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Abstract—Innovations in digital health and machine
learning are changing the path of clinical health and care.
People from different geographical locations and cultural
backgrounds can benefit from the mobility of wearable
devices and smartphones to monitor their health ubiqui-
tously. This paper focuses on reviewing the digital health
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and machine learning technologies used in gestational di-
abetes – a subtype of diabetes that occurs during preg-
nancy. This paper reviews sensor technologies used in
blood glucose monitoring devices, digital health innova-
tions and machine learning models for gestational diabetes
monitoring and management, in clinical and commercial
settings, and discusses future directions. Despite one in
six mothers having gestational diabetes, digital health ap-
plications were underdeveloped, especially the techniques
that can be deployed in clinical practice. There is an urgent
need to (1) develop clinically interpretable machine learning
methods for patients with gestational diabetes, assisting
health professionals with treatment, monitoring, and risk
stratification before, during and after their pregnancies;
(2) adapt and develop clinically-proven devices for patient
self-management of health and well-being at home settings
(“virtual ward” and virtual consultation), thereby improving
clinical outcomes by facilitating timely intervention; and
(3) ensure innovations are affordable and sustainable for
all women with different socioeconomic backgrounds and
clinical resources.

Index Terms—Glucose sensors, gestational diabetes,
digital health, machine learning, patient monitoring.

I. INTRODUCTION

G ESTATIONAL diabetes mellitus (GDM) is defined by
the World Health Organization (WHO) as carbohydrate

intolerance resulting in hyperglycemia - high blood glucose
- of variable severity with onset or first recognition during
pregnancy [1]. It is one of the most common non-communicable
medical complications during pregnancy. The prevalence of
GDM is increasing rapidly worldwide. In 2021, the average
prevalence of GDM was 16.7% globally, and was highest in
Southeast Asia at 25.9%, as reported based on the population,
the diagnostic criteria used, and geographical locations [2], [3],
[4], [5], [6]. GDM is associated with both short- and long-term
adverse health consequences for mothers and children. Dur-
ing pregnancy, GDM is associated with an increased risk of
pre-eclampsia, increased fetal growth leading to macrosomia,
shoulder dystocia, birth trauma and neonatal hypoglycaemia [7],
[8]. Women with GDM also have a 50% risk of developing type
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Fig. 1. Digital health for antenatal and postnatal health and care in hospital, community and home care environments.

2 diabetes in the decade following their pregnancy [9], [10].
This makes GDM a condition of great public health interest in
the fight against the global epidemic of type 2 diabetes.

During a healthy pregnancy, particularly in the second half
of pregnancy, placental hormones favour a state of insulin resis-
tance, resulting in increased insulin secretion from the pancreatic
β-cells [11]. There is a higher risk of developing hyperglycaemia
for women in whom insulin secretion is inadequate, or those with
higher peripheral insulin resistance [10].

The most widely accepted test for diagnosing GDM is the
75-gram oral glucose tolerance test (OGTT), recommended by
the WHO [12] and U.K. National Institute for Health and Care
Excellence (NICE) [13]. Using the WHO/IADPSG criteria,
GDM is diagnosed if the woman has either a fasting plasma
glucose level of 5.1 mmol/L or above, 1-hour ≥10.0 mmol/L,
or 2-hour ≥ 8.5 mmol/L. However, these thresholds are not
globally agreed. Many counties, including the U.K., recommend
their own national thresholds to diagnose GDM. This diversity
in diagnosis is also reflected in a lack of universal clinical
management and monitoring targets.

After diagnosis, glycaemic management in GDM is based
on self-collected glucose, most commonly through fingerstick
capillary blood testing. Different organizations use different
blood glucose targets in women with GDM. For example, NICE
2015 (and updated in 2020) [13], [14], [15] recommends targets
of fasting< 5.3 mmol/L and 1- hour postprandial<7.8 mmol/L.
Women with fasting glucose levels of 7.0 mmol/L or above are
advised to start medication treatment immediately. Women with
fasting glucose< 7.0 mmol/L are initially given lifestyle advice,
such as diet and regular exercise. Diet and medication plans
should be reviewed by a clinician every two to four weeks, either

during hospital visits, telephone calls or remote-monitoring
platforms [16]. If blood glucose targets are not met within 1-2
weeks, women should be offered medication (e.g., metformin
or/and insulin) [15], [17]. In comparison, the American Diabetes
Association recommends similar glucose targets for women with
GDM as follows: fasting glucose less than or equal to 95 mg/dL,
1 hour after eating less than or equal to 140 mg/dL (equivalent
to 7.8 mmol/L), and 2 hours after eating less than or equal to
120 mg/dL (equivalent to 8.6 mmol/L) [18].

Due to the vital role of glycaemic monitoring and the changing
physiology as pregnancy progresses, women with GDM are
asked to monitor their blood glucose levels daily. The monitor-
ing results are generally labelled as fasting pre-meal, one-hour
post-meal and at bedtime.

To better support women performing glycaemic monitoring,
and to provide clinicians and patients with clinically traceable
measures, digital health technologies have been developed for
GDM. The U.S. Food and Drug Administration (FDA) defines
digital health as mobile health (m-Health), health information
technology, wearable devices, telehealth and telemedicine, and
personalized medicine [19]. The power of digital innovations
and machine learning aims to facilitate the prevention, early
diagnosis and management of people’s health in hospital, com-
munity and home settings.

Fig. 1 demonstrates potential scenarios of how digital health
and machine learning could be fused into the health and care in-
frastructure for people with gestational diabetes. There are three
rings: (1) the dark-blue outer ring demonstrates the components
of the digital health framework of gestational diabetes in public
health and care, including the maternal and neonatal healthcare
cost, public health and global partnerships, law, regulation and
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policy, digital health innovation, technology certificate, national
screening services and scientific research; (2) the light-blue ring
shows three healthcare environments, including primary and
community care, hospital care as well as the diabetes screening
services before and after the pregnancy; and (3) the white inner
ring demonstrates the scenarios of personal gestational dia-
betes self-monitoring at home, including weight tracking, blood
glucose self-test and monitoring, diet control and medical in-
terventions, such as metformin pills or insulin injections. These
three rings are comprehensive to each other and demonstrate
three levels of antenatal and postnatal GDM care infrastructure
for patients with GDM.

Blood glucose monitoring is often linked to wearable sensors
in mobile devices, such as smartphones, watches, and waist-
bands. The ability to collect, collate and analyse data from
different sensors for activity tracking, food intake quantification,
blood glucose monitoring and medication management could
open up new possibilities to help people manage GDM. But
there is a gap for data scientists, engineers and clinicians to fill.
Personalized, explainable, and trusted AI and ML models are
needed to assist patients and clinicians in clinical management
with the aim of improving patients’ lifestyles and short-term and
long-term clinical outcomes.

For conditions such as GDM, digital health technologies can
provide real-time glucose monitoring, thus enabling timely di-
agnosis, treatment and personalised advice on food intake, exer-
cise and medication. Current methods for glucose measurement
in women with GDM only provide a snapshot of the change in
glucose levels. Ideally, glucose levels should be monitored in
real-time, using a non-invasive and unobtrusive method, such as
continuous glucose monitoring.

A review on gestational diabetes by Saravanan [6] suggests
that a shift is needed to move from the perception of a short-
term condition that confers an increased risk of large babies to
a potentially modifiable long-term condition that contributes to
the growing burden of childhood obesity and cardio-metabolic
disorders in women and their offspring.

In this paper, we provide comprehensive reviews of (i) glucose
monitoring technologies for women with GDM; (ii) the types of
glucose sensor technologies currently available and their poten-
tial for application in GDM; and (iii) digital health technologies
and machine learning algorithms for blood glucose prediction,
medication advice and lifestyle management in GDM, with
comparison to the current state-of-the-art technologies used in
type 1 and type 2 diabetes monitoring. We then finally discussed
potential future work in this field to improve the health and care
of women with GDM.

II. BLOOD GLUCOSE MONITORING TECHNIQUES FOR

GESTATIONAL DIABETES

Blood glucose monitoring plays a vital role in the early
detection, diagnosis, treatment and management of women who
have gestational diabetes. Health providers use blood glucose
values to check and adjust the effect of treatments, such as the
effectiveness of diet and exercise and the dosage of medica-
tions. There are two main methods for ambulatory glycemic
testing: intermittent capillary blood glucose technologies and
continuous glucose monitoring (CGM) technologies. CGM can

Fig. 2. Self-monitoring glucose meters: (a) Fingerstick blood glucose
testing with mobile connections [20], [21], (b) Four generations of blood
glucose meters (c. 1987-2005): Top left: Reflolux S (Accu-Chek III in
the U.S.), by Boehringer Mannheim, 2-minute read time, based on
reflectance; top right: ExacTech Card, by MediSense, 30-second read
time, electrochemical test stripe; bottom left: FreeStyle, by TheraSense,
15-second read time, electrochemical test stripe; bottom right: Freestyle
Mini, by Abbott, 7-second test time, electrochemical test stripe [22].

be subdivided into intermittently scanned (flash) and real-time
(e.g., CGM) sensors.

These two kinds of sensors are different in four aspects: i)
intermittent blood glucose monitoring measures discrete glucose
levels accurately from capillary blood, whereas continuous mon-
itoring provides multiple glucose levels of fair accuracy from
the interstitial fluid beneath the skin, which approximates blood
glucose levels; ii) with standard intermittent monitoring, current
blood glucose levels do not predict future glucose levels; but
with continuous monitoring, trends in glucose levels are often
predicted to enable the insulin pump to provide a precise amount
of insulin accordingly; iii) with intermittent monitoring, blood
glucose results can be used directly without data processing; but
with continuous monitoring, data analysis is required to extract
fluctuations of blood glucose, for example, mean blood glucose
results at different events, such as before or after breakfast; and
iv) an intermittent blood glucose monitor requires patient’s input
for every reading, whereas a continuous monitor records the
time-series blood glucose value synchronously.

It is challenging for patients to self-monitor their blood glu-
cose using fingerstick testing four to six times a day; however,
this is especially important for women who are on multiple daily
insulin injections to balance the risk of hyperglycaemia and
hypoglycaemia. Fingerstick testing is inconvenient and painful
for mothers in pregnancy, with limitations including accuracy,
specificity, and inappropriate usage. Because of high cost and
lack of evidence, CGM is an alternative, but it is not used broadly
in clinical practice for gestational diabetes management.

This section will explain the technical aspects of intermittent
and continuous sensor technologies in detail.

A. Periodic Monitoring Using Fingertip Blood Tests

In order to gain an accurate estimation of blood glucose
trends, women in pregnancy are requested to perform several
fingerstick tests each day. The test is typically performed by
piercing the skin – usually on the fingertip – with a lancet
device to obtain a small volume of blood, and then the glucose
concentration is determined with a glucose meter (Fig. 2(a)).
The development of the first blood glucose meter dates back
to the 1970s after developments in urinary glucose testing and
blood glucose dry-reagent test strips [23], [24]. The first blood
glucose meters combined dry chemistry test strips (Dextrostix)
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with reflectance photometry to measure blood glucose, of which
the paper strip is treated with enzyme reagents that give approx-
imate results for glucose concentration with one drop of whole
capillary or venous blood. Since then, significant progress has
been achieved in the development of blood glucose meters, such
as reducing blood sample size, obtaining blood samples from
alternate sites, and improving test time, display, data storage,
and calibration (Fig. 2(b)) [23], [25]. Nowadays, there are a
large number of devices on the market, with meters developed by
Roche Diagnostics, Lifescan, Medisense, Bayer, and Therasense
among the most popular [25].

Though popular and easy to use, self-monitoring of blood
glucose using fingerstick test strips has limitations in accuracy,
specificity, and inappropriate usage, as discussed by Olansky et
al. [26]. To be safe and of clinical value, blood glucose meters
should measure blood glucose levels accurately and precisely. In
terms of accuracy, the standard developed by the FDA in 2016 for
blood glucose meters for over-the-counter use requires 95% of
data pairs of BGM measurement and a reference measurement to
be within 15% for BG values>100 mg/dL (5.55 mmol/L), which
is similar to the standard issued by the International Organization
for Standardization (ISO) 15197:2013 [27], [28].

B. Continuous Blood Glucose Monitoring Using
Wearable Sensors

With advances and the development of technologies in elec-
tronics, manufacturing, materials and sensors, glucose moni-
toring has developed rapidly. Technology enabling accurate,
continuous, long-term and noninvasive glucose monitoring has
become possible, with blood no longer the only medium for
glucose monitoring.

Compared with fingerstick blood testing, CGM – either from
real-time use or intermittently viewed – provides insights about
the direction, magnitude, duration, frequency, and fluctuations
in glucose levels, which enables sufficient information that is
clinically valuable [29]. CGM can reduce risks of hypoglycemia,
hyperglycemia, and glycemic variability and improve the qual-
ity of life for patients with blood glucose imparity, including
patients with gestational diabetes. CGM via an implantable,
transdermal sensor has become the gold standard method for
monitoring continuous glucose levels in pregnant women with
type 1 diabetes. CGM has been widely studied and is now being
used in clinical settings [30]. However, prolonged use of CGM
is invasive and may cause vascular damage or infection [31]. No
articles have been published on their long-term performance.

The evidence for CGM use in pregnancy comes mostly from
women with type 1 diabetes, and in the U.K., the technology
is currently not recommended for women with other forms of
diabetes [17]. There are several barriers that will need to be
addressed before CGM can be considered for women with GDM.
The first barrier is cost. Depending on the length of time it is
used, real-time CGM can cost up to £2000 per pregnancy (2021
NHS list price). With up to 65000 women having GDM in the
U.K. each year, the potential cost increase of adopting CGM for
GDM could be > £100 million per year. The second barrier is
the limited understanding of managing GDM using glycaemic
time in range; the optimal time in range for women with GDM is

Fig. 3. Noninvasive enzyme-based glucose monitoring sensing sys-
tems through different contact agents and body sensors: (a) Contact
lens glucose sensor on tear, (b) Saliva glucose monitoring strip on
saliva, (3) needle-type glucose sensor on insulin sensitivity factor (ISF),
and (d) Wearable glucose monitoring patch on sweat [33].

unknown [29]. Finally, it is unclear whether outcomes would be
improved for women and their babies with GDM by adopting
CGM; thus, adequately powered clinical trials are needed in
this area. However, given the trend of reducing the cost of
technologies, ongoing technological developments and research
in this area, it is possible in the future that CGM may become
an option for women with GDM.

The remainder of this section of this review will focus on
noninvasive continuous glucose monitoring techniques with
the potential for application in GDM. Noninvasive continuous
glucose sensing can be classified into three categories: electro-
chemical methods, optical methods, and non-optical methods,
including microwave methods. Each of these technologies will
be elaborated as below.

a) Enzyme-based electrochemical sensors:
Enzyme-based electrochemical sensing combines enzymatic
detection with electrochemical measurements, and it can yield
higher detection accuracy than each of the single techniques. The
enzymatic sensor is performed on bio-fluids that contain lower
glucose concentrations than blood, for example, interstitial
fluid, tears, saliva, and sweat [32] (Fig. 3). For example, the
well-known Google contact lens is such a sensor, designed to
detect glucose levels in tears. Alternatively, interstitial fluid
has been used as the medium to extract glucose onto the
skin surface by using the technique of reverse iontophoresis
with an enzymatic glucose sensor. GlucoWatch (Cygnus Inc.,
Redwood, CA, USA) is a commercial product that adopted
reverse iontophoresis as the way to extract glucose samples.

One of the main advantages of such technology is that it is
noninvasive, unobtrusive, and real-time. This technology can be
realized via flexible epidermal sensors that can be fabricated
into body-compliant wearable platforms, such as a patch, wrist
band, temporary tattoo, and integrated wireless electronics for
practical wearable applications [34].

However, there are two disadvantages of such methods. One
is that there is a time lag between the blood glucose level
and the glucose in interstitial fluid; the other is that such a
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method by applying potential onto the human skin (or other
epithelial surfaces) can cause irritation [35]. The latest research
and development of epidermal electrochemical glucose sensors
can be found in more detail in the review paper by Kim et al. [34].
A more elaborative review of enzyme-based electrochemical
glucose sensors, including materials, device structures, fabri-
cation processes, and system engineering, can be found in the
review by Lee [33].

b) Methods based on optical detection: Unlike
electrochemical methods, physical approaches to detect glucose
levels are based on measuring specific properties of the glucose
molecule. Among the physical approaches, the optical sensing
method is one of the most common methods for CGM due
to its potential benefits of increased stability and low mainte-
nance [36]. The optical approaches mainly include infrared (IR)
spectroscopy, Raman spectroscopy, photoacoustic spectroscopy,
fluorescence spectroscopy, and optical coherence tomography
(OCT) [37], [38]. The following sections will give an overview
of how these technologies are used in continuous glucose
sensing.

IR spectroscopy usually consists of near-infrared (NIR) and
mid-infrared (MIR) spectroscopy depending on the light wave-
length – the short-band 780-1500 nm and 4000 nm to 400
cm−1 ranges are usually used for NIR and MIR, respectively.
For noninvasive studies, reflectance light-emitting diode (LED)
arrays that are readily available and low-cost are commonly
used for NIR as the sources, and the sensing location can be
fingertip, forearm or upper arm. For MIR, glucose has absorption
peaks in several regions, and the 1200 nm to 100 cm−1 range
has received the most attention in sensor studies because it is
related to the skeletal vibrations of glucose. Compared with NIR
absorption bands that are typically combined bands, weaker and
broader, the MIR range absorption bands are relatively sharp,
more selective and have a stronger signal. For IR spectroscopy,
the common challenge is the interfering molecules that have ab-
sorption spectra similar to glucose; examples of these molecules
include lactate, urea, and sugars.

Raman spectroscopy, as its name indicates, employs Raman
scattering in order to observe vibrational modes in glucose
molecules [39]. Usually, a single-wavelength source with visible
or NIR wavelengths is sufficient to produce the entire Raman
spectrum, as only the frequency shift is measured. The resulting
frequency shift due to the scattering is sensitive to the vibrational
modes of the molecule and independent of the excitation photon
frequency. And therefore, the Raman spectrum for glucose can
be quite clearly distinguished from other biological compounds.
Furthermore, the Raman signal can be amplified by several
orders of magnitude with the technique of surface-enhanced
Raman scattering (SERS). However, the main challenge of
Raman spectroscopy is the small cross-section, which can be
ten orders of magnitude smaller than the fluorescence cross-
section, resulting in the Raman scattering signal being masked
by interfering fluorescence signals.

As mentioned above, both IR and Raman spectroscopy detect
glucose concentration through the direct interaction between
light and glucose. In contrast, fluorescence sensing does not
measure glucose directly but measures the signal from molecules
that can reversely bind to glucose. These molecules are called

Fig. 4. Noninvasive continuous glucose sensing techniques: (a) Skin-
like glucose biosensor [41], (b) Wearable-band type near infrared (NIR)
optical biosensor [42], (c) Sensing through fluorescent labelling [38], and
(d) Microwave sensors [40].

exogenous fluorophores; they are engineered to form a complex
with glucose molecules and only fluoresce in the presence of
glucose. As a result, the fluorescent light intensity will depend
on the glucose concentration, since more fluorophores are active
when there is more glucose bound with them.

OCT is a measurement method that uses an interferometer
with low coherence light – typically light in the NIR range due
to its nature of miniaturisation and low cost. The OCT system
consists of one reference and one sample arm for the light, a
moving window to vary the path length, and a photodetector
for the light. The light scattered back from the tissue is com-
bined with light from the reference arm, and the interference
signal is sent to the photodetector. The reflective index of the
interstitial fluid will change when the glucose concentration
changes, which in turn changes the scattering coefficient. This
change in scattering coefficient and concomitant variation in the
interferogram is used to determine the glucose concentration.
The main challenges of OCT for glucose monitoring are that
the measured change in the scattering coefficient is small and
sensitive to motion artefacts.

c) Other noninvasive glucose detection tech-
nologies: Except for the commonly studied optical sens-
ing approaches, other noninvasive methods, such as electri-
cal impedance spectroscopy and microwave sensing methods,
have also been explored, as shown in Fig. 4. The electrical
impedance spectroscopy (EIS) method has the advantages of
being low-cost and user-friendly. The design of such systems
consists of bioimpedance sensors, signal measurement strate-
gies, modelling and parameter estimation methods to extract
blood glucose levels, and portable system designs [35]. While
microwave technology measures the dielectric properties of
aqueous glucose with a microwave sensor, generally, a patch
antenna which is compact, cost-effective, painless and has the
potential to provide a more accurate measurement. For exam-
ple, inspired by vasculature anatomy topologies, Hanna et al.
developed a tunable electromagnetic multi-sensing system that
is noninvasive and wearable for continuous glucose monitoring
[40]. Such systems achieved a high correlation between system’s
physical parameters and blood glucose levels [36], [37].

In general, the advantages of optical and microwave methods
lie in their highly non-invasive nature and continuous monitoring

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on May 31,2024 at 07:48:38 UTC from IEEE Xplore.  Restrictions apply. 



LU et al.: DIGITAL HEALTH AND MACHINE LEARNING TECHNOLOGIES FOR BLOOD GLUCOSE MONITORING 103

without stimulating discomfort to the human body. However,
the measured value may not be highly correlated with the actual
blood glucose value as the linear range is narrow; therefore sub-
sequent algorithm correction is required. More detailed infor-
mation on various sensing technologies for glucose monitoring
can also be found in the reviewer papers on continuous blood
glucose monitoring [36], [37].

III. EMERGING MONITORING DEVICES AND MANAGEMENT

PLATFORMS FOR GESTATIONAL DIABETES

Based on the periodic fingerstick and continuous blood glu-
cose monitoring technologies introduced in Section II, various
platforms for monitoring and managing gestational diabetes
have been implemented globally in both clinical and non-clinical
applications, and in either commercial or research settings. In
this section, we will review a few exemplary ones that started
to make impacts on the digital health industry for gestational
diabetes.

A. Devices and Applications Trailed for Clinical
Observations and Interventions

The NIH ClinicalTrials.gov is a database of privately and pub-
licly funded clinical studies conducted worldwide, managed by
the NIH U.S. National Library of Medicine. To provide insight
into digital health technologies used in clinical practices world-
wide, we screened 538 studies (accessed on 8 August 2021)
using the keyword “gestational diabetes” on the NIH Clinical-
Trials.gov database. After shortlisting clinical trials using key-
words, and removing clinical trials that were not completed or
not started, we shortlisted 16 observational studies and 36 inter-
ventional studies that used digital health and mobile health tech-
nologies for patient monitoring. Protocols were reviewed under
two categories: observational studies and clinical interventions.

People living with GDM require self-management to maintain
blood glucose levels, including diet and exercise control, as
well as through medication intervention. Table I summarises
the technologies in the primary purpose, outcome measures,
monitoring method, patient size, country of use, and comple-
tion status. These studies focus on the technologies for blood
glucose monitoring, medical intervention, and lifestyle man-
agement for weight control. Readers interested in clinical trial
details can read the full details of the above trials at the NIH
ClinicalTrials.gov. Systematic clinical reviews in gestational
diabetes monitoring systemic clinical reviews [4], [43], [44],
[45] and studies on clinical outcomes [46], [47] are also helpful
reading materials. Countries with different prevalence levels
of GDM, limitations in doctor resources, or different income
levels, such as low- and-medium income countries, often require
cost-effective and different digital health solutions to address
their challenges. Country-specific reviews [3], [48], [49] can
provide a comprehensive source of information that addresses
risk factors, diagnosis criteria in racial variance and geographical
differences that suit epidemiology studies.

Among the clinical trials listed in Table I, a few studies have
been commercialized and put into clinical practice. For example,
in the U.K., “GDm-Health”, was developed from 2014 -16
[50] and subsequently licensed to Sensyne Health plc in 2017,
and then acquired by HUMA Health in 2022. In a randomised

controlled trial, “TREAT-GDm”, GDm-Health was deployed
on Android mobile phones that can link to Bluetooth-enabled
blood glucose meters. To use this self-monitoring platform,
patients need to tag their capillary blood readings into six
mealtime tags (pre- and post- breakfast, lunch and dinner)
and enter their medication dose if applicable. Collected blood
glucose measurements are then sent to the GDm-Health server
by mobile network and made visible to clinicians. Feedback is
provided in the form of colour coding of individual readings:
red for high, green for target, and blue for low blood glucose
measurements. Summaries of blood glucose measurements
(tabulated and graphical) and reminders are also provided as
appropriate. The above work has been published [13], [16],
[51], [52], [53], [54] with a technology appraisal on the NICE
website [50]. This innovation has been approved for clinical
usage by NICE. As of 2021, GDm-Health is available in 56
Trusts, representing 47% of NHS Trusts in England.

MobiGuide [55], [56] is an evidence-based decision-support
system developed in 2014 and then modified in 2017. It can pro-
vide personalised decision support based on patients’ personal
health records, including data from hospital medical records,
mobile biosensors, data entered by patients, and recommen-
dations and abstractions output by MobiGuide. This system
can be used by patients with gestational diabetes (via mobile
MobiGuide) and their care provider (via central MobiGuide).
Their study analyzed usage patterns and opinions collected
via questionnaires of the 10 atrial fibrillation and 20 GDM
patients and their care providers. The results confirmed using
the MobiGuide system have resulted in diagnosis changes for
2/10 atrial fibrillation patients and anticipated changes in therapy
for 11/20 GDM patients.

The Pregnant+ smartphone application was developed in
2015 to motivate women to have a healthy diet, and be physically
active [57]. Similar to GDm-Health, it allows the automatic
transfer of blood glucose measures from the glucose meter to
the smartphone. A green or red face indicates a normal or high
blood glucose level (hyperglycemia). There is no colour code for
the low blood glucose level (hypoglycemia). The trial protocol
was published in 2017 [58]. In the trial, women answered
questionnaires during pregnancy and were followed up three
months postpartum. Trial results were published in 2018 and
2019 [59], [60]. Results suggested that using the Pregnant+ app
did not affect the 2-hour glucose level at routine postpartum
OGTT. And after controlling for parity, the difference in the
emergency caesarean section was not statistically significant.

Apart from blood glucose monitoring, several studies focus on
lifestyle interventions, such as diet and physical activity control.
Close attention to food intake is necessary during pregnancy
to avoid excessive gestational weight gain while ensuring strict
glycemic control. The Institute of Medicine guidelines for gesta-
tional weight gain are based on pre-pregnancy body mass index
(BMI). Approximately 80% of women with GDM can reach
their glycemic goals with diet and lifestyle modifications alone.
Lifestyle interventions are helpful in weight control and may
impact pregnancy outcomes.

The behavioural lifestyle intervention (PEARS) RCT in a
lifestyle intervention study for women overweight and obe-
sity [61], [62]. A total of 278 pregnant women (BMI 25–39.9
kg/m2) were randomized to the intervention (n = 278), or aAuthorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on May 31,2024 at 07:48:38 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE I
PATIENT MONITORING TECHNOLOGIES IN GDM CLINICAL STUDIES: PRIMARY PURPOSE, OUTCOME MEASURES, MONITORING METHODS, COUNTRY OF USE,

AND REVIEWER COMMENTS
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(CONTINUED)

control group (n = 287). Results showed that there were no
differences between the groups at baseline. Compared with
the control group, the intervention group had improved dietary
intake post-intervention. Physical activity (MET-minutes/week)
was higher in the intervention group post-intervention. App use
was associated with a lower glycaemic index and less energy
from free sugars, but not with physical activity.

The Mobile-Based Lifestyle Intervention in Women with
Glucose Intolerance after Gestational Diabetes Mellitus
(MELINDA) study is a Belgian multi-centre randomized
controlled trial (RCT) in seven hospitals (236 women). [63] The
aims of this study are: (1) to evaluate the prevalence and risk
factors of glucose intolerance after a recent history of GDM;
and (2) to evaluate the efficacy and feasibility of a telephone-
and mobile-based lifestyle intervention in women with glucose
intolerance after GDM. Women in the intervention group will
receive a blended program based on one face-to-face education
session and further follow-up through a mobile application and
monthly telephone advice. Women in the control group will
receive follow-up as in normal routine with referral to primary
care. Participants will receive an OGTT one year after baseline.
The primary endpoint is the frequency of weight goal achieve-
ment (≥5% weight loss if pre-pregnancy BMI ≥ 25 Kg/m2 or
return to pre-gravid weight if BMI < 25 Kg/m2). At each visit,
blood samples are collected, anthropometric measurements are
obtained, and self-administered questionnaires are completed.
Recruitment began in May 2019 and expect to finish in
June 2022.

Electronic Monitoring Of Mom’s Schedule (eMOMs) plat-
forms have three clinical studies in Finland. The trial protocol
[64] addressed a feasibility randomized controlled study for

women with high pre-pregnancy BMI to improve postpartum
weight, blood sugar, and breastfeeding. A total of 72 women
were included, 24 per group. The design of this trial has
combined breastfeeding and the National Diabetes Prevention
Program. eMOMS compares the feasibility and efficacy of
three interventions on six-month post-partum weight loss among
women with a BMI > = 25. Patients were recruited at two
clinical sites (rural and urban). Program costs will be compared
to that of traditionally scheduled group meetings. The study was
completed but the results were not published.

Hola Babe and GlucoseMama are the two products that have
been used in RCTs. The results of these trials were not pub-
lished, but product information is available on their website for
products.

All the above platforms are based on the fingerstick blood test
and a telemedicine framework. Chen’s study [65] used CGM
on 57 women with GDM, 47 in Israel and 10 in California.
Data derived from the MiniMed CGM System were compared to
fingerstick glucose measurements (6–8 times a day) in 72-hour
windows. The time of food intake, insulin injections and hypo-
glycemic events are recorded in the system and used to monitor
the health status of GDM. The study authors suggested that
CGM is helpful for adjusting diabetes therapy and can accurately
detect high blood glucose and hypoglycemic events that may go
unrecognized by intermittent blood glucose monitoring.

B. Consumer-Driven Devices and Applications

Along with devices and platforms for clinical purposes, there
is a broader commercial market for devices and applications for
non-clinical purposes. This section reviews the consumer-level
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TABLE II
TOP 10 IOS APPS RANKED SEVEN COUNTRIES WITH HIGH GDM PREVALENCE

commercial devices and applications used for gestational dia-
betes. We used the keyword of “gestational diabetes” to search
top-ranked Apps run on iOS using an online search engine
(www.deepaso.com). The search date is 18th November 2021,
and the results were compared to 18th May 2021. We limited
our search to only English and regions with a high prevalence
of GDM [66]. The overlap of regions with high prevalence and
country-specific ranking data in the search engine are Singa-
pore (SGP), United Arab Emirates (UAE), Thailand (THAI),
Malaysia (MAL), United Kingdom (U.K.), Belgium (BEL) and
India (IND).

As shown in Table II, we listed the top 10 apps across these
regions under four categories: Medical (M), Food & Drink (FD),
Health & Fitness (HF), and lifestyle (LS). It is noted that the
ranking is dynamic and can be misleading when an app is
promoted at the searching date. Additionally, the search results
included Apps designed for both GDM and general diabetes.
The devices and apps that are applicable for GDM overlap with
those for diabetes management.

Table II review lists the top 10 Apps in four categories listed
in these seven countries. Several Apps in the medical category
are ranked high across different counties, such as mySugr-
Diabetes Tracker Log, One Touch Reveal, Glucose Buddy
Diabetes Tracker, Medisage Phill Reminder, Glucose – Blood
Sugar racker, and MySweetGestation. A few of the FD or LS
category Apps are ranked high across these seven countries.
Within the Medical and Health & Fitness categories, the main
features of Apps include (i) glucose monitoring, (ii) exercise
monitoring or advice, (iii) food intake recommendation and (iii)
medicine-taking reminders.

Arguably, the App from the non-medical category is consis-
tently ranked high in different countries and could be popular
across these countries.Whereas the Apps belonging to the med-
ical category can be country-specific because of the nature of
their development.

The mobile device applications primarily focus on glucose
monitoring, exercise tracking, food intake recording, and med-
ication reminders.
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TABLE III
FEATURES OF DIFFERENT DIABETES MANAGEMENT APPS

Blood glucose monitoring: As discussed in Section II,
consumer-level glucose monitoring uses capillary blood glucose
meters or CGM systems. The former requires a user to prick their
finger to release a small amount of blood and then place the blood
on a test strip readable by the meter. It usually requires the user to
manually input those readings in the App, although meters with
Bluetooth and NFC are also available. These systems are often
associated with reminder features. In contrast, CGM systems
can bundle the CGM sensor, smartphone, and smartwatch to-
gether. Most existing apps for diabetes management target type
2 diabetes. Some Apps also offer advanced features based on
blood glucose levels, including setting alerts for high and low
glucose and predicting future glucose levels.

Exercise trackers: These are used to record the user’s exercise
and other physical activity. Some apps sync the third party’s
apps, e.g., the Apple Health app, to track steps and other physical
activity. The exercise tracker is easier to work with smartwatches
and other wearable devices for daily use.

Food intake: Food tracking typically provides nutritional
information (calories, fat, carbohydrates, cholesterol, added
sugar content, hidden ingredients, etc.) based on a private
food database and/or barcode scanner. This is often useful
for customized food to improve blood glucose control. For
nonstandardized portion sizes of food, a user can estimate more
accurately with “hint” provided by Apps, e.g., using the photo
of incremental portion size provided in the Apps as a reference.

Medication reminders: Apps in medication reminders
are non-diabetic general medication reminders or diabetes-
specialised reminders. The former is typically embedded into
the common calendar and can be customised by a user. The latter
could include recording medications and insulin, calculating
insulin doses, and setting up warnings for drug interaction.
An advanced feature of medication trackers is to analyse drug
responses according to glucose levels.

In Table III, we provide the features of Apps of M and
HF categories that are not country-specific and ranked high
in at least two countries. Specifically, we removed two Apps,
MySweetGestation [68] and myGestationalDiabetes, the former
is designed to be an interactive educational tool for both patients
and physicians in the field, and the latter’s website does not
provide support for our evaluation regarding the features we are
interested.

Most diabetes management Apps are good for patients who
have been recently diagnosed. The significant advantages of

medical diabetes management Apps include: (i) offering a report
with more insight into diabetes that can be sent to a healthcare
provider to assess the management outcomes, and (ii) setting
up an alert system that can automatically send messages to
emergency contacts. The diabetes management Apps from the
HF category are typically specialised in food, exercise, and
lifestyle tracking and recommendation designed for daily use.
The built-in trackers in the HF category Apps can be synchro-
nised in medical diabetes management Apps.

There are many reviews that list top-ranked Apps for diabetes
management. In this paper, we aim to overview the proportion
of GDM Apps in the diabetes management Apps and provide
some insight into whether the diabetes management Apps and
devices are sufficient for GDM monitoring. Our evaluation may
be limited because we used only one App-ranking search engine,
evaluated the IOS Apps only, and searched for the keyword of
gestational diabetes only.

IV. MACHINE LEARNING ALGORITHMS FOR GDM
MONITORING AND MANAGEMENT

Data-driven machine learning algorithms and models are
trained to detect patterns and hierarchical casualties in training
data and predict future results or make decisions under uncer-
tainty [96]. Statistical and machine learning models are widely
used in medical and healthcare data, including generalized lin-
ear models (such as logistic regression and linear regression),
Bayesian and probability models, deep neural artificial net-
works, nonparametric models (exemplar-based methods, kernel
methods, and trees, forests, bagging and boosting), graph neural
networks, generative adversarial networks, transformers, and
reinforcement learning. Following the United States Food and
Drug Administration (FDA) regulations, artificial intelligence
and machine learning-based software are classified as medical
devices [97].

In this section, we focus on reviewing machine learning
methods and algorithms that have been used in the rapidly
expanding field of “Clinical AI” for gestational diabetes and
methods that suit a broader family of diabetes (type 1 and type
2 diabetes) that are feasible for GDM monitoring and patient
management. These methods are transferable due to (1) the
similarity of type 2 diabetes and GDM, and (2) CGM can
be used in GDM but is mainly used for patients with type 1
diabetes for timely insulin intervention.
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TABLE IV
MACHINE LEARNING MODELS USED IN GESTATIONAL DIABETES AND TYPE 1 AND TYPE 2 DIABETES STUDIES

Table IV summarizes the machine learning models used in
gestational studies or models that can potentially be transferred
to GDM. There are merely any clinical studies in GDM or type 2
diabetes using CGM. Considering the similarity between GDM
and type 2 diabetes, we included models that were developed for
hypoglycemia prediction in type 1 and type 2 diabetes studies
and the continuous blood glucose prediction using CGM in type
1 diabetes. We will first introduce physiology and hybrid models
for measuring and predicting blood glucose levels, and then
discuss machine learning models in detail.

A. ML Approaches for Monitoring and Management of
Blood Glucose

Machine learning methods used in blood glucose sensor
data among different types of diabetes are largely similar,
with the mutual aim of facilitating blood glucose monitoring

with or without patient electronic health records (EHRs), and
providing timely medication intervention and lifestyle advice to
manage diabetes in a personalised and predictive manner. For
the prediction of blood glucose, as shown in Fig. 5, there are, in
general, two types of prediction models: the physiology-based
model and the data-driven machine learning models [98], [99].
As shown in Fig. 5, we used the taxonomy to summarise the
model types, and then provided a few exemplary studies with
details in this sub-section.

1) Physiological Models and Hybrid Method: Physiolog-
ical models in GDM aim to simulate mother’s and offspring’s
glucose-insulin system. There is no physiological model spe-
cially developed for mothers with GDM yet, which needs to
take offspring’s growth (energy consumption) into considera-
tion. However, it is worth mentioning the need for such models
and reviewing existing physiological models that have been
developed for general diabetes purposes.
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Fig. 5. Taxonomy of models for blood glucose prediction.

Fig. 6. An example of a hybrid approach using the physiological model and data-driven model [76].

Millsap [100] provided the mathematical analysis of lumped
models for the glucose-insulin system, which are made for linear
and quadratic inhibition of insulin release. It is a semi-empirical
model that the trajectories of the models in the hodograph and
time planes are determined, and a comparison of the inhibitory
processes is presented.

In the physiological models in Hovarka’s study [101], the
hypothesis is that glucose excursions are influenced by the
glucose absorption process, and can be represented as follows:

Ra (t) =
CHOIN∗CHOBIO∗t∗e(−t/tmax,G)

tmax,G
2

Where tmax,G (min) is the time of the maximum appear-
ance rate of glucose in the accessible glucose compartment,
CHOIN is the number of carbohydrates ingested, and CHOBIO

(dimensionless) is carbohydrate bioavailability. In this model,

t was categorised into four periods of 6 h, and was la-
belled as Nocturnal (01:00 to 06:59 h), Breakfast (07:00 to
12:59 h), Lunch (13:00 to 18:59 h), and Dinner (19:00 to
00:59 h).

Fig. 6 demonstrates a hybrid model that comprises physio-
logical models based on insulin and carbohydrate and a gram-
matical evolution model. In the data-driven grammatical evolu-
tion model [102], the grammar is a population-based heuristic
search algorithm that performs an evolutionary process through
selection, recombination, and mutation. This method uses a
variable-length linear genome to govern how a Backus Naur
Form grammar definition is mapped to a program, and expres-
sions and arbitrary complexity programs may evolve. Then the
sinusoidal function is added to account for the circadian varia-
tions in patients’ physiology in the final model with maximum
day-to-day 20% amplitude variations.
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2) Machine Learning Models:
a) Blood glucose monitoring for GDM: Machine

learning technologies for GDM monitoring are premature com-
pares to existing work in type 1 and type 2 diabetes. The main
reasons are that the global GDM population is much smaller than
the mainstream diabetes population and only type 1 diabetes
patients widely use CGM.

Studies that have used ML methods can be divided into those
aiming to predict who will develop GDM and those aiming
to improve GDM management during or after pregnancies, as
listed in Table IV. For mothers with GDM, machine learning
models are mainly used to improve blood glucose management,
predict clinical outcomes before and after childbirth deliveries,
and estimate postnatal risks of type 2 diabetes.

The following studies focused on the prediction and risk
evaluation of GDM for early diagnosis.

H. W. Liu et al.’s [69] study used risk scores to predict
gestational diabetes in early pregnancy in Tianjin, China. An
established population-based prospective cohort of 19331
pregnant women registered as pregnant before the fifteenth
gestational week. In total, 1484 (7.6%) women developed
GDM. The dataset was randomly divided into a training set
(70%) and a test set (30%). In this study, the eXtreme gradient
boosting (XGBoost) method was employed to predict the
presence of GDM. The logistic model was also developed for
comparison purposes. Risk factors collected at registration
were examined and used to construct the prediction model in
the training dataset, including pre-pregnancy BMI, maternal
age, fasting plasma glucose at registration, and alanine
aminotransferase. The XGBoost model achieved a higher area
under the receiver operating characteristic curve (AUROC)
than the logistic model (0.742 vs 0.663, p < 0.001), while the
logistic model tended to overestimate the risk at the highest risk
level (Hosmer–Lemeshow test p-value: 0.243 vs 0.099).

N. S. Artzi et al. [70] used boosting models for the prediction
of GDM based on 588622 pregnancies in Israel’s nationwide
electronic health records. Gradient boosting models predicted
GDM with AUROC = 0.85. Results were validated on differ-
ent geographical validation sets in Israel to emulate real-world
performance. Interrogating the boosting models using Sharply
value for feature selection, authors developed a risk score table
for pre-GDM diagnosis based on nine risk factors.

The Diagnosis of Gestational Diabetes Mellitus (GDM-AI)
project [71] implemented an AI model that compared nine
algorithms in GDM diagnosis. This is the first prospective and
multi-centre clinical study that supports the GDM diagnosis
for pregnant women in a resource-restrained setting by using
only fasting blood glucose measurement, patient age, and a
smartphone connected to the internet. This system was trained
on 12304 pregnant outpatients with their consent, who received
a test for GDM in the obstetrics and gynaecology department
of the First Affiliated Hospital of Jinan University between
November 2010 and October 2017. GDM was diagnosed ac-
cording to the American Diabetes Association 2011 diagnostic
criteria [18]. Age and fasting blood glucose were chosen as
critical parameters. Five-fold cross-validation was used for the
internal dataset and an external validation dataset that included

1655 cases from the Prince of Wales Hospital, Chinese Uni-
versity of Hong Kong. The AUROC of the external validation
dataset for support vector machine (SVM), random forest, Ad-
aBoost, k-nearest neighbours (KNN), Naïve Bayes (NB), deci-
sion tree, logistic regression, XGBoost, and gradient boosting
decision tree (GBDT) were 0.780, 0.657, 0.736, 0.669, 0.774,
0.614, 0.769, 0.742, and 0.757, respectively. SVM was selected
as the method among all nine algorithms. Results showed that
the specificity for SVM retained 100% in the external validation
set with an accuracy of 88.7%.

Machine learning methods have also been used in finding
biomarkers in gestational diabetes. L. Yoffe et al. [72] used a
logistic regression model to investigate the role of circulating
microRNAs in the plasma of pregnant women in their first
trimester. Two populations were included in the study to enable
population-specific as well as cross-population inspection of
expression profiles. Each microRNA was tested for differential
expression in GDM vs control samples. Using both microRNAs
in a logistic regression model, the study achieved an AUROC of
0.91. The authors then applied the multivariate models, which
achieved an accuracy of mean AUROC = 0.77.

As shown in Table IV, several studies used ML with CGM
data in blood glucose prediction for pregnant women with T1
and T2 diabetes. However, ML applications using CGM data in
GDM diabetes are limited.

In Pustozerov et al.’s [74] study, linear regression models with
lasso regularisation were developed for postprandial glucose
response prediction with CGM readings. In this model, the
AUC60, AUC120, BG60, Peak BG, the amount and kind of
consumed food, the start time of food intake, physical activ-
ity, duration of sleep, and the blood glucose were used for
model training. Models were evaluated using the correlation
coefficient between actual and predicted values (R), root mean
square error (RMSE), mean absolute value (MAE) and mean
absolute percentage error (MAPE). The prediction results for
blood glucose levels 1 hour after food intake were RSME =
0.87 mmol/L, MSE= 0.69 mmol/L, and MAPE= 12.8%, which
correspond to an adequate prediction accuracy for BG control
decisions. The system was evaluated using the measurement of
glucose levels for seven days using the iPro2 CGM with Enlite
sensors (Medtronic, Minneapolis, MN, U.S) and independently
calibrated with the Accu-Check Performa Nano blood glucose
meter (Roche Diabetes Care, Indianapolis, IN, USA) with a
minimum of four measurements per day. Linear regression was
chosen due to its good interpretability, simplicity, rapid tuning,
and adequate accuracy compared to other methods. Two years
later, Pustozerov et al. [75] developed another machine learning
model using decision tree gradient boosting for postprandial glu-
cose response prediction in women with GDM. Similar to their
study in 2018, this model uses meal-related glycemic index data
derived from a mobile App diary, information on previous meals,
EHR and patient behavioural questionnaires. This study shows
a significant improvement in prediction accuracy compared to
their earlier study. Authors reported the best performance model
for the prediction of the incremental area under the blood glucose
curve two hours after food intake had the following characteris-
tics: R = 0.631, MAE = 0.373 mmol/L for the model not using
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Fig. 7. The architecture of GluNet, a deep convolutional neural network model [79].

Fig. 8. LSTM time-series prediction model with deep residual network [85].

data on current blood glucose; R= 0.644, MAE= 0.371 mmol/L
for the model using data on the current blood glucose levels; and
R= 0.704, MAE= 0.341 mmol/L for the model utilizing data on
the continuous blood glucose trends before the meal. Based on
Shapley additive explanations method, feature ranking results
suggested the meal glycemic load, amount of carbohydrates in
the meal, type of meal (e.g., breakfast), amount of starch and
amount of food consumed 6 hours before the current meal were
the most important contributors in the models.

b) Beyond: Continuous blood glucose predic-
tion methods in type 1 and type 2 diabetes: Thanks to
the development of CGM in recent years, there are a significant
number of studies in the field of blood glucose prediction using
continuous blood glucose measurements, especially for patients

with type 1 diabetes. Whilst this section focuses on machine
learning algorithms for GDM management, CGM research to
date has mostly focused on type 1 diabetes. Thus we present
a review of continuous blood glucose prediction for type 1 and
type 2 diabetes that could potentially be adapted for use in GDM
patients. Three major machine learning model architectures,
including the deep convolutional neural network (CNN) model
(Fig. 7), time-series recurrent neural network (RNN) model
(Fig. 8), and reinforcement learning (Fig. 9) architectures are
shown to demonstrate machine learning pipelines and their
hyperparameters in model designs.

Refiman [77] proposed the autoregressive models to (i) ex-
plore the correlations in time-series glucose data and (ii) make
blood glucose predictions. Results based on nine type 1 diabetic
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Fig. 9. The block diagram of the proposed deep reinforcement learning model with the actor-critic architecture, reproduced without changes from
[87], T1D = type 1 diabetes.

subjects collected over a continuous 5-day period indicated that,
for a 30-minute prediction horizon, individually tuned models
yielded 97.6 to 100.0% of data in the clinically acceptable zones
A and B. In contrast, cross-subject, portable models yielded 95.8
to 99.7% of data in zones A and B. Due to the small number of
patients in this study, the accuracy of the autoregressive model
needs to be evaluated in a larger patient cohort.

Mhaskar et al. [81] developed a CNN model to identify the
trends of hypoglycemic (0–70 mg/dL), euglycemic (70–180
mg/dL), or hyperglycemic (180–450 mg/dL) based on the 5-min
blood glucose prediction. A “judge” network is then used to
determine a final prediction based on the outputs of the predic-
tion results for hypoglycemic, euglycemic and hyperglycemic
conditions. Methods are evaluated on 25 type 1 diabetes patients’
160 blood glucose time-series data, taken at 5-minute intervals.
Diffusion geometry is used to train the networks in a manner
analogous to manifold learning. Based on 50% of the training
data, this model correctly predicted 96.43% in the hypoglycemic
range, 97.96% in the euglycemic range, and 85.29% in the
hyperglycemic range.

Zhu [86] used casual dilated CNN layers and WaveNet al-
gorithms to forecast the future glucose levels of patients with
type 1 diabetes. The output from the previous layer is the
input of the subsequent dilated convolutional layer. The pro-
cess is repeated until obtaining the final output layer. Then the
output is fed into a 1 × 1 convolutional layer followed by
the Softmax layer. The model was evaluated on OhioT1DM
dataset (6 adolescent subjects) and achieved an RSME of
21.73±2.52 mg/dL in a 30-min horizon.

As shown in Fig. 7, Li [79] demonstrates a more complex deep
neural network (DNN) architecture called GluNet. This model
consists of four parts: pre-processing, DNN, post-processing,
and label transformation and recovery. The input data exemplars
are CGM time-series measurements G, insulin I and meal M,;
other input factors are optional. As shown in Fig. 7, there are five

processes in the preprocessing for data representation: P1 rules
out outliers in G, I, M; P2 interpolates G when the missing data
gap is not large; P3 fills or estimates the missing data in I and M;
P4 calculates other factors that should be included as input to
the DNN, for instance, plasma insulin estimation Pi and glucose
rate of appearance Ra; and P5 aligns all factors with the same
timeline and use them as input to the DNN. The aligned BG time
series Gt is also sent to the label transform, and quantised Gt is
used as the category target in training.

Fig. 8 demonstrates an RNN architecture developed by
Beauchamp [85] using long- and short-term memory (LSTM)
and a deep residual network for type 1 diabetes management
with CGM. The grey star represents the bolus at time t + 10. For
the bolus recommendation scenario, the events outlined in red
or orange are not allowed in inertial examples. This model was
evaluated on the OhioT1DM dataset (12 adolescent subjects)
with RSME = 13.76.

In addition to supervised and unsupervised machine learning,
reinforcement learning is another branch of machine learning
methods used for blood glucose prediction. As shown in Fig. 9,
Zhu [87] proposed a novel insulin bolus advisor which uses
deep reinforcement learning and continuous glucose monitoring
to optimize insulin dosing at mealtime. In particular, an actor-
critic model based on a deep deterministic policy gradient is
designed to compute mealtime insulin doses. The proposed sys-
tem architecture uses a two-step learning framework, in which
a population model is first obtained and then personalized by
subject-specific data. Prioritized memory replay is adopted to
accelerate the training process in clinical practice. To evaluate
the algorithm, an FDA-approved UVA / Padova T1 diabetes
simulator was used to perform an in-silico trial on ten adult
subjects and ten adolescent subjects. Compared to a standard
bolus calculator, the deep reinforcement learning insulin bolus
advisor improved the average percentage time in the target range
(70–180 mg/dL) from 74.1%±8.4% to 80.9%±6.9% (p<0.01)
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and 54.9%±12.4% to 61.6%±14.1% (p<0.01) in the adult and
adolescent cohorts, respectively.

Goldner’s [107] study describes a machine learning
method to predict projected blood glucose using 1923416
BG measurements from 14706 people with noninsulin-treated
T2 diabetes collected from the One Drop mobile app. Contextual
information (CI) on health metrics, including weight and A1c,
are included in the demographics. Inputs to each blood glucose
prediction included a prior blood glucose and available CI.
The model did not distinguish whether blood glucose readings
with similar CIs were from the same or different users.
Forecast horizons were set by the time since the prior BG
and varied from 10 minutes to several days. Machine learning
methods were not specified in the paper. The median and
mean absolute error of holdout predictions were 14.2 and 21.3
mg/dL, respectively, with 91% of predictions within +/-50
mg/dL. Maternal hyperglycemia during pregnancy and delivery
is associated with neonatal hypoglycemia and fetal distress.
Frequent glucose monitoring is essential to reduce the risk of
severe hypoglycemia. Women with well-controlled diabetes
and within-range fetal testing may be managed expectantly
between 39 and 40 weeks of gestation. However, women with
diabetes-related complications, poor glycemic control, or prior
stillbirth should be considered for delivery between 36 and 38
weeks of gestation. Readers can find more information on the
predictive methods used for hypoglycemia in patients with type
1 diabetes in the review paper [108].

B. Medication and Pregnancy Outcome Management

Due to the individual variability and complex glucose dynam-
ics, optimizing the doses of insulin delivery to minimize the risk
of hyperglycemia and hypoglycemia is still a challenge in both
CGM and intermittent fingerstick glucose monitoring.

Velardo et al. [94] used machine learning models to identify
when a woman with GDM needs to switch to from dietary control
to medications (insulin or metformin). Through the analysis of
411785 blood glucose measurements of 3029 patients, a logistic
regression model that can predict the timing of initiation of
pharmacological treatment was developed. The authors repeated
this experiment on 100 different random permutations of the
main dataset between training and validation data using a 70%
training and 30% validation split. At each iteration, to avoid
biasing the algorithm toward the overrepresented class (diet–
diet), this was randomly downsampled to the number of women
in the underrepresented class (diet–drug). The lasso function
was used with its alpha parameter set to 0.75 (corresponding to
elasticnet regression) and five-fold cross-validation. After 100
experimental repetitions, they obtained an average area under
the receiver operating characteristic curve of 0.80 (SD 0.02) and
an algorithm that allows the flexibility of setting the operating
point rather than relying on a static heuristic method, which
is currently used in clinical practice. With simialr objective to
Velardo’s study, Yang [95] devloped a 72-hour blood glucose
red-alert system using XGBoost.

Due to the higher levels of blood glucose in mothers with
GDM, offspring will have a higher risk of large-for-gestational-
age (LGA) and hyperglycaemia. Using data from a large multi-
centre cohort, Gibbons et al [92] created a risk prediction

model for LGA infants using logistic regression and naïve
Bayes models. Models were developed combining the risks
of hyperglycaemia (assessed in three forms: IADPSG GDM
yes/no, GDM subtype, OGTT z score quintiles), demographic
and clinical variables as potential predictors. Using data from
the Hyperglycaemia and Adverse Pregnancy Outcome (HAPO)
study [47], authors compared the predictive ability and stability
between the models. The two approaches resulted in similar
estimates of LGA risk.

In addition to a higher risk of having LGA offspring, excessive
gestational weight gain is also associated with poorer pregnancy
outcomes [6]. Lu et al. [93] developed machine learning models
on 97 patients with GDM to demonstrate a proof-of-the-concept
work of caesarean section prediction and to explore the role of
temporal blood glucose in predicting caesarean birth. Logistic
regression, SVM and Boosting trees were used in model de-
velopment. The Logistic regression model with Lasso regulator
achieved an AUROC of 0.857± 0.008. The study also suggested
that temporal blood glucose measurements may improve the
prediction subject to further validation.

SineDie is a smartphone application with AI that was used dur-
ing the COVID-19 pandemic [109]. Authors of this paper sug-
gested that it can provide hyperglycaemia prediction and therapy
planning, classify and analyse ketonuria, diet transgressions,
and blood glucose values, and make recommendations regarding
diet or insulin treatment. It automatically prescribed diet therapy
modifications, identified the need for insulin treatment and pro-
posed insulin dose changes to doctors. Publication [110] showed
that the Expectation Maximization clustering algorithm is used
to group BG measurements in three meal tags: breakfast, lunch,
or dinner. Then decision tree is firstly applied to assign each read-
ing into five mealtime tags: “breakfast preprandial”,“breakfast
postprandial”, “lunch postprandial”,“dinner postprandial”, or
“other”, which are then used to classify patients with hypergly-
caemia. A randomized clinical trial of 25 GDM patients showed
an 88.6% reduction in face-to-face visits and a 27.4% reduc-
tion in the time devoted by clinicians to patients’ evaluations.
Taking height, weight, and age into account can help advise the
patient’s initial diet therapy and suggest the total calorie intake
distributed in carbohydrate units throughout the day. To calculate
the total calorie intake, the authors used the Harris-Benedict
equation [111]. This system did not use activity factors or impose
any calorie restrictions for obese women. The endocrinologist
can modify the personalized diet prescription for each patient.
Authors suggested the SineDie system detected all situations
requiring therapy adjustment, generating safe recommenda-
tions without providing methods used in the decision-making
system.

V. CONCLUSION

Digital health and AI technologies offer potential new ap-
proaches to improve clinical outcomes and patient experience for
women with GDM. By combining digital health techniques and
machine learning methods with blood glucose measurements,
we can transfer the hard-to-interoperate blood glucose values to
actionable insights for intervention [112].
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Thanks to the recent developments in GDM management
and the need for remote monitoring through the COVID-19
pandemic, several innovations in digital health for GDM are now
available to provide patient-centred blood glucose, diet, medi-
cation and behavioural management during pregnancy. Whilst
there are only a handful of monitoring platforms that have been
clinically evaluated, digital platforms are associated with higher
satisfaction rates than standard clinical practice. However, the
following remain unmet challenges still await to be addressed:
(1) scalability and sustainability of known interventions [7];
(2) high cost and other barriers to implementation [16]; (3)
engaging women with lifestyle changes during pregnancy [51],
[113]; (4) achieving equitable coverage for all women [46]; and
(5) using new technologies (e.g., artificial intelligence, smart-
phones/tablet, telemedicine) in promoting improved glucose
monitoring [114], [115].

To resolve these challenges, one question is often asked: can
digital health technologies help solve the GDM management
crisis? The shortages of clinical resources and the high cost
of GDM self-monitoring (either via CGM or daily fingerstick
test) created a barrier to cost health inequality. One direction
is to consider remote home monitoring (“virtual ward”) and
virtual consultation to ease the pressure of shortages in clinical
resources. This direction can take advantage of the advances
in digital technologies of smartphones, wearables, Apps and
machine learning to speed up the adoption of remote monitoring
within the national healthcare services. The other direction
is to develop risk-based low-cost GDM services that are fit
for mothers with various financial and clinical resources. This
direction can take advantage of the development of wearable
blood glucose sensors and predictive patient monitoring mod-
els, which have been reviewed in Sections II and IV of this
paper.

From the other perspective, studies in mobile health technolo-
gies in blood glucose monitoring have shown the improvement
of patient satisfaction in their patient care, but thus far have not
shown significant clinical outcome improvement. This is largely
due to the lack of clinically-plausible digital health technologies
for medication and lifestyle interventions. Meanwhile, large
multi-centre or national GDM studies are needed to help identify
sub-group of GDM patients thereby improving and redefining
the GDM care pathway.

The current key players in the GDM monitoring and man-
agement market are hospitals, universities, pharmaceutical in-
dustry, insurance companies, sensor technology manufacturers
and other emerging companies in consumer markets, third-party
services and women themselves. These innovators and service
providers aim to use digital health technologies to reduce inef-
ficiencies, improve access, reduce costs, increase quality, and
make medicine more personalized for patients. Early identifica-
tion, referral and management of pregnant women at increased
risk may offer opportunities for prevention. Innovations for pre-
GDM and post-pregnancy health monitoring are also urgently
needed; these innovations can enable individuals and healthcare
providers to estimate the risk of gestational diabetes and type 2
diabetes, and theryby provide timely intervention.

There are other challenges limiting the digital health innova-
tions for GDM monitoring. Firstly, despite the advances in AI-
enabled technologies, there remain issues in model interpretabil-
ity, trustworthiness, fairness and AI-ethics for end-users and
service providers. Beyond the technical and technology chal-
lenges, evidence-based and quantitative analysis of improve-
ment in patient health and economic costs need to be evaluated
in epidemiology studies for specified populations (community,
city, state, country, global, or specific to patients with certain
diseases). Secondly, the accuracy and cost of sensor technologies
in glucose monitoring have yet to be improved. CGM fills a
gap that exists in diabetes monitoring and treatment. It provides
continuous readings and thereby can continuously analyze and
respond to an individual’s glucose levels. Another advantage
of CGM comes from its nature as “wearable”. Nevertheless,
patients need to change their sensors every three to fourtheen
days (depending on the manufacturer), making it an effective but
expensive solution that many people and health systems cannot
afford. There is still a lack of applications in monitoring blood
glucose that can be fused into finger-tip periodic blood glucose
sensors.

In the following, we suggest some promising directions for
future research: (i) early diagnosis of GDM: proven genetic
and/or placental extracellular vesicle bound biomarkers should
be taken into consideration for the early diagnosis of GDM
[6], [116]. The pre-diabetes population will benefit from this
improvement [117]; (ii) Management of gestational diabetes
during pregnancy: This should be personalised on the basis of
underlying pathogenesis and response to different management
strategies. Future GDM screening strategies should include
specific treatment guidelines for patients with companion dis-
eases, such as obesity and cardiovascular disease. Therefore,
patients at high risk of complications can be informed and
treated in a timely manner: machine learning is an ideal tool
for this development; (iii) Postnatal type 2 diabetes and cardio-
vascular disease prevention: national level postnatal screening
programmes, large-scale clinical research and digital health
applications for postnatal monitoring are urgently needed to
delay the development of type 2 diabetes and cardiovascular dis-
ease. (iv) Health economic research: global prevalence of GDM
varies; the rate of GDM was shown doubled in pregnant South
East Asian women than in Caucasian women [118]. National
and local health economic analyses are needed for developing
country-specific cost-effectiveness models that incorporate the
cost of any new technologies, alongside treatment costs and
long-term healthcare costs for the health system, as well as
directly for the mother and child. This will assist policymakers
and service providers in prioritising whether novel technologies
make financial sense in different care systems around the world.
(v) Low-cost blood glucose monitoring solutions are urgently
needed for low-and-middle-income countries. (vi) Development
of other potential wearable techniques include optical-based
blood glucose estimation methods on wearable or portable de-
vices and wearable contact lenses for blood glucose monitoring.
(vii) Expanding the physiology knowledge map in GDM to
understand and quantitatively address the association among
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diabetes, pregnancy, and human metabolism, as well as other
health conditions, such as hypertension, sleep disorder, postnatal
depression, and cardiovascular diseases.

In conclusion, AI and machine learning are promising, emerg-
ing areas for the monitoring and management of women with
gestational diabetes. While machine learning and AI have proven
to be useful in research and clinical practices for patient moni-
toring using risk stratification, patient subgroup discovery, and
natural language processing-based outcome prediction models
[119], [120], [121], [122], [123], [124], [125], [126], [127],
[128], [129], [130], similar approaches for GDM are yet to be
developed. The exciting field of collecting data from different
sensors for activity tracking, food intake quantification, blood
glucose monitoring and medication management could open
up new possibilities to help people manage GDM. However,
there are still many unanswered questions for data scientists,
engineers and clinicians. Personalized, explainable, and trustful
AI and machine learning models are needed to assist patients
and clinicians in improving patients’ lifestyles and short-term
and long-term clinical outcomes. There is an urgent need to
develop digital health technologies and explainable AI methods
to identify patients at different risk groups at an earlier stage
(preventive medicine) and provide clinicians with a reactive
treatment plan using predictive monitoring models.

ACKNOWLEDGMENT

The views expressed are those of the authors and not neces-
sarily those of the National Health Services, the NIHR, the UK
Department of Health or InnoHK.

All conflicts of interest: Lucy Mackillop is a part-time em-
ployee of EMIS plc.

REFERENCES

[1] K. G. Alberti and P. Z. Zimmet, “Definition, diagnosis and classification
of diabetes mellitus and its complications. Part 1: Diagnosis and classi-
fication of diabetes mellitus provisional report of a WHO consultation,”
Diabetic Med., vol. 15, no. 7, pp. 539–553, Jul. 1998.

[2] A. Garrison, “Screening, diagnosis, and management of gestational
diabetes mellitus,” Amer. Fam. Physician, vol. 91, no. 7, pp. 460–467,
Apr. 2015.

[3] W. W. Zhu et al., “High prevalence of gestational diabetes mellitus in
Beijing: Effect of maternal birth weight and other risk factors,” Chin.
Med. J., vol. 130, no. 9, pp. 1019–1025, May 2017.

[4] R. Martis et al., “Treatments for women with gestational diabetes melli-
tus: An overview of Cochrane systematic reviews,” Cochrane Database
Syst. Rev., vol. 8, no. 8, Aug. 2018, Art. no. Cd012327.

[5] International Diabetes Federation, “IDF diabetes Atlas,” 2022. [Online].
Available: https://diabetesatlas.org/data

[6] P. Saravanan et al., “Gestational diabetes: Opportunities for improving
maternal and child health,” Lancet Diabetes Endocrinol., vol. 8, no. 9,
pp. 793–800, Sep. 2020.

[7] C. A. Crowther et al., “Effect of treatment of gestational diabetes mel-
litus on pregnancy outcomes,” New England J. Med., vol. 352, no. 24,
pp. 2477–2486, Jun. 2005.

[8] M. B. Landon et al., “A multicenter, randomized trial of treatment
for mild gestational diabetes,” New England J. Med., vol. 361, no. 14,
pp. 1339–1348, Oct. 2009.

[9] L. Bellamy et al., “Type 2 diabetes mellitus after gestational diabetes:
A systematic review and meta-analysis,” Lancet, vol. 373, no. 9677,
pp. 1773–1779, May 2009.

[10] C. Kim, “Maternal outcomes and follow-up after gestational diabetes
mellitus,” Diabetic Med., vol. 31, no. 3, pp. 292–301, Mar. 2014.

[11] P. M. Catalano et al., “Longitudinal changes in pancreatic β-cell func-
tion and metabolic clearance rate of insulin in pregnant women with
normal and abnormal glucose tolerance,” Diabetes Care, vol. 21, no. 3,
pp. 403–408, Mar. 1998.

[12] “Diagnostic criteria and classification of hyperglycaemia first detected in
pregnancy: A world health organization guideline,” Diabetes Res. Clin.
Pract., vol. 103, no. 3, pp. 341–63, Mar. 2014.

[13] NICE, “Diabetes in pregnancy: Management from preconception to the
postnatal period,” 2020. [Online]. Available: https://www.nice.org.uk/
guidance/ng3/chapter/1-recommendations#antenatal-care-for-women-
with-diabetes-2

[14] NICE, “Diabetes in pregnancy overview,” 2018. [Online]. Available: http:
//pathways.nice.org.uk/pathways/diabetes-in-pregnancy

[15] NICE, “Gestational diabetes: Risk assessment, testing, diagnosis and
management,” 2018. [Online]. Available: http://pathways.nice.org.uk/
pathways/diabetes-in-pregnancy

[16] L. Mackillop et al., “Comparing the efficacy of a mobile phone-based
blood glucose management system with standard clinic care in women
with gestational diabetes: Randomized controlled trial,” JMIR mHealth
uHealth, vol. 6, no. 3, Mar. 2018, Art. no. e9512.

[17] M. Bhatia et al., “Clinical implications of the NICE 2015 criteria for
gestational diabetes mellitus,” J. Clin. Med., vol. 7, no. 10, Oct. 2018 ,
Art. no. 376.

[18] American Diabetes Association, “Standards of medical care in diabetes—
2011,” Diabetes Care, vol. 34, no. 1, pp. S11–S61, 2011.

[19] “What is digital health,” 2020. [Online]. Available: https://www.fda.gov/
medical-devices/digital-health-center-excellence

[20] L. Loerup et al., “GDm-health: A pilot study examining acceptabil-
ity of mobile phone assisted remote blood glucose monitoring for
women with gestational diabetes,” Diabetic Med., vol. 31, p. 147,
Mar. 2014.

[21] “GDm-health app wins innovation award,” 2018. [Online]. Available:
https://www.wrh.ox.ac.uk/news/gdm-health-app-wins-innovation-
award

[22] “Blood glucose monitoring,” 2022 [Online]. Available: https://en.
wikipedia.org/wiki/Blood_glucose_monitoring

[23] S. E. Clarke and J. R. Foster, “A history of blood glucose meters and
their role in self-monitoring of diabetes mellitus,” Brit. J. Biomed. Sci.,
vol. 69, no. 2, pp. 83–93, 2012.

[24] J. M. Burrin and C. P. Price, “Measurement of blood glucose,” Ann. Clin.
Biochem., vol. 22, no. 4, pp. 327–342, 1985.

[25] E. M. Benjamin, “Self-monitoring of blood glucose: The basics,” Clin.
Diabetes, vol. 20, no. 1, pp. 45–47, 2002.

[26] L. Olansky and L. Kennedy, “Finger-stick glucose monitoring: Issues of
accuracy and specificity,” Diabetes Care, vol. 33, no. 4, pp. 948–949,
Apr. 2010.

[27] “Self-monitoring blood glucose test systems for over-the-counter
use: Guidance for industry and good and drug administration
staff,” 2020. [Online]. Available: https://www.fda.gov/regulatory-
information/search-fda-guidance-documents/self-monitoring-blood-
glucose-test-systems-over-counter-use

[28] D. C. Klonoff et al., “Investigation of the accuracy of 18 marketed
blood glucose monitors,” Diabetes Care, vol. 41, no. 8, pp. 1681–1688,
2018.

[29] D. C. Klonoff, “Continuous glucose monitoring roadmap for 21st century
diabetes therapy,” Diabetes Care, vol. 28, no. 5, pp. 1231–1239, 2005.

[30] O. Didyuk et al., “Continuous glucose monitoring devices: Past, present,
and future focus on the history and evolution of technological innovation,”
J. Diabetes Sci. Technol., vol. 15, no. 3, pp. 676–683, 2021.

[31] N. A. M. Asarani et al., “Cutaneous complications with continuous or
flash glucose monitoring use: Systematic review of trials and obser-
vational studies,” J. Diabetes Sci. Tech., vol. 14, no. 2, pp. 328–337,
2020.

[32] A. A. Thulasi et al., “Portable impedance measurement device for sweat
based glucose detection,” in Proc. IEEE 14th Int. Conf. Wearable Im-
plantable Body Sensor Netw., 2017, pp. 63–66.

[33] H. Lee et al., “Enzyme-based glucose sensor: From invasive to
wearable device,” Adv. Healthcare Mater., vol. 7, no. 8, Apr. 2018,
Art. no. 1701150.

[34] J. Kim et al., “Wearable non-invasive epidermal glucose sensors: A
review,” Talanta, vol. 177, pp. 163–170, Jan. 2018.

[35] J. M. Huang et al., “Review of non-invasive continuous glucose mon-
itoring based on impedance spectroscopy,” Sensor Actuators A: Phys.,
vol. 311, Aug. 2020, Art. no. 112103.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on May 31,2024 at 07:48:38 UTC from IEEE Xplore.  Restrictions apply. 

https://diabetesatlas.org/data
https://www.nice.org.uk/guidance/ng3/chapter/1-recommendations#antenatal-care-for-women-with-diabetes-2
https://www.nice.org.uk/guidance/ng3/chapter/1-recommendations#antenatal-care-for-women-with-diabetes-2
https://www.nice.org.uk/guidance/ng3/chapter/1-recommendations#antenatal-care-for-women-with-diabetes-2
http://pathways.nice.org.uk/pathways/diabetes-in-pregnancy
http://pathways.nice.org.uk/pathways/diabetes-in-pregnancy
http://pathways.nice.org.uk/pathways/diabetes-in-pregnancy
http://pathways.nice.org.uk/pathways/diabetes-in-pregnancy
https://www.fda.gov/medical-devices/digital-health-center-excellence
https://www.fda.gov/medical-devices/digital-health-center-excellence
https://www.wrh.ox.ac.uk/news/gdm-health-app-wins-innovation-award
https://www.wrh.ox.ac.uk/news/gdm-health-app-wins-innovation-award
https://en.wikipedia.org/wiki/Blood_glucose_monitoring
https://en.wikipedia.org/wiki/Blood_glucose_monitoring
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/self-monitoring-blood-glucose-test-systems-over-counter-use
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/self-monitoring-blood-glucose-test-systems-over-counter-use
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/self-monitoring-blood-glucose-test-systems-over-counter-use


116 IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 17, 2024

[36] B. J. van Enter and E. von Hauff, “Challenges and perspectives in
continuous glucose monitoring,” Chem. Commun., vol. 54, no. 40,
pp. 5032–5045, May 2018.

[37] S. A. Siddiqui et al., “Pain-free blood glucose monitoring using wearable
sensors: Recent advancements and future prospects,” IEEE Rev. Biomed.
Eng., vol. 11, pp. 21–35, 2018.

[38] I. L. Jernelv et al., “A review of optical methods for continuous glu-
cose monitoring,” Appl. Spectrosc. Rev., vol. 54, no. 7, pp. 543–572,
Aug. 2019.

[39] D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease di-
agnosis: Biomedical applications of infrared and Raman spectroscopy,”
Analyst, vol. 131, no. 8, pp. 875–885, 2006.

[40] J. Hanna et al., “Noninvasive, wearable, and tunable electromagnetic
multisensing system for continuous glucose monitoring, mimicking vas-
culature anatomy,” Sci. Adv., vol. 6, no. 24, 2020, Art. no. eaba5320.

[41] Y. H. Chen et al., “Skin-like biosensor system via electrochemical chan-
nels for noninvasive blood glucose monitoring,” Sci. Adv., vol. 3, no. 12,
Dec. 2017, Art. no. e1701629.

[42] V. P. Rachim and W. Y. Chung, “Wearable-band type visible-near infrared
optical biosensor for non-invasive blood glucose monitoring,” Sensor
Actuators B: Chem., vol. 286, pp. 173–180, May 2019.

[43] Q. Chen and E. T. Carbone, “Functionality, implementation, impact, and
the role of health literacy in mobile phone apps for gestational diabetes:
Scoping review,” JMIR Diabetes, vol. 2, no. 2, Oct. 2017, Art. no. e25.

[44] P. Raman et al., “Different methods and settings for glucose monitoring
for gestational diabetes during pregnancy,” Cochrane Database Syst.
Rev., vol. 10, no. 10, Oct. 2017, Art. no. Cd011069.

[45] A. M. Egan et al., “A review of the pathophysiology and management of
diabetes in pregnancy,” Mayo Clin. Proc., vol. 95, no. 12, pp. 2734–2746,
2020.

[46] E. M. Wendland et al., “Gestational diabetes and pregnancy outcomes-
a systematic review of the World Health Organization (WHO) and
the International Association of Diabetes in Pregnancy Study Groups
(IADPSG) diagnostic criteria,” BMC Pregnancy Childbirth, vol. 12,
pp. 1–13, Mar. 2012.

[47] “Hyperglycemia and adverse pregnancy outcome (HAPO) study: As-
sociations with neonatal anthropometrics,” Diabetes, vol. 58, no. 2,
pp. 453–9, Feb. 2009.

[48] M. Nguyen et al., “Systematic evaluation of Canadian diabetes smart-
phone applications for people with type 1, type 2 and gestational dia-
betes,” Can. J. Diabetes, vol. 45, no. 2, pp. 174–178, Mar. 2021.

[49] G. Ding et al., “Clinical diabetes/therapeutics,” Diabetes, vol. 61, no. Sup-
plement_1, pp. A585–A644, 2012.

[50] NICE, “Health app: GDm-health for people with gestational diabetes,”
2017. [Online]. Available: https://www.nice.org.uk/advice/mib131

[51] J. E. Hirst et al., “Preventing childhood obesity starts during pregnancy,”
Lancet, vol. 386, no. 9998, pp. 1039–1040, Sep. 2015.

[52] J. E. Hirst et al., “GDm-health: Development of a real-time smartphone
solution for the management of women with gestational diabetes mellitus
(GDM),” BJOG-Int. J. Obstet. Gynecol., vol. 122, p. 403, Apr. 2015.

[53] L. Loerup et al., “A comparison of blood glucose metrics to assess the
feasibility of a digital health system for management of women with
gestational diabetes: The GDm-health study,” Diabetic Med., vol. 32,
pp. 18–19, Mar. 2015.

[54] P. A. Dyson et al., “GDm-health plus: Development of a remote be-
havioural lifestyle management system for women with gestational dia-
betes,” Diabetic Med., vol. 35, p. 171–175, Mar. 2018.

[55] M. Peleg et al., “MobiGuide: A personalized and patient-centric decision-
support system and its evaluation in the atrial fibrillation and gesta-
tional diabetes domains,” User Model. User-Adapted, vol. 27, no. 2,
pp. 159–213, Jun. 2017.

[56] G. García-Sáez et al., “Patient-oriented computerized clinical guidelines
for mobile decision support in gestational diabetes,” J. Diabetes Sci.
Technol., vol. 8, no. 2, pp. 238–246, 2014.

[57] L. M. Garnweidner-Holme et al., “Designing and developing a mobile
smartphone application for women with gestational diabetes mellitus
followed-up at diabetes outpatient clinics in Norway,” Healthcare, vol. 3,
no. 2, pp. 310–323, Jun. 2015.

[58] I. Borgen et al., “Smartphone application for women with gestational di-
abetes mellitus: A study protocol for a multicentre randomised controlled
trial,” BMJ Open, vol. 7, no. 3, Mar. 2017, Art. no. e013117.

[59] I. Borgen et al., “Effect of the pregnant+ smartphone application in
women with gestational diabetes mellitus: A randomised controlled trial
in Norway,” BMJ Open, vol. 9, no. 11, Nov. 2019, Art. no. e030884.

[60] J. B. Skar et al., “Women’s experiences with using a smartphone app (the
Pregnant + app) to manage gestational diabetes mellitus in a randomised
controlled trial,” Midwifery, vol. 58, pp. 102–108, Mar. 2018.

[61] K. M. Ainscough et al., “Nutrition, behavior change and physical activity
outcomes from the PEARS RCT—An mHealth-supported, lifestyle in-
tervention among pregnant women with overweight and obesity,” Front.
Endocrinol., vol. 10, 2019 , Art. no. 938.

[62] M. A. Kennelly et al., “Pregnancy, exercise and nutrition research study
with smart phone app support (Pears): Study protocol of a random-
ized controlled trial,” Contemporary Clin. Trials, vol. 46, pp. 92–99,
Jan. 2016.

[63] C. Minschart et al., “Mobile-based lifestyle intervention in women with
glucose intolerance after gestational diabetes mellitus (MELINDA), a
multicenter randomized controlled trial: Methodology and design,” J.
Clin. Med., vol. 9, no. 8, 2020, Art. no. 2635.

[64] L. T. Jacobson et al., “Electronic monitoring of mom’s schedule
(eMOMSTM): Protocol for a feasibility randomized controlled trial
to improve postpartum weight, blood sugars, and breastfeeding among
high BMI women,” Contemporary Clin. Trials Commun., vol. 18, 2020,
Art. no. 100565.

[65] R. Chen et al., “Continuous glucose monitoring for the evaluation and
improved control of gestational diabetes mellitus,” J. Maternal Fetal
Neonatal Med., vol. 14, no. 4, pp. 256–260, Oct. 2003.

[66] Y. Zhu and C. Zhang, “Prevalence of gestational diabetes and risk of
progression to type 2 diabetes: A global perspective,” Curr. Diabetes
Rep., vol. 16, no. 1, pp. 1–11, Jan. 2016.

[67] F. Debong et al., “Real-world assessments of mySugr mobile health
app,” Diabetes Technol.Therapeutics, vol. 21, no. S2, pp. S235–S240,
Jun. 2019.

[68] A. Tumminia et al., “MySweetGestation”: A novel smartphone applica-
tion for women with or at risk of diabetes during pregnancy,” Diabetes
Res. Clin. Pract., vol. 158, Dec. 2019, Art. no. 107896.

[69] H. W. Liu et al., “Machine learning risk score for prediction of gestational
diabetes in early pregnancy in Tianjin, China,” Diabetes-Metab. Res. Rev.,
vol. 37, no. 5, Jul. 2021, Art. no. e3397.

[70] N. S. Artzi et al., “Prediction of gestational diabetes based on nationwide
electronic health records,” Nature Med., vol. 26, no. 1, pp. 71–76, 2020.

[71] J. Y. Shen et al., “An innovative artificial intelligence-based app for
the diagnosis of gestational diabetes mellitus (GDM-AI): Development
study,” J. Med. Internet Res., vol. 22, no. 9, Sep. 2020, Art. no. e21573.

[72] L. Yoffe et al., “Early diagnosis of gestational diabetes mellitus using cir-
culating microRNAs,” Eur. J. Endocrinol., vol. 181, no. 5, pp. 565–577,
Nov. 2019.

[73] B. Sudharsan et al., “Hypoglycemia prediction using machine learning
models for patients with type 2 diabetes,” J. Diabetes Sci. Technol., vol. 9,
pp. 86–90, 2015.

[74] E. Pustozerov et al., “Development and evaluation of a mobile per-
sonalized blood glucose prediction system for patients with gestational
diabetes mellitus,” JMIR Mhealth Uhealth, vol. 6, no. 1, p. e6, Jan. 2018.

[75] E. A. Pustozerov et al., “Machine learning approach for postprandial
blood glucose prediction in gestational diabetes mellitus,” IEEE Access,
vol. 8, pp. 219308–219321, 2020.

[76] I. Contreras et al., “Personalized blood glucose prediction: A hybrid
approach using grammatical evolution and physiological models,” PLoS
One, vol. 12, 2017, Art. no. e0187754.

[77] J. Reifman et al., “Predictive monitoring for improved management of
glucose levels,” J. Diabetes Sci. Technol., vol. 1, no. 4, pp. 478–486,
2007.

[78] J. Xie and Q. Wang, “Benchmarking machine learning algorithms on
blood glucose prediction for type 1 diabetes in comparison with clas-
sical time-series models,” IEEE Trans. Biomed. Eng., vol. 67, no. 11,
pp. 3101–3124, Nov. 2020.

[79] K. Li et al., “GluNet: A deep learning framework for accurate glucose
forecasting,” IEEE J. Biomed. Health Inform., vol. 24, no. 2, pp. 414–423,
Feb. 2020.

[80] L. Mueller et al., “Application of machine learning models to evaluate hy-
poglycemia risk in type 2 diabetes,” Diabetes Ther., vol. 11, pp. 681–699,
2020.

[81] H. N. Mhaskar et al., “A deep learning approach to diabetic blood glucose
prediction,” Front. Appl. Math. Statist., vol. 3, 2017 , Art. no. 14.

[82] L. D. Liao et al., “Development and validation of prediction models
for gestational diabetes treatment modality using supervised machine
learning: A population-based cohort study,” BMC Med., vol. 20, no. 1,
Sep. 2022 , Art. no. 307.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on May 31,2024 at 07:48:38 UTC from IEEE Xplore.  Restrictions apply. 

https://www.nice.org.uk/advice/mib131


LU et al.: DIGITAL HEALTH AND MACHINE LEARNING TECHNOLOGIES FOR BLOOD GLUCOSE MONITORING 117

[83] S. H. A. Faruqui et al., “Development of a deep learning model for
dynamic forecasting of blood glucose level for type 2 diabetes mellitus:
Secondary analysis of a randomized controlled trial,” JMIR mHealth
uHealth, vol. 7, 2019, Art. no. e14452.

[84] A. A. Muche et al., “’Predictors of postpartum glucose intolerance in
women with gestational diabetes mellitus: A prospective cohort study in
Ethiopia based on the updated diagnostic criteria,” BMJ Open, vol. 10,
2020, Art. no. e036882.

[85] J. Beauchamp et al., “LSTMs and deep residual networks for carbo-
hydrate and bolus recommendations in type 1 diabetes management,”
Sensors, vol. 21, no. 9, 2021, Art. no. 3303.

[86] T. Zhu et al., “A deep learning algorithm for personalized blood glucose
prediction,” Int. Joint Conf. Artif. Intell.-Eur. Conf. Artif. Intell., vol. 24,
no. 2, pp. 64–78, 2018.

[87] T. Zhu et al., “An insulin bolus advisor for type 1 diabetes using deep
reinforcement learning,” Sensors, vol. 20, no. 18, 2020, Art. no. 5058.

[88] A. Aliberti et al., “A multi-patient data-driven approach to blood glucose
prediction,” IEEE Access, vol. 7, pp. 69311–69325, 2019.

[89] Y. Deng et al., “Deep transfer learning and data augmentation improve
glucose levels prediction in type 2 diabetes patients,” NPJ Digit. Med.,
vol. 4, 2021 , Art. no. 109.

[90] M. De Bois et al., “Adversarial multi-source transfer learning in health-
care: Application to glucose prediction for diabetic people,” Comput.
Methods Programs Biomed., vol. 199, 2021, Art. no. 105874.

[91] P. Gupta et al., “Transfer learning for clinical time series analysis us-
ing deep neural networks,” J. Healthcare Inform. Res., vol. 4, no. 2,
pp. 112–137, 2020.

[92] K. S. Gibbons et al., “Prediction of large-for-gestational age infants in
relation to hyperglycemia in pregnancy – A comparison of statistical
models,” Diabetes Res. Clin. Pract., vol. 178, 2021, Art. no. 108975.

[93] H. Lu et al., “Standardising the assessment of caesarean birth using an
oxford caesarean prediction score for mothers with gestational diabetes,”
Healthcare Technol. Lett., vol. 9, no. 1/2, pp. 1–8, 2022.

[94] C. Velardo et al., “Toward a multivariate prediction model of phar-
macological treatment for women with gestational diabetes mellitus:
Algorithm development and validation,” J. Med. Internet Res., vol. 23,
no. 3, Mar. 2021, Art. no. e21435.

[95] J. Yang, et al., “Machine learning-based risk stratification for gestational
diabetes management,” Sensors, vol. 22, no. 13, Jun. 2022, Art. no. 4805.

[96] K. P. Murphy, Machine Learning: A probabilistic Perspective. Cam-
bridge, MA, USA: Massachusetts Inst. Technol., 2012.

[97] “Artificial intelligence and machine learning in software as a medical
device, ” Spring, MD, USA: US Food Drug Administration, 2021.

[98] S. Oviedo et al., “A review of personalized blood glucose prediction
strategies for T1DM patients,” Int. J. Numer. Methods Biomed. Eng.,
vol. 33, no. 6, 2017, Art. no. e2833.

[99] A. Z. Woldaregay et al., “Data-driven blood glucose pattern classifica-
tion and anomalies detection: Machine-learning applications in type 1
diabetes,” J. Med. Internet Res., vol. 21, no. 5, 2019, Art. no. e11030.

[100] K. Millsaps and K. Pohlhausen, “A mathematical model for glucose-
insulin interaction,” Math. Biosci., vol. 23, no. 3/4, pp. 237–251, 1975.

[101] R. Hovorka et al., “Nonlinear model predictive control of glucose con-
centration in subjects with type 1 diabetes,” Physiol. Meas., vol. 25, no. 4,
pp. 905–920, Aug. 2004.

[102] C. Ryan et al., Grammatical Evolution: Evolving Programs for an Arbi-
trary Language. Berlin, Germany: Springer, 1998.

[103] S. Nagraj et al., “SMARThealth pregnancy: Feasibility and acceptability
of a complex intervention for high-risk pregnant women in rural India:
Protocol for a pilot cluster randomised controlled trial,” Front. Glob.
Women’s Health, vol. 2, 2021, Art. no. 620759.

[104] L. M. Yee et al., “750: SweetMama: Usability testing of a novel mobile
application for diabetes education and support during pregnancy,” Amer.
J. Obstet. Gynecol., vol. 222, no. 1, pp. S474–S475, 2020.

[105] L. M. Yee et al., “Patient and provider perspectives on a novel mobile
health intervention for low-income pregnant women with gestational
or type 2 diabetes mellitus,” J. Diabetes Sci. Technol., vol. 15, no. 5,
pp. 1121–1133, Sep. 2021.

[106] M. Kumar et al., “Machine learning–derived prenatal predictive risk
model to guide intervention and prevent the progression of gestational
diabetes mellitus to type 2 diabetes: Prediction model development
study,” JMIR Diabetes, vol. 7, no. 3, 2022, Art. no. e32366.

[107] D. R. Goldner et al., “A machine-learning model accurately predicts
projected blood glucose,” Diabetes, vol. 67, no. Supplement_1, p. 46-LB,
2018.

[108] O. Mujahid et al., “Machine learning techniques for hypoglycemia
prediction: Trends and challenges,” Sensors, vol. 21, no. 2, 2021 ,
Art. no. 546.

[109] L. Albert et al., “Managing gestational diabetes mellitus using a
smartphone application with artificial intelligence (SineDie) during the
COVID-19 pandemic: Much more than just telemedicine,” Diabetes Res.
Clin. Pract., vol. 169, Nov. 2020, Art. no. 108396.

[110] E. Caballero-Ruiz et al., “A web-based clinical decision support system
for gestational diabetes: Automatic diet prescription and detection of
insulin needs,” Int. J. Med. Inform., vol. 102, pp. 35–49, 2017.

[111] J. A. Harris and F. G. Benedict, “A biometric study of human basal
metabolism,” Proc. Nat. Acad. Sci., vol. 4, no. 12, pp. 370–373, 1918.

[112] F. Reiterer et al., “Significance and reliability of MARD for the accuracy
of CGM systems,” J. Diabetes Sci. Technol., vol. 11, no. 1, pp. 59–67,
Jan. 2017.

[113] R. A. Maitland et al., “Prediction of gestational diabetes in obese pregnant
women from the UK Pregnancies Better Eating and Activity (UPBEAT)
pilot trial,” Diabetic Med., vol. 31, no. 8, pp. 963–970, Aug. 2014.

[114] E. Walker et al., “Gestational diabetes and progression to type two
diabetes mellitus: Missed opportunities of follow up and prevention?,”
Primary Care Diabetes, vol. 14, no. 6, pp. 698–702, Dec. 2020.

[115] J. A. Hodgkinson et al., “Is self monitoring of blood pressure in pregnancy
safe and effective?,” Brit. Med. J., vol. 349, Nov. 2014, Art. no. g6616.

[116] N. Kandzija et al., “Placental extracellular vesicles express active dipep-
tidyl peptidase IV; levels are increased in gestational diabetes mellitus,”
J. Extracellular Vesicles, vol. 8, no. 1, 2019, Art. no. 1617000.

[117] G. Cappon et al., “Continuous glucose monitoring sensors for diabetes
management: A review of technologies and applications,” Diabetes
Metab. J., vol. 43, no. 4, pp. 383–397, Aug. 2019.

[118] R. Li et al., “Graph signal processing, graph neural network and graph
learning on biological data: A systematic review,” IEEE Rev. Biomed.
Eng., vol. 16, pp. 109–135, 2023.

[119] B. Zhou et al., “Natural language processing for smart healthcare,” IEEE
Rev. Biomed. Eng., early access, Sep. 28, 2022 doi: 10.1109/RBME.
2022.3210270.

[120] F. Giuste et al., “Explainable artificial intelligence methods in combating
pandemics: A systematic review,” IEEE Rev. Biomed. Eng., vol. 16,
pp. 5–21, 2023.

[121] R. Kahankova et al., “Review of recent advances and future develop-
ments in fetal phonocardiography,” IEEE Rev. Biomed. Eng., vol. 16,
pp. 653–671, 2023.

[122] M. Carolan, “Gestational diabetes mellitus among women born in
South East Asia: A review of the evidence,” Midwifery, vol. 29, no. 9,
pp. 1019–1026, Sep. 2013.

[123] D. Chen et al., “Deep learning and alternative learning strategies for
retrospective real-world clinical data,” NPJ Dig. Med., vol. 2, 2019 ,
Art. no. 43.

[124] L. Rasmy et al., “Med-BERT: Pretrained contextualized embeddings on
large-scale structured electronic health records for disease prediction,”
NPJ Digit. Med., vol. 4, 2021, Art. no. 86.

[125] E. Choi et al., “RETAIN: An interpretable predictive model for healthcare
using reverse rime attention mechanism,” Adv. Neural Inf. Process. Syst.,
vol. 29, pp. 3504–3512, 2016.

[126] C. Oliver et al., “Longitudinal patient stratification of electronic health
records with flexible adjustment for clinical outcomes,” Proc. Mach.
Learn. Health, 2021, pp. 220–238.

[127] P. Sharma et al., “Data pre-processing using neural processes for mod-
eling personalized vital-sign rime-series data,” IEEE J. Biomed. Health
Inform., vol. 26, no. 4, pp. 1528–1537, Apr. 2022.

[128] A. Rajkomar et al., “Scalable and accurate deep learning with electronic
health records,” NPJ Digit. Med., vol. 1, 2018, Art. no. 18.

[129] I. Landi et al., “Deep representation learning of electronic health records
to unlock patient stratification at scale,” NPJ Digit. Med., vol. 3, 2020,
Art. no. 96.

[130] L. Li et al., “Identification of type 2 diabetes subgroups through topo-
logical analysis of patient similarity,” Sci. Transl. Med., vol. 7, 2015,
Art. no. 311ra174.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on May 31,2024 at 07:48:38 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/RBME.2022.3210270
https://dx.doi.org/10.1109/RBME.2022.3210270


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


