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The expanding use of IoT has driven machine learning (ML) based traffic analysis. 5G networks’ standards,

requiring low-latency communications for time-critical services, pose new challenges to traffic analysis.

They necessitate fast analysis and response, preventing service disruption or security impact on network

infrastructure. Distributed intelligence on IoT edge has been studied to analyze traffic, but introduces delays

and raises privacy concerns. Federated learning can address privacy concerns, but does not meet latency

requirements. In this paper, we propose FLIP4: an efficient federated learning-based framework for in-network

traffic analysis. Our solution introduces a lightweight federated tree-based model, offloaded and running

within network devices. FLIP4 consumes less resources than previous solutions and reduces communication

overheads, making it well-suited for IoT edge traffic analysis. It ensures prompt mitigation and minimal impact

on services in the presence of false alerts using two approaches (metering and dropping), thereby balancing

learning accuracy and privacy requirements.

1 INTRODUCTION
Distributed intelligence has been increasingly recognized for its scalability and flexibility compared

to centralized intelligence, especially in the context of IoT networks. Studies have highlighted its

effectiveness in providing optimal solutions for collective information and holistic views in IoT

networks [33, 42]. It has been applied for traffic analysis services in IoT networks, such as device

identification [13] and anomaly detection [55]. However, existing distributed intelligence-based

solutions [6, 52] primarily focus on accurate analysis and decisions. These solutions, while effective,

fall short in fast response and mitigation following decision-making, as well as in ensuring efficient

communication among distributed nodes.

This limitation becomes particularly critical as networks evolve to support ultra-reliable and

low-latency communication (URLLC) [10]. In such environments, the ability to quickly respond to

incidents is crucial, given that emerging attacks can significantly impact network infrastructure if

not promptly addressed. This risk is notably high in IoT networks, where end devices often lack

security measures due to resource constraints and performance considerations [48]. Consequently,

there is a pressing need for active defense services to detect and mitigate attacks effectively and

quickly [8].

Federated Learning (FL) has provided a solution to collaboratively train and improve distributed

intelligent models over time. It introduces distributed machine learning-based deployment across

multiple distributed nodes while keeping the data localized. Despite the demonstrated efficiency

and privacy in traffic analysis, FL has design challenges in high communication overhead and

unstable connection of local nodes [57]. This affects the performance of the FL-based traffic analysis

in IoT networks where network edge devices are relatively dynamic and have limited computing

resources.
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Minimizing the action enforcement time for identified anomalies remains another challenge of

applying FL-based traffic analysis for time-critical services. The emerging attacks have necessitated

fast mitigation responses, as recent reports indicate a significant increase in DDoS and Botnet

attacks in IoT networks, exploiting protocol vulnerabilities in IoT devices [2]. Prior work [11, 33]

has explored FL to enable accurate traffic analysis but falls short in fast response and action

enforcement. Providing ML-based analysis at line-rate within IoT edge network devices, as traffic

is forwarded through the devices, can potentially ensure quick reactions to identified traffic issues.

This opportunity has been made possible by recent progress in in-network ML inference [63, 65]. It

offloads ML inference to the data plane within network devices (e.g., programmable switches and

SmartNICs), rather than depending solely on general processing resources (e.g. CPU/GPU) [60].

State-of-the-Art (SOTA) work [40] employed in-network traffic analysis on IoT edge using

Neural Network-based FL preserving privacy. This work incorporated Binary Neural Networks

(BNN) and quantization. While its approach achieved a privacy-preserving traffic analysis on

IoT edge, quantization compromised accuracy. It focused on detection, without a solution for

mitigation. Moreover, the BNN introduced processing overheads and latency to normal traffic.

The BNN model itself, demonstrated on a smartNIC [40], is not well-suited for implementation on

resource-constrained programmable network devices [64].

Combining the opportunities in in-network traffic analysis and existing limitations in FL, we ask

this question: Can we realize a practical in-network FL framework for resource-constrained IoT edge?
Specifically, a framework enabling high accuracy, fast response and privacy-preserving in-network

traffic analysis at high performance and low overhead.

To answer this question, we propose FLIP4, an efficient ML-based traffic analysis framework

within distributed IoT gateway devices that achieves (1) accurate traffic analysis with low-latency

response to mitigate issues, (2) privacy-preserving traffic knowledge sharing, and (3) low de-

ployment overhead. We address the aforementioned challenges in fast analysis and response,

privacy-preserving information sharing, and lightweight deployment. To allow lightweight knowl-

edge sharing for distributed intelligence, we incorporate tree-based model with FL-based model

training, which consumes less local resources and lower communication overheads than typical

NN-based models. To enable accurate traffic analysis with fast response to detected anomalies, we

deploy the tree-based model in a novel in-network manner within local resource-constrained IoT

gateways. When it comes to mitigation measures, we introduce two sample options, dropping and

metering, as enforced actions when the model identifies issues. While direct dropping is suitable

for prompt mitigation, metering reduces the impact on a running service when the model gives

false alerts. The in-network model is reconfigured at runtime to adapt to traffic dynamism without

disrupting network traffic.

In summary, our contributions are:

• We propose a FL-based framework within distributed IoT gateways for privacy-preserving

traffic analysis at the edge (§3).
• We pinpoint an in-network ensemble model well-suited for fast incident response and

deployment within resource-constrained gateway devices on IoT edge (§4).
• We implement a federated-based model-sharing process for in-network ensemble model to

preserve the privacy of local traffic information(§5).
• We highlight the importance of fast response to identified traffic anomalies and introduce

an in-network solution expediting traffic handling to millisecond-scale on Raspberry Pi and

microsecond-scale on a commodity switch (Intel Tofino) (§6).
• We present a framework prototype on Raspberry Pi and commodity switch hardware devices.

Evaluation results on three public datasets show that our solution provides accurate and
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fast traffic analysis and response, with low overhead to traffic throughput and latency. Our

framework outperforms compared baselines and SOTA, improving inference accuracy by

2%-17% and reducing communication overheads by 6%-60% (§7).

2 BACKGROUND AND RELATEDWORK
2.1 Background

Fig. 1. Schematic PISA architecture for a pro-
grammable data plane in a programmable device
(switch) [39]. The inference process of a tree-based
ML model can be offloaded to the programmable data
plane by mapping the trained model to P4 language
and Match-Action (M/A) table rules.

Federated Learning (FL) FL enables the train-

ing of a global model across distributed local

intelligentmodels while preserving privacy and

reducing data transfer. Two types of FL have

been studied, horizontal and vertical. Horizon-

tal FL assumes that data presents the same fea-

ture groups, while vertical FL assumes that local

data from different parties have distinct feature

groups [57]. In this work, horizontal FL is stud-

ied by assuming that the same types of traffic

features are collected in gateways. Considering

ML models that can be federated, existing so-

lutions have proposed frameworks to federate

common-used models such as Neural Networks

(NN) [33], ensemble tree models [29], logistic

regression (LR) [14], and support vector ma-

chine (SVM) [26]. Among these models, NN-

based models are widely used for their accurate

learning performance on complex high-dimensional data. However, in traffic analysis services,

ensemble-tree-based models have the advantage of using model structures less complex than deep

neural networks, are computationally less intensive to train, and they outperform NN-based models

in handling categorical features [15]. Therefore, ensemble-tree-based models can be a more suitable

option for the analysis of raw packet bytes which are tabular data with categorical features.

Programmable Data Plane Traditional network devices have hard-coded data plane and control
plane. While Software-defined Networking (SDN) has enabled flexibility in the control plane, recent

years’ development of programmable data plane has enabled flexibility within the data plane.

The common programmable data plane is based on the Protocol Independent Switch Architecture

(PISA) as an abstract architecture. As shown in Figure 1, this architecture includes a packet header

parser/deparser, and a control pipeline consisting of programmable logics and Reconfigurable

Match-Action Tables (also known as M/A tables). P4 is a programming language used to define the

fields in these blocks to instruct packet processing and forwarding [3]. Programmable data planes

are supported on software and hardware target devices that pose different constraints. Software

targets like bmv2 are not constrained by processing architectures. Hardware targets that operate

on ASICs have stringent restrictions on how resources are allocated within pipelines containing

Match Action Units (MAUs) [20].

In-NetworkMachine Learning (ML) Inference In-network computing is a concept where com-

putational tasks are offloaded and performed directly within network devices (e.g., switches/routers)

rather than sending all data to a centralized computing resource (e.g., server/cloud) for processing.

In-network ML inference is an in-network computing service that specifically offloads ML inference

to the network devices. With programmable logic in the programmable data plane, in-network
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computing is able to leverage the pipeline logic and computing resources in the network devices to

perform fast and advanced network traffic processing.

Figure 1 demonstrates how in-network ML inference is achieved. Consider the high-level simi-

larity between data flowing through the pipeline’s tables in PISA architecture and traversing ML

models, where both check the values of the current node and point to the next node. Consequently,

ML inference process can be translated and mapped to PISA architecture when an ML model is

well-trained based on datasets. Building upon this idea, researchers have explored commonly used

ML models for in-network ML inference such as support vector machine (SVM) [63], Decision Tree,

Random Forest (DT, RF) [63], Neural Network (NN) [47].

2.2 Privacy and Fast Reaction Demands in IoT

Fig. 2. Framework overview of FLIP4 on IoT edge.

As the number of IoT devices continues to

grow, there is an increased need to provide low-

latency services and improve service quality.

IoT edge computing has been developed to pro-

cess the data closer to the source. Rather than

sending all data to remote servers/cloud, data

can be processed at the edge of the IoT network.

As illustrated in Figure 2, there are two types of

“edge”: on-premises edge and network edge. On-

premises edge refers to an edge closer to end

users that processes and analyzes data within

users’ local domain. Network edge indicates

the edge of the operator’s network that provisions resources within the network infrastructure,

allowing for more advanced processing and analytics. In this work, the network devices deployed on

the on-premises edge indicate those devices with limited resources (e.g. Raspberry Pi) for directing

data traffic within the local networks. The network devices deployed on the network edge indicate

high-performance devices (e.g. commodity switch with Intel Tofino [16]) for handling substantial

traffic.

Demands for fast reaction: 5G standards [10] have specified Key Performance Indicators (KPI)

for time-critical services as listed in Table 1. These services require millisecond-scale latency, urging

the demands for fast traffic analysis and quick response to issues and failures. With the fast and

flexible processing performance of in-network ML inference in high-speed network devices, prior

work has explored its applications on network edge deployment to enable fast traffic processing

and response. Since offloading the ML-based analysis to the network edge reduces the processing

latency, deploying in-network ML further accelerates the traffic analysis process on the data plane

of network devices on IoT edge. However, in-network ML functions are deployed alongside network

functions on resource-constrained IoT edge devices. This deployment needs to meet service KPIs

while considering limited device resources.

Demands on privacy: When it comes to the IoT edge scenarios, privacy is another concern as

many countries have released data privacy regulations [34–36]. Since ML-based analysis is a data-

driven approach, data collection and sharing is inevitable for network operators or stakeholders to

manage the applications and services. Though in-network ML provides intelligent analysis locally

on the network edge, the dynamic nature of IoT traffic requires constant ML model maintenance to

adapt to the variations and drift of incoming traffic. Such maintenance requires frequent traffic

data sharing to provide a global view and learn the dynamics. It poses concerns about potential

data breaches during the sharing or data interception for malicious profiling.
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Motivating use cases: Three use cases demonstrate the aforementioned demands in realistic

deployments.

a) eHealth network.Wearable devices are applied to provide healthcare services to patients in

remote locations, such as those recovering at home, with connections to hospitals. It is crucial to

maintain the service performance across the network and to identify IoT devices and monitor their

behavior for tasks like traffic profiling, identifying connectivity failures, or detecting anomalous

traffic patterns [21]. However, handling sensitive information, such as network addresses and

device details, raises privacy concerns among end-users.

b) Vehicular network. Vehicular networks are dynamic networks connected with moving vehicles.

The network is vulnerable to security threats if any vehicles are exploited to launch attacks on the

network infrastructure. To detect potential security threats and prevent data breaches, traffic among

vehicles can be analyzed at on-premises edge to trigger alerts and updates in real-time, contributing

to vehicle safety and performance [44]. On-premises edge processing enables self-monitoring

capabilities without relying on external servers causing high response latency. Privacy concerns

could stem from activities such as unauthorized tracking and the exposure of sensitive data, such

as vehicle locations.

c) Campus network. Campus networks are highly dynamic, with multiple access points, and

mobile users moving between them. The networks often pose security threats because of the number

of mobile users. By identifying data-intensive applications, the network can allocate resources more

efficiently and detect potential threats like malware, ensuring optimal performance [38]. Potential

malicious interception of user data may become a privacy concern.

On-Premises Edge Network Edge

Service Type Data preprocessing Data aggregation

Privacy

Sensitive user

data breaches

Data interception

and profiling

Latency <5ms <10-40ms

Data Rate Mbps-Gbps >Gbps

ML Capability Limited Medium

Table 1. On-premises edge vs. Network edge [41]

Table 1 compares the detailed requirements

between on-premises edge and network edge

scenarios [1, 41]. To meet these requirements,

deploying in-network ML inference on IoT

edge devices for accurate attack detection and

fast mitigation in different network locations

has the following constraints:

a) Computing resources: Network devices

deployed on the on-premises edge are usually

low-cost with limited computing resources. They are mainly deployed for traffic switching and

routing. While gateways on the network edge are in charge of traffic processing towards the

backbone or core network with higher throughput, the computing resources are less limited than

on-premises edge gateways.

b) Processing capability: Processing capability varies based on the amount of allocated bandwidth

resources. For gateways deployed close to end users (on-premises edge), available bandwidth can

range from Mbps to Gbps. While network-edge gateways are typically connected to high-speed

cables or fibers with bandwidth resources from Gbps or more.

c) Sensitive data processing: Depending on the application domain and geographic location, there

might be regulatory restrictions on data processing and storage. Traffic information collected from

gateways at on-premises edge may include sensitive information like the source and destination

address of end users.

d) Mobility: IoT end users may join or leave the network frequently, resulting in more challenges

in accommodating to dynamic traffic from end devices at on-premises edge. Gateways on network

edge have relatively static connections with mature link provisioning.
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Table 2. Related Works of Traffic Analysis and Anomaly Detection in IoT Networks

Ref.
Detection
Model

Deployment
Location

Distributed
Intelligence

Detection Mitigation Implementation

[27] GRU Server ✓ ✓ ✗ Simulation

[45] LR IoT Devices ✓ ✓ ✗ Simulation

[6] LR Gateway control plane ✓ ✓ ✗ Simulation

[52] NN Gateway control plane ✓ ✓ ✗ Simulation

[24] GRU Switch control plane ✓ ✓ ✓ Simulation

[59] DAE IoT device ✓ ✓ ✗ Simulation, RPi

[40] BNN Switch data plane ✓ ✓ ✗ Simulation, SmartNIC

[58] DT, RF Gateway data plane ✗ ✓ ✓ Simulation, RPi

FLIP4 DT, RF, XGB Gateway data plane ✓ ✓ ✓ Simulation, RPi, commodity switch

†
RF - Random Forest, LR - Logistic Regression, DAE - Deep Autoencoder, NN - Neural Network, MPL - Multilayer Perceptron, GRU

- Gated Recurrent Units, SVM - Support Vector Machine, BNN - Binarized Neural Network, XGB - XGBoost

2.3 Related Work
Table 2 summarizes various related works in the field of federated learning (FL)-based attack

defense from the aspects of the deployed models, deployment strategies, and their capabilities in

detection and mitigation.

Distributed traffic analysis and handling. The heterogeneity and dynamic distributed de-

ployment of IoT end devices like sensors and actuators have left vulnerabilities and attack vectors

for anomalous activities. Traffic analysis has been studied to learn the traffic pattern and detect the

potential risks in IoT networks [17, 45]. Most of the referenced works [6, 18, 59] include detection

capabilities, demonstrating the efficiency of traffic analysis services identifying the anomalies

in IoT networks. However, mitigation strategies to respond to detected anomalies are absent in

most studies, which may result in delayed mitigation that could disrupt normal traffic and impact

network infrastructure in low-latency communications. It highlights a gap in current research

landscape.

Model complexity. To classify the traffic and identify the anomalous samples, some studies

employ complex models like NN and GRU [24, 27, 52]. Despite complex models showing powerful

performance for various tasks, it might not be necessary or efficient in all IoT scenarios. This is

especially the case for models deployed on IoT edge where network devices commonly have limited

computing resources and may operate on low-power configurations. Considering that data is

collected in tabular formats in traffic analysis tasks, simpler models can achieve comparable results

with lower computational overhead. However, it is challenging to efficiently train and maintain the

in-network ML in a distributed manner with low communication overhead.

Local model deployment strategy. Prior work deployed the local MLmodel on IoT devices [59]

or gateway control planes [6, 18, 52], bringing extra communication overhead on traffic analysis

where the collected network telemetry needs to be sent from the data plane to the control plane.

This was limited by the constrained processing capability of traditional data plane architecture. By

introducing the programmable architecture to the data plane of the network devices, ML model can

be potentially deployed for inference in the data plane. Such potential allows fast traffic analysis

for detection and fast mitigation once the inference decisions are made. Despite this potential, a

few studies have explored the use of programmable architectures in data planes [40, 58]. However,

prior studies like [58] focused on hitless model updates in single-device deployment. They were

not designed in the context of resource-constrained IoT scenarios or a distributed deployment.
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2.4 Design Challenges
Though prior research has presented the advantages of applying FL to distributed traffic analysis

in IoT networks, there remains a gap in fast countermeasures when analysis decisions are made.

Deploying the analyzing algorithm on the data plane of IoT gateway may expedite the countermea-

sure process. It is challenging to apply the in-network model on IoT edge in a federated manner for

knowledge sharing while adhering to the aforementioned constraints. This is due to several key

factors:

a) Translating federated models to resource-constrained in-network deployment. The model needs

to be efficiently partitioned and translated to leverage the capabilities of the programmable data

plane on resource-constrained network devices. This entails parsing the structure and parameters

from the federated tree model and translating the parsed model information to P4-based in-network

deployment.

b)Model aggregation with low communication overhead.Model aggregation entails the information

exchange to combine the local model parameters to create a global model for knowledge sharing.

In the context of IoT deployment at on-premises edge devices, this process is ideally designed to

minimize communication overhead to save the device resources.

c) Prompt response to inference decision. When in-network ML is deployed for real-time analysis

and decision-making, an agile and responsive workflow enables prompt actions based on inference

decisions. Considering the potential trade-off between accuracy and privacy in FL, the workflow

should be optimized to minimize the potential effect of false reactions, while allowing for timely

responses to dynamic changes in traffic patterns.

Our design goal: a practical in-network FL framework for IoT edge in distributed scenarios

that can achieve accurate traffic analysis with fast response, privacy-preserving traffic knowledge

sharing, and lightweight deployment within resource-constrained gateway devices.

3 PROPOSED FRAMEWORK
In this section, we present the proposed framework FLIP4. We first provide a description of the

network scenarios and the threat model considered in this work. Following that, we introduce

FLIP4’s framework design, detailing its workflow and components.

3.1 Network Scenarios and Threat Model
Network scenarios. We consider a network setup with a server running on the cloud and N
local clients running in edge domains. Note that these clients are not end-users in this work;

instead, they are network devices that support a group of local end-users. As in the scenarios

discussed earlier, these local clients act as gateways, which can be strategically located either at

the on-premises edge or at the network edge (as illustrated in Figure 2). Depending on specific

demands and characteristics of the respective edge locations, packet-based and flow-based features

are extracted by local clients deployed as gateways at the on-premises edge and network edge.

These extracted features are then utilized by these gateways to conduct ML-based traffic analysis,

focusing on traffic classification tasks.

Threat model. We assume the attackers have already gained access to the network with

IoT devices using obtained credentials. This compromised network is based on the frequent sce-

narios where the devices are misconfigured or low-security configuration to lower the power

consumption [48]. This work focuses on attacks exploiting network protocols, specifically IoT edge

deployment scenarios involving gateway connections. 1) We concentrate on analyzing issues at the

protocol level, which can arise during protocol communications and require investigation through

traffic analysis. Even in cases where traffic is encrypted, L2-L4 protocol headers remain in plaintext,
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retaining their visibility for analysis. 2) We assume the network devices running the framework

are not compromised. 3) We consider the threat that attackers could potentially launch differential

attacks.

3.2 Framework Overview

Fig. 3. An overview of the proposed framework.

Design choices. FL involves both local de-

vices as the clients and servers/cloud for model

aggregation. To enable accurate traffic analy-

sis with fast reactions within distributed IoT

gateways and to meet the demands in IoT net-

work discussed in the previous section 2.2, we

consider the following design choices: a) Local

IoT gateways: Local gateways are integrated

with a programmable data plane enabling in-

network traffic analysis and fast reaction func-

tion. These gateways with programmable data

planes can be programmed with P4 language

for flexible traffic processing and efficient traf-

fic handling. Depending on the location of the

gateways, they can run on RPi deployed at the on-premises edge or high-performance switch

deployed at the network edge. On each gateway, the control plane runs on top of the data plane

instructing the data plane functions and coordinating the FL process on the server. b) Server: The

server provides FL-related services, such as model parameter’s collection and aggregation for

privacy-preserving knowledge sharing across local gateways.

Proposed workflow. Detailed workflow is depicted in Figure 3. The framework is composed of

a central server and multiple IoT gateways. Each gateway runs the programmable data plane and

control plane. The workflow consists of three main steps: in-network inference, FL-based model

training, and runtime updates.

• In-network inference: One of the key challenges in enabling fast incident response is the

delay caused by the separation of traffic forwarding (data plane) and ML model training and

inference for analysis (control plane/server). This separation leads to delays in analyzing and

acting upon detected incidents from incoming traffic. The proposed framework addresses

this challenge by offloading the ML-based inference from the control plane/server directly

to the data plane, in what we call ’in-network inference’ (as Figure 3 step ❶). It is done

within the network data plane so that the incoming traffic is parsed and analyzed at the

forwarding path based on the in-network ensemble tree model deployed at the data plane.

In detail, incoming traffic from each user device passes through the programmable data

plane on IoT gateway for header parsing and feature extraction. The extracted information

goes through the M/A pipeline with inference logic for ML-based analysis and labeling. If a

packet is labeled as benign, it will be forwarded, otherwise, it will be dropped or metered.

• FL-based model training: When the in-network inference is deployed in each local

gateway for fast attack detection and mitigation, it raises the challenge of sharing local

knowledge for optimal global analysis without incurring communication overhead or

risking data leakage. To address this, we introduce FL to share local model parameters

among multiple gateways, rather than the source data itself, in order to train a global model

at the server (as Figure 3 step ❷). When the server receives the model information from
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all gateways, the aggregator starts to aggregate the received models to generate a global

model. Differential Privacy is introduced in this process to improve privacy.

• Runtime updates: Another challenge arises in updating the local ML models with aggre-

gated global model without disrupting the functioning of local IoT gateways. Our solution

involves runtime updates to the local models for optimal accuracy, after the global model is

disseminated from the server back to each gateway (as Figure 3 step ❸). At each gateway,

a mapper coordinates between the control plane and data plane, updating the M/A table

rules with the new model. These rules are then seamlessly integrated into the data plane,

ensuring uninterrupted traffic flow while updating the system with the latest aggregated

knowledge.

Framework components. The framework is structured around two core components: the

mapper and the aggregator. Each IoT gateway hosts a mapper responsible for local model mapping.

This process involves converting the model’s parameters into M/A table rules for in-network

inference, which are dynamically inserted into the data plane. The mapper also shares these trained

model parameters with the server in a privacy-preserving manner with Differential Privacy and

authentication measures. On the server side, the aggregator will generate the global model. Once it

receives the updated model parameters from all the gateways, it begins the process of averaging

these parameters to construct a global model. This global model’s parameters are then distributed

back to each local IoT gateway. The gateways use these parameters to update their local models,

ensuring that they are synchronized with the latest global insights and trends. This cycle of local

inference, model sharing, and global model updating forms the framework, enabling fast defense

services and privacy-preserving knowledge sharing.

The proposed framework brings the following benefits: 1) in-network models provide enhanced

accuracy and fast defense to identify complex attack patterns that traditional rule-based solutions

might miss with predefined rules on the data plane, 2) FL-based training method ensures knowledge

sharing and reduces communication overhead, and 3) the periodic model aggregation and runtime

model update enable automatic local model reconfiguration and dynamic adaptation in response to

changing threats in the network.

4 LOCAL IN-NETWORK TRAFFIC ANALYSIS
In this section, we demonstrate how in-network inference is designed for efficient local traffic

analysis and fast incident response. We first introduce how the features are extracted from the

arriving traffic and how these features are input to the local ensemble model for in-network traffic

analysis. We explain the benefits of selecting ensemble tree models and present the challenge of

implementing the typical ensemble model (XGBoost) on the resource-constrained data plane, as

well as how to overcome this challenge to realize the model on the programmable data plane.

4.1 In-Band Traffic Feature Extraction
To achieve in-network traffic analysis locally in each distributed gateway, features are extracted

and prepared for ML inference before a packet is forwarded to the next hop. By defining the packet

header parser and pipeline processing in P4 language, features can be extracted to metadata within

the data plane. The extracted features are preprocessed into a format suitable for ML inference.

They are then used for in-network ML inference to do the classification task. In this work, stateless

and stateful features are extracted based on the feature importance ranking results in different

use cases. For instance, flow-based attack detection includes stateful flow-based features and IoT

fingerprinting includes stateless features. Considering the network traffic is parsed in tabular
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format, Permutation Importance is used to compute the feature importance by the degree to which

the model performance score decreases after the feature is randomly shuffled [4].

Having the features selected based on the ranking results, the selected features are extracted

in an in-band manner on the data plane. The stateless features are extracted by directly parsing

the packet headers from the arriving traffic. Stateful features (e.g. TCP flags, inter-arrival time) are

collected and counted with counters and registers and concatenated in the bitstring data structure

based on five-tuple flow information [5].

4.2 Selection of In-Network ML Models
In order to attain the goal of quickly responding to traffic by using an ML-based traffic analysis

method, ML models can be deployed in an in-network manner within the local network devices

(gateways). This allows the model to perform inference concurrently with the traffic switching

process on the data plane, enabling direct ML traffic control within the network device. Many

ML algorithms, which are suitable for distributed training, can be used for FL. However, not all

these algorithms are suitable for in-network deployment, especially in terms of accuracy on the

resource-constrained programmable data plane [62]. Different from the typical ML, the trained

model can be directly loaded to the processors with a wide range of operations supported, the

in-network ML model needs to be translated and mapped to the M/A form that can be processed

by programmable pipelines. Thereby, the model performance may be limited by the computing

resources on network devices and may lead to compromised accuracy.

Prior work has presented that some algorithms such as Decision Tree (DT), Random Forest

(RF), XGBoost (XGB), 𝑘-means (KM), 𝑘-Nearest Neighbors (KNN), Naive Bayes (NB), and Support

Vector Machines (SVM), have the potential to be implemented [64]. However, there is a lack of

discussion and a challenge in selecting a proper model for accurate and low-overhead in-network

deployment of traffic analysis service on IoT edge. When deployed on a hardware target like a

commodity programmable switch on the network edge (more user connections and higher process

requirements), resource bottleneck may come from the maximum capacity of the hardware target

such as pipeline stages, memory, processor, etc. Such constraints affect the performance of in-

network ML inference under the resource requirements in different use cases [5, 19, 61]. To select a

proper model, we examine the inference performance and resource efficiency (in terms of pipeline

stages and M/A table entries) of these models deployed in data plane for attack detection service.

Model DT RF XGB KM KNN NB SVM NN

ACC 99.87 99.81 99.91 58.40 64.43 99.48 86.54 92.00

F1 99.86 99.80 99.91 56.80 50.61 99.46 86.44 92.00

Stages 2 3 3 7 2 8 9 »12

Entries 116 487 1k 132k 14k 132k 132k 0

Table 3. Model Comparison. The in-network implementation of ML models on CICIDS 2017 dataset.

Table 3 shows the accuracy evaluation results of common-used ML models implemented in an

in-network manner. Public dataset CICIDS 2017 [46] is used as an example to compare the attack

detection performance in scenarios like vehicular network [56]. The constrained resources on

hardware targets can reflect the general performance of P4 program in the data plane [64]. The

table illustrates an observation: DT and its ensemble models, especially XGBoost, exhibit the best

ML performance.

4.3 In-Network XGBoost Implementation
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Feature extraction in the data plane of the local IoT gateway allows the concurrent execution of

machine learning (ML) model inference with network functionality, enabling a swift response

to incidents. By enabling the ML model inference process within local switches (specifically, to

the switch’s data plane, where traffic is routed), the time taken for traffic data collection and

analysis can be significantly reduced by directly identifying the anomalies on the forwarding

path within the programmable switch. Thereby, incident responses can be executed promptly

within the programmable switch’s pipeline once the anomalous incident is identified, as depicted

in Figure 1. This immediate analysis and reaction in an in-network manner is critical for mitigating

detected malicious activities, preventing them from further affecting other parts of the network.

This subsection introduces implementation details of XGBoost model in an in-network manner.

XGBoost is ensembled based on basic DT models. Each DT model acts as a weak learner and is

trained sequentially to correct the errors made by previous learners. When it comes to the data

plane, even a simple DT needs to compromise depth due to the excessive amount of stages. To

better realize tree models, an implicit mapping is necessary. Figure 1 depicts a simple example

of how a tree model can be translated to a P4 program and a set of M/A tables, as well as shows

the deployment process toward the programmable data plane. Figure 4 presents the details of the

model mapping process in P4 program. Since the trained tree model can be regarded as splits of

feature space, each branch can be treated as the boundary between split areas. Each split area is

labeled by the value in the leaf node. When learning an input consisting of 𝑛 features, a single

tree model is mapped to the data plane with 𝑛 feature tables and a decision table. As a result, the

inference process starts with the feature table, where each input feature is associated with specific

codes, and each code represents a threshold range corresponding to that feature. Subsequent to the

feature table, the decision table retains the associations between the codes derived from all features

and the values linked to the leaf nodes.

In XGBoost, the weight is represented by the value stored in the leaf of each tree model. These

weights are usually non-integer values, which are not supported by the P4 program. To tackle this

challenge, we choose to encode each weight into the weight code. We apply a forest table to map all

the weight codes from each tree model to the output class. By doing the encoding process, feature

tables and tree tables can be incorporated into the pipeline in parallel. The resource consumption

in terms of pipeline stages of P4 program can be thus effectively optimized within the pipeline.

Fig. 4. Mapping process of tree-based model to a programmable data plane. A single decision tree is depicted
as an example. XGBoost is an ensemble of trees.

5 FL-BASED COLLABORATIVE MODEL TRAINING

In this section, we explain the details of the FL-based training for in-network local models

and describe the workflow for federating local models into a global model. First, we identify the

challenges of ensemble FL compared with the federated NN. Second, we introduce the workflow in
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detail to illustrate how the in-network local models can be federated to a global model to share the

traffic information in a privacy-preserving manner.

5.1 Federating Ensemble models

Fig. 5. Sample workflow of FL function for model shar-
ing and parameter updates.

Different from NN-based model aggregating

the weights and biases of each layer, federated

tree models update the weights of leaf nodes

in each ensemble tree. Such difference brings

distinct challenges in model aggregation and

translation to local in-network tree models.

The challenges of aggregating local tree-

based models to a global model are: a) Tree

model may grow asymmetrically during the

training process, unlike NN with a symmetric

layer-by-layer model structure. Thereby, shar-

ing the model parameters needs to bind the tree

node information together which includes the

feature splits and the values in each tree node;

b) Aggregating a global model in the server

requires rebuilding the tree to update the global information instead of a simple value assignment.

We address these two challenges by incorporating the federated workflow. In this workflow, the

local models are shared with both parameters and structure information to the server. The server

triggers the tree rebuilding process upon receiving the information. The overall federated workflow

can be divided into the following steps:

Local training: Each client (local gateway) initializes the tree model locally by training its local

data. The training process involves recursively building a local tree model, similar to standard

tree-based model training.

Model aggregation: The central server first initializes an empty tree structure as global tree

model. It then collects local models from all gateways participating in the FL process. It aggregates

these models to obtain global model.

Model distribution: The updated global model is then distributed back to clients. This step

involves the updates of in-network model parameters at runtime, enabling local in-network model

updates without disrupting normal traffic.

Periodically, the process continues with the next round of local training. The whole process

involves multiple rounds of training and aggregation to improve the global model’s performance

gradually as described in Algorithm 1.

5.2 Efficient Model Aggregation
Aggregation workflow. Figure 5 depicts a sample workflow of the FL function proposed for in-

network deployment. The process begins with the server initializing a model structure and sharing

it with 𝑁 local devices. With this information, each local device initializes the model and proceeds

to train its own model using its respective local data. After the training process, parameters of the

trained local model [𝑤11, ...,𝑤1𝑛] are packaged and transmitted from each device to the server. In

order to enhance the global model, the server aggregates the local models from each local device

through a weighted average mechanism. The aggregated model𝑀𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 is then transmitted

back to the local devices. Once each local device receives this aggregated model, it will utilize these

new parameters to update the model. This update involves the adjustment of decision boundaries

within the tree structure and the generation of new M/A table entries for the data plane. Compared
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Algorithm 1 Federated tree to in-network tree

1: On server:
2: for 𝑟 in 𝑅𝑜𝑢𝑛𝑑𝑠 do
3: for 𝑒 in 𝐸𝑝𝑜𝑐ℎ𝑒𝑠 do
4: 𝑊 = Model aggregation

5: end for
6: for 𝑛 in local gateways 𝑁 do
7: 𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑜𝑐𝑎𝑙𝑀𝑜𝑑𝑒𝑙

8: end for
9: end for
10: Broadcast 𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝑜𝑑𝑒𝑙 to all gateways

11: Output 𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝑜𝑑𝑒𝑙

12: On local gateway:
13: procedure UpdateLocalModel

14: for 𝑟 in 𝑅𝑜𝑢𝑛𝑑𝑠 do
15: Parse model parameters𝑊𝑎𝑣𝑔 in 𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝑜𝑑𝑒𝑙

16: Generate new M/A rules

17: Insert rules to data plane of local gateway at runtime

18: end for
19: end procedure

Algorithm 2 Federated tree aggregation with Differential Privacy

1: Input:Model parameters from local gateways𝑤1,𝑤2, . . . ,𝑤𝑛

2: Output: Federated tree model𝑀

3: procedure FederatedAggregation(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 , 𝑝𝑟𝑖𝑣𝑎𝑐𝑦𝐵𝑢𝑑𝑔𝑒𝑡 )

4: 𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝑜𝑑𝑒𝑙 ← InitializeModel()

5: 𝑚𝑜𝑑𝑒𝑙𝑈𝑝𝑑𝑎𝑡𝑒𝑠 ← []
6: for each parameter set𝑤𝑖 in gateways do
7: for 𝑡𝑟𝑒𝑒 𝑗 in𝑤𝑖 do
8: Recompute 𝑡𝑟𝑒𝑒 𝑗 tree splits in each branch

9: Use new parameters to rebuild 𝑡𝑟𝑒𝑒 𝑗 in𝑤𝑖

10: Recalculate weights for 𝑡𝑟𝑒𝑒 𝑗 :𝑊𝑎𝑣𝑔 =
1

𝑁

∑𝑁
𝑗=1𝑤 𝑗

11: end for
12: 𝑛𝑜𝑖𝑠𝑦𝑈𝑝𝑑𝑎𝑡𝑒 ← 𝐴𝑝𝑝𝑙𝑦𝐷𝑃 (𝑙𝑜𝑐𝑎𝑙𝑀𝑜𝑑𝑒𝑙, 𝑝𝑟𝑖𝑣𝑎𝑐𝑦𝐵𝑢𝑑𝑔𝑒𝑡)
13: 𝑚𝑜𝑑𝑒𝑙𝑈𝑝𝑑𝑎𝑡𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑛𝑜𝑖𝑠𝑦𝑈𝑝𝑑𝑎𝑡𝑒)
14: end for
15: 𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝑜𝑑𝑒𝑙 ← 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝑚𝑜𝑑𝑒𝑙𝑈𝑝𝑑𝑎𝑡𝑒𝑠)
16: return 𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝑜𝑑𝑒𝑙

17: end procedure
18: procedure ApplyDP(𝑚𝑜𝑑𝑒𝑙 , 𝑝𝑟𝑖𝑣𝑎𝑐𝑦𝐵𝑢𝑑𝑔𝑒𝑡 )

19: Compute privacy budget 𝜖 .

20: Add noise 𝜂 ∼ DP(𝜖) to the update: �̃�𝑖 = 𝑀𝑖 + 𝜂
21: end procedure
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with methods that hard-code the model parameters in P4 program, mapping the model to table

entries provides the flexibility to change and update the model during runtime, building upon the

architectural advantages of the programmable data plane. Details are discussed in Section 6.

Privacy-preserving aggregation with Differential Privacy.We use the common aggregation

method named Federated Averaging (FedAvg) [30] in this work. It aggregates model updates from

multiple local devices while preserving data privacy. As shown in Algorithm 2, the formula for

Federated Averaging is represented as follows:𝑊𝑎𝑣𝑔 =
1

𝑁

∑𝑁
𝑖=1𝑤𝑖 , where we have 𝑁 local gateways

in the federated setup and each model has its own model weights𝑊𝑖 , where 𝑖 = 1, 2, ..., 𝑁 . Global

server benefits from the knowledge of all devices’ local models without directly accessing local data,

ensuring data privacy during traffic analysis process. Aggregating ensemble boosting tree model

with a set of data samples 𝐷 = {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1 is based on the objective function of tree 𝑓 denoted as:

L (𝑓 ) ≈ ∑𝑁
𝑖=1 (ℓ (𝑦𝑖 , 𝑦) + 𝑔𝑖 𝑓 (𝑥𝑖 )) + Ω, where 𝑙 is the leaf node, 𝑦 is the prediction of 𝑥 , 𝑔𝑖 is the

gradient of the loss function, and Ω = 𝛾𝐿 + 𝜆
2
∥𝒘 ∥2

2
. Model parameters updates involve updating

the gradient weight𝑤𝑙 = −
∑

𝑖∈𝐼𝑙 𝑔𝑖
|𝐼𝑙 |+𝜆 [29]. The weights of leaf nodes contribute to the ensemble vote

and affect predictions. Model updates therefore aim to update such weights in leaf nodes.

Differential Privacy (DP). As a transmission of model’s parameters may be intercepted by differ-

ential attacks and leak the model information, DP is introduced in this work to the model-sharing

process by adding randomness/noise to the model outputs. DP can quantify and manage the degree

of the privacy risks of the model by statistically characterizing the impact of a single data element

on the model. It is based on the theorem that the added randomness K satisfies 𝜖−DP, defined as:

Pr [K (𝐷1) ∈ 𝑆] ≤ exp(𝜖) × Pr [K (𝐷2) ∈ 𝑆] , (1)

where 𝐷1 and 𝐷2 are any adjacent datasets and and all outcomes 𝑆 ⊆ Range(K) [9]. Under this
definition, the impact of a single data element on the model is controlled within a certain range by

making it less distinguishable for differential attacks at the model level. The concept privacy budget
is used to evaluate the performance of the differential privacy mechanism and it is expected to be

as small as possible for better privacy. Nonetheless, adding noise will lead to a performance loss in

the model. Thus, there is a trade-off between privacy and model performance. Rényi Differential

Privacy [32] is used in this work by adding Rényi divergence to provide more fine-grained control

of privacy while keeping the succinctness.

Low-overhead communication with authentication. To exchange the model information

with low overhead, we select a group of candidates to share the parameters of local models, instead

of obtaining information from all clients. The candidate selection is done randomly in each iteration

to reduce the communication overhead. To keep the communication lightweight, we configure the

web socket as the communication technique to transmit the model parameters. Compared with

API-based communication, the socket-based solution runs at a low level with lower communication

overhead, despite the shared information being less customized. Besides, to prevent potential model

poisoning from the attackers [43], authentication is configured with socket-based communication

to only allow model sharing from the authenticated users. Based on usernames and passwords

hashed in a private JSON, the central server compares the credentials from the local devices to

determine whether the local devices are authenticated to share model information.

6 IN-NETWORK TRAFFIC ANALYSIS AND FAST REACTION
After the model distribution, local in-network models are configured at runtime to support accurate

and fast traffic analysis. Deploying such an in-network approach offers advantages in rapidly

responding to inference decisions and meeting requirements for time-critical service on IoT edge.
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Runtime configuration. Typical model updates involve the reloading of the model parameters.

In the context of in-network ML inference, the update can be problematic as the model parameters

have been inserted in the M/A tables inside the data plane processing pipelines. Updating the

model interface may result in disruption of the forwarding functionality. Thereby, P4Runtime

interface is configured between control plane and data plane to enable seamless updates of the

model parameters without affecting the normal traffic. When local devices receive the model

parameters from the global model, the runtime updates take place by first generating the new set

of M/A table rules to map the parameters in the tree structure. By writing the newly generated

rules, representing updated model parameters, to tables in the data plane via P4Runtime interface,

the in-network ML model is updated at runtime without interrupting the forwarding functions.

Incoming traffic can thereby obtain the latest ML-based inference results as it traverses the pipeline.

Fast reaction. When inference decisions are made on the data plane of the IoT gateway, an

action is conducted to instruct traffic handling. Such an action taking place in the data plane, right

after the inference decisions, can enable fast incident response. In this work, we propose three

actions: forward, meter, and drop. It enables the following use cases. In the anomaly detection use

case, filtering the detected malicious traffic by dropping is an efficient way to lower its potential

impact on other parts of the network. Yet, when FL is introduced to preserve learning privacy,

there is a trade-off between accuracy and privacy due to the indirect data-sharing process. Thus,

simply dropping the detected malicious traffic may affect the network service if the inference gives

false alerts. Thus, traffic metering allows a moderate operation to throttle the suspicious traffic,

which limits the impact of the malicious traffic and secures the reaction from false alerts. This also

applies to other services like flow classification or QoS management where metering is needed to

implement flow scheduling to improve resource utilization. The configuration of the three actions

is chosen based on the security level of the service. If the security level is high, a drop action is

configured to ensure the detected threats are mitigated. A meter action is used when the traffic’s

service level needs to be guaranteed, avoiding the impact of false alerts.

7 EVALUATION
7.1 Experiment settings
Experimental setupWe implement our prototype framework in P4 language using bmv2 with
v1model architecture. Two types of deployment were prototyped. For on-premises edge deployment,

the proposed solution is run on Raspberry Pi using P4Pi-v.0.0.3 [49] to play as the IoT gateway.

As for the IoT network-edge deployment, programmable switch APS-Networks BF6064X with

Intel Tofino 1 chipset and Barefoot’s SDE 9.6.0 is used to test the performance in commodity high-

throughput hardware. While P4 code provides the main data plane functions, Python code provides

controller and server functionality, extending the design in FL algorithm [29] and Planter [64]
for model training and inference. To evaluate the scalability of the proposed framework and be

limited by the hardware setup, Mininet is used to emulate a network with a number of devices and

gateways. To compare the learning performance, the performance of the proposed framework is

compared with other ML models as baselines, where baseline results are taken from offline model

learning using NN in PyTorch and tree-based ML models in sklearn.
Network setup: FLIP4 is deployed for a distributed network scenario on IoT edge. We consider

both on-premises edge and network-edge deployment scenarios. For an on-premises edge network

scenario, a SOHO (Small Office/Home Office) network is configured where a limited number of

gateways are connected. For a network-edge scenario, a mobile edge network with edge computing

capability is considered where traffic is processed at Gigabyte- to Terabyte-throughput. To simulate

the multiple-access gateways, a network topology is built in Mininet to the network edge with
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multiple switches acting as gateways. These gateways are connected to the remote server via

switches. The number of devices in the topology varies between the experiments.

Datasets: Three public datasets with packet-level features or flow-level features are used to

evaluate the performance of the proposed solution in different services. All three datasets include

both CSV and PCAP files. The CSV files are used for training, while the PCAP files are replayed in

the performance evaluation of FLIP4 on the hardware prototype.

• IoT Sentinel [31]: A device fingerprinting dataset for identification including packet features

for IoT identification service. Records from laptops and cameras are used where the samples

are balanced with a ratio of 49%.

• CICIDS 2017 [46]: An intrusion detection dataset including flow-based features for attack

detection service. Records on Wednesday including several types of DDoS attacks are used

where the benign/malicious ratio is imbalanced at a ratio of around 90% of malicious traffic.

• CIC-AndMal2017 [22]: A malware dataset recorded by flow-level traffic features for malware

detection services. Records on Ransomware samples are used where the benign/malicious

ratio is imbalanced at a ratio of around 14% malicious behavior.

7.2 Evaluation Metrics
Learning accuracy: Several metrics are available to evaluate the learning performance of ML

models. In this paper, we use Accuracy (ACC) and Receiver Operating Characteristic (ROC) Curve

as the metrics to evaluate learning accuracy performance, while calculating the area under the

ROC Curve (AUC). They are defined as below, where True Positive Rate 𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 and False

Positive Rate 𝐹𝑃𝑅 = 𝐹𝑃
𝑇𝑁+𝐹𝑃 . F1 score is also used 𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 , where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

and 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁 .

𝐴𝐶𝐶 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 ,𝐴𝑈𝐶 =

∫
𝑇𝑃𝑅 𝑑 (𝐹𝑃𝑅) (2)

Communication overhead: To evaluate the volume of data being sent to the server for model shar-

ing, the number of sent bytes during the web socket communication is recorded as communication

overhead.

Latency: To evaluate whether in-network ML inference brings extra latency to gateways, latency

is measured as packet processing latency within IoT gateway devices. It indicates the duration

when packets traverse the processing pipeline and is computed by: 𝑇𝐿 = 𝑇𝐸𝑔𝑟𝑒𝑠𝑠 −𝑇𝐼𝑛𝑔𝑟𝑒𝑠𝑠 .
Throughput: To evaluate whether the in-network ML inference brings any overhead to the

gateway, network throughput is measured by iPerf2 on P4Pi and ucli on Tofino.

CPU resources: The consumption of CPU resources is tracked to measure the impact of the

proposed solution on the gateway’s workload. To do this, CPU utilization is logged using the

system information tool /proc/stat on the P4Pi platform, providing how CPU cycles are used across

each core. The tool vcgencmd is employed to collect data on the core temperature.

7.3 Inference Performance
Inference accuracy. Table 4 and Table 5 summarize the inference accuracy of FLIP4 using CICIDS
2017 [46] and IoT Sentinel [31] dataset. They list the comparison of inference performance between

XGB model of FLIP4 and SOTA work BNN [40] implemented in an in-network manner. Other ML

models 𝑘-means (KM)/𝑘-Nearest Neighbors (KNN)/Naive Bayes (NB)/Neural Networks (NN)[12,

63, 64] are also listed showing the baseline accuracy on source data at the server without FL

functions. The tables summarize federated performance results of local inference performance

at each gateway and the global model performance in server. Results show that FLIP4 can reach

similar accuracy performance as the baseline NN-based model and SOTA work with the federated
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Model Gateway1 Gateway2 Gateway3 Global Offline

KM [12] 0.826 0.655 0.577 - 0.651

KNN [64] 0.875 0.386 0.432 - 0.432

NB [63] 0.899 0.693 0.967 - 0.645

NN [64] 0.985 0.936 0.968 - 0.930

F-DT [28] 0.899 0.500 0.500 0.788 0.977

F-BNN [40] 0.917 0.681 0.971 0.900 0.920

FLIP4-XGB 0.946 0.782 0.964 0.919 0.988

Table 4. Detection accuracy on CICIDS 2017 dataset.
,

Gateway1 Gateway2 Gateway3 Global Offline

KM [12] 0.440 0.448 0.473 - 0.545

KNN [64] 0.563 0.500 0.510 - 0.543

NB [64] 0.787 0.797 0.780 - 0.792

NN [64] 0.957 0.970 0.940 - 0.958

F-DT [28] 0.942 0.944 0.944 0.947 0.962

F-BNN [40] 0.937 0.954 0.936 0.936 0.968
FLIP4-XGB 0.958 0.953 0.959 0.962 0.966

Table 5. Detection accuracy on IoT Sentinel dataset.

in-network BNN model in both datasets. It outperforms other classical ML models like NB. Detailed

observations are: a) Local performance with in-network deployment. Compared with the uneven

accuracy performance of other classical ML models on local gateways, in-network deployment

of XGBoost in FLIP4 presents relatively balanced high accuracy. This is especially the case in IoT

Sentinel dataset, which is because of XGB’s advance in ensemble-based decision and averaged

results from FL. b) Global performance with FL. The aggregated global model of XGBoost in FLIP4

shows higher accuracy performance in both datasets than prior SOTA FL work [40] and [28]. In

detail, XGBoost in FLIP4 performs 2%-3% higher accuracy than DT-based [28] and BNN-based [40]

SOTA in IoT sentinel dataset. In CICIDS 2017 dataset, XGB proposed in this work has a similar

level of advantage to BNN-based design [40] while showing 17% higher accuracy than DT-based

FL [28]. c) Global performance vs. offline performance. Owing to privacy measures, FLIP4’s global

accuracy is slightly below that of offline results obtained through direct training on source data. The

accuracy degradation varies between datasets, from 0.4% in IoT Sentinel dataset to 6% in CICIDS

2017. Nevertheless, it surpasses the global accuracy of SOTA models like F-DT [28] and F-BNN [40].

Scalability. Figure 6 extends the experimental setup in Table 4 and evaluates how FLIP4 scales

to a different number of gateways on IoT edge. Evaluation is conducted on three datasets, and

performance is compared between the average local inference accuracy versus the global accuracy

aggregated by FLIP4. The red dashed line marks a baseline accuracy of XGB in an offline manner on

a server. Results present FLIP4 scales well to multiple gateways. As more gateways are connected

as new domains, a slight trend of accuracy degradation is shown in CICIDS 2017 dataset. Such

degradation is caused by data distribution of local datasets.

Communication overhead.With the same experimental setup as Figure 6, Figure 7 illustrate

how the volume of data may vary as more gateways promote their local model to the central

aggregator. In this group of figures, as the number of gateways increases, the number of models

being transmitted to the aggregator also increases, resulting in an increasing amount of data to be

shared for global integration. Results show that tree-based model deployed in FLIP4 can successfully

lower the communication overhead. In CIC-AndMal2017 dataset, FLIP4 reduces 6.2% of data sharing
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volume than BNN-based solution [40]. This reduction is more significant in CICIDS 2017 dataset

where the data volume is reduced by 60%.

Model training time.With the experimental results in Figure 6, the model training time for

local gateways is ∼0.01s, and the global integration and update for the server is ∼0.71s. To enable

and trigger in-network ML inference, the controller requires ∼0.11s to insert table entries to the data
plane. During this experiment, a 15-second time window is established for global aggregation with

five local gateways connected. The window size configuration may differ based on the number of

gateways involved. This is because the aggregation process is activated once all gateways complete

the model-sharing process to ensure a reliable outcome.

Accuracy vs. privacy trade-off. Introducing Differential Privacy into the model-sharing process

enhances privacy by adding noise, but this may impact the accuracy of inference. Figure 8 presents

empirical results of how increasing privacy affects inference accuracy. The privacy parameter 𝜖

(as defined in Equation 5.2), quantifies the privacy budget. A lower 𝜖 value corresponds to better

privacy. By decreasing 𝜖 to give better privacy, accuracy trends decline. Specifically, there is a 2.7%

accuracy decrement in the CICIDS 2017 dataset and a 1.4% accuracy decrement in the IoT Sentinel

dataset when 𝜖 varies from 1 to 0.1. The curves hit a pivotal point at 𝜖 = 0.2, where a noticeable

drop in accuracy occurs as privacy improves. This indicates that setting 𝜖 higher than 0.2 can yield

a better trade-off between accuracy and privacy, leading to less privacy loss.

7.4 In-Network Reaction Performance
With the software experimental setup in Figure 6 (a), Figure 9 presents the evaluation of reaction

performance when FLIP4 is deployed for in-network traffic processing. Figure 9 (a) demonstrates

that FLIP4 enables immediate mitigation action within milliseconds as the blue area (traffic being

dropped) overlaps with the red area (malicious traffic). Prior in-network solution [23] adopts

direct dropping on suspicious traffic to kill potential anomalies as soon as possible. In this work,

considering the aforementioned performance degradation in accuracy which is the price of privacy,

another metering-based measure is deployed to limit the rate of detected malicious flows. This

ensures that false alert traffic will not disrupt the normal service traffic [37, 54]. Results indicate

that metering-based methods reduce throughput impact from volumetric attacks compared to the

drop-based method, which immediately discards all identified anomalies.

7.5 System Performance
Inference speedup. We measure the processing latency in an IoT gateway to assess how this

in-network ML approach affects normal traffic on data plane. Figure 10 (a) presents latency tests

of FLIP4 and SOTA [40], with the same experimental setup in bmv2. Baseline represents a basic
gateway status without any analysis approach deployed. Results show that FLIP4 distinguishes

(a) AUC vs. Gateway Num. (b) AUC vs. Gateway Num. (c) AUC vs. Gateway Num.

Fig. 6. FLIP4 performance on learning accuracy as AUC score vs. number of gateways. Offline - offline model
trained by source data, FLIP4- global model, Local - local model. The datasets used are (a) Attack detection
in CICIDS 2017 [46], (b) IoT Identification in IoT Sentinel [31], (c) Malware detection in CIC-AndMal2017 [22].
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(a) Data Sent vs. Gateway Num. (b) Data Sent vs. Gateway Num. (c) Data Sent vs. Gateway Num.

Fig. 7. FLIP4 performance on data sent vs. number of gateways. Offline - offline model trained by source
data, FLIP4- global model, Local - local model. The datasets used are (a) Attack detection in CICIDS 2017 [46],
(b) IoT Identification in IoT Sentinel [31], (c) Malware detection in CIC-AndMal2017 [22].

(a) CICIDS 2017 dataset. (b) IoT Sentinel dataset.

Fig. 8. Privacy-preserving performance by varying 𝜖 .

itself through minimal latency overhead. While FLIP4 achieves packet processing latency of 2ms,

SOTA approach introduces ×5 latency to 10ms.

(a) Drop-based mitigation.

(b) Metering-based mitigation.

Fig. 9. In-network traffic mitigation
of FLIP4.

Lightweight deployment. Figure 10 (b) present throughput
performance of FLIP4 deployed on P4Pi [49]. Baseline shows a

scenario when only packet-switching functions are enabled in

gateway. FLIP4 and SOTA-BNN [40] present the scenario when

in-network ML inference deployment proposed in this work

and SOTA. While SOTA presents severe throughput degrada-

tion by more than 90%, presenting only 2Mbps throughput, the

deployment of FLIP4 causes less throughput degradation with

54Mbps when in-network XGB is deployed in data plane for

traffic analysis. That shows tree-based model used by FLIP4

causes less burden to gateway than BNN-based SOTA. This

is due to the complex structure and operation of BNN, which

could potentially overload devices. When it comes to impact

on CPU resources on RPi-based deployment as in Figure 11,

despite with similar level of CPU utilization, FLIP4 causes 50%

less burden than the SOTA on CPU temperatures.

When it comes to deployment on Intel Tofino commodity

switch, the tree-based solution in FLIP4 also shows an ad-

vantage with line-rate speed at 6.4Tbps throughput with sub-

microsecond latency, while BNN-based solution reaches the

maximum resource limitations and fails to achieve line-rate

throughput. In detail, running XGB in FLIP4 consumes 3 pipeline stages, while running SOTA-BNN

cannot be supported in maximum 12 stages due to model complexity. Commodity programmable

device has limited resources and is strict on processing operations and resource usage.
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7.6 Comparison with State-of-the-Art
Figure 12 presents the accuracy performance compared with State-of-the-Art (SOTA) solutions,

it shows that FLIP4 shows similar scalability as SOTA-BNN [40] in CICIDS 2017 dataset, but

performs better to scale in CIC-AndMal2017 dataset. When it comes to the system performance,

the comparison is presented in Figure 10 and 11 where FLIP4 causes less effect on the forwarding

functions and brings less burden on CPU resources.

(a) Latency comparison. (b) Throughput comparison.

Fig. 10. Latency and throughput comparison between FLIP4 and SOTA work BNN [40] in IoT Sentinel dataset.

(a) CPU temperature. (b) CPU utilization.

Fig. 11. Impact on CPU resource consumption.

(a) IoT Sentinel dataset. (b) CIC-AndMal2017 dataset.

Fig. 12. Accuracy performance comparison between FLIP4 and BNN [40].

8 DISCUSSION

Communication overhead. Communication overhead is related to the model size. In FL, this

can be a trade-off between accuracy and deployment overhead. Higher accuracy may be obtained

from larger models to support federated aggregation process, but a larger model may cause more

burden to the gateway which may lead to more model data being shared that would consume the

bandwidth resource as well as affect the normal function in gateways.

Privacy preserving. Sharing the local traffic knowledge as model parameters instead of the

original telemetry data preserves data privacy. Considering the trade-off between accuracy and

privacy, further privacy-preserving mechanisms are not added in this work. Further privacy-

preserving mechanisms like encrypted communication or advanced Differential Privacy can be

added to prevent malicious interception. But encryption may bring extra overhead to the gateway
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with limited resources and advanced Differential Privacy may bring slight degradation in federated

accuracy [29].

In-networkmodel for traffic analysis. In Section 6, in-network XGBoost-based traffic analysis

was introduced and deployed in a federated manner. The federated training framework can also be

combined with other state-of-the-art methods like [25, 51]. Furthermore, the type of in-network

model may also be changed to other models supported by Planter [64].

In-network reaction configuration. FLIP4’s in-network reaction supports both dropping and

metering of the detected threats as discussed in Section 6 and evaluated in Section 7.4. Configuring

dropping or metering as the mitigation method is determined by the operator based on the service

demands and whether the security level of the IoT network setup is critical. If the network requires

a critical security level, dropping is configured to prevent any potential issues. Conversely, if a

lower security level is acceptable, metering is chosen. This approach reduces traffic disruptions by

false alerts that could impact normal service.

Hardware deployment. In this paper, we demonstrate our framework’s deployment on resource-

limited Raspberry Pi and P4-enabled programmable switch. These devices verify our lightweight

design. Other hardware deployments (e.g. SmartNICs [53], FPGA [50]) are also viable, depending on

service requirements and use cases. They provide more computing resources or flexible operations,

adapting to data-intensive use cases like manufacturing or infotainment. The proposed solution

may also be deployed on IoT gateway platforms (e.g. Dell Edge Gateway [7]) to enable deployments

in real-world IoT scenarios. However, deploying FLIP4 in the field may raise challenges in ML

model maintenance, which could be tackled by model updates [58].

9 CONCLUSION

In this work, we introduced FLIP4, an FL-based in-network traffic analysis solution for dis-

tributed gateways. It employs in-network ensemble tree models with federated capabilities for

lightweight and privacy-preserving IoT edge deployment. The solution enables fast and accurate

traffic analysis within distributed local edge gateways. It shares central knowledge of traffic based

on model aggregation without directly sharing the source data. Evaluation on three public datasets

demonstrates accurate and fast in-network analysis, outperforming SOTA BNN-based solutions

with lower overheads. FLIP4 ensures a flexible, privacy-preserving design, enabling low-latency

response such as anomaly mitigation within resource-constrained gateways on IoT edge.
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