the presence of noises, disturbances,
and variations.

B. Estimation of Subject Variation

As discussed in Section II-C, it is difficult to accurately
describe noises and uncertainties for each process due to com-
plicated industry applications. Different methods can be used
to quantify noise levels, for example, the sample entropy [19].
The current study focuses on estimating uncertainty from a
family of processes, and uses statistical indices to describe
variations or uncertainties for each feature in the process.

Keeping in mind, the goal of the feature evaluation and
selection is to pick up the features that are less sensitive to
noises or variations. Therefore, the variation of the feature
among the population (the family of processes) will be used to
approximate the bound of noises, uncertainties, and variations.

Given a family of processes with finite duration, {�j},
j = 1, 2, . . . ,M, the processes can be represented by features
derived from sensor measurements, {t j

k,i, x j
k,i}k=1,2,...,Np , where

Np ∈ N is the length of each process, i = 1, 2, . . . ,m is the
feature index. It is noted that in the problem formulation of
Section III-A, the upper bound � is defined for the largest
bound over all features, however, such a bound is always
conservative. In order to be less conservative, it is assumed
that

max
k∈N ,j=1,...,M

∣∣∣δj
k,i

∣∣∣ ≤ �i ·
∣∣∣xj

k,i

∣∣∣ (14)

for some positive �i. Next, we estimate the �i for the ith
feature.

First, the standard deviation of the ith feature across popu-
lation can be calculated as

σk,i =

√√√√√ 1

M − 1

M∑

j=1

∣∣∣∣∣∣
xj

k,i −
1

M

M∑

j=1

xj
k,i

∣∣∣∣∣∣

2

. (15)

Then, one estimation of variation �̃i for the ith feature can
be calculated as the mean value of standard deviation of the
sequence as following:

�̃i = 1

Np

Np∑

k=1

σk,i. (16)

It should be noted that the estimation assumes the data size
of processes are equal, or they have been truncated with the
minimal length across the population, that is, Np = Nmin

p =
min{NJsi

p }, Jsi = 1, 2, . . . ,M. However, as demonstrated in

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 05,2024 at 10:00:13 UTC from IEEE Xplore.  Restrictions apply. 



LU et al.: WM WITH TREND ANALYSIS FOR UNSUPERVISED FEATURE EVALUATION 6887

Fig. 1, the processes have different data lengths. With the
minimal length truncation Nmin

p = N2 for J1, J2, and J3, the
information beyond the Nmin

p point in the J1 and J3 signals
will be lost.

In order to better utilize the data from sensors, an one-leave
strategy is developed to reduce the waste of data due to trun-
cation. The strategy kicks off one process from the family
each time, and calculate the approximate variation �̃i with
the standard truncated processes. As illustrated in Fig. 1,
three approximate variations can be calculated from G1 =
{J2, J3},G2 = {J1, J3}, and G3 = {J1, J2}, then the variation
can be updated as the mean value of the three approximate
variations. With this strategy, an updated bound estimation of
noises, uncertainties, and variations becomes

{
�̃

j
i = 1

M−1

∑M−1
s=1,s	=j �̃

j,s
i

�i = 1
M

∑M
j=1 �̃

j
i

(17)

where, �i is the updated approximate variation, and �̃j,s
i is

calculated by (16) when the jthestimated uncertainty process is
deleted from the family. This leads to the following estimation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̂i = β1, α1 + ηi

(
�i − α1

(
�̃i

))

α1

(
�̃i

)
= minj=1,...,M �̃

j
i, α2

(
�̃i

)
= maxj=1,...,M �̃

j
i

β1, α1 = min
{
λlow, α1

(
�̃i

)}

β2, α2 = min
{
λup, α2

(
�̃i

)
/3

}

ηi = β2, α2−β1, α1

α2

(
�̃i

)
−α1

(
�̃i

)

(18)

where �̂i is the estimated uncertainty bound for the ith feature,
α1(�̃i) and α2(�̃i) are the calculated statistical indices, β1, α1

and β2, α2 are two bounds constrained by α and the regulariza-
tion parameter λ. The lower bound of the feature is regularized
by λlow, and it can be set as a small positive constant. While
λup is used to regularize the upper bound, and can be tuned by
trials-and-errors, our simulation results suggest that usually it
can be set as 0.1 for signals with low noise level, and 0.15 for
signals with high background noise. A detailed investigation
of selection the two regularization parameters are discussed in
Section IV-C.

The pseudo code of the proposed estimation algorithm is
presented in Algorithm 1. It is noted that when each process
has the same length of measurements, such an algorithm can
be simplified.

C. Similarity Between Processes

As it is assumed that a family of processes sharing a sim-
ilar trend, we use the similarity to characterize the common
trend between processes. That is, for a family of processes
�j:{tk, xj

k} represented by a set of features or signals xj
k,i,

k = 1, . . . ,N
Jsi
p and N

Jsi
p ∈ N , the similarity between two

processes is defined as following:

Tr
Js1 ,Js2
i = Corr

(
x

Js1
k,i , x

Js2
k,i

)

k = 1, 2, . . . ,min
{

N
Js1
p ,N

Js2
p

}
(19)

Algorithm 1: Estimation of the Bound of Noises,
Uncertainties, and Variations for a Feature

Input : Feature matrix F ∈ R
Np×m×M , λlow, λup;

Output: Variation bound estimation �i, i = 1, · · · ,m.
1 for i← 1 to m do
2 for j← 1 to M do

3 Let F̃ = F, delete the jth process F̃← F̃
j = ∅;

4 for j′ ← 1 to M − 1 do
5 Truncate F̃ with the minimal length Nmin

p ;

6 Update matrix F′ = {xj′
k,i}, k = 1, 2, · · · ,Nmin

p ;
7 Standard deviation

8 σk,i = std(F′); �̃j,j′
i = mean(σk,i);

9 end

10 Calculate variation �̃j
i = mean(�̃j,j′

i );
11 end
12 Update variation �i = mean(�̃j

i);
13 Compute α1(�̃i) = min(�̃j

i), α2(�̃i) = max(�̃j
i);

14 end
15 for i← 1 to m do
16 Regularize β1, α1 with λlow; and β2, α2 with λup;
17 Compute the parameter ηi;
18 Update variation �̂i = β1, α1 + ηi(�i − α1(�̃i)).
19 end

where Tr
Js1 ,Js2
i represents the similarity between processes j =

Js1 and j = Js2 , s1, s2 = 1, 2, . . . ,N, s1 	= s2. Corr(φk, ψk)

computes the correlation between sequences {φk}k=1,...,N1 and
{ψk}k=1,...,N1 for some N1 ∈ N .

The correlation Corr(φk, ψk) can be calculated with differ-
ent methods. In the current study, we use Pearson’s correlation
(PC) for the computation

Corr(φk, ψk) =
∑N1

k=1

(
φk − φ̄

)(
ψk − ψ̄

)
(∑N1

k=1

(
φk − φ̄

)2
)1/2(∑N1

k=1

(
ψk − ψ̄

)2
)1/2

(20)

where φ̄ = (1/N1)
∑N1

k=1 φk and ψ̄ = (1/N1)
∑N1

k=1 ψk are
means of two truncated sequences, respectively.

D. Suitability Evaluation

After calculating the WM and the similarity between
processes represented by each feature, a new cost is proposed
to evaluate the suitability of each feature in terms of char-
acterizing the common trend of the family of processes. The
suitability of the ith feature is defined as

SWMoi =
2

M(M − 1)

M−1∑

si=1

M∑

sj=si

Am
Jsi ,Jsj
i

Am
Jsi ,Jsj
i =

(
ω

Jsi
i WMo

Jsi
i + ω

Jsj
i WMo

Jsj
i

)
Tr

Jsi ,Jsj
i (21)

where WMo
Jsj
i is the calculated WM of the ith feature for the

Jsj process. Here, ωi ∈ {−1, 0, 1} is the trend indicator, it
takes 1 for an increasing trend, −1 for a decreasing trend, and
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0 indicates constant. Tr
Jsi ,Jsj
i is the similarity between the Jsi

and Jsj processes.
With calculating the suitability for each feature, the rep-

resentative feature subset I ⊂ R
Np×l, 1 ≤ l ≤ m, can be

identified with the following optimization problem:

min
I⊂RNp×l

−
∑

i∈I
SWMoi

= − 2

M(M − 1)

∑

i∈I

M−1∑

si=1

M∑

sj=si

Am
Jsi ,Jsj
i

s.t. I ⊂ F ⊂ R
Np×m, 1 ≤ l ≤ m. (22)

It is worth noting that the proposed feature evaluation
method is unsupervised, as there is no label information
involved in the computing procedure. It only uses properties
of the feature to define the evaluation criterion. The pseudo
code of the proposed unsupervised feature evaluation method
is detailed in Algorithm 2.

Remark 6: The suitability in (21) is defined with the WM.
It also can be defined with the SM. That is, for the ith feature,
it can be calculated as

SMoi =
2

M(M − 1)

M−1∑

si=1

M∑

sj=si

m
Jsi ,Jsj
i

m
Jsi ,Jsj
i =

(
ω

Jsi
i Mo

Jsi
i + ω

Jsj
i Mo

Jsj
i

)
Tr

Jsi ,Jsj
i (23)

where Moj
i is the monotonicity for the ith feature of the jth

process (see Definition 1). And, ωi ∈ {−1, 0, 1} is the trend
indicator. This leads to the similar optimization problem

min
I⊂RNp×l

−
∑

i∈I
SMoi

= − 2

M(M − 1)

∑

i∈I

M−1∑

si=1

M∑

sj=si

m
Jsi ,Jsj
i

s.t. I ⊂ F ⊂ R
Np×m, 1 ≤ l ≤ m. (24)

for the SM-based feature evaluation and selection. This
method is used in later performance comparison as well.

IV. EXPERIMENTS AND RESULTS

The proposed unsupervised feature evaluation method aims
to identify representative features from a large datasets with
evaluating their suitability for a family of processes with
a common trend. In this section, appropriate datasets that
have common trends are used. In particular, the NASA Ames
Prognostics Data Repository is a collection of datasets that
were extensively used for regression tasks [20], [21]. Most of
these datasets contain time sequences from a nominal state to a
failed state, and utilize several sensors, for example, vibration
and temperature, to measure the process with discrete-time
steps.

A. Datasets and Signal Processing

The current study employs the widely used Milling Datasets
(MDSCI) [20] and IMS Bearing Datasets (IMS) [21] to verify

Algorithm 2: Unsupervised Feature Evaluation Based on
the WM

Input : Feature matrix F ∈ R
Np×m×M, ωi,�i;

Output: Representative subset I ⊂ R
Np×l, 1 ≤ l ≤ m.

1 Calculate Weak monotonicity WMoi

2 for j← 1 to M do
3 Let Xj denotes the jth matrix from F;
4 for i← 1 to m do
5 Estimate ωj

i with linear fitting method;
6 for k← 2 to Np do
7 Calculate the estimation δj

k,i = �i · |xj
k,i|;

8 Compute An+ and An− with Eqs. (9) and
(11);

9 end
10 Calculate WMoj

i with An+ and An−;
11 end
12 end
13 Compute Similarity TrJs1,Js2

i
14 for i← 1 to m do
15 Truncate xJs1

i and xJs2
i ;

16 Calculate the correlation TrJs1,Js2
i ;

17 end
18 Evaluate features with suitability SWMoi :
19 for i← 1 to m do
20 for Js1 ← 1 to M − 1 do
21 for Js2 ← Js1 + 1 to M do
22 Calculate AmJs1,Js2

i according to Eq. (21)
23 end
24 end
25 Obtain SWMoi with the mean value of AmJs1,Js2

i ;
26 end
27 Select features with top l suitability values for set I.

effectiveness of the proposed method. A detailed description
of the two datasets can be found in the supplementary docu-
ment. Fig. 2 presents signals of the run-to-failure experiments
in the two datasets. As shown in Fig. 2, each experiment has
some clear trend of monotonicity, corrupted by noises. The
first experiment has fast performance degradation processes.
The second experiment has slow degradation processes, in
which the SM only appears clearly at the end of each process.
Statistical features extracted from the sensor measurements
are used as signals or processes for unsupervised feature eval-
uation and selection. In order to evaluate the performance
of unsupervised feature evaluation and selection, the selected
features are used to predict the trend of these processes.

Generally, various features can be extracted from the
time domain, frequency domain, and time-frequency domain
[9], [22]. Among them, time-frequency techniques have high
resolutions and have been widely used for signal analysis [9].
The study uses the wavelet packet transform to decompose
the signal with the eighth Daubechies wavelet function into
four levels, thus total 16 components can be obtained from
each sample [22]. Then, ten widely used statistical features
are extracted from each decomposed component, including
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Fig. 2. Experiment information. (a) Flank wear values of cutting tools,
(b) one data recording of vibration signal for a cutting tool, (c) bearing test,
and (d) kurtosis feature for four bearings.

the root mean square, standard deviation, kurtosis, peak-
peak value, crest factor, clearance, impulse factor, shape
factor, average energy, and the fifth central moment. More
detailed descriptions of these features (processes) can be found
in [23] and references therein. Therefore, total 160 features are
extracted from each data recording for both datasets.

It is noted that both two datasets have some trends, when
statistic features are used, these features may be not able to
reflect the trend efficiently, as an illustration of the kurtosis
feature as shown in Fig. 2(d). Although the kurtosis feature
has been widely used to present many industrial processes,
Fig. 2(d) shows that the kurtosis feature of the second datasets
is not able to capture the trend of the processes due to existence
of large variations. Therefore, this feature cannot be selected
to represent the common trend.

After the signal processing, the proposed unsupervised
feature evaluation and selection can be applied.

B. Performance Evaluation Method

To verify the effectiveness of the selected representative fea-
tures, support vector regression (SVR) from LibSVM is used
for prediction analysis with the identified features [24]. The
first 70% of the data is used for model training, and the rest
30% is used for model validation.

For the prediction analysis, it is assumed that the current
health state of the system is a function of features at the cur-
rent step, features of the previous step, and the output at the
previous step [25]. The mapping between the model input and
output can be described as

HIk = f (Xk,Xk−1, yk−1), k = 2, 3, . . . ,Np (25)

where Xk and Xk−1 are matrices of identified key features at
the kth step and the (k − 1)th step. The notion of HIk is the
current health state, yk−1 is the performance degradation value
at the (k − 1)th step, and they are detailed as follows.

For the MDSCI datasets, the flank wear value (VB) is mea-
sured to indicate the health condition of cutting tools [20],
then the performance degradation value yk−1 is the flank wear
value, and HIk is the predicted flank wear at the kth step.

For the IMS datasets, the ground truth wearing value can
not be measured for bearings with continues running, while as
indicated in [26], the exponential fitting with the form of a+
beck is demonstrated to be suitable to describe the performance
degradation process. Then, the performance degradation value
yk−1 in (25) for the IMS datasets is coming from the fitted
curve, and the HIk is the remaining useful life (RUL) ranging
from 0 to 1, with 1 indicating the beginning health condition
and 0 indicating the wear out condition.

For the training of the standard SVR model, the radial basis
function (RBF) is used as the kernel. To make the prediction
fair, parameters of the SVR model are optimized in a large
range 2K,K = {−8 : 8} with greedy searching strategy [27].
Three widely used evaluation criteria are used to measure
the prediction performance, including the mean absolute error
(MAE), the mean absolute percentage error (MAPE), and the
root mean square error (RMSE).

C. Tuning Parameters

As discussed in Section III-B, the estimation of uncer-
tainty bound for each feature is depended on two parts: 1) the
variation calculated from a family of processes and 2) two
parameters λlow and λup to regularize the estimations. The
role of λlow is used to define a lower bound of the estimation,
while λup is an estimation of the upper bound. These two
bounds usually come from the knowledge of the processes
(case dependent). This work discusses how the performance
of prediction errors in terms of MAE would be affected by
the two tuning parameters.

Fig. 3(a) shows the prediction performance on the MDSCI
datasets as λlow increases from 10-6 to 0.05 with different
numbers of features selected, when λup is fixed at 0.1. Similar
performances for the IMS datasets can be found in Fig. 3(d).
It can be seen from Fig. 3(a) that the curves of prediction
errors have very similar trends with increasing λlow from 10-6

to 0.05 for the MDSCI datasets, except the prediction error
has slightly large value with ten features when the value of
λlow is 0.05. While it can be clearly seen from Fig. 3(d) that
the model has large prediction errors of 1.952 for the λlow
with 0.01 and 0.05.

The impact of the parameter λup on the feature selection
performance is shown as Fig. 3(b) and (e), respectively. The
value of λup gradually changes from 0.01 to 0.2, when the λlow

is fixed as 10-4. Fig. 3(b) shows the prediction errors on the
MDSCI datasets when changing the λup, and it indicates that
the model has smaller prediction errors when λup is larger
than 0.1. Fig. 3(e) demonstrates the prediction performance
on the IMS datasets, which shows that the model has worse
prediction performance for λup taking values of 0.01 and 0.05.
These simulations suggest that a larger λup is preferred to be
larger than 0.1.

To have a better understanding of the impact of the param-
eters, Fig. 3(c) and (f) provide the three dimension mapping
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Fig. 3. Impact of regularization parameters with respect to the MAE error. (a)–(c) Impact of λlow and λup parameters, and the mapping of λlow-λup on the
MDSCI datasets, (d)–(f) Impact of λlow and λup parameters, and the mapping of λlow-λup on the IMS datasets.

of λlow and λup when the feature number equals to 10. It can
be seen from the figures that the model has high prediction
errors with a large λlow value. Therefore, the λlow should take
a low value to calculate the variations. It is similar for the
parameter of λup, the model has large prediction errors with a
small value of λup parameter.

D. Comparison Methods

Without extra-label information, many unsupervised fea-
ture selection methods have been developed to select features
by calculating similarities between features and select repre-
sentative ones with larger similarity values [28]. In order to
demonstrate the effectiveness of the proposed WM method on
unsupervised feature selection, the WM method is compared
with nine unsupervised feature selection techniques.

Next, a brief introduction is provided to describe the meth-
ods used for the comparison study, and we also list the
mentioned SM-based feature selection method.

1) Pearson’s Correlation [29]: The PC is one of the most
popular techniques to measure the correlations. A larger cor-
relation value indicates more suitability of the feature to
represent different processes.

2) Kendall’s Tau Coefficient [30]: Kendall’s Tau coef-
ficient (KTC) is used to measure relationships hidden in
datasets. It is designed to capture the mapping between
different processes represented by features.

3) Spearman’s Rho Correlation [31]: Spearman’s Rho cor-
relation (SRC) is a nonparametric measurement, and it is used
to rank features of the correlation by assessing the potential
monotonic relationship between processes.

4) Distance Correlation [32]: The distance correlation
(DC) measures the joint independence of random processes
represented by features.

5) Mutual Information [33]: The mutual information (MI)
calculates the mutual dependence between two variables, and
it can be used to measure the nonlinear dependency between
the same type of feature derived from different processes.

6) Maximal Information Correlation (MIC) [34]: The
maximal information coefficient measures the linear or non-
linear relationship between two processes represented by fea-
tures. It is capable to characterize them according to properties
such as monotonicity.

7) Laplacian Score [35]: The Laplacian score (LS) eval-
uates the importance of a feature by its locality preserving
power, and selects features that respect a local graph structure.

8) Spectrum Graph [36]: The spectrum graph (SG) feature
selection method constructs a Laplacian matrix for spectral
decomposition, and uses spectral graph theory to measure
feature relevance and importance.

9) Strict Monotonicity [4]: The SM characterizes the
underlying trend of a signal, and evaluates features according
to the ability of describing the trend of different processes.

E. Performance Results and Comparison

For the prediction analysis and comparison with key fea-
tures identified by the feature selection methods, the MDSCI
datasets and IMS datasets are used. In the analysis of the
proposed WM-based feature evaluation and selection method,
as indicated in Section IV-C, the regularisation parameters for
variation estimation are selected as λup with 0.1 and λlow with
10−4 for both datasets.

For the MDSCI datasets, the comparisons among different
methods are presented in Fig. 4 with the number of features
increasing from 5 to 40. From Fig. 4, it can be seen that
the WM method has prediction errors decreasing from 0.069
(ten features) to 0.045 (ten features) for the MAE error. When
five key features are selected, the proposed WM-based feature
selection method has the smallest prediction error among all
the different methods. As the number of key features selected
increases, the proposed WM-based feature selection method
still has almost the best performance among all different meth-
ods. When the number of the key features increases over 35,
other methods, such as PC and MI have the similar prediction
performance with the WM method. Fig. 4 also shows that the
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Fig. 4. Prediction error for the datasets. (a) MAE error for the MDSCI datasets. (b) MAPE error for the MDSCI datasets. (c) RMSE error for the MDSCI
datasets. (d) MAE error for the IMS datasets. (e) MAPE error for the IMS datasets. (f) RMSE error for the IMS datasets.

SM-based feature selection methods has the highest prediction
error 0.158 with five features, then decreases quickly to 0.08
with 15 features. When the number of features goes to 40, the
SM-based method has the similar performance as the proposed
method.

For the IMS datasets, it can be seen from Fig. 4(d)–(f)
that the proposed WM method is outperformed compared
with other methods with exceptions of 10 and 35 fea-
tures. The WM method is also less sensitive as the num-
ber of features increases. It can been from these sub-
figures that the proposed WM method can identify the
most significant features among 160 features with the best
performance among all the unsupervised feature selection
methods.

It notes that three performance evaluation indices demon-
strate some overlap of prediction performance in Fig. 4. While
the difference between the three indices on the prediction anal-
ysis can be seen in Fig. 4(d)–(f), and the differences can also
be found in the results of robustness analysis of the methods
in the following section.

We compared the computation cost for all the unsuper-
vised feature selection methods. The computation procedures
of the developed WM method can be found in Algorithm 1
(Alg. #1) and Algorithm 2 (Alg. #2). The results of computa-
tion costs for the two algorithms and other nine methods are
presented in Table I. All the methods were randomly ran on
the two datasets for 50 times, with MATLAB R2020a, Intel
Core) i7-4750HQ, 8-GB RAM. We calculated the mean value
and standard deviation of computation time for each method.
The results show that Algorithm 1 is efficient in estimating
the variations and Algorithm 2 has a low computation cost
for the feature evaluation.

TABLE I
COMPARISON OF COMPUTATION COST FOR ALL THE METHODS

F. Dynamic Bound Versus Fixed Bound

When dealing with subject variations and uncertainties, it
is common to place a fixed bound for the process, usually
the bound value is selected according to experience. Our
proposed WM-based method estimates the bound for each fea-
ture according to the variations among a family of processes,
and the bound value varies in the range (0, λup], it is a
dynamical process to estimate the bound for each feature.

In this section, we present the results of comparison study
with both the fixed bound (denotes as WMFix) and the dynamic
bound by our proposed WM method (denotes as WMDy). It
should be noted that all the computing processes of the two
methods are the same. The bound value is set as 0.1 for the
WMFix method, that is, the feature is allowed 10% variation

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 05,2024 at 10:00:13 UTC from IEEE Xplore.  Restrictions apply. 



6892 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 11, NOVEMBER 2023

Fig. 5. Comparison study between the fixed bound and dynamic bound. (a) MAE error for the MDSCI datasets. (b) MAE error for the IMS datasets.

TABLE II
PREDICTION ERRORS FOR THE MDSCI DATASETS (3 DB)

TABLE III
PREDICTION ERRORS FOR THE IMS DATASETS (3 DB)

of its value when calculating the monotonicity increasing and
decreasing points. We also set the same value of λup as 0.1 in
the proposed WMDy bound estimation method for comparison.

The prediction errors for the WMFix and WMDy methods
are shown in Fig. 5. Fig. 5(a) demonstrates the compari-
son results with the two feature selection methods on the
MDSCI datasets, it can be seen that the WMDy based method
has better prediction performance for all feature dimensions
when comparing with the WMFix method. The similar com-
parison results can also be seen from the analysis of the IMS
datasets in Fig. 5(b). Prediction errors obtained from other nine
feature selection methods are also kept to make intuitive com-
parisons. The comparison results demonstrate our proposed

WMDy feature selection method has overall better performance
than the WMFix feature selection method.

G. Robustness Analysis

To test the robustness of the proposed WM method, random
noises are added into the original datasets to generate noisy
signals. We measure the signal-to-noise ratios (SNR) of the
noisy signals, then, the proposed feature evaluation method is
used to identify key features from the noisy datasets. Table II
presents prediction errors with the identified key features on
the MDSCI datasets, and Table III presents prediction errors
with identified key features on the IMS datasets. The noisy
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signals are randomly generated 50 times, then, 160 statisti-
cal features are extracted from each of the noisy datasets.
The standard SVR model is used for prediction analysis (see
Section IV-A for more details).

In the two tables, Set #1 indicates that the number of
features is 10. Set #2 and Set #3 indicate the numbers of
features are 20 and 30, respectively. Statistical results are
presented with calculating the prediction errors by the MAE,
MAPE, and RMSE measurements of the noisy datasets. As
shown in the two tables, the mean value and standard devi-
ation of the prediction errors are calculated from running
on the 50 noisy signals of the two datasets. The lowest
prediction error for each feature set is highlighted in bold.
The two tables show that the proposed WM method outper-
forms other nine feature selection methods in terms of the
MAE, MAPE, and RMSE performance indices with only a few
exceptions.

To verify the robustness of the proposed WM method,
standard statistical tests were used to compare the prediction
errors. Prior to the statistical analysis, the Shapiro–Wilk test
was applied to check the data normality [37]. The signifi-
cant value was set as 0.05. It was found that the majority
of the normality testing results have p-values larger than
0.05, which indicates normal distribution of most of the
prediction errors. Then, depending on whether the data was
normally distributed, the paired t-test or Mann–Whitney test
was performed to compare the prediction errors between the
WM method and each of the other nine methods, and the
p-values were smaller than 0.05 with only a few excep-
tions, which indicated the differences between the developed
WM method and other unsupervised feature selection
methods.

V. DISCUSSION

The monotonicity has been observed in many real-world
applications, such as, mechanical engineering, electrical engi-
neering, and medical science. For example, many engineering
systems would show performance deterioration over time, indi-
cating a trend in the data measurements. This article utilizes
this trend in a population to select the features that contribute
to this trend, and the results demonstrated the robustness of
the proposed method when the weak population trends exist.

Tremendous efforts have been made to tackle the chal-
lenging task of unsupervised feature selection [13], [38]–[43].
Generally, these methods use projection [13] or representa-
tion [41] techniques to learn geometrical structures of datasets
for unsupervised feature selection. With imposing some regu-
larization terms, that is, �2,1-norm [13], [38], [40], Laplacian
regularization [40], [42], these methods have shown excel-
lent performance on minimizing data redundancy and select-
ing discriminative features for clustering and classification
tasks.

The developed WM method defines a new cost, which is
different from the costs that were used in these research [13],
[38]–[43]. The WM method aims to identify representa-
tive features that can capture underlying trend for regression

analysis, rather than select discriminative features for classi-
fication or clustering as seen in these research. The method
developed in this article uses the concept of WM to learn
local property between adjacent points in a data sequence,
which is used as prior knowledge for the modeling. Then,
the method uses similarity between different processes to
represent the trendability of a population. With integrat-
ing the two properties, the developed method was shown
superiority in identifying important features for regression
analysis of sequential data when noises and uncertainties
exist.

It is noted that deep learning methods have also been used
for trend analysis with excellent performance [10], [11], while
deep learning methods generally require a large number of data
samples to train the model and guarantee the performance. The
training process thus requires high computation cost and needs
knowledge for hyperparameters tuning. On the contrary, the
developed WM method in this article is demonstrated with an
efficient and transparent computation procedure.

The developed WM method has limitations. The method
assumes the existence of a common trend in a family of
processes. Therefore, the method is suitable to investigate
processes with underlying trends, and may be not general-
ized to other applications when such trends do not exist. Our
future work will generalize this concept to cases when trends
exist in subgroups of the population.

VI. CONCLUSION

This article introduced the concept of WM and developed
a new index to characterize a large family of processes shared
with common trends in the presence of measurement noises
and population variations. Such a concept can be used to
identify key features that contribute to the common trend of
a family of processes. With the help of similarity measure
among populations, a novel suitability indicator was proposed
as a cost function for unsupervised feature evaluation and
selection. The proposed method was compared with other
nine widely used unsupervised feature selection methods on
well-known datasets. The statistical results verified the effec-
tiveness and robustness of the proposed method. Future work
will focus on theoretical analysis of the proposed method with
a more rigorous estimation of the upper bound of noises and
uncertainties, and applications in more general conditions.

REFERENCES

[1] G. E. Morales-Espejel, P. Rycerz, and A. Kadiric, “Prediction of micro-
pitting damage in gear teeth contacts considering the concurrent effects
of surface fatigue and mild wear,” Wear, vols. 398–399, pp. 99–115,
Mar. 2018.

[2] R. M. Nejad, M. Shariati, and K. Farhangdoost, “Prediction of fatigue
crack propagation and fractography of rail steel,” Theor. Appl. Fract.
Mech., vol. 101, pp. 320–331, Jun. 2019.

[3] Z.-H. Pang, G.-P. Liu, and D. Zhou, “Design and performance analy-
sis of incremental networked predictive control systems,” IEEE Trans.
Cybern., vol. 46, no. 6, pp. 1400–1410, Jun. 2016.

[4] P. Baraldi, G. Bonfanti, and E. Zio, “Differential evolution-based multi-
objective optimization for the definition of a health indicator for fault
diagnostics and prognostics,” Mech. Syst. Signal Process., vol. 102,
pp. 382–400, Mar. 2018.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 05,2024 at 10:00:13 UTC from IEEE Xplore.  Restrictions apply. 



6894 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 11, NOVEMBER 2023

[5] M. Komeili, W. Louis, N. Armanfard, and D. Hatzinakos, “Feature
selection for nonstationary data: Application to human recognition using
medical biometrics,” IEEE Trans. Cybern., vol. 48, no. 5, pp. 1446–1459,
May 2018.

[6] P. P. Kundu and S. Mitra, “Feature selection through message passing,”
IEEE Trans. Cybern., vol. 47, no. 12, pp. 4356–4366, Dec. 2017.

[7] Q. Cheng, H. Zhou, and J. Cheng, “The Fisher-Markov selector: Fast
selecting maximally separable feature subset for multiclass classification
with applications to high-dimensional data,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 33, no. 6, pp. 1217–1233, Jun. 2011.

[8] Q. Zou, J. Zeng, L. Cao, and R. Ji, “A novel features ranking metric with
application to scalable visual and bioinformatics data classification,”
Neurocomputing, vol. 173, pp. 346–354, Jan. 2016.

[9] L. Lu, J. Yan, and C. W. de Silva, “Dominant feature selection for the
fault diagnosis of rotary machines using modified genetic algorithm and
empirical mode decomposition,” J. Sound Vib., vol. 344, pp. 464–483,
May 2015.

[10] E. Q. Wu, P. Xiong, Z.-R. Tang, G.-J. Li, A. Song, and L.-M. Zhu,
“Detecting dynamic behavior of brain fatigue through 3-D-CNN-
LSTM,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 52, no. 1,
pp. 90–100, Jan. 2022.

[11] S. Z. Tajalli, A. Kavousi-Fard, M. Mardaneh, A. Khosravi, and
R. Razavi-Far, “Uncertainty-aware management of smart grids using
cloud-based LSTM-prediction interval,” IEEE Trans. Cybern., early
access, Aug. 3, 2021, doi: 10.1109/TCYB.2021.3089634.

[12] Y. Liu, K. Liu, J. Yang, and Y. Yao, “Spatial-neighborhood manifold
learning for nondestructive testing of defects in polymer composites,”
IEEE Trans. Ind. Informat., vol. 16, no. 7, pp. 4639–4649, Jul. 2020.

[13] F. Nie, W. Zhu, and X. Li, “Unsupervised feature selection with struc-
tured graph optimization,” in Proc. AAAI Conf. Artif. Intell., vol. 30,
2016, pp. 1302–1308.

[14] J. Li and H. Liu, “Challenges of feature selection for big data analytics,”
IEEE Intell. Syst., vol. 32, no. 2, pp. 9–15, Mar./Apr. 2017.

[15] A. Mironchenko, I. Karafyllis, and M. Krstic, “Monotonicity methods
for input-to-state stability of nonlinear parabolic PDEs with boundary
disturbances,” SIAM J. Control Optim., vol. 57, no. 1, pp. 510–532,
2019.

[16] E. N. Sadjadi, “On the monotonicity of smooth fuzzy systems,” IEEE
Trans. Fuzzy Syst., vol. 29, no. 12, pp. 3947–3952, Dec. 2021.

[17] J. Alexander, Jr. et al., “Using time series analysis approaches for
improved prediction of pain outcomes in subgroups of patients with
painful diabetic peripheral neuropathy,” PLoS One, vol. 13, no. 12, 2018,
Art. no. e0207120.

[18] L. Lu et al., “Evaluating rehabilitation progress using motion features
identified by machine learning,” IEEE. Trans. Biomed. Eng., vol. 68,
no. 4, pp. 1417–1428, Apr. 2021.

[19] A. Delgado-Bonal and A. Marshak, “Approximate entropy and sample
entropy: A comprehensive tutorial,” Entropy, vol. 21, no. 6, p. 541, 2019.

[20] A. Agogino and K. Goebel, Mill Data Set, BEST Lab, UC Berkeley,
Berkeley, CA, USA, NASA Ames Prognostics Data Repository,
Washington, DC, USA, 2007.

[21] J. Lee, H. Qiu, G. Yu, and J. Lin, Bearing Data Set, NASA Ames
Prognostics Data Repository, Washington, DC, USA, 2007.

[22] Z.-R. Feng, Q. Zhou, J. Zhang, P. Jiang, and X.-W. Yang, “A target
guided subband filter for acoustic event detection in noisy environments
using wavelet packets,” IEEE/ACM Trans. Audio, Speech, Language
Process., vol. 23, no. 2, pp. 361–372, Feb. 2015.

[23] Y. Lei, M. J. Zuo, Z. He, and Y. Zi, “A multidimensional hybrid intelli-
gent method for gear fault diagnosis,” Expert Syst. Appl., vol. 37, no. 2,
pp. 1419–1430, 2010.

[24] R.-E. Fan, P.-H. Chen, and C.-J. Lin, “Working set selection using sec-
ond order information for training support vector machines,” J. Mach.
Learn. Res., vol. 6, pp. 1889–1918, Dec. 2005.

[25] Y. I. Lee and B. Kouvaritakis, “Robust receding horizon predictive
control for systems with uncertain dynamics and input saturation,”
Automatica, vol. 36, no. 10, pp. 1497–1504, 2000.

[26] R. K. Singleton, E. G. Strangas, and S. Aviyente, “Extended Kalman
filtering for remaining-useful-life estimation of bearings,” IEEE Trans.
Ind. Electron., vol. 62, no. 3, pp. 1781–1790, Mar. 2015.

[27] X. Chen, G. Yuan, W. Wang, F. Nie, X. Chang, and J. Z. Huang, “Local
adaptive projection framework for feature selection of labeled and unla-
beled data,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 12,
pp. 6362–6373, Dec. 2018.

[28] R. Zhang, F. Nie, Y. Wang, and X. Li, “Unsupervised feature selection
via adaptive multimeasure fusion,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 30, no. 9, pp. 2886–2892, Sep. 2019.

[29] L. Bravi, V. Piccialli, and M. Sciandrone, “An optimization-based
method for feature ranking in nonlinear regression problems,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 28, no. 4, pp. 1005–1010,
Apr. 2017.

[30] J. Sinsomboonthong, “Robust estimators for the correlation measure
to resist outliers in data,” J. Math. Fundam. Sci., vol. 48, no. 3,
pp. 263–275, 2016.

[31] M. Pedersen, A. Omidvarnia, A. Zalesky, and G. D. Jackson, “On the
relationship between instantaneous phase synchrony and correlation-
based sliding windows for time-resolved fMRI connectivity analysis,”
Neuroimage, vol. 181, pp. 85–94, Nov. 2018.

[32] D. Edelmann, K. Fokianos, and M. Pitsillou, “An updated literature
review of distance correlation and its applications to time series,” Int.
Stat. Rev., vol. 87, no. 2, pp. 237–262, 2019.

[33] M. Han, W. Ren, M. Xu, and T. Qiu, “Nonuniform state space recon-
struction for multivariate chaotic time series,” IEEE Trans. Cybern.,
vol. 49, no. 5, pp. 1885–1895, May 2019.

[34] Z. Li and A. G. Bors, “Selection of robust and relevant features for
3-D steganalysis,” IEEE Trans. Cybern., vol. 50, no. 5, pp. 1989–2001,
May 2020.

[35] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature selec-
tion,” in Advances in Neural Information Processing Systems, vol. 18.
Cambridge, MA, USA: MIT Press, 2005.

[36] Z. Zhao and H. Liu, “Spectral feature selection for supervised and
unsupervised learning,” in Proc. 24th Int. Conf. Mach. Learn., 2007,
pp. 1151–1157.

[37] L. Lu et al., “Effective assessments of a short-duration poor posture
on upper limb muscle fatigue before physical exercise,” Front. Physiol.,
vol. 11, Oct. 2020, Art. no. 541974.

[38] X. Zhu, S. Zhang, R. Hu, Y. Zhu, and J. Song, “Local and global
structure preservation for robust unsupervised spectral feature selection,”
IEEE Trans. Knowl. Data Eng., vol. 30, no. 3, pp. 517–529, Mar. 2018.

[39] X. Li, H. Zhang, R. Zhang, Y. Liu, and F. Nie, “Generalized uncorre-
lated regression with adaptive graph for unsupervised feature selection,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 5, pp. 1587–1595,
May 2019.

[40] C. Tang et al., “Cross-view locality preserved diversity and con-
sensus learning for multi-view unsupervised feature selection,”
IEEE Trans. Knowl. Data Eng., early access, Jan. 1, 2021,
doi: 10.1109/TKDE.2020.3048678.

[41] P. Zhu, W. Zuo, L. Zhang, Q. Hu, and S. C. K. Shiu, “Unsupervised
feature selection by regularized self-representation,” Pattern Recognit.,
vol. 48, no. 2, pp. 438–446, 2015.

[42] C. Tang et al., “Feature selective projection with low-rank embedding
and dual Laplacian regularization,” IEEE Trans. Knowl. Data Eng.,
vol. 32, no. 9, pp. 1747–1760, Sep. 2020.

[43] C. Tang et al., “Unsupervised feature selection via latent represen-
tation learning and manifold regularization,” Neural Netw., vol. 117,
pp. 163–178, Sep. 2019.

Lei Lu received the Ph.D. degree in mechatronics
engineering from the Harbin Institute of Technology,
Harbin, China, in 2016.

He had research experience with the Department
of Mechanical Engineering, The University of
British Columbia, Vancouver, BC, Canada, from
2013 to 2015; and the Faculty of Engineering
and Information Technology, The University of
Melbourne, Parkville, VIC, Australia, from 2017
to 2020. He is currently an EPSRC Supported
Postdoctoral Researcher with the Department of

Engineering Science, University of Oxford, Oxford, U.K. His research
interests include signal processing, statistical machine learning, and deep
learning with applications in decision making for engineering systems and
intelligent health condition monitoring.

Dr. Lu received some important scientific awards, including the IET J.
A. Lodge Award in Healthcare Technologies in 2021. He was a PI in sev-
eral research projects, including the National Natural Science Foundation of
China.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 05,2024 at 10:00:13 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TCYB.2021.3089634
http://dx.doi.org/10.1109/TKDE.2020.3048678


LU et al.: WM WITH TREND ANALYSIS FOR UNSUPERVISED FEATURE EVALUATION 6895

Ying Tan (Senior Member, IEEE) received the
bachelor’s degree from Tianjin University, Tianjin,
China, in 1995, and the Ph.D. degree from the
National University of Singapore, Singapore, in
2002.

She is a Professor with the Department of
Mechanical Engineering, The University of
Melbourne, Parkville, VIC, Australia. In 2002, she
joined McMaster University, Hamilton, ON, Canada,
as a Postdoctoral Fellow with the Department of
Chemical Engineering. Since 2004, she has been

with The University of Melbourne. Her research interests are in intelligent
systems, nonlinear systems, real-time optimization, sampled-data systems,
rehabilitation robotic systems, human motor learning, and model-guided
machine learning.

Prof. Tan was awarded an Australian Postdoctoral Fellow from 2006 to
2008 and a Future Fellow from 2009 to 2013 by the Australian Research
Council.

Denny Oetomo (Senior Member, IEEE) received
the B.Eng. degree (Hons.) from Australian National
University, Canberra, ACT, Australia, in 1997, and
the Ph.D. degree from the National University of
Singapore, Singapore, in 2004.

In 2008, he joined the Department of Mechanical
Engineering, The University of Melbourne,
Parkville, VIC, Australia, where he is currently
a Professor. His research interests are in the
area of robot dynamics and manipulation with
a recent emphasis on the interaction dynamics

between human and robots, as well as on the clinical applications of these
capabilities, such as in the areas of rehabilitation robotics, assistive robotics,
and neuroprosthetics.

Iven Mareels (Fellow, IEEE) is the Partner and
Director of the Centre for Applied Research,
IBM Consulting, IBM Australia, Southbank, VIC,
Australia. He is a leading expert in the area of
large-scale systems, adaptive control, and extremum
seeking (forms of AI). He has coauthored five books,
and in excess of 150 journal papers and book chap-
ters, and more than 300 conference papers. He has
co-invented a suite of international patents address-
ing the management of large scale, gravity fed,
irrigation systems.

Dr. Mareels is a Fellow of IFAC, Austria, a Fellow and the Vice-President
of the Australian Academy of Technology and Engineering, Australia, and
a (Foreign) Fellow of the Flemish Royal Belgian Academy of Sciences and
Humanities, Belgium.

David A. Clifton is a Professor of Clinical Machine
Learning with the Department of Engineering
Science, University of Oxford, Oxford, U.K., and
an OCC Fellow of AI and Machine Learning with
Reuben College, Oxford. He is a Fellow of the Alan
Turing Institute, London, U.K., a Research Fellow
of the Royal Academy of Engineering, London,
a Visiting Chair in AI for Healthcare with the
University of Manchester, Manchester, U.K., and a
Fellow of Fudan University, Shanghai, China. His
research focuses on the development of machine

learning for tracking the health of complex systems. His previous research
resulted in patented systems for jet-engine health monitoring, used with the
engines of the Airbus A380, the Boeing 787 “Dreamliner,” and the Eurofighter
Typhoon. Since 2008, he has focused mostly on the development of AI-
based methods for healthcare. Patents arising from this collaborative research
have been commercialized via university spin-out companies OBS Medical,
Oxehealth, and Sensyne Health, in addition to collaboration with multinational
industrial bodies.

Dr. Clifton holds a Grand Challenge Award from the U.K. Engineering
and Physical Sciences Research Council, which is an EPSRC Fellowship that
provides long-term strategic support for “future leaders in healthcare.” His
research has been awarded over 35 academic prizes; in 2018, he was a joint
winner of the inaugural “Vice-Chancellor’s Innovation Prize,” which identi-
fies the best interdisciplinary research across the entirety of the University of
Oxford.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on March 05,2024 at 10:00:13 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


