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ABSTRACT

In-network machine learning inference provides high throughput
and low latency. It is ideally located within the network, power
efficient, and improves applications’ performance. Despite its ad-
vantages, the bar to in-network machine learning research is high,
requiring significant expertise in programmable data planes, in ad-
dition to knowledge of machine learning and the application area.
Existing solutions are mostly one-time efforts, hard to reproduce,
change, or port across platforms. In this paper, we present Planter: a
modular and efficient open-source framework for rapid prototyping
of in-network machine learning models across a range of platforms
and pipeline architectures. By identifying general mapping method-
ologies for machine learning algorithms, Planter introduces new
machine learning mappings and improves existing ones. It provides
users with several example use cases and supports different datasets,
and was already extended by users to new fields and applications.
Our evaluation shows that Planter improves machine learning per-
formance compared with previous model-tailored works, while
significantly reducing resource consumption and co-existing with
network functionality. Planter-supported algorithms run at line rate
on unmodified commodity hardware, providing billions of inference
decisions per second.
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1 INTRODUCTION

The rapid growth of data volume and the increasing demands for
data exploitation are creating an ever-increasing processing burden
on computing systems [96]. The need to scale computing resources
and the emergence of programmable network devices drove re-
searchers to leverage the underused processing resources within
the network [18, 41]. Processing within the network, also known
as in-network computing, was shown to boost performance, while
at the same time increasing power efficiency [84]. It was demon-
strated to improve a range of applications, from network services
and monitoring [3, 42, 45, 55] to caching and consensus [18, 41].
In-network computing was suggested as a means to improve
machine learning (ML) performance, both in the acceleration of
host-based ML training using in-network aggregation [29, 48, 73],
and ML inference by using in-network classification [72, 91, 98].
In-network ML inference benefits from its deployment location,
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Figure 1: Difference in traffic flow between traditional ML in
the network domain and in-network ML.

illustrated in Figure 1, as data can travel directly from source to des-
tination, without additional hops through inference servers. This
provides latency benefits and high throughput, without introduc-
ing additional traffic into the network, as in server or GPU-based
inference.

While in-network ML is appealing, its practical adoption within
the research community was limited for two reasons. First, from the
design and realization perspective, there was no general solution
or a standard methodology for mapping different ML models to
programmable data planes. Furthermore, many mapping solutions
suffered from stage and memory explosion [7, 26], thereby limit-
ing model size and consequently compromising ML performance.
Second, from the prototyping and applications’ development per-
spective, developing in-network ML solutions requires a breadth
of expertise, in programmable data planes, ML and the applica-
tion field. Consequently, in-network ML was limited to a small
number of research groups. Moreover, the one-time tailored-design
nature of in-network ML works made reproducibility hard, let alone
comparing and contrasting solutions on different targets.

There is a significant demand for rapid prototyping, agile deploy-
ment, fair comparison, and seamless portability of in-network ML
solutions, which remained unfulfilled by previous research efforts.

In this paper, we present Planter, a modular framework for rapid
in-network ML inference prototyping. Planter supports the develop-
ment, testing and deployment process end-to-end, in an automated
manner. By defining three general mapping methodologies, Planter
enables a large variety of ML models. It supports a range of tree-
based models, statistical, neural network, clustering, dimensionality
reduction and other models, listed in Table 1. The modular design
of the Planter framework enables support of multiple architectures
and target devices, as shown in the table. Furthermore, it supports
several use cases (e.g., anomaly detection, financial market pre-
diction) and was already extended by early adopters. Planter is
modular and scalable, extendable to future in-network ML models



Machine Learning Models
Decision Tree (DT), Random Forest (RF), XGBoost (XGB),
Isolation Forest (IF), Support Vector Machine (SVM),
Neural Networks (NN), k-Nearest Neighbors (KNN),
k-means (KM), Naive Bayes (NB), Autoencoder (AE),
Principal Component Analysis (PCA)

Architectures Targets
PSA, vimodel, P4Pi (CPU), BMv2 (CPU), T4P4S (CPU),
Intel TNA, Intel Tofino (Switch), Tofino2 (Switch),
AMD XSA, AMD Alveo U280 (FPGA),
NVIDIA Spectrum NVIDIA BlueField2 (DPU)

Table 1: Planter supported ML models, data plane architec-
tures, and programmable network targets to data, which can
and will be further extended.

and use cases. It allows reproducibility and comparison of different
in-network ML mapping methods.
The main contributions of this paper are:

e Presenting Planter, a framework facilitating the deployment
of in-network ML inference across architectures and targets.
Planter is modular, allowing easy integration of new models,
targets, architectures, and use-cases.

e Defining three general model mapping methodologies, en-
abling the mapping of a wide range of ML inference algo-
rithms onto programmable data planes.

o Introducing four newly mapped inference algorithms, en-
hancing the efficiency of six previously proposed mappings,
and supporting four more state-of-the-art mapping solutions.

o Comparing the performance of multiple previously proposed
solutions on a single platform, for several use cases. Our
evaluation highlights the need to support different models,
and shows Planter high resource efficiency compared with
previous proposals while achieving the same or better ML
inference performance.

e Making Planter openly available to the research and user
community, and enabling in-network ML development and
deployment without expert knowledge. Our open framework
enables transparent verification, collaborative refinement,
and broader adoption of novel in-network ML.

2 BACKGROUND AND MOTIVATION
2.1 Background

Programmable Network Devices: The programmable network
devices have enabled users to create customized data planes, driven
further by the introduction of the P4 programming language [5].
Today, programmable data planes are supported on a range of hard-
ware and software targets, using different pipeline architectures
(PSA [62], TNA [39], vimodel [67], and others). Despite the use of a
common language, compiling programs to different targets turned
out to be complex, requiring specialized solutions (e.g., Lyra [28],
1P4 [79]).

In-Network ML Inference: In-network ML inference is the partial
or full offloading of ML inference algorithms to run within network
devices [7, 50, 76, 81, 91, 92, 98, 102]. In this work, we limit the
scope to the forward classification process of ML algorithms being

offloaded to the data plane, while the training part remains on the
host (including accelerators) or in the control plane. In-network
ML solutions follow an offline training, online (in-band) inference
pattern. Feature extraction can be done either by parsing within
the data plane or using customized headers [7, 26]. A mapped ML
model is typically implemented within the Match-Action (M/A)
pipeline, and the decision can be stored in a header or turned into
an action within the network device [102]. A related research area,
in-network aggregation [48, 73], leverages programmable devices
to tackle the communication bottleneck in training aggregation.
However, in-network aggregation is outside the scope of this work.
In-network aggregation is used for ML training, and is based on
using registers within the data plane. In contrast, this work focuses
on inference and mainly uses match-action tables (§3), an inherently
different research domain.

2.2 In-Network ML Motivation

Programmable network devices primarily provide switching and
routing-support functions. These functions require a significant
portion of the programmable devices’ resources, but often don’t
exhaust them, as demonstrated by Intel Tofino’s switch.p4 reference
design (L2/L3 switch). In-network ML tasks can utilize remain-
ing resources, co-existing with mandatory and traditional switch
functions (see §5.2.1).

Motivating Use Cases. Several use cases are commonly tied with
ML for networking, and are applicable to in-network ML. Traffic
Engineering: The use of ML to improve traffic engineering can
reduce communication overheads between cloud and edge [63,
64], improve heavy hitter detection [95] and quality of experience
(QoE) prediction [86], and support IoT classification at line-rate [91].
Anomaly Detection: ML for networking is often used for network
security [2, 16, 50, 88], allowing early detection and fast mitigation,
potentially preventing distributed attacks. Resource Management:
ML has been used to optimize scheduling algorithms in network
infrastructure [38, 56] and to drive automatic congestion control [21,
46, 105]. Financial Prediction: ML models are widely used to perform
financial tasks, importantly stock market forecasting [14, 33, 51, 75].
In parallel, hardware and software solutions are used to accelerate
financial applications [49, 54]. In a field where every nanosecond
counts, the two-fold goal is increasing prediction accuracy, while
minimizing latency.

2.3 The Gap in In-Network ML

After five years of research on in-network ML, we find it challeng-
ing to develop and prototype in-network ML, especially along with
its application across use cases. A gap exists in efficiently produc-
ing high-performance in-network ML prototypes on commodity
platforms, which can be classified into two folds, ML performance
and ML deployment.

In-Network ML Performance. Although in-network ML infer-
ence mapping (e.g. SVM [91], KM [26], DT [50], RF [7], and NN [76])
have been proposed and show promise, commodity hardware re-
sources restrict the size and complexity of the models, resulting in
compromised accuracy [76]. To obtain high performance: 1. Indi-
vidual model mapping should be inherently efficient. 2. Options for
diverse models and mapping approaches are essential for mitigating
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Figure 2: LOC changes as a result of single setup change
(UNSW dataset [57]). RF - depth of 2 to 5, XGB - 2 to 6 trees,
NB - 2 to 5 features, KM - v1model to TNA, NN - 2 to 5 layers.

the limitations of a single model or mapping. 3. Fair comparisons are
essential to ensure the selection of optimal solutions across scenar-
ios. Such demands are not yet fulfilled by existing work [26, 50, 91]:
1. Many in-network ML works suffer from stage or entry explo-
sion [7, 26, 91]. 2. Most existing works support only one type of ML
model [50, 76]. The absence of a discussion on mapping method-
ologies further constrains the extension of existing research to
additional ML models. 3. Existing endeavors lack comprehensive
comparisons of different models and solutions [7, 77].
In-Network ML Deployment. When it comes to practical use
case deployment, diverse use cases and time-varying data inputs
require ML models to be adjusted accordingly. Model deployment,
comparison, tuning, or retraining is inevitable, but it is cambersome
for current solutions to realize such procedures on the data plane.
Figure 2 demonstrates the effect of ML model changes in terms of
Lines of Code (LOC). Common changes like increasing model size,
adding more features, or moving between targets require changing
hundreds of LOC in the data plane, the same scale as the entire orig-
inal code. Changes also affect M/A table rules, added or removed
through the control plane. A framework for rapid prototyping is
imperative. Otherwise, intricate modifications can result in endless
debugging and limit the efficiency of model deployment. The ab-
sence of a framework further hinders efficient model comparison,
selection, and replacement, as well as swift migration among use
cases.

2.4 Planter Design Goals

Planter aims to narrow the gap to production of in-network ML
inference, and sets the following design goals:

Efficient In-Network ML Mappings (§3). 1. General mapping
methodology. Fundamental characteristics of ML inference algo-
rithms should be identified and their data plane mapping should
be simplified. This can be used as a guidance for in-network ML
realization and drive the implementation of new models and their
variations (§3.1). 2. Optimized models. ML inference models mapped
to programmable data planes should provide high ML and system
performance, with minimum resource overheads. As programmable
network devices are primarily designed for packet processing, they
have limited resources, and support a constrained set of mathemat-
ical operations. Mapped ML algorithms need to trade off model size
and ML performance to fit on a network device, and should not
degrade network performance. Thus, Planter should support a wide
range of predefined mapped ML models, with optimized resource

efficiency, that can co-exist with mandatory network functionality
(§3.2 - 3.4).

Ease of Use (§4). 1. One-click framework. Mapping ML models to
programmable network devices using P4 should be easy. However,
the deployment of in-network ML models itself is complex. New or
changed targets, architectures, and models may result in significant
changes in (i) trained models, (ii) P4 programs, (iii) table entries &
register values, and (iv) tables’ update process. An easy-to-operate
solution is needed to handle the deployment process and flexibly
adapt to changes (§4.1). 2. Extensibility and Portability. Extending
and porting different inference solutions should require minimum
effort. ML algorithms are emerging rapidly and new programmable
network targets are reaching the market. The framework should
be able to support new ML algorithms, architectures, and targets.
It should be easy to add new application scenarios and to port
designs between different devices. This calls for a modular design
with elements easily added, updated, or replaced, independently
of other components (§4.2 - §4.3). 3. Automated Framework. Not
all in-network ML users have ML expertise. It is critical to have
a tool to handle compilation failures and automatically select the
best hyperparameters under constraints. An automated front-end
is needed to drive the in-network ML generation framework in
realizing models (§4.4).

3 PLANTER’S ML MODEL MAPPING

3.1 Mapping Methodologies

Mapping ML inference models to the data plane can be challenging,
therefore many previous works [7, 26, 50, 69, 76, 77] have focused
on a single model. While a single-model approach has benefits,
it also limits the agility and adaptability to use cases, creating a
barrier to adoption of new algorithmic solutions. Planter tackles this
challenge by proposing three general ML model mapping methods,
based on similarities in models’ structures.

A model’s mapping needs to attend to the constraints of pro-
grammable network devices, such as pipeline architectures, re-
sources (e.g., stages and memory), and limited mathematical oper-
ations. To enable the mapping of multiple different models under
these constraints, we propose three general mapping methodolo-
gies: direct-mapping (DM), encode-based (EB), and lookup-based
(LB). Some models have a clear sequential inference process, where
a DM (direct-mapping) solution can be used (§3.2). However, when
the inference model has no assumption on data distribution and
the inference is based on splitting the feature space, DM solutions
may result in high pipeline-stage consumption. EB (encode-based)
solutions in Planter mitigate this issue in applicable algorithms
by using input feature-space partitioning to encode the feature
space, breaking direct-mapping’s connection between model size
and number of stages (§3.3). When an inference model uses complex
mathematical operations (e.g. logarithms, root) that are not sup-
ported by network devices, Planter can utilize an LB (lookup-based)
solution by leveraging match-action tables to lookup intermediate
results (§3.4).

This section describes the three mapping methodologies, using
leading examples per method. All the mappings are available in
Planter’s repository [104]. Table 2 demonstrates distinct implemen-
tations of ML models in Planter, categorized according to the three
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methodologies. As shown in the table, in Planter, four inference
models are completely new mappings, six mapping proposals are
improved, and six more are supported.

Supported Improved New Mapping
Types | SVM KM NN | DT RF XGB NB | IF KNN PCA AE
EB <$a I, I 13 Ve V2
LB <>2 <>2 IS /2 \/2
DM AL 7

Table 2: Different ML models, and their Planter implementa-
tion using the three methods. Notation: v'new, | improved,
<> supported. <, I, or vV, indicates n supported variations.

3.2 Direct-Mapping

Researchers have identified early on, that some ML algorithms have
a structure relatively similar to a data plane [91], simplifying their
mapping. However, some adaptations are still required.

3.2.1 Ensemble Trees. The direct-mapping (DM) method of the
Ensemble Trees, e.g., Direct Mapped Decision Trees (DTpy) and
Direct Mapped Random Forest (RFpys) [7, 50], shares a similar
mapping method. To map a p-depth (level) model, a single DTpys
uses p tables. Each table uses the result from the previous level as
the key. The workflow checks the current branch ID, its thresh-
old, and the used feature. After the lookup, a comparison is done
between the matched value and a threshold. The comparison’s
result and the current branch ID are used as the keys in deeper
levels. Random Forest (RF) is an ensemble model built from a set
of DT models [34]. RFpys uses a similar mapping process, with an
extra decision table used to conclude the labeling. DM Ensemble
Trees consume relatively low memory, but the logic operations are
complex and lookups need to be executed sequentially due to the
strong dependency between parent and child nodes, which is stage-
consuming and latency-consuming. Planter in reaction optimizes
the implementation in [50] by enabling parallel trees placement.

3.2.2  Neural Networks (NN). NN stacks activators to do feature ex-
traction and classification of input data. Due to its layer-based struc-
ture, Planter supports DM-based Binary Neural Networks (BNN),
as proposed in [70, 76], by using Popcount (Hamming weight) and
XNOR operations as an alternative to complex activation func-
tions. M/A is another alternative to realize the complex activation
function with the trade-off between memory (M/A) and stages (Pop-
count & XNOR).

Potential Extensions Planter currently supports three DM mod-
els. By using alternative operations and approximation, DNN [61],
CNN [4] and LSTM [35] become candidates for additional model
mappings.

3.3 Encode-Based Mapping

From an intrinsic perspective, many classification algorithms aim
to find borders in either the original feature space or the mapped
feature space. The area confined by a set of borders (partitions)
is labeled as a class. Algorithms use different methods to define
their borders. Some use complex functions, while others use linear
functions for approximation. Planter proposed encode-based (EB)

mapping typically uses linear borders to slice the feature space with
a code to represent a certain area within the space.
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Figure 3: Mapping methodology of EB solutions.

In a general EB model, the mapping to the data plane starts with
slicing input feature space into classes, using feature tables and a
decision table. As shown in Figure 3, using a trained model as an
example, feature space (e.g., two-dimensional space) is sliced into 6

Partition 1

areas (i.e., area © to area ®) by 5 partitions (i.e., partition to
partition . Mapping this ML model to a M/A pipeline requires
two feature tables, recording the mapping from feature values to
codes, where code pairs represent an area (e.g., area @ coded as
f1-code 3 & f2-code 2). The mapping from codes to labels is stored
in a decision table. In an n dimensional feature space, the model
similarly needs n feature tables and 1 decision table. EB models
vary depending on how the feature space is split. The realization

details of each Planter-supported model are shown as follows.

Partition 5 )

3.3.1 Decision Tree (DT). DT uses a top-down decision process,
splitting the feature space at each branch (node) until reaching
the leaf nodes [87]. Figure 4 shows a sample DT model and a two-
dimensional input feature space split by its branches. The similarity
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Figure 4: Feature space split in tree-based models.
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between Figures 3 and 4 indicates that the general EB solution fits
DT models. For an n features input space, an encode-based DT
(DTgp) requires n feature tables, encoding each feature value. The
encoded feature space is mapped using a decision table to labels. All
feature tables share a single pipeline stage (within target limitations)
and the entire mapping requires only two logical stages.

To realize DTgp mapping, we use four steps, as shown in Figure 5
Tree 2. The input to the process is a trained DT. In the step titled
“Find feature splits”, the algorithm collects all the branches related to
each feature. The feature values are encoded (mapping an area to a
code word) and saved as a feature table in the step “Generate feature
table”. The encoding is determined by the splitting conditions of the
branches. The algorithm associates each area in the feature space
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Figure 5: Ensemble trees (Tree 1&2) and Decision Tree (Tree 2) models’ mapping workflow using EB solutions.

with a leaf node, and determines the range of values it includes.
Finally, “Generates the tree table” (also named code or decision
table) links mapping from leaf nodes to codes pointing to their
areas.

Planter’s DTgg uses default actions in tree tables to store the
most common label, along with using the ternary match, longest
prefix match (LPM), or range match in all tables. These reduce
the number of table entries, saving significant memory resources
(§5.2.2), which are applicable for all Planter-supported models.

3.3.2  Random Forest (RF). Applying EB to RF (RFgg), we encode
trees in parallel and decide the label by a voting table. In the vot-
ing table, the RFgp model makes the decision based on DTgp
votes. Figure 5 Tree 1&2 shows our RF workflow and a toy ex-
ample of mapping a two-tree RF model to M/A format. For an RF
model with n input features and m trees, the mapped model uses
n feature tables and m tree tables. In each feature table, the codes
(cit1, cita, ..., citm|i € n) for all trees are stored as actions. As noted
in Section 3.3.1, n feature tables can share a stage. Similarly, m
decision tables, one per tree, can share a stage and be looked up in
parallel. The voting table requires a third logical stage. Compared
with if/else logic [88] and depth-based solution [50], Planter’s RFgg
is scalable and saves stages (shown in §5.2.2).

3.3.3 XGBoost (XGB). XGB is a different type of DT-based ensem-
ble model. A primary difference between XGB and RF is that XGB
accumulates probabilities from each tree’s leaf nodes to make the
final decision [12]. However, calculating probabilities within an
M/A pipeline is non-trivial or costly in resources. Instead, our EB
methodology enables Planter’s XGB (XGBEg) solution to encode
the probabilities in each tree (tree table in Figure 5). To create the
decision (codes-to-label) table, the XGB mapping workflow calcu-
lates the cumulative probabilities and expected output label for each
code combination. XGB’s probabilities addition and comparison
operations are therefore replaced by simple codes-to-label look-
ups in the final decision process. Multiple discrete probabilities are
mapped to the same code if they lead to the same label mapping,
thus saving resources. XGBgp uses the same logical stages as RFgp.

3.3.4 Isolation Forest (IF). IF is an unsupervised ensemble model
based on RF [53]. To make the decision, the total number of branches
used in the forest decision is compared to an anomaly threshold, as
shown in Equation 1, where x is one input, h(x) is the path length,
t is the total number of training inputs, y is Euler’s constant, and

E(h(x)) is the average h(x) of a collection of trees.

E(h(x)) < —(2(In(t = 1) +y) — 2(t — 1) /t)l0og20.5 (1)
To map Equation 1 into M/A table, our IF (IFgp) solution uses a
method similar to XGBgp. The number of passed branches h(x) is
stored in tree (code) tables, and the mapping between number of
passed branches per tree and final labels is done using code-to-label
look-up tables. Replacing threshold operations with look-up tables
saves stages in IFgpg.

3.3.5 K-Nearest Neighbor (KNN). KNN splits the feature space ac-
cording to its kth closest neighbors by distance. A tree data structure
provides a feature space slicing approximation and labeling [26, 71].
Planter newly maps KNN to the data plane using EB methodology
and tree data structure. Specifically, in a higher dimensional feature
space, at each level of the tree, the input n dimensional feature
space is divided and labeled into 2" equal parts in the same order.
KNN requires a code of d X n bits to represent each area when the
maximum depth is d. The feature space is split continuously until
the tree reaches the maximum depth or all vertices of the current
unit belong to the same class. This tree-like splitting approach en-
abled storing all codes in ternary tables, thereby reducing memory
consumption.

3.3.6 k-means (KM). Encode-based KM (KMgp) labels the input
based on the distance between the data point and each centroid [23].
By using n-dimensional tree splitting [71], Planter realizes KMgp
based on [26], which is similar to KNN.

Potential Extensions Planter currently supports six EB models.
CatBoost [68], LightGBM [43], and AdaBoost [24] are examples of
additional models that can potentially be implemented in Planter
using encode-based mapping.

3.4 Lookup-Based Mapping

Many ML algorithms require mathematical operations on input
features to decide a label, commonly too complex to implement
in a hardware data plane. Lookup-based (LB) solutions use M/A
tables to store intermediate results of these operations and thus
enable realizing in-network ML. As shown in Figure 6, any ML
algorithms with a Decision Process can use LB solutions. In LB
solutions, feature tables store the mapping between each input
feature value and intermediate results. These intermediate values
are then used for the remaining basic operations, typically addition
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and comparison, as a final logic stage. Using mapped intermediate
results allows for meeting high precision requirements (§5.2.1).

3.4.1 Naive Bayes (NB). For every set of inputs, NB calculates the
posterior probability of each class [20]. As shown in Equation 2,
the Bayes model chooses the label that maximizes the posterior
probability.

ij = arg m;le(y) !:1[ P(xily) @)

One lookup-based NB mapping solution, proposed in IIsy [91], used
features as the direct input to M/A tables, outputting the respective
posterior probabilities of all their classes. This method only works
when the range of input values is narrow. Otherwise, the table
will be excessively large, as all intermediate results P (x; | y) are
multiplied.
n
g = argmax[map(log2P(y)) + Z map(logzP (xi | y))]  (3)
i=1

In Planter, we introduce a different lookup-based NB mapping,
which uses logarithms to convert multiplication into addition, as
shown in Equation 3. This mapping fits the standard LB solution,
shown in Figure 6, using n feature tables (e.g., Input: x;, Output
map(logaP(xi | y1)), map(log2P(xi | y2)), ..., map(logaP(x;i |
yr))) for any k classes inference task. The logarithm operation
both reduces operation complexity and lowers memory consump-
tion. In the final logic, all intermediate results for each class are
summed up and compared (replacing arg max) to get the output
label. Based on this method, Planter supports variations (such as
GaussianNB and BernoulliNB [66]), catering to diverse types of
input variables.

3.4.2  Autoencoder (AE). AE’s workflow is composed of an encoder
and a decoder [52]. The forward path of the single-layer encoder
network, interpreted as equation Xpeww = XW + B, has a similar
format as the Equation in Figure 6’s Decision Process (black box).
Planter introduces a new AE mapping using LB. When X,,¢,, has
k dimensions, W is a n X k weight matrix. The workflow uses n
feature tables to store the intermediate results of all output fea-
ture dimensions (xiw{, xwl, o, xiwlic) under the corresponding
feature i. The final logic sums all intermediate results in each out-
put dimension and the bias to get the value of new features. This
mapping avoids multiplication operations in AE and can achieve a
similar computational overhead as NB.

3.4.3  Principal Component Analysis (PCA). PCA, being an orthog-
onal linear transformation of the input features, is commonly used
for dimensionality reduction [27]. The forward path of a trained

PCA can be written as Xpew = (X — Xmeans)Components, where
the input X is the array [x1, x2, ..., X,] with n input features, and
Xmeans = [Xheans» Xaeanss - XMheans] is the mean value of each
feature. Components is a transferring matrix with n rows and m
columns. The output Xe., is the array [x}, ., x2,.,, ..., x| with
m output features. Based on this, Planter proposes LB PCA us-
ing n feature tables, and the intermediate result in feature table
iis IR} = (xi — x;'nmns)wil, IRI.2 = (x;i — x,inmns)wiz, <o IR =
(xi — x,inmns)w;”. The final logic is similar to AE, which is the
summation of intermediate results of each new dimension and the
construct of new feature values. PCA can achieve similar memory

and stage consumption as NB.

3.4.4  Support Vector Machine (SVM). SVM maps inputs to a space
and uses hyperplanes to separate pairs of classes. For a k classi-
fication task, SVM requires m = k(k — 1)/2 hyperplanes. Each
hyperplane is equivalent to a vote. For the case of n input features,
hyperplane m is w}nxl +wfnx2 +...Whxp+bm = 0, which similar to
the Decision Process in Figure 6. The final vote can be determined
by counting the votes from all hyperplanes and using logic or a
decision table [17]. LB based SVM is supported in Planter based
on the proposal in [101]. To achieve scalability, n feature tables
will be used to store the intermediate results from all hyperplanes
(e.g., Input: x;, Output wixi, wéxi, .. winxi). All feature tables be-
long to a single logical stage and use the addition operation for
hyperplanes (initialized by bias b;). This method saves memory and
stages compared with other approaches [91].

3.4.5 k-means (KM). The KM workflow labels inputs according
to their distance to the trained k centroid [23], as described in
Equation 4. A simple LB KM (KM[g) mapping in Figure 6, as in
IIsy [91, 101], uses n feature tables to store intermediate results in
parallel.

D; = \/(xl —c§)2+(x2 —c§)2+...(xn —ch)? 4)

In Planter, using a square root operation in distance calculation
can be avoided when the value under the square root is larger
than zero. KM} p solution uses map(.) operation and constructs
feature tables with input x;, output map(x; — c}), map(x; — cl?),
o, map(x; — cf?). The map(.) function maps all input value to a
domain {1 : 2"%bits /n}, where np;;4 is the width of each action data.
With this map(.) operation, the square root operation is not re-
quired, lowering computational complexity.

Potential Extensions Planter currently supports five LB mod-
els. Lasso [25, 83], Linear Regression [60], and Polynomial regres-
sion [78] are examples of additional models that can potentially
be implemented in Planter using lookup-based mapping, using a
similar methodology.

4 PLANTER FRAMEWORK

Section 3 presented new and more efficient in-network ML mapping
methodologies. Using the Planter framework, those can be rapidly
prototyped on different targets. This section addresses four aspects
in the design of Planter, as an automated and one-click framework:
1. What should be the functionality supported by the framework,
and what should be the respective framework architecture? (§4.1)
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2. How to generate efficient data plane designs for different de-
ployments? (§4.2) 3. How to create a modular framework that is
extendable to different models, targets, architectures, and use cases?
(§4.3) 4. How to provide ease of use, handle failures and tune hy-
perparameters? (§4.4). By addressing these aspects, we provide a
framework that goes beyond the state-of-the-art and enables wide
adoption of in-network ML.

4.1 Functionality, Workflow, and Main
Components

The goal of Planter is to provide as simple as possible in-network
ML inference development environment for users. For example,
model developers should be able to focus on model mapping with-
out worrying about use cases, while use case practitioners can
develop just the use cases and pick from a given set of models
and targets. To achieve this goal, in-Planter functions are strictly
partitioned according to their type and are connected by using stan-
dard interfaces. In turn, an in-network ML application is divided
into four types of elements: ML model-related, use case-related,
architecture-related, and target (test)-related.

The main functions of Planter’s back-end workflow are shown in
Figure 7. Use case related functions (amber) include a Data Loader @
for training & testing purposes and a Common P4 ® to generate use
case-specific P4 code (e.g., code for feature extraction from data).
Model related functions (red) are formed by a Model Trainer & Con-
verter @ for training and converting a model to M/A format and a
Dedicated P4 ® for generating model related P4 codes. Architecture
related functions (purple) includes a Standard P4 & generator that
generates architecture-related P4 code and combines the outputs
from Common and Dedicated P4 to generate the complete P4 pro-
gram. Target related functions (green) include a Compiler @ that
compiles and runs the generated in-network ML inference program
and a Tester @ for validating the functionality of the program.

The workflow of Planter’s back-end, shown in Figure 7, has seven
steps. In the first two steps, Planter loads a dataset @ and trains
it ®. The model is mapped to P4 ® using the selected architecture
and target. Generated P4 code is compiled @ and loaded to the
target’s data plane @. In step ®, table entries and registers are
loaded through the control plane. Last, in step @, an auto-generated
functionality test is run on the target. The generated data plane,
shown in Figure 7 ®, has three components: standard switching
functionality, ML feature extraction, and ML inference. The ML
feature extraction and inference are in parallel to the standard
functionality, while P4 parser operation is merged.

#include <core.p4>

#include <tna.p4>

const bit<16> constl = 0x01;

const bit<16> const2 = 0x02;

struct header_t{ // Header
header_U_h header_U;

header_M_h
}

struct metadata_t{ // Metadata
bit<10> meta_data_U;
bit<10> meta_data_M;
}

parser SwitchParser(...){ // Parser

header_M;

state parse_header_U{...}
state parse_header_M{...}
}
control SwitchIngress(...){ // Ingress
. // Use case related Tables, Actions,
Registers ...
... // ML model related ...

N c B [ o EREE o A o ESRCREE c REy o Ee

applyf{
. // ML model related logic
... // Use case related logic
H}
control SwitchEgress(...){ // Egress
UM...}
Switch(...) main; // Main

Listing 1: Sample in-network ML P4 code. A : architecture-
related code, U : use case-related code, M : ML model code.

4.2 Code Generator

The data plane P4 code is determined by the ML model, P4 archi-
tecture, and selected use case (three out of four function groups in
§ 4.1). As shown in Listing 1, architecture-related code ( A ) forms
the skeleton of the program, and use case ( U ) and model-related
(M) code snippets are added into the skeleton. To simplify the
coding experience, Planter provides commonly-used architecture
templates as skeletons in the Standard P4 file ®. P4’s sequential
execution can be a problem when assembling the code snippets.
Planter ensures the correct assembly order by utilizing the Stan-
dard P4 to coordinate the Common & Dedicated P4 parts ®. This
is achieved by alternately calling specific functions that generate
model and use case related code from Common & Dedicated P4 at
each designated place (such as ingress apply block) to accurately
merge the model and use case-related codes. This approach enables
Planter’s extensibility, fitting different models and use cases into
the Standard P4 generator.



4.3 Modular Framework Design

Planter proposes a modular framework to enhance extensibility.
Modules are independent and can be flexibly and easily replaced
through configuration. The framework supports stand-alone mod-
ules for ML models, architectures, targets, and use cases. Addition-
ally, Planter provides a set of common functions for all modules,
such as exact-to-LPM table conversion. Planter supports generating
a dependency graph, showing all the modules used, and their depen-
dencies. This simplifies debugging and informs modules’ swapping.

Python | Architecture Target Model Use Case Data Function
Min LOC 123 277 174 65 16 6
Avg LOC 137 931 555 211 93 151
Max LOC 145 2115 835 860 420 1877
Modules 6 9 64 14 30 20

Table 3: The number of LOC and modules (including module
variations) in Planter modular design.

To illustrate the modularity of Planter, Table 3 presents the av-
erage and maximum lines of code (LOC) of different modules in
Planter. ML models require an average of 555 LOC, and at most 835
LOC. Supporting a new P4 architecture requires less than 150 LOC,
and supporting a target requires about a thousand LOC. This light-
weight implementation of architectures, targets, and models is a key
advantage of Planter. Shared framework functionality (“Function”)
requires 377 LOC in total.

4.4 Planter Front-end

Although the Planter back-end (§4.1-4.3) enables the realization of
ML models within the data plane, fitting the models on resource-
constrained (e.g., commodity) hardware with ML performance goals
needs to be addressed. The key challenge is hyperparameters se-
lection, combining the desired inference accuracy and minimum
resource consumption. To address these challenges, Planter pro-
vides a front-end optimizer that automates hyperparameter tuning,
and fixes compilation failures.

Planter Front-end Planter Back-end

— Setup ———
Modular Converters/Generator
; < 0d 1 C S, s (.) S .‘
Select & Config.  Auto-add Config. Select & Config.

1 - 1

User — Front-end Configurations & Back-end Configs. ~— Feedbacks

Modular Optimizers

Figure 8: The combined Planter framework.

The front-end applies modular optimization models, such as
Bayesian Optimization, to optimize parameters based on a pre-
defined objective function. The optimization objective can be ex-
pressed as metrics such as Accuracy (acc), F1 Score (F1), or the differ-
ence between the target accuracy (target) and the model accuracy
n-lace—target| (5 1), As illustrated in Figure 8, Planter requires
users’ input for front-end configurations, including datasets and
model constraints. Based on these configurations and the selected
objective function, the front-end identifies optimal hyperparameter
settings. Subsequently, as shown in Figure 8, the front-end auto-
matically generates back-end configurations, utilizes the back-end
(Figure 7) to produce data plane code & setup, and performs compi-
lation and testing to verify the settings. The front-end receives the

test results and triggers a subsequent training round if the outcomes
are not satisfactory. For example, in case of a compilation failure,
the front-end will regenerate a more moderately-sized model. The
Planter front-end is also part of the modular design in Section 4.3.
While the back-end supports developers with customizing model’s
details, the front-end is designed to help users with limited ML
experience conduct intent-based development.

4.5 Implementation

The Planter framework is implemented in 57k LOC in Python, and
is available at Planter’s GitHub repository [104]. The framework
trains a model using Python-based learning frameworks including
PyTorch and Scikit-learn (Sklearn). Training parameters can be set
via the Planter front-end or through parameter tuning tools [37, 82].
A trained model is mapped into M/A format, and the framework
saves table entries and generated weights (for NN) into JSON/t xt
(target dependent) files. Data plane P4 code is then automatically
generated. Planter further generates Bash scripts to interact with
the target for model deployment and verification. The provided
control plane support is target-dependent, e.g., loading tables us-
ing P4Runtime. Currently supported targets include Intel Tofino
and Tofino2 (switch-ASIC), AMD Alveo U280 (FPGA) over Open-
NIC [89], P4Pi-BMv2 and P4Pi-T4P4S on Raspberry Pi [47], BMv2
on NVIDIA BlueField2 [6], and BMv2. Pipeline architectures in-
clude vimodel [67], Intel TNA [39], PSA [62], AMD XSA [90] and
NVIDIA spectrum. Supported ML modules are listed in Table 1 as
well as their variations in Table 2. The Planter supported use cases
can be found in Section 5.1 and reference applications are detailed
in Section 6.

5 EVALUATION

The evaluation of Planter focuses on the following aspects: general
ML performance (§5.2), scenario-specific ML performance (§5.3),
scalability performance (§5.4), general system performance (§5.5),
target-specific system performance (§5.6), and framework perfor-
mance (§5.7). This section also evaluates Planter’s new and im-
proved algorithm mappings, as in Table 2.

5.1 Methodology and Testbed Setup

Workloads: Planter has already been applied in several works
for various scenarios [11, 32, 36, 92, 93, 99-102]. Example use cases
and datasets include attack detection (using AWID3 [10], CICIDS
2017 [74], KDD9Y9 [80], and UNSW-NB15 [57]), finance (NASDAQ
TotalView-ITCH [58], Jane Street Market Prediction [30]), QoE
(Requet [31]) and flowers classification (Iris [22]). For brevity, this
section focuses on the results for attack detection (throughput
& latency-sensitive, using CICIDS and UNSW-NB15) and high
frequency trading (latency-sensitive, using NASDAQ TotalView-
ITCH).

Packet-level attack detection uses 5 features, commonly used
for traffic classification [40, 69]: Source IP (first 8 bits), Destination
IP (first 8 bits), Source Port, Destination Port, and protocol and
classifies traffic as either normal or malicious. The first octet of
the IP address is a coarse indicator of source/destination network.
In the Jane Street Market Prediction dataset, five features (42, 43,
120, 124 and 126) from 130 anonymized real stock market data are
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Accuracy Resource Performance
CICIDS UNSW UNSW

Switch (M) Sklearn (M) | Switch (M) Sklearn (M) Server (H) |ACC (Switch)  Memory (%) Latency (Relative) Stages (Tofino)
Work Model ACC F1 |ACC F1 ACC F1 |ACC F1 |ACC F1 S IL S M L S M L S M L
SwitchTree [50] DTpy | 99.92 99.92 | 99.92 99.92 99.40 94.53 | 99.40 94.53| 99.40 9431 | 9934 99.41 | 146 172 1.98 | 81.16 88.36 8836 | 11 13T 15T
pForest [7] RFpps | 99.80 99.79 | 99.80 99.79 99.38 94.44 | 99.38 94.44 | 99.42 94.51]99.25 99.39 | 7.71 14.01 NF |88.36 89.04 NF |111 14F NF
IIsy [91] SVM |59.24 37.20 | 95.04 94.94 97.31 49.32|99.23 93.51|99.23 93.51|97.31 99.23 | 2.81 3.23 4.12 | 26.37 35.27 3530 | 9 9 9
N3IC [76] NN¥ 192,09 92.00 | 99.96 99.96 98.33 85.68 | 99.25 93.67 | 99.25 93.68 | 98.33 97.50 | NF NF NF NF NF NF |NF NF NF
sy [91] KMpp | 58.40 56.80 | 58.40 56.80 71.28 41.88 | 71.28 41.88 | 71.28 41.88|71.55 71.28 |3.13 3.96 5.78 | 21.58 21.58 21.58 | 7 7 7
Clustreams [26] KMgp | 56.92 55.75 | 58.40 56.80 72.69 42.37 |71.28 41.88|71.28 41.88 |77.21 71.30 | 040 3.16 NF |19.52 19.52 NF 2 2 NF
Planter DTep | 99.92 99.92[99.92 99.92 99.40 94.53[99.40 94.53[99.40 9431|9934 99.41 [1.18 1.34 1.34 2637 2637 2637| 2 2 2
Planter RFgg | 99.80 99.79 | 99.80 99.79 99.37 94.41 | 99.38 94.44 | 99.42 94.51|99.25 99.39 | 1.81 2.59 3.94 |39.04 39.40 4589 | 3 4 4
Planter XGB |99.98 99.98|99.98 99.98 99.42 94.53|99.42 94.53|99.43 94.59|99.40 99.45 | 1.70 6.65 NF |33.22 45.78 NF 3 5 NF
Planter NB 98.99 98.95|98.99 98.96 99.25 93.68 | 99.25 93.68 | 99.25 93.68 | 99.25 99.25 |3.28 4.22 6.20 | 28.77 2877 28.77 | 8 8 8
Planter IF 44.89 35.35|37.90 31.08 84.86 58.90 | 63.83 45.07 | 86.33 55.05|81.74 NF |2.01 9.01 NF |36.30 43.33 NF 5 5 NF
Planter KNN |69.33 60.63 | 99.38 99.36 87.51 31.55|99.30 93.17 | 99.30 93.17 | 78.24 92.73 |0.23 1.89 21.01|20.74 20.74 22.22 | 1 1 5
Planter PCA* | 76.12 74.92 | 76.19 75.00 97.45 65.42|97.89 67.73|97.89 67.73|97.29 97.47 |578 5.78 5.78 | 20.89 20.89 20.89| 6 6 6
Planter AE* 99.92 99.92|99.92 99.92 99.24 93.55|99.24 93.55|99.28 93.53|99.23 99.28 | 589 5.89 589 |21.58 21.58 21.58 | 7 7 7

¥ NN is trained with PyTorch instead of Sklearn. Bold and underline indicate the top and second top performance among all models, respectively. * Results of PCA and AE
are the accuracy of (S)mall DT using new features after dimensionality reduction. KM, PCA, and AE are unsupervised learning while others are supervised learning.

Table 4: Accuracy (ACC), resources and latency relative to switch.p4. Using (S)mall, (M)edium, (L)arge and (H)uge models. Some
models are not feasible (NF) on Tofino but are feasible (1) on Tofino2.

used to predict buy or sell for each trading opportunity [30]. Three
packet-level fields (order side, size, and price) are used as features
with the NASDAQ dataset, to predict stock price movement: up,
down, or stationary. Feature selection is further explored in §5.3.
Results for other use cases can be found in [102].
Testbed setup: The testbed uses two servers for traffic generation
and monitoring (ESC4000A-E10, AMD EPYC 7302P CPUs, 256GB
RAM, Ubuntu 20.04LTS, ConnectX-5 NICs). PTP with timestamping
in the NICs is used for latency measurements. The evaluated plat-
forms are a 1) Tofino switch (APS-Networks BF6064X, SDE 9.6.0)
using a snake configuration for throughput tests. 2) AMD Alveo
U280 FPGA 3) NVIDIA BlueField-2 DPU. In addition, 4) P4Pi [47]
running on Raspberry Pi 4 Model B with 8GB RAM is evaluated
twice: using vimodel over BMv2 and using T4P4S [85]. The P4Pi
testbed is connected to a server with an Intel Xeon W-2133 CPU
and 64 GB RAM. Planter-generated in-network ML models were
also deployed on Dell IoT Gateway [19] and have been evaluated
in [92].
Parameter settings: Mapped in-network ML models are explored
using four different model sizes: small (S), medium (M), large (L),
and huge (H), e.g., 6/9/12/200 trees with depth of 4/5/6/30, corre-
spondingly. Detailed setups of model parameters are provided in the
repository [104]. The model size refers to the converted data plane
model size, which is a function of both training and conversion
parameters. Small to large in-network ML models are expected to
fit on the target data plane. Huge models represent the maximum
inference potential of a model (per dataset) running on a server.
Evaluation metrics: The following metrics are used in the evalua-
tion:
(1) ML performance: Accuracy and F1 score are used to evaluate
ML inference performance.
(2) Scalability performance: Memory utilization, Table entries,
and Number of stages are used to evaluate scalability.
(3) System performance: Throughput and Latency are used to
evaluate the system performance of mapped models.

(4) Framework performance: Model training time and trained
model conversion time are used to assess Planter’s run time
performance.

On Tofino, following NDA, we report the latency relative to Intel’s
switch.p4 reference program (L2/L3 switch).

5.2 General ML Performance

5.2.1 ML Inference Accuracy. The inference performance evalua-
tion explores if the mapped in-network ML models have similar
inference accuracy as running the same inference task on a server,
and how the size of the model affects the accuracy. It is not sug-
gested to compare between ML models in Table 4 as the competence
preference of models varies among different use cases.

The results are presented in Table 4. The upper part shows previ-
ously proposed mappings [7, 26, 76, 91, 101, 103], and the lower part
shows Planter optimized mappings. As the Accuracy column (left
side of the table) shows, for the same model size, all the models have
a similar accuracy performance on the programmable switch as
on Sklearn or a baseline server, verifying Planter’s mapping barely
causes accuracy loss. In the tested use case, it has been demon-
strated that smaller models (e.g. 6 trees for RF) can perform just as
well as larger models (e.g. 200 trees for RF) on a server, which indi-
cates that the size of Planter’s model is applicable with satisfactory
accuracy. The accuracy is checked using 10-fold cross-validation,
with a standard deviation of less than 0.05% for top performing
models, indicating its statistical significance.

The resource performance column (right side of the table) com-
pares the resource performance for different sizes of models. As
model size increases, some models achieve slightly higher accuracy
with more switch resources required. All small and medium-sized
models proposed/upgraded by Planter are feasible on commodity
hardware with less than 8 stages, 9.1% memory, and 45.78% of rela-
tive latency. The optimized mapping methods of Planter can achieve
comparable accuracy with existing mapping solutions, but with
significantly lower resource consumption. For example, large DT
model in Planter can reach the same accuracy as large SwitchTree,
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Figure 9: Comparison of accuracy and table entries with State-
of-the-Art. UNSW dataset is used.
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Figure 10: Comparison of accuracy and stages used with State-
of-the-Art. UNSW dataset is used.

while reducing memory by 30%, latency by 70%, and stages by 87%.
Resource consumption varies between Planter targets. For example,
deploying a DT model on U280 FPGA has resource usage as low as
15% LUTs and 11% registers.

Planter was integrated with switch.p4, an Intel reference L2/L3
switch. The switch.p4 functionality coexists with Planter’s new or
upgraded models with no or minimal cost in stages and latency, but
with higher resource utilization.

5.2.2 Comparison with State-of-the-Art. We compare Planter with
IIsy’s DT, SVM, NB and KM [91, 101], SwitchTree/pForest DT and
RF [7, 50], Clustreams KM [26], N3IC’s NN [76], and Homuncu-
lus/Taurus’s NN [81, 82] in terms of inference performance and
scalability. The Planter-based models are as in Table 4. Figures 9 and
10 demonstrate that Planter outperforms prior works in both accu-
racy and resource utilization. This is due to the optimized mapping
methods introduced in Planter (§3).

Figure 9 (a) compares the accuracy performance of Planter on
Tofino and existing solutions where Clustreams is deployed on
Tofino, and Taurus and Homunculous are implemented on Taurus
back-end. Planter achieves higher accuracy (84.88%) than Clus-
treams (35.4%), Taurus (71.1%) and Homunculous (83.1%), and sim-
ilar to server accuracy. Compared with IIsy on Tofino, Planter
achieves same or higher accuracy for lower memory consumption
as shown in Figure 9 (b) & (c). Planter’s evaluated models (RFgp and
NB; g respectively) reduce the table entries in both cases, and pre-
vents NBy g table entry explosion by turning multiply operations
to additions.

Figures 10 (a) - (c) compare Planter with Clustreams using KM
(k-means) and SwitchTree using DT (Decision Tree). Clustreams
has limited scaling capability, as table entries may explode when
seeking better accuracy, compared with Planter’s accurate and more
resource efficient solution for larger models. Similarly, Planter main-
tains a constant number of stages for tree models, compared with
the increasing number of stages in SwitchTree. Planter demon-
strates better scalability in commodity hardware by parallelizing

Iris CICIDS (flow level)

Switch Server Switch Server

Work Model ACC F1 ACC F1 ACC F1 ACC F1
SwitchTree [50] DTpy 95.56 95.56 95.56 95.56 96.56 91.68 96.56 91.68
pForest [7] RFpy 9556 95.56 95.56 95.56 96.16 87.89 96.16 87.89
IIsy [91] SVM 97.78 97.81 97.78 97.81 96.80 91.41 96.80 91.41
N3IC [76] NN 93.33 93.42 95.56 95.56 58.38 51.05 97.80 94.28
sy [91] KMpp 88.89 88.19 88.89 88.19 52.44 38.72 52.44 38.72
Clustreams [26] KMgp 77.78 75.93 88.89 88.19 53.42 39.12 52.44 38.72
Planter DTgg 95.56 95.56 95.56 95.56 96.56 91.68 96.56 91.68
Planter RFgg  95.56 95.56 95.56 95.56 96.20 87.94 96.46 89.01
Planter XGB 97.78 97.81 97.78 97.81 97.06 91.23 97.12 92.83
Planter NB 95.56 95.56 95.56 95.56 81.70 68.01 81.70 68.01
Planter IF 15.56 18.18 11.11 8.48 58.42 43.63 58.42 43.63
Planter KNN  80.0 66.43 100.0 100.0 89.48 47.41 96.86 91.21
Planter PCA 92.86 92.67 92.86 92.67 91.52 74.85 91.67 75.41
Planter AE 92.86 92.67 92.86 92.67 96.47 91.14 96.47 91.14

Table 5: Evaluation results of Iris and CICIDS (with flow-level
features) datasets. Iris uses (M)edium size model, CICIDS uses
on (L)arge size model for SVM, KM, KNN, and (S)mall for tree
models, due to the model’s increased complexity.

the inference processing within a pipeline to avoid exceeding the
stage limitation as model size scales up.

5.3 ML Performance in Different Scenarios

As different use cases may require different types of input features,
we evaluate Planter’s support for flow-level, packet-level and time-
series input features.

5.3.1 Flow Level. The packet-level classification of CICIDS used in
Table 4 is extended to test in-network ML using flow-level classifica-
tion on the same dataset. The features used include Flow Duration,
mean flow Inter-Arrival Time (IAT), maximum flow IAT, minimum
flow IAT, and minimum packet length (stateful information is stored
in registers [9]). These five features are commonly used in anom-
aly detection and traffic classification tasks [40, 69], and can be
extracted within the data plane. As shown in Table 5, accuracy
results closely match the packet-level classification accuracy listed
in Table 4. While the use of flow-level features results in a slight
decrease in accuracy, it offers better generalizability. It was indi-
cated [106] that best classification performance can be achieved
when both packet and flow-level features are used.

5.3.2  Packet Level. Beyond network-centric datasets, we also eval-
uate Planter using the Iris dataset [22], a classic ML multiclass
dataset, primarily used for analyzing four feature measurements of
Iris flowers to predict their species. The Iris dataset is widely used
in ML and statistics as a benchmark due to its diversity, repeatabil-
ity, and broad applicability. Here it is used to evaluate Planter in
multiclass tasks and to assess performance on general datasets. The
experimental results are shown in Table 5, with most supported
ML algorithms achieving good inference performance. A few algo-
rithms experienced accuracy loss, primarily encode-based KM and
KNN. The IF model performed poorly on this dataset because it is
an outlier detection model mainly applied to imbalanced datasets.

5.3.3 Time Series. NASDAQ’s Historical TotalView-ITCH sample
data feeds are used for time series analysis [1]. To forecast stock
future price movement using market microstructure signals, a data



Time Series Analysis - NASDAQ Stock EQIX (time series)

Tofino Tofino 2 BMv2 Server
Work Model | PRE REC F1 ACC | PRE REC F1 ACC | PRE REC F1 ACC | PRE REC F1 ACC
Clustreams [26] KM 1497 3333 20.66 44.90 | 14.97 33.33 20.66 4490 | 24.80 33.64 25.57 43.74 | 24.80 33.64 25.57 43.74
Planter DTgg | 53.84 51.81 50.53 51.12 | 58.66 53.55 5291 54.43 | 58.17 60.60 57.14 57.43 | 58.41 60.33 58.25 57.99
Planter RFgp 57.45 56.28 56.16 58.28 | 58.68 57.03 56.95 59.26 | 57.45 59.74 56.83 56.18 | 62.80 61.89 60.99 64.15
Planter XGB 40.07 42.83 40.69 48.63 | 41.67 47.56 42.87 54.22 | 56.09 58.72 56.55 56.99 | 56.61 5856 56.90 59.05
Planter KNN 4486 4491 39.61 55.08 | 42.86 44.77 39.55 54.62 | 54.50 47.47 41.22 4139 | 52.95 54.21 5293 54.39

Table 6: ML prediction performance (%) with an example NASDAQ stock - EQIX.

We run limited-size models on BMv2, Tofino

and Tofino 2 (emulated). The benchmark runs on a server using Sklearn and unlimited-size models. PRE, REC, F1, and ACC
correspond to precision, recall, f1-score, and accuracy, respectively. Note that the primary difference in results among targets
mainly stems from the size of the models and the number of features utilized, which does not impact the mapping.
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Figure 11: The ratio of accuracy (ACC), data plane model
relative to the server. KMy g & SVM refers to IlIsy [91, 101];
DTpur & RFpy refers to SwitchTree [50] & pForest [7]; KMgp
refers to Clustreams [26]. P- refers to Planter proposed or
upgraded model.

structure called limit order book (LOB) [8] is constructed, using
the algorithm described in [36]. The LOB is updated within the
data plane in real-time, from unmatched limit orders set at spe-
cific prices (stateful information is stored in registers [36]). LOBs
offer a structured view of market orders, providing insights into
supply and demand dynamics at different price levels over time,
which is more informative for ML prediction than raw market feeds.
As shown in Table 6, ML performance has a small accuracy loss
across commonly used in-network models. There is a trend where
more switch resources (i.e., BMv2>Tofino 2>Tofino) enable higher
ML performance. The server baseline’s performance is not very
high, matching common results in the field [97], primarily because
the financial market is influenced by numerous factors, making it
challenging to predict [44]. Moreover, time-series data feeds from fi-
nancial markets frequently encompass a considerable level of noise,
impacting the performance of ML models.

5.4 Scalability Performance

5.4.1 Scalability and Relative Accuracy. We examine whether Planter
can perform effective algorithm mapping with various hyperparam-
eters and adapt to different resource constraints. Specifically, we
study the effect of action data bits (action field’s width, which can
control quantization accuracy) and model depth on models’ relative
accuracy, comparing the switch’s output with Sklearn’s result on a
server.

Figure 11 shows the switch accuracy relative to server accuracy.
For LB (Lookup-based) models in Figure 11 (a), the relative accuracy
increases as the number of action data bits increases (more accurate
intermediate results are stored). Among solutions, Planter’s solution
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Figure 12: Memory and stage scaling with hyperparameters
and feature properties (UNSW dataset). Flat or gentle curves
indicate better resource scalability with model parameters.
Model name references are same as Figure 11.

can have a negligible accuracy loss with just 4 action data bits
requirements, which can save 40% memory in practice (more action
data bits means higher memory consumption). In Figure 11 (b),
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Figure 13: Action bits effect on LB solutions scalability based
on the UNSW dataset.

compared to server-based models with the same model size, the
accuracy of Planter’s models remains stable as model depth changes.
It indicates that Planter’s solutions can consistently achieve high
mapping accuracy across a range of model sizes, effectively adapting
to different resource constraints. Compared with KMgp (Clustreams
[26]) and DT/RFpy; (SwitchTree/pForest [7, 50]) that can easily
lead to table entry or stage explosion when the model depth grows,
Planter’s solutions improve the mapping precision when under
identical memory consumption.

5.4.2  Resources Scalability. Both model/convert hyperparameters
(model depth) and use case inputs (number of features) influence the
applicability and scalability of Planter’s in-network ML models. The
resource scalability of each model is evaluated in two dimensions:
the number of table entries and the number of pipeline stages. Table
entries indicate the potential memory requirement from the switch,
and the number of stages indicates remaining M/A stages for model
growth and non-parallel functionality.

Figures 12 (a) & (b) show that as a model’s depth increases, more
table entries are required in all EB (encode-based) models and direct-
mapping tree-based models. Among them, DM (direct mapping)
solutions have a comparatively slower increment. EB tree models
are more stable in terms of stage consumption. Figures 12 (c) & (d)
show that except for DM tree-based models, models consume more
table entries as the number of features increases. In terms of stage
consumption, only LB-based models have a strong correlation to
the number of features. Figures 12 (e) & (f) show that as the number
of trees increases, EB tree models require 8 stages less than DM tree
models, unless the number of table entries is excessive. In Figures 12
(g) & (h), the feature range, which is the number of unique feature
values per feature, only influences LB models’ stage and memory
consumption. Figures 13 (a) & (b) show that the number of action
data bits does not influence the required number of table entries
and the required number of stages. Note that the evaluated models
are those where action bits are a parameter.

Some insights based on this evaluation are: 1. The scala-
bility of EB mappings is mostly affected by model’s parameters
(e.g., number of trees/model depth) and less by the use case (e.g.,
range/number of features). 2. LB resources change with use case
properties (e.g., range/number of features), and typically not with
model parameters. 3. DM scalability is model dependent. DM is
usually bounded by stages, and less by memory. Planter’s widely
supported model types and characters make it highly adaptable to
a wide range of use cases.

5.5 General System Performance

In terms of system performance, the throughput evaluation of dif-
ferent models is shown under the attack detection use case (UNSW),
which is a volumetric use case. Latency is shown using price move-
ment prediction use case (Jane Street Market Prediction), which is
latency sensitive.
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Figure 14: Throughput of ML algorithms for attack detection
on Tofino (in Tbps) and P4Pi (in Mbps). DTpy; and RFpy,
refers to SwitchTree [50] & pForest [7]; KM g & SVM refers
to IIsy [91]; KMgp refers to Clustreams [26], NN refers to
N3IC [76].

5.5.1 Throughput. Throughput tests record the throughput of each
in-network ML algorithm on a Tofino switch and P4Pi, as shown in
Figure 14. The baseline throughput of basic forwarding is 6.4Tbps
on Tofino and 94Mbps on P4Pi. On a Tofino switch, full 6.4Tbps
is achieved for all feasible models (Table 4). On P4Pi, which essen-
tially runs a software switch on a CPU, the results vary between
models. Seven of the models achieve more than 80% of the baseline
throughput. Ensemble models (RFgp, RFpys, and XGB) and NN
have degraded throughput on P4Pi, due to their increased use of
resources. The throughput of in-network ML on other targets can
be found in Section 5.6.
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Figure 15: The relative latency (R-Latency) on Tofino in the
financial prediction use case, measured for standalone ML,
ML combined with switch.p4, and standalone switch.p4.

5.5.2 Latency. Latency tests are conducted with Jane Street Mar-
ket Prediction dataset where Planter’s models can achieve sub-
microsecond latency. In compliance with the NDA, we report the
relative latency in Figure 15. The baseline is the latency of switch.p4.
When only the ML models are deployed, without additional func-
tions, the latency in most models is less than 22% of switch.p4. When
the ML models are combined with switch.p4, there is an overhead
of less than 4.7% for all feasible algorithms. Compared with previ-
ous works, Planter’s mappings require less logic for similar models
and are more compatible with other switch functions in resource-
constrained targets. The latency of in-network ML on other targets
can be found in Section 5.6.
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Figure 16: Throughput and latency of DTrg and RFgp on
different target devices. -B refers to BMv2 and -T refers to
T4P4S.

5.6 System Performance on Different Targets

The system performance of two sample in-network ML algorithms,
DTgp and RFgp, is evaluated on different targets. As illustrated
in Figure 16, hardware targets, such as Tofino and FPGA, achieve
line rate throughput (6.4Tbps and 100Gbps, correspondingly). In
contrast, software switches (BMv2 or T4P4S), running on the ARM
cores of P4Pi and DPU, reach a throughput in the range of tens to
hundreds of Mbps. Similarly, hardware targets achieve microsecond-
scale latency, whereas software targets achieve sub-millisecond la-
tency. Furthermore, on software targets the complexity of the model
impacts system performance; the more complex RF algorithm has
lower throughput and higher latency on these targets. The model
complexity does not have a notable impact on the performance of
hardware targets. To provide more information about each of the
targets:

5.6.1 FPGA. Planter’s FPGA support is evaluated using AMD
Alveo U280. Vitis Networking P4 is used to compile the gener-
ated P4 code to an IP block with standard AXI interfaces for the
OpenNIC shell. Taking EB (encode-based) DT and RF as examples,
the baseline latency through a forwarding-only program is about a
microsecond. The latency added by a DT model is 170 nanoseconds,
and RF latency is approximately 320 nanoseconds, aligned with
compiler prediction. Both In-network ML models achieve 100Gbps,
full line rate.

5.6.2 DPU. Planter currently supports in-network ML on NVIDIA
BlueField-2 DPU using BMv2 running on its ARM cores. P4C is
used to compile the P4 code with vimodel architecture to a BMv2
software switch. Under this setup, compared to the baseline of
simple forwarding, DTgp introduces an additional latency of ap-
proximately 43 ps, and RFgpg’s latency is approximately 487 ps. In
terms of throughput, using BMv2 performance configuration [16],
DT can reach about 360 Mbps and RF has approximately 131 Mbps.!

5.6.3  P4Pi-T4P4S. T4P4S [85] is an open-source compiler that gen-
erates a target-agnostic software switch using Data Plane Devel-
opment Kit (DPDK). In this scenario, T4P4S is running on top of
P4Pi [47]. Taking the same encode-based DT and RF models, the
baseline latency is around 1 ms with basic forwarding functions.
When DTgg and RFgp are enabled, the latency increases to 2 ms
and 2.3 ms, correspondingly. The baseline switch throughput is
100 Mbps. When DTgp and RFgp are deployed, the throughput
decreases to 78.7 Mbps and 68.8 Mbps.

INVIDIA’s P4 compiler for DPU, currently not generally available, will enable higher
performance.

5.6.4 P4Pi-BMv2. P4Piis also evaluated using vimodel over BMv2
software switch, using BMv2 performance configuration [16] and
the same testbed as P4Pi-T4P4s. The encode-based DT and RF mod-
els deployed on BMv2 achieve a throughput of 80 Mbps and 60
Mbps. The latency results is 2.1 ms and 2.5 ms when DT and RF
model (DTgp, RFgpR) is deployed, with a baseline latency of 1.1 ms.

5.7 Framework Performance

5.7.1 Framework Execution Time. We measure the time required
to load a dataset, train a model, convert the trained model, test
table entries, compile the mapped model to a target, and load the
generated tables. Among these, we focus on training and conversion
time, the two time-consuming components in Planter’s operation.
Based on the results (shown in Figure 17), for a small model using
UNSW dataset under Anomaly Detection use case, most of the
small models’ training time (except SVM, NN, and AE) and all of
the models’ conversion time are less than 10s, which shows Planter
can prototype in-network ML fast.
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Figure 17: Algorithms’ train & convert time (UNSW dataset).

5.7.2  User Experience. The efficacy of rapid prototyping was ex-
plored by checking the implementation time of an in-network ML
inference prototype by two undergraduate students with no P4
knowledge and two graduates with basic P4 knowledge?. All test
users successfully compiled and configured an in-network ML pro-
totype on a programmable target within 10 minutes or less. The
graduates estimated it would have taken them 2-3 months to study
ML prerequisites and debug the code without Planter. These results
demonstrate the clear advantage of rapid prototyping for users of
all skill levels.

6 REFERENCE APPLICATIONS

Planter has been used in several publications, we summarize them
into four use cases as reference applications of Planter: traffic clas-
sification, anomaly detection, load balancing, and financial market
prediction.

Traffic Classification. P4Pir [94] and FLIP4 [93] introduce an
IoT edge traffic analysis framework using ML. This framework re-
duces decision time for traffic analysis and classification, enabling
swift traffic handling. It achieves this by concurrently applying
in-network ML in the data plane alongside traffic forwarding. One
challenge faced is selecting a low-overhead model. The works em-
ploy Planter for model selection and resource optimization. Leverag-
ing Planter, the framework achieves rapid end-to-end prototyping
and optimized deployment planning. As a result, the in-network
deployment effectively caters to resource-constrained gateways
and imposes minimal overhead on regular gateway traffic.

2Approved by an institutional compliance team (IRB equivalent)



Anomaly Detection. Replacing traditional security measures or
firewalls, in-network ML is able to detect the attack inside the
network, realize the early traffic termination, and thus protect
the network and user infrastructures. Building upon the Planter
framework, IIsy tools [101] can realize in-network ML models with
different network features and flexibly adapt to various attacks.
To realize close to optimal inference, IIsy proposes a hybrid in-
network ML solution. Specifically, the hybrid solution deploys a
small model in the network and a large model at the backend. The
system uses the small model’s decision confidence to determine
whether to directly apply the in-network decision or send it to the
larger backend model for further processing. The Planter frame-
work facilitates rapid exploration and identification of the optimal
model size feasible for resource-constrained programmable net-
work devices. Planter’s mapping can keep the maximum portion
of decision-making on the switch, so as to improve the system
performance of hybrid deployment.

Load Balancing. To achieve low latency load balancing control,
QCMP [99] employs the Planter framework, realizing an effective
distributed load balancing solution through the introduction of
two in-network Q-learning algorithms. Leveraging the mapping
methodology of Planter, the proposed in-network solutions can
be deployed on commodity switches (Tofino), consuming minimal
resources while operating at maximum capacity (line rate). The
QCMP load balancing solution effectively adapts to changing traf-
fic patterns, surpassing the performance of traditional Equal-Cost
Multi-Path (ECMP) solutions.

Financial Market Prediction. LOBIN [36] provides ML-based in-
network market prediction using limit order books (LOBs) based on
high-frequency market data feeds. The work constructs LOBs, ex-
tract ML features, and performs predictions within programmable
switches, achieving low-latency forecasts for future stock price
movements. The implementation of the prototype is facilitated
by the Planter framework, with the process of LOB construction
and updates integrated into the framework together with infer-
ence, streamlining the whole process and facilitating ML model
selection. The outcomes demonstrate that in-network ML yields
low-latency prediction with a minimal impact on ML performance
in comparison with traditional server-based methods.

7 DISCUSSION

Rapid Prototyping. Planter abstracts three ML mapping methods
and proposes a framework for one-click ML model deployment
on programmable network devices. The framework can automati-
cally select, generate, configure, compile, load, and run the mapped
ML models on the target. It has four key design advantages: it 1)
automates tasks by dividing functional blocks, 2) promotes code
reusability by splitting P4 logics, 3) allows easy extension through
modular design with interfaces, and 4) provides optional front-end
for model tuning and failure handling, suitable for all-level users.

Optimized Mapping. The mapping optimization discussed in the
text is aimed at the mapping techniques and is applicable to all
targets. These optimizations primarily focus on reducing resource
consumption, which can enhance scalability and improve ML infer-
ence performance. In terms of optimization on deployment, there
are specific techniques tailored to each type of target. For example,

on Tofino, stage assignment is enforced to ensure table allocation
meets expectations in this research. However, target-specific de-
ployment optimizations are beyond the scope of this paper.

ML Performance. ML models mapped by Planter provide in-
network ML accuracy similar to running the same model on a host,
as the evaluation shows. However, model size and inference perfor-
mance present a trade-off. Sometimes, a large model can achieve
higher accuracy for additional switch resources. Planter can han-
dle this trade-off and find the best mapping configuration using
Planter’s front-end to fit on a switch and achieve high accuracy.
NN vs Traditional Models. In previous sections, Planter supports
NN based on prior work [76]. Evaluation results show that NN is
feasible for certain model sizes and hardware targets. For smaller
NN sizes, there is a decrease in accuracy/F1 performance. While
NN is extremely powerful, especially in training, research to date
has shown that PISA-based ASIC is less suitable for NN [72], and
this work does not challenge the claim. Instead, Planter shows that
other inference models are feasible and powerful.

System Performance Models generated by Planter, when run on
commodity hardware, exhibit minimal performance differences,
such as identical line rate throughput and less than 100 nanosec-
onds of latency variation. On software targets, however, the system
performance of the models varies significantly with complexity.
For example, the throughput of NN on BMv2 is only one-tenth
that of DTgp. Planter’s mapping facilitates more efficient algorithm
mappings, meaning model implementations with lower complexity
can achieve the same accuracy, which can lead to better system
performance on multiple targets. Determining the smallest model
required to meet specific accuracy needs can be achieved through
the use of the Planter front-end.

Model Scalability. Models generated by Planter are designed
for deployment on standalone target devices, while maximizing
throughput and minimizing latency. There are numerous deploy-
ment techniques and strategies to deploy more complex models
and further enhance ML performance, despite resource constraints.
First, Planter has been used in [101] to provide a hybrid deployment,
with a small model in the switch and a large model at the back-end.
Second, DINC [100] uses Planter to support distributed in-network
ML, allowing to deploy large models by distributing the resources
across multiple devices. In addition, LOBIN [36], combined Planter
and recirculation to support complex in-network ML functionality.
Pipeline Stages. The number of stages required by a model re-
lates both to the type of mapped model and its size. For the UNSW
dataset, at least 2 stages are consumed, and some models do not
fit. Planter’s Encode-based solutions outperform previous direct-
mapping solutions. Planter shows that stages can be shared with
standard switch functionality. Some designs can be hand-modified
to reduce stages, e.g., where network and ML functions have sim-
ilarities. Our experience is that 2-3 stages can be saved through
manual optimization.

Targets. Planter is not target-specific. It currently supports a range
of P4 targets, such as Intel Tofino and Tofino 2, BMv2, P4Pi [47]
using either T4P4S over DPDK or BMv2, Alevo U280 FPGA over
OpenNIC Shell [89], and all P4 architectures required by these
targets. Planter is open to new targets and will continuously expand
its support for emerging targets, keeping in-network ML vibrant.
Owing to the framework’s modular design, adding more targets



to Planter is straightforward, primarily involving the inclusion of
scripts pertaining to the target’s compiler and testing environment.
Detailed guidance can be found in the Planter repository [104].
Lessons Learned. Our experiences with Planter indicate that there
is no single ML model that outperforms all other models for all use
cases and targets. Tree-based models are easily mapped to hard-
ware targets, and parallelism enables support of multiple trees with-
out performance degradation. EB-based mapping is more efficient
here. On the other hand, software-based switches without stage-
limitations can be more resource efficient using direct-mapped mod-
els. However, increased computations degrade software switches’
throughput and increase their latency. As ML performance is de-
termined in the training stage, choosing a suitable class of models
should follow ML applications’ state of the art. Planter’s front-end
can then assist in identifying the best set of hyperparameters that
will generate a feasible in-network ML solution.

Support & Use Cases. Planter provides a one-click in-network
ML solution for emerging use cases. Early users of Planter have
explored, for example, smart IoT gateways (e.g., P4Pir [92] and
FLIP4 [93]), anomaly detection (e.g., Isy [101]) and e-commerce bot
detection (e.g., [32]), financial market prediction (e.g., LOBIN [36]),
and load balancing (e.g., QCMP [99]). We believe that the wide
adoption of in-network ML requires a suitable framework. Planter
aims to be to in-network ML what CUDA was to GPUs [59]: the
enabler for wide adoption on programmable targets, leading to a
proliferation of use cases.

Benefits to Community. Planter serves as a rapid prototyping
solution for in-network ML development. It empowers researchers
and developers in the community to rapidly validate design ideas,
conduct benchmark experiments, and evaluate the performance of
the design. Apart from its primary function as a prototyping tool,
Planter also serves as an educational resource, helping students
understand concepts of in-network computing and gain hands-on
experience. Given that in-network computing is a recent research
area, Planter can play a vital role in expediting tests, validation,
and standardization process. Furthermore, it encourages diverse
exploration in network and interdisciplinary domains, accelerating
research and development.

8 RELATED WORKS

In-network ML Models. Currently, attempts have been done
to map several In-network ML models like SVM, k-means, NN,
DT, and RF. However, most of the previous works support a sin-
gle type of model (e.g. DT in SwitchTree [50], RF in pForest [7],
NN in N3IC [76], KM in Clusteams [26]) and support few targets
with less resource-constrained and not for commodity usage (e.g.,
SwitchTree [50] on BMv2, IIsy [91, 101] on NetFPGA & BMv2, and
Taurus [81] & Homunculus [82] on their own customized hard-
ware). At the same time, most of the models had limitations with
scalability, especially in resource-constrained environments.

In-network ML Framework. The framework for ML on servers is
flourishing, such as scikit-learn [66], Pytorch [65], and Keras [13].
However, the choice of in-network ML framework is very lim-
ited. Most of the existing tools like IIsy [91, 101], Netbeacon [106],
and SwitchTree [50] are mainly use case specific, not extendable,

lack automation, and are more like a demo than a tool. Homuncu-
lus [82] provides an automated parameter selection framework for
in-network ML but does not provide new ML models for in-network
ML mapping to accommodate various use cases.

9 CONCLUSION

This paper presented Planter, a modular framework for one-click
implementation of in-network ML algorithms. Planter’s modular
design enables integration of new ML models, architectures, tar-
gets, and use cases. Planter implements a wide range of in-network
ML algorithms, including four new algorithms, and upgrades six
previously proposed mappings. The evaluation shows that Planter
accurately maps trained models to a switch, can achieve high in-
ference accuracy and line rate throughput, and can be integrated
with switch.p4 without consuming additional stages, scaling better
than multiple previous works. As an open-source platform, Planter
is the enabler for in-network ML research, and is available at [104].
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A APPENDIX

Planter is an open-source framework, aiming at facilitating in-
network ML development. Its code is available at GitHub [104].
Starting to use Planter requires just a configuration file and a dataset.
Afterward, Planter manages the transition of ML tasks into the
programmable data plane. All datasets used in our evaluation are
publicly available. A comprehensive and detailed step-by-step guide
on the usage of the framework is in the repository README . md
and . /src/help. This section provides a brief overview of the
guide.

A.1 Environment Setup

Planter requires python3 with the packages listed in the reposi-
tory. To install the aforementioned packages and set up the working
environment, the following command should be executed:
sudo pip3 install -r ./src/configs/packages.txt

As Planter drives network programmable targets for executing
and testing use cases in the data plane, ensure the chosen target’s
necessary environment is installed. For example, BMv2’s required
environment can be set up following [15]. There are also publicly
available guides for other Planter-supported targets. The intro-
duction of all targets and their installation are presented in our
repository>under the src/help/Planter_Supports folder.

A.2 Getting Started with Planter

Planter is started using the following command:

sudo python3 Planter.py

Configurations can be changed by editing the configuration file.
Planter provides multiple modes, for example, manual configuration
mode, where configuration is input manually with a detailed CLI.
This mode can be activated by adding —m. One can also use ~h to
see additional command options and learn more modes.

Each run will output three ML performance reports. 1. The first
matrix is the report from the scikit-1learn. 2. The second ma-
trix shows the simulated data plane result. 3. The third matrix
reports the actual result of the model performance on the selected
target. A more detailed matrix is shown in the tutorial wiki [104].

A.3 Reproduction of Evaluations

The configuration for evaluations is stored in the repository to aid
the reproduction of our evaluation results. The guidance on detailed
steps can be found in evaluation.md under the . /src/eval
folder. Run the following command to update the configurations:
sudo nano ./src/config/Planter_config. json

Then, start the framework following §A.2, and Planter will load the
corresponding configurations automatically.

A.4 Adding New Modules and Designs

Planter enables the incorporation of new models, architectures, tar-
gets, use cases, and datasets. For example, to use one’s own dataset, a
load data file should be created under . /src/load_data folder.
It is used for loading the source data and preprocessing it based on
one’s needs following a standard interface. The step-by-step guides
on how to add new models, architectures, targets, use cases, and
datasets are all presented in our repository [104].


https://github.com/In-Network-Machine-Learning/Planter
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