E-Commerce Bot Traffic: In-Network Impact,
Detection, and Mitigation

Masoud Hemmatpour*
Computer Science Department
Arctic University of Norway (UiT)

Abstract—In-network caching expedites data retrieval by stor-
ing frequently accessed data items within programmable data
planes, thereby reducing data access latency. In this paper we
explore a vulnerability of in-network caching to bots’ traffic,
showing it can significantly degrade performance. As bots consti-
tute up to 70% of traffic on e-commerce platforms like Amazon,
this is a critical problem. To mitigate the effect of bots’ traffic
we introduce In-network Caching Shelter (INCS), an in-network
machine learning solution implemented on NVIDIA BlueField-2
DPU. Our evaluation shows that INCS can detect malicious bot
traffic patterns with accuracy up to 94.72%. Furthermore, INCS
takes smart actions to mitigate the effects of bot activity.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

The rapid growth of e-commerce has led to an increased
prevalence of automated bots engaging in fraudulent activ-
ities [1], [2]. Bot is a software application programmed to
execute specific tasks to simulate human in social or web
activities [3]. Despite online businesses’ continuous efforts
to enhance user experience through the adoption of modern
technologies [4], [5], the disruptive presence of malicious bots
poses a significant threat to the revenue and overall success of
companies [6].

An instance of modern technologies that hold the poten-
tial to bring a transformative shift for backend e-commerce
systems includes smart network devices [7], [8]. These net-
work devices can perform customized computations (see
Section II-C). This new paradigm of computation known
as In-network computing or NetCompute, refers to the ex-
ecution of programs typically running on end-hosts within
network devices [9]. Such network devices can be programmed
through traditional programming languages such as hardware
description language (HDL) and C/C++ languages. However,
a specialized language, Programming Protocol Independent
Packet Processors (P4), was developed for configuring how
network devices process and forward packets within the net-
work devices [10]. This approach of computation is gaining
importance in various fields as it offers advantages like re-
duced latency, improved scalability, and enhanced efficiency
for networked applications [7], [8]. A successful class of
applications of in-network computing is in-network caching
where network devices quickly reply to a user request with

*Additionally, the author has an affiliation with Simula Research Laboratory
(SRL). The research project was initiated at SRL and subsequently continued
at UiT.

Changgang Zheng
Department of Engineering Science
University of Oxford

Noa Zilberman
Department of Engineering Science
University of Oxford

cached values in the network device. However, exploiting in-
network caching in the backend of e-commerce system can
bring security risks which need to be discovered to avoid any
vulnerability.

In this paper, we review the characteristics of bot traffic
in real-world e-commerce websites and analyze how these
characteristics can bring vulnerability while using in-network
caching in the backend. We outline how the presence of bot
traffic can lead to higher cache misses of legitimate users.
Furthermore, we formulate experiments to investigate and
demonstrate such influence on the efficiency of in-network
caching.

Studies have demonstrated that even a marginal improve-
ment in the hit rate of just 1% of cached data can result
in a substantial reduction of over 35% in application layer
latency [11]. Therefore, we offer an on-the-fly P4 based
in-network machine learning (ML) solution to detect such
malicious bot traffic and mitigate its impact. We implement
our solution in the Data Processing Unit (DPU), which, to the
best of our knowledge, is the first P4 based machine learning
solution in the DPU. Our main contributions in this research
can be summarized as follows:

o Investigating a vulnerability of in-network caching, and
providing a dataset based on the characteristics of bot traffic
in real-world e-commerce websites,

« Exploring the impact of the investigated vulnerability on the
latency of normal users,

e Proposing an in-network solution to detect bot traffic and
mitigate its impact using machine learning.

In section II, we present an overview of bot traffic in
e-commerce, aiming to provide insights into current strate-
gies, challenges, and advancements in addressing this critical
issue. Furthermore, we describe in-network computing and
the relevant requirements for our study. Section III describes
the in-network caching vulnerability to malicious bot traffic.
Section IV presents the characteristics of malicious bot in real-
world e-commerce traffic and outlines the methodology used
to generate a dataset based on these characteristics. Section V
describes the system design of our solution for this problem.
In Section VI, we present the evaluation of our analysis by
designing different experiments. Then, we illustrate how a
P4 based machine learning solution can successfully detect
malicious bot traffic with high accuracy. In Section VII, we

delve into a discussion of our proposed solution and directions
for future work. Finally, in Section VIII we draw conclusions.

II. BACKGROUND

In this section, we provide a foundational background for
our research, encompassing aspects such as e-commerce bot
traffic, strategies for bot detection, and the concept of in-
network computing.

A. E-commerce bot traffic

By June 2019, there were more than 4.5 billion Internet
users worldwide [12]. Nowadays, Internet users are not limited
to human and technologies such as Internet-of-Things (IoT)
even increase up users [13]. A significant part of the overall
Internet traffic is generated by bots [2], [14]. Legitimate
services, such as search engines, use bots to crawl websites
and power their products. However, according to reports, more
than half of bot traffics are potentially harmful [15]. Malicious
bots can cause several issues, such as Distributed Denial
of Service (DDoS) attacks [2], generating fake news [16],
web scrapings [1], or shilling attacks in recommender sys-
tems [17]. Among industries, e-commerce sees a wide range
of bot attacks with ~ 20% malicious bot traffic [18], [19].
E-commerce ranks fifth in the intensity of bad bot traffic
and first in the volume of sophisticated bot traffic [20].
Bot traffic is a long-standing problem for companies such
as Amazon [21], causing a huge economic impact. There
are different types of bots which can cause problems for
e-commerce such as manipulating product ranks [17] and
increasing data access latency [21]. In more detail, malicious
bots generate content data, such as user ratings and reviews
to manipulate recommendation rankings [17]. Considering the
fact that recommender systems drive 35% of online sales,
manipulating product reviews or ratings will have a big impact
on a company’s revenue. Furthermore, latency is an important
factor in e-commerce businesses such that AOL reports that
the average page views can drop from 8 to 3 in the slower
response time, and Amazon reports that by adding 100 ms,
sales drop by 1% [21], [22].

B. E-commerce bot detection

Many bots try to emulate navigational behaviors of legit-
imate users at a very high sophistication level [15]. This
creates several challenges for companies with online busi-
nesses. Therefore, bot detection is an important part of an
online business. E-commerce bot detection involves the iden-
tification and mitigation of automated bots that interact with
online e-commerce platforms. Bot technology continues to
evolve which makes bot detection even harder. These bots
can have various purposes [21] and different approaches have
been proposed to detect bots such as sitemap-based [3], log
analysis [23], behavioral analysis [14], and machine learning
techniques [24], [25].

A large body of research has been dedicated to the problem
of bot traffic analysis, characterization, and classification [15],
[23]. However, bot detection has been mostly addressed in

the offline scenario, working on historical session data and
very few studies have dealt with the problem of identifying
bots on-the-fly [2]. The ability to identify bots in real time
is of crucial importance for the security and performance of
an e-commerce website since it makes it possible to mitigate
threats before the end of bot visits and, thus, to limit the
impact of their presence. Because the amount of business of
e-commerce websites primarily depends on search engines
for product discovery [26], in this paper vulnerability that
malicious bot can cause on search engines while in-network
caching is exploited in the backend of website is investigated.

C. In-network computing

Traditional data networks passively transport data from one
node to another and the role of computation within such
networks is limited. Now, Programmable Network devices
(PNDs) such as SmartNICs, and programmable switches allow
to run customized computation on the network devices them-
selves. In the following, we delve into two significant facets
of in-network technologies.

« In-network caching refers to a technique where caching
mechanisms are implemented within the network infras-
tructure itself. In more detail, a query statistic monitors
the requests in the traffic and stores the frequent ones.
The primary purpose of in-network caching is to improve
the efficiency and performance of content delivery, reduce
latency, and alleviate the load on upstream servers. Caching
can be implemented in the SmartNIC such as Lake [8] or
in Smart Switch such asNetCache [7].

o In-network machine learning refers to the offloading

and integration of the machine learning inference process
directly within PNDs. Specifically, this approach conducts
the offline training of machine learning models, followed
by the mapping of trained machine learning models into
PNDs for online inference [27]. In-network machine learn-
ing leverages the computational capabilities of network
devices to perform various machine learning tasks, thereby
enhancing the efficiency, adaptability, and intelligence of the
network itself. To date, in-network machine learning has
demonstrated support for a range of models, for example,
Decision Trees (DT), Random Forests (RF), k-Means, k-
Nearest Neighbors (KNN), Neural Networks (NN), and
Naive Bayes.
Leveraging prototyping frameworks like Planter [28] and
DINC [29], in-network machine learning algorithms have
conducted applications across various domains, notably in
tasks such as anomaly detection [28]-[30], traffic clas-
sification [31], load balancing [32], and financial market
prediction [33]. Nevertheless, while some references present
in-network machine learning for attack detection (especially
for DDOS) [30], [34], the case of attacks on caching
systems is unique, because none of the preceding works have
explicitly addressed its integration within caching systems
for its attacks.

N e
ey @t@”@)

host

NVMe/PCle/RDMA

SmartNIC

normal malicious

Fig. 1: Vulnerability of caching.

III. CACHING VULNERABILITY

In e-commerce and many other Internet services rendering
even a single web page often requires hundreds or thousands
of storage accesses [35]. So, as these services scale to billions
of users, system operators increasingly rely on caching to
meet the necessary throughput and latency demands [7],
[36]. Caching has been exploited in many different social
community and e-commerce websites such as Wikipedia [37],
Amazon [38], Alibaba [39], and Facebook [40]. Search en-
gines in e-commerce websites particularly exploit caching to
improve scalability, performance and user experience [41].
For example, Amazon developed ROSE, a caching system, to
improve its search quality for different business metrics [42].
Despite the benefits of caching, especially within an in-
network context, this technology face several challenges that
can impact its effectiveness and adoption. Mainly, in-network
caching presents two fundamental challenges, namely, the
identification of dynamically shifting hot items and the man-
agement of memory constraints within PNDs. In this research,
we delve into these challenges, recognizing their potential to
render in-network caching vulnerable.

As depicted in Figure 1, regular users typically request
popular items, leading to the storage of these items within the
in-network caching system. However, malicious bots follow
a different pattern, actively soliciting less popular items and
attempting to inject counterfeit popular items into the caching
system. Due to the constrained memory capacity of PNDs,
the caching system initiates eviction procedures, replacing
legitimate popular items with the newly introduced false items
by the bots [43]. This eviction process results in a noteworthy
latency increase for normal users. Furthermore, due to the
dynamic nature of hot items requested by normal users, bots
may persistently prioritize keeping items in the cache that
were previously hot but may no longer hold the same level of
popularity. In Section VI, we have devised specific scenarios
to quantify and assess the extent of this performance impact.

IV. IN-NETWORK CACHING ATTACK

Gaining access to data for research in e-commerce and
related areas like search and recommendation has proven to
be a challenging endeavor [26]. We conducted an analysis
on several pre-existing datasets such as Twibot-20 [44], bot-
net [45], Wikimedia API [46], Amazon [47], and Alibaba
benchmark generator [48]. However, these datasets did not
meet our criteria due to either lacking sufficient annotations
or lacking essential query and user information. As a result, we
conducted a thorough review, which encompassed an analysis
of the characteristics of the web requests [49], web traffic [50],
workload [51], bot traffic [2], and network caches [52]. Then,
we formulated a set of guiding principles for the precise
generation of a bot traffic dataset. The following are the key
principles we adhered to during the dataset creation process:

« Search queries made by bots are often long search queries
and tend to search for not so popular items in the e-
commerce search engine [2]. Therefore, search queries of
bots are often responded with much fewer items, more
exactly, about an order of magnitude fewer than the items
returned for a search query made by normal users.

« User requests follow a Zipfian distribution [49]. This obser-
vation signifies that specific segments of the data experience
a higher volume of requests, a pattern that evolves over
time. To mimic user behavior accurately, we proceeded to
generate 5 million requests using a Zipfian distribution with
a a= 0.9. Figure 2 illustrates the distributions of keys for
normal and bots. As can be seen in 2a, there are more
request for some part of data (i.e., popular/hot items) and
less request for some other (i.e., unpopular/cold items).
However, as Figure 2b shows, cold items for normal users
consider as hot items for bots [2].

Key request distribution (zipfian(a=0.99))

Abnommal key request distribution (zipfian(a=0.99))

count
count

0123 456 78 91011121314

10S|‘II ms
IIIIII.'II-

0123456789101)1213)4

(a) Normal requests distribution (b) Bot requests distribution

Fig. 2: Red/Blue colors highlight popular/unpopular requests
of normal user.

Our analysis affirms that bots do not continually request
popular items, and they may occasionally submit regular
requests as a means to conceal their activities. As a result,
we have classified bots into three distinct categories within
our dataset: (1) Moderate, (2) Intense, and (3) Aggressive.
As Figure 3 illustrates, Moderate bots make requests for
popular items 40% of the time and for unpopular items
60% of the time. Intense bots, on the other hand, request
unpopular items 75% of the time and popular items 25% of
the time. Aggressive bots predominantly request unpopular

normal requests percentage moderate bot requests

normal requests (%)
3
count

10°
: [
. L0 0nuuentl L}
moderate severe aggressive 0123456789 X
bot types bin:

5

1;

S
5
S

(a) Popular bot requests.

Intense bot requests

(b) Moderate bot requests.

aggressive bot requests

108
105 108 |
rrrrriiiiiiig
1234567 9

0123456 7 8 91011121314 0 5 8 9 10 11 12 13 14

bins bins

count
count

(c) Intense bot requests. (d) Aggressive bot requests.

Fig. 3: Types of bots in dataset.

items, with a distribution of 90% for unpopular items and
10% for popular items.

o The average time interval between consecutive requests
made by bots is five times shorter than normal users [2].
Consequently, we incorporate this factor into our request
generation process, producing two distinct sets of time
intervals for normal and bot traffic. As depicted in Figure 4,
normal users follow a Gaussian distribution with parameters
1=70 and o=4, while bot requests are characterized by
parameters u=14 and o=1. u represents the mean or average
value of the distribution, and o is standard deviation which
shows the dispersion of the data points in the distribution.

Normal user request interarival (u= 70, 0= 4) Bot Request Interarival (u=14, 0=1)

o
o
o
o
IS

o

o

®
o
w

o
=}
=)

o
o
g
probability
)
N

probability

o

o

N
o
i

o
=]
5
o
o

[25 50 75 100 125 ’ [25 50 75 100 125
value value

Fig. 4: Time interval between requests.

We have made both the dataset and the experiments publicly
available to facilitate reproducibility.

When a bot or bots issue requests for an unpopular item,
they have the potential to deceive the system into perceiving
this item as popular. Given the inherent constraints of memory
within SmartNICs, there exists a significant likelihood that
caching system may need to evict one of the currently stored
item to accommodate the introduction of this new item into the
cache. Consequently, when a regular user requests the evicted
item, caching system must once again evict another item from

1 https://github.com/mashemat/inet_bot_traffic_detection

the cache to make room for the popular item. As a result, a
typical user incurs the following penalty for a cache miss:

cache miss cost = load data + add data

1SOH [e207]

. Network

SmartNICIDPU

Fig. 5: load data from different locations.

To begin with, the process involves reloading the popular
item that was previously evicted from the cache. As depicted
in Figure 5, this data may either reside within the local
host [8], [53] or be situated on a remote host [54]. The
latency associated with data retrieval hinges upon the specific
SmartNIC in use and its supported interfaces.

Following the data retrieval from its respective location,
the next step involves adding it back to caching system.
Adding to the caching system can increase the latency of other
normal user data access. To assess the effect on the latency
experienced by a normal user, we established a testbed with
the NVIDIA BlueField-2 DPU. This DPU is equipped with 8
Armv A72 cores, 16GB of on-board DDR4 memory, a PCle
Gen 4.0 interface, and InfiniBand dual ports of EDR/HDR
100. Furthermore, we installed Memcached version 1.5.22
and libmemcached version 1.0.18 as part of our experimental
setup.

Furthermore, we designed an experiment in which a client
is reading data (keys and value size=128 Bytes) while an
intruder interferes by three different operations: 1) reading
data, 2) adding data, and 3) adding data which causes an
eviction, occurring when the amount of available memory for
caching system runs out. The intruder performs its operations
with a delay. As Figure 6 shows, larger introduced delays
between operations by an intruder will reduce the interference.
This, in turn, can lead to a decrease in the latency of data
access experienced by the client. By spacing out, the intruder
is essentially allowing more breathing room for the client
operations to proceed without disruption, resulting in improved
response times for the client. As can be seen, when read and
add operations of intruder overlap with the client, the resultant
impact on the client performance is nearly identical. However,
we limited the memory of Memcached to 512MB and noticed
that if the intruder adds a key which causes an eviction then
the latency of data access for the client significantly increased

(= 2x) since it requires to reload and add it to the Memcached.
Size of available memory has a big impact on the performance
of the caching system [55]. Given the constrained memory
capacity, particularly in PNDs, the likelihood of needing to add
new items to the cache, coupled with the eviction of currently
stored items, is significantly elevated.

160 ¥

140
—— no overlap

ovelap with read
1204

—— overlap with add
—— overlap with add eviction
100
eread
+ gadd
80 read » add with eviction

200 400 600 800 1000 . .
Introduced delay(us) [—

Latency(us)

client intruder

Fig. 6: Data access latency with an intruder.

V. SYSTEM DESIGN OF INCS

In this work, we propose INCS, a mitigation solution for
attacks on in-network caching. INCS realizes an on-the-fly in-
network bot detection mechanism using in-network machine
learning inference.

The in-network caching system, shown in Figure 7, has
a controller that is responsible to assess the popularity of a
requested item. If the item meets a certain popularity threshold,
it is stored on the PND within a caching system, such as
Memcached. To safeguard the caching system, a machine
learning algorithm is used to classify incoming requests,
detecting and acting on bot-generated queries.

INCS runs on a programmable network target, such as a
DPU using Behavioral Model Version 2 (BMV2) [56] or Open
vSwitch (OvS). The in-network machine learning algorithms
are realized using Planter [28], observing all incoming re-
quests before the controller. INCS provides feature extraction
required for the machine learning, as well as standard switch
functionality, and the two are executed in parallel.

| 2 | 2
| 2 | >3

. ™
Feature Extraction Mapped ML model

[Standard Switch Functionalities]
_/

[
[

Smart Action |

[ew.iou
asuay
apesapow

DPU
—
e
_'

M
~
—

LAN

Traffic

Fig. 7: Architecture of INCS bot detection.

INCS extracts features from incoming traffic, and performs
the filtering action and bot traffic classification in real time.
It takes into account two pivotal features of bot traffic for its
classification: the time intervals between consecutive requests
and the specific items for which these requests are made [2],
with a focus on identifying unpopular items. The feature
extraction in the M/A pipeline computes the time interval of
requests for each flow and the amount of items that each flow

requests. These requests will subsequently be passed to the
machine learning workflow.

The machine learning code in the data plane is generated
using Planter. The system provides data and configurations to
Planter, train the model on the server, and maps the trained
model to the programmable pipeline. In the data plane, the
workflow takes the extracted features and determines the
popularity levels of the requested item [7]. Afterwards, it
classifies the traffic as Aggressive, Intense, Moderate, and
Normal.

Each class of traffic is assigned a different action. Aggres-
sive bot traffic can be immediately dropped. The bandwidth
of Intense traffic can be reduced. Sometimes, Moderate traffic
can be further processed. However, if multiple Moderate traffic
flows request the same unpopular items, it indicates that a set
of bots are striving to introduce a set of unpopular items as
a popular item. In such a case, all the Moderate traffic flows
requesting the same items can be dropped.

VI. EVALUATION

To assess the effectiveness of INCS, we deployed INCS on
BlueField-2 DPU’s ARM cores using several trained machine
learning models. The generated datasets (Section 4) are used
for the attack. Table I shows the accuracy of bots detection
across various models.

Models Moderate | Intense | Aggressive | Mix
DT 80.28 87.36 94.72 78.94

RF 80.42 87.36 94.72 78.94
Naive Bayes 78.64 85.54 93.34 78.80
KNN 56.56 85.86 93.20 76.00
K-means 77.06 83.94 90.14 76.38

TABLE I: Accuracy of bot detection by different models.

As the bot behaves more aggressively, it is easier to detect it.
For instance, as the table shows, Random Forest (RF) achieves
a bot detection accuracy of 80.42% for Moderate bot activity,
87.36% for Intense bot activity, and 94.72% for Aggressive
bot activity.

False Positive Rate (FPR) and True Positive Rate (TPR) are
important metrics to provide insights into a model’s perfor-
mance in terms of correctly identifying negatives and positives,
respectively. False Positive (FP) occurs when a model incor-
rectly identifies a bot-generated query as normal, and a False
Negative (FN) occurs when a model incorrectly identifies a
normal query as a bot. True Positive (TP) refers to a correct
classification of a normal query, and a True Negative (TN)
occurs when a bot query is detected. FPR = FP/(FP+TN)
and TPR =TP(TP + FN). Table II shows the (FPR,TPR)
of the RF model.

Mix
(0.28,1)

Intense
(0.25,1)

Moderate
(0.38,0.99)

TABLE II: (FPR,TPR) of RF model. Positive indicates normal
traffic.

Aggressive
0.1,1)

INCS using Random Forest has high TPR for all types of
bots attacks, indicating that the model is effective at identifying

normal traffic when it is present. In other words, it doesn’t
mistakenly predict normal traffic as bot. This is an important
factor since it can have an impact on the user experience of
regular users. As FPR here indicates bot queries mistakenly
considered normal traffic, it can be seen that INCS using
Random Forest correctly identifies 72% of bot traffic in a
mixed environment, and performs even better with intense and
aggressive attacks.

VII. DISCUSSION

Programmable network devices provide powerful enough
processing capabilities on network devices to implement se-
curity programs on it [57]. However, analyzing any network
traffic raises important privacy and ethical concerns. Imple-
menting privacy-preserving techniques and adhering to data
protection is a priority. In our solution, we have taken into
account these considerations by designing it in such a way
that it does not depend on any sensitive or protected data,
and users can maintain their anonymity. Moreover, privacy
is not the primary focus of this study and our INCS system
makes a contribution to safeguarding in-network caching from
malicious bot traffic. It possesses the capability to detect
various types of bots and implement diverse actions to mitigate
the effects caused by these bots.

Identifying and mitigating the effects of bot traffic reduce
the number of less frequently accessed items within the
caching system. This, in turn, results in memory savings and a
lower cache miss rate for normal users, thereby improving data
access latency for them. As noted earlier, e-commerce websites
experience a substantial proportion of malicious bot traffic,
estimated at around 20% [18], [19]. INCS demonstrates a 78%
accuracy in detecting bot traffic, which translates to improving
the normal user data access experience by 15.6%, through the
mitigation of bot-induced cache misses. The caching system’s
enhancements are expected to yield more substantial benefits
for higher-level applications [11]. By limiting access requests
from bots, INCS not only guarantees data access performance,
but also reduces the amount of traffic to the backend.

In this work, we employed BMV2 on DPU for INCS
implementation and to verify the functionality. More advanced
switching solutions, such as OvS and the Data Plane Develop-
ment Kit (DPDK), can potentially be leveraged too. As INCS
is implemented using Planter [28], it can also be deployed
on other targets such as programmable switches. However,
this is not trivial, primarily due to limited processing and
memory resources on switches. In a preliminary evaluation
on Intel Tofino, a commodity programmable switch, INCS
caching protection system achieved line rate (6.4Tbps) with
sub-microsecond latency.

VIII. CONCLUSION

In-network bot detection with machine learning represents
a promising approach to safeguarding e-commerce ecosystems
from malicious automated bot traffic. Through this study, we
have explored a vulnerability of exploiting emerging pro-
grammable network devices to cache the hot items in the

network. Furthermore, we have analyzed the characteristics
of bot traffic and generated a dataset to evaluate this vulner-
ability as well as identifying it through in-network machine
learning techniques. In conclusion, in-network bot detection
with machine learning holds great promise in the fight against
malicious bots. It offers an efficient approach to identify and
mitigate bot-related threats. However, it is essential to remain
vigilant, continuously improve detection techniques.

Future work will assess INCS in comparison with server-
based bot detection models with respect to resource usage,
data throughput, and response time. It will also explore the
effect of hand-crafted optimizations on feature extraction and
INCS performance overheads.

IX. ACKNOWLEDGMENTS

The research presented in this paper has benefited from
the Experimental Infrastructure for Exploration of Exascale
Computing (eX3), which is financially supported by the Re-
search Council of Norway under contract 270053. This work
was partly funded by VMWare. We acknowledge support from
NVIDIA.

REFERENCES

[1] Rabiyatou Diouf, Edouard Ngor Sarr, Ousmane Sall, Babiga Birregah,
Mamadou Bousso, and Sény Ndiaye Mbaye. Web scraping: state-of-
the-art and areas of application. In 2019 IEEE International Conference
on Big Data (Big Data), pages 6040-6042. IEEE, 2019.

[2] Grazyna Suchacka, Alberto Cabri, Stefano Rovetta, and Francesco
Masulli. Efficient on-the-fly web bot detection. Knowledge-Based
Systems, 223:107074, 2021.

[3] Yang Luo, Guozhen She, Peng Cheng, and Yongqiang Xiong. Botgraph:
Web bot detection based on sitemap. arXiv preprint arXiv:1903.08074,
2019.

[4] Kristof Stouthuysen. A 2020 perspective on “the building of online
trust in e-business relationships”. Electronic commerce research and
applications, 40:100929, 2020.

[5] Venkatesh Shankar, Kirthi Kalyanam, Pankaj Setia, Alireza Golmo-
hammadi, Seshadri Tirunillai, Tom Douglass, John Hennessey, JS Bull,
and Rand Waddoups. How technology is changing retail. Journal of
Retailing, 97(1):13-27, 2021.

[6] Imperva. How bots affect e-commerce. https://softprom.com/sites/def
ault/files/materials/Imperva- Threat-Research- How-bots- affect-ecomm
erce-FINAL.pdf, 2019.

[7] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee,
Nate Foster, Changhoon Kim, and Ion Stoica. Netcache: Balancing key-
value stores with fast in-network caching. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 121-136, 2017.

[8] Yuta Tokusashi, Hiroki Matsutani, and Noa Zilberman. Lake: The power
of in-network computing. In ReConFig, pages 1-8. IEEE, 2018.

[9] Noa Zilberman. In-network computing. https://www.sigarch.org/in-net

work-computing-draft/, 2019.

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,

Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George

Varghese, et al. P4: Programming protocol-independent packet proces-

sors. ACM SIGCOMM Computer Communication Review, 44(3):87-95,

2014.

Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti.

Cliffhanger: Scaling performance cliffs in web memory caches. In

NSDI’16, pages 379-392. USENIX Association, 2016.

Wenliang Su, Xiaoli Han, Hanlu Yu, Yiling Wu, and Marc N Potenza.

Do men become addicted to internet gaming and women to social media?

a meta-analysis examining gender-related differences in specific internet

addiction. Computers in Human Behavior, 113:106480, 2020.

Jing Qiu, Zhihong Tian, Chunlai Du, Qi Zuo, Shen Su, and Binxing

Fang. A survey on access control in the age of internet of things. /EEE

Internet of Things Journal, 7(6):4682-4696, 2020.

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Zafar Gilani, Reza Farahbakhsh, Gareth Tyson, and Jon Crowcroft. A
large-scale behavioural analysis of bots and humans on twitter. ACM
Transactions on the Web, 13(1):1-23, 2019.

Grazyna Suchacka and Jacek Iwanski. Identifying legitimate web
users and bots with different traffic profiles—an information bottleneck
approach. Knowledge-Based Systems, 197:105875, 2020.

Xichen Zhang and Ali A Ghorbani. An overview of online fake news:
Characterization, detection, and discussion. Information Processing &
Management, 57(2):102025, 2020.

Fuzhi Zhang, Yueqi Qu, Yishu Xu, and Shilei Wang. Graph embedding-
based approach for detecting group shilling attacks in collaborative
recommender systems. Knowledge-Based Systems, 199:105984, 2020.
Eduardo Rocha. 2018 bad bot report: The year bad bots went main-
stream. https://www.globaldots.com/resources/blog/2018-bad-bot-repor
t-the-year-bad-bots-went-mainstream/, 2108.

imperva. Bad bot report bad bots strike back. https://www.imperva.co
m/resources/reports/Imperva_BadBot_Report_V2.0.pdf, 2020.

Stefano Rovetta, Grazyna Suchacka, and Francesco Masulli. Bot
recognition in a web store: An approach based on unsupervised learning.
Journal of Network and Computer Applications, 157:102577, 2020.
Haitao Xu, Zhao Li, Chen Chu, Yuanmi Chen, Yifan Yang, Haifeng Lu,
Haining Wang, and Angelos Stavrou. Detecting and characterizing web
bot traffic in a large e-commerce marketplace. In ESORICS 2018, pages
143-163. Springer, 2018.

Nicolas Poggi, David Carrera, Ricard Gavalda, Eduard Ayguadé, and
Jordi Torres. A methodology for the evaluation of high response time
on e-commerce users and sales. Information Systems Frontiers, 16:867—
885, 2014.

Takamasa Tanaka, Hidekazu Niibori, LI Shiyingxue, Shimpei Nomura,
Hiroki Kawashima, and Kazuhiko Tsuda. Bot detection model using
user agent and user behavior for web log analysis. Procedia Computer
Science, 176:1621-1625, 2020.

Muhammad Shafiq, Zhihong Tian, Yanbin Sun, Xiaojiang Du, and
Mohsen Guizani. Selection of effective machine learning algorithm and
bot-iot attacks traffic identification for internet of things in smart city.
Future Generation Computer Systems, 107:433—-442, 2020.

Hongwen Kang, Kuansan Wang, David Soukal, Fritz Behr, and Zijian
Zheng. Large-scale bot detection for search engines. In WWW’10, pages
501-510, 2010.

Manos Tsagkias, Tracy Holloway King, Surya Kallumadi, Vanessa
Murdock, and Maarten de Rijke. Challenges and research opportunities
in ecommerce search and recommendations. In ACM SIGIR Forum,
volume 54, pages 1-23. ACM New York, NY, USA, 2021.

Changgang Zheng, Xinpeng Hong, Damu Ding, Shay Vargaftik, Yaniv
Ben-Itzhak, and Noa Zilberman. In-Network Machine Learning Using
Programmable Network Devices: A Survey. [EEE Communications
Surveys & Tutorials, pages 1-1, 2023.

Changgang Zheng, Mingyuan Zang, Xinpeng Hong, Riyad Bensoussane,
Shay Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman. Automating in-
network machine learning. arXiv preprint arXiv:2205.08824, 2022.
Changgang Zheng, Haoyue Tang, Mingyuan Zang, Xinpeng Hong,
Aosong Feng, Leandros Tassiulas, and Noa Zilberman. DINC: Toward
Distributed In-Network Computing. Proceedings of the ACM on Net-
working, 2023.

Coralie Busse-Grawitz, Roland Meier, Alexander Dietmiiller, Tobias
Biihler, and Laurent Vanbever. pForest: In-Network Inference with
Random Forests. arXiv preprint arXiv:1909.05680, 2019.

Mingyuan Zang, Changgang Zheng, Lars Dittmann, and Noa Zilberman.
Towards Continuous Threat Defense: In-Network Traffic Analysis for
10T Gateways. IEEE Internet of Things Journal, 2023.

Changgang Zheng, Benjamin Rienecker, and Noa Zilberman. QCMP:
Load Balancing via In-network Reinforcement Learning. In ACM
SIGCOMM FIRA’23, 2023.

Xinpeng Hong, Changgang Zheng, Stefan Zohren, and Noa Zilberman.
LOBIN: In-Network Machine Learning for Limit Order Books. In
HPSR’23, pages 159-166. IEEE, 2023.

Changgang Zheng, Zhaoqi Xiong, Thanh T Bui, Siim Kaupmees, Riyad
Bensoussane, Antoine Bernabeu, Shay Vargaftik, Yaniv Ben-Itzhak, and
Noa Zilberman. IIsy: Practical in-network classification. arXiv preprint
arXiv:2205.08243, 2022.

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

(571

Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-

man Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul

Saab, et al. Scaling memcache at facebook. In NSDI’13, 2013.

K Selguk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin Hsiung, and Di-

vyakant Agrawal. Enabling dynamic content caching for database-driven

web sites. In Proceedings of the 2001 ACM SIGMOD international

conference on Management of data, pages 532-543, 2001.

Gerhard Hasslinger, Mahmoud Kunbaz, Frank Hasslinger, and Thomas

Bauschert. Web caching evaluation from wikipedia request statistics. In

WiOpt’17, pages 1-6. IEEE, 2017.

Amazon. Database caching strategies using Redis. https://d1.awsstatic.

com/whitepapers/Database/database-caching-strategies-using-redis.pdf,

2017.

Alibaba Cloud. Redis hotspot key discovery and common solutions.
https://www.alibabacloud.com/blog/redis-hotspot-key-discovery-and-c

ommon-solutions_594446, 2019.

B Barla Cambazoglu and Ricardo Baeza-Yates. Scalability challenges

in web search engines. Springer Nature, 2022.

Pietro Michiardi, Damiano Carra, Sara Migliorini, et al. In-memory

caching for multi-query optimization of data-intensive scalable comput-

ing workloads. In EDBT/ICDT 19, pages 1-8, 2019.

Chen Luo, Vihan Lakshman, Anshumali Shrivastava, Tianyu Cao,

Sreyashi Nag, Rahul Goutam, Hanging Lu, Yiwei Song, and Bing

Yin. Rose: Robust caches for amazon product search. In Companion

Proceedings of the Web Conference 2022, pages 89-93, 2022.

memcached. Replacing the cache replacement algorithm in memcached.
https://memcached.org/blog/modern-1ru/, 2018.

Shangbin Feng, Herun Wan, Ningnan Wang, Jundong Li, and Minnan

Luo. Twibot-20: A comprehensive twitter bot detection benchmark. In

Proceedings of the 30th ACM International Conference on Information

& Knowledge Management, pages 4485-4494, 2021.

Elaheh Biglar Beigi, Hossein Hadian Jazi, Natalia Stakhanova, and Ali A

Ghorbani. Towards effective feature selection in machine learning-

based botnet detection approaches. In 2014 IEEE Conference on

Communications and Network Security, pages 247-255. IEEE, 2014.

Wikimedia. Wikimedia rest api. https://wikimedia.org/api/rest_v1/#/,

2023.

Amazon. Shopping queries dataset: A large-scale esci benchmark for

improving product search. https://github.com/amazon-science/esci-data,

2022.

Alibaba. e-commerce search benchmark. https://github.com/alibaba/e

CommerceSearchBench, 2020.

Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web

caching and zipf-like distributions: Evidence and implications. In /EEE

INFOCOM’99, volume 1, pages 126—134. IEEE, 1999.

Sunghwan Thm and Vivek S Pai. Towards understanding modern web

traffic. In IMC’11, pages 295-312, 2011.

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. Workload analysis of a large-scale key-value store. In ACM

SIGMETRICS/PERFORMANCE’12’, pages 53-64, 2012.

Qi Huang, Helga Gudmundsdottir, Ymir Vigfusson, Daniel A Freedman,

Ken Birman, and Robbert van Renesse. Characterizing load imbalance

in real-world networked caches. In HotNets’14, pages 1-7, 2014.

Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich,

Sergio Loépez-Buedo, and Andrew W Moore. Understanding pcie

performance for end host networking. In ACM SIGCOMM’18, pages

327-341, 2018.

Anuj Kalia, Michael Kaminsky, and David G Andersen. Design

guidelines for high performance RDMA systems. In USENIX ATC’16),

pages 437450, 2016.

Guy Harrison and Michael Harrison. MongoDB Performance Tuning.

Apress Berkeley, 2021.

Behavioral model (bmv2). https://github.com/p4lang/behavioral-model,

2023.

Ali AlSabeh, Joseph Khoury, Elie Kfoury, Jorge Crichigno, and Elias

Bou-Harb. A survey on security applications of p4 programmable

switches and a stride-based vulnerability assessment. Computer Net-

works, 207:108800, 2022.

