Showing 50 publications by Konstantinos Kamnitsas
Specialised or Generic? Tokenization Choices for Radiology Language Models
Warr H, Xu W, Anthony H, Ibrahim Y, McGowan DR et al. (2026), Lecture Notes in Computer Science, 16146, 62-70
Unsupervised Domain Adaptation via Content Alignment for Hippocampus Segmentation
Kalabizadeh H, Griffanti L, Yeung P-H, Namburete AIL, Dinsdale NK et al. (2025)
IterMask3D: Unsupervised anomaly detection and segmentation with test-time iterative mask refinement in 3D brain MRI
Liang Z, Guo X, Xu W, Ibrahim Y, Voets N et al. (2025), Medical Image Analysis, 103763-103763
BibTeX
@article{itermaskdunsupe-2025/8,
title={IterMask3D: Unsupervised anomaly detection and segmentation with test-time iterative mask refinement in 3D brain MRI},
author={Liang Z, Guo X, Xu W, Ibrahim Y, Voets N et al.},
journal={Medical Image Analysis},
number={103763},
pages={103763-103763},
publisher={Elsevier BV},
year = "2025"
}
Specialised or Generic? Tokenization Choices for Radiology Language Models
Warr H, Xu W, Anthony H, Ibrahim Y, McGowan D et al. (2025)
BibTeX
@misc{specialisedorge-2025/8,
title={Specialised or Generic? Tokenization Choices for Radiology Language Models},
author={Warr H, Xu W, Anthony H, Ibrahim Y, McGowan D et al.},
year = "2025"
}
DIsoN: Decentralized Isolation Networks for Out-of-Distribution Detection in Medical Imaging
Wagner F, Saha P, Anthony H, Noble JA & Kamnitsas K (2025)
F3OCUS - Federated Finetuning of Vision-Language Foundation Models with Optimal Client Layer Updating Strategy via Multi-objective Meta-Heuristics
Saha P, Wagner F, Mishra D, Peng C, Thakur A et al. (2025), 00, 20006-20017
BibTeX
@inproceedings{focusfederatedf-2025/6,
title={F3OCUS - Federated Finetuning of Vision-Language Foundation Models with Optimal Client Layer Updating Strategy via Multi-objective Meta-Heuristics},
author={Saha P, Wagner F, Mishra D, Peng C, Thakur A et al.},
booktitle={2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
pages={20006-20017},
year = "2025"
}
IterMask3D: Unsupervised Anomaly Detection and Segmentation with Test-Time Iterative Mask Refinement in 3D Brain MR
Liang Z, Guo X, Xu W, Ibrahim Y, Voets N et al. (2025)
BibTeX
@misc{itermaskdunsupe-2025/4,
title={IterMask3D: Unsupervised Anomaly Detection and Segmentation with Test-Time Iterative Mask Refinement in 3D Brain MR},
author={Liang Z, Guo X, Xu W, Ibrahim Y, Voets N et al.},
year = "2025"
}
Continuous Online Adaptation Driven by User Interaction for Medical Image Segmentation
Xu W, Liang Z, Anthony H, Ibrahim Y, Cohen F et al. (2025)
Feasibility of Federated Learning from Client Databases with Different Brain Diseases and MRI Modalities
Wagner F, Xu W, Saha P, Liang Z, Whitehouse D et al. (2025), 00, 357-367
BibTeX
@inproceedings{feasibilityoffe-2025/3,
title={Feasibility of Federated Learning from Client Databases with Different Brain Diseases and MRI Modalities},
author={Wagner F, Xu W, Saha P, Liang Z, Whitehouse D et al.},
booktitle={2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
pages={357-367},
year = "2025"
}
Evaluating Reliability in Medical DNNs: A Critical Analysis of Feature and Confidence-Based OOD Detection
Anthony H & Kamnitsas K (2025), 15167, 160-170
Is Your Style Transfer Doing Anything Useful? An Investigation into Hippocampus Segmentation and the Role of Preprocessing
Kalabizadeh H, Griffanti L, Yeung P-H, Voets N, Gillis G et al. (2025), 15266, 155-165
Quality Control for Radiology Report Generation Models via Auxiliary Auditing Components
Warr H, Ibrahim Y, McGowan DR & Kamnitsas K (2025), 15167, 70-80
As firm as their foundations: creating transferable adversarial examples across downstream tasks with CLIP
Hu A, Gu J, Pinto F, Kamnitsas K & Torr PHS (2024), Proceedings of the 35th British Machine Vision Conference (BMVC 2024)
BibTeX
@inproceedings{asfirmastheirfo-2024/12,
title={As firm as their foundations: creating transferable adversarial examples across downstream tasks with CLIP},
author={Hu A, Gu J, Pinto F, Kamnitsas K & Torr PHS},
booktitle={35th British Machine Vision Conference (BMVC 2024)},
year = "2024"
}
FedPIA -- Permuting and Integrating Adapters leveraging Wasserstein Barycenters for Finetuning Foundation Models in Multi-Modal Federated Learning
Saha P, Mishra D, Wagner F, Kamnitsas K & Noble JA (2024)
SPA: Efficient User-Preference Alignment against Uncertainty in Medical Image Segmentation
Zhu J, Wu J, Ouyang C, Kamnitsas K & Noble A (2024)
F$^3$OCUS -- Federated Finetuning of Vision-Language Foundation Models with Optimal Client Layer Updating Strategy via Multi-objective Meta-Heuristics
Saha P, Wagner F, Mishra D, Peng C, Thakur A et al. (2024)
Is your style transfer doing anything useful? an investigation into hippocampus segmentation and the role of preprocessing
Kalabizadeh H, Griffanti L, Yeung P-H, Voets N, Gillis G et al. (2024)
Evaluating reliability in medical DNNs: a critical analysis of feature and confidence-based OOD detection
Anthony H & Kamnitsas K (2024)
An organism starts with a single pix-cell: a neural cellular diffusion for high-resolution image synthesis
Elbatel M, Kamnitsas K & Li X (2024)
Quality control for radiology report generation models via auxiliary auditing components
Warr H, Ibrahim Y, McGowan DR & Kamnitsas K (2024)
IterMask2: iterative unsupervised anomaly segmentation via spatial and frequency masking for brain lesions in MRI
Liang Z, Guo X, Noble JA & Kamnitsas K (2024)
Feasibility of Federated Learning from Client Databases with Different Brain Diseases and MRI Modalities
Wagner F, Xu W, Saha P, Liang Z, Whitehouse D et al. (2024)
Feasibility and benefits of joint learning from MRI databases with different brain diseases and modalities for segmentation
Xu W, Moffat M, Seale T, Liang Z, Wagner F et al. (2024)
As firm as their foundations: can open-sourced foundation models be used to create adversarial examples for downstream tasks?
Hu A, Gu J, Pinto F, Kamnitsas K & Torr P (2024)
Modality cycles with masked conditional diffusion for unsupervised anomaly segmentation in MRI
Liang Z, Anthony H, Wagner F & Kamnitsas K (2024), Proceedings of the 2nd International Workshop on Applications of Medical AI (MICCAI - AMAI 2023), 14394, 168-181
BibTeX
@inproceedings{modalitycyclesw-2024/2,
title={Modality cycles with masked conditional diffusion for unsupervised anomaly segmentation in MRI},
author={Liang Z, Anthony H, Wagner F & Kamnitsas K},
booktitle={2nd International Workshop on Applications of Medical AI (MICCAI - AMAI 2023)},
pages={168-181},
year = "2024"
}
Examining Modality Incongruity in Multimodal Federated Learning for Medical Vision and Language-based Disease Detection
Saha P, Mishra D, Wagner F, Kamnitsas K & Noble JA (2024)
Preface DART 2023
Koch L, Cardoso MJ, Ferrante E, Islam M, Jiang M et al. (2024), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 14293 LNCS, v-vi
BibTeX
@article{prefacedart-2024/1,
title={Preface DART 2023},
author={Koch L, Cardoso MJ, Ferrante E, Islam M, Jiang M et al.},
journal={Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)},
volume={14293 LNCS},
pages={v-vi},
year = "2024"
}
Feasibility and benefits of joint learning from MRI databases with different brain diseases and modalities for segmentation
Xu W, Moffat M, Seale T, Liang Z, Wagner F et al. (2024), Proceedings of Machine Learning Research, 250, 1771-1784
BibTeX
@inproceedings{feasibilityandb-2024/1,
title={Feasibility and benefits of joint learning from MRI databases with different brain diseases and modalities for segmentation},
author={Xu W, Moffat M, Seale T, Liang Z, Wagner F et al.},
pages={1771-1784},
year = "2024"
}
IterMask2: Iterative Unsupervised Anomaly Segmentation via Spatial and Frequency Masking for Brain Lesions in MRI
Liang Z, Guo X, Noble JA & Kamnitsas K (2024), 15008, 339-348
An Organism Starts with a Single Pix-Cell: A Neural Cellular Diffusion for High-Resolution Image Synthesis
Elbatel M, Kamnitsas K & Li X (2024), 15001, 656-666
Joint Optimization of Class-Specific Training- and Test-Time Data Augmentation in Segmentation.
Li Z, Kamnitsas K, Dou Q, Qin C & Glocker B (2023), IEEE transactions on medical imaging, 42(11), 3323-3335
Post-deployment adaptation with access to source data via federated learning and source-target remote gradient alignment
Wagner F, Li Z, Saha P & Kamnitsas K (2023), Machine Learning in Medical Imaging, 253-263
BibTeX
@inproceedings{postdeploymenta-2023/10,
title={Post-deployment adaptation with access to source data via federated learning and source-target remote gradient alignment},
author={Wagner F, Li Z, Saha P & Kamnitsas K},
booktitle={Machine Learning in Medical Imaging 14th International Workshop, MLMI 2023},
pages={253-263},
year = "2023"
}
On the use of Mahalanobis distance for out-of-distribution detection with neural networks for medical imaging
Anthony H & Kamnitsas K (2023), 136-146
On the use of Mahalanobis distance for out-of-distribution detection with neural networks for medical imaging
Anthony H & Kamnitsas K (2023)
Post-deployment adaptation with access to source data via federated learning and source-target remote gradient alignment
Wagner F, Li Z, Saha P & Kamnitsas K (2023)
Modality cycles with masked conditional diffusion for unsupervised anomaly segmentation in MRI
Liang Z, Anthony H, Wagner F & Kamnitsas K (2023)
A Review of the Metrics Used to Assess Auto-Contouring Systems in Radiotherapy.
Mackay K, Bernstein D, Glocker B, Kamnitsas K & Taylor A (2023), Clinical oncology (Royal College of Radiologists (Great Britain)), 35(6), 354-369
BibTeX
@article{areviewofthemet-2023/6,
title={A Review of the Metrics Used to Assess Auto-Contouring Systems in Radiotherapy.},
author={Mackay K, Bernstein D, Glocker B, Kamnitsas K & Taylor A},
journal={Clinical oncology (Royal College of Radiologists (Great Britain))},
volume={35},
pages={354-369},
year = "2023"
}
Context Label Learning: Improving Background Class Representations in Semantic Segmentation.
Li Z, Kamnitsas K, Ouyang C, Chen C & Glocker B (2023), IEEE transactions on medical imaging, 42(6), 1885-1896
Joint optimization of class-specific training- and test-time data augmentation in segmentation
Li Z, Kamnitsas K, Dou Q, Qin C & Glocker B (2023)
Context label learning: improving background class representations in semantic segmentation
Li Z, Kamnitsas K, Ouyang C, Chen C & Glocker B (2022)
Federated learning enables big data for rare cancer boundary detection.
Pati S, Baid U, Edwards B, Sheller M, Wang S-H et al. (2022), Nature communications, 13(1), 7346-7346
Estimating model performance under domain shifts with class-specific confidence scores
Li Z, Kamnitsas K, Islam M, Chen C & Glocker B (2022), Proceedings of the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022), 693-703
BibTeX
@inproceedings{estimatingmodel-2022/9,
title={Estimating model performance under domain shifts with class-specific confidence scores},
author={Li Z, Kamnitsas K, Islam M, Chen C & Glocker B},
booktitle={25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022)},
pages={693-703},
year = "2022"
}
Estimating model performance under domain shifts with class-specific confidence scores
Li Z, Kamnitsas K, Islam M, Chen C & Glocker B (2022)
Distributional Gaussian Processes layers for out-of-distribution detection
Popescu SG, Sharp DJ, Cole JH, Kamnitsas K & Glocker B (2022), MELBA Journal, 1(IPMI 2021), 1-64
BibTeX
@article{distributionalg-2022/6,
title={Distributional Gaussian Processes layers for out-of-distribution detection},
author={Popescu SG, Sharp DJ, Cole JH, Kamnitsas K & Glocker B},
journal={MELBA Journal},
volume={1},
pages={1-64},
publisher={Machine Learning for Biomedical Imaging},
year = "2022"
}
Distributional Gaussian Processes layers for out-of-distribution detection
Popescu SG, Sharp DJ, Cole JH, Kamnitsas K & Glocker B (2022)
Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI
Vasey B, Nagendran M, Campbell B, Clifton DA, Collins GS et al. (2022), BMJ, 377
BibTeX
@article{reportingguidel-2022/5,
title={Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI},
author={Vasey B, Nagendran M, Campbell B, Clifton DA, Collins GS et al.},
journal={BMJ},
volume={377},
number={e070904},
publisher={BMJ Publishing Group},
year = "2022"
}
Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI.
Vasey B, Nagendran M, Campbell B, Clifton DA, Collins GS et al. (2022), Nature medicine, 28(5), 924-933
BibTeX
@article{reportingguidel-2022/5,
title={Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI.},
author={Vasey B, Nagendran M, Campbell B, Clifton DA, Collins GS et al.},
journal={Nature medicine},
volume={28},
pages={924-933},
year = "2022"
}