
Knowledge-Based Systems 299 (2024) 112110

A
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Temporal dynamics unleashed: Elevating variational graph attention
Soheila Molaei a,∗,1, Ghazaleh Niknam b,1, Ghadeer O. Ghosheh a, Vinod Kumar Chauhan a,
Hadi Zare b,∗, Tingting Zhu a, Shirui Pan c, David A. Clifton a,d

a Department of Engineering Science, University of Oxford, United Kingdom
b Department of Data Science and Technology, University of Tehran, Iran
c School of Information and Communication Technology, Griffith University, Australia
d Oxford-Suzhou Centre for Advanced Research, Suzhou, China

A R T I C L E I N F O

Keywords:
Dynamic graph embedding
Graph variational neural networks
Graph attention network
Deep generative models
Markovian assumptions

A B S T R A C T

This research introduces the Variational Graph Attention Dynamics (VarGATDyn), addressing the complexities
of dynamic graph representation learning, where existing models, tailored for static graphs, prove inadequate.
VarGATDyn melds attention mechanisms with a Markovian assumption to surpass the challenges of maintaining
temporal consistency and the extensive dataset requirements typical of RNN-based frameworks. It harnesses
the strengths of the Variational Graph Auto-Encoder (VGAE) framework, Graph Attention Networks (GAT),
and Gaussian Mixture Models (GMM) to adeptly navigate the temporal and structural intricacies of dynamic
graphs. Through the strategic application of GMMs, the model handles multimodal patterns, thereby rectifying
misalignments between prior and estimated posterior distributions. An innovative multiple-learning method-
ology bolsters the model’s adaptability, leading to an encompassing and effective learning process. Empirical
tests underscore VarGATDyn’s dominance in dynamic link prediction across various datasets, highlighting its
proficiency in capturing multimodal distributions and temporal dynamics.
1. Introduction

Node representation learning in graph-structured data is crucial
across domains like bioinformatics [1], social networks [2], and trans-
portation networks [3]. The goal is to capture a node’s structural
properties and feature information in low-dimensional vectors (embed-
dings) for tasks like node classification [4–6], link prediction [7–9],
and node clustering [10–12]. However, most methods focus on static
graphs, limiting their utility in dynamic, evolving data scenarios. Dy-
namic graphs, evolving over time, can be represented by a series of
static snapshots. This temporal perspective provides a more realistic
portrayal of the complex systems that graphs aim to represent, in
contrast to static graphs.

The landscape of dynamic graph representation learning has
seen various approaches, each with its set of challenges. Current
methodologies can be broadly classified into three categories: temporal
smoothness-based methods, Recurrent Neural Network (RNN)-based
approaches, and deep generative-based methods. However, each of
these approaches presents its own limitations, motivating the explo-
ration of innovative solutions such as our proposed Variational Graph
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Attention Dynamics (VarGATDyn). Temporal smoothness-based meth-
ods aim to enforce the smoothness of node representations from adja-
cent snapshots [13,14].

While promising, these methods often falter when faced with sig-
nificant variations in node evolutionary behaviours [15]. RNN-based
approaches, a more common category, store historical snapshots in
hidden states [16–20]. However, RNNs exhibit a data-hungry na-
ture, demanding a large amount of training data. As the number of
time steps increases, scalability issues become pronounced, hindering
their effectiveness [21]. Deep generative methods, combining temporal
smoothness-based and RNN-based approaches with generative models,
represent the final category. Despite their potential, these approaches
often rely on simplified assumptions and encounter challenges when
confronted with complex input data [22,23]. A notable challenge
within this category, particularly in the Variational Graph Autoencoder
(VGAE) framework, arises from a misalignment between the prior and
estimated posterior distributions within the latent space [24].

VarGATDyn presents a novel approach by integrating attention
mechanisms with a Markovian assumption, effectively addressing chal-
lenges associated with RNN-based models and overcoming issues re-
lated to temporal smoothness in adjacent snapshots within dynamic
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graphs. The incorporation of the Variational Graph Auto-Encoder
(VGAE) framework to capture graph structure at each time step, in
conjunction with Graph Attention Networks (GAT) and Gaussian Mix-
ture Models (GMM), establishes a robust foundation for addressing the
challenges posed by discrepancies between the prior and estimated
posterior distributions in the field of dynamic graph representation
learning.

GMMs emerge as a potent solution for effectively modelling multi-
modality within datasets. The phenomenon of multimodality manifests
when a dataset encompasses an overall population and diverse sub-
populations, making it challenging to assign each subpopulation to an
individual observation. Mixture models, particularly GMMs, present a
principled modelling approach tailored to handle such intricate data
structures. They serve as universal approximators of densities [25,26],
offering a systematic means to comprehend the complexities inherent
in the data. The key contribution of GMM lies in its ability to discern
and characterise the underlying probability distribution of observations
across the entire population.

In the domain of dynamic graph representation learning, the po-
tency of GMM is pivotal for mitigating challenges linked to the mis-
alignment between prior and estimated posterior distributions. By
leveraging GMM, the model gains the capacity to capture the intricate
multimodal patterns present in the data. This, in turn, facilitates a
more nuanced understanding of the dataset, enabling the model to
better approximate the true underlying distribution. As a result, the
problem is alleviated, as the model becomes adept at capturing the
diverse structural and temporal nuances inherent in dynamic graphs.
Our proposed multiple-learning technique further enhances the model’s
adaptability by iteratively performing inference, generation, and learn-
ing steps, leading to a more thorough and resilient learning process.
This comprehensive strategy positions VarGATDyn as a promising solu-
tion, outperforming state-of-the-art methods in dynamic link prediction
tasks across diverse datasets. The main contributions of this work are:

• Employing GMM within the VGAE framework to learn and ef-
fectively model the prior distribution, specifically addressing the
multimodal nature of input data and successfully mitigating the
problem of misalignment between the prior and estimated poste-
rior distributions.

• Proposing an innovative integrated variational model that cap-
tures both structural and temporal properties in dynamic graphs
by amalgamating attention mechanisms with Markovian assump-
tions, enabling the learning of temporal dynamics.

• Iteratively performing inference, generation, and learning steps,
repeated 𝑚 times at each time step, culminating in a comprehen-
sive and resilient learning process, contributing significantly to
overcoming the challenges arising from the discrepancy between
the prior and estimated posterior distributions.

• Demonstrating the efficacy of our proposed model through its
achievement of state-of-the-art performance across multiple dy-
namic link prediction tasks in seven datasets.

Following this introduction, we delve into related work in Section 2,
where we review current approaches and their limitations. In Section 3,
we elaborate on our proposed method, VarGATDyn, elucidating its
key components and innovations. Subsequently, in Section 4, we offer
insights into the experimental details, encompassing datasets, evalua-
tion metrics, and implementation specifics. Finally, in Section 5, we
conclude with a summary of our findings and outline directions for
future research.

2. Related work

In this section, we delve deeper into the landscape of dynamic
graph representation learning, highlighting pivotal methodologies and
advances in the field. We have organised the discussion around three
primary categories: Temporal Smoothness-based Methods, RNN-based
2

Methods (further subdivided into Stacked-RNN-based and Integrated-
RNN-based Methods), and Deep Generative-based Methods.
Temporal smoothness-based methods: Recently, temporal
smoothness-based methods have gained popularity in maintaining rep-
resentation stability across multiple time steps. Building on the intu-
ition that a network evolves smoothly over time, temporal smoothness-
based methods do not build a completely new representation at each
time step. For example, Zhou et al. [13] minimise the Euclidean
distance between embedding vectors in adjacent time steps and impose
a triadic closure concept to preserve the structural evolution of the
representation. Another related work is that of Goyal et al. [14], where
the authors modify a static Graph Auto-Encoder (GAE) to initialise
it with the weights from the previous snapshot conditioning on the
fact that significant changes between snapshots are not permitted. On
the other hand, Mahdavi et al. [27] propose a method in which the
VGAE structure is used to model each graph at each time step, with
the assumption that changes in a short period of length 𝑙 are smooth
and continuous. As a result, in order to model the evolution over
time, the embeddings produced in each step must be similar to those
produced in the 𝑙 previous steps. Although smooth methods tend to be
effective, they often fail when the evolutionary behaviours of nodes
change significantly over time.
Stacked-RNN-based methods: Recurrent methods learn temporal dy-
namics by storing historical snapshots in hidden states. The most
straightforward way to model discrete dynamic graphs with RNN-based
methods is to use a single GNN in each snapshot and then pass the
output to an RNN structure for time-series modelling [28]. For example,
Seo et al. [19] employ a Graph Convolution Network (GCN) introduced
in [29] for structural modelling and a Long Short-Term Memory (LSTM)
from [30] for temporal modelling. RgCNN [20] is another RNN-based
model that uses a GCN-based approach referred to as PATCHY-SAN
for structural modelling and a standard LSTM for temporal modelling.
More recent works include that of Manessi et al. [16], where the
authors propose two architectures, Waterfall Dynamic-GCN, and Con-
catenated Dynamic-GCN, that stack a GCN and an LSTM and apply it to
each node separately. While these two architectures share many design
similarities, the additional skip connection of the GCN in Concatenated
Dynamic-GCN distinguishes it from Waterfall Dynamic-GCN.
Integrated-RNN-based methods: Using an integrated framework for
structural and temporal modelling simultaneously can aid in acquiring
a better understanding of modelling dependencies [28]. For example,
EvolveGCN [31] combines a GCN and an RNN to update the GCN’s
weights with RNN outputs. Another model is GC-LSTM [32] where
the authors propose a hybrid of an LSTM and a GCN, in which the
graphs of the snapshots are fed into an LSTM. Then a spectral GCN is
performed on the LSTM’s hidden layer. Alternatively, LRGCN is another
model that combines a relational GCN (R-GCN) for modelling intra- and
inter-time relationships with an LSTM for capturing time dependency
between graph snapshots [18]. Other works that used GAEs include
E-LSTM-D [17], where an LSTM is used in conjunction with an encoder–
decoder architecture. In their approach, the encoder is given a series of
graphs to map to low-dimensional embeddings. The LSTM then learns
network evolution patterns, and the decoder maps the received data
to its original space [17]. Despite their high reported performance,
existing RNN-based methods entail a large amount of training data and
suffer from scalability issues as the number of time steps increases [28].
Deep Generative-based Methods: Although previous dynamic
graph representation learning methods demonstrate strong performance
they employ deterministic vectors to represent each node in a low-
dimensional space. Ignoring uncertainty may cause overfitting, and
poor representations [33,34]. Combining RNN-based or smoothness-
based methods with deep generative models can be effective in this
field. Deep generative models are known for capturing complex inter-
dependence and interactions between input and output data by con-
sidering their distribution [22]. The existing approaches for learning

dynamic graph representations using deep generative models typically
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Fig. 1. A high-level overview of our method. The figure illustrates the steps of our model in each time step 𝑡, utilising the GMM-VGAE structure and the proposed multiple-learning
technique. VarGATDyn takes the adjacency matrix 𝐀(𝑡) and feature matrix 𝐗(𝑡) as input (a). After that, it begins the process of replicating the steps of the GMM-VGAE using the
multiple-learning technique. Specifically, 𝑚 replications are performed in order to generate a comprehensive representation of the data. At each of the 𝑚 replication processes,
the input is projected onto a multimodal hidden space with 𝐾 components (b), which provide a more complex and detailed representation of the data. Each replicate within this
structure is conditioned on a variable 𝐠, which is derived from the exact replication of the previous time step. This variable is modelled using a GAT framework that incorporates
information from the previous time step. This additional latent variable is used in modelling the prior and posterior of GMM-VGAE (c). Afterwards, the adjacency matrix is
reconstructed using an inner product decoder for each 𝑚th replication process and the learning process is applied (d). Eventually, to generate 𝐠(𝑡𝑚 ) for the next time step, the
adjacency matrix, feature matrix, and the latent variable 𝐳 of the current replication 𝑚, as well as 𝐠 from the previous exact replication at time step 𝑡 − 1, are used as input to a
GAT structure (e). Note that replications are not shown in the structure of producing 𝐠 for simplicity.
fall into two categories: those that follow the VGAE framework, and
those that use adversarial frameworks. For example, VGRNN [23] is an
integrated variational architecture that employs the VGAE framework
for structural modelling and an RNN for temporal modelling. Another
example is GCN-GAN [35] which is a generative adversarial-based
method that employs GCN to investigate the topological properties of
each snapshot before employing an LSTM to characterise the evolving
properties of dynamic graphs. Generative Adversarial Networks (GAN)
are also used in GCN-GAN to enhance the model’s ability to gener-
ate subsequent weighted network snapshots. Existing deep generative
methods often adopt some oversimplified assumptions that limit their
applications to real-world data. For example, most deep generative
approaches assume the data comes from simple Gaussian distribution,
and do not consider input data intricacy like multimodality [23,35].

3. Proposed method

3.1. Notation and problem definition

We define a dynamic graph 𝐺 as a collection of static graph snap-
shots, denoted as 𝐺 = {𝐺(1), 𝐺(2),… , 𝐺(𝑇 )} for 𝑇 time steps, where the
sets of nodes and edges for time step 𝑡 are represented by 𝑉 (𝑡) and 𝐸(𝑡),
respectively, can change over time to account for potential changes in
node or edge sets; our proposed model takes a variable-length sequence
of adjacency matrices (𝐀 = 𝐀(1),𝐀(2),… ,𝐀(𝑇 )) and feature matrices
(𝐗 = 𝐗(1),𝐗(2),… ,𝐗(𝑇 )) as input, where 𝐀(𝑡) ∈ 𝑅𝑁𝑡×𝑁𝑡 and 𝐗(𝑡) ∈ 𝑅𝑁𝑡×𝐹 ,
with 𝑁𝑡 representing the number of nodes at time step 𝑡, and we assume
that the number of features 𝐹 remains constant over time in this paper.
Furthermore, we introduce 𝑚 = {1,… ,𝑀} as a variable to indicate
the number of replications within a specific time step for the multiple-
learning technique, and we denote each iteration within each snapshot
as 𝑡 .
3

𝑚

3.2. VarGATDyn

VarGATDyn is an integrated method that models the evolution
of both topology and node attributes in dynamic graphs using the
Markovian assumption. This model utilises a variant of VGAE known
as GMM-VGAE [36] to model each snapshot of the graph. The combi-
nation of VGAE and GMM is utilised to get the input data’s distribution
and attain a fuller understanding of it. To better represent the dynamic
structure of the graph over time, GMM-VGAEs are conditioned on an
additional latent variable, which is modelled by a GAT framework.
Furthermore, to improve the representation of the graph’s dynamic
structure, VarGATDyn proposes a technique called multiple-learning
which involves iteratively performing inference, generation, and learn-
ing processes 𝑚 times for each time step, resulting in a more robust
and comprehensive training process. An overview of the proposed
VarGATDyn is shown in Fig. 1.
Generation. Our model incorporates three latent variables 𝑧, 𝑤, and 𝑐
to seamlessly integrate GMM and VGAE, resulting in a unified GMM-
VGAE. The generative process of GMM-VGAE is modelled as follows:

𝑝(𝐜(𝑡𝑚);𝜋) = 𝐶𝑎𝑡(𝐜(𝑡𝑚);𝜋)

𝑝(𝐳(𝑡𝑚)|𝐜(𝑡𝑚)) =
𝐾
∏

𝑘=1
 (𝐳(𝑡𝑚);𝝁

𝑐(𝑡𝑚 )
𝑘

,𝜮
𝑐(𝑡𝑚 )
𝑘

)𝑐
(𝑡𝑚)
𝑘

(1)

Here, Cat is the categorical distribution, 𝐜(𝑡𝑚) is a one-hot vector repre-
senting the mixing coefficients of the GMM components at 𝑚th iteration
of time-step 𝑡, 𝝅 is the mixing probabilities, and 𝐾 is the number of
GMM components. Finally, 𝝁

𝑐(𝑡𝑚 )
𝑘

and 𝜮
𝑐(𝑡𝑚 )
𝑘

are the mean and diagonal
covariance matrix of the 𝑘th component, respectively and a neural
network (NN) with 𝐰(𝑡𝑚) as input generates them, as shown in Eq. (2).

{𝝁
𝑐(𝑡𝑚 )
𝑘

,𝜮
𝑐(𝑡𝑚)
𝑘

} = 𝑁𝑁(𝐰(𝑡𝑚));

𝐰(𝑡𝑚) ∼  (0, 𝐼)
(2)

In contrast to static GMM-VGAEs, which sample the prior from a
standard Gaussian distribution ( (0, 𝐼)), our GMM-VGAE uses a new
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prior sampling process. This process allows the prior distribution’s
parameter to be modelled by a function of the previous time step. To
achieve this, an additional latent variable, 𝐠(𝑡𝑚), compresses the current
tep information for the next step. The GAT structure takes multiple
nputs, including the adjacency matrix, feature matrix, and the latent
ariable 𝐳 from the current time step (𝑡) in the 𝑚th iteration, as well as 𝐠
rom the previous time step (𝑡−1) in the exact iteration 𝑚. These inputs
re used to compute the final representation, as shown in Eq. (3).
(𝑡𝑚) = 𝐺𝐴𝑇 (𝐀(𝑡𝑚),𝐗(𝑡𝑚), 𝐳(𝑡𝑚), 𝐠((𝑡−1)𝑚)) (3)

n the initial step where the preceding step’s variable 𝑔 is unavailable,
e omit its consideration in our modelling. The construction of the
rior distribution can be written as shown in Eq. (4).

𝝁(𝑡𝑚)
𝑝𝑟𝑖𝑜𝑟,𝜮

(𝑡𝑚)
𝑝𝑟𝑖𝑜𝑟} = ϝ𝑝𝑟𝑖𝑜𝑟𝑁𝑁 (𝐠((𝑡−1)𝑚))

{𝜋(𝑡𝑚)
𝑝𝑟𝑖𝑜𝑟} = ϝ𝑝𝑟𝑖𝑜𝑟𝐿𝑖𝑛 (𝐠((𝑡−1)𝑚))

(4)

here 𝝁(𝑡𝑚)
𝑝𝑟𝑖𝑜𝑟 and 𝜮(𝑡𝑚)

𝑝𝑟𝑖𝑜𝑟 are the mean and covariance of the prior
istribution, and 𝜋(𝑡𝑚)

𝑝𝑟𝑖𝑜𝑟 is the mixing probability. The latent variable
t the 𝑚th iteration of time 𝑡 is then drawn from a multivariate Gaus-
ian distribution with mean 𝝁(𝑡𝑚)

𝑝𝑟𝑖𝑜𝑟 and covariance 𝜮(𝑡𝑚)
𝑝𝑟𝑖𝑜𝑟, i.e., 𝐰(𝑡𝑚) =

(𝝁(𝑡𝑚)
𝑝𝑟𝑖𝑜𝑟,𝜮

(𝑡𝑚)
𝑝𝑟𝑖𝑜𝑟). The categorical variable 𝐜(𝑡𝑚) is drawn from a categor-

cal distribution with mixing probability 𝜋(𝑡𝑚)
𝑝𝑟𝑖𝑜𝑟, i.e., 𝐜(𝑡𝑚) = 𝐶𝑎𝑡(𝜋(𝑡𝑚)

𝑝𝑟𝑖𝑜𝑟).
𝑝𝑟𝑖𝑜𝑟
𝑁𝑁 and ϝ𝑝𝑟𝑖𝑜𝑟𝐿𝑖𝑛 are functions that produce the parameters of the prior
istribution and mixing probability based on the previous time step
nformation.

These functions correspond to a neural network used for generating
he parameters of the prior distribution, and a linear function utilised
or generating the mixing probability. The prior distribution for the first
ime step is assumed to be a standard multivariate Gaussian distribution
ith mean 0 and identity covariance matrix, denoted as  (0, 𝐈). If
odes are added at each snapshot, the prior distribution of the added
ode is also defined as  (0, 𝐈). Eliminating a node is equivalent to
emoving all edges connected to the node, and therefore, the prior
robabilities are not affected. The inner-product decoder reconstructs
he adjacency matrix between 𝐳 and its transpose (𝐳𝑡𝑟) at each time step,

as shown in Eq. (5).

𝑝(𝐀(𝑡𝑚)
|𝐳(𝑡𝑚)) =

∏

(𝑖,𝑗)∈𝐸
𝐒(𝐳(𝑡𝑚)𝑡𝑟𝑖 𝐳(𝑡𝑚)𝑗 )𝐴

(𝑡𝑚 )
𝑖𝑗 ⋅ (1 − 𝐒(𝐳(𝑡𝑚)𝑡𝑟𝑖 𝐳(𝑡𝑚)𝑗 ))1−𝐴

(𝑡𝑚 )
𝑖𝑗 (5)

In this equation, the symbol 𝐒 denotes the sigmoid function, whereas
the symbol (⋅) stands for the inner product decoder.
Inference. The node embedding for dynamic graphs can be calculated
by inferring the posterior distribution, which is also a function of 𝐠. This
architecture design will assist each GMM-VGAE in considering the dy-
namic graph’s temporal structure. Based on the mean-field variational
family,

𝑞(𝐳(𝑡𝑚),𝐰(𝑡𝑚), 𝐜(𝑡𝑚)|𝐀(𝑡𝑚),𝐗(𝑡𝑚)) =
𝑁
∏

𝑖=1
𝑞𝜙𝐳 (𝐳

(𝑡𝑚)
𝑖 |𝐀(𝑡𝑚)

𝑖 ,𝐗(𝑡𝑚)
𝑖 )𝑞𝜙𝐰 (𝐰

(𝑡𝑚)
𝑖 |𝐀(𝑡𝑚)

𝑖 ,𝐗(𝑡𝑚)
𝑖 )

𝑝𝛽 (𝐜
(𝑡𝑚)
𝑖 |𝐳(𝑡𝑚)𝑖 ,𝐰(𝑡𝑚)

𝑖 )

(6)

Here, 𝑁 is the number of data points, 𝜙𝐳 and 𝜙𝐰 are the variational
parameters associated with 𝐳 and 𝐰, respectively. The set of GMM
parameters related to each mixture component is denoted as 𝛽. The
conditional distributions of 𝑧|𝑥 and 𝑤|𝑥 are defined as Gaussian dis-
tributions, with parameters generated via GNNs using the adjacency
matrix 𝐀(𝑡𝑚) and the concatenation of the node feature matrix 𝐗(𝑡𝑚)

with the latent variable 𝐠 from the previous time step. The conditional
posterior distribution of 𝑐|𝑧, 𝑥 is given by Eq. (7).

𝑝𝛽 (𝐜
(𝑡𝑚)
𝑗 = 1|𝐳(𝑡𝑚),𝐰(𝑡𝑚)) =

𝜋𝑗𝑝(𝐳(𝑡𝑚)|𝐜
(𝑡𝑚)
𝑗 = 1,𝐰(𝑡𝑚); 𝛽)

∑𝐾
𝑘=1 𝜋

(𝑡𝑚)
𝑘 𝑝(𝐳(𝑡𝑚)|𝐜(𝑡𝑚)𝑘 = 1,𝐰(𝑡𝑚); 𝛽)

(7)

Here 𝐜 is a binary variable indicating the assignment of data points to
mixture components.
4

c

Learning. Our proposed model comprises two essential components
for effective learning: (1) The incorporation of both structural and
temporal aspects of modelling, and (2) The utilisation of multiple-
learning techniques to create a comprehensive model of the input data.
To incorporate both structural and temporal aspects in our modelling
approach, we take two different points of view. From the structural
point of view, we calculate the Evidence Lower Bound (ELBO) of the
GMM-VGAE for each time step. The ELBO of the GMM-VGAE loss
function for each time step is calculated as follows,

𝑝(𝐀(𝑡𝑚), 𝐳(𝑡𝑚),𝐰(𝑡𝑚), 𝐜(𝑡𝑚)) =
𝑝(𝐰(𝑡𝑚))𝑝(𝐜(𝑡𝑚))𝑝(𝐳(𝑡𝑚)|𝐰(𝑡𝑚), 𝐜(𝑡𝑚))𝑝(𝐀(𝑡𝑚)

|𝐳(𝑡𝑚))
(8)

Based on Eq. (6) and Eq. (8), the lower bound for each snapshot can
be written as Eq. (9).

𝐿(𝑡𝑚)
𝐸𝐿𝐵𝑂 = E𝑞

[ 𝑝(𝐀(𝑡𝑚), 𝐳(𝑡𝑚),𝐰(𝑡𝑚), 𝐜(𝑡𝑚))
𝑞(𝐳(𝑡𝑚),𝐰(𝑡𝑚), 𝐜(𝑡𝑚)|𝐀(𝑡𝑚))

]

=

E𝑞[log 𝑝(𝐀(𝑡𝑚)
|𝐳(𝑡𝑚))] − E𝑞[log

𝑞(𝐳(𝑡𝑚)|𝐀(𝑡𝑚),𝐗(𝑡𝑚))
𝑝(𝐳(𝑡𝑚)|𝐰(𝑡𝑚), 𝐜(𝑡𝑚))

]−

E𝑞[
𝑞(𝐰(𝑡𝑚)

|𝐀(𝑡𝑚),𝐗(𝑡𝑚))
𝑝(𝐰(𝑡𝑚))

] − E𝑞[
𝑝(𝐜(𝑡𝑚)|𝐳(𝑡𝑚),𝐰(𝑡𝑚))

𝑝(𝐜(𝑡𝑚))
]

(9)

Our ELBO’s first term, which assesses the discrepancy between the
input data and their reconstruction, has the exact same structure as the
first term of the ELBO’s VGAE. The second term measures the similarity
between 𝑞(𝐳(𝑡𝑚)|𝐀(𝑡𝑚),𝐗(𝑡𝑚)) and 𝑝(𝐳(𝑡𝑚)|𝐰(𝑡𝑚), 𝐜(𝑡𝑚)). To approximate this
term, Monte Carlo can be used as shown in Eq. (10).

E𝑞[𝐾𝐿(𝑞(𝐳(𝑡𝑚)|𝐀(𝑡𝑚),𝐗(𝑡𝑚)) ∥ 𝑝(𝐳(𝑡𝑚)|𝐰(𝑡𝑚), 𝐜(𝑡𝑚)))]

≈ 1
𝐽

𝐽
∑

𝑗=1

𝐾
∑

𝑘=1
𝑝(𝐜(𝑡𝑚)𝑘 = 1|𝐰(𝑡𝑚)

𝑗 , 𝐳(𝑡𝑚)𝑗 )

𝐾𝐿(𝑞(𝐳(𝑡𝑚)|𝐀(𝑡𝑚),𝐗(𝑡𝑚)) ∥ 𝑝(𝐳(𝑡𝑚)|𝐰(𝑡𝑚)
𝑗 , 𝐜(𝑡𝑚)𝑘 = 1))

(10)

The third term measures the similarity between 𝑞(𝐰(𝑡𝑚)
|𝐀(𝑡𝑚),𝐗(𝑡𝑚)) and

(𝐰(𝑡𝑚)) which is equal to calculating KL-divergence for them as shown
n Eq. (11).

𝑞[
𝑞(𝐰(𝑡𝑚)

|𝐀(𝑡𝑚),𝐗(𝑡𝑚))
𝑝(𝐰(𝑡𝑚))

] = 𝐾𝐿(𝑞(𝐰(𝑡𝑚)
|𝐀(𝑡𝑚),𝐗(𝑡𝑚)) ∥ 𝑝(𝐰(𝑡𝑚))) (11)

The last term is a KL divergence of categorical distributions as shown
in Eq. (12).

𝐾𝐿(𝑝(𝐜(𝑡𝑚)|𝐳(𝑡𝑚),𝐰(𝑡𝑚)) ∥ 𝑝(𝐜(𝑡𝑚)))

=
𝐾
∑

𝑖=1
𝑝(𝑐(𝑡𝑚)𝑖 = 1) log

𝑝(𝑐(𝑡𝑚)𝑖 = 1)

𝑝(𝑐(𝑡𝑚)𝑖 = 1|𝑧(𝑡𝑚), 𝑤(𝑡𝑚))

(12)

rom a temporal point of view, we adjust the loss function to embody
he Markovian assumption. To accomplish this, we add the loss function
f the previous time step, referred to as Temporal Loss (TL), to the loss
unction of the current time step, referred to as Snapshot Loss (SL). The
oss function at time 𝑡 is defined as the sum of SL and TL, as shown
n Eq. (13).
(𝑡𝑚) = 𝛼.𝑇𝐿 + (1 − 𝛼).𝑆𝐿 (13)

Here the hyperparameter 𝛼 controls the emphasis on each com-
onent. The multiple-learning technique replicates the processes of
nference, generation, and learning 𝑚 times for each time step. In this
echnique, the loss function in the examined time step is the sum
f the loss functions of the 𝑚 execution times. This multiple-learning
echnique provides several benefits. First, by iteratively performing the
nference, generation, and learning steps, the model can better capture
omplex temporal dependencies and fluctuations in the data. Second, it
rovides a more comprehensive and robust training process, reducing
he risk of overfitting and improving generalisation performance. Third,
t allows for the exploitation of multiple paths of exploration, which
an improve the diversity of generated samples and lead to better
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Table 1
A summary of the datasets used in the experiments in terms of nodes, edges, density, snapshots, and node, where applicable.

Dataset Number of snapshots Number of nodes Number of edges Number of node attributes

Enron 11 184 115–266 –
Colab 10 315 165–308 –
Facebook 9 663 844–1068 –
LFB 36 45 435 180 011 –
UCI 7 537–1899 59 835 –
Yelp 12 6569 95 361 –
Cora 6 500–2708 406–5429 1433
Table 2
AUC and AP scores of link prediction on dynamic graphs. The best results are highlighted.

Model Enron Colab Facebook UCI Cora

AP

DynAE 76.00 ± 2.0 64.02 ± 2.1 56.04 ± 0.9 91.12 ± 0.5 57.11 ± 0.5
DynRNN 85.61 ± 2.5 78.95 ± 2.7 75.88 ± 0.8 89.21 ± 0.7 80.75 ± 0.7
DynAERNN 89.37 ± 0.7 81.84 ± 2.1 78.55 ± 1.3 89.92 ± 0.4 82.93 ± 0.6
DySAT 93.06 ± 0.2 90.40 ± 0.3 80.39 ± 0.3 85.01 ± 0.2 87.73 ± 0.2
HTGN 94.31 ± 0.2 91.91 ± 0.2 83.80 ± 0.3 86.72 ± 0.1 90.12 ± 0.2
VGRNN 93.29 ± 0.7 87.77 ± 0.7 89.04 ± 0.8 91.83 ± 0.5 93.32 ± 0.4
SI-VGRNN 94.44 ± 0.7 88.36 ± 1.2 90.19 ± 0.8 93.16 ± 0.5 96.68 ± 0.4
AMCNet 93.10 ± 0.7 90.06 ± 7.0 86.02 ± 1.0 92.25 ± 0.8 90.13 ± 1.2

VarGATDyn 98.61 ± 0.7 97.78 ± 0.8 96.12 ± 0.7 96.17 ± 0.5 99.31 ± 0.4

AUC

DynAE 74.22 ± 2.8 63.14 ± 2.1 56.06 ± 1.2 91.89 ± 0.8 57.13 ± 0.6
DynRNN 86.41 ± 2.2 75.7 ± 3.5 73.18 ± 3.1 89.27 ± 1 80.10 ± 0.7
DynAERNN 87.43 ± 0.9 76.06 ± 2.1 76.02 ± 1.1 90.08 ± 0.6 78.00 ± 0.5
DySAT 93.06 ± 0.3 87.25 ± 0.2 76.88 ± 0.2 86.73 ± 0.3 85.3 ± 0.1
HTGN 94.17 ± 0.2 89.26 ± 0.2 83.70 ± 0.3 87.25 ± 0.2 89.73 ± 0.3
VGRNN 93.10 ± 0.5 85.95 ± 0.6 89.47 ± 0.6 92.01 ± 0.5 94.41 ± 0.5
SI-VGRNN 93.93 ± 1.0 85.45 ± 1.0 90.94 ± 0.9 93.5 ± 0.5 97.17 ± 0.4
AMCNet 93.00 ± 0.9 91.22 ± 0.9 87.08 ± 1.1 93.31 ± 0.8 92.05 ± 0.9

VarGATDyn 98.71 ± 0.8 97.80 ± 0.8 96.89 ± 0.7 96.99 ± 0.4 98.72 ± 0.3
Fig. 2. Impact of using various alphas on the two dynamic prediction tasks. AP New and AUC New refer to the metrics for the new link prediction task, while AUC and AP refer
to the metrics for the link prediction task. The results are reported in terms of the average of 500 epochs.
Fig. 3. A comparison of VarGATDyn’s performance in two modes, with and without GMM. The colours represent the AP and AUC criteria for both link prediction and new link
prediction tasks.
5



Knowledge-Based Systems 299 (2024) 112110S. Molaei et al.

i

𝑆

H
s
o
b

𝐿

4

4

l
t
C
U
h
r
T
E
b
e
s
F
t
d
d
L
c
p
c
t
a
s
Y
f
r
t
e

Table 3
AUC and AP scores of new link prediction on dynamic graphs.

Model Enron Colab Facebook UCI Cora

AP

DynAE 66.50 ± 1.9 58.82 ± 2.1 54.57 ± 0.9 89.65 ± 0.6 56.65 ± 0.5
DynRNN 80.96 ± 2.6 75.34 ± 2.6 75.52 ± 0.8 86.86 ± 0.6 80.01 ± 0.8
DynAERNN 85.16 ± 0.8 77.68 ± 1.9 78.70 ± 1.2 88.15 ± 0.5 82.34 ± 0.6
DySAT 86.83 ± 0.4 83.47 ± 0.4 78.34 ± 0.5 83.94 ± 0.3 87.15 ± 0.3
HTGN 90.62 ± 0.4 84.06 ± 0.3 81.70 ± 0.2 84.26 ± 0.3 89.83 ± 0.3
VGRNN 87.57 ± 0.7 79.63 ± 0.7 86.30 ± 0.9 89.48 ± 0.6 93.21 ± 0.5
SI-VGRNN 87.88 ± 0.8 81.26 ± 1.2 86.72 ± 0.9 90.07 ± 0.6 95.32 ± 0.6
AMCNet 92.12 ± 0.8 88.00 ± 1.0 85.00 ± 0.8 92.21 ± 0.7 92.08 ± 0.6

VarGATDyn 97.77 ± 0.7 97.20 ± 0.7 95.56 ± 0.7 96.17 ± 0.5 98.98 ± 0.5

AUC

DynAE 66.10 ± 3.1 58.14 ± 2.8 54.62 ± 1.9 89.94 ± 1.2 56.27 ± 0.9
DynRNN 83.20 ± 2.6 71.71 ± 3.7 73.32 ± 3.2 87.27 ± 1.3 79.94 ± 0.8
DynAERNN 83.77 ± 1.2 71.99 ± 2.3 76.35 ± 1.3 88.29 ± 0.8 77.36 ± 0.8
DySAT 87.94 ± 0.5 79.74 ± 0.5 74.97 ± 0.6 84.20 ± 0.4 86.11 ± 0.6
HTGN 91.26 ± 0.3 81.74 ± 0.3 82.21 ± 0.4 84.98 ± 0.4 87.85 ± 0.4
VGRNN 88.43 ± 0.7 77.09 ± 0.6 87.20 ± 0.7 89.93 ± 0.5 94.94 ± 0.4
SI-VGRNN 88.60 ± 0.9 77.95 ± 0.7 87.74 ± 0.6 90.45 ± 0.5 96.36 ± 0.6
AMCNet 93.01 ± 0.7 89.10 ± 0.9 86.00 ± 0.7 93.00 ± 0.6 93.23 ± 0.5

VarGATDyn 98.09 ± 0.6 97.91 ± 0.6 96.78 ± 0.7 96.08 ± 0.6 98.99 ± 0.5
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representation learning. The SL at each time step is defined as shown
n Eq. (14).

𝐿 =
𝑀
∑

𝑚=1
𝐿𝐸𝐿𝐵𝑂𝑚

(14)

ere 𝐿𝐸𝐿𝐵𝑂𝑚
represents the loss function of the 𝑚th replication of each

napshot. The total loss function of the model is calculated as the sum
f the loss functions of each snapshot. Thus, the total loss function can
e written as Eq. (15).

(𝑡𝑜𝑡𝑎𝑙) =
𝑇
∑

𝑡=1

𝑀
∑

𝑚=1
𝐿(𝑡𝑚) (15)

. Experimental details

.1. Datasets

The proposed VarGATDyn is validated and compared to other base-
ines on communication networks and citation networks. The details of
he datasets used are provided in this section (see Table 1).
ommunication networks.
CI [37]: In UCI, message interaction data from an online community
as been collected. This information was collected over a seven-day pe-
iod. Each day represents a different snapshot in the graph’s evolution.
his network begins with 537 nodes and ends with 1899 nodes.
nron [37]: The Enron dataset is derived from emails sent and received
y Enron employees. Nodes represent employees, and edges represent
mails between employees. Cleaning and constructing the necessary
tructure for applying the algorithm are carried out by [23,38,39].
acebook [40]: Facebook stores information about the posts made on
his social media platform. There are 663 nodes and 1068 edges in this
ataset. The cleaning and preparation of the data are similar to that
escribed in [38,39].
FB [40]: This dataset is a larger-scale version of the Facebook dataset
ontaining 45,435 nodes and 180,011 edges. The data cleaning and
reparation methods adopted in this version closely follow the pro-
edures outlined in [38,39]. The dataset includes 36 snapshots cap-
uring activations over the past three years. The LFB dataset features

significant number of users, but the interlinking between them is
parse.
elp [41]: Yelp, as part of Round 11 in the Yelp Dataset Challenge,

unctions as a dynamic rating network that diligently collects and
ecords user-generated ratings for various businesses over a defined
ime period. This unique platform serves as a valuable repository of user
6

xperiences and opinions, empowering consumers to make informed
ecisions and aiding businesses in gaining valuable insights into their
erformance.
itation networks.
olab [39]: Colab consists of 315 authors and relationships between

hem. Each node in this dataset represents an author, and each edge
epicts a collaboration between two authors. This data set is gathered
etween 2000 to 2009.
ora [42]: This dataset is basically a static citation network. Cora
onsists of 2708 nodes representing the publications with a 1433-
imensional binary feature vector. To use Cora dynamically, we pre-
rocess the data in the same way that [23,43] describes. We added
00 nodes with their associated edges to the dynamic network at each
emporal snapshot (208 nodes for the last snapshot), using the node
ndexes as their arrival order, and six snapshots of the dynamic graph
ere taken, beginning with 500 nodes and ending with 2708 nodes.

.2. Baselines

We compare VarGATDyn with the following baselines and state-of-
he-art graph representation learning methods.

• dygraph2vec [44]: This is an auto-encoder framework. We
assess our model against three variants of dyngraph2vec:
(1) dyngraph2vecAE, utilising fully connected layers, (2) dyn-
graph2vecRNN, employing an LSTM, and (3) dyngraph2vec
AERNN, which is a combination of dyngraph2vecAE and dyn-
graph2vecRNN.

• DySAT [21]: a model that utilises joint self-attention to learn node
embedding in the structural and temporal dynamics dimensions.

• HTGN [45]: a model that employs a hyperbolic GNN in conjunc-
tion with a hyperbolic GRNN for temporal link prediction.

• (SI-)VGRNN [23]: a model based on variational auto-encoder
architecture integrated into a Graph Recurrent Neural Network
(GRNN) structure to model the temporal evolution of the graph.
They also develop semi-implicit variational inference in the SI-
VGRNN version for further flexibility of modelling.

• AMCNet [46]: The approach proposes the Attentional Multi-
scale Co-evolving Network (AMC-Net) to address dynamic link
prediction by modelling correlations among evolving dynamics
across various structural scales. This involves a motif-based graph
neural network with multi-scale pooling for structural insights
and a hierarchical attention-based sequence-to-sequence model to

analyse the evolution dynamics at different scales.
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Table 4
Comparison results of AUC and AP for link prediction and new link prediction tasks on large datasets.

Metric VarGATDyn SI-VGRNN VGRNN DySAT

LFB

AUC of Link prediction 86.37 80.27 79.11 76.88
AP of Link prediction 87.04 82.01 81.40 80.39
AUC of new Link prediction 84.47 77.42 79.61 76.04
AP of new Link prediction 87.09 80.12 76.33 79.35

Yelp

AUC of Link prediction 82.15 74.54 72.87 69.91
AP of Link prediction 83.42 75.24 72.64 70.04
AUC of new Link prediction 82.03 74.72 71.99 69.21
AP of new Link prediction 83.12 75.87 72.34 69.05
Fig. 4. Illustration of the performance of VarGATDyn with different hidden dimensions for the link prediction and new link prediction tasks on the Enron dataset. The AP and
AUC criteria are used to evaluate the models’ performance over 500 epochs. The graph shows that a hidden dimension of 64 achieved the best performance, as indicated by the
purple colour in the graph.
4.3. Tasks and evaluation metrics

We evaluate VarGATDyn and compare it to the baseline methods in
two link prediction tasks in dynamic graphs. The first task is dynamic
link prediction, which predicts all links in 𝐺(𝑇𝑀 ). The second task is
referred to as dynamic new link prediction, and it aims to predict links
in 𝐺((𝑇+1)𝑀 ) that do not exist in 𝐺(𝑇𝑀 ). We compare our suggested
method with the baselines in link prediction and new link prediction
tasks using the Average Precision (AP) and the Area Under the Receiver
Operating Characteristic Curve (AUC) metrics from [47]. For dynamic
(new) link prediction, all (new) edges are assumed to be true edges,
and the same number of non-links are randomly selected to compute
AP and AUC scores. In all of our experiments, we test the model on the
last three snapshots of dynamic graphs while learning the parameters
of the models based on the rest of the snapshots. For datasets without
node attributes, we assign the identity matrix with dimensions equal to
the number of nodes at each time step as the node attributes.

4.4. Settings

We use Glorot initialisation [48] to set the model’s initial weights,
and a learning rate of 0.01. The model is trained for 1000 epochs using
the Adam optimiser [49]. To prevent overfitting, we apply early stop-
ping on a validation set and stop the training process if the validation
accuracy does not improve for 10 consecutive stages. In addition, we
conduct a series of experiments to optimise and tune the model’s pa-
rameters, including alpha, 𝑚, and the hidden representation dimensions
(all in Section 4.6). The final hidden representation dimension remains
7

constant at 64 across all datasets. For the alpha value, it is configured
to 0.5 for Enron, 0.6 for Facebook, and 0.3 for all other datasets. As
for the final value of 𝑚, it is designated as 4 for Enron, 3 for Facebook,
and 2 for the remaining datasets.

4.5. Results analysis

Dynamic Link Prediction: In Table 2, we present the results of the
various baselines against the proposed VarGATDyn in the dynamic
link prediction task, reported in terms of AUC and AP, respectively.
We note that VarGATDyn significantly outperforms all the baselines
across the five datasets. In the Enron dataset, VarGATDyn exhibits a
4.17% improvement in terms of AP and a 4.54% improvement in AUC
compared to the best previous result. In the Colab dataset, VarGATDyn
significantly outperforms all of the baselines, with improvements of
5.87% in terms of AP and 6.58% in AUC, followed by HTGN and
AMCNet, respectively. A similar trend is observed across the Face-
book, UCI and Cora datasets, where VarGATDyn achieves the highest
performance in terms of AP and AUC, followed by SI-VGRNN which
consistently achieves the second-highest performance. Upon further
examination, we compared our method with SI-VGRNN, VGRNN, and
DySAT, widely recognised as top-performing techniques, using two
larger-scale datasets, LFB and Yelp. The results, showcased in Table 4,
unequivocally reveal our method’s superiority in two link prediction
tasks, boasting higher AUC and AP values compared to the others.
Dynamic New Link Prediction:

Similarly, based on Table 3, our proposed model, VarGATDyn,
demonstrated significant performance gains across the five datasets.
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Table 5
Impact of K on the model’s performance in terms of AUCs and AP across the two dynamic link prediction tasks.

Metric K=1 K=2 K=3 K=4 K=5

Enron

AUC of Link prediction 92.75 ± 0.6 97.48 ± 0.7 97.88 ± 0.8 98.71 ± 0.8 98.07 ± 0.7
AP of Link prediction 93.46 ± 0.6 97.64 ± 0.6 97.92 ± 0.7 98.61 ± 0.7 98.08 ± 0.8
AUC of new Link prediction 86.83 ± 0.5 96.69 ± 0.6 96.96 ± 0.6 98.09 ± 0.6 97.55 ± 0.5
AP of new Link prediction 88.91 ± 0.5 96.89 ± 0.6 96.69 ± 0.6 97.77 ± 0.7 96.99 ± 0.6
Mean of AUCs 89.79 ± 0.6 97.08 ± 0.7 97.42 ± 0.7 98.40 ± 0.7 97.81 ± 0.6
Mean of APs 91.18 ± 0.6 97.26 ± 0.6 97.30 ± 0.7 98.19 ± 0.7 97.53 ± 0.7

Colab

AUC of Link prediction 91.44 ± 0.6 97.67 ± 0.6 97.80 ± 0.8 97.19 ± 0.7 97.64 ± 0.6
AP of Link prediction 92.91 ± 0.6 97.73 ± 0.6 97.78 ± 0.7 97.43 ± 0.6 97.90 ± 0.8
AUC of new Link prediction 84.56 ± 0.5 96.72 ± 0.6 97.91 ± 0.6 96.32 ± 0.6 96.60 ± 0.6
AP of new Link prediction 85.59 ± 0.5 97.20 ± 0.7 97.20 ± 0.7 96.39 ± 0.6 95.70 ± 0.7
Mean of AUCs 88.00 ± 0.6 97.19 ± 0.6 97.85 ± 0.7 96.75 ± 0.7 97.12 ± 0.6
Mean of APs 89.25 ± 0.6 96.46 ± 0.7 97.49 ± 0.7 96.91 ± 0.6 96.80 ± 0.8

Facebook

AUC of Link prediction 92.42 ± 0.4 96.71 ± 0.6 96.89 ± 0.7 96.50 ± 0.7 96.09 ± 0.6
AP of Link prediction 91.84 ± 0.6 95.94 ± 0.6 96.12 ± 0.7 95.62 ± 0.7 95.33 ± 0.7
AUC of new Link prediction 89.86 ± 0.4 96.10 ± 0.7 96.78 ± 0.7 96.11 ± 0.6 95.89 ± 0.6
AP of new Link prediction 88.22 ± 0.5 95.01 ± 0.7 95.56 ± 0.7 95.09 ± 0.7 94.77 ± 0.8
Mean of AUCs 91.14 ± 0.4 96.40 ± 0.7 96.83 ± 0.7 96.30 ± 0.7 95.99 ± 0.6
Mean of APs 90.03 ± 0.6 95.47 ± 0.7 95.84 ± 0.7 95.35 ± 0.7 95.05 ± 0.8
Fig. 5. Comparison of VarGATDyn’s performance on the Colab dataset for link prediction and new link prediction tasks with various hidden dimensions. The model’s performance
is evaluated using AP and AUC criteria over 500 epochs. The results show that using a hidden dimension of 64 yields the best performance, as depicted by the purple colour in
the graph.
Specifically, VarGATDyn achieved AP scores that were notably higher
than the next best models: a 5.65% point improvement over AMCNet in
the Enron dataset, 9.20% points in Colab, 8.84% points in Facebook,
3.96% points in UCI, and 3.66% points in Cora. These results under-
score the superior performance of VarGATDyn in handling dynamic
graph scenarios, clearly reflected in the higher AUC and AP values
compared to alternative approaches.

4.6. Impact of hyperparameters

To further study the impact of parameters used to train VarGAT-
Dyn, we conduct a series of experiments to observe the impact of 𝐾
(Table 5), the number of mixtures used in GMM-VGAEs, on performing
the model in both prediction tasks. The experiments are carried out on
three datasets, namely, Enron, Colab, and Facebook. We observe that
the highest performance gain was achieved when increasing 𝐾 from
1 to 2, however, the performance slightly changed when increasing
𝐾 from 2 to 5. This trend was observed across all datasets for both
8

prediction tasks. We also examined the impact of different values of
alpha on the performance of VarGATDyn in both prediction tasks. To
determine the optimal value for alpha for each dataset, we uniformly
sampled the range of [0, 1] and selected the value that produced the
best average result across the four criteria (i.e., AUC and AP for link
prediction, as well as AUC and AP for the new link prediction tasks).
The results presented in Fig. 2 demonstrate that the worst performance
is obtained when alpha is set to zero.

Additionally, we conducted a study to examine how the hidden
dimensions affect the performance of the VarGATDyn model. The per-
formance of the models has evaluated over 500 epochs (instead of 1000
epochs, for clarity) for the Enron and Colab datasets, as shown in Figs. 4
and 5, respectively. Our findings reveal that the hidden dimension of
size 64 consistently outperforms other dimensions in both metrics for
the dynamic link prediction and dynamic new link prediction tasks
across both datasets.
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Fig. 6. Performance comparison of VarGATDyn with different values of 𝑚 for link prediction and new link prediction tasks on the Colab dataset. AP and AUC criteria are used
to evaluate the models’ performance over 150 epochs. The chart shows the impact of different values of 𝑚 on the model’s performance, with the best performance achieved at
𝑚 = 3 (represented by the colour pink).
Fig. 7. The performance of VarGATDyn on link prediction and new link prediction tasks using various values of 𝑚 on the Enron dataset is compared in this study. The models
were evaluated based on AP and AUC criteria over a period of 150 epochs, and the chart illustrates the effect of different 𝑚 values on the model’s performance. The results indicate
the model achieved the best performance with 𝑚 = 4 (represented by the yellow colour).
4.7. Computational complexity analysis

The VarGATDyn model incorporates a sophisticated integration of
GMM with VGAE and GAT, aimed at enhancing dynamic graph rep-
resentation learning. The primary computational load stems from the
model’s GCN-based encoder, which is predominantly influenced by
9

the number of edges, leading to a complexity of 𝑂(|𝐸|𝐻). Here 𝐻
represents the hidden dimension size and |𝐸| is the count of edges.
Additionally, the inclusion of GAT introduces an augmented complexity
of 𝑂(|𝐸|𝐻2), reflecting the computation of attention coefficients for
each edge, scaled by the square of the feature dimension. Further com-
plexity arises from the iterative learning process, which repeats these
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Fig. 8. Visualisation of the embeddings learnt by VarGATDyn over time on the Cora dataset. Each colour represents a cluster, with (a) showing the embeddings at the beginning
of training where clusters are not distinguishable, (b) at epoch number 50 where clusters are more clear with a silhouette score of 16.70, (c) at epoch 100 where clusters become
even more distinct with a silhouette score of 29.98, and (d) at epoch 400 where clusters are almost completely separated with a silhouette score of 46.61.
Table 6
Time Complexity of different methods.
Method Time complexity

DynAE 𝑂(𝑇 |𝐸| + |𝑉 |)
DynRNN 𝑂(𝑇 |𝑉 |𝐻2)
DynAERNN 𝑂(𝑇 |𝑉 |𝐻2 + 𝑇 (|𝐸| + |𝑉 |))
HTGN 𝑂(𝑇 |𝑉 |𝐻2 + |𝐸|𝐻2)
DySAT 𝑂(𝑇 |𝑉 |𝐻2 + |𝐸|𝐻2)
VGRNN 𝑂(𝑇 |𝑉 |𝐻2) + 𝑂(|𝐸|)
VarGATDyn 𝑂(𝑚𝑇 |𝐸|𝐻2)

computations 𝑚 times across 𝑇 timesteps, culminating in an overall
computational demand of 𝑂(𝑚𝑇 |𝐸|𝐻2). This comprehensive approach
underpins the model’s capability to effectively capture and integrate
complex structural and temporal dynamics within evolving graph struc-
tures. We also introduced Table 6, which shows the complexity of other
models.

4.8. Ablation study

To highlight the significance of the GMM in enhancing the per-
formance of the VarGATDyn model, we conducted an ablation study
in which we removed the GMM component from the VarGATDyn
model. The outcomes, as shown in Fig. 3, revealed a considerable
improvement in the results for the Enron, Colab, and Facebook datasets,
with a boost observed across all metrics and in both link prediction
tasks. This enhancement indicates the crucial role played by the GMM
in achieving the performance gains demonstrated by the VarGATDyn
model. Moreover, we explore the multiple-learning technique and its
impact on the performance of VarGATDyn. Our investigation shows
that the model’s performance can be significantly improved by utilising
this technique. To conduct the investigation, we first applied our model
without using the multiple-learning technique and then incorporated
it by repeating the process multiple times to determine the optimal
outcome. The results of our investigation on the Colab dataset are
displayed in Fig. 6 and on the Enron dataset in Fig. 7. As depicted
in Figs. 6 and 7, when 𝑚 = 1 and the multiple-learning technique is
not applied, the results are significantly lower than when 𝑚 = 2 and
the technique is utilised. The optimal value of 𝑚 varies across different
datasets. For instance, in the Enron dataset, the best performance was
achieved with 𝑚 = 4, indicating that the model benefited from a higher
number of learning iterations. In contrast, the Colab dataset achieved
the best performance with 𝑚 = 2, suggesting that just one extra iteration
was sufficient to improve the performance.

4.9. Qualitative analysis

In our study, we evaluated the effectiveness of our learned em-
beddings over time using the Cora dataset. Specifically, we employed
a clustering task and the silhouette metric to assess how well the
clusters of learned embeddings were modelled over time. To visualise
our results, we plotted the learned embeddings in a two-dimensional
space using t-SNE, as shown in Fig. 8. Our results indicate that the
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learned embeddings were effectively encoded, as demonstrated by the
clear separation between clusters, which became increasingly distinct
over time. This suggests that our model was able to effectively capture
the underlying structure and relationships within the data, enabling
accurate clustering and classification.

5. Conclusion and future work

We proposed VarGATDyn, an integrated variational model designed
for learning node representations in dynamic graphs. VarGATDyn uses
an attention mechanism with Markovian assumptions for temporal
modelling, and a GMM within the variational framework to infer
the multimodal nature of the data. Additionally, VarGATDyn learned
through an iterative process involving inference, generation, and learn-
ing at each time step, referred to as a multiple-learning technique,
resulting in a robust and comprehensive learning process. Our experi-
mental results have clearly demonstrated that VarGATDyn has achieved
state-of-the-art performance, surpassing existing methods in dynamic
and new link prediction tasks. This showcases the effectiveness of
VarGATDyn in learning dynamic graph representations. Moreover, in
our proposed method, VGAEs are chiefly centred on the reconstruction
of the adjacency matrix, sidelining the features matrix. A promis-
ing direction for future investigations involves incorporating both the
feature and adjacency matrices during the reconstruction phase. We
hypothesise that such integration might enhance accuracy. Although
our model’s performance has been validated across a spectrum of
datasets and challenges, we aim to further scrutinise its capabilities on
more expansive and heterogeneous datasets. This will provide deeper
insights into its versatility and efficacy in diverse research contexts and
applications moving forward.
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