Skip to main content
Menu

Dr

Iro Laina

Departmental Lecturer in Computer Vision

Biography

Iro Laina joined the Visual Geometry Group at the University of Oxford as a PDRA in 2020 and became a Departmental Lecturer in Computer Vision in 2023. She has received her PhD (Dr. rer. nat.) from the Technical University of Munich (TUM), Germany, and her PhD dissertation has been recognized with the ECVA PhD Award. Before that, she completed a Msc in Biomedical Computing at TUM and a Diploma in Electrical and Computer Engineering at the National Technical University of Athens (NTUA).

Her research focuses on developing perception systems for understanding images, videos, and the 3D world, via unsupervised and language-supervised learning.

 

Research Interests

  • Computer Vision
  • Unsupervised, self-supervised, and language-supervised learning
  • Semantic and geometric understanding

Research Groups

SynCity: Training-Free Generation of 3D Worlds

Engstler P, Shtedritski A, Laina I, Rupprecht C & Vedaldi A (2025)

BibTeX
@misc{syncitytraining-2025/3,
  title={SynCity: Training-Free Generation of 3D Worlds},
  author={Engstler P, Shtedritski A, Laina I, Rupprecht C & Vedaldi A},
  year = "2025"
}

Learning segmentation from point trajectories

Karazija L, Laina I, Rupprecht C & Vedaldi A (2025), Advances in Neural Information Processing Systems 37 (NeurIPS 2024) Main Conference Track, 37, 112573-112597

BibTeX
@inproceedings{learningsegment-2025/2,
  title={Learning segmentation from point trajectories},
  author={Karazija L, Laina I, Rupprecht C & Vedaldi A},
  booktitle={38th Conference on Neural Information Processing Systems (NeurIPS 2024)},
  pages={112573-112597},
  year = "2025"
}

Learning segmentation from point trajectories

Karazija L, Laina I, Rupprecht C & Vedaldi A (2025)

BibTeX
@misc{learningsegment-2025/1,
  title={Learning segmentation from point trajectories},
  author={Karazija L, Laina I, Rupprecht C & Vedaldi A},
  year = "2025"
}

Rethinking Image Super-Resolution from Training Data Perspectives

Ohtani G, Tadokoro R, Yamada R, Asano YM, Laina I et al. (2025), 15075, 19-36

BibTeX View PDF
@misc{rethinkingimage-2025/,
  title={Rethinking Image Super-Resolution from Training Data Perspectives},
  author={Ohtani G, Tadokoro R, Yamada R, Asano YM, Laina I et al.},
  year = "2025"
}

Scaling Backwards: Minimal Synthetic Pre-Training?

Nakamura R, Tadokoro R, Yamada R, Asano YM, Laina I et al. (2025), 15073, 153-171

BibTeX View PDF
@misc{scalingbackward-2025/,
  title={Scaling Backwards: Minimal Synthetic Pre-Training?},
  author={Nakamura R, Tadokoro R, Yamada R, Asano YM, Laina I et al.},
  year = "2025"
}

3D-Aware Instance Segmentation and Tracking in Egocentric Videos

Bhalgat Y, Tschernezki V, Laina I, Henriques JF, Vedaldi A et al. (2025), 15474, 347-364

BibTeX View PDF
@misc{dawareinstances-2025/,
  title={3D-Aware Instance Segmentation and Tracking in Egocentric Videos},
  author={Bhalgat Y, Tschernezki V, Laina I, Henriques JF, Vedaldi A et al.},
  year = "2025"
}

PartGen: Part-level 3D Generation and Reconstruction with Multi-View Diffusion Models

Chen M, Shapovalov R, Laina I, Monnier T, Wang J et al. (2024)

BibTeX View PDF
@misc{partgenpartleve-2024/12,
  title={PartGen: Part-level 3D Generation and Reconstruction with Multi-View Diffusion Models},
  author={Chen M, Shapovalov R, Laina I, Monnier T, Wang J et al.},
  year = "2024"
}

3D-aware instance segmentation and tracking in egocentric videos

Bhalgat Y, Tschernezki V, Laina I, Henriques J, Vedaldi A et al. (2024), Computer Vision – ACCV 2024, 347-364

BibTeX View PDF
@inproceedings{dawareinstances-2024/12,
  title={3D-aware instance segmentation and tracking in egocentric videos},
  author={Bhalgat Y, Tschernezki V, Laina I, Henriques J, Vedaldi A et al.},
  booktitle={17th Asian Conference on Computer Vision (ACCV 2024)},
  pages={347-364},
  year = "2024"
}

N2F2: hierarchical scene understanding with nested neural feature fields

Bhalgat Y, Laina I, Henriques J, Zisserman A & Vedaldi A (2024), Computer Vision – ECCV 2024 18th European Conference, Milan, Italy, September 29–October 4, 2024, Proceedings, Part LIX, 197-214

BibTeX View PDF
@inproceedings{nfhierarchicals-2024/11,
  title={N2F2: hierarchical scene understanding with nested neural feature fields},
  author={Bhalgat Y, Laina I, Henriques J, Zisserman A & Vedaldi A},
  booktitle={20th European Conference on Computer Vision (ECCV 2024)},
  pages={197-214},
  year = "2024"
}

Contrastive lift: 3D object instance segmentation by slow-fast contrastive fusion

Bhalgat Y, Laina I, Henriques J, Zisserman A & Vedaldi A (2024), Advances in Neural Information Processing Systems 36, 9092

BibTeX
@inproceedings{contrastivelift-2024/10,
  title={Contrastive lift: 3D object instance segmentation by slow-fast contrastive fusion},
  author={Bhalgat Y, Laina I, Henriques J, Zisserman A & Vedaldi A},
  booktitle={37th Conference in Neural Information Processing Systems (NeurIPS 2023)},
  pages={9092},
  year = "2024"
}
View all