Showing 50 publications by Stefan Zohren
Extracting Alpha from Financial Analyst Networks
Gorduza D, Kong Y, Dong X & Zohren S (2024), 397-405
Deep Learning for Options Trading: An End-To-End Approach
Tan WL, Roberts S & Zohren S (2024), 487-495
Accelerating machine learning for trading using programmable switches
Hong X, Zheng C, Zohren S & Zilberman N (2024), ECAI 2024, 3429-3436
The 10th Mining and Learning from Time Series Workshop: From Classical Methods to LLMs
Purushotham S, Song D, Wen Q, Huan J, Shen C et al. (2024), 6733-6734
BibTeX
@inproceedings{thethminingandl-2024/8,
title={The 10th Mining and Learning from Time Series Workshop: From Classical Methods to LLMs},
author={Purushotham S, Song D, Wen Q, Huan J, Shen C et al.},
booktitle={Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
pages={6733-6734},
year = "2024"
}
Traditional Methods Outperform Generative LLMs at Forecasting Credit Ratings
Drinkall F, Pierrehumbert JB & Zohren S (2024)
Time machine GPT
Drinkall F, Rahimikia E, Pierrehumbert J & Zohren S (2024)
BibTeX
@inproceedings{timemachinegpt-2024/6,
title={Time machine GPT},
author={Drinkall F, Rahimikia E, Pierrehumbert J & Zohren S},
booktitle={2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics},
year = "2024"
}
A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges
Nie Y, Kong Y, Dong X, Mulvey JM, Poor HV et al. (2024)
Few-shot learning patterns in financial time series for trend-following strategies
Wood K, Kessler S, Roberts SJ & Zohren S (2024), Journal of Financial Data Science, 6(2), 88-115
BibTeX
@article{fewshotlearning-2024/3,
title={Few-shot learning patterns in financial time series for trend-following strategies},
author={Wood K, Kessler S, Roberts SJ & Zohren S},
journal={Journal of Financial Data Science},
volume={6},
pages={88-115},
publisher={Portfolio Management Research},
year = "2024"
}
Wisdom of the crowds or ignorance of the masses? A data-driven guide to WallStreetBets
Semenova V, Gorduza D, Wildi W, Dong X & Zohren S (2024), Journal of Portfolio Management, 50(4), 88-106
BibTeX
@article{wisdomofthecrow-2024/2,
title={Wisdom of the crowds or ignorance of the masses? A data-driven guide to WallStreetBets},
author={Semenova V, Gorduza D, Wildi W, Dong X & Zohren S},
journal={Journal of Portfolio Management},
volume={50},
pages={88-106},
publisher={Portfolio Management Research},
year = "2024"
}
Deep attentive survival analysis in limit order books: estimating fill probabilities with convolutional-transformers
Arroyo A, Cartea A, Moreno-Pino F & Zohren S (2024), Quantitative Finance
BibTeX
@article{deepattentivesu-2024/1,
title={Deep attentive survival analysis in limit order books: estimating fill probabilities with convolutional-transformers},
author={Arroyo A, Cartea A, Moreno-Pino F & Zohren S},
journal={Quantitative Finance},
publisher={Taylor and Francis},
year = "2024"
}
DeepVol: volatility forecasting from high-frequency data with dilated causal convolutions.
Moreno-Pino F & Zohren S (2024), Quantitative finance, 24(8), 1105-1127
JAX-LOB: a GPU-Accelerated limit order book simulator to unlock large scale reinforcement learning for trading
Frey S, Li K, Nagy P, Sapora S, Lu C et al. (2023), 583-591
BibTeX
@article{jaxlobagpuaccel-2023/11,
title={JAX-LOB: a GPU-Accelerated limit order book simulator to unlock large scale reinforcement learning for trading},
author={Frey S, Li K, Nagy P, Sapora S, Lu C et al.},
journal={},
pages={583-591},
publisher={Association for Computing Machinery},
year = "2023"
}
Generative AI for End-to-End Limit Order Book Modelling: A Token-Level Autoregressive Generative Model of Message Flow Using a Deep State Space Network
Nagy P, Frey S, Sapora S, Li K, Calinescu A et al. (2023), 91-99
BibTeX
@inproceedings{generativeaifor-2023/11,
title={Generative AI for End-to-End Limit Order Book Modelling: A Token-Level Autoregressive Generative Model of Message Flow Using a Deep State Space Network},
author={Nagy P, Frey S, Sapora S, Li K, Calinescu A et al.},
booktitle={4th ACM International Conference on AI in Finance},
pages={91-99},
year = "2023"
}
Dynamic Time Warping for Lead-Lag Relationship Detection in Lagged Multi-Factor Models
Zhang Y, Cucuringu M, Shestopaloff A & Zohren S (2023), 454-462
Few-Shot Learning Patterns in Financial Time-Series for Trend-Following Strategies
Wood K, Kessler S, Roberts SJ & Zohren S (2023)
Asynchronous Deep Double Dueling Q-learning for trading-signal execution in limit order book markets.
Nagy P, Calliess J-P & Zohren S (2023), Frontiers in artificial intelligence, 6, 1151003
BibTeX
@article{asynchronousdee-2023/9,
title={Asynchronous Deep Double Dueling Q-learning for trading-signal execution in limit order book markets.},
author={Nagy P, Calliess J-P & Zohren S},
journal={Frontiers in artificial intelligence},
volume={6},
pages={1151003},
publisher={Frontiers},
year = "2023"
}
Graphical structures for design and verification of quantum error correction
Chancellor N, Kissinger A, Zohren S, Roffe J & Horsman D (2023), Quantum Science and Technology, 8(4)
BibTeX
@article{graphicalstruct-2023/9,
title={Graphical structures for design and verification of quantum error correction},
author={Chancellor N, Kissinger A, Zohren S, Roffe J & Horsman D},
journal={Quantum Science and Technology},
volume={8},
number={045028},
publisher={IOP Publishing},
year = "2023"
}
Canonical portfolios: Optimal asset and signal combination
Firoozye N, Tan V & Zohren S (2023), Journal of Banking & Finance, 154, 106952
Wisdom of the crowds or ignorance of the masses? A data-driven guide to WSB
Semenova V, Gorduza D, Wildi W, Dong X & Zohren S (2023)
Deep Inception Networks: A General End-to-End Framework for Multi-asset Quantitative Strategies
Liu T, Roberts S & Zohren S (2023)
View fusion vis-à-vis a Bayesian interpretation of Black–Litterman for portfolio allocation
Spears T, Zohren S & Roberts S (2023), Journal of Financial Data Science, 5(3), 23-49
BibTeX
@article{viewfusionvisvi-2023/6,
title={View fusion vis-à-vis a Bayesian interpretation of Black–Litterman for portfolio allocation},
author={Spears T, Zohren S & Roberts S},
journal={Journal of Financial Data Science},
volume={5},
pages={23-49},
publisher={Portfolio Management Research},
year = "2023"
}
Spatio-temporal momentum: jointly learning time-series and cross-sectional strategies
Tan WL, Roberts S & Zohren S (2023), Journal of Financial Data Science, 5(3), 107-129
BibTeX
@article{spatiotemporalm-2023/6,
title={Spatio-temporal momentum: jointly learning time-series and cross-sectional strategies},
author={Tan WL, Roberts S & Zohren S},
journal={Journal of Financial Data Science},
volume={5},
pages={107-129},
publisher={Portfolio Management Research},
year = "2023"
}
LOBIN: in-network machine learning for limit order books
Hong X, Zheng C, Zohren S & Zilberman N (2023), 2023 IEEE 24th International Conference on High Performance Switching and Routing (HPSR), 159-166
BibTeX
@inproceedings{lobininnetworkm-2023/6,
title={LOBIN: in-network machine learning for limit order books},
author={Hong X, Zheng C, Zohren S & Zilberman N},
booktitle={IEEE 24th International Conference on High-Performance Switching and Routing (IEEE HPSR 2023)},
pages={159-166},
year = "2023"
}
On sequential Bayesian inference for continual learning
Kessler S, Cobb A, Rudner TGJ, Zohren S & Roberts SJ (2023), Entropy , 25(6)
Spatio-Temporal Momentum: Jointly Learning Time-Series and Cross-Sectional Strategies
Tan WL, Roberts S & Zohren S (2023)
View fusion vis-à-vis a Bayesian interpretation of Black-Litterman for portfolio allocation
Spears T, Zohren S & Roberts S (2023)
Asynchronous Deep Double Duelling Q-Learning for Trading-Signal Execution in Limit Order Book Markets
Nagy P, Calliess J-P & Zohren S (2023)
Slow momentum with fast reversion: a trading strategy using deep learning and changepoint detection
Wood K, Roberts S & Zohren S (2022), Journal of Financial Data Science, 4(1), 111-129
BibTeX
@article{slowmomentumwit-2022/12,
title={Slow momentum with fast reversion: a trading strategy using deep learning and changepoint detection},
author={Wood K, Roberts S & Zohren S},
journal={Journal of Financial Data Science},
volume={4},
pages={111-129},
publisher={Portfolio Management Research},
year = "2022"
}
Linnet: limit order books within switches
Hong X, Zheng C, Zohren S & Zilberman N (2022), SIGCOMM '22: Proceedings of the SIGCOMM '22 Poster and Demo Sessions, 37-39
Linnet: limit order books within switches
Hong X, Zheng C, Zohren S & Zilberman N (2022), SIGCOMM '22: Proceedings of the SIGCOMM '22 Poster and Demo Sessions, 37-39
Enhancing cross-sectional currency strategies by context-aware learning to rank with self-attention
Poh D, Lim B, Zohren S & Roberts S (2022), Journal of Financial Data Science, 4(3), 89-107
BibTeX
@article{enhancingcrosss-2022/7,
title={Enhancing cross-sectional currency strategies by context-aware learning to rank with self-attention},
author={Poh D, Lim B, Zohren S & Roberts S},
journal={Journal of Financial Data Science},
volume={4},
pages={89-107},
publisher={Portfolio Management Research},
year = "2022"
}
Forecasting COVID-19 caseloads using unsupervised embedding clusters of social media posts
Drinkall F, Zohren S & Pierrehumbert JB (2022), Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1471-1484
BibTeX
@inproceedings{forecastingcovi-2022/7,
title={Forecasting COVID-19 caseloads using unsupervised embedding clusters of social media posts},
author={Drinkall F, Zohren S & Pierrehumbert JB},
booktitle={ 2022 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2022)},
pages={1471-1484},
year = "2022"
}
Learning rates as a function of batch size: a random matrix theory approach to neural network training
Granziol D, Zohren S & Roberts S (2022), Journal of Machine Learning Research, 23(173), 1-65
BibTeX
@article{learningratesas-2022/6,
title={Learning rates as a function of batch size: a random matrix theory approach to neural network training},
author={Granziol D, Zohren S & Roberts S},
journal={Journal of Machine Learning Research},
volume={23},
pages={1-65},
publisher={Journal of Machine Learning Research},
year = "2022"
}
Maximum entropy approach to massive graph spectrum learning with applications
Granziol D, Ru B, Dong X, Zohren S, Osborne M et al. (2022), Algorithms, 15(6)
Same state, different task: continual reinforcement learning without interference
Kessler S, Parker-Holder J, Ball P, Zohren S & Roberts SJ (2022), Proceedings of the 36th AAAI Conference on Artificial Intelligence, 36(7), 7143-7151
BibTeX
@inproceedings{samestatediffer-2022/6,
title={Same state, different task: continual reinforcement learning without interference},
author={Kessler S, Parker-Holder J, Ball P, Zohren S & Roberts SJ},
booktitle={36th Annual AAAI Conference on Artificial Intelligence (AAAI 2022)},
pages={7143-7151},
year = "2022"
}
Quantifying Long-Term Market Impact
Harvey CR, Ledford A, Sciulli E, Ustinov P & Zohren S (2022), The Journal of Portfolio Management, 48(3), 25-46
Fast Agent-Based Simulation Framework with Applications to Reinforcement Learning and the Study of Trading Latency Effects
Belcak P, Calliess J-P & Zohren S (2022), Lecture Notes in Computer Science, 13128, 42-56
Trading with the Momentum Transformer: An Intelligent and Interpretable Architecture
Wood K, Giegerich S, Roberts S & Zohren S (2021)
Same State, Different Task: Continual Reinforcement Learning without Interference
Kessler S, Parker-Holder J, Ball P, Zohren S & Roberts SJ (2021)
Slow Momentum with Fast Reversion: A Trading Strategy Using Deep Learning and Changepoint Detection
Wood K, Roberts S & Zohren S (2021)
Enhancing Cross-Sectional Currency Strategies by Context-Aware Learning to Rank with Self-Attention
Poh D, Lim B, Zohren S & Roberts S (2021)
Time-series forecasting with deep learning: a survey.
Lim B & Zohren S (2021), Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 379(2194), 20200209
Building cross-sectional systematic strategies by learning to rank
Poh D, Lim B, Zohren S & Roberts S (2021), Journal of Financial Data Science, 3(2), 70-86
Sentiment correlation in financial news networks and associated market movements
Wan X, Yang J, Marinov S, Calliess J-P, Zohren S et al. (2021), Scientific Reports, 11(1)
Deep Learning for Market by Order Data
Zhang Z, Lim B & Zohren S (2021), Applied Mathematical Finance, 28(1), 79-95
Investment Sizing with Deep Learning Prediction Uncertainties for High-Frequency Eurodollar Futures Trading
Spears T, Zohren S & Roberts S (2021), The Journal of Financial Data Science, 3(1), 57-73
BibTeX
@article{investmentsizin-2021/1,
title={Investment Sizing with Deep Learning Prediction Uncertainties for High-Frequency Eurodollar Futures Trading},
author={Spears T, Zohren S & Roberts S},
journal={The Journal of Financial Data Science},
volume={3},
pages={57-73},
publisher={Pageant Media US},
year = "2021"
}